1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Vnode operations for the High Sierra filesystem 30 */ 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/signal.h> 40 #include <sys/cred.h> 41 #include <sys/user.h> 42 #include <sys/buf.h> 43 #include <sys/vfs.h> 44 #include <sys/vfs_opreg.h> 45 #include <sys/stat.h> 46 #include <sys/vnode.h> 47 #include <sys/mode.h> 48 #include <sys/proc.h> 49 #include <sys/disp.h> 50 #include <sys/file.h> 51 #include <sys/fcntl.h> 52 #include <sys/flock.h> 53 #include <sys/kmem.h> 54 #include <sys/uio.h> 55 #include <sys/conf.h> 56 #include <sys/errno.h> 57 #include <sys/mman.h> 58 #include <sys/pathname.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/cmn_err.h> 62 #include <sys/fbuf.h> 63 #include <sys/dirent.h> 64 #include <sys/errno.h> 65 #include <sys/dkio.h> 66 #include <sys/cmn_err.h> 67 #include <sys/atomic.h> 68 69 #include <vm/hat.h> 70 #include <vm/page.h> 71 #include <vm/pvn.h> 72 #include <vm/as.h> 73 #include <vm/seg.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_kmem.h> 76 #include <vm/seg_vn.h> 77 #include <vm/rm.h> 78 #include <vm/page.h> 79 #include <sys/swap.h> 80 #include <sys/avl.h> 81 #include <sys/sunldi.h> 82 #include <sys/ddi.h> 83 #include <sys/sunddi.h> 84 #include <sys/sdt.h> 85 86 /* 87 * For struct modlinkage 88 */ 89 #include <sys/modctl.h> 90 91 #include <sys/fs/hsfs_spec.h> 92 #include <sys/fs/hsfs_node.h> 93 #include <sys/fs/hsfs_impl.h> 94 #include <sys/fs/hsfs_susp.h> 95 #include <sys/fs/hsfs_rrip.h> 96 97 #include <fs/fs_subr.h> 98 99 /* # of contiguous requests to detect sequential access pattern */ 100 static int seq_contig_requests = 2; 101 102 /* 103 * This is the max number os taskq threads that will be created 104 * if required. Since we are using a Dynamic TaskQ by default only 105 * one thread is created initially. 106 * 107 * NOTE: In the usual hsfs use case this per fs instance number 108 * of taskq threads should not place any undue load on a system. 109 * Even on an unusual system with say 100 CDROM drives, 800 threads 110 * will not be created unless all the drives are loaded and all 111 * of them are saturated with I/O at the same time! If there is at 112 * all a complaint of system load due to such an unusual case it 113 * should be easy enough to change to one per-machine Dynamic TaskQ 114 * for all hsfs mounts with a nthreads of say 32. 115 */ 116 static int hsfs_taskq_nthreads = 8; /* # of taskq threads per fs */ 117 118 /* Min count of adjacent bufs that will avoid buf coalescing */ 119 static int hsched_coalesce_min = 2; 120 121 /* 122 * Kmem caches for heavily used small allocations. Using these kmem 123 * caches provides a factor of 3 reduction in system time and greatly 124 * aids overall throughput esp. on SPARC. 125 */ 126 struct kmem_cache *hio_cache; 127 struct kmem_cache *hio_info_cache; 128 129 /* 130 * This tunable allows us to ignore inode numbers from rrip-1.12. 131 * In this case, we fall back to our default inode algorithm. 132 */ 133 extern int use_rrip_inodes; 134 135 /* 136 * Free behind logic from UFS to tame our thirst for 137 * the page cache. 138 * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more 139 * explanation. 140 */ 141 static int freebehind = 1; 142 static int smallfile = 0; 143 static int cache_read_ahead = 0; 144 static u_offset_t smallfile64 = 32 * 1024; 145 #define SMALLFILE1_D 1000 146 #define SMALLFILE2_D 10 147 static u_offset_t smallfile1 = 32 * 1024; 148 static u_offset_t smallfile2 = 32 * 1024; 149 static clock_t smallfile_update = 0; /* when to recompute */ 150 static uint_t smallfile1_d = SMALLFILE1_D; 151 static uint_t smallfile2_d = SMALLFILE2_D; 152 153 static int hsched_deadline_compare(const void *x1, const void *x2); 154 static int hsched_offset_compare(const void *x1, const void *x2); 155 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra); 156 int hsched_invoke_strategy(struct hsfs *fsp); 157 158 /* ARGSUSED */ 159 static int 160 hsfs_fsync(vnode_t *cp, 161 int syncflag, 162 cred_t *cred, 163 caller_context_t *ct) 164 { 165 return (0); 166 } 167 168 169 /*ARGSUSED*/ 170 static int 171 hsfs_read(struct vnode *vp, 172 struct uio *uiop, 173 int ioflag, 174 struct cred *cred, 175 struct caller_context *ct) 176 { 177 caddr_t base; 178 offset_t diff; 179 int error; 180 struct hsnode *hp; 181 uint_t filesize; 182 int dofree; 183 184 hp = VTOH(vp); 185 /* 186 * if vp is of type VDIR, make sure dirent 187 * is filled up with all info (because of ptbl) 188 */ 189 if (vp->v_type == VDIR) { 190 if (hp->hs_dirent.ext_size == 0) 191 hs_filldirent(vp, &hp->hs_dirent); 192 } 193 filesize = hp->hs_dirent.ext_size; 194 195 /* Sanity checks. */ 196 if (uiop->uio_resid == 0 || /* No data wanted. */ 197 uiop->uio_loffset > HS_MAXFILEOFF || /* Offset too big. */ 198 uiop->uio_loffset >= filesize) /* Past EOF. */ 199 return (0); 200 201 do { 202 /* 203 * We want to ask for only the "right" amount of data. 204 * In this case that means:- 205 * 206 * We can't get data from beyond our EOF. If asked, 207 * we will give a short read. 208 * 209 * segmap_getmapflt returns buffers of MAXBSIZE bytes. 210 * These buffers are always MAXBSIZE aligned. 211 * If our starting offset is not MAXBSIZE aligned, 212 * we can only ask for less than MAXBSIZE bytes. 213 * 214 * If our requested offset and length are such that 215 * they belong in different MAXBSIZE aligned slots 216 * then we'll be making more than one call on 217 * segmap_getmapflt. 218 * 219 * This diagram shows the variables we use and their 220 * relationships. 221 * 222 * |<-----MAXBSIZE----->| 223 * +--------------------------...+ 224 * |.....mapon->|<--n-->|....*...|EOF 225 * +--------------------------...+ 226 * uio_loffset->| 227 * uio_resid....|<---------->| 228 * diff.........|<-------------->| 229 * 230 * So, in this case our offset is not aligned 231 * and our request takes us outside of the 232 * MAXBSIZE window. We will break this up into 233 * two segmap_getmapflt calls. 234 */ 235 size_t nbytes; 236 offset_t mapon; 237 size_t n; 238 uint_t flags; 239 240 mapon = uiop->uio_loffset & MAXBOFFSET; 241 diff = filesize - uiop->uio_loffset; 242 nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid); 243 n = MIN(diff, nbytes); 244 if (n <= 0) { 245 /* EOF or request satisfied. */ 246 return (0); 247 } 248 249 /* 250 * Freebehind computation taken from: 251 * usr/src/uts/common/fs/ufs/ufs_vnops.c 252 */ 253 if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) { 254 uint64_t percpufreeb; 255 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 256 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 257 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 258 smallfile1 = percpufreeb / smallfile1_d; 259 smallfile2 = percpufreeb / smallfile2_d; 260 smallfile1 = MAX(smallfile1, smallfile); 261 smallfile1 = MAX(smallfile1, smallfile64); 262 smallfile2 = MAX(smallfile1, smallfile2); 263 smallfile_update = drv_hztousec(ddi_get_lbolt()) 264 + 1000000; 265 } 266 267 dofree = freebehind && 268 hp->hs_prev_offset == uiop->uio_loffset && 269 hp->hs_ra_bytes > 0; 270 271 base = segmap_getmapflt(segkmap, vp, 272 (u_offset_t)uiop->uio_loffset, n, 1, S_READ); 273 274 error = uiomove(base + mapon, n, UIO_READ, uiop); 275 276 if (error == 0) { 277 /* 278 * if read a whole block, or read to eof, 279 * won't need this buffer again soon. 280 */ 281 if (n + mapon == MAXBSIZE || 282 uiop->uio_loffset == filesize) 283 flags = SM_DONTNEED; 284 else 285 flags = 0; 286 287 if (dofree) { 288 flags = SM_FREE | SM_ASYNC; 289 if ((cache_read_ahead == 0) && 290 uiop->uio_loffset > smallfile2) 291 flags |= SM_DONTNEED; 292 } 293 294 error = segmap_release(segkmap, base, flags); 295 } else 296 (void) segmap_release(segkmap, base, 0); 297 } while (error == 0 && uiop->uio_resid > 0); 298 299 return (error); 300 } 301 302 /*ARGSUSED2*/ 303 static int 304 hsfs_getattr( 305 struct vnode *vp, 306 struct vattr *vap, 307 int flags, 308 struct cred *cred, 309 caller_context_t *ct) 310 { 311 struct hsnode *hp; 312 struct vfs *vfsp; 313 struct hsfs *fsp; 314 315 hp = VTOH(vp); 316 fsp = VFS_TO_HSFS(vp->v_vfsp); 317 vfsp = vp->v_vfsp; 318 319 if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) { 320 hs_filldirent(vp, &hp->hs_dirent); 321 } 322 vap->va_type = IFTOVT(hp->hs_dirent.mode); 323 vap->va_mode = hp->hs_dirent.mode; 324 vap->va_uid = hp->hs_dirent.uid; 325 vap->va_gid = hp->hs_dirent.gid; 326 327 vap->va_fsid = vfsp->vfs_dev; 328 vap->va_nodeid = (ino64_t)hp->hs_nodeid; 329 vap->va_nlink = hp->hs_dirent.nlink; 330 vap->va_size = (offset_t)hp->hs_dirent.ext_size; 331 332 vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec; 333 vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000; 334 vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec; 335 vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000; 336 vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec; 337 vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000; 338 if (vp->v_type == VCHR || vp->v_type == VBLK) 339 vap->va_rdev = hp->hs_dirent.r_dev; 340 else 341 vap->va_rdev = 0; 342 vap->va_blksize = vfsp->vfs_bsize; 343 /* no. of blocks = no. of data blocks + no. of xar blocks */ 344 vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t) 345 (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE); 346 vap->va_seq = hp->hs_seq; 347 return (0); 348 } 349 350 /*ARGSUSED*/ 351 static int 352 hsfs_readlink(struct vnode *vp, 353 struct uio *uiop, 354 struct cred *cred, 355 caller_context_t *ct) 356 { 357 struct hsnode *hp; 358 359 if (vp->v_type != VLNK) 360 return (EINVAL); 361 362 hp = VTOH(vp); 363 364 if (hp->hs_dirent.sym_link == (char *)NULL) 365 return (ENOENT); 366 367 return (uiomove(hp->hs_dirent.sym_link, 368 (size_t)MIN(hp->hs_dirent.ext_size, 369 uiop->uio_resid), UIO_READ, uiop)); 370 } 371 372 /*ARGSUSED*/ 373 static void 374 hsfs_inactive(struct vnode *vp, 375 struct cred *cred, 376 caller_context_t *ct) 377 { 378 struct hsnode *hp; 379 struct hsfs *fsp; 380 381 int nopage; 382 383 hp = VTOH(vp); 384 fsp = VFS_TO_HSFS(vp->v_vfsp); 385 /* 386 * Note: acquiring and holding v_lock for quite a while 387 * here serializes on the vnode; this is unfortunate, but 388 * likely not to overly impact performance, as the underlying 389 * device (CDROM drive) is quite slow. 390 */ 391 rw_enter(&fsp->hsfs_hash_lock, RW_WRITER); 392 mutex_enter(&hp->hs_contents_lock); 393 mutex_enter(&vp->v_lock); 394 395 if (vp->v_count < 1) { 396 panic("hsfs_inactive: v_count < 1"); 397 /*NOTREACHED*/ 398 } 399 400 if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) { 401 vp->v_count--; /* release hold from vn_rele */ 402 mutex_exit(&vp->v_lock); 403 mutex_exit(&hp->hs_contents_lock); 404 rw_exit(&fsp->hsfs_hash_lock); 405 return; 406 } 407 vp->v_count--; /* release hold from vn_rele */ 408 if (vp->v_count == 0) { 409 /* 410 * Free the hsnode. 411 * If there are no pages associated with the 412 * hsnode, give it back to the kmem_cache, 413 * else put at the end of this file system's 414 * internal free list. 415 */ 416 nopage = !vn_has_cached_data(vp); 417 hp->hs_flags = 0; 418 /* 419 * exit these locks now, since hs_freenode may 420 * kmem_free the hsnode and embedded vnode 421 */ 422 mutex_exit(&vp->v_lock); 423 mutex_exit(&hp->hs_contents_lock); 424 hs_freenode(vp, fsp, nopage); 425 } else { 426 mutex_exit(&vp->v_lock); 427 mutex_exit(&hp->hs_contents_lock); 428 } 429 rw_exit(&fsp->hsfs_hash_lock); 430 } 431 432 433 /*ARGSUSED*/ 434 static int 435 hsfs_lookup( 436 struct vnode *dvp, 437 char *nm, 438 struct vnode **vpp, 439 struct pathname *pnp, 440 int flags, 441 struct vnode *rdir, 442 struct cred *cred, 443 caller_context_t *ct, 444 int *direntflags, 445 pathname_t *realpnp) 446 { 447 int error; 448 int namelen = (int)strlen(nm); 449 450 if (*nm == '\0') { 451 VN_HOLD(dvp); 452 *vpp = dvp; 453 return (0); 454 } 455 456 /* 457 * If we're looking for ourself, life is simple. 458 */ 459 if (namelen == 1 && *nm == '.') { 460 if (error = hs_access(dvp, (mode_t)VEXEC, cred)) 461 return (error); 462 VN_HOLD(dvp); 463 *vpp = dvp; 464 return (0); 465 } 466 467 return (hs_dirlook(dvp, nm, namelen, vpp, cred)); 468 } 469 470 471 /*ARGSUSED*/ 472 static int 473 hsfs_readdir( 474 struct vnode *vp, 475 struct uio *uiop, 476 struct cred *cred, 477 int *eofp, 478 caller_context_t *ct, 479 int flags) 480 { 481 struct hsnode *dhp; 482 struct hsfs *fsp; 483 struct hs_direntry hd; 484 struct dirent64 *nd; 485 int error; 486 uint_t offset; /* real offset in directory */ 487 uint_t dirsiz; /* real size of directory */ 488 uchar_t *blkp; 489 int hdlen; /* length of hs directory entry */ 490 long ndlen; /* length of dirent entry */ 491 int bytes_wanted; 492 size_t bufsize; /* size of dirent buffer */ 493 char *outbuf; /* ptr to dirent buffer */ 494 char *dname; 495 int dnamelen; 496 size_t dname_size; 497 struct fbuf *fbp; 498 uint_t last_offset; /* last index into current dir block */ 499 ino64_t dirino; /* temporary storage before storing in dirent */ 500 off_t diroff; 501 502 dhp = VTOH(vp); 503 fsp = VFS_TO_HSFS(vp->v_vfsp); 504 if (dhp->hs_dirent.ext_size == 0) 505 hs_filldirent(vp, &dhp->hs_dirent); 506 dirsiz = dhp->hs_dirent.ext_size; 507 if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */ 508 if (eofp) 509 *eofp = 1; 510 return (0); 511 } 512 ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF); 513 offset = uiop->uio_loffset; 514 515 dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */ 516 dname = kmem_alloc(dname_size, KM_SLEEP); 517 bufsize = uiop->uio_resid + sizeof (struct dirent64); 518 519 outbuf = kmem_alloc(bufsize, KM_SLEEP); 520 nd = (struct dirent64 *)outbuf; 521 522 while (offset < dirsiz) { 523 bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK)); 524 525 error = fbread(vp, (offset_t)(offset & MAXBMASK), 526 (unsigned int)bytes_wanted, S_READ, &fbp); 527 if (error) 528 goto done; 529 530 blkp = (uchar_t *)fbp->fb_addr; 531 last_offset = (offset & MAXBMASK) + fbp->fb_count; 532 533 #define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */ 534 535 while (offset < last_offset) { 536 /* 537 * Very similar validation code is found in 538 * process_dirblock(), hsfs_node.c. 539 * For an explanation, see there. 540 * It may make sense for the future to 541 * "consolidate" the code in hs_parsedir(), 542 * process_dirblock() and hsfs_readdir() into 543 * a single utility function. 544 */ 545 hdlen = (int)((uchar_t) 546 HDE_DIR_LEN(&blkp[rel_offset(offset)])); 547 if (hdlen < HDE_ROOT_DIR_REC_SIZE || 548 offset + hdlen > last_offset) { 549 /* 550 * advance to next sector boundary 551 */ 552 offset = roundup(offset + 1, HS_SECTOR_SIZE); 553 if (hdlen) 554 hs_log_bogus_disk_warning(fsp, 555 HSFS_ERR_TRAILING_JUNK, 0); 556 557 continue; 558 } 559 560 bzero(&hd, sizeof (hd)); 561 562 /* 563 * Just ignore invalid directory entries. 564 * XXX - maybe hs_parsedir() will detect EXISTENCE bit 565 */ 566 if (!hs_parsedir(fsp, &blkp[rel_offset(offset)], 567 &hd, dname, &dnamelen, last_offset - offset)) { 568 /* 569 * Determine if there is enough room 570 */ 571 ndlen = (long)DIRENT64_RECLEN((dnamelen)); 572 573 if ((ndlen + ((char *)nd - outbuf)) > 574 uiop->uio_resid) { 575 fbrelse(fbp, S_READ); 576 goto done; /* output buffer full */ 577 } 578 579 diroff = offset + hdlen; 580 /* 581 * If the media carries rrip-v1.12 or newer, 582 * and we trust the inodes from the rrip data 583 * (use_rrip_inodes != 0), use that data. If the 584 * media has been created by a recent mkisofs 585 * version, we may trust all numbers in the 586 * starting extent number; otherwise, we cannot 587 * do this for zero sized files and symlinks, 588 * because if we did we'd end up mapping all of 589 * them to the same node. We use HS_DUMMY_INO 590 * in this case and make sure that we will not 591 * map all files to the same meta data. 592 */ 593 if (hd.inode != 0 && use_rrip_inodes) { 594 dirino = hd.inode; 595 } else if ((hd.ext_size == 0 || 596 hd.sym_link != (char *)NULL) && 597 (fsp->hsfs_flags & HSFSMNT_INODE) == 0) { 598 dirino = HS_DUMMY_INO; 599 } else { 600 dirino = hd.ext_lbn; 601 } 602 603 /* strncpy(9f) will zero uninitialized bytes */ 604 605 ASSERT(strlen(dname) + 1 <= 606 DIRENT64_NAMELEN(ndlen)); 607 (void) strncpy(nd->d_name, dname, 608 DIRENT64_NAMELEN(ndlen)); 609 nd->d_reclen = (ushort_t)ndlen; 610 nd->d_off = (offset_t)diroff; 611 nd->d_ino = dirino; 612 nd = (struct dirent64 *)((char *)nd + ndlen); 613 614 /* 615 * free up space allocated for symlink 616 */ 617 if (hd.sym_link != (char *)NULL) { 618 kmem_free(hd.sym_link, 619 (size_t)(hd.ext_size+1)); 620 hd.sym_link = (char *)NULL; 621 } 622 } 623 offset += hdlen; 624 } 625 fbrelse(fbp, S_READ); 626 } 627 628 /* 629 * Got here for one of the following reasons: 630 * 1) outbuf is full (error == 0) 631 * 2) end of directory reached (error == 0) 632 * 3) error reading directory sector (error != 0) 633 * 4) directory entry crosses sector boundary (error == 0) 634 * 635 * If any directory entries have been copied, don't report 636 * case 4. Instead, return the valid directory entries. 637 * 638 * If no entries have been copied, report the error. 639 * If case 4, this will be indistiguishable from EOF. 640 */ 641 done: 642 ndlen = ((char *)nd - outbuf); 643 if (ndlen != 0) { 644 error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop); 645 uiop->uio_loffset = offset; 646 } 647 kmem_free(dname, dname_size); 648 kmem_free(outbuf, bufsize); 649 if (eofp && error == 0) 650 *eofp = (uiop->uio_loffset >= dirsiz); 651 return (error); 652 } 653 654 /*ARGSUSED2*/ 655 static int 656 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 657 { 658 struct hsnode *hp; 659 struct hsfid *fid; 660 661 if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) { 662 fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len); 663 return (ENOSPC); 664 } 665 666 fid = (struct hsfid *)fidp; 667 fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len); 668 hp = VTOH(vp); 669 mutex_enter(&hp->hs_contents_lock); 670 fid->hf_dir_lbn = hp->hs_dir_lbn; 671 fid->hf_dir_off = (ushort_t)hp->hs_dir_off; 672 fid->hf_ino = hp->hs_nodeid; 673 mutex_exit(&hp->hs_contents_lock); 674 return (0); 675 } 676 677 /*ARGSUSED*/ 678 static int 679 hsfs_open(struct vnode **vpp, 680 int flag, 681 struct cred *cred, 682 caller_context_t *ct) 683 { 684 return (0); 685 } 686 687 /*ARGSUSED*/ 688 static int 689 hsfs_close( 690 struct vnode *vp, 691 int flag, 692 int count, 693 offset_t offset, 694 struct cred *cred, 695 caller_context_t *ct) 696 { 697 (void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 698 cleanshares(vp, ttoproc(curthread)->p_pid); 699 return (0); 700 } 701 702 /*ARGSUSED2*/ 703 static int 704 hsfs_access(struct vnode *vp, 705 int mode, 706 int flags, 707 cred_t *cred, 708 caller_context_t *ct) 709 { 710 return (hs_access(vp, (mode_t)mode, cred)); 711 } 712 713 /* 714 * the seek time of a CD-ROM is very slow, and data transfer 715 * rate is even worse (max. 150K per sec). The design 716 * decision is to reduce access to cd-rom as much as possible, 717 * and to transfer a sizable block (read-ahead) of data at a time. 718 * UFS style of read ahead one block at a time is not appropriate, 719 * and is not supported 720 */ 721 722 /* 723 * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS. 724 */ 725 #define KLUSTSIZE (56 * 1024) 726 /* we don't support read ahead */ 727 int hsfs_lostpage; /* no. of times we lost original page */ 728 729 /* 730 * Used to prevent biodone() from releasing buf resources that 731 * we didn't allocate in quite the usual way. 732 */ 733 /*ARGSUSED*/ 734 int 735 hsfs_iodone(struct buf *bp) 736 { 737 sema_v(&bp->b_io); 738 return (0); 739 } 740 741 /* 742 * The taskq thread that invokes the scheduling function to ensure 743 * that all readaheads are complete and cleans up the associated 744 * memory and releases the page lock. 745 */ 746 void 747 hsfs_ra_task(void *arg) 748 { 749 struct hio_info *info = arg; 750 uint_t count; 751 struct buf *wbuf; 752 753 ASSERT(info->pp != NULL); 754 755 for (count = 0; count < info->bufsused; count++) { 756 wbuf = &(info->bufs[count]); 757 758 DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf); 759 while (sema_tryp(&(info->sema[count])) == 0) { 760 if (hsched_invoke_strategy(info->fsp)) { 761 sema_p(&(info->sema[count])); 762 break; 763 } 764 } 765 sema_destroy(&(info->sema[count])); 766 DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf); 767 biofini(&(info->bufs[count])); 768 } 769 for (count = 0; count < info->bufsused; count++) { 770 if (info->vas[count] != NULL) { 771 ppmapout(info->vas[count]); 772 } 773 } 774 kmem_free(info->vas, info->bufcnt * sizeof (caddr_t)); 775 kmem_free(info->bufs, info->bufcnt * sizeof (struct buf)); 776 kmem_free(info->sema, info->bufcnt * sizeof (ksema_t)); 777 778 pvn_read_done(info->pp, 0); 779 kmem_cache_free(hio_info_cache, info); 780 } 781 782 /* 783 * Submit asynchronous readahead requests to the I/O scheduler 784 * depending on the number of pages to read ahead. These requests 785 * are asynchronous to the calling thread but I/O requests issued 786 * subsequently by other threads with higher LBNs must wait for 787 * these readaheads to complete since we have a single ordered 788 * I/O pipeline. Thus these readaheads are semi-asynchronous. 789 * A TaskQ handles waiting for the readaheads to complete. 790 * 791 * This function is mostly a copy of hsfs_getapage but somewhat 792 * simpler. A readahead request is aborted if page allocation 793 * fails. 794 */ 795 /*ARGSUSED*/ 796 static int 797 hsfs_getpage_ra( 798 struct vnode *vp, 799 u_offset_t off, 800 struct seg *seg, 801 caddr_t addr, 802 struct hsnode *hp, 803 struct hsfs *fsp, 804 int xarsiz, 805 offset_t bof, 806 int chunk_lbn_count, 807 int chunk_data_bytes) 808 { 809 struct buf *bufs; 810 caddr_t *vas; 811 caddr_t va; 812 struct page *pp, *searchp, *lastp; 813 struct vnode *devvp; 814 ulong_t byte_offset; 815 size_t io_len_tmp; 816 uint_t io_off, io_len; 817 uint_t xlen; 818 uint_t filsiz; 819 uint_t secsize; 820 uint_t bufcnt; 821 uint_t bufsused; 822 uint_t count; 823 uint_t io_end; 824 uint_t which_chunk_lbn; 825 uint_t offset_lbn; 826 uint_t offset_extra; 827 offset_t offset_bytes; 828 uint_t remaining_bytes; 829 uint_t extension; 830 int remainder; /* must be signed */ 831 diskaddr_t driver_block; 832 u_offset_t io_off_tmp; 833 ksema_t *fio_done; 834 struct hio_info *info; 835 size_t len; 836 837 ASSERT(fsp->hqueue != NULL); 838 839 if (addr >= seg->s_base + seg->s_size) { 840 return (-1); 841 } 842 843 devvp = fsp->hsfs_devvp; 844 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 845 846 /* file data size */ 847 filsiz = hp->hs_dirent.ext_size; 848 849 if (off >= filsiz) 850 return (0); 851 852 extension = 0; 853 pp = NULL; 854 855 extension += hp->hs_ra_bytes; 856 857 /* 858 * Some cd writers don't write sectors that aren't used. Also, 859 * there's no point in reading sectors we'll never look at. So, 860 * if we're asked to go beyond the end of a file, truncate to the 861 * length of that file. 862 * 863 * Additionally, this behaviour is required by section 6.4.5 of 864 * ISO 9660:1988(E). 865 */ 866 len = MIN(extension ? extension : PAGESIZE, filsiz - off); 867 868 /* A little paranoia */ 869 if (len <= 0) 870 return (-1); 871 872 /* 873 * After all that, make sure we're asking for things in units 874 * that bdev_strategy() will understand (see bug 4202551). 875 */ 876 len = roundup(len, DEV_BSIZE); 877 878 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 879 &io_len_tmp, off, len, 1); 880 881 if (pp == NULL) { 882 hp->hs_num_contig = 0; 883 hp->hs_ra_bytes = 0; 884 hp->hs_prev_offset = 0; 885 return (-1); 886 } 887 888 io_off = (uint_t)io_off_tmp; 889 io_len = (uint_t)io_len_tmp; 890 891 /* check for truncation */ 892 /* 893 * xxx Clean up and return EIO instead? 894 * xxx Ought to go to u_offset_t for everything, but we 895 * xxx call lots of things that want uint_t arguments. 896 */ 897 ASSERT(io_off == io_off_tmp); 898 899 /* 900 * get enough buffers for worst-case scenario 901 * (i.e., no coalescing possible). 902 */ 903 bufcnt = (len + secsize - 1) / secsize; 904 bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP); 905 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 906 907 /* 908 * Allocate a array of semaphores since we are doing I/O 909 * scheduling. 910 */ 911 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP); 912 913 /* 914 * If our filesize is not an integer multiple of PAGESIZE, 915 * we zero that part of the last page that's between EOF and 916 * the PAGESIZE boundary. 917 */ 918 xlen = io_len & PAGEOFFSET; 919 if (xlen != 0) 920 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 921 922 DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len); 923 924 va = NULL; 925 lastp = NULL; 926 searchp = pp; 927 io_end = io_off + io_len; 928 for (count = 0, byte_offset = io_off; 929 byte_offset < io_end; 930 count++) { 931 ASSERT(count < bufcnt); 932 933 bioinit(&bufs[count]); 934 bufs[count].b_edev = devvp->v_rdev; 935 bufs[count].b_dev = cmpdev(devvp->v_rdev); 936 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 937 bufs[count].b_iodone = hsfs_iodone; 938 bufs[count].b_vp = vp; 939 bufs[count].b_file = vp; 940 941 /* Compute disk address for interleaving. */ 942 943 /* considered without skips */ 944 which_chunk_lbn = byte_offset / chunk_data_bytes; 945 946 /* factor in skips */ 947 offset_lbn = which_chunk_lbn * chunk_lbn_count; 948 949 /* convert to physical byte offset for lbn */ 950 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 951 952 /* don't forget offset into lbn */ 953 offset_extra = byte_offset % chunk_data_bytes; 954 955 /* get virtual block number for driver */ 956 driver_block = lbtodb(bof + xarsiz 957 + offset_bytes + offset_extra); 958 959 if (lastp != searchp) { 960 /* this branch taken first time through loop */ 961 va = vas[count] = ppmapin(searchp, PROT_WRITE, 962 (caddr_t)-1); 963 /* ppmapin() guarantees not to return NULL */ 964 } else { 965 vas[count] = NULL; 966 } 967 968 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 969 bufs[count].b_offset = 970 (offset_t)(byte_offset - io_off + off); 971 972 /* 973 * We specifically use the b_lblkno member here 974 * as even in the 32 bit world driver_block can 975 * get very large in line with the ISO9660 spec. 976 */ 977 978 bufs[count].b_lblkno = driver_block; 979 980 remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes) 981 - byte_offset; 982 983 /* 984 * remaining_bytes can't be zero, as we derived 985 * which_chunk_lbn directly from byte_offset. 986 */ 987 if ((remaining_bytes + byte_offset) < (off + len)) { 988 /* coalesce-read the rest of the chunk */ 989 bufs[count].b_bcount = remaining_bytes; 990 } else { 991 /* get the final bits */ 992 bufs[count].b_bcount = off + len - byte_offset; 993 } 994 995 remainder = PAGESIZE - (byte_offset % PAGESIZE); 996 if (bufs[count].b_bcount > remainder) { 997 bufs[count].b_bcount = remainder; 998 } 999 1000 bufs[count].b_bufsize = bufs[count].b_bcount; 1001 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1002 HS_MAXFILEOFF) { 1003 break; 1004 } 1005 byte_offset += bufs[count].b_bcount; 1006 1007 /* 1008 * We are scheduling I/O so we need to enqueue 1009 * requests rather than calling bdev_strategy 1010 * here. A later invocation of the scheduling 1011 * function will take care of doing the actual 1012 * I/O as it selects requests from the queue as 1013 * per the scheduling logic. 1014 */ 1015 struct hio *hsio = kmem_cache_alloc(hio_cache, 1016 KM_SLEEP); 1017 1018 sema_init(&fio_done[count], 0, NULL, 1019 SEMA_DEFAULT, NULL); 1020 hsio->bp = &bufs[count]; 1021 hsio->sema = &fio_done[count]; 1022 hsio->io_lblkno = bufs[count].b_lblkno; 1023 hsio->nblocks = howmany(hsio->bp->b_bcount, 1024 DEV_BSIZE); 1025 1026 /* used for deadline */ 1027 hsio->io_timestamp = drv_hztousec(ddi_get_lbolt()); 1028 1029 /* for I/O coalescing */ 1030 hsio->contig_chain = NULL; 1031 hsched_enqueue_io(fsp, hsio, 1); 1032 1033 lwp_stat_update(LWP_STAT_INBLK, 1); 1034 lastp = searchp; 1035 if ((remainder - bufs[count].b_bcount) < 1) { 1036 searchp = searchp->p_next; 1037 } 1038 } 1039 1040 bufsused = count; 1041 info = kmem_cache_alloc(hio_info_cache, KM_SLEEP); 1042 info->bufs = bufs; 1043 info->vas = vas; 1044 info->sema = fio_done; 1045 info->bufsused = bufsused; 1046 info->bufcnt = bufcnt; 1047 info->fsp = fsp; 1048 info->pp = pp; 1049 1050 (void) taskq_dispatch(fsp->hqueue->ra_task, 1051 hsfs_ra_task, info, KM_SLEEP); 1052 /* 1053 * The I/O locked pages are unlocked in our taskq thread. 1054 */ 1055 return (0); 1056 } 1057 1058 /* 1059 * Each file may have a different interleaving on disk. This makes 1060 * things somewhat interesting. The gist is that there are some 1061 * number of contiguous data sectors, followed by some other number 1062 * of contiguous skip sectors. The sum of those two sets of sectors 1063 * defines the interleave size. Unfortunately, it means that we generally 1064 * can't simply read N sectors starting at a given offset to satisfy 1065 * any given request. 1066 * 1067 * What we do is get the relevant memory pages via pvn_read_kluster(), 1068 * then stride through the interleaves, setting up a buf for each 1069 * sector that needs to be brought in. Instead of kmem_alloc'ing 1070 * space for the sectors, though, we just point at the appropriate 1071 * spot in the relevant page for each of them. This saves us a bunch 1072 * of copying. 1073 * 1074 * NOTICE: The code below in hsfs_getapage is mostly same as the code 1075 * in hsfs_getpage_ra above (with some omissions). If you are 1076 * making any change to this function, please also look at 1077 * hsfs_getpage_ra. 1078 */ 1079 /*ARGSUSED*/ 1080 static int 1081 hsfs_getapage( 1082 struct vnode *vp, 1083 u_offset_t off, 1084 size_t len, 1085 uint_t *protp, 1086 struct page *pl[], 1087 size_t plsz, 1088 struct seg *seg, 1089 caddr_t addr, 1090 enum seg_rw rw, 1091 struct cred *cred) 1092 { 1093 struct hsnode *hp; 1094 struct hsfs *fsp; 1095 int err; 1096 struct buf *bufs; 1097 caddr_t *vas; 1098 caddr_t va; 1099 struct page *pp, *searchp, *lastp; 1100 page_t *pagefound; 1101 offset_t bof; 1102 struct vnode *devvp; 1103 ulong_t byte_offset; 1104 size_t io_len_tmp; 1105 uint_t io_off, io_len; 1106 uint_t xlen; 1107 uint_t filsiz; 1108 uint_t secsize; 1109 uint_t bufcnt; 1110 uint_t bufsused; 1111 uint_t count; 1112 uint_t io_end; 1113 uint_t which_chunk_lbn; 1114 uint_t offset_lbn; 1115 uint_t offset_extra; 1116 offset_t offset_bytes; 1117 uint_t remaining_bytes; 1118 uint_t extension; 1119 int remainder; /* must be signed */ 1120 int chunk_lbn_count; 1121 int chunk_data_bytes; 1122 int xarsiz; 1123 diskaddr_t driver_block; 1124 u_offset_t io_off_tmp; 1125 ksema_t *fio_done; 1126 int calcdone; 1127 1128 /* 1129 * We don't support asynchronous operation at the moment, so 1130 * just pretend we did it. If the pages are ever actually 1131 * needed, they'll get brought in then. 1132 */ 1133 if (pl == NULL) 1134 return (0); 1135 1136 hp = VTOH(vp); 1137 fsp = VFS_TO_HSFS(vp->v_vfsp); 1138 devvp = fsp->hsfs_devvp; 1139 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 1140 1141 /* file data size */ 1142 filsiz = hp->hs_dirent.ext_size; 1143 1144 /* disk addr for start of file */ 1145 bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp); 1146 1147 /* xarsiz byte must be skipped for data */ 1148 xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift; 1149 1150 /* how many logical blocks in an interleave (data+skip) */ 1151 chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk; 1152 1153 if (chunk_lbn_count == 0) { 1154 chunk_lbn_count = 1; 1155 } 1156 1157 /* 1158 * Convert interleaving size into bytes. The zero case 1159 * (no interleaving) optimization is handled as a side- 1160 * effect of the read-ahead logic. 1161 */ 1162 if (hp->hs_dirent.intlf_sz == 0) { 1163 chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp); 1164 /* 1165 * Optimization: If our pagesize is a multiple of LBN 1166 * bytes, we can avoid breaking up a page into individual 1167 * lbn-sized requests. 1168 */ 1169 if (PAGESIZE % chunk_data_bytes == 0) { 1170 chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp); 1171 chunk_data_bytes = PAGESIZE; 1172 } 1173 } else { 1174 chunk_data_bytes = 1175 LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp); 1176 } 1177 1178 reread: 1179 err = 0; 1180 pagefound = 0; 1181 calcdone = 0; 1182 1183 /* 1184 * Do some read-ahead. This mostly saves us a bit of 1185 * system cpu time more than anything else when doing 1186 * sequential reads. At some point, could do the 1187 * read-ahead asynchronously which might gain us something 1188 * on wall time, but it seems unlikely.... 1189 * 1190 * We do the easy case here, which is to read through 1191 * the end of the chunk, minus whatever's at the end that 1192 * won't exactly fill a page. 1193 */ 1194 if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) { 1195 which_chunk_lbn = (off + len) / chunk_data_bytes; 1196 extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off; 1197 extension -= (extension % PAGESIZE); 1198 } else { 1199 extension = roundup(len, PAGESIZE); 1200 } 1201 1202 atomic_inc_64(&fsp->total_pages_requested); 1203 1204 pp = NULL; 1205 again: 1206 /* search for page in buffer */ 1207 if ((pagefound = page_exists(vp, off)) == 0) { 1208 /* 1209 * Need to really do disk IO to get the page. 1210 */ 1211 if (!calcdone) { 1212 extension += hp->hs_ra_bytes; 1213 1214 /* 1215 * Some cd writers don't write sectors that aren't 1216 * used. Also, there's no point in reading sectors 1217 * we'll never look at. So, if we're asked to go 1218 * beyond the end of a file, truncate to the length 1219 * of that file. 1220 * 1221 * Additionally, this behaviour is required by section 1222 * 6.4.5 of ISO 9660:1988(E). 1223 */ 1224 len = MIN(extension ? extension : PAGESIZE, 1225 filsiz - off); 1226 1227 /* A little paranoia. */ 1228 ASSERT(len > 0); 1229 1230 /* 1231 * After all that, make sure we're asking for things 1232 * in units that bdev_strategy() will understand 1233 * (see bug 4202551). 1234 */ 1235 len = roundup(len, DEV_BSIZE); 1236 calcdone = 1; 1237 } 1238 1239 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 1240 &io_len_tmp, off, len, 0); 1241 1242 if (pp == NULL) { 1243 /* 1244 * Pressure on memory, roll back readahead 1245 */ 1246 hp->hs_num_contig = 0; 1247 hp->hs_ra_bytes = 0; 1248 hp->hs_prev_offset = 0; 1249 goto again; 1250 } 1251 1252 io_off = (uint_t)io_off_tmp; 1253 io_len = (uint_t)io_len_tmp; 1254 1255 /* check for truncation */ 1256 /* 1257 * xxx Clean up and return EIO instead? 1258 * xxx Ought to go to u_offset_t for everything, but we 1259 * xxx call lots of things that want uint_t arguments. 1260 */ 1261 ASSERT(io_off == io_off_tmp); 1262 1263 /* 1264 * get enough buffers for worst-case scenario 1265 * (i.e., no coalescing possible). 1266 */ 1267 bufcnt = (len + secsize - 1) / secsize; 1268 bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP); 1269 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 1270 1271 /* 1272 * Allocate a array of semaphores if we are doing I/O 1273 * scheduling. 1274 */ 1275 if (fsp->hqueue != NULL) 1276 fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), 1277 KM_SLEEP); 1278 for (count = 0; count < bufcnt; count++) { 1279 bioinit(&bufs[count]); 1280 bufs[count].b_edev = devvp->v_rdev; 1281 bufs[count].b_dev = cmpdev(devvp->v_rdev); 1282 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 1283 bufs[count].b_iodone = hsfs_iodone; 1284 bufs[count].b_vp = vp; 1285 bufs[count].b_file = vp; 1286 } 1287 1288 /* 1289 * If our filesize is not an integer multiple of PAGESIZE, 1290 * we zero that part of the last page that's between EOF and 1291 * the PAGESIZE boundary. 1292 */ 1293 xlen = io_len & PAGEOFFSET; 1294 if (xlen != 0) 1295 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1296 1297 va = NULL; 1298 lastp = NULL; 1299 searchp = pp; 1300 io_end = io_off + io_len; 1301 for (count = 0, byte_offset = io_off; 1302 byte_offset < io_end; count++) { 1303 ASSERT(count < bufcnt); 1304 1305 /* Compute disk address for interleaving. */ 1306 1307 /* considered without skips */ 1308 which_chunk_lbn = byte_offset / chunk_data_bytes; 1309 1310 /* factor in skips */ 1311 offset_lbn = which_chunk_lbn * chunk_lbn_count; 1312 1313 /* convert to physical byte offset for lbn */ 1314 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 1315 1316 /* don't forget offset into lbn */ 1317 offset_extra = byte_offset % chunk_data_bytes; 1318 1319 /* get virtual block number for driver */ 1320 driver_block = 1321 lbtodb(bof + xarsiz + offset_bytes + offset_extra); 1322 1323 if (lastp != searchp) { 1324 /* this branch taken first time through loop */ 1325 va = vas[count] = 1326 ppmapin(searchp, PROT_WRITE, (caddr_t)-1); 1327 /* ppmapin() guarantees not to return NULL */ 1328 } else { 1329 vas[count] = NULL; 1330 } 1331 1332 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 1333 bufs[count].b_offset = 1334 (offset_t)(byte_offset - io_off + off); 1335 1336 /* 1337 * We specifically use the b_lblkno member here 1338 * as even in the 32 bit world driver_block can 1339 * get very large in line with the ISO9660 spec. 1340 */ 1341 1342 bufs[count].b_lblkno = driver_block; 1343 1344 remaining_bytes = 1345 ((which_chunk_lbn + 1) * chunk_data_bytes) 1346 - byte_offset; 1347 1348 /* 1349 * remaining_bytes can't be zero, as we derived 1350 * which_chunk_lbn directly from byte_offset. 1351 */ 1352 if ((remaining_bytes + byte_offset) < (off + len)) { 1353 /* coalesce-read the rest of the chunk */ 1354 bufs[count].b_bcount = remaining_bytes; 1355 } else { 1356 /* get the final bits */ 1357 bufs[count].b_bcount = off + len - byte_offset; 1358 } 1359 1360 /* 1361 * It would be nice to do multiple pages' 1362 * worth at once here when the opportunity 1363 * arises, as that has been shown to improve 1364 * our wall time. However, to do that 1365 * requires that we use the pageio subsystem, 1366 * which doesn't mix well with what we're 1367 * already using here. We can't use pageio 1368 * all the time, because that subsystem 1369 * assumes that a page is stored in N 1370 * contiguous blocks on the device. 1371 * Interleaving violates that assumption. 1372 * 1373 * Update: This is now not so big a problem 1374 * because of the I/O scheduler sitting below 1375 * that can re-order and coalesce I/O requests. 1376 */ 1377 1378 remainder = PAGESIZE - (byte_offset % PAGESIZE); 1379 if (bufs[count].b_bcount > remainder) { 1380 bufs[count].b_bcount = remainder; 1381 } 1382 1383 bufs[count].b_bufsize = bufs[count].b_bcount; 1384 if (((offset_t)byte_offset + bufs[count].b_bcount) > 1385 HS_MAXFILEOFF) { 1386 break; 1387 } 1388 byte_offset += bufs[count].b_bcount; 1389 1390 if (fsp->hqueue == NULL) { 1391 (void) bdev_strategy(&bufs[count]); 1392 1393 } else { 1394 /* 1395 * We are scheduling I/O so we need to enqueue 1396 * requests rather than calling bdev_strategy 1397 * here. A later invocation of the scheduling 1398 * function will take care of doing the actual 1399 * I/O as it selects requests from the queue as 1400 * per the scheduling logic. 1401 */ 1402 struct hio *hsio = kmem_cache_alloc(hio_cache, 1403 KM_SLEEP); 1404 1405 sema_init(&fio_done[count], 0, NULL, 1406 SEMA_DEFAULT, NULL); 1407 hsio->bp = &bufs[count]; 1408 hsio->sema = &fio_done[count]; 1409 hsio->io_lblkno = bufs[count].b_lblkno; 1410 hsio->nblocks = howmany(hsio->bp->b_bcount, 1411 DEV_BSIZE); 1412 1413 /* used for deadline */ 1414 hsio->io_timestamp = 1415 drv_hztousec(ddi_get_lbolt()); 1416 1417 /* for I/O coalescing */ 1418 hsio->contig_chain = NULL; 1419 hsched_enqueue_io(fsp, hsio, 0); 1420 } 1421 1422 lwp_stat_update(LWP_STAT_INBLK, 1); 1423 lastp = searchp; 1424 if ((remainder - bufs[count].b_bcount) < 1) { 1425 searchp = searchp->p_next; 1426 } 1427 } 1428 1429 bufsused = count; 1430 /* Now wait for everything to come in */ 1431 if (fsp->hqueue == NULL) { 1432 for (count = 0; count < bufsused; count++) { 1433 if (err == 0) { 1434 err = biowait(&bufs[count]); 1435 } else 1436 (void) biowait(&bufs[count]); 1437 } 1438 } else { 1439 for (count = 0; count < bufsused; count++) { 1440 struct buf *wbuf; 1441 1442 /* 1443 * Invoke scheduling function till our buf 1444 * is processed. In doing this it might 1445 * process bufs enqueued by other threads 1446 * which is good. 1447 */ 1448 wbuf = &bufs[count]; 1449 DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf); 1450 while (sema_tryp(&fio_done[count]) == 0) { 1451 /* 1452 * hsched_invoke_strategy will return 1 1453 * if the I/O queue is empty. This means 1454 * that there is another thread who has 1455 * issued our buf and is waiting. So we 1456 * just block instead of spinning. 1457 */ 1458 if (hsched_invoke_strategy(fsp)) { 1459 sema_p(&fio_done[count]); 1460 break; 1461 } 1462 } 1463 sema_destroy(&fio_done[count]); 1464 DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf); 1465 1466 if (err == 0) { 1467 err = geterror(wbuf); 1468 } 1469 } 1470 kmem_free(fio_done, bufcnt * sizeof (ksema_t)); 1471 } 1472 1473 /* Don't leak resources */ 1474 for (count = 0; count < bufcnt; count++) { 1475 biofini(&bufs[count]); 1476 if (count < bufsused && vas[count] != NULL) { 1477 ppmapout(vas[count]); 1478 } 1479 } 1480 1481 kmem_free(vas, bufcnt * sizeof (caddr_t)); 1482 kmem_free(bufs, bufcnt * sizeof (struct buf)); 1483 } 1484 1485 if (err) { 1486 pvn_read_done(pp, B_ERROR); 1487 return (err); 1488 } 1489 1490 /* 1491 * Lock the requested page, and the one after it if possible. 1492 * Don't bother if our caller hasn't given us a place to stash 1493 * the page pointers, since otherwise we'd lock pages that would 1494 * never get unlocked. 1495 */ 1496 if (pagefound) { 1497 int index; 1498 ulong_t soff; 1499 1500 /* 1501 * Make sure it's in memory before we say it's here. 1502 */ 1503 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 1504 hsfs_lostpage++; 1505 goto reread; 1506 } 1507 1508 pl[0] = pp; 1509 index = 1; 1510 atomic_inc_64(&fsp->cache_read_pages); 1511 1512 /* 1513 * Try to lock the next page, if it exists, without 1514 * blocking. 1515 */ 1516 plsz -= PAGESIZE; 1517 /* LINTED (plsz is unsigned) */ 1518 for (soff = off + PAGESIZE; plsz > 0; 1519 soff += PAGESIZE, plsz -= PAGESIZE) { 1520 pp = page_lookup_nowait(vp, (u_offset_t)soff, 1521 SE_SHARED); 1522 if (pp == NULL) 1523 break; 1524 pl[index++] = pp; 1525 } 1526 pl[index] = NULL; 1527 1528 /* 1529 * Schedule a semi-asynchronous readahead if we are 1530 * accessing the last cached page for the current 1531 * file. 1532 * 1533 * Doing this here means that readaheads will be 1534 * issued only if cache-hits occur. This is an advantage 1535 * since cache-hits would mean that readahead is giving 1536 * the desired benefit. If cache-hits do not occur there 1537 * is no point in reading ahead of time - the system 1538 * is loaded anyway. 1539 */ 1540 if (fsp->hqueue != NULL && 1541 hp->hs_prev_offset - off == PAGESIZE && 1542 hp->hs_prev_offset < filsiz && 1543 hp->hs_ra_bytes > 0 && 1544 !page_exists(vp, hp->hs_prev_offset)) { 1545 (void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg, 1546 addr + PAGESIZE, hp, fsp, xarsiz, bof, 1547 chunk_lbn_count, chunk_data_bytes); 1548 } 1549 1550 return (0); 1551 } 1552 1553 if (pp != NULL) { 1554 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 1555 } 1556 1557 return (err); 1558 } 1559 1560 /*ARGSUSED*/ 1561 static int 1562 hsfs_getpage( 1563 struct vnode *vp, 1564 offset_t off, 1565 size_t len, 1566 uint_t *protp, 1567 struct page *pl[], 1568 size_t plsz, 1569 struct seg *seg, 1570 caddr_t addr, 1571 enum seg_rw rw, 1572 struct cred *cred, 1573 caller_context_t *ct) 1574 { 1575 int err; 1576 uint_t filsiz; 1577 struct hsfs *fsp; 1578 struct hsnode *hp; 1579 1580 fsp = VFS_TO_HSFS(vp->v_vfsp); 1581 hp = VTOH(vp); 1582 1583 /* does not support write */ 1584 if (rw == S_WRITE) { 1585 panic("write attempt on READ ONLY HSFS"); 1586 /*NOTREACHED*/ 1587 } 1588 1589 if (vp->v_flag & VNOMAP) { 1590 return (ENOSYS); 1591 } 1592 1593 ASSERT(off <= HS_MAXFILEOFF); 1594 1595 /* 1596 * Determine file data size for EOF check. 1597 */ 1598 filsiz = hp->hs_dirent.ext_size; 1599 if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap) 1600 return (EFAULT); /* beyond EOF */ 1601 1602 /* 1603 * Async Read-ahead computation. 1604 * This attempts to detect sequential access pattern and 1605 * enables reading extra pages ahead of time. 1606 */ 1607 if (fsp->hqueue != NULL) { 1608 /* 1609 * This check for sequential access also takes into 1610 * account segmap weirdness when reading in chunks 1611 * less than the segmap size of 8K. 1612 */ 1613 if (hp->hs_prev_offset == off || (off < 1614 hp->hs_prev_offset && off + MAX(len, PAGESIZE) 1615 >= hp->hs_prev_offset)) { 1616 if (hp->hs_num_contig < 1617 (seq_contig_requests - 1)) { 1618 hp->hs_num_contig++; 1619 1620 } else { 1621 /* 1622 * We increase readahead quantum till 1623 * a predefined max. max_readahead_bytes 1624 * is a multiple of PAGESIZE. 1625 */ 1626 if (hp->hs_ra_bytes < 1627 fsp->hqueue->max_ra_bytes) { 1628 hp->hs_ra_bytes += PAGESIZE; 1629 } 1630 } 1631 } else { 1632 /* 1633 * Not contiguous so reduce read ahead counters. 1634 */ 1635 if (hp->hs_ra_bytes > 0) 1636 hp->hs_ra_bytes -= PAGESIZE; 1637 1638 if (hp->hs_ra_bytes <= 0) { 1639 hp->hs_ra_bytes = 0; 1640 if (hp->hs_num_contig > 0) 1641 hp->hs_num_contig--; 1642 } 1643 } 1644 /* 1645 * Length must be rounded up to page boundary. 1646 * since we read in units of pages. 1647 */ 1648 hp->hs_prev_offset = off + roundup(len, PAGESIZE); 1649 DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp); 1650 } 1651 if (protp != NULL) 1652 *protp = PROT_ALL; 1653 1654 if (len <= PAGESIZE) 1655 err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz, 1656 seg, addr, rw, cred); 1657 else 1658 err = pvn_getpages(hsfs_getapage, vp, off, len, protp, 1659 pl, plsz, seg, addr, rw, cred); 1660 1661 return (err); 1662 } 1663 1664 1665 1666 /* 1667 * This function should never be called. We need to have it to pass 1668 * it as an argument to other functions. 1669 */ 1670 /*ARGSUSED*/ 1671 int 1672 hsfs_putapage( 1673 vnode_t *vp, 1674 page_t *pp, 1675 u_offset_t *offp, 1676 size_t *lenp, 1677 int flags, 1678 cred_t *cr) 1679 { 1680 /* should never happen - just destroy it */ 1681 cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page"); 1682 pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags); 1683 return (0); 1684 } 1685 1686 1687 /* 1688 * The only flags we support are B_INVAL, B_FREE and B_DONTNEED. 1689 * B_INVAL is set by: 1690 * 1691 * 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag. 1692 * 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice 1693 * which translates to an MC_SYNC with the MS_INVALIDATE flag. 1694 * 1695 * The B_FREE (as well as the B_DONTNEED) flag is set when the 1696 * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked 1697 * from SEGVN to release pages behind a pagefault. 1698 */ 1699 /*ARGSUSED*/ 1700 static int 1701 hsfs_putpage( 1702 struct vnode *vp, 1703 offset_t off, 1704 size_t len, 1705 int flags, 1706 struct cred *cr, 1707 caller_context_t *ct) 1708 { 1709 int error = 0; 1710 1711 if (vp->v_count == 0) { 1712 panic("hsfs_putpage: bad v_count"); 1713 /*NOTREACHED*/ 1714 } 1715 1716 if (vp->v_flag & VNOMAP) 1717 return (ENOSYS); 1718 1719 ASSERT(off <= HS_MAXFILEOFF); 1720 1721 if (!vn_has_cached_data(vp)) /* no pages mapped */ 1722 return (0); 1723 1724 if (len == 0) { /* from 'off' to EOF */ 1725 error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr); 1726 } else { 1727 offset_t end_off = off + len; 1728 offset_t file_size = VTOH(vp)->hs_dirent.ext_size; 1729 offset_t io_off; 1730 1731 file_size = (file_size + PAGESIZE - 1) & PAGEMASK; 1732 if (end_off > file_size) 1733 end_off = file_size; 1734 1735 for (io_off = off; io_off < end_off; io_off += PAGESIZE) { 1736 page_t *pp; 1737 1738 /* 1739 * We insist on getting the page only if we are 1740 * about to invalidate, free or write it and 1741 * the B_ASYNC flag is not set. 1742 */ 1743 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1744 pp = page_lookup(vp, io_off, 1745 (flags & (B_INVAL | B_FREE)) ? 1746 SE_EXCL : SE_SHARED); 1747 } else { 1748 pp = page_lookup_nowait(vp, io_off, 1749 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1750 } 1751 1752 if (pp == NULL) 1753 continue; 1754 1755 /* 1756 * Normally pvn_getdirty() should return 0, which 1757 * impies that it has done the job for us. 1758 * The shouldn't-happen scenario is when it returns 1. 1759 * This means that the page has been modified and 1760 * needs to be put back. 1761 * Since we can't write on a CD, we fake a failed 1762 * I/O and force pvn_write_done() to destroy the page. 1763 */ 1764 if (pvn_getdirty(pp, flags) == 1) { 1765 cmn_err(CE_NOTE, 1766 "hsfs_putpage: dirty HSFS page"); 1767 pvn_write_done(pp, flags | 1768 B_ERROR | B_WRITE | B_INVAL | B_FORCE); 1769 } 1770 } 1771 } 1772 return (error); 1773 } 1774 1775 1776 /*ARGSUSED*/ 1777 static int 1778 hsfs_map( 1779 struct vnode *vp, 1780 offset_t off, 1781 struct as *as, 1782 caddr_t *addrp, 1783 size_t len, 1784 uchar_t prot, 1785 uchar_t maxprot, 1786 uint_t flags, 1787 struct cred *cred, 1788 caller_context_t *ct) 1789 { 1790 struct segvn_crargs vn_a; 1791 int error; 1792 1793 /* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */ 1794 1795 if (vp->v_flag & VNOMAP) 1796 return (ENOSYS); 1797 1798 if (off > HS_MAXFILEOFF || off < 0 || 1799 (off + len) < 0 || (off + len) > HS_MAXFILEOFF) 1800 return (ENXIO); 1801 1802 if (vp->v_type != VREG) { 1803 return (ENODEV); 1804 } 1805 1806 /* 1807 * If file is being locked, disallow mapping. 1808 */ 1809 if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode)) 1810 return (EAGAIN); 1811 1812 as_rangelock(as); 1813 1814 if ((flags & MAP_FIXED) == 0) { 1815 map_addr(addrp, len, off, 1, flags); 1816 if (*addrp == NULL) { 1817 as_rangeunlock(as); 1818 return (ENOMEM); 1819 } 1820 } else { 1821 /* 1822 * User specified address - blow away any previous mappings 1823 */ 1824 (void) as_unmap(as, *addrp, len); 1825 } 1826 1827 vn_a.vp = vp; 1828 vn_a.offset = off; 1829 vn_a.type = flags & MAP_TYPE; 1830 vn_a.prot = prot; 1831 vn_a.maxprot = maxprot; 1832 vn_a.flags = flags & ~MAP_TYPE; 1833 vn_a.cred = cred; 1834 vn_a.amp = NULL; 1835 vn_a.szc = 0; 1836 vn_a.lgrp_mem_policy_flags = 0; 1837 1838 error = as_map(as, *addrp, len, segvn_create, &vn_a); 1839 as_rangeunlock(as); 1840 return (error); 1841 } 1842 1843 /* ARGSUSED */ 1844 static int 1845 hsfs_addmap( 1846 struct vnode *vp, 1847 offset_t off, 1848 struct as *as, 1849 caddr_t addr, 1850 size_t len, 1851 uchar_t prot, 1852 uchar_t maxprot, 1853 uint_t flags, 1854 struct cred *cr, 1855 caller_context_t *ct) 1856 { 1857 struct hsnode *hp; 1858 1859 if (vp->v_flag & VNOMAP) 1860 return (ENOSYS); 1861 1862 hp = VTOH(vp); 1863 mutex_enter(&hp->hs_contents_lock); 1864 hp->hs_mapcnt += btopr(len); 1865 mutex_exit(&hp->hs_contents_lock); 1866 return (0); 1867 } 1868 1869 /*ARGSUSED*/ 1870 static int 1871 hsfs_delmap( 1872 struct vnode *vp, 1873 offset_t off, 1874 struct as *as, 1875 caddr_t addr, 1876 size_t len, 1877 uint_t prot, 1878 uint_t maxprot, 1879 uint_t flags, 1880 struct cred *cr, 1881 caller_context_t *ct) 1882 { 1883 struct hsnode *hp; 1884 1885 if (vp->v_flag & VNOMAP) 1886 return (ENOSYS); 1887 1888 hp = VTOH(vp); 1889 mutex_enter(&hp->hs_contents_lock); 1890 hp->hs_mapcnt -= btopr(len); /* Count released mappings */ 1891 ASSERT(hp->hs_mapcnt >= 0); 1892 mutex_exit(&hp->hs_contents_lock); 1893 return (0); 1894 } 1895 1896 /* ARGSUSED */ 1897 static int 1898 hsfs_seek( 1899 struct vnode *vp, 1900 offset_t ooff, 1901 offset_t *noffp, 1902 caller_context_t *ct) 1903 { 1904 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 1905 } 1906 1907 /* ARGSUSED */ 1908 static int 1909 hsfs_frlock( 1910 struct vnode *vp, 1911 int cmd, 1912 struct flock64 *bfp, 1913 int flag, 1914 offset_t offset, 1915 struct flk_callback *flk_cbp, 1916 cred_t *cr, 1917 caller_context_t *ct) 1918 { 1919 struct hsnode *hp = VTOH(vp); 1920 1921 /* 1922 * If the file is being mapped, disallow fs_frlock. 1923 * We are not holding the hs_contents_lock while checking 1924 * hs_mapcnt because the current locking strategy drops all 1925 * locks before calling fs_frlock. 1926 * So, hs_mapcnt could change before we enter fs_frlock making 1927 * it meaningless to have held hs_contents_lock in the first place. 1928 */ 1929 if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode)) 1930 return (EAGAIN); 1931 1932 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1933 } 1934 1935 static int 1936 hsched_deadline_compare(const void *x1, const void *x2) 1937 { 1938 const struct hio *h1 = x1; 1939 const struct hio *h2 = x2; 1940 1941 if (h1->io_timestamp < h2->io_timestamp) 1942 return (-1); 1943 if (h1->io_timestamp > h2->io_timestamp) 1944 return (1); 1945 1946 if (h1->io_lblkno < h2->io_lblkno) 1947 return (-1); 1948 if (h1->io_lblkno > h2->io_lblkno) 1949 return (1); 1950 1951 if (h1 < h2) 1952 return (-1); 1953 if (h1 > h2) 1954 return (1); 1955 1956 return (0); 1957 } 1958 1959 static int 1960 hsched_offset_compare(const void *x1, const void *x2) 1961 { 1962 const struct hio *h1 = x1; 1963 const struct hio *h2 = x2; 1964 1965 if (h1->io_lblkno < h2->io_lblkno) 1966 return (-1); 1967 if (h1->io_lblkno > h2->io_lblkno) 1968 return (1); 1969 1970 if (h1 < h2) 1971 return (-1); 1972 if (h1 > h2) 1973 return (1); 1974 1975 return (0); 1976 } 1977 1978 void 1979 hsched_init_caches(void) 1980 { 1981 hio_cache = kmem_cache_create("hsfs_hio_cache", 1982 sizeof (struct hio), 0, NULL, 1983 NULL, NULL, NULL, NULL, 0); 1984 1985 hio_info_cache = kmem_cache_create("hsfs_hio_info_cache", 1986 sizeof (struct hio_info), 0, NULL, 1987 NULL, NULL, NULL, NULL, 0); 1988 } 1989 1990 void 1991 hsched_fini_caches(void) 1992 { 1993 kmem_cache_destroy(hio_cache); 1994 kmem_cache_destroy(hio_info_cache); 1995 } 1996 1997 /* 1998 * Initialize I/O scheduling structures. This is called via hsfs_mount 1999 */ 2000 void 2001 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage) 2002 { 2003 struct hsfs_queue *hqueue = fsp->hqueue; 2004 struct vnode *vp = fsp->hsfs_devvp; 2005 2006 /* TaskQ name of the form: hsched_task_ + stringof(int) */ 2007 char namebuf[23]; 2008 int error, err; 2009 struct dk_cinfo info; 2010 ldi_handle_t lh; 2011 ldi_ident_t li; 2012 2013 /* 2014 * Default maxtransfer = 16k chunk 2015 */ 2016 hqueue->dev_maxtransfer = 16384; 2017 2018 /* 2019 * Try to fetch the maximum device transfer size. This is used to 2020 * ensure that a coalesced block does not exceed the maxtransfer. 2021 */ 2022 err = ldi_ident_from_mod(modlinkage, &li); 2023 if (err) { 2024 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2025 cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n", 2026 err); 2027 goto set_ra; 2028 } 2029 2030 err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li); 2031 ldi_ident_release(li); 2032 if (err) { 2033 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2034 cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err); 2035 goto set_ra; 2036 } 2037 2038 error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL, 2039 CRED(), &err); 2040 err = ldi_close(lh, FREAD, CRED()); 2041 if (err) { 2042 cmn_err(CE_NOTE, "hsched_init: Querying device failed"); 2043 cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err); 2044 } 2045 2046 if (error == 0) { 2047 hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer); 2048 } 2049 2050 set_ra: 2051 /* 2052 * Max size of data to read ahead for sequential access pattern. 2053 * Conservative to avoid letting the underlying CD drive to spin 2054 * down, in case the application is reading slowly. 2055 * We read ahead upto a max of 4 pages. 2056 */ 2057 hqueue->max_ra_bytes = PAGESIZE * 8; 2058 2059 mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL); 2060 mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL); 2061 avl_create(&(hqueue->read_tree), hsched_offset_compare, 2062 sizeof (struct hio), offsetof(struct hio, io_offset_node)); 2063 avl_create(&(hqueue->deadline_tree), hsched_deadline_compare, 2064 sizeof (struct hio), offsetof(struct hio, io_deadline_node)); 2065 2066 (void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid); 2067 hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads, 2068 minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC); 2069 2070 hqueue->next = NULL; 2071 hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP); 2072 } 2073 2074 void 2075 hsched_fini(struct hsfs_queue *hqueue) 2076 { 2077 if (hqueue != NULL) { 2078 avl_destroy(&(hqueue->read_tree)); 2079 avl_destroy(&(hqueue->deadline_tree)); 2080 mutex_destroy(&(hqueue->hsfs_queue_lock)); 2081 mutex_destroy(&(hqueue->strategy_lock)); 2082 2083 /* 2084 * If there are any existing readahead threads running 2085 * taskq_destroy will wait for them to finish. 2086 */ 2087 taskq_destroy(hqueue->ra_task); 2088 if (hqueue->next != NULL) { 2089 kmem_cache_free(hio_cache, hqueue->next); 2090 } 2091 kmem_free(hqueue->nbuf, sizeof (struct buf)); 2092 } 2093 } 2094 2095 /* 2096 * Determine if two I/O requests are adjacent to each other so 2097 * that they can coalesced. 2098 */ 2099 #define IS_ADJACENT(io, nio) \ 2100 (((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \ 2101 (io)->bp->b_edev == (nio)->bp->b_edev) 2102 2103 /* 2104 * This performs the actual I/O scheduling logic. We use the Circular 2105 * Look algorithm here. Sort the I/O requests in ascending order of 2106 * logical block number and process them starting with the lowest 2107 * numbered block and progressing towards higher block numbers in the 2108 * queue. Once there are no more higher numbered blocks, start again 2109 * with the lowest one. This is good for CD/DVD as you keep moving 2110 * the head in one direction along the outward spiral track and avoid 2111 * too many seeks as much as possible. The re-ordering also allows 2112 * us to coalesce adjacent requests into one larger request. 2113 * This is thus essentially a 1-way Elevator with front merging. 2114 * 2115 * In addition each read request here has a deadline and will be 2116 * processed out of turn if the deadline (500ms) expires. 2117 * 2118 * This function is necessarily serialized via hqueue->strategy_lock. 2119 * This function sits just below hsfs_getapage and processes all read 2120 * requests orginating from that function. 2121 */ 2122 int 2123 hsched_invoke_strategy(struct hsfs *fsp) 2124 { 2125 struct hsfs_queue *hqueue; 2126 struct buf *nbuf; 2127 struct hio *fio, *nio, *tio, *prev, *last; 2128 size_t bsize, soffset, offset, data; 2129 int bioret, bufcount; 2130 struct vnode *fvp; 2131 ksema_t *io_done; 2132 caddr_t iodata; 2133 2134 hqueue = fsp->hqueue; 2135 mutex_enter(&hqueue->strategy_lock); 2136 mutex_enter(&hqueue->hsfs_queue_lock); 2137 2138 /* 2139 * Check for Deadline expiration first 2140 */ 2141 fio = avl_first(&hqueue->deadline_tree); 2142 2143 /* 2144 * Paranoid check for empty I/O queue. Both deadline 2145 * and read trees contain same data sorted in different 2146 * ways. So empty deadline tree = empty read tree. 2147 */ 2148 if (fio == NULL) { 2149 /* 2150 * Remove the sentinel if there was one. 2151 */ 2152 if (hqueue->next != NULL) { 2153 avl_remove(&hqueue->read_tree, hqueue->next); 2154 kmem_cache_free(hio_cache, hqueue->next); 2155 hqueue->next = NULL; 2156 } 2157 mutex_exit(&hqueue->hsfs_queue_lock); 2158 mutex_exit(&hqueue->strategy_lock); 2159 return (1); 2160 } 2161 2162 if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp 2163 < HSFS_READ_DEADLINE) { 2164 /* 2165 * Apply standard scheduling logic. This uses the 2166 * C-LOOK approach. Process I/O requests in ascending 2167 * order of logical block address till no subsequent 2168 * higher numbered block request remains. Then start 2169 * again from the lowest numbered block in the queue. 2170 * 2171 * We do this cheaply here by means of a sentinel. 2172 * The last processed I/O structure from the previous 2173 * invocation of this func, is left dangling in the 2174 * read_tree so that we can easily scan to the next 2175 * higher numbered request and remove the sentinel. 2176 */ 2177 fio = NULL; 2178 if (hqueue->next != NULL) { 2179 fio = AVL_NEXT(&hqueue->read_tree, hqueue->next); 2180 avl_remove(&hqueue->read_tree, hqueue->next); 2181 kmem_cache_free(hio_cache, hqueue->next); 2182 hqueue->next = NULL; 2183 } 2184 if (fio == NULL) { 2185 fio = avl_first(&hqueue->read_tree); 2186 } 2187 } else if (hqueue->next != NULL) { 2188 DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio); 2189 2190 avl_remove(&hqueue->read_tree, hqueue->next); 2191 kmem_cache_free(hio_cache, hqueue->next); 2192 hqueue->next = NULL; 2193 } 2194 2195 /* 2196 * In addition we try to coalesce contiguous 2197 * requests into one bigger request. 2198 */ 2199 bufcount = 1; 2200 bsize = ldbtob(fio->nblocks); 2201 fvp = fio->bp->b_file; 2202 nio = AVL_NEXT(&hqueue->read_tree, fio); 2203 tio = fio; 2204 while (nio != NULL && IS_ADJACENT(tio, nio) && 2205 bsize < hqueue->dev_maxtransfer) { 2206 avl_remove(&hqueue->deadline_tree, tio); 2207 avl_remove(&hqueue->read_tree, tio); 2208 tio->contig_chain = nio; 2209 bsize += ldbtob(nio->nblocks); 2210 prev = tio; 2211 tio = nio; 2212 2213 /* 2214 * This check is required to detect the case where 2215 * we are merging adjacent buffers belonging to 2216 * different files. fvp is used to set the b_file 2217 * parameter in the coalesced buf. b_file is used 2218 * by DTrace so we do not want DTrace to accrue 2219 * requests to two different files to any one file. 2220 */ 2221 if (fvp && tio->bp->b_file != fvp) { 2222 fvp = NULL; 2223 } 2224 2225 nio = AVL_NEXT(&hqueue->read_tree, nio); 2226 bufcount++; 2227 } 2228 2229 /* 2230 * tio is not removed from the read_tree as it serves as a sentinel 2231 * to cheaply allow us to scan to the next higher numbered I/O 2232 * request. 2233 */ 2234 hqueue->next = tio; 2235 avl_remove(&hqueue->deadline_tree, tio); 2236 mutex_exit(&hqueue->hsfs_queue_lock); 2237 DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount, 2238 size_t, bsize); 2239 2240 /* 2241 * The benefit of coalescing occurs if the the savings in I/O outweighs 2242 * the cost of doing the additional work below. 2243 * It was observed that coalescing 2 buffers results in diminishing 2244 * returns, so we do coalescing if we have >2 adjacent bufs. 2245 */ 2246 if (bufcount > hsched_coalesce_min) { 2247 /* 2248 * We have coalesced blocks. First allocate mem and buf for 2249 * the entire coalesced chunk. 2250 * Since we are guaranteed single-threaded here we pre-allocate 2251 * one buf at mount time and that is re-used every time. This 2252 * is a synthesized buf structure that uses kmem_alloced chunk. 2253 * Not quite a normal buf attached to pages. 2254 */ 2255 fsp->coalesced_bytes += bsize; 2256 nbuf = hqueue->nbuf; 2257 bioinit(nbuf); 2258 nbuf->b_edev = fio->bp->b_edev; 2259 nbuf->b_dev = fio->bp->b_dev; 2260 nbuf->b_flags = fio->bp->b_flags; 2261 nbuf->b_iodone = fio->bp->b_iodone; 2262 iodata = kmem_alloc(bsize, KM_SLEEP); 2263 nbuf->b_un.b_addr = iodata; 2264 nbuf->b_lblkno = fio->bp->b_lblkno; 2265 nbuf->b_vp = fvp; 2266 nbuf->b_file = fvp; 2267 nbuf->b_bcount = bsize; 2268 nbuf->b_bufsize = bsize; 2269 nbuf->b_resid = bsize; 2270 2271 DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int, 2272 bufcount, size_t, bsize); 2273 2274 /* 2275 * Perform I/O for the coalesced block. 2276 */ 2277 (void) bdev_strategy(nbuf); 2278 2279 /* 2280 * Duplicate the last IO node to leave the sentinel alone. 2281 * The sentinel is freed in the next invocation of this 2282 * function. 2283 */ 2284 prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP); 2285 prev->contig_chain->bp = tio->bp; 2286 prev->contig_chain->sema = tio->sema; 2287 tio = prev->contig_chain; 2288 tio->contig_chain = NULL; 2289 soffset = ldbtob(fio->bp->b_lblkno); 2290 nio = fio; 2291 2292 bioret = biowait(nbuf); 2293 data = bsize - nbuf->b_resid; 2294 biofini(nbuf); 2295 mutex_exit(&hqueue->strategy_lock); 2296 2297 /* 2298 * We use the b_resid parameter to detect how much 2299 * data was succesfully transferred. We will signal 2300 * a success to all the fully retrieved actual bufs 2301 * before coalescing, rest is signaled as error, 2302 * if any. 2303 */ 2304 tio = nio; 2305 DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio, 2306 int, bioret, size_t, data); 2307 2308 /* 2309 * Copy data and signal success to all the bufs 2310 * which can be fully satisfied from b_resid. 2311 */ 2312 while (nio != NULL && data >= nio->bp->b_bcount) { 2313 offset = ldbtob(nio->bp->b_lblkno) - soffset; 2314 bcopy(iodata + offset, nio->bp->b_un.b_addr, 2315 nio->bp->b_bcount); 2316 data -= nio->bp->b_bcount; 2317 bioerror(nio->bp, 0); 2318 biodone(nio->bp); 2319 sema_v(nio->sema); 2320 tio = nio; 2321 nio = nio->contig_chain; 2322 kmem_cache_free(hio_cache, tio); 2323 } 2324 2325 /* 2326 * Signal error to all the leftover bufs (if any) 2327 * after b_resid data is exhausted. 2328 */ 2329 while (nio != NULL) { 2330 nio->bp->b_resid = nio->bp->b_bcount - data; 2331 bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid); 2332 bioerror(nio->bp, bioret); 2333 biodone(nio->bp); 2334 sema_v(nio->sema); 2335 tio = nio; 2336 nio = nio->contig_chain; 2337 kmem_cache_free(hio_cache, tio); 2338 data = 0; 2339 } 2340 kmem_free(iodata, bsize); 2341 } else { 2342 2343 nbuf = tio->bp; 2344 io_done = tio->sema; 2345 nio = fio; 2346 last = tio; 2347 2348 while (nio != NULL) { 2349 (void) bdev_strategy(nio->bp); 2350 nio = nio->contig_chain; 2351 } 2352 nio = fio; 2353 mutex_exit(&hqueue->strategy_lock); 2354 2355 while (nio != NULL) { 2356 if (nio == last) { 2357 (void) biowait(nbuf); 2358 sema_v(io_done); 2359 break; 2360 /* sentinel last not freed. See above. */ 2361 } else { 2362 (void) biowait(nio->bp); 2363 sema_v(nio->sema); 2364 } 2365 tio = nio; 2366 nio = nio->contig_chain; 2367 kmem_cache_free(hio_cache, tio); 2368 } 2369 } 2370 return (0); 2371 } 2372 2373 /* 2374 * Insert an I/O request in the I/O scheduler's pipeline 2375 * Using AVL tree makes it easy to reorder the I/O request 2376 * based on logical block number. 2377 */ 2378 static void 2379 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra) 2380 { 2381 struct hsfs_queue *hqueue = fsp->hqueue; 2382 2383 mutex_enter(&hqueue->hsfs_queue_lock); 2384 2385 fsp->physical_read_bytes += hsio->bp->b_bcount; 2386 if (ra) 2387 fsp->readahead_bytes += hsio->bp->b_bcount; 2388 2389 avl_add(&hqueue->deadline_tree, hsio); 2390 avl_add(&hqueue->read_tree, hsio); 2391 2392 DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio, 2393 struct hsfs_queue *, hqueue, int, ra); 2394 2395 mutex_exit(&hqueue->hsfs_queue_lock); 2396 } 2397 2398 /* ARGSUSED */ 2399 static int 2400 hsfs_pathconf(struct vnode *vp, 2401 int cmd, 2402 ulong_t *valp, 2403 struct cred *cr, 2404 caller_context_t *ct) 2405 { 2406 struct hsfs *fsp; 2407 2408 int error = 0; 2409 2410 switch (cmd) { 2411 2412 case _PC_NAME_MAX: 2413 fsp = VFS_TO_HSFS(vp->v_vfsp); 2414 *valp = fsp->hsfs_namemax; 2415 break; 2416 2417 case _PC_FILESIZEBITS: 2418 *valp = 33; /* Without multi extent support: 4 GB - 2k */ 2419 break; 2420 2421 default: 2422 error = fs_pathconf(vp, cmd, valp, cr, ct); 2423 } 2424 2425 return (error); 2426 } 2427 2428 2429 2430 const fs_operation_def_t hsfs_vnodeops_template[] = { 2431 VOPNAME_OPEN, { .vop_open = hsfs_open }, 2432 VOPNAME_CLOSE, { .vop_close = hsfs_close }, 2433 VOPNAME_READ, { .vop_read = hsfs_read }, 2434 VOPNAME_GETATTR, { .vop_getattr = hsfs_getattr }, 2435 VOPNAME_ACCESS, { .vop_access = hsfs_access }, 2436 VOPNAME_LOOKUP, { .vop_lookup = hsfs_lookup }, 2437 VOPNAME_READDIR, { .vop_readdir = hsfs_readdir }, 2438 VOPNAME_READLINK, { .vop_readlink = hsfs_readlink }, 2439 VOPNAME_FSYNC, { .vop_fsync = hsfs_fsync }, 2440 VOPNAME_INACTIVE, { .vop_inactive = hsfs_inactive }, 2441 VOPNAME_FID, { .vop_fid = hsfs_fid }, 2442 VOPNAME_SEEK, { .vop_seek = hsfs_seek }, 2443 VOPNAME_FRLOCK, { .vop_frlock = hsfs_frlock }, 2444 VOPNAME_GETPAGE, { .vop_getpage = hsfs_getpage }, 2445 VOPNAME_PUTPAGE, { .vop_putpage = hsfs_putpage }, 2446 VOPNAME_MAP, { .vop_map = hsfs_map }, 2447 VOPNAME_ADDMAP, { .vop_addmap = hsfs_addmap }, 2448 VOPNAME_DELMAP, { .vop_delmap = hsfs_delmap }, 2449 VOPNAME_PATHCONF, { .vop_pathconf = hsfs_pathconf }, 2450 NULL, NULL 2451 }; 2452 2453 struct vnodeops *hsfs_vnodeops; 2454