xref: /titanic_50/usr/src/uts/common/fs/gfs.c (revision 8de9d09562aa1c2ecd5453f23d9eb21db41d9ee7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /* Portions Copyright 2007 Shivakumar GN */
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/cmn_err.h>
31 #include <sys/debug.h>
32 #include <sys/dirent.h>
33 #include <sys/kmem.h>
34 #include <sys/mman.h>
35 #include <sys/mutex.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/uio.h>
39 #include <sys/vmsystm.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 
43 #include <vm/as.h>
44 #include <vm/seg_vn.h>
45 
46 #include <sys/gfs.h>
47 
48 /*
49  * Generic pseudo-filesystem routines.
50  *
51  * There are significant similarities between the implementation of certain file
52  * system entry points across different filesystems.  While one could attempt to
53  * "choke up on the bat" and incorporate common functionality into a VOP
54  * preamble or postamble, such an approach is limited in the benefit it can
55  * provide.  In this file we instead define a toolkit of routines which can be
56  * called from a filesystem (with in-kernel pseudo-filesystems being the focus
57  * of the exercise) in a more component-like fashion.
58  *
59  * There are three basic classes of routines:
60  *
61  * 1) Lowlevel support routines
62  *
63  *    These routines are designed to play a support role for existing
64  *    pseudo-filesystems (such as procfs).  They simplify common tasks,
65  *    without forcing the filesystem to hand over management to GFS.  The
66  *    routines covered are:
67  *
68  *	gfs_readdir_init()
69  *	gfs_readdir_emit()
70  *	gfs_readdir_emitn()
71  *	gfs_readdir_pred()
72  *	gfs_readdir_fini()
73  *	gfs_lookup_dot()
74  *
75  * 2) Complete GFS management
76  *
77  *    These routines take a more active role in management of the
78  *    pseudo-filesystem.  They handle the relationship between vnode private
79  *    data and VFS data, as well as the relationship between vnodes in the
80  *    directory hierarchy.
81  *
82  *    In order to use these interfaces, the first member of every private
83  *    v_data must be a gfs_file_t or a gfs_dir_t.  This hands over all control
84  *    to GFS.
85  *
86  * 	gfs_file_create()
87  * 	gfs_dir_create()
88  * 	gfs_root_create()
89  *
90  *	gfs_file_inactive()
91  *	gfs_dir_inactive()
92  *	gfs_dir_lookup()
93  *	gfs_dir_readdir()
94  *
95  * 	gfs_vop_inactive()
96  * 	gfs_vop_lookup()
97  * 	gfs_vop_readdir()
98  * 	gfs_vop_map()
99  *
100  * 3) Single File pseudo-filesystems
101  *
102  *    This routine creates a rooted file to be overlayed ontop of another
103  *    file in the physical filespace.
104  *
105  *    Note that the parent is NULL (actually the vfs), but there is nothing
106  *    technically keeping such a file from utilizing the "Complete GFS
107  *    management" set of routines.
108  *
109  * 	gfs_root_create_file()
110  */
111 
112 /*
113  * gfs_make_opsvec: take an array of vnode type definitions and create
114  * their vnodeops_t structures
115  *
116  * This routine takes an array of gfs_opsvec_t's.  It could
117  * alternatively take an array of gfs_opsvec_t*'s, which would allow
118  * vnode types to be completely defined in files external to the caller
119  * of gfs_make_opsvec().  As it stands, much more sharing takes place --
120  * both the caller and the vnode type provider need to access gfsv_ops
121  * and gfsv_template, and the caller also needs to know gfsv_name.
122  */
123 int
124 gfs_make_opsvec(gfs_opsvec_t *vec)
125 {
126 	int error, i;
127 
128 	for (i = 0; ; i++) {
129 		if (vec[i].gfsv_name == NULL)
130 			return (0);
131 		error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template,
132 		    vec[i].gfsv_ops);
133 		if (error)
134 			break;
135 	}
136 
137 	cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'",
138 	    vec[i].gfsv_name);
139 	for (i--; i >= 0; i--) {
140 		vn_freevnodeops(*vec[i].gfsv_ops);
141 		*vec[i].gfsv_ops = NULL;
142 	}
143 	return (error);
144 }
145 
146 /*
147  * Low level directory routines
148  *
149  * These routines provide some simple abstractions for reading directories.
150  * They are designed to be used by existing pseudo filesystems (namely procfs)
151  * that already have a complicated management infrastructure.
152  */
153 
154 /*
155  * gfs_get_parent_ino: used to obtain a parent inode number and the
156  * inode number of the given vnode in preparation for calling gfs_readdir_init.
157  */
158 int
159 gfs_get_parent_ino(vnode_t *dvp, cred_t *cr, caller_context_t *ct,
160     ino64_t *pino, ino64_t *ino)
161 {
162 	vnode_t *parent;
163 	gfs_dir_t *dp = dvp->v_data;
164 	int error;
165 
166 	*ino = dp->gfsd_file.gfs_ino;
167 	parent = dp->gfsd_file.gfs_parent;
168 
169 	if (parent == NULL) {
170 		*pino = *ino;		/* root of filesystem */
171 	} else if (dvp->v_flag & V_XATTRDIR) {
172 		vattr_t va;
173 
174 		va.va_mask = AT_NODEID;
175 		error = VOP_GETATTR(parent, &va, 0, cr, ct);
176 		if (error)
177 			return (error);
178 		*pino = va.va_nodeid;
179 	} else {
180 		*pino = ((gfs_file_t *)(parent->v_data))->gfs_ino;
181 	}
182 
183 	return (0);
184 }
185 
186 /*
187  * gfs_readdir_init: initiate a generic readdir
188  *   st		- a pointer to an uninitialized gfs_readdir_state_t structure
189  *   name_max	- the directory's maximum file name length
190  *   ureclen	- the exported file-space record length (1 for non-legacy FSs)
191  *   uiop	- the uiop passed to readdir
192  *   parent	- the parent directory's inode
193  *   self	- this directory's inode
194  *   flags	- flags from VOP_READDIR
195  *
196  * Returns 0 or a non-zero errno.
197  *
198  * Typical VOP_READDIR usage of gfs_readdir_*:
199  *
200  *	if ((error = gfs_readdir_init(...)) != 0)
201  *		return (error);
202  *	eof = 0;
203  *	while ((error = gfs_readdir_pred(..., &voffset)) != 0) {
204  *		if (!consumer_entry_at(voffset))
205  *			voffset = consumer_next_entry(voffset);
206  *		if (consumer_eof(voffset)) {
207  *			eof = 1
208  *			break;
209  *		}
210  *		if ((error = gfs_readdir_emit(..., voffset,
211  *		    consumer_ino(voffset), consumer_name(voffset))) != 0)
212  *			break;
213  *	}
214  *	return (gfs_readdir_fini(..., error, eofp, eof));
215  *
216  * As you can see, a zero result from gfs_readdir_pred() or
217  * gfs_readdir_emit() indicates that processing should continue,
218  * whereas a non-zero result indicates that the loop should terminate.
219  * Most consumers need do nothing more than let gfs_readdir_fini()
220  * determine what the cause of failure was and return the appropriate
221  * value.
222  */
223 int
224 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen,
225     uio_t *uiop, ino64_t parent, ino64_t self, int flags)
226 {
227 	size_t dirent_size;
228 
229 	if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 ||
230 	    (uiop->uio_loffset % ureclen) != 0)
231 		return (EINVAL);
232 
233 	st->grd_ureclen = ureclen;
234 	st->grd_oresid = uiop->uio_resid;
235 	st->grd_namlen = name_max;
236 	if (flags & V_RDDIR_ENTFLAGS)
237 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
238 	else
239 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
240 	st->grd_dirent = kmem_zalloc(dirent_size, KM_SLEEP);
241 	st->grd_parent = parent;
242 	st->grd_self = self;
243 	st->grd_flags = flags;
244 
245 	return (0);
246 }
247 
248 /*
249  * gfs_readdir_emit_int: internal routine to emit directory entry
250  *
251  *   st		- the current readdir state, which must have d_ino/ed_ino
252  *		  and d_name/ed_name set
253  *   uiop	- caller-supplied uio pointer
254  *   next	- the offset of the next entry
255  */
256 static int
257 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next)
258 {
259 	int reclen;
260 	dirent64_t *dp;
261 	edirent_t *edp;
262 
263 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
264 		edp = st->grd_dirent;
265 		reclen = EDIRENT_RECLEN(strlen(edp->ed_name));
266 	} else {
267 		dp = st->grd_dirent;
268 		reclen = DIRENT64_RECLEN(strlen(dp->d_name));
269 	}
270 
271 	if (reclen > uiop->uio_resid) {
272 		/*
273 		 * Error if no entries were returned yet
274 		 */
275 		if (uiop->uio_resid == st->grd_oresid)
276 			return (EINVAL);
277 		return (-1);
278 	}
279 
280 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
281 		edp->ed_off = next;
282 		edp->ed_reclen = (ushort_t)reclen;
283 	} else {
284 		dp->d_off = next;
285 		dp->d_reclen = (ushort_t)reclen;
286 	}
287 
288 	if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop))
289 		return (EFAULT);
290 
291 	uiop->uio_loffset = next;
292 
293 	return (0);
294 }
295 
296 /*
297  * gfs_readdir_emit: emit a directory entry
298  *   voff       - the virtual offset (obtained from gfs_readdir_pred)
299  *   ino        - the entry's inode
300  *   name       - the entry's name
301  *   eflags	- value for ed_eflags (if processing edirent_t)
302  *
303  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
304  * readdir loop should terminate.  A non-zero result (either errno or
305  * -1) from this function is typically passed directly to
306  * gfs_readdir_fini().
307  */
308 int
309 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
310     ino64_t ino, const char *name, int eflags)
311 {
312 	offset_t off = (voff + 2) * st->grd_ureclen;
313 
314 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
315 		edirent_t *edp = st->grd_dirent;
316 
317 		edp->ed_ino = ino;
318 		(void) strncpy(edp->ed_name, name, st->grd_namlen);
319 		edp->ed_eflags = eflags;
320 	} else {
321 		dirent64_t *dp = st->grd_dirent;
322 
323 		dp->d_ino = ino;
324 		(void) strncpy(dp->d_name, name, st->grd_namlen);
325 	}
326 
327 	/*
328 	 * Inter-entry offsets are invalid, so we assume a record size of
329 	 * grd_ureclen and explicitly set the offset appropriately.
330 	 */
331 	return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen));
332 }
333 
334 /*
335  * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer
336  * instead of a string for the entry's name.
337  */
338 int
339 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
340     ino64_t ino, unsigned long num)
341 {
342 	char buf[40];
343 
344 	numtos(num, buf);
345 	return (gfs_readdir_emit(st, uiop, voff, ino, buf, 0));
346 }
347 
348 /*
349  * gfs_readdir_pred: readdir loop predicate
350  *   voffp - a pointer in which the next virtual offset should be stored
351  *
352  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
353  * readdir loop should terminate.  A non-zero result (either errno or
354  * -1) from this function is typically passed directly to
355  * gfs_readdir_fini().
356  */
357 int
358 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp)
359 {
360 	offset_t off, voff;
361 	int error;
362 
363 top:
364 	if (uiop->uio_resid <= 0)
365 		return (-1);
366 
367 	off = uiop->uio_loffset / st->grd_ureclen;
368 	voff = off - 2;
369 	if (off == 0) {
370 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self,
371 		    ".", 0)) == 0)
372 			goto top;
373 	} else if (off == 1) {
374 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent,
375 		    "..", 0)) == 0)
376 			goto top;
377 	} else {
378 		*voffp = voff;
379 		return (0);
380 	}
381 
382 	return (error);
383 }
384 
385 /*
386  * gfs_readdir_fini: generic readdir cleanup
387  *   error	- if positive, an error to return
388  *   eofp	- the eofp passed to readdir
389  *   eof	- the eof value
390  *
391  * Returns a 0 on success, a non-zero errno on failure.  This result
392  * should be returned from readdir.
393  */
394 int
395 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof)
396 {
397 	size_t dirent_size;
398 
399 	if (st->grd_flags & V_RDDIR_ENTFLAGS)
400 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
401 	else
402 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
403 	kmem_free(st->grd_dirent, dirent_size);
404 	if (error > 0)
405 		return (error);
406 	if (eofp)
407 		*eofp = eof;
408 	return (0);
409 }
410 
411 /*
412  * gfs_lookup_dot
413  *
414  * Performs a basic check for "." and ".." directory entries.
415  */
416 int
417 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm)
418 {
419 	if (*nm == '\0' || strcmp(nm, ".") == 0) {
420 		VN_HOLD(dvp);
421 		*vpp = dvp;
422 		return (0);
423 	} else if (strcmp(nm, "..") == 0) {
424 		if (pvp == NULL) {
425 			ASSERT(dvp->v_flag & VROOT);
426 			VN_HOLD(dvp);
427 			*vpp = dvp;
428 		} else {
429 			VN_HOLD(pvp);
430 			*vpp = pvp;
431 		}
432 		return (0);
433 	}
434 
435 	return (-1);
436 }
437 
438 /*
439  * gfs_file_create(): create a new GFS file
440  *
441  *   size	- size of private data structure (v_data)
442  *   pvp	- parent vnode (GFS directory)
443  *   ops	- vnode operations vector
444  *
445  * In order to use this interface, the parent vnode must have been created by
446  * gfs_dir_create(), and the private data stored in v_data must have a
447  * 'gfs_file_t' as its first field.
448  *
449  * Given these constraints, this routine will automatically:
450  *
451  * 	- Allocate v_data for the vnode
452  * 	- Initialize necessary fields in the vnode
453  * 	- Hold the parent
454  */
455 vnode_t *
456 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops)
457 {
458 	gfs_file_t *fp;
459 	vnode_t *vp;
460 
461 	/*
462 	 * Allocate vnode and internal data structure
463 	 */
464 	fp = kmem_zalloc(size, KM_SLEEP);
465 	vp = vn_alloc(KM_SLEEP);
466 
467 	/*
468 	 * Set up various pointers
469 	 */
470 	fp->gfs_vnode = vp;
471 	fp->gfs_parent = pvp;
472 	vp->v_data = fp;
473 	fp->gfs_size = size;
474 	fp->gfs_type = GFS_FILE;
475 
476 	/*
477 	 * Initialize vnode and hold parent.
478 	 */
479 	vn_setops(vp, ops);
480 	if (pvp) {
481 		VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0);
482 		VN_HOLD(pvp);
483 	}
484 
485 	return (vp);
486 }
487 
488 /*
489  * gfs_dir_create: creates a new directory in the parent
490  *
491  *   size	- size of private data structure (v_data)
492  *   pvp	- parent vnode (GFS directory)
493  *   ops	- vnode operations vector
494  *   entries	- NULL-terminated list of static entries (if any)
495  *   maxlen	- maximum length of a directory entry
496  *   readdir_cb	- readdir callback (see gfs_dir_readdir)
497  *   inode_cb	- inode callback (see gfs_dir_readdir)
498  *   lookup_cb	- lookup callback (see gfs_dir_lookup)
499  *
500  * In order to use this function, the first member of the private vnode
501  * structure (v_data) must be a gfs_dir_t.  For each directory, there are
502  * static entries, defined when the structure is initialized, and dynamic
503  * entries, retrieved through callbacks.
504  *
505  * If a directory has static entries, then it must supply a inode callback,
506  * which will compute the inode number based on the parent and the index.
507  * For a directory with dynamic entries, the caller must supply a readdir
508  * callback and a lookup callback.  If a static lookup fails, we fall back to
509  * the supplied lookup callback, if any.
510  *
511  * This function also performs the same initialization as gfs_file_create().
512  */
513 vnode_t *
514 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops,
515     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
516     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
517 {
518 	vnode_t *vp;
519 	gfs_dir_t *dp;
520 	gfs_dirent_t *de;
521 
522 	vp = gfs_file_create(struct_size, pvp, ops);
523 	vp->v_type = VDIR;
524 
525 	dp = vp->v_data;
526 	dp->gfsd_file.gfs_type = GFS_DIR;
527 	dp->gfsd_maxlen = maxlen;
528 
529 	if (entries != NULL) {
530 		for (de = entries; de->gfse_name != NULL; de++)
531 			dp->gfsd_nstatic++;
532 
533 		dp->gfsd_static = kmem_alloc(
534 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP);
535 		bcopy(entries, dp->gfsd_static,
536 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
537 	}
538 
539 	dp->gfsd_readdir = readdir_cb;
540 	dp->gfsd_lookup = lookup_cb;
541 	dp->gfsd_inode = inode_cb;
542 
543 	mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL);
544 
545 	return (vp);
546 }
547 
548 /*
549  * gfs_root_create(): create a root vnode for a GFS filesystem
550  *
551  * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
552  * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
553  */
554 vnode_t *
555 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
556     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
557     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
558 {
559 	vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb,
560 	    maxlen, readdir_cb, lookup_cb);
561 
562 	/* Manually set the inode */
563 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
564 
565 	VFS_HOLD(vfsp);
566 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0);
567 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
568 
569 	return (vp);
570 }
571 
572 /*
573  * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem
574  *
575  * Similar to gfs_root_create(), this creates a root vnode for a file to
576  * be the pseudo-filesystem.
577  */
578 vnode_t *
579 gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino)
580 {
581 	vnode_t	*vp = gfs_file_create(size, NULL, ops);
582 
583 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
584 
585 	VFS_HOLD(vfsp);
586 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0);
587 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
588 
589 	return (vp);
590 }
591 
592 /*
593  * gfs_file_inactive()
594  *
595  * Called from the VOP_INACTIVE() routine.  If necessary, this routine will
596  * remove the given vnode from the parent directory and clean up any references
597  * in the VFS layer.
598  *
599  * If the vnode was not removed (due to a race with vget), then NULL is
600  * returned.  Otherwise, a pointer to the private data is returned.
601  */
602 void *
603 gfs_file_inactive(vnode_t *vp)
604 {
605 	int i;
606 	gfs_dirent_t *ge = NULL;
607 	gfs_file_t *fp = vp->v_data;
608 	gfs_dir_t *dp = NULL;
609 	void *data;
610 
611 	if (fp->gfs_parent == NULL || (vp->v_flag & V_XATTRDIR))
612 		goto found;
613 
614 	dp = fp->gfs_parent->v_data;
615 
616 	/*
617 	 * First, see if this vnode is cached in the parent.
618 	 */
619 	gfs_dir_lock(dp);
620 
621 	/*
622 	 * Find it in the set of static entries.
623 	 */
624 	for (i = 0; i < dp->gfsd_nstatic; i++)  {
625 		ge = &dp->gfsd_static[i];
626 
627 		if (ge->gfse_vnode == vp)
628 			goto found;
629 	}
630 
631 	/*
632 	 * If 'ge' is NULL, then it is a dynamic entry.
633 	 */
634 	ge = NULL;
635 
636 found:
637 	if (vp->v_flag & V_XATTRDIR) {
638 		mutex_enter(&fp->gfs_parent->v_lock);
639 	}
640 	mutex_enter(&vp->v_lock);
641 	if (vp->v_count == 1) {
642 		/*
643 		 * Really remove this vnode
644 		 */
645 		data = vp->v_data;
646 		if (ge != NULL) {
647 			/*
648 			 * If this was a statically cached entry, simply set the
649 			 * cached vnode to NULL.
650 			 */
651 			ge->gfse_vnode = NULL;
652 		}
653 		if (vp->v_flag & V_XATTRDIR) {
654 			fp->gfs_parent->v_xattrdir = NULL;
655 			mutex_exit(&fp->gfs_parent->v_lock);
656 		}
657 		mutex_exit(&vp->v_lock);
658 
659 		/*
660 		 * Free vnode and release parent
661 		 */
662 		if (fp->gfs_parent) {
663 			if (dp) {
664 				gfs_dir_unlock(dp);
665 			}
666 			VN_RELE(fp->gfs_parent);
667 		} else {
668 			ASSERT(vp->v_vfsp != NULL);
669 			VFS_RELE(vp->v_vfsp);
670 		}
671 		vn_free(vp);
672 	} else {
673 		vp->v_count--;
674 		data = NULL;
675 		mutex_exit(&vp->v_lock);
676 		if (vp->v_flag & V_XATTRDIR) {
677 			mutex_exit(&fp->gfs_parent->v_lock);
678 		}
679 		if (dp)
680 			gfs_dir_unlock(dp);
681 	}
682 
683 	return (data);
684 }
685 
686 /*
687  * gfs_dir_inactive()
688  *
689  * Same as above, but for directories.
690  */
691 void *
692 gfs_dir_inactive(vnode_t *vp)
693 {
694 	gfs_dir_t *dp;
695 
696 	ASSERT(vp->v_type == VDIR);
697 
698 	if ((dp = gfs_file_inactive(vp)) != NULL) {
699 		mutex_destroy(&dp->gfsd_lock);
700 		if (dp->gfsd_nstatic)
701 			kmem_free(dp->gfsd_static,
702 			    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
703 	}
704 
705 	return (dp);
706 }
707 
708 /*
709  * gfs_dir_lookup()
710  *
711  * Looks up the given name in the directory and returns the corresponding vnode,
712  * if found.
713  *
714  * First, we search statically defined entries, if any.  If a match is found,
715  * and GFS_CACHE_VNODE is set and the vnode exists, we simply return the
716  * existing vnode.  Otherwise, we call the static entry's callback routine,
717  * caching the result if necessary.
718  *
719  * If no static entry is found, we invoke the lookup callback, if any.  The
720  * arguments to this callback are:
721  *
722  * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp, cred_t *cr);
723  *
724  *	pvp	- parent vnode
725  *	nm	- name of entry
726  *	vpp	- pointer to resulting vnode
727  *	cr	- pointer to cred
728  *
729  * 	Returns 0 on success, non-zero on error.
730  */
731 int
732 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, cred_t *cr)
733 {
734 	int i;
735 	gfs_dirent_t *ge;
736 	vnode_t *vp;
737 	gfs_dir_t *dp = dvp->v_data;
738 	int ret = 0;
739 
740 	ASSERT(dvp->v_type == VDIR);
741 
742 	if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0)
743 		return (0);
744 
745 	gfs_dir_lock(dp);
746 
747 	/*
748 	 * Search static entries.
749 	 */
750 	for (i = 0; i < dp->gfsd_nstatic; i++) {
751 		ge = &dp->gfsd_static[i];
752 
753 		if (strcmp(ge->gfse_name, nm) == 0) {
754 			if (ge->gfse_vnode) {
755 				ASSERT(ge->gfse_flags & GFS_CACHE_VNODE);
756 				vp = ge->gfse_vnode;
757 				VN_HOLD(vp);
758 				goto out;
759 			}
760 
761 			/*
762 			 * We drop the directory lock, as the constructor will
763 			 * need to do KM_SLEEP allocations.  If we return from
764 			 * the constructor only to find that a parallel
765 			 * operation has completed, and GFS_CACHE_VNODE is set
766 			 * for this entry, we discard the result in favor of the
767 			 * cached vnode.
768 			 */
769 			gfs_dir_unlock(dp);
770 			vp = ge->gfse_ctor(dvp);
771 			gfs_dir_lock(dp);
772 
773 			((gfs_file_t *)vp->v_data)->gfs_index = i;
774 
775 			/* Set the inode according to the callback. */
776 			((gfs_file_t *)vp->v_data)->gfs_ino =
777 			    dp->gfsd_inode(dvp, i);
778 
779 			if (ge->gfse_flags & GFS_CACHE_VNODE) {
780 				if (ge->gfse_vnode == NULL) {
781 					ge->gfse_vnode = vp;
782 				} else {
783 					/*
784 					 * A parallel constructor beat us to it;
785 					 * return existing vnode.  We have to be
786 					 * careful because we can't release the
787 					 * current vnode while holding the
788 					 * directory lock; its inactive routine
789 					 * will try to lock this directory.
790 					 */
791 					vnode_t *oldvp = vp;
792 					vp = ge->gfse_vnode;
793 					VN_HOLD(vp);
794 
795 					gfs_dir_unlock(dp);
796 					VN_RELE(oldvp);
797 					gfs_dir_lock(dp);
798 				}
799 			}
800 
801 			goto out;
802 		}
803 	}
804 
805 	/*
806 	 * See if there is a dynamic constructor.
807 	 */
808 	if (dp->gfsd_lookup) {
809 		ino64_t ino;
810 		gfs_file_t *fp;
811 
812 		/*
813 		 * Once again, drop the directory lock, as the lookup routine
814 		 * will need to allocate memory, or otherwise deadlock on this
815 		 * directory.
816 		 */
817 		gfs_dir_unlock(dp);
818 		ret = dp->gfsd_lookup(dvp, nm, &vp, &ino, cr);
819 		gfs_dir_lock(dp);
820 		if (ret != 0)
821 			goto out;
822 
823 		/*
824 		 * The lookup_cb might be returning a non-GFS vnode.
825 		 * Currently this is true for extended attributes,
826 		 * where we're returning a vnode with v_data from an
827 		 * underlying fs.
828 		 */
829 		if ((dvp->v_flag & V_XATTRDIR) == 0) {
830 			fp = (gfs_file_t *)vp->v_data;
831 			fp->gfs_index = -1;
832 			fp->gfs_ino = ino;
833 		}
834 	} else {
835 		/*
836 		 * No static entry found, and there is no lookup callback, so
837 		 * return ENOENT.
838 		 */
839 		ret = ENOENT;
840 	}
841 
842 out:
843 	gfs_dir_unlock(dp);
844 
845 	if (ret == 0)
846 		*vpp = vp;
847 	else
848 		*vpp = NULL;
849 
850 	return (ret);
851 }
852 
853 /*
854  * gfs_dir_readdir: does a readdir() on the given directory
855  *
856  *    dvp	- directory vnode
857  *    uiop	- uio structure
858  *    eofp	- eof pointer
859  *    data	- arbitrary data passed to readdir callback
860  *
861  * This routine does all the readdir() dirty work.  Even so, the caller must
862  * supply two callbacks in order to get full compatibility.
863  *
864  * If the directory contains static entries, an inode callback must be
865  * specified.  This avoids having to create every vnode and call VOP_GETATTR()
866  * when reading the directory.  This function has the following arguments:
867  *
868  *	ino_t gfs_inode_cb(vnode_t *vp, int index);
869  *
870  * 	vp	- vnode for the directory
871  * 	index	- index in original gfs_dirent_t array
872  *
873  * 	Returns the inode number for the given entry.
874  *
875  * For directories with dynamic entries, a readdir callback must be provided.
876  * This is significantly more complex, thanks to the particulars of
877  * VOP_READDIR().
878  *
879  *	int gfs_readdir_cb(vnode_t *vp, void *dp, int *eofp,
880  *	    offset_t *off, offset_t *nextoff, void *data, int flags)
881  *
882  *	vp	- directory vnode
883  *	dp	- directory entry, sized according to maxlen given to
884  *		  gfs_dir_create().  callback must fill in d_name and
885  *		  d_ino (if a dirent64_t), or ed_name, ed_ino, and ed_eflags
886  *		  (if an edirent_t). edirent_t is used if V_RDDIR_ENTFLAGS
887  *		  is set in 'flags'.
888  *	eofp	- callback must set to 1 when EOF has been reached
889  *	off	- on entry, the last offset read from the directory.  Callback
890  *		  must set to the offset of the current entry, typically left
891  *		  untouched.
892  *	nextoff	- callback must set to offset of next entry.  Typically
893  *		  (off + 1)
894  *	data	- caller-supplied data
895  *	flags	- VOP_READDIR flags
896  *
897  *	Return 0 on success, or error on failure.
898  */
899 int
900 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data, cred_t *cr,
901     caller_context_t *ct, int flags)
902 {
903 	gfs_readdir_state_t gstate;
904 	int error, eof = 0;
905 	ino64_t ino, pino;
906 	offset_t off, next;
907 	gfs_dir_t *dp = dvp->v_data;
908 
909 	error = gfs_get_parent_ino(dvp, cr, ct, &pino, &ino);
910 	if (error)
911 		return (error);
912 
913 	if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop,
914 	    pino, ino, flags)) != 0)
915 		return (error);
916 
917 	while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 &&
918 	    !eof) {
919 
920 		if (off >= 0 && off < dp->gfsd_nstatic) {
921 			ino = dp->gfsd_inode(dvp, off);
922 
923 			if ((error = gfs_readdir_emit(&gstate, uiop,
924 			    off, ino, dp->gfsd_static[off].gfse_name, 0))
925 			    != 0)
926 				break;
927 
928 		} else if (dp->gfsd_readdir) {
929 			off -= dp->gfsd_nstatic;
930 
931 			if ((error = dp->gfsd_readdir(dvp,
932 			    gstate.grd_dirent, &eof, &off, &next,
933 			    data, flags)) != 0 || eof)
934 				break;
935 
936 			off += dp->gfsd_nstatic + 2;
937 			next += dp->gfsd_nstatic + 2;
938 
939 			if ((error = gfs_readdir_emit_int(&gstate, uiop,
940 			    next)) != 0)
941 				break;
942 		} else {
943 			/*
944 			 * Offset is beyond the end of the static entries, and
945 			 * we have no dynamic entries.  Set EOF.
946 			 */
947 			eof = 1;
948 		}
949 	}
950 
951 	return (gfs_readdir_fini(&gstate, error, eofp, eof));
952 }
953 
954 
955 /*
956  * gfs_vop_lookup: VOP_LOOKUP() entry point
957  *
958  * For use directly in vnode ops table.  Given a GFS directory, calls
959  * gfs_dir_lookup() as necessary.
960  */
961 /* ARGSUSED */
962 int
963 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
964     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
965     int *direntflags, pathname_t *realpnp)
966 {
967 	return (gfs_dir_lookup(dvp, nm, vpp, cr));
968 }
969 
970 /*
971  * gfs_vop_readdir: VOP_READDIR() entry point
972  *
973  * For use directly in vnode ops table.  Given a GFS directory, calls
974  * gfs_dir_readdir() as necessary.
975  */
976 /* ARGSUSED */
977 int
978 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
979     caller_context_t *ct, int flags)
980 {
981 	return (gfs_dir_readdir(vp, uiop, eofp, NULL, cr, ct, flags));
982 }
983 
984 
985 /*
986  * gfs_vop_map: VOP_MAP() entry point
987  *
988  * Convenient routine for handling pseudo-files that wish to allow mmap() calls.
989  * This function only works for readonly files, and uses the read function for
990  * the vnode to fill in the data.  The mapped data is immediately faulted in and
991  * filled with the necessary data during this call; there are no getpage() or
992  * putpage() routines.
993  */
994 /* ARGSUSED */
995 int
996 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
997     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred,
998     caller_context_t *ct)
999 {
1000 	int rv;
1001 	ssize_t resid = len;
1002 
1003 	/*
1004 	 * Check for bad parameters
1005 	 */
1006 #ifdef _ILP32
1007 	if (len > MAXOFF_T)
1008 		return (ENOMEM);
1009 #endif
1010 	if (vp->v_flag & VNOMAP)
1011 		return (ENOTSUP);
1012 	if (off > MAXOFF_T)
1013 		return (EFBIG);
1014 	if ((long)off < 0 || (long)(off + len) < 0)
1015 		return (EINVAL);
1016 	if (vp->v_type != VREG)
1017 		return (ENODEV);
1018 	if ((prot & (PROT_EXEC | PROT_WRITE)) != 0)
1019 		return (EACCES);
1020 
1021 	/*
1022 	 * Find appropriate address if needed, otherwise clear address range.
1023 	 */
1024 	as_rangelock(as);
1025 	rv = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1026 	if (rv != 0) {
1027 		as_rangeunlock(as);
1028 		return (rv);
1029 	}
1030 
1031 	/*
1032 	 * Create mapping
1033 	 */
1034 	rv = as_map(as, *addrp, len, segvn_create, zfod_argsp);
1035 	as_rangeunlock(as);
1036 	if (rv != 0)
1037 		return (rv);
1038 
1039 	/*
1040 	 * Fill with data from read()
1041 	 */
1042 	rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE,
1043 	    0, (rlim64_t)0, cred, &resid);
1044 
1045 	if (rv == 0 && resid != 0)
1046 		rv = ENXIO;
1047 
1048 	if (rv != 0) {
1049 		as_rangelock(as);
1050 		(void) as_unmap(as, *addrp, len);
1051 		as_rangeunlock(as);
1052 	}
1053 
1054 	return (rv);
1055 }
1056 
1057 /*
1058  * gfs_vop_inactive: VOP_INACTIVE() entry point
1059  *
1060  * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or
1061  * gfs_dir_inactive() as necessary, and kmem_free()s associated private data.
1062  */
1063 /* ARGSUSED */
1064 void
1065 gfs_vop_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1066 {
1067 	gfs_file_t *fp = vp->v_data;
1068 	void *data;
1069 
1070 	if (fp->gfs_type == GFS_DIR)
1071 		data = gfs_dir_inactive(vp);
1072 	else
1073 		data = gfs_file_inactive(vp);
1074 
1075 	if (data != NULL)
1076 		kmem_free(data, fp->gfs_size);
1077 }
1078