xref: /titanic_50/usr/src/uts/common/fs/fsflush.c (revision eab227978ccdaa5a7cc9fd92ace768915dae3a2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/tuneable.h>
34 #include <sys/inline.h>
35 #include <sys/systm.h>
36 #include <sys/proc.h>
37 #include <sys/user.h>
38 #include <sys/var.h>
39 #include <sys/buf.h>
40 #include <sys/vfs.h>
41 #include <sys/cred.h>
42 #include <sys/kmem.h>
43 #include <sys/vnode.h>
44 #include <sys/swap.h>
45 #include <sys/vm.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/sysinfo.h>
49 #include <sys/callb.h>
50 #include <sys/reboot.h>
51 #include <sys/time.h>
52 #include <sys/fs/ufs_inode.h>
53 #include <sys/fs/ufs_bio.h>
54 
55 #include <vm/hat.h>
56 #include <vm/page.h>
57 #include <vm/pvn.h>
58 #include <vm/seg_kmem.h>
59 
60 int doiflush = 1;	/* non-zero to turn inode flushing on */
61 int dopageflush = 1;	/* non-zero to turn page flushing on */
62 
63 /*
64  * To improve boot performance, don't run the inode flushing loop until
65  * the specified number of seconds after boot.  To revert to the old
66  * behavior, set fsflush_iflush_delay to 0.  We have not created any new
67  * filesystem danger that did not exist previously, since there is always a
68  * window in between when fsflush does the inode flush loop during which the
69  * system could crash, fail to sync the filesystem, and fsck will be needed
70  * to recover.  We have, however, widened this window.  Finally,
71  * we never delay inode flushing if we're booting into single user mode,
72  * where the administrator may be modifying files or using fsck.  This
73  * modification avoids inode flushes during boot whose only purpose is to
74  * update atimes on files which have been accessed during boot.
75  */
76 int fsflush_iflush_delay = 60;
77 
78 kcondvar_t fsflush_cv;
79 static kmutex_t fsflush_lock;	/* just for the cv_wait */
80 ksema_t fsflush_sema;		/* to serialize with reboot */
81 
82 /*
83  * some statistics for fsflush_do_pages
84  */
85 typedef struct {
86 	ulong_t fsf_scan;	/* number of pages scanned */
87 	ulong_t fsf_examined;	/* number of page_t's actually examined, can */
88 				/* be less than fsf_scan due to large pages */
89 	ulong_t fsf_locked;	/* pages we actually page_lock()ed */
90 	ulong_t fsf_modified;	/* number of modified pages found */
91 	ulong_t fsf_coalesce;	/* number of page coalesces done */
92 	ulong_t fsf_time;	/* nanoseconds of run time */
93 	ulong_t fsf_releases;	/* number of page_release() done */
94 } fsf_stat_t;
95 
96 fsf_stat_t fsf_recent;	/* counts for most recent duty cycle */
97 fsf_stat_t fsf_total;	/* total of counts */
98 ulong_t fsf_cycles;	/* number of runs refelected in fsf_total */
99 
100 /*
101  * data used to determine when we can coalesce consecutive free pages
102  * into larger pages.
103  */
104 #define	MAX_PAGESIZES	32
105 static ulong_t		fsf_npgsz;
106 static pgcnt_t		fsf_pgcnt[MAX_PAGESIZES];
107 static pgcnt_t		fsf_mask[MAX_PAGESIZES];
108 
109 
110 /*
111  * Scan page_t's and issue I/O's for modified pages.
112  *
113  * Also coalesces consecutive small sized free pages into the next larger
114  * pagesize. This costs a tiny bit of time in fsflush, but will reduce time
115  * spent scanning on later passes and for anybody allocating large pages.
116  */
117 static void
118 fsflush_do_pages()
119 {
120 	vnode_t		*vp;
121 	ulong_t		pcount;
122 	hrtime_t	timer = gethrtime();
123 	ulong_t		releases = 0;
124 	ulong_t		nexamined = 0;
125 	ulong_t		nlocked = 0;
126 	ulong_t		nmodified = 0;
127 	ulong_t		ncoalesce = 0;
128 	ulong_t		cnt;
129 	int		mod;
130 	int		fspage = 1;
131 	u_offset_t	offset;
132 	uint_t		szc;
133 
134 	page_t		*coal_page = NULL;  /* 1st page in group to coalesce */
135 	uint_t		coal_szc = 0;	    /* size code, coal_page->p_szc */
136 	uint_t		coal_cnt = 0;	    /* count of pages seen */
137 
138 	static ulong_t	nscan = 0;
139 	static pgcnt_t	last_total_pages = 0;
140 	static page_t	*pp = NULL;
141 
142 	/*
143 	 * Check to see if total_pages has changed.
144 	 */
145 	if (total_pages != last_total_pages) {
146 		last_total_pages = total_pages;
147 		nscan = (last_total_pages * (tune.t_fsflushr))/v.v_autoup;
148 	}
149 
150 	if (pp == NULL)
151 		pp = memsegs->pages;
152 
153 	pcount = 0;
154 	while (pcount < nscan) {
155 
156 		/*
157 		 * move to the next page, skipping over large pages
158 		 * and issuing prefetches.
159 		 */
160 		if (pp->p_szc && fspage == 0) {
161 			pfn_t pfn;
162 
163 			pfn  = page_pptonum(pp);
164 			cnt = page_get_pagecnt(pp->p_szc);
165 			cnt -= pfn & (cnt - 1);
166 		} else
167 			cnt = 1;
168 
169 		pp = page_nextn(pp, cnt);
170 		prefetch_page_r((void *)pp);
171 		ASSERT(pp != NULL);
172 		pcount += cnt;
173 
174 		/*
175 		 * Do a bunch of dirty tests (ie. no locking) to determine
176 		 * if we can quickly skip this page. These tests are repeated
177 		 * after acquiring the page lock.
178 		 */
179 		++nexamined;
180 		if (PP_ISSWAP(pp)) {
181 			fspage = 0;
182 			coal_page = NULL;
183 			continue;
184 		}
185 
186 		/*
187 		 * skip free pages too, but try coalescing them into larger
188 		 * pagesizes
189 		 */
190 		if (PP_ISFREE(pp)) {
191 			/*
192 			 * skip pages with a file system identity or that
193 			 * are already maximum size
194 			 */
195 			fspage = 0;
196 			szc = pp->p_szc;
197 			if (pp->p_vnode != NULL || szc == fsf_npgsz - 1) {
198 				coal_page = NULL;
199 				continue;
200 			}
201 
202 			/*
203 			 * If not in a coalescing candidate page or the size
204 			 * codes are different, start a new candidate.
205 			 */
206 			if (coal_page == NULL || coal_szc != szc) {
207 
208 				/*
209 				 * page must be properly aligned
210 				 */
211 				if ((page_pptonum(pp) & fsf_mask[szc]) != 0) {
212 					coal_page = NULL;
213 					continue;
214 				}
215 				coal_page = pp;
216 				coal_szc = szc;
217 				coal_cnt = 1;
218 				continue;
219 			}
220 
221 			/*
222 			 * acceptable to add this to existing candidate page
223 			 */
224 			++coal_cnt;
225 			if (coal_cnt < fsf_pgcnt[coal_szc])
226 				continue;
227 
228 			/*
229 			 * We've got enough pages to coalesce, so do it.
230 			 * After promoting, we clear coal_page, so it will
231 			 * take another pass to promote this to an even
232 			 * larger page.
233 			 */
234 			++ncoalesce;
235 			(void) page_promote_size(coal_page, coal_szc);
236 			coal_page = NULL;
237 			continue;
238 		} else {
239 			coal_page = NULL;
240 		}
241 
242 		if (PP_ISKAS(pp) ||
243 		    PAGE_LOCKED(pp) ||
244 		    pp->p_lckcnt != 0 ||
245 		    pp->p_cowcnt != 0) {
246 			fspage = 0;
247 			continue;
248 		}
249 
250 
251 		/*
252 		 * Reject pages that can't be "exclusively" locked.
253 		 */
254 		if (!page_trylock(pp, SE_EXCL))
255 			continue;
256 		++nlocked;
257 
258 
259 		/*
260 		 * After locking the page, redo the above checks.
261 		 * Since we locked the page, leave out the PAGE_LOCKED() test.
262 		 */
263 		vp = pp->p_vnode;
264 		if (PP_ISSWAP(pp) ||
265 		    PP_ISFREE(pp) ||
266 		    vp == NULL ||
267 		    PP_ISKAS(pp) ||
268 		    (vp->v_flag & VISSWAP) != 0) {
269 			page_unlock(pp);
270 			fspage = 0;
271 			continue;
272 		}
273 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
274 			page_unlock(pp);
275 			continue;
276 		}
277 
278 		fspage = 1;
279 		ASSERT(vp->v_type != VCHR);
280 
281 		/*
282 		 * Check the modified bit. Leaving the bit alone in hardware.
283 		 * It will be cleared if we do the putpage.
284 		 */
285 		if (IS_VMODSORT(vp))
286 			mod = hat_ismod(pp);
287 		else
288 			mod = hat_pagesync(pp,
289 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD;
290 
291 		if (mod) {
292 			++nmodified;
293 			offset = pp->p_offset;
294 
295 			/*
296 			 * Hold the vnode before releasing the page lock
297 			 * to prevent it from being freed and re-used by
298 			 * some other thread.
299 			 */
300 			VN_HOLD(vp);
301 
302 			page_unlock(pp);
303 
304 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_ASYNC,
305 			    kcred, NULL);
306 
307 			VN_RELE(vp);
308 		} else {
309 
310 			/*
311 			 * Catch any pages which should be on the cache list,
312 			 * but aren't yet.
313 			 */
314 			if (hat_page_is_mapped(pp) == 0) {
315 				++releases;
316 				(void) page_release(pp, 1);
317 			} else {
318 				page_unlock(pp);
319 			}
320 		}
321 	}
322 
323 	/*
324 	 * maintain statistics
325 	 * reset every million wakeups, just to avoid overflow
326 	 */
327 	if (++fsf_cycles == 1000000) {
328 		fsf_cycles = 0;
329 		fsf_total.fsf_scan = 0;
330 		fsf_total.fsf_examined = 0;
331 		fsf_total.fsf_locked = 0;
332 		fsf_total.fsf_modified = 0;
333 		fsf_total.fsf_coalesce = 0;
334 		fsf_total.fsf_time = 0;
335 		fsf_total.fsf_releases = 0;
336 	} else {
337 		fsf_total.fsf_scan += fsf_recent.fsf_scan = nscan;
338 		fsf_total.fsf_examined += fsf_recent.fsf_examined = nexamined;
339 		fsf_total.fsf_locked += fsf_recent.fsf_locked = nlocked;
340 		fsf_total.fsf_modified += fsf_recent.fsf_modified = nmodified;
341 		fsf_total.fsf_coalesce += fsf_recent.fsf_coalesce = ncoalesce;
342 		fsf_total.fsf_time += fsf_recent.fsf_time = gethrtime() - timer;
343 		fsf_total.fsf_releases += fsf_recent.fsf_releases = releases;
344 	}
345 }
346 
347 /*
348  * As part of file system hardening, this daemon is awakened
349  * every second to flush cached data which includes the
350  * buffer cache, the inode cache and mapped pages.
351  */
352 void
353 fsflush()
354 {
355 	struct buf *bp, *dwp;
356 	struct hbuf *hp;
357 	int autoup;
358 	unsigned int ix, icount, count = 0;
359 	callb_cpr_t cprinfo;
360 	uint_t		bcount;
361 	kmutex_t	*hmp;
362 	struct vfssw *vswp;
363 
364 	proc_fsflush = ttoproc(curthread);
365 	proc_fsflush->p_cstime = 0;
366 	proc_fsflush->p_stime =  0;
367 	proc_fsflush->p_cutime =  0;
368 	proc_fsflush->p_utime = 0;
369 	bcopy("fsflush", curproc->p_user.u_psargs, 8);
370 	bcopy("fsflush", curproc->p_user.u_comm, 7);
371 
372 	mutex_init(&fsflush_lock, NULL, MUTEX_DEFAULT, NULL);
373 	sema_init(&fsflush_sema, 0, NULL, SEMA_DEFAULT, NULL);
374 
375 	/*
376 	 * Setup page coalescing.
377 	 */
378 	fsf_npgsz = page_num_pagesizes();
379 	ASSERT(fsf_npgsz < MAX_PAGESIZES);
380 	for (ix = 0; ix < fsf_npgsz - 1; ++ix) {
381 		fsf_pgcnt[ix] =
382 		    page_get_pagesize(ix + 1) / page_get_pagesize(ix);
383 		fsf_mask[ix] = page_get_pagecnt(ix + 1) - 1;
384 	}
385 
386 	autoup = v.v_autoup * hz;
387 	icount = v.v_autoup / tune.t_fsflushr;
388 	CALLB_CPR_INIT(&cprinfo, &fsflush_lock, callb_generic_cpr, "fsflush");
389 loop:
390 	sema_v(&fsflush_sema);
391 	mutex_enter(&fsflush_lock);
392 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
393 	cv_wait(&fsflush_cv, &fsflush_lock);		/* wait for clock */
394 	CALLB_CPR_SAFE_END(&cprinfo, &fsflush_lock);
395 	mutex_exit(&fsflush_lock);
396 	sema_p(&fsflush_sema);
397 
398 	/*
399 	 * Write back all old B_DELWRI buffers on the freelist.
400 	 */
401 	bcount = 0;
402 	for (ix = 0; ix < v.v_hbuf; ix++) {
403 
404 		hp = &hbuf[ix];
405 		dwp = (struct buf *)&dwbuf[ix];
406 
407 		bcount += (hp->b_length);
408 
409 		if (dwp->av_forw == dwp) {
410 			continue;
411 		}
412 
413 		hmp = &hbuf[ix].b_lock;
414 		mutex_enter(hmp);
415 		bp = dwp->av_forw;
416 
417 		/*
418 		 * Go down only on the delayed write lists.
419 		 */
420 		while (bp != dwp) {
421 
422 			ASSERT(bp->b_flags & B_DELWRI);
423 
424 			if ((bp->b_flags & B_DELWRI) &&
425 			    (ddi_get_lbolt() - bp->b_start >= autoup) &&
426 			    sema_tryp(&bp->b_sem)) {
427 				bp->b_flags |= B_ASYNC;
428 				hp->b_length--;
429 				notavail(bp);
430 				mutex_exit(hmp);
431 				if (bp->b_vp == NULL) {
432 					BWRITE(bp);
433 				} else {
434 					UFS_BWRITE(VTOI(bp->b_vp)->i_ufsvfs,
435 					    bp);
436 				}
437 				mutex_enter(hmp);
438 				bp = dwp->av_forw;
439 			} else {
440 				bp = bp->av_forw;
441 			}
442 		}
443 		mutex_exit(hmp);
444 	}
445 
446 	/*
447 	 *
448 	 * There is no need to wakeup any thread waiting on bio_mem_cv
449 	 * since brelse will wake them up as soon as IO is complete.
450 	 */
451 	bfreelist.b_bcount = bcount;
452 
453 	if (dopageflush)
454 		fsflush_do_pages();
455 
456 	if (!doiflush)
457 		goto loop;
458 
459 	/*
460 	 * If the system was not booted to single user mode, skip the
461 	 * inode flushing until after fsflush_iflush_delay secs have elapsed.
462 	 */
463 	if ((boothowto & RB_SINGLE) == 0 &&
464 	    (ddi_get_lbolt64() / hz) < fsflush_iflush_delay)
465 		goto loop;
466 
467 	/*
468 	 * Flush cached attribute information (e.g. inodes).
469 	 */
470 	if (++count >= icount) {
471 		count = 0;
472 
473 		/*
474 		 * Sync back cached data.
475 		 */
476 		RLOCK_VFSSW();
477 		for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
478 			if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
479 				vfs_refvfssw(vswp);
480 				RUNLOCK_VFSSW();
481 				(void) fsop_sync_by_kind(vswp - vfssw,
482 				    SYNC_ATTR, kcred);
483 				vfs_unrefvfssw(vswp);
484 				RLOCK_VFSSW();
485 			}
486 		}
487 		RUNLOCK_VFSSW();
488 	}
489 	goto loop;
490 }
491