xref: /titanic_50/usr/src/uts/common/fs/fsflush.c (revision b9bd317cda1afb3a01f4812de73e8cec888cbbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/tuneable.h>
36 #include <sys/inline.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/user.h>
40 #include <sys/var.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/cred.h>
44 #include <sys/kmem.h>
45 #include <sys/vnode.h>
46 #include <sys/swap.h>
47 #include <sys/vm.h>
48 #include <sys/debug.h>
49 #include <sys/cmn_err.h>
50 #include <sys/sysinfo.h>
51 #include <sys/callb.h>
52 #include <sys/reboot.h>
53 #include <sys/time.h>
54 #include <sys/fs/ufs_inode.h>
55 #include <sys/fs/ufs_bio.h>
56 
57 #include <vm/hat.h>
58 #include <vm/page.h>
59 #include <vm/pvn.h>
60 #include <vm/seg_kmem.h>
61 
62 int doiflush = 1;	/* non-zero to turn inode flushing on */
63 int dopageflush = 1;	/* non-zero to turn page flushing on */
64 
65 /*
66  * To improve boot performance, don't run the inode flushing loop until
67  * the specified number of seconds after boot.  To revert to the old
68  * behavior, set fsflush_iflush_delay to 0.  We have not created any new
69  * filesystem danger that did not exist previously, since there is always a
70  * window in between when fsflush does the inode flush loop during which the
71  * system could crash, fail to sync the filesystem, and fsck will be needed
72  * to recover.  We have, however, widened this window.  Finally,
73  * we never delay inode flushing if we're booting into single user mode,
74  * where the administrator may be modifying files or using fsck.  This
75  * modification avoids inode flushes during boot whose only purpose is to
76  * update atimes on files which have been accessed during boot.
77  */
78 int fsflush_iflush_delay = 60;
79 
80 kcondvar_t fsflush_cv;
81 static kmutex_t fsflush_lock;	/* just for the cv_wait */
82 ksema_t fsflush_sema;		/* to serialize with reboot */
83 
84 /*
85  * some statistics for fsflush_do_pages
86  */
87 typedef struct {
88 	ulong_t fsf_scan;	/* number of pages scanned */
89 	ulong_t fsf_examined;	/* number of page_t's actually examined, can */
90 				/* be less than fsf_scan due to large pages */
91 	ulong_t fsf_locked;	/* pages we actually page_lock()ed */
92 	ulong_t fsf_modified;	/* number of modified pages found */
93 	ulong_t fsf_coalesce;	/* number of page coalesces done */
94 	ulong_t fsf_time;	/* nanoseconds of run time */
95 	ulong_t fsf_releases;	/* number of page_release() done */
96 } fsf_stat_t;
97 
98 fsf_stat_t fsf_recent;	/* counts for most recent duty cycle */
99 fsf_stat_t fsf_total;	/* total of counts */
100 ulong_t fsf_cycles;	/* number of runs refelected in fsf_total */
101 
102 /*
103  * data used to determine when we can coalesce consecutive free pages
104  * into larger pages.
105  */
106 #define	MAX_PAGESIZES	32
107 static ulong_t		fsf_npgsz;
108 static pgcnt_t		fsf_pgcnt[MAX_PAGESIZES];
109 static pgcnt_t		fsf_mask[MAX_PAGESIZES];
110 
111 
112 /*
113  * Scan page_t's and issue I/O's for modified pages.
114  *
115  * Also coalesces consecutive small sized free pages into the next larger
116  * pagesize. This costs a tiny bit of time in fsflush, but will reduce time
117  * spent scanning on later passes and for anybody allocating large pages.
118  */
119 static void
120 fsflush_do_pages()
121 {
122 	vnode_t		*vp;
123 	ulong_t		pcount;
124 	hrtime_t	timer = gethrtime();
125 	ulong_t		releases = 0;
126 	ulong_t		nexamined = 0;
127 	ulong_t		nlocked = 0;
128 	ulong_t		nmodified = 0;
129 	ulong_t		ncoalesce = 0;
130 	int		mod;
131 	u_offset_t	offset;
132 	uint_t		szc;
133 
134 	page_t		*coal_page = NULL;  /* 1st page in group to coalesce */
135 	uint_t		coal_szc = 0;	    /* size code, coal_page->p_szc */
136 	uint_t		coal_cnt = 0;	    /* count of pages seen */
137 
138 	static ulong_t	nscan = 0;
139 	static pgcnt_t	last_total_pages = 0;
140 	static void	*pp_cookie = NULL;
141 	static page_t	*pp;
142 
143 	/*
144 	 * Check to see if total_pages has changed.
145 	 */
146 	if (total_pages != last_total_pages) {
147 		last_total_pages = total_pages;
148 		nscan = (last_total_pages * (tune.t_fsflushr))/v.v_autoup;
149 	}
150 
151 	/*
152 	 * On first time through initialize the cookie used for page_t scans
153 	 */
154 	if (pp_cookie == NULL)
155 		pp = page_next_scan_init(&pp_cookie);
156 
157 	pcount = 0;
158 	while (pcount <= nscan) {
159 
160 		/*
161 		 * move to the next page, skipping over large pages
162 		 * and issuing prefetches.
163 		 */
164 		pp = page_next_scan_large(pp, &pcount, &pp_cookie);
165 		prefetch_page_r((void *)pp);
166 		ASSERT(pp != NULL);
167 
168 		/*
169 		 * Do a bunch of dirty tests (ie. no locking) to determine
170 		 * if we can quickly skip this page. These tests are repeated
171 		 * after acquiring the page lock.
172 		 */
173 		++nexamined;
174 		if (PP_ISSWAP(pp)) {
175 			coal_page = NULL;
176 			continue;
177 		}
178 
179 		/*
180 		 * skip free pages too, but try coalescing them into larger
181 		 * pagesizes
182 		 */
183 		if (PP_ISFREE(pp)) {
184 			/*
185 			 * skip pages with a file system identity or that
186 			 * are already maximum size
187 			 */
188 			szc = pp->p_szc;
189 			if (pp->p_vnode != NULL || szc == fsf_npgsz - 1) {
190 				coal_page = NULL;
191 				continue;
192 			}
193 
194 			/*
195 			 * If not in a coalescing candidate page or the size
196 			 * codes are different, start a new candidate.
197 			 */
198 			if (coal_page == NULL || coal_szc != szc) {
199 
200 				/*
201 				 * page must be properly aligned
202 				 */
203 				if ((page_pptonum(pp) & fsf_mask[szc]) != 0) {
204 					coal_page = NULL;
205 					continue;
206 				}
207 				coal_page = pp;
208 				coal_szc = szc;
209 				coal_cnt = 1;
210 				continue;
211 			}
212 
213 			/*
214 			 * acceptable to add this to existing candidate page
215 			 */
216 			++coal_cnt;
217 			if (coal_cnt < fsf_pgcnt[coal_szc])
218 				continue;
219 
220 			/*
221 			 * We've got enough pages to coalesce, so do it.
222 			 * After promoting, we clear coal_page, so it will
223 			 * take another pass to promote this to an even
224 			 * larger page.
225 			 */
226 			++ncoalesce;
227 			(void) page_promote_size(coal_page, coal_szc);
228 			coal_page = NULL;
229 			continue;
230 		} else {
231 			coal_page = NULL;
232 		}
233 
234 		if (PP_ISKAS(pp) ||
235 		    PAGE_LOCKED(pp) ||
236 		    pp->p_lckcnt != 0 ||
237 		    pp->p_cowcnt != 0)
238 			continue;
239 
240 
241 		/*
242 		 * Reject pages that can't be "exclusively" locked.
243 		 */
244 		if (!page_trylock(pp, SE_EXCL))
245 			continue;
246 		++nlocked;
247 
248 
249 		/*
250 		 * After locking the page, redo the above checks.
251 		 * Since we locked the page, leave out the PAGE_LOCKED() test.
252 		 */
253 		vp = pp->p_vnode;
254 		if (PP_ISSWAP(pp) ||
255 		    PP_ISFREE(pp) ||
256 		    vp == NULL ||
257 		    PP_ISKAS(pp) ||
258 		    pp->p_lckcnt != 0 ||
259 		    pp->p_cowcnt != 0 ||
260 		    (vp->v_flag & VISSWAP) != 0) {
261 			page_unlock(pp);
262 			continue;
263 		}
264 
265 		ASSERT(vp->v_type != VCHR);
266 
267 		/*
268 		 * Check the modified bit. Leaving the bit alone in hardware.
269 		 * It will be cleared if we do the putpage.
270 		 */
271 		if (IS_VMODSORT(vp))
272 			mod = hat_ismod(pp);
273 		else
274 			mod = hat_pagesync(pp,
275 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD;
276 
277 		if (mod) {
278 			++nmodified;
279 			offset = pp->p_offset;
280 
281 			/*
282 			 * Hold the vnode before releasing the page lock
283 			 * to prevent it from being freed and re-used by
284 			 * some other thread.
285 			 */
286 			VN_HOLD(vp);
287 
288 			page_unlock(pp);
289 
290 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_ASYNC,
291 			    kcred, NULL);
292 
293 			VN_RELE(vp);
294 		} else {
295 
296 			/*
297 			 * Catch any pages which should be on the cache list,
298 			 * but aren't yet.
299 			 */
300 			if (hat_page_is_mapped(pp) == 0) {
301 				++releases;
302 				(void) page_release(pp, 1);
303 			} else {
304 				page_unlock(pp);
305 			}
306 		}
307 	}
308 
309 	/*
310 	 * maintain statistics
311 	 * reset every million wakeups, just to avoid overflow
312 	 */
313 	if (++fsf_cycles == 1000000) {
314 		fsf_cycles = 0;
315 		fsf_total.fsf_scan = 0;
316 		fsf_total.fsf_examined = 0;
317 		fsf_total.fsf_locked = 0;
318 		fsf_total.fsf_modified = 0;
319 		fsf_total.fsf_coalesce = 0;
320 		fsf_total.fsf_time = 0;
321 		fsf_total.fsf_releases = 0;
322 	} else {
323 		fsf_total.fsf_scan += fsf_recent.fsf_scan = nscan;
324 		fsf_total.fsf_examined += fsf_recent.fsf_examined = nexamined;
325 		fsf_total.fsf_locked += fsf_recent.fsf_locked = nlocked;
326 		fsf_total.fsf_modified += fsf_recent.fsf_modified = nmodified;
327 		fsf_total.fsf_coalesce += fsf_recent.fsf_coalesce = ncoalesce;
328 		fsf_total.fsf_time += fsf_recent.fsf_time = gethrtime() - timer;
329 		fsf_total.fsf_releases += fsf_recent.fsf_releases = releases;
330 	}
331 }
332 
333 /*
334  * As part of file system hardening, this daemon is awakened
335  * every second to flush cached data which includes the
336  * buffer cache, the inode cache and mapped pages.
337  */
338 void
339 fsflush()
340 {
341 	struct buf *bp, *dwp;
342 	struct hbuf *hp;
343 	int autoup;
344 	unsigned int ix, icount, count = 0;
345 	callb_cpr_t cprinfo;
346 	uint_t		bcount;
347 	kmutex_t	*hmp;
348 	struct vfssw *vswp;
349 
350 	proc_fsflush = ttoproc(curthread);
351 	proc_fsflush->p_cstime = 0;
352 	proc_fsflush->p_stime =  0;
353 	proc_fsflush->p_cutime =  0;
354 	proc_fsflush->p_utime = 0;
355 	bcopy("fsflush", curproc->p_user.u_psargs, 8);
356 	bcopy("fsflush", curproc->p_user.u_comm, 7);
357 
358 	mutex_init(&fsflush_lock, NULL, MUTEX_DEFAULT, NULL);
359 	sema_init(&fsflush_sema, 0, NULL, SEMA_DEFAULT, NULL);
360 
361 	/*
362 	 * Setup page coalescing.
363 	 */
364 	fsf_npgsz = page_num_pagesizes();
365 	ASSERT(fsf_npgsz < MAX_PAGESIZES);
366 	for (ix = 0; ix < fsf_npgsz - 1; ++ix) {
367 		fsf_pgcnt[ix] =
368 		    page_get_pagesize(ix + 1) / page_get_pagesize(ix);
369 		fsf_mask[ix] = page_get_pagecnt(ix + 1) - 1;
370 	}
371 
372 	autoup = v.v_autoup * hz;
373 	icount = v.v_autoup / tune.t_fsflushr;
374 	CALLB_CPR_INIT(&cprinfo, &fsflush_lock, callb_generic_cpr, "fsflush");
375 loop:
376 	sema_v(&fsflush_sema);
377 	mutex_enter(&fsflush_lock);
378 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
379 	cv_wait(&fsflush_cv, &fsflush_lock);		/* wait for clock */
380 	CALLB_CPR_SAFE_END(&cprinfo, &fsflush_lock);
381 	mutex_exit(&fsflush_lock);
382 	sema_p(&fsflush_sema);
383 
384 	/*
385 	 * Write back all old B_DELWRI buffers on the freelist.
386 	 */
387 	bcount = 0;
388 	for (ix = 0; ix < v.v_hbuf; ix++) {
389 
390 		hp = &hbuf[ix];
391 		dwp = (struct buf *)&dwbuf[ix];
392 
393 		bcount += (hp->b_length);
394 
395 		if (dwp->av_forw == dwp) {
396 			continue;
397 		}
398 
399 		hmp = &hbuf[ix].b_lock;
400 		mutex_enter(hmp);
401 		bp = dwp->av_forw;
402 
403 		/*
404 		 * Go down only on the delayed write lists.
405 		 */
406 		while (bp != dwp) {
407 
408 			ASSERT(bp->b_flags & B_DELWRI);
409 
410 			if ((bp->b_flags & B_DELWRI) &&
411 			    (lbolt - bp->b_start >= autoup) &&
412 			    sema_tryp(&bp->b_sem)) {
413 				bp->b_flags |= B_ASYNC;
414 				hp->b_length--;
415 				notavail(bp);
416 				mutex_exit(hmp);
417 				if (bp->b_vp == NULL) {
418 					BWRITE(bp);
419 				} else {
420 					UFS_BWRITE(VTOI(bp->b_vp)->i_ufsvfs,
421 									bp);
422 				}
423 				mutex_enter(hmp);
424 				bp = dwp->av_forw;
425 			} else {
426 				bp = bp->av_forw;
427 			}
428 		}
429 		mutex_exit(hmp);
430 	}
431 
432 	/*
433 	 *
434 	 * There is no need to wakeup any thread waiting on bio_mem_cv
435 	 * since brelse will wake them up as soon as IO is complete.
436 	 */
437 	bfreelist.b_bcount = bcount;
438 
439 	if (dopageflush)
440 		fsflush_do_pages();
441 
442 	if (!doiflush)
443 		goto loop;
444 
445 	/*
446 	 * If the system was not booted to single user mode, skip the
447 	 * inode flushing until after fsflush_iflush_delay secs have elapsed.
448 	 */
449 	if ((boothowto & RB_SINGLE) == 0 &&
450 	    (lbolt64 / hz) < fsflush_iflush_delay)
451 		goto loop;
452 
453 	/*
454 	 * Flush cached attribute information (e.g. inodes).
455 	 */
456 	if (++count >= icount) {
457 		count = 0;
458 
459 		/*
460 		 * Sync back cached data.
461 		 */
462 		RLOCK_VFSSW();
463 		for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
464 			if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
465 				vfs_refvfssw(vswp);
466 				RUNLOCK_VFSSW();
467 				(void) fsop_sync_by_kind(vswp - vfssw,
468 					SYNC_ATTR, kcred);
469 				vfs_unrefvfssw(vswp);
470 				RLOCK_VFSSW();
471 			}
472 		}
473 		RUNLOCK_VFSSW();
474 	}
475 	goto loop;
476 }
477