xref: /titanic_50/usr/src/uts/common/exec/elf/elf.c (revision fea9cb91bd8e12d84069b4dab1268363668b4bff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/thread.h>
36 #include <sys/sysmacros.h>
37 #include <sys/signal.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/vnode.h>
42 #include <sys/mman.h>
43 #include <sys/kmem.h>
44 #include <sys/proc.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/systm.h>
48 #include <sys/elf.h>
49 #include <sys/vmsystm.h>
50 #include <sys/debug.h>
51 #include <sys/auxv.h>
52 #include <sys/exec.h>
53 #include <sys/prsystm.h>
54 #include <vm/as.h>
55 #include <vm/rm.h>
56 #include <vm/seg.h>
57 #include <vm/seg_vn.h>
58 #include <sys/modctl.h>
59 #include <sys/systeminfo.h>
60 #include <sys/vmparam.h>
61 #include <sys/machelf.h>
62 #include <sys/shm_impl.h>
63 #include <sys/archsystm.h>
64 #include <sys/fasttrap.h>
65 #include "elf_impl.h"
66 
67 extern int at_flags;
68 
69 #define	ORIGIN_STR	"ORIGIN"
70 #define	ORIGIN_STR_SIZE	6
71 
72 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
73 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
74     ssize_t *);
75 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
76     ssize_t *, caddr_t *, ssize_t *);
77 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
78 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
79     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
80     caddr_t *, caddr_t *, intptr_t *, size_t, long *, size_t *);
81 
82 typedef enum {
83 	STR_CTF,
84 	STR_SYMTAB,
85 	STR_DYNSYM,
86 	STR_STRTAB,
87 	STR_DYNSTR,
88 	STR_SHSTRTAB,
89 	STR_NUM
90 } shstrtype_t;
91 
92 static const char *shstrtab_data[] = {
93 	".SUNW_ctf",
94 	".symtab",
95 	".dynsym",
96 	".strtab",
97 	".dynstr",
98 	".shstrtab"
99 };
100 
101 typedef struct shstrtab {
102 	int	sst_ndx[STR_NUM];
103 	int	sst_cur;
104 } shstrtab_t;
105 
106 static void
107 shstrtab_init(shstrtab_t *s)
108 {
109 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
110 	s->sst_cur = 1;
111 }
112 
113 static int
114 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
115 {
116 	int ret;
117 
118 	if ((ret = s->sst_ndx[type]) != 0)
119 		return (ret);
120 
121 	ret = s->sst_ndx[type] = s->sst_cur;
122 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
123 
124 	return (ret);
125 }
126 
127 static size_t
128 shstrtab_size(const shstrtab_t *s)
129 {
130 	return (s->sst_cur);
131 }
132 
133 static void
134 shstrtab_dump(const shstrtab_t *s, char *buf)
135 {
136 	int i, ndx;
137 
138 	*buf = '\0';
139 	for (i = 0; i < STR_NUM; i++) {
140 		if ((ndx = s->sst_ndx[i]) != 0)
141 			(void) strcpy(buf + ndx, shstrtab_data[i]);
142 	}
143 }
144 
145 static int
146 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
147 {
148 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
149 
150 	/*
151 	 * See the comment in fasttrap.h for information on how to safely
152 	 * update this program header.
153 	 */
154 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
155 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
156 		return (-1);
157 
158 	args->thrptr = phdrp->p_vaddr + base;
159 
160 	return (0);
161 }
162 
163 /*ARGSUSED*/
164 int
165 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
166     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred)
167 {
168 	caddr_t		phdrbase = NULL;
169 	caddr_t 	bssbase = 0;
170 	caddr_t 	brkbase = 0;
171 	size_t		brksize = 0;
172 	ssize_t		dlnsize;
173 	aux_entry_t	*aux;
174 	int		error;
175 	ssize_t		resid;
176 	int		fd = -1;
177 	intptr_t	voffset;
178 	Phdr	*dyphdr = NULL;
179 	Phdr	*stphdr = NULL;
180 	Phdr	*uphdr = NULL;
181 	Phdr	*junk = NULL;
182 	size_t		len;
183 	ssize_t		phdrsize;
184 	int		postfixsize = 0;
185 	int		i, hsize;
186 	Phdr		*phdrp;
187 	Phdr		*dataphdrp = NULL;
188 	Phdr		*dtrphdr;
189 	int		hasu = 0;
190 	int		hasauxv = 0;
191 	int		hasdy = 0;
192 
193 	struct proc *p = ttoproc(curthread);
194 	struct user *up = PTOU(p);
195 	struct bigwad {
196 		Ehdr	ehdr;
197 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
198 		char		dl_name[MAXPATHLEN];
199 		char		pathbuf[MAXPATHLEN];
200 		struct vattr	vattr;
201 		struct execenv	exenv;
202 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
203 	Ehdr		*ehdrp;
204 	int		nshdrs, shstrndx, nphdrs;
205 	char		*dlnp;
206 	char		*pathbufp;
207 	rlim64_t	limit;
208 	rlim64_t	roundlimit;
209 
210 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
211 
212 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
213 	ehdrp = &bigwad->ehdr;
214 	dlnp = bigwad->dl_name;
215 	pathbufp = bigwad->pathbuf;
216 
217 	/*
218 	 * Obtain ELF and program header information.
219 	 */
220 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
221 	    &nphdrs)) != 0 ||
222 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
223 	    &phdrsize)) != 0)
224 		goto out;
225 
226 	/*
227 	 * Put data model that we're exec-ing to into the args passed to
228 	 * exec_args(), so it will know what it is copying to on new stack.
229 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
230 	 * executable, we can set execsz with the appropriate NCARGS.
231 	 */
232 #ifdef	_LP64
233 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
234 		args->to_model = DATAMODEL_ILP32;
235 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
236 	} else {
237 		args->to_model = DATAMODEL_LP64;
238 		args->stk_prot &= ~PROT_EXEC;
239 #if defined(__i386) || defined(__amd64)
240 		args->dat_prot &= ~PROT_EXEC;
241 #endif
242 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
243 	}
244 #else	/* _LP64 */
245 	args->to_model = DATAMODEL_ILP32;
246 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
247 #endif	/* _LP64 */
248 
249 	/*
250 	 * Determine aux size now so that stack can be built
251 	 * in one shot (except actual copyout of aux image),
252 	 * determine any non-default stack protections,
253 	 * and still have this code be machine independent.
254 	 */
255 	hsize = ehdrp->e_phentsize;
256 	phdrp = (Phdr *)phdrbase;
257 	for (i = nphdrs; i > 0; i--) {
258 		switch (phdrp->p_type) {
259 		case PT_INTERP:
260 			hasauxv = hasdy = 1;
261 			break;
262 		case PT_PHDR:
263 			hasu = 1;
264 			break;
265 		case PT_SUNWSTACK:
266 			args->stk_prot = PROT_USER;
267 			if (phdrp->p_flags & PF_R)
268 				args->stk_prot |= PROT_READ;
269 			if (phdrp->p_flags & PF_W)
270 				args->stk_prot |= PROT_WRITE;
271 			if (phdrp->p_flags & PF_X)
272 				args->stk_prot |= PROT_EXEC;
273 			break;
274 		case PT_LOAD:
275 			dataphdrp = phdrp;
276 			break;
277 		}
278 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
279 	}
280 
281 	if (ehdrp->e_type != ET_EXEC) {
282 		dataphdrp = NULL;
283 		hasauxv = 1;
284 	}
285 
286 	/* Copy BSS permissions to args->dat_prot */
287 	if (dataphdrp != NULL) {
288 		args->dat_prot = PROT_USER;
289 		if (dataphdrp->p_flags & PF_R)
290 			args->dat_prot |= PROT_READ;
291 		if (dataphdrp->p_flags & PF_W)
292 			args->dat_prot |= PROT_WRITE;
293 		if (dataphdrp->p_flags & PF_X)
294 			args->dat_prot |= PROT_EXEC;
295 	}
296 
297 	/*
298 	 * If a auxvector will be required - reserve the space for
299 	 * it now.  This may be increased by exec_args if there are
300 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
301 	 */
302 	if (hasauxv) {
303 		/*
304 		 * If a AUX vector is being built - the base AUX
305 		 * entries are:
306 		 *
307 		 *	AT_BASE
308 		 *	AT_FLAGS
309 		 *	AT_PAGESZ
310 		 *	AT_SUN_LDSECURE
311 		 *	AT_SUN_HWCAP
312 		 *	AT_SUN_PLATFORM
313 		 *	AT_SUN_EXECNAME
314 		 *	AT_NULL
315 		 *
316 		 * total == 8
317 		 */
318 		if (hasdy && hasu) {
319 			/*
320 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
321 			 * will be built are:
322 			 *
323 			 *	AT_PHDR
324 			 *	AT_PHENT
325 			 *	AT_PHNUM
326 			 *	AT_ENTRY
327 			 *	AT_LDDATA
328 			 *
329 			 * total = 5
330 			 */
331 			args->auxsize = (8 + 5) * sizeof (aux_entry_t);
332 		} else if (hasdy) {
333 			/*
334 			 * Has PT_INTERP but no PT_PHDR
335 			 *
336 			 *	AT_EXECFD
337 			 *	AT_LDDATA
338 			 *
339 			 * total = 2
340 			 */
341 			args->auxsize = (8 + 2) * sizeof (aux_entry_t);
342 		} else {
343 			args->auxsize = 8 * sizeof (aux_entry_t);
344 		}
345 	} else
346 		args->auxsize = 0;
347 
348 	aux = bigwad->elfargs;
349 	/*
350 	 * Move args to the user's stack.
351 	 */
352 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
353 		if (error == -1) {
354 			error = ENOEXEC;
355 			goto bad;
356 		}
357 		goto out;
358 	}
359 
360 	/*
361 	 * If this is an ET_DYN executable (shared object),
362 	 * determine its memory size so that mapelfexec() can load it.
363 	 */
364 	if (ehdrp->e_type == ET_DYN)
365 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
366 	else
367 		len = 0;
368 
369 	dtrphdr = NULL;
370 
371 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr,
372 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, len,
373 	    execsz, &brksize)) != 0)
374 		goto bad;
375 
376 	if (uphdr != NULL && dyphdr == NULL)
377 		goto bad;
378 
379 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
380 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
381 		goto bad;
382 	}
383 
384 	if (dyphdr != NULL) {
385 		size_t		len;
386 		uintptr_t	lddata;
387 		char		*p;
388 		struct vnode	*nvp;
389 
390 		dlnsize = dyphdr->p_filesz;
391 
392 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
393 			goto bad;
394 
395 		/*
396 		 * Read in "interpreter" pathname.
397 		 */
398 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz,
399 		    (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
400 		    CRED(), &resid)) != 0) {
401 			uprintf("%s: Cannot obtain interpreter pathname\n",
402 			    exec_file);
403 			goto bad;
404 		}
405 
406 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
407 			goto bad;
408 
409 		/*
410 		 * Search for '$ORIGIN' token in interpreter path.
411 		 * If found, expand it.
412 		 */
413 		for (p = dlnp; p = strchr(p, '$'); ) {
414 			uint_t	len, curlen;
415 			char	*_ptr;
416 
417 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
418 				continue;
419 
420 			curlen = 0;
421 			len = p - dlnp - 1;
422 			if (len) {
423 				bcopy(dlnp, pathbufp, len);
424 				curlen += len;
425 			}
426 			if (_ptr = strrchr(args->pathname, '/')) {
427 				len = _ptr - args->pathname;
428 				if ((curlen + len) > MAXPATHLEN)
429 					break;
430 
431 				bcopy(args->pathname, &pathbufp[curlen], len);
432 				curlen += len;
433 			} else {
434 				/*
435 				 * executable is a basename found in the
436 				 * current directory.  So - just substitue
437 				 * '.' for ORIGIN.
438 				 */
439 				pathbufp[curlen] = '.';
440 				curlen++;
441 			}
442 			p += ORIGIN_STR_SIZE;
443 			len = strlen(p);
444 
445 			if ((curlen + len) > MAXPATHLEN)
446 				break;
447 			bcopy(p, &pathbufp[curlen], len);
448 			curlen += len;
449 			pathbufp[curlen++] = '\0';
450 			bcopy(pathbufp, dlnp, curlen);
451 		}
452 
453 		/*
454 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
455 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
456 		 * Just in case /usr is not mounted, change it now.
457 		 */
458 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
459 			dlnp += 4;
460 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
461 		if (error && dlnp != bigwad->dl_name) {
462 			/* new kernel, old user-level */
463 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
464 				NULLVPP, &nvp);
465 		}
466 		if (error) {
467 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
468 			goto bad;
469 		}
470 
471 		/*
472 		 * Setup the "aux" vector.
473 		 */
474 		if (uphdr) {
475 			if (ehdrp->e_type == ET_DYN) {
476 				/* don't use the first page */
477 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
478 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
479 			} else {
480 				bigwad->exenv.ex_bssbase = bssbase;
481 				bigwad->exenv.ex_brkbase = brkbase;
482 			}
483 			bigwad->exenv.ex_brksize = brksize;
484 			bigwad->exenv.ex_magic = elfmagic;
485 			bigwad->exenv.ex_vp = vp;
486 			setexecenv(&bigwad->exenv);
487 
488 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
489 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
490 			ADDAUX(aux, AT_PHNUM, nphdrs)
491 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
492 		} else {
493 			if ((error = execopen(&vp, &fd)) != 0) {
494 				VN_RELE(nvp);
495 				goto bad;
496 			}
497 
498 			ADDAUX(aux, AT_EXECFD, fd)
499 		}
500 
501 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
502 			VN_RELE(nvp);
503 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
504 			goto bad;
505 		}
506 
507 		/*
508 		 * Now obtain the ELF header along with the entire program
509 		 * header contained in "nvp".
510 		 */
511 		kmem_free(phdrbase, phdrsize);
512 		phdrbase = NULL;
513 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
514 		    &shstrndx, &nphdrs)) != 0 ||
515 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
516 		    &phdrsize)) != 0) {
517 			VN_RELE(nvp);
518 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
519 			goto bad;
520 		}
521 
522 		/*
523 		 * Determine memory size of the "interpreter's" loadable
524 		 * sections.  This size is then used to obtain the virtual
525 		 * address of a hole, in the user's address space, large
526 		 * enough to map the "interpreter".
527 		 */
528 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
529 			VN_RELE(nvp);
530 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
531 			goto bad;
532 		}
533 
534 		dtrphdr = NULL;
535 
536 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
537 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, len, execsz,
538 		    NULL);
539 		if (error || junk != NULL) {
540 			VN_RELE(nvp);
541 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
542 			goto bad;
543 		}
544 
545 		/*
546 		 * We use the DTrace program header to initialize the
547 		 * architecture-specific user per-LWP location. The dtrace
548 		 * fasttrap provider requires ready access to per-LWP scratch
549 		 * space. We assume that there is only one such program header
550 		 * in the interpreter.
551 		 */
552 		if (dtrphdr != NULL &&
553 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
554 			VN_RELE(nvp);
555 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
556 			goto bad;
557 		}
558 
559 		VN_RELE(nvp);
560 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
561 	}
562 
563 	if (hasauxv) {
564 		int auxf = AF_SUN_HWCAPVERIFY;
565 		/*
566 		 * Note: AT_SUN_PLATFORM was filled in via exec_args()
567 		 */
568 		ADDAUX(aux, AT_BASE, voffset)
569 		ADDAUX(aux, AT_FLAGS, at_flags)
570 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
571 		/*
572 		 * Linker flags. (security)
573 		 * p_flag not yet set at this time.
574 		 * We rely on gexec() to provide us with the information.
575 		 */
576 		ADDAUX(aux, AT_SUN_AUXFLAGS,
577 		    setid ? AF_SUN_SETUGID | auxf : auxf);
578 		/*
579 		 * Hardware capability flag word (performance hints)
580 		 * Used for choosing faster library routines.
581 		 * (Potentially different between 32-bit and 64-bit ABIs)
582 		 */
583 #if defined(_LP64)
584 		if (args->to_model == DATAMODEL_NATIVE)
585 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
586 		else
587 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
588 #else
589 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
590 #endif
591 		ADDAUX(aux, AT_NULL, 0)
592 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
593 		ASSERT(postfixsize == args->auxsize);
594 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
595 	}
596 
597 	/*
598 	 * For the 64-bit kernel, the limit is big enough that rounding it up
599 	 * to a page can overflow the 64-bit limit, so we check for btopr()
600 	 * overflowing here by comparing it with the unrounded limit in pages.
601 	 * If it hasn't overflowed, compare the exec size with the rounded up
602 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
603 	 */
604 	limit = btop(p->p_vmem_ctl);
605 	roundlimit = btopr(p->p_vmem_ctl);
606 	if ((roundlimit > limit && *execsz > roundlimit) ||
607 	    (roundlimit < limit && *execsz > limit)) {
608 		mutex_enter(&p->p_lock);
609 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
610 		    RCA_SAFE);
611 		mutex_exit(&p->p_lock);
612 		error = ENOMEM;
613 		goto bad;
614 	}
615 
616 	bzero(up->u_auxv, sizeof (up->u_auxv));
617 	if (postfixsize) {
618 		int num_auxv;
619 
620 		/*
621 		 * Copy the aux vector to the user stack.
622 		 */
623 		error = execpoststack(args, bigwad->elfargs, postfixsize);
624 		if (error)
625 			goto bad;
626 
627 		/*
628 		 * Copy auxv to the process's user structure for use by /proc.
629 		 */
630 		num_auxv = postfixsize / sizeof (aux_entry_t);
631 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
632 		aux = bigwad->elfargs;
633 		for (i = 0; i < num_auxv; i++) {
634 			up->u_auxv[i].a_type = aux[i].a_type;
635 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
636 		}
637 	}
638 
639 	/*
640 	 * Pass back the starting address so we can set the program counter.
641 	 */
642 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
643 
644 	if (!uphdr) {
645 		if (ehdrp->e_type == ET_DYN) {
646 			/*
647 			 * If we are executing a shared library which doesn't
648 			 * have a interpreter (probably ld.so.1) then
649 			 * we don't set the brkbase now.  Instead we
650 			 * delay it's setting until the first call
651 			 * via grow.c::brk().  This permits ld.so.1 to
652 			 * initialize brkbase to the tail of the executable it
653 			 * loads (which is where it needs to be).
654 			 */
655 			bigwad->exenv.ex_brkbase = (caddr_t)0;
656 			bigwad->exenv.ex_bssbase = (caddr_t)0;
657 			bigwad->exenv.ex_brksize = 0;
658 		} else {
659 			bigwad->exenv.ex_brkbase = brkbase;
660 			bigwad->exenv.ex_bssbase = bssbase;
661 			bigwad->exenv.ex_brksize = brksize;
662 		}
663 		bigwad->exenv.ex_magic = elfmagic;
664 		bigwad->exenv.ex_vp = vp;
665 		setexecenv(&bigwad->exenv);
666 	}
667 
668 	ASSERT(error == 0);
669 	goto out;
670 
671 bad:
672 	if (fd != -1)		/* did we open the a.out yet */
673 		(void) execclose(fd);
674 
675 	psignal(p, SIGKILL);
676 
677 	if (error == 0)
678 		error = ENOEXEC;
679 out:
680 	if (phdrbase != NULL)
681 		kmem_free(phdrbase, phdrsize);
682 	kmem_free(bigwad, sizeof (struct bigwad));
683 	return (error);
684 }
685 
686 /*
687  * Compute the memory size requirement for the ELF file.
688  */
689 static size_t
690 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
691 {
692 	size_t	len;
693 	Phdr	*phdrp = (Phdr *)phdrbase;
694 	int	hsize = ehdrp->e_phentsize;
695 	int	first = 1;
696 	int	dfirst = 1;	/* first data segment */
697 	uintptr_t loaddr = 0;
698 	uintptr_t hiaddr = 0;
699 	uintptr_t lo, hi;
700 	int	i;
701 
702 	for (i = nphdrs; i > 0; i--) {
703 		if (phdrp->p_type == PT_LOAD) {
704 			lo = phdrp->p_vaddr;
705 			hi = lo + phdrp->p_memsz;
706 			if (first) {
707 				loaddr = lo;
708 				hiaddr = hi;
709 				first = 0;
710 			} else {
711 				if (loaddr > lo)
712 					loaddr = lo;
713 				if (hiaddr < hi)
714 					hiaddr = hi;
715 			}
716 
717 			/*
718 			 * save the address of the first data segment
719 			 * of a object - used for the AT_SUNW_LDDATA
720 			 * aux entry.
721 			 */
722 			if ((lddata != NULL) && dfirst &&
723 			    (phdrp->p_flags & PF_W)) {
724 				*lddata = lo;
725 				dfirst = 0;
726 			}
727 		}
728 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
729 	}
730 
731 	len = hiaddr - (loaddr & PAGEMASK);
732 	len = roundup(len, PAGESIZE);
733 
734 	return (len);
735 }
736 
737 /*
738  * Read in the ELF header and program header table.
739  * SUSV3 requires:
740  *	ENOEXEC	File format is not recognized
741  *	EINVAL	Format recognized but execution not supported
742  */
743 static int
744 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
745     int *nphdrs)
746 {
747 	int error;
748 	ssize_t resid;
749 
750 	/*
751 	 * We got here by the first two bytes in ident,
752 	 * now read the entire ELF header.
753 	 */
754 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
755 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
756 	    (rlim64_t)0, credp, &resid)) != 0)
757 		return (error);
758 
759 	/*
760 	 * Since a separate version is compiled for handling 32-bit and
761 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
762 	 * doesn't need to be able to deal with 32-bit ELF files.
763 	 */
764 	if (resid != 0 ||
765 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
766 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
767 		return (ENOEXEC);
768 
769 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
770 #if defined(_ILP32) || defined(_ELF32_COMPAT)
771 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
772 #else
773 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
774 #endif
775 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
776 	    ehdr->e_flags))
777 		return (EINVAL);
778 
779 	*nshdrs = ehdr->e_shnum;
780 	*shstrndx = ehdr->e_shstrndx;
781 	*nphdrs = ehdr->e_phnum;
782 
783 	/*
784 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
785 	 * to read in the section header at index zero to acces the true
786 	 * values for those fields.
787 	 */
788 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
789 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
790 		Shdr shdr;
791 
792 		if (ehdr->e_shoff == 0)
793 			return (EINVAL);
794 
795 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
796 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
797 		    (rlim64_t)0, credp, &resid)) != 0)
798 			return (error);
799 
800 		if (*nshdrs == 0)
801 			*nshdrs = shdr.sh_size;
802 		if (*shstrndx == SHN_XINDEX)
803 			*shstrndx = shdr.sh_link;
804 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
805 			*nphdrs = shdr.sh_info;
806 	}
807 
808 	return (0);
809 }
810 
811 #ifdef _ELF32_COMPAT
812 extern size_t elf_nphdr_max;
813 #else
814 size_t elf_nphdr_max = 1000;
815 #endif
816 
817 static int
818 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
819     caddr_t *phbasep, ssize_t *phsizep)
820 {
821 	ssize_t resid, minsize;
822 	int err;
823 
824 	/*
825 	 * Since we're going to be using e_phentsize to iterate down the
826 	 * array of program headers, it must be 8-byte aligned or else
827 	 * a we might cause a misaligned access. We use all members through
828 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
829 	 * e_phentsize must be at least large enough to include those
830 	 * members.
831 	 */
832 #if !defined(_LP64) || defined(_ELF32_COMPAT)
833 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
834 #else
835 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
836 #endif
837 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
838 		return (EINVAL);
839 
840 	*phsizep = nphdrs * ehdr->e_phentsize;
841 
842 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
843 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
844 			return (ENOMEM);
845 	} else {
846 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
847 	}
848 
849 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
850 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
851 	    credp, &resid)) != 0) {
852 		kmem_free(*phbasep, *phsizep);
853 		*phbasep = NULL;
854 		return (err);
855 	}
856 
857 	return (0);
858 }
859 
860 #ifdef _ELF32_COMPAT
861 extern size_t elf_nshdr_max;
862 extern size_t elf_shstrtab_max;
863 #else
864 size_t elf_nshdr_max = 10000;
865 size_t elf_shstrtab_max = 100 * 1024;
866 #endif
867 
868 
869 static int
870 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
871     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
872     char **shstrbasep, ssize_t *shstrsizep)
873 {
874 	ssize_t resid, minsize;
875 	int err;
876 	Shdr *shdr;
877 
878 	/*
879 	 * Since we're going to be using e_shentsize to iterate down the
880 	 * array of section headers, it must be 8-byte aligned or else
881 	 * a we might cause a misaligned access. We use all members through
882 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
883 	 * must be at least large enough to include that member. The index
884 	 * of the string table section must also be valid.
885 	 */
886 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
887 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
888 	    shstrndx >= nshdrs)
889 		return (EINVAL);
890 
891 	*shsizep = nshdrs * ehdr->e_shentsize;
892 
893 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
894 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
895 			return (ENOMEM);
896 	} else {
897 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
898 	}
899 
900 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
901 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
902 	    credp, &resid)) != 0) {
903 		kmem_free(*shbasep, *shsizep);
904 		return (err);
905 	}
906 
907 	/*
908 	 * Pull the section string table out of the vnode; fail if the size
909 	 * is zero.
910 	 */
911 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
912 	if ((*shstrsizep = shdr->sh_size) == 0) {
913 		kmem_free(*shbasep, *shsizep);
914 		return (EINVAL);
915 	}
916 
917 	if (*shstrsizep > elf_shstrtab_max) {
918 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
919 		    KM_NOSLEEP)) == NULL) {
920 			kmem_free(*shbasep, *shsizep);
921 			return (ENOMEM);
922 		}
923 	} else {
924 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
925 	}
926 
927 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
928 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
929 	    credp, &resid)) != 0) {
930 		kmem_free(*shbasep, *shsizep);
931 		kmem_free(*shstrbasep, *shstrsizep);
932 		return (err);
933 	}
934 
935 	/*
936 	 * Make sure the strtab is null-terminated to make sure we
937 	 * don't run off the end of the table.
938 	 */
939 	(*shstrbasep)[*shstrsizep - 1] = '\0';
940 
941 	return (0);
942 }
943 
944 static int
945 mapelfexec(
946 	vnode_t *vp,
947 	Ehdr *ehdr,
948 	int nphdrs,
949 	caddr_t phdrbase,
950 	Phdr **uphdr,
951 	Phdr **dyphdr,
952 	Phdr **stphdr,
953 	Phdr **dtphdr,
954 	Phdr *dataphdrp,
955 	caddr_t *bssbase,
956 	caddr_t *brkbase,
957 	intptr_t *voffset,
958 	size_t len,
959 	long *execsz,
960 	size_t *brksize)
961 {
962 	Phdr *phdr;
963 	int i, prot, error;
964 	caddr_t addr;
965 	size_t zfodsz;
966 	int ptload = 0;
967 	int page;
968 	off_t offset;
969 	int hsize = ehdr->e_phentsize;
970 
971 	if (ehdr->e_type == ET_DYN) {
972 		/*
973 		 * Obtain the virtual address of a hole in the
974 		 * address space to map the "interpreter".
975 		 */
976 		map_addr(&addr, len, (offset_t)0, 1, 0);
977 		if (addr == NULL)
978 			return (ENOMEM);
979 		*voffset = (intptr_t)addr;
980 	} else {
981 		*voffset = 0;
982 	}
983 	phdr = (Phdr *)phdrbase;
984 	for (i = nphdrs; i > 0; i--) {
985 		switch (phdr->p_type) {
986 		case PT_LOAD:
987 			if ((*dyphdr != NULL) && (*uphdr == NULL))
988 				return (0);
989 
990 			ptload = 1;
991 			prot = PROT_USER;
992 			if (phdr->p_flags & PF_R)
993 				prot |= PROT_READ;
994 			if (phdr->p_flags & PF_W)
995 				prot |= PROT_WRITE;
996 			if (phdr->p_flags & PF_X)
997 				prot |= PROT_EXEC;
998 
999 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1000 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1001 
1002 			offset = phdr->p_offset;
1003 			if (((uintptr_t)offset & PAGEOFFSET) ==
1004 			    ((uintptr_t)addr & PAGEOFFSET) &&
1005 				(!(vp->v_flag & VNOMAP))) {
1006 				page = 1;
1007 			} else {
1008 				page = 0;
1009 			}
1010 
1011 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1012 			    (prot & PROT_WRITE)) {
1013 				/*
1014 				 * segvn only uses large pages for segments
1015 				 * that have the requested large page size
1016 				 * aligned base and size. To insure the part
1017 				 * of bss that starts at heap large page size
1018 				 * boundary gets mapped by large pages create
1019 				 * 2 bss segvn segments which is accomplished
1020 				 * by calling execmap twice. First execmap
1021 				 * will create the bss segvn segment that is
1022 				 * before the large page boundary and it will
1023 				 * be mapped with base pages. If bss start is
1024 				 * already large page aligned only 1 bss
1025 				 * segment will be created. The second bss
1026 				 * segment's size is large page size aligned
1027 				 * so that segvn uses large pages for that
1028 				 * segment and it also makes the heap that
1029 				 * starts right after bss to start at large
1030 				 * page boundary.
1031 				 */
1032 				uint_t	szc = curproc->p_brkpageszc;
1033 				size_t pgsz = page_get_pagesize(szc);
1034 				caddr_t zaddr = addr + phdr->p_filesz;
1035 				size_t zlen = P2NPHASE((uintptr_t)zaddr, pgsz);
1036 
1037 				ASSERT(pgsz > PAGESIZE);
1038 
1039 				if (error = execmap(vp, addr, phdr->p_filesz,
1040 				    zlen, phdr->p_offset, prot, page, szc))
1041 					goto bad;
1042 				if (zfodsz > zlen) {
1043 					zfodsz -= zlen;
1044 					zaddr += zlen;
1045 					zlen = P2ROUNDUP(zfodsz, pgsz);
1046 					if (error = execmap(vp, zaddr, 0, zlen,
1047 					    phdr->p_offset, prot, page, szc))
1048 						goto bad;
1049 				}
1050 				if (brksize != NULL)
1051 					*brksize = zlen - zfodsz;
1052 			} else {
1053 				if (error = execmap(vp, addr, phdr->p_filesz,
1054 				    zfodsz, phdr->p_offset, prot, page, 0))
1055 					goto bad;
1056 			}
1057 
1058 			if (bssbase != NULL && addr >= *bssbase &&
1059 			    phdr == dataphdrp) {
1060 				*bssbase = addr + phdr->p_filesz;
1061 			}
1062 			if (brkbase != NULL && addr >= *brkbase) {
1063 				*brkbase = addr + phdr->p_memsz;
1064 			}
1065 
1066 			*execsz += btopr(phdr->p_memsz);
1067 			break;
1068 
1069 		case PT_INTERP:
1070 			if (ptload)
1071 				goto bad;
1072 			*dyphdr = phdr;
1073 			break;
1074 
1075 		case PT_SHLIB:
1076 			*stphdr = phdr;
1077 			break;
1078 
1079 		case PT_PHDR:
1080 			if (ptload)
1081 				goto bad;
1082 			*uphdr = phdr;
1083 			break;
1084 
1085 		case PT_NULL:
1086 		case PT_DYNAMIC:
1087 		case PT_NOTE:
1088 			break;
1089 
1090 		case PT_SUNWDTRACE:
1091 			if (dtphdr != NULL)
1092 				*dtphdr = phdr;
1093 			break;
1094 
1095 		default:
1096 			break;
1097 		}
1098 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1099 	}
1100 	return (0);
1101 bad:
1102 	if (error == 0)
1103 		error = EINVAL;
1104 	return (error);
1105 }
1106 
1107 int
1108 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1109     rlim64_t rlimit, cred_t *credp)
1110 {
1111 	Note note;
1112 	int error;
1113 
1114 	bzero(&note, sizeof (note));
1115 	bcopy("CORE", note.name, 4);
1116 	note.nhdr.n_type = type;
1117 	/*
1118 	 * The System V ABI states that n_namesz must be the length of the
1119 	 * string that follows the Nhdr structure including the terminating
1120 	 * null. The ABI also specifies that sufficient padding should be
1121 	 * included so that the description that follows the name string
1122 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1123 	 * respectively. However, since this change was not made correctly
1124 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1125 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1126 	 */
1127 	note.nhdr.n_namesz = 5;
1128 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1129 
1130 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1131 	    sizeof (note), rlimit, credp))
1132 		return (error);
1133 
1134 	*offsetp += sizeof (note);
1135 
1136 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1137 	    note.nhdr.n_descsz, rlimit, credp))
1138 		return (error);
1139 
1140 	*offsetp += note.nhdr.n_descsz;
1141 	return (0);
1142 }
1143 
1144 /*
1145  * Copy the section data from one vnode to the section of another vnode.
1146  */
1147 static void
1148 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1149     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1150 {
1151 	ssize_t resid;
1152 	size_t len, n = src->sh_size;
1153 	offset_t off = 0;
1154 
1155 	while (n != 0) {
1156 		len = MIN(size, n);
1157 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1158 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1159 		    resid >= len ||
1160 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1161 		    buf, len - resid, rlimit, credp) != 0) {
1162 			dst->sh_size = 0;
1163 			dst->sh_offset = 0;
1164 			return;
1165 		}
1166 
1167 		ASSERT(n >= len - resid);
1168 
1169 		n -= len - resid;
1170 		off += len - resid;
1171 	}
1172 
1173 	*doffset += src->sh_size;
1174 }
1175 
1176 #ifdef _ELF32_COMPAT
1177 extern size_t elf_datasz_max;
1178 #else
1179 size_t elf_datasz_max = 1 * 1024 * 1024;
1180 #endif
1181 
1182 /*
1183  * This function processes mappings that correspond to load objects to
1184  * examine their respective sections for elfcore(). It's called once with
1185  * v set to NULL to count the number of sections that we're going to need
1186  * and then again with v set to some allocated buffer that we fill in with
1187  * all the section data.
1188  */
1189 static int
1190 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1191     Shdr *v, int nshdrs, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1192 {
1193 	vnode_t *lastvp = NULL;
1194 	struct seg *seg;
1195 	int i, j;
1196 	void *data = NULL;
1197 	size_t datasz = 0;
1198 	shstrtab_t shstrtab;
1199 	struct as *as = p->p_as;
1200 	int error = 0;
1201 
1202 	if (v != NULL)
1203 		shstrtab_init(&shstrtab);
1204 
1205 	i = 1;
1206 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1207 		uint_t prot;
1208 		vnode_t *mvp;
1209 		void *tmp = NULL;
1210 		caddr_t saddr = seg->s_base;
1211 		caddr_t naddr;
1212 		caddr_t eaddr;
1213 		size_t segsize;
1214 
1215 		Ehdr ehdr;
1216 		int nshdrs, shstrndx, nphdrs;
1217 		caddr_t shbase;
1218 		ssize_t shsize;
1219 		char *shstrbase;
1220 		ssize_t shstrsize;
1221 
1222 		Shdr *shdr;
1223 		const char *name;
1224 		size_t sz;
1225 		uintptr_t off;
1226 
1227 		int ctf_ndx = 0;
1228 		int symtab_ndx = 0;
1229 
1230 		/*
1231 		 * Since we're just looking for text segments of load
1232 		 * objects, we only care about the protection bits; we don't
1233 		 * care about the actual size of the segment so we use the
1234 		 * reserved size. If the segment's size is zero, there's
1235 		 * something fishy going on so we ignore this segment.
1236 		 */
1237 		if (seg->s_ops != &segvn_ops ||
1238 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1239 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1240 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1241 			continue;
1242 
1243 		eaddr = saddr + segsize;
1244 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1245 		pr_getprot_done(&tmp);
1246 
1247 		/*
1248 		 * Skip this segment unless the protection bits look like
1249 		 * what we'd expect for a text segment.
1250 		 */
1251 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1252 			continue;
1253 
1254 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1255 		    &nphdrs) != 0 ||
1256 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1257 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1258 			continue;
1259 
1260 		off = ehdr.e_shentsize;
1261 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1262 			Shdr *symtab = NULL, *strtab;
1263 
1264 			shdr = (Shdr *)(shbase + off);
1265 
1266 			if (shdr->sh_name >= shstrsize)
1267 				continue;
1268 
1269 			name = shstrbase + shdr->sh_name;
1270 
1271 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1272 				if ((content & CC_CONTENT_CTF) == 0 ||
1273 				    ctf_ndx != 0)
1274 					continue;
1275 
1276 				if (shdr->sh_link > 0 &&
1277 				    shdr->sh_link < nshdrs) {
1278 					symtab = (Shdr *)(shbase +
1279 					    shdr->sh_link * ehdr.e_shentsize);
1280 				}
1281 
1282 				if (v != NULL && i < nshdrs - 1) {
1283 					if (shdr->sh_size > datasz &&
1284 					    shdr->sh_size <= elf_datasz_max) {
1285 						if (data != NULL)
1286 							kmem_free(data, datasz);
1287 
1288 						datasz = shdr->sh_size;
1289 						data = kmem_alloc(datasz,
1290 						    KM_SLEEP);
1291 					}
1292 
1293 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1294 					    STR_CTF);
1295 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1296 					v[i].sh_type = SHT_PROGBITS;
1297 					v[i].sh_addralign = 4;
1298 					*doffsetp = roundup(*doffsetp,
1299 					    v[i].sh_addralign);
1300 					v[i].sh_offset = *doffsetp;
1301 					v[i].sh_size = shdr->sh_size;
1302 					if (symtab == NULL)  {
1303 						v[i].sh_link = 0;
1304 					} else if (symtab->sh_type ==
1305 					    SHT_SYMTAB &&
1306 					    symtab_ndx != 0) {
1307 						v[i].sh_link =
1308 						    symtab_ndx;
1309 					} else {
1310 						v[i].sh_link = i + 1;
1311 					}
1312 
1313 					copy_scn(shdr, mvp, &v[i], vp,
1314 					    doffsetp, data, datasz, credp,
1315 					    rlimit);
1316 				}
1317 
1318 				ctf_ndx = i++;
1319 
1320 				/*
1321 				 * We've already dumped the symtab.
1322 				 */
1323 				if (symtab != NULL &&
1324 				    symtab->sh_type == SHT_SYMTAB &&
1325 				    symtab_ndx != 0)
1326 					continue;
1327 
1328 			} else if (strcmp(name,
1329 			    shstrtab_data[STR_SYMTAB]) == 0) {
1330 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1331 				    symtab != 0)
1332 					continue;
1333 
1334 				symtab = shdr;
1335 			}
1336 
1337 			if (symtab != NULL) {
1338 				if ((symtab->sh_type != SHT_DYNSYM &&
1339 				    symtab->sh_type != SHT_SYMTAB) ||
1340 				    symtab->sh_link == 0 ||
1341 				    symtab->sh_link >= nshdrs)
1342 					continue;
1343 
1344 				strtab = (Shdr *)(shbase +
1345 				    symtab->sh_link * ehdr.e_shentsize);
1346 
1347 				if (strtab->sh_type != SHT_STRTAB)
1348 					continue;
1349 
1350 				if (v != NULL && i < nshdrs - 2) {
1351 					sz = MAX(symtab->sh_size,
1352 					    strtab->sh_size);
1353 					if (sz > datasz &&
1354 					    sz <= elf_datasz_max) {
1355 						if (data != NULL)
1356 							kmem_free(data, datasz);
1357 
1358 						datasz = sz;
1359 						data = kmem_alloc(datasz,
1360 						    KM_SLEEP);
1361 					}
1362 
1363 					if (symtab->sh_type == SHT_DYNSYM) {
1364 						v[i].sh_name = shstrtab_ndx(
1365 						    &shstrtab, STR_DYNSYM);
1366 						v[i + 1].sh_name = shstrtab_ndx(
1367 						    &shstrtab, STR_DYNSTR);
1368 					} else {
1369 						v[i].sh_name = shstrtab_ndx(
1370 						    &shstrtab, STR_SYMTAB);
1371 						v[i + 1].sh_name = shstrtab_ndx(
1372 						    &shstrtab, STR_STRTAB);
1373 					}
1374 
1375 					v[i].sh_type = symtab->sh_type;
1376 					v[i].sh_addr = symtab->sh_addr;
1377 					if (ehdr.e_type == ET_DYN ||
1378 					    v[i].sh_addr == 0)
1379 						v[i].sh_addr +=
1380 						    (Addr)(uintptr_t)saddr;
1381 					v[i].sh_addralign =
1382 					    symtab->sh_addralign;
1383 					*doffsetp = roundup(*doffsetp,
1384 					    v[i].sh_addralign);
1385 					v[i].sh_offset = *doffsetp;
1386 					v[i].sh_size = symtab->sh_size;
1387 					v[i].sh_link = i + 1;
1388 					v[i].sh_entsize = symtab->sh_entsize;
1389 					v[i].sh_info = symtab->sh_info;
1390 
1391 					copy_scn(symtab, mvp, &v[i], vp,
1392 					    doffsetp, data, datasz, credp,
1393 					    rlimit);
1394 
1395 					v[i + 1].sh_type = SHT_STRTAB;
1396 					v[i + 1].sh_flags = SHF_STRINGS;
1397 					v[i + 1].sh_addr = symtab->sh_addr;
1398 					if (ehdr.e_type == ET_DYN ||
1399 					    v[i + 1].sh_addr == 0)
1400 						v[i + 1].sh_addr +=
1401 						    (Addr)(uintptr_t)saddr;
1402 					v[i + 1].sh_addralign =
1403 					    strtab->sh_addralign;
1404 					*doffsetp = roundup(*doffsetp,
1405 					    v[i + 1].sh_addralign);
1406 					v[i + 1].sh_offset = *doffsetp;
1407 					v[i + 1].sh_size = strtab->sh_size;
1408 
1409 					copy_scn(strtab, mvp, &v[i + 1], vp,
1410 					    doffsetp, data, datasz, credp,
1411 					    rlimit);
1412 				}
1413 
1414 				if (symtab->sh_type == SHT_SYMTAB)
1415 					symtab_ndx = i;
1416 				i += 2;
1417 			}
1418 		}
1419 
1420 		kmem_free(shstrbase, shstrsize);
1421 		kmem_free(shbase, shsize);
1422 
1423 		lastvp = mvp;
1424 	}
1425 
1426 	if (v == NULL) {
1427 		if (i == 1)
1428 			*nshdrsp = 0;
1429 		else
1430 			*nshdrsp = i + 1;
1431 		goto done;
1432 	}
1433 
1434 	if (i != nshdrs - 1) {
1435 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1436 		    "process %d; address space is changing", p->p_pid);
1437 		error = EIO;
1438 		goto done;
1439 	}
1440 
1441 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1442 	v[i].sh_size = shstrtab_size(&shstrtab);
1443 	v[i].sh_addralign = 1;
1444 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1445 	v[i].sh_offset = *doffsetp;
1446 	v[i].sh_flags = SHF_STRINGS;
1447 	v[i].sh_type = SHT_STRTAB;
1448 
1449 	if (v[i].sh_size > datasz) {
1450 		if (data != NULL)
1451 			kmem_free(data, datasz);
1452 
1453 		datasz = v[i].sh_size;
1454 		data = kmem_alloc(datasz,
1455 		    KM_SLEEP);
1456 	}
1457 
1458 	shstrtab_dump(&shstrtab, data);
1459 
1460 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1461 	    data, v[i].sh_size, rlimit, credp)) != 0)
1462 		goto done;
1463 
1464 	*doffsetp += v[i].sh_size;
1465 
1466 done:
1467 	if (data != NULL)
1468 		kmem_free(data, datasz);
1469 
1470 	return (error);
1471 }
1472 
1473 int
1474 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1475     core_content_t content)
1476 {
1477 	offset_t poffset, soffset;
1478 	Off doffset;
1479 	int error, i, nphdrs, nshdrs;
1480 	int overflow = 0;
1481 	struct seg *seg;
1482 	struct as *as = p->p_as;
1483 	union {
1484 		Ehdr ehdr;
1485 		Phdr phdr[1];
1486 		Shdr shdr[1];
1487 	} *bigwad;
1488 	size_t bigsize;
1489 	size_t phdrsz, shdrsz;
1490 	Ehdr *ehdr;
1491 	Phdr *v;
1492 	caddr_t brkbase;
1493 	size_t brksize;
1494 	caddr_t stkbase;
1495 	size_t stksize;
1496 	int ntries = 0;
1497 
1498 top:
1499 	/*
1500 	 * Make sure we have everything we need (registers, etc.).
1501 	 * All other lwps have already stopped and are in an orderly state.
1502 	 */
1503 	ASSERT(p == ttoproc(curthread));
1504 	prstop(0, 0);
1505 
1506 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1507 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1508 
1509 	/*
1510 	 * Count the number of section headers we're going to need.
1511 	 */
1512 	nshdrs = 0;
1513 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1514 		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1515 		    NULL, &nshdrs);
1516 	}
1517 	AS_LOCK_EXIT(as, &as->a_lock);
1518 
1519 	ASSERT(nshdrs == 0 || nshdrs > 1);
1520 
1521 	/*
1522 	 * The core file contents may required zero section headers, but if
1523 	 * we overflow the 16 bits allotted to the program header count in
1524 	 * the ELF header, we'll need that program header at index zero.
1525 	 */
1526 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1527 		nshdrs = 1;
1528 
1529 	phdrsz = nphdrs * sizeof (Phdr);
1530 	shdrsz = nshdrs * sizeof (Shdr);
1531 
1532 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1533 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1534 
1535 	ehdr = &bigwad->ehdr;
1536 	bzero(ehdr, sizeof (*ehdr));
1537 
1538 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1539 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1540 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1541 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1542 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1543 	ehdr->e_type = ET_CORE;
1544 
1545 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1546 
1547 #if defined(__sparc)
1548 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1549 	ehdr->e_machine = EM_SPARC;
1550 #elif defined(__i386) || defined(__i386_COMPAT)
1551 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1552 	ehdr->e_machine = EM_386;
1553 #else
1554 #error "no recognized machine type is defined"
1555 #endif
1556 
1557 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1558 
1559 #if defined(__sparc)
1560 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1561 	ehdr->e_machine = EM_SPARCV9;
1562 #elif defined(__amd64)
1563 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1564 	ehdr->e_machine = EM_AMD64;
1565 #else
1566 #error "no recognized 64-bit machine type is defined"
1567 #endif
1568 
1569 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1570 
1571 	/*
1572 	 * If the count of program headers or section headers or the index
1573 	 * of the section string table can't fit in the mere 16 bits
1574 	 * shortsightedly allotted to them in the ELF header, we use the
1575 	 * extended formats and put the real values in the section header
1576 	 * as index 0.
1577 	 */
1578 	ehdr->e_version = EV_CURRENT;
1579 	ehdr->e_ehsize = sizeof (Ehdr);
1580 
1581 	if (nphdrs >= PN_XNUM)
1582 		ehdr->e_phnum = PN_XNUM;
1583 	else
1584 		ehdr->e_phnum = (unsigned short)nphdrs;
1585 
1586 	ehdr->e_phoff = sizeof (Ehdr);
1587 	ehdr->e_phentsize = sizeof (Phdr);
1588 
1589 	if (nshdrs > 0) {
1590 		if (nshdrs >= SHN_LORESERVE)
1591 			ehdr->e_shnum = 0;
1592 		else
1593 			ehdr->e_shnum = (unsigned short)nshdrs;
1594 
1595 		if (nshdrs - 1 >= SHN_LORESERVE)
1596 			ehdr->e_shstrndx = SHN_XINDEX;
1597 		else
1598 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1599 
1600 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1601 		ehdr->e_shentsize = sizeof (Shdr);
1602 	}
1603 
1604 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1605 	    sizeof (Ehdr), rlimit, credp))
1606 		goto done;
1607 
1608 	poffset = sizeof (Ehdr);
1609 	soffset = sizeof (Ehdr) + phdrsz;
1610 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1611 
1612 	v = &bigwad->phdr[0];
1613 	bzero(v, phdrsz);
1614 
1615 	setup_old_note_header(&v[0], p);
1616 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
1617 	doffset += v[0].p_filesz;
1618 
1619 	setup_note_header(&v[1], p);
1620 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
1621 	doffset += v[1].p_filesz;
1622 
1623 	mutex_enter(&p->p_lock);
1624 
1625 	brkbase = p->p_brkbase;
1626 	brksize = p->p_brksize;
1627 
1628 	stkbase = p->p_usrstack - p->p_stksize;
1629 	stksize = p->p_stksize;
1630 
1631 	mutex_exit(&p->p_lock);
1632 
1633 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1634 	i = 2;
1635 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1636 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1637 		caddr_t saddr, naddr;
1638 		void *tmp = NULL;
1639 		extern struct seg_ops segspt_shmops;
1640 
1641 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1642 			uint_t prot;
1643 			size_t size;
1644 			int type;
1645 			vnode_t *mvp;
1646 
1647 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1648 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
1649 			if ((size = (size_t)(naddr - saddr)) == 0)
1650 				continue;
1651 			if (i == nphdrs) {
1652 				overflow++;
1653 				continue;
1654 			}
1655 			v[i].p_type = PT_LOAD;
1656 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
1657 			v[i].p_memsz = size;
1658 			if (prot & PROT_READ)
1659 				v[i].p_flags |= PF_R;
1660 			if (prot & PROT_WRITE)
1661 				v[i].p_flags |= PF_W;
1662 			if (prot & PROT_EXEC)
1663 				v[i].p_flags |= PF_X;
1664 
1665 			/*
1666 			 * Figure out which mappings to include in the core.
1667 			 */
1668 			type = SEGOP_GETTYPE(seg, saddr);
1669 
1670 			if (saddr == stkbase && size == stksize) {
1671 				if (!(content & CC_CONTENT_STACK))
1672 					goto exclude;
1673 
1674 			} else if (saddr == brkbase && size == brksize) {
1675 				if (!(content & CC_CONTENT_HEAP))
1676 					goto exclude;
1677 
1678 			} else if (seg->s_ops == &segspt_shmops) {
1679 				if (type & MAP_NORESERVE) {
1680 					if (!(content & CC_CONTENT_DISM))
1681 						goto exclude;
1682 				} else {
1683 					if (!(content & CC_CONTENT_ISM))
1684 						goto exclude;
1685 				}
1686 
1687 			} else if (seg->s_ops != &segvn_ops) {
1688 				goto exclude;
1689 
1690 			} else if (type & MAP_SHARED) {
1691 				if (shmgetid(p, saddr) != SHMID_NONE) {
1692 					if (!(content & CC_CONTENT_SHM))
1693 						goto exclude;
1694 
1695 				} else if (SEGOP_GETVP(seg, seg->s_base,
1696 				    &mvp) != 0 || mvp == NULL ||
1697 				    mvp->v_type != VREG) {
1698 					if (!(content & CC_CONTENT_SHANON))
1699 						goto exclude;
1700 
1701 				} else {
1702 					if (!(content & CC_CONTENT_SHFILE))
1703 						goto exclude;
1704 				}
1705 
1706 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1707 			    mvp == NULL || mvp->v_type != VREG) {
1708 				if (!(content & CC_CONTENT_ANON))
1709 					goto exclude;
1710 
1711 			} else if (prot == (PROT_READ | PROT_EXEC)) {
1712 				if (!(content & CC_CONTENT_TEXT))
1713 					goto exclude;
1714 
1715 			} else if (prot == PROT_READ) {
1716 				if (!(content & CC_CONTENT_RODATA))
1717 					goto exclude;
1718 
1719 			} else {
1720 				if (!(content & CC_CONTENT_DATA))
1721 					goto exclude;
1722 			}
1723 
1724 			doffset = roundup(doffset, sizeof (Word));
1725 			v[i].p_offset = doffset;
1726 			v[i].p_filesz = size;
1727 			doffset += size;
1728 exclude:
1729 			i++;
1730 		}
1731 		ASSERT(tmp == NULL);
1732 	}
1733 	AS_LOCK_EXIT(as, &as->a_lock);
1734 
1735 	if (overflow || i != nphdrs) {
1736 		if (ntries++ == 0) {
1737 			kmem_free(bigwad, bigsize);
1738 			goto top;
1739 		}
1740 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1741 		    "process %d; address space is changing", p->p_pid);
1742 		error = EIO;
1743 		goto done;
1744 	}
1745 
1746 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
1747 	    v, phdrsz, rlimit, credp)) != 0)
1748 		goto done;
1749 
1750 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
1751 	    credp)) != 0)
1752 		goto done;
1753 
1754 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
1755 	    credp, content)) != 0)
1756 		goto done;
1757 
1758 	for (i = 2; i < nphdrs; i++) {
1759 		if (v[i].p_filesz == 0)
1760 			continue;
1761 
1762 		/*
1763 		 * If dumping out this segment fails, rather than failing
1764 		 * the core dump entirely, we reset the size of the mapping
1765 		 * to zero to indicate that the data is absent from the core
1766 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
1767 		 * this from mappings that were excluded due to the core file
1768 		 * content settings.
1769 		 */
1770 		if ((error = core_seg(p, vp, v[i].p_offset,
1771 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
1772 		    rlimit, credp)) != 0) {
1773 
1774 			/*
1775 			 * Since the space reserved for the segment is now
1776 			 * unused, we stash the errno in the first four
1777 			 * bytes. This undocumented interface will let us
1778 			 * understand the nature of the failure.
1779 			 */
1780 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
1781 			    &error, sizeof (error), rlimit, credp);
1782 
1783 			v[i].p_filesz = 0;
1784 			v[i].p_flags |= PF_SUNW_FAILURE;
1785 			if ((error = core_write(vp, UIO_SYSSPACE,
1786 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
1787 			    rlimit, credp)) != 0)
1788 				goto done;
1789 		}
1790 	}
1791 
1792 	if (nshdrs > 0) {
1793 		bzero(&bigwad->shdr[0], shdrsz);
1794 
1795 		if (nshdrs >= SHN_LORESERVE)
1796 			bigwad->shdr[0].sh_size = nshdrs;
1797 
1798 		if (nshdrs - 1 >= SHN_LORESERVE)
1799 			bigwad->shdr[0].sh_link = nshdrs - 1;
1800 
1801 		if (nphdrs >= PN_XNUM)
1802 			bigwad->shdr[0].sh_info = nphdrs;
1803 
1804 		if (nshdrs > 1) {
1805 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1806 			if ((error = process_scns(content, p, credp, vp,
1807 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
1808 			    NULL)) != 0) {
1809 				AS_LOCK_EXIT(as, &as->a_lock);
1810 				goto done;
1811 			}
1812 			AS_LOCK_EXIT(as, &as->a_lock);
1813 		}
1814 
1815 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
1816 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
1817 			goto done;
1818 	}
1819 
1820 done:
1821 	kmem_free(bigwad, bigsize);
1822 	return (error);
1823 }
1824 
1825 #ifndef	_ELF32_COMPAT
1826 
1827 static struct execsw esw = {
1828 #ifdef	_LP64
1829 	elf64magicstr,
1830 #else	/* _LP64 */
1831 	elf32magicstr,
1832 #endif	/* _LP64 */
1833 	0,
1834 	5,
1835 	elfexec,
1836 	elfcore
1837 };
1838 
1839 static struct modlexec modlexec = {
1840 	&mod_execops, "exec module for elf", &esw
1841 };
1842 
1843 #ifdef	_LP64
1844 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
1845 			intpdata_t *idatap, int level, long *execsz,
1846 			int setid, caddr_t exec_file, cred_t *cred);
1847 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
1848 			rlim64_t rlimit, int sig, core_content_t content);
1849 
1850 static struct execsw esw32 = {
1851 	elf32magicstr,
1852 	0,
1853 	5,
1854 	elf32exec,
1855 	elf32core
1856 };
1857 
1858 static struct modlexec modlexec32 = {
1859 	&mod_execops, "32-bit exec module for elf", &esw32
1860 };
1861 #endif	/* _LP64 */
1862 
1863 static struct modlinkage modlinkage = {
1864 	MODREV_1,
1865 	(void *)&modlexec,
1866 #ifdef	_LP64
1867 	(void *)&modlexec32,
1868 #endif	/* _LP64 */
1869 	NULL
1870 };
1871 
1872 int
1873 _init(void)
1874 {
1875 	return (mod_install(&modlinkage));
1876 }
1877 
1878 int
1879 _fini(void)
1880 {
1881 	return (mod_remove(&modlinkage));
1882 }
1883 
1884 int
1885 _info(struct modinfo *modinfop)
1886 {
1887 	return (mod_info(&modlinkage, modinfop));
1888 }
1889 
1890 #endif	/* !_ELF32_COMPAT */
1891