1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 */ 273 uint32_t dtrace_helptrace_next = 0; 274 uint32_t dtrace_helptrace_nlocals; 275 char *dtrace_helptrace_buffer; 276 int dtrace_helptrace_bufsize = 512 * 1024; 277 278 #ifdef DEBUG 279 int dtrace_helptrace_enabled = 1; 280 #else 281 int dtrace_helptrace_enabled = 0; 282 #endif 283 284 /* 285 * DTrace Error Hashing 286 * 287 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 288 * table. This is very useful for checking coverage of tests that are 289 * expected to induce DIF or DOF processing errors, and may be useful for 290 * debugging problems in the DIF code generator or in DOF generation . The 291 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 292 */ 293 #ifdef DEBUG 294 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 295 static const char *dtrace_errlast; 296 static kthread_t *dtrace_errthread; 297 static kmutex_t dtrace_errlock; 298 #endif 299 300 /* 301 * DTrace Macros and Constants 302 * 303 * These are various macros that are useful in various spots in the 304 * implementation, along with a few random constants that have no meaning 305 * outside of the implementation. There is no real structure to this cpp 306 * mishmash -- but is there ever? 307 */ 308 #define DTRACE_HASHSTR(hash, probe) \ 309 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 310 311 #define DTRACE_HASHNEXT(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 313 314 #define DTRACE_HASHPREV(hash, probe) \ 315 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 316 317 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 318 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 319 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 320 321 #define DTRACE_AGGHASHSIZE_SLEW 17 322 323 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 324 325 /* 326 * The key for a thread-local variable consists of the lower 61 bits of the 327 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 328 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 329 * equal to a variable identifier. This is necessary (but not sufficient) to 330 * assure that global associative arrays never collide with thread-local 331 * variables. To guarantee that they cannot collide, we must also define the 332 * order for keying dynamic variables. That order is: 333 * 334 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 335 * 336 * Because the variable-key and the tls-key are in orthogonal spaces, there is 337 * no way for a global variable key signature to match a thread-local key 338 * signature. 339 */ 340 #define DTRACE_TLS_THRKEY(where) { \ 341 uint_t intr = 0; \ 342 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 343 for (; actv; actv >>= 1) \ 344 intr++; \ 345 ASSERT(intr < (1 << 3)); \ 346 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 347 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 348 } 349 350 #define DT_BSWAP_8(x) ((x) & 0xff) 351 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 352 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 353 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 354 355 #define DT_MASK_LO 0x00000000FFFFFFFFULL 356 357 #define DTRACE_STORE(type, tomax, offset, what) \ 358 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 359 360 #ifndef __x86 361 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 362 if (addr & (size - 1)) { \ 363 *flags |= CPU_DTRACE_BADALIGN; \ 364 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 365 return (0); \ 366 } 367 #else 368 #define DTRACE_ALIGNCHECK(addr, size, flags) 369 #endif 370 371 /* 372 * Test whether a range of memory starting at testaddr of size testsz falls 373 * within the range of memory described by addr, sz. We take care to avoid 374 * problems with overflow and underflow of the unsigned quantities, and 375 * disallow all negative sizes. Ranges of size 0 are allowed. 376 */ 377 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 378 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 379 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 380 (testaddr) + (testsz) >= (testaddr)) 381 382 /* 383 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 384 * alloc_sz on the righthand side of the comparison in order to avoid overflow 385 * or underflow in the comparison with it. This is simpler than the INRANGE 386 * check above, because we know that the dtms_scratch_ptr is valid in the 387 * range. Allocations of size zero are allowed. 388 */ 389 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 390 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 391 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 392 393 #define DTRACE_LOADFUNC(bits) \ 394 /*CSTYLED*/ \ 395 uint##bits##_t \ 396 dtrace_load##bits(uintptr_t addr) \ 397 { \ 398 size_t size = bits / NBBY; \ 399 /*CSTYLED*/ \ 400 uint##bits##_t rval; \ 401 int i; \ 402 volatile uint16_t *flags = (volatile uint16_t *) \ 403 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 404 \ 405 DTRACE_ALIGNCHECK(addr, size, flags); \ 406 \ 407 for (i = 0; i < dtrace_toxranges; i++) { \ 408 if (addr >= dtrace_toxrange[i].dtt_limit) \ 409 continue; \ 410 \ 411 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 412 continue; \ 413 \ 414 /* \ 415 * This address falls within a toxic region; return 0. \ 416 */ \ 417 *flags |= CPU_DTRACE_BADADDR; \ 418 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 419 return (0); \ 420 } \ 421 \ 422 *flags |= CPU_DTRACE_NOFAULT; \ 423 /*CSTYLED*/ \ 424 rval = *((volatile uint##bits##_t *)addr); \ 425 *flags &= ~CPU_DTRACE_NOFAULT; \ 426 \ 427 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 428 } 429 430 #ifdef _LP64 431 #define dtrace_loadptr dtrace_load64 432 #else 433 #define dtrace_loadptr dtrace_load32 434 #endif 435 436 #define DTRACE_DYNHASH_FREE 0 437 #define DTRACE_DYNHASH_SINK 1 438 #define DTRACE_DYNHASH_VALID 2 439 440 #define DTRACE_MATCH_FAIL -1 441 #define DTRACE_MATCH_NEXT 0 442 #define DTRACE_MATCH_DONE 1 443 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 444 #define DTRACE_STATE_ALIGN 64 445 446 #define DTRACE_FLAGS2FLT(flags) \ 447 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 448 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 449 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 450 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 451 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 452 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 453 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 454 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 455 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 456 DTRACEFLT_UNKNOWN) 457 458 #define DTRACEACT_ISSTRING(act) \ 459 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 460 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 461 462 static size_t dtrace_strlen(const char *, size_t); 463 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 464 static void dtrace_enabling_provide(dtrace_provider_t *); 465 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 466 static void dtrace_enabling_matchall(void); 467 static void dtrace_enabling_reap(void); 468 static dtrace_state_t *dtrace_anon_grab(void); 469 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 470 dtrace_state_t *, uint64_t, uint64_t); 471 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 472 static void dtrace_buffer_drop(dtrace_buffer_t *); 473 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 474 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 475 dtrace_state_t *, dtrace_mstate_t *); 476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 477 dtrace_optval_t); 478 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 479 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 481 static void dtrace_getf_barrier(void); 482 483 /* 484 * DTrace Probe Context Functions 485 * 486 * These functions are called from probe context. Because probe context is 487 * any context in which C may be called, arbitrarily locks may be held, 488 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 489 * As a result, functions called from probe context may only call other DTrace 490 * support functions -- they may not interact at all with the system at large. 491 * (Note that the ASSERT macro is made probe-context safe by redefining it in 492 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 493 * loads are to be performed from probe context, they _must_ be in terms of 494 * the safe dtrace_load*() variants. 495 * 496 * Some functions in this block are not actually called from probe context; 497 * for these functions, there will be a comment above the function reading 498 * "Note: not called from probe context." 499 */ 500 void 501 dtrace_panic(const char *format, ...) 502 { 503 va_list alist; 504 505 va_start(alist, format); 506 dtrace_vpanic(format, alist); 507 va_end(alist); 508 } 509 510 int 511 dtrace_assfail(const char *a, const char *f, int l) 512 { 513 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 514 515 /* 516 * We just need something here that even the most clever compiler 517 * cannot optimize away. 518 */ 519 return (a[(uintptr_t)f]); 520 } 521 522 /* 523 * Atomically increment a specified error counter from probe context. 524 */ 525 static void 526 dtrace_error(uint32_t *counter) 527 { 528 /* 529 * Most counters stored to in probe context are per-CPU counters. 530 * However, there are some error conditions that are sufficiently 531 * arcane that they don't merit per-CPU storage. If these counters 532 * are incremented concurrently on different CPUs, scalability will be 533 * adversely affected -- but we don't expect them to be white-hot in a 534 * correctly constructed enabling... 535 */ 536 uint32_t oval, nval; 537 538 do { 539 oval = *counter; 540 541 if ((nval = oval + 1) == 0) { 542 /* 543 * If the counter would wrap, set it to 1 -- assuring 544 * that the counter is never zero when we have seen 545 * errors. (The counter must be 32-bits because we 546 * aren't guaranteed a 64-bit compare&swap operation.) 547 * To save this code both the infamy of being fingered 548 * by a priggish news story and the indignity of being 549 * the target of a neo-puritan witch trial, we're 550 * carefully avoiding any colorful description of the 551 * likelihood of this condition -- but suffice it to 552 * say that it is only slightly more likely than the 553 * overflow of predicate cache IDs, as discussed in 554 * dtrace_predicate_create(). 555 */ 556 nval = 1; 557 } 558 } while (dtrace_cas32(counter, oval, nval) != oval); 559 } 560 561 /* 562 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 563 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 564 */ 565 DTRACE_LOADFUNC(8) 566 DTRACE_LOADFUNC(16) 567 DTRACE_LOADFUNC(32) 568 DTRACE_LOADFUNC(64) 569 570 static int 571 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 572 { 573 if (dest < mstate->dtms_scratch_base) 574 return (0); 575 576 if (dest + size < dest) 577 return (0); 578 579 if (dest + size > mstate->dtms_scratch_ptr) 580 return (0); 581 582 return (1); 583 } 584 585 static int 586 dtrace_canstore_statvar(uint64_t addr, size_t sz, 587 dtrace_statvar_t **svars, int nsvars) 588 { 589 int i; 590 591 for (i = 0; i < nsvars; i++) { 592 dtrace_statvar_t *svar = svars[i]; 593 594 if (svar == NULL || svar->dtsv_size == 0) 595 continue; 596 597 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 598 return (1); 599 } 600 601 return (0); 602 } 603 604 /* 605 * Check to see if the address is within a memory region to which a store may 606 * be issued. This includes the DTrace scratch areas, and any DTrace variable 607 * region. The caller of dtrace_canstore() is responsible for performing any 608 * alignment checks that are needed before stores are actually executed. 609 */ 610 static int 611 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 612 dtrace_vstate_t *vstate) 613 { 614 /* 615 * First, check to see if the address is in scratch space... 616 */ 617 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 618 mstate->dtms_scratch_size)) 619 return (1); 620 621 /* 622 * Now check to see if it's a dynamic variable. This check will pick 623 * up both thread-local variables and any global dynamically-allocated 624 * variables. 625 */ 626 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 627 vstate->dtvs_dynvars.dtds_size)) { 628 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 629 uintptr_t base = (uintptr_t)dstate->dtds_base + 630 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 631 uintptr_t chunkoffs; 632 633 /* 634 * Before we assume that we can store here, we need to make 635 * sure that it isn't in our metadata -- storing to our 636 * dynamic variable metadata would corrupt our state. For 637 * the range to not include any dynamic variable metadata, 638 * it must: 639 * 640 * (1) Start above the hash table that is at the base of 641 * the dynamic variable space 642 * 643 * (2) Have a starting chunk offset that is beyond the 644 * dtrace_dynvar_t that is at the base of every chunk 645 * 646 * (3) Not span a chunk boundary 647 * 648 */ 649 if (addr < base) 650 return (0); 651 652 chunkoffs = (addr - base) % dstate->dtds_chunksize; 653 654 if (chunkoffs < sizeof (dtrace_dynvar_t)) 655 return (0); 656 657 if (chunkoffs + sz > dstate->dtds_chunksize) 658 return (0); 659 660 return (1); 661 } 662 663 /* 664 * Finally, check the static local and global variables. These checks 665 * take the longest, so we perform them last. 666 */ 667 if (dtrace_canstore_statvar(addr, sz, 668 vstate->dtvs_locals, vstate->dtvs_nlocals)) 669 return (1); 670 671 if (dtrace_canstore_statvar(addr, sz, 672 vstate->dtvs_globals, vstate->dtvs_nglobals)) 673 return (1); 674 675 return (0); 676 } 677 678 679 /* 680 * Convenience routine to check to see if the address is within a memory 681 * region in which a load may be issued given the user's privilege level; 682 * if not, it sets the appropriate error flags and loads 'addr' into the 683 * illegal value slot. 684 * 685 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 686 * appropriate memory access protection. 687 */ 688 static int 689 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 690 dtrace_vstate_t *vstate) 691 { 692 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 693 file_t *fp; 694 695 /* 696 * If we hold the privilege to read from kernel memory, then 697 * everything is readable. 698 */ 699 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 700 return (1); 701 702 /* 703 * You can obviously read that which you can store. 704 */ 705 if (dtrace_canstore(addr, sz, mstate, vstate)) 706 return (1); 707 708 /* 709 * We're allowed to read from our own string table. 710 */ 711 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 712 mstate->dtms_difo->dtdo_strlen)) 713 return (1); 714 715 if (vstate->dtvs_state != NULL && 716 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 717 proc_t *p; 718 719 /* 720 * When we have privileges to the current process, there are 721 * several context-related kernel structures that are safe to 722 * read, even absent the privilege to read from kernel memory. 723 * These reads are safe because these structures contain only 724 * state that (1) we're permitted to read, (2) is harmless or 725 * (3) contains pointers to additional kernel state that we're 726 * not permitted to read (and as such, do not present an 727 * opportunity for privilege escalation). Finally (and 728 * critically), because of the nature of their relation with 729 * the current thread context, the memory associated with these 730 * structures cannot change over the duration of probe context, 731 * and it is therefore impossible for this memory to be 732 * deallocated and reallocated as something else while it's 733 * being operated upon. 734 */ 735 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 736 return (1); 737 738 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 739 sz, curthread->t_procp, sizeof (proc_t))) { 740 return (1); 741 } 742 743 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 744 curthread->t_cred, sizeof (cred_t))) { 745 return (1); 746 } 747 748 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 749 &(p->p_pidp->pid_id), sizeof (pid_t))) { 750 return (1); 751 } 752 753 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 754 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 755 return (1); 756 } 757 } 758 759 if ((fp = mstate->dtms_getf) != NULL) { 760 uintptr_t psz = sizeof (void *); 761 vnode_t *vp; 762 vnodeops_t *op; 763 764 /* 765 * When getf() returns a file_t, the enabling is implicitly 766 * granted the (transient) right to read the returned file_t 767 * as well as the v_path and v_op->vnop_name of the underlying 768 * vnode. These accesses are allowed after a successful 769 * getf() because the members that they refer to cannot change 770 * once set -- and the barrier logic in the kernel's closef() 771 * path assures that the file_t and its referenced vode_t 772 * cannot themselves be stale (that is, it impossible for 773 * either dtms_getf itself or its f_vnode member to reference 774 * freed memory). 775 */ 776 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 777 return (1); 778 779 if ((vp = fp->f_vnode) != NULL) { 780 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 781 return (1); 782 783 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 784 vp->v_path, strlen(vp->v_path) + 1)) { 785 return (1); 786 } 787 788 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 789 return (1); 790 791 if ((op = vp->v_op) != NULL && 792 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 793 return (1); 794 } 795 796 if (op != NULL && op->vnop_name != NULL && 797 DTRACE_INRANGE(addr, sz, op->vnop_name, 798 strlen(op->vnop_name) + 1)) { 799 return (1); 800 } 801 } 802 } 803 804 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 805 *illval = addr; 806 return (0); 807 } 808 809 /* 810 * Convenience routine to check to see if a given string is within a memory 811 * region in which a load may be issued given the user's privilege level; 812 * this exists so that we don't need to issue unnecessary dtrace_strlen() 813 * calls in the event that the user has all privileges. 814 */ 815 static int 816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 817 dtrace_vstate_t *vstate) 818 { 819 size_t strsz; 820 821 /* 822 * If we hold the privilege to read from kernel memory, then 823 * everything is readable. 824 */ 825 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 826 return (1); 827 828 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 829 if (dtrace_canload(addr, strsz, mstate, vstate)) 830 return (1); 831 832 return (0); 833 } 834 835 /* 836 * Convenience routine to check to see if a given variable is within a memory 837 * region in which a load may be issued given the user's privilege level. 838 */ 839 static int 840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 841 dtrace_vstate_t *vstate) 842 { 843 size_t sz; 844 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 845 846 /* 847 * If we hold the privilege to read from kernel memory, then 848 * everything is readable. 849 */ 850 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 851 return (1); 852 853 if (type->dtdt_kind == DIF_TYPE_STRING) 854 sz = dtrace_strlen(src, 855 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 856 else 857 sz = type->dtdt_size; 858 859 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 860 } 861 862 /* 863 * Convert a string to a signed integer using safe loads. 864 * 865 * NOTE: This function uses various macros from strtolctype.h to manipulate 866 * digit values, etc -- these have all been checked to ensure they make 867 * no additional function calls. 868 */ 869 static int64_t 870 dtrace_strtoll(char *input, int base, size_t limit) 871 { 872 uintptr_t pos = (uintptr_t)input; 873 int64_t val = 0; 874 int x; 875 boolean_t neg = B_FALSE; 876 char c, cc, ccc; 877 uintptr_t end = pos + limit; 878 879 /* 880 * Consume any whitespace preceding digits. 881 */ 882 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 883 pos++; 884 885 /* 886 * Handle an explicit sign if one is present. 887 */ 888 if (c == '-' || c == '+') { 889 if (c == '-') 890 neg = B_TRUE; 891 c = dtrace_load8(++pos); 892 } 893 894 /* 895 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 896 * if present. 897 */ 898 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 899 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 900 pos += 2; 901 c = ccc; 902 } 903 904 /* 905 * Read in contiguous digits until the first non-digit character. 906 */ 907 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 908 c = dtrace_load8(++pos)) 909 val = val * base + x; 910 911 return (neg ? -val : val); 912 } 913 914 /* 915 * Compare two strings using safe loads. 916 */ 917 static int 918 dtrace_strncmp(char *s1, char *s2, size_t limit) 919 { 920 uint8_t c1, c2; 921 volatile uint16_t *flags; 922 923 if (s1 == s2 || limit == 0) 924 return (0); 925 926 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 927 928 do { 929 if (s1 == NULL) { 930 c1 = '\0'; 931 } else { 932 c1 = dtrace_load8((uintptr_t)s1++); 933 } 934 935 if (s2 == NULL) { 936 c2 = '\0'; 937 } else { 938 c2 = dtrace_load8((uintptr_t)s2++); 939 } 940 941 if (c1 != c2) 942 return (c1 - c2); 943 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 944 945 return (0); 946 } 947 948 /* 949 * Compute strlen(s) for a string using safe memory accesses. The additional 950 * len parameter is used to specify a maximum length to ensure completion. 951 */ 952 static size_t 953 dtrace_strlen(const char *s, size_t lim) 954 { 955 uint_t len; 956 957 for (len = 0; len != lim; len++) { 958 if (dtrace_load8((uintptr_t)s++) == '\0') 959 break; 960 } 961 962 return (len); 963 } 964 965 /* 966 * Check if an address falls within a toxic region. 967 */ 968 static int 969 dtrace_istoxic(uintptr_t kaddr, size_t size) 970 { 971 uintptr_t taddr, tsize; 972 int i; 973 974 for (i = 0; i < dtrace_toxranges; i++) { 975 taddr = dtrace_toxrange[i].dtt_base; 976 tsize = dtrace_toxrange[i].dtt_limit - taddr; 977 978 if (kaddr - taddr < tsize) { 979 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 980 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 981 return (1); 982 } 983 984 if (taddr - kaddr < size) { 985 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 986 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 987 return (1); 988 } 989 } 990 991 return (0); 992 } 993 994 /* 995 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 996 * memory specified by the DIF program. The dst is assumed to be safe memory 997 * that we can store to directly because it is managed by DTrace. As with 998 * standard bcopy, overlapping copies are handled properly. 999 */ 1000 static void 1001 dtrace_bcopy(const void *src, void *dst, size_t len) 1002 { 1003 if (len != 0) { 1004 uint8_t *s1 = dst; 1005 const uint8_t *s2 = src; 1006 1007 if (s1 <= s2) { 1008 do { 1009 *s1++ = dtrace_load8((uintptr_t)s2++); 1010 } while (--len != 0); 1011 } else { 1012 s2 += len; 1013 s1 += len; 1014 1015 do { 1016 *--s1 = dtrace_load8((uintptr_t)--s2); 1017 } while (--len != 0); 1018 } 1019 } 1020 } 1021 1022 /* 1023 * Copy src to dst using safe memory accesses, up to either the specified 1024 * length, or the point that a nul byte is encountered. The src is assumed to 1025 * be unsafe memory specified by the DIF program. The dst is assumed to be 1026 * safe memory that we can store to directly because it is managed by DTrace. 1027 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1028 */ 1029 static void 1030 dtrace_strcpy(const void *src, void *dst, size_t len) 1031 { 1032 if (len != 0) { 1033 uint8_t *s1 = dst, c; 1034 const uint8_t *s2 = src; 1035 1036 do { 1037 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1038 } while (--len != 0 && c != '\0'); 1039 } 1040 } 1041 1042 /* 1043 * Copy src to dst, deriving the size and type from the specified (BYREF) 1044 * variable type. The src is assumed to be unsafe memory specified by the DIF 1045 * program. The dst is assumed to be DTrace variable memory that is of the 1046 * specified type; we assume that we can store to directly. 1047 */ 1048 static void 1049 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1050 { 1051 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1052 1053 if (type->dtdt_kind == DIF_TYPE_STRING) { 1054 dtrace_strcpy(src, dst, type->dtdt_size); 1055 } else { 1056 dtrace_bcopy(src, dst, type->dtdt_size); 1057 } 1058 } 1059 1060 /* 1061 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1062 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1063 * safe memory that we can access directly because it is managed by DTrace. 1064 */ 1065 static int 1066 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1067 { 1068 volatile uint16_t *flags; 1069 1070 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1071 1072 if (s1 == s2) 1073 return (0); 1074 1075 if (s1 == NULL || s2 == NULL) 1076 return (1); 1077 1078 if (s1 != s2 && len != 0) { 1079 const uint8_t *ps1 = s1; 1080 const uint8_t *ps2 = s2; 1081 1082 do { 1083 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1084 return (1); 1085 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1086 } 1087 return (0); 1088 } 1089 1090 /* 1091 * Zero the specified region using a simple byte-by-byte loop. Note that this 1092 * is for safe DTrace-managed memory only. 1093 */ 1094 static void 1095 dtrace_bzero(void *dst, size_t len) 1096 { 1097 uchar_t *cp; 1098 1099 for (cp = dst; len != 0; len--) 1100 *cp++ = 0; 1101 } 1102 1103 static void 1104 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1105 { 1106 uint64_t result[2]; 1107 1108 result[0] = addend1[0] + addend2[0]; 1109 result[1] = addend1[1] + addend2[1] + 1110 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1111 1112 sum[0] = result[0]; 1113 sum[1] = result[1]; 1114 } 1115 1116 /* 1117 * Shift the 128-bit value in a by b. If b is positive, shift left. 1118 * If b is negative, shift right. 1119 */ 1120 static void 1121 dtrace_shift_128(uint64_t *a, int b) 1122 { 1123 uint64_t mask; 1124 1125 if (b == 0) 1126 return; 1127 1128 if (b < 0) { 1129 b = -b; 1130 if (b >= 64) { 1131 a[0] = a[1] >> (b - 64); 1132 a[1] = 0; 1133 } else { 1134 a[0] >>= b; 1135 mask = 1LL << (64 - b); 1136 mask -= 1; 1137 a[0] |= ((a[1] & mask) << (64 - b)); 1138 a[1] >>= b; 1139 } 1140 } else { 1141 if (b >= 64) { 1142 a[1] = a[0] << (b - 64); 1143 a[0] = 0; 1144 } else { 1145 a[1] <<= b; 1146 mask = a[0] >> (64 - b); 1147 a[1] |= mask; 1148 a[0] <<= b; 1149 } 1150 } 1151 } 1152 1153 /* 1154 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1155 * use native multiplication on those, and then re-combine into the 1156 * resulting 128-bit value. 1157 * 1158 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1159 * hi1 * hi2 << 64 + 1160 * hi1 * lo2 << 32 + 1161 * hi2 * lo1 << 32 + 1162 * lo1 * lo2 1163 */ 1164 static void 1165 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1166 { 1167 uint64_t hi1, hi2, lo1, lo2; 1168 uint64_t tmp[2]; 1169 1170 hi1 = factor1 >> 32; 1171 hi2 = factor2 >> 32; 1172 1173 lo1 = factor1 & DT_MASK_LO; 1174 lo2 = factor2 & DT_MASK_LO; 1175 1176 product[0] = lo1 * lo2; 1177 product[1] = hi1 * hi2; 1178 1179 tmp[0] = hi1 * lo2; 1180 tmp[1] = 0; 1181 dtrace_shift_128(tmp, 32); 1182 dtrace_add_128(product, tmp, product); 1183 1184 tmp[0] = hi2 * lo1; 1185 tmp[1] = 0; 1186 dtrace_shift_128(tmp, 32); 1187 dtrace_add_128(product, tmp, product); 1188 } 1189 1190 /* 1191 * This privilege check should be used by actions and subroutines to 1192 * verify that the user credentials of the process that enabled the 1193 * invoking ECB match the target credentials 1194 */ 1195 static int 1196 dtrace_priv_proc_common_user(dtrace_state_t *state) 1197 { 1198 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1199 1200 /* 1201 * We should always have a non-NULL state cred here, since if cred 1202 * is null (anonymous tracing), we fast-path bypass this routine. 1203 */ 1204 ASSERT(s_cr != NULL); 1205 1206 if ((cr = CRED()) != NULL && 1207 s_cr->cr_uid == cr->cr_uid && 1208 s_cr->cr_uid == cr->cr_ruid && 1209 s_cr->cr_uid == cr->cr_suid && 1210 s_cr->cr_gid == cr->cr_gid && 1211 s_cr->cr_gid == cr->cr_rgid && 1212 s_cr->cr_gid == cr->cr_sgid) 1213 return (1); 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * This privilege check should be used by actions and subroutines to 1220 * verify that the zone of the process that enabled the invoking ECB 1221 * matches the target credentials 1222 */ 1223 static int 1224 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1225 { 1226 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1227 1228 /* 1229 * We should always have a non-NULL state cred here, since if cred 1230 * is null (anonymous tracing), we fast-path bypass this routine. 1231 */ 1232 ASSERT(s_cr != NULL); 1233 1234 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1235 return (1); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * This privilege check should be used by actions and subroutines to 1242 * verify that the process has not setuid or changed credentials. 1243 */ 1244 static int 1245 dtrace_priv_proc_common_nocd() 1246 { 1247 proc_t *proc; 1248 1249 if ((proc = ttoproc(curthread)) != NULL && 1250 !(proc->p_flag & SNOCD)) 1251 return (1); 1252 1253 return (0); 1254 } 1255 1256 static int 1257 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1258 { 1259 int action = state->dts_cred.dcr_action; 1260 1261 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1262 goto bad; 1263 1264 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1265 dtrace_priv_proc_common_zone(state) == 0) 1266 goto bad; 1267 1268 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1269 dtrace_priv_proc_common_user(state) == 0) 1270 goto bad; 1271 1272 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1273 dtrace_priv_proc_common_nocd() == 0) 1274 goto bad; 1275 1276 return (1); 1277 1278 bad: 1279 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1280 1281 return (0); 1282 } 1283 1284 static int 1285 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1286 { 1287 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1288 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1289 return (1); 1290 1291 if (dtrace_priv_proc_common_zone(state) && 1292 dtrace_priv_proc_common_user(state) && 1293 dtrace_priv_proc_common_nocd()) 1294 return (1); 1295 } 1296 1297 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1298 1299 return (0); 1300 } 1301 1302 static int 1303 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1304 { 1305 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1306 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1307 return (1); 1308 1309 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1310 1311 return (0); 1312 } 1313 1314 static int 1315 dtrace_priv_kernel(dtrace_state_t *state) 1316 { 1317 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1318 return (1); 1319 1320 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1321 1322 return (0); 1323 } 1324 1325 static int 1326 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1327 { 1328 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1329 return (1); 1330 1331 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Determine if the dte_cond of the specified ECB allows for processing of 1338 * the current probe to continue. Note that this routine may allow continued 1339 * processing, but with access(es) stripped from the mstate's dtms_access 1340 * field. 1341 */ 1342 static int 1343 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1344 dtrace_ecb_t *ecb) 1345 { 1346 dtrace_probe_t *probe = ecb->dte_probe; 1347 dtrace_provider_t *prov = probe->dtpr_provider; 1348 dtrace_pops_t *pops = &prov->dtpv_pops; 1349 int mode = DTRACE_MODE_NOPRIV_DROP; 1350 1351 ASSERT(ecb->dte_cond); 1352 1353 if (pops->dtps_mode != NULL) { 1354 mode = pops->dtps_mode(prov->dtpv_arg, 1355 probe->dtpr_id, probe->dtpr_arg); 1356 1357 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1358 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1359 DTRACE_MODE_NOPRIV_DROP)); 1360 } 1361 1362 /* 1363 * If the dte_cond bits indicate that this consumer is only allowed to 1364 * see user-mode firings of this probe, check that the probe was fired 1365 * while in a user context. If that's not the case, use the policy 1366 * specified by the provider to determine if we drop the probe or 1367 * merely restrict operation. 1368 */ 1369 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1370 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1371 1372 if (!(mode & DTRACE_MODE_USER)) { 1373 if (mode & DTRACE_MODE_NOPRIV_DROP) 1374 return (0); 1375 1376 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1377 } 1378 } 1379 1380 /* 1381 * This is more subtle than it looks. We have to be absolutely certain 1382 * that CRED() isn't going to change out from under us so it's only 1383 * legit to examine that structure if we're in constrained situations. 1384 * Currently, the only times we'll this check is if a non-super-user 1385 * has enabled the profile or syscall providers -- providers that 1386 * allow visibility of all processes. For the profile case, the check 1387 * above will ensure that we're examining a user context. 1388 */ 1389 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1390 cred_t *cr; 1391 cred_t *s_cr = state->dts_cred.dcr_cred; 1392 proc_t *proc; 1393 1394 ASSERT(s_cr != NULL); 1395 1396 if ((cr = CRED()) == NULL || 1397 s_cr->cr_uid != cr->cr_uid || 1398 s_cr->cr_uid != cr->cr_ruid || 1399 s_cr->cr_uid != cr->cr_suid || 1400 s_cr->cr_gid != cr->cr_gid || 1401 s_cr->cr_gid != cr->cr_rgid || 1402 s_cr->cr_gid != cr->cr_sgid || 1403 (proc = ttoproc(curthread)) == NULL || 1404 (proc->p_flag & SNOCD)) { 1405 if (mode & DTRACE_MODE_NOPRIV_DROP) 1406 return (0); 1407 1408 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1409 } 1410 } 1411 1412 /* 1413 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1414 * in our zone, check to see if our mode policy is to restrict rather 1415 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1416 * and DTRACE_ACCESS_ARGS 1417 */ 1418 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1419 cred_t *cr; 1420 cred_t *s_cr = state->dts_cred.dcr_cred; 1421 1422 ASSERT(s_cr != NULL); 1423 1424 if ((cr = CRED()) == NULL || 1425 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1426 if (mode & DTRACE_MODE_NOPRIV_DROP) 1427 return (0); 1428 1429 mstate->dtms_access &= 1430 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1431 } 1432 } 1433 1434 /* 1435 * By merits of being in this code path at all, we have limited 1436 * privileges. If the provider has indicated that limited privileges 1437 * are to denote restricted operation, strip off the ability to access 1438 * arguments. 1439 */ 1440 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1441 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1442 1443 return (1); 1444 } 1445 1446 /* 1447 * Note: not called from probe context. This function is called 1448 * asynchronously (and at a regular interval) from outside of probe context to 1449 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1450 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1451 */ 1452 void 1453 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1454 { 1455 dtrace_dynvar_t *dirty; 1456 dtrace_dstate_percpu_t *dcpu; 1457 dtrace_dynvar_t **rinsep; 1458 int i, j, work = 0; 1459 1460 for (i = 0; i < NCPU; i++) { 1461 dcpu = &dstate->dtds_percpu[i]; 1462 rinsep = &dcpu->dtdsc_rinsing; 1463 1464 /* 1465 * If the dirty list is NULL, there is no dirty work to do. 1466 */ 1467 if (dcpu->dtdsc_dirty == NULL) 1468 continue; 1469 1470 if (dcpu->dtdsc_rinsing != NULL) { 1471 /* 1472 * If the rinsing list is non-NULL, then it is because 1473 * this CPU was selected to accept another CPU's 1474 * dirty list -- and since that time, dirty buffers 1475 * have accumulated. This is a highly unlikely 1476 * condition, but we choose to ignore the dirty 1477 * buffers -- they'll be picked up a future cleanse. 1478 */ 1479 continue; 1480 } 1481 1482 if (dcpu->dtdsc_clean != NULL) { 1483 /* 1484 * If the clean list is non-NULL, then we're in a 1485 * situation where a CPU has done deallocations (we 1486 * have a non-NULL dirty list) but no allocations (we 1487 * also have a non-NULL clean list). We can't simply 1488 * move the dirty list into the clean list on this 1489 * CPU, yet we also don't want to allow this condition 1490 * to persist, lest a short clean list prevent a 1491 * massive dirty list from being cleaned (which in 1492 * turn could lead to otherwise avoidable dynamic 1493 * drops). To deal with this, we look for some CPU 1494 * with a NULL clean list, NULL dirty list, and NULL 1495 * rinsing list -- and then we borrow this CPU to 1496 * rinse our dirty list. 1497 */ 1498 for (j = 0; j < NCPU; j++) { 1499 dtrace_dstate_percpu_t *rinser; 1500 1501 rinser = &dstate->dtds_percpu[j]; 1502 1503 if (rinser->dtdsc_rinsing != NULL) 1504 continue; 1505 1506 if (rinser->dtdsc_dirty != NULL) 1507 continue; 1508 1509 if (rinser->dtdsc_clean != NULL) 1510 continue; 1511 1512 rinsep = &rinser->dtdsc_rinsing; 1513 break; 1514 } 1515 1516 if (j == NCPU) { 1517 /* 1518 * We were unable to find another CPU that 1519 * could accept this dirty list -- we are 1520 * therefore unable to clean it now. 1521 */ 1522 dtrace_dynvar_failclean++; 1523 continue; 1524 } 1525 } 1526 1527 work = 1; 1528 1529 /* 1530 * Atomically move the dirty list aside. 1531 */ 1532 do { 1533 dirty = dcpu->dtdsc_dirty; 1534 1535 /* 1536 * Before we zap the dirty list, set the rinsing list. 1537 * (This allows for a potential assertion in 1538 * dtrace_dynvar(): if a free dynamic variable appears 1539 * on a hash chain, either the dirty list or the 1540 * rinsing list for some CPU must be non-NULL.) 1541 */ 1542 *rinsep = dirty; 1543 dtrace_membar_producer(); 1544 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1545 dirty, NULL) != dirty); 1546 } 1547 1548 if (!work) { 1549 /* 1550 * We have no work to do; we can simply return. 1551 */ 1552 return; 1553 } 1554 1555 dtrace_sync(); 1556 1557 for (i = 0; i < NCPU; i++) { 1558 dcpu = &dstate->dtds_percpu[i]; 1559 1560 if (dcpu->dtdsc_rinsing == NULL) 1561 continue; 1562 1563 /* 1564 * We are now guaranteed that no hash chain contains a pointer 1565 * into this dirty list; we can make it clean. 1566 */ 1567 ASSERT(dcpu->dtdsc_clean == NULL); 1568 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1569 dcpu->dtdsc_rinsing = NULL; 1570 } 1571 1572 /* 1573 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1574 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1575 * This prevents a race whereby a CPU incorrectly decides that 1576 * the state should be something other than DTRACE_DSTATE_CLEAN 1577 * after dtrace_dynvar_clean() has completed. 1578 */ 1579 dtrace_sync(); 1580 1581 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1582 } 1583 1584 /* 1585 * Depending on the value of the op parameter, this function looks-up, 1586 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1587 * allocation is requested, this function will return a pointer to a 1588 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1589 * variable can be allocated. If NULL is returned, the appropriate counter 1590 * will be incremented. 1591 */ 1592 dtrace_dynvar_t * 1593 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1594 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1595 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1596 { 1597 uint64_t hashval = DTRACE_DYNHASH_VALID; 1598 dtrace_dynhash_t *hash = dstate->dtds_hash; 1599 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1600 processorid_t me = CPU->cpu_id, cpu = me; 1601 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1602 size_t bucket, ksize; 1603 size_t chunksize = dstate->dtds_chunksize; 1604 uintptr_t kdata, lock, nstate; 1605 uint_t i; 1606 1607 ASSERT(nkeys != 0); 1608 1609 /* 1610 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1611 * algorithm. For the by-value portions, we perform the algorithm in 1612 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1613 * bit, and seems to have only a minute effect on distribution. For 1614 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1615 * over each referenced byte. It's painful to do this, but it's much 1616 * better than pathological hash distribution. The efficacy of the 1617 * hashing algorithm (and a comparison with other algorithms) may be 1618 * found by running the ::dtrace_dynstat MDB dcmd. 1619 */ 1620 for (i = 0; i < nkeys; i++) { 1621 if (key[i].dttk_size == 0) { 1622 uint64_t val = key[i].dttk_value; 1623 1624 hashval += (val >> 48) & 0xffff; 1625 hashval += (hashval << 10); 1626 hashval ^= (hashval >> 6); 1627 1628 hashval += (val >> 32) & 0xffff; 1629 hashval += (hashval << 10); 1630 hashval ^= (hashval >> 6); 1631 1632 hashval += (val >> 16) & 0xffff; 1633 hashval += (hashval << 10); 1634 hashval ^= (hashval >> 6); 1635 1636 hashval += val & 0xffff; 1637 hashval += (hashval << 10); 1638 hashval ^= (hashval >> 6); 1639 } else { 1640 /* 1641 * This is incredibly painful, but it beats the hell 1642 * out of the alternative. 1643 */ 1644 uint64_t j, size = key[i].dttk_size; 1645 uintptr_t base = (uintptr_t)key[i].dttk_value; 1646 1647 if (!dtrace_canload(base, size, mstate, vstate)) 1648 break; 1649 1650 for (j = 0; j < size; j++) { 1651 hashval += dtrace_load8(base + j); 1652 hashval += (hashval << 10); 1653 hashval ^= (hashval >> 6); 1654 } 1655 } 1656 } 1657 1658 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1659 return (NULL); 1660 1661 hashval += (hashval << 3); 1662 hashval ^= (hashval >> 11); 1663 hashval += (hashval << 15); 1664 1665 /* 1666 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1667 * comes out to be one of our two sentinel hash values. If this 1668 * actually happens, we set the hashval to be a value known to be a 1669 * non-sentinel value. 1670 */ 1671 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1672 hashval = DTRACE_DYNHASH_VALID; 1673 1674 /* 1675 * Yes, it's painful to do a divide here. If the cycle count becomes 1676 * important here, tricks can be pulled to reduce it. (However, it's 1677 * critical that hash collisions be kept to an absolute minimum; 1678 * they're much more painful than a divide.) It's better to have a 1679 * solution that generates few collisions and still keeps things 1680 * relatively simple. 1681 */ 1682 bucket = hashval % dstate->dtds_hashsize; 1683 1684 if (op == DTRACE_DYNVAR_DEALLOC) { 1685 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1686 1687 for (;;) { 1688 while ((lock = *lockp) & 1) 1689 continue; 1690 1691 if (dtrace_casptr((void *)lockp, 1692 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1693 break; 1694 } 1695 1696 dtrace_membar_producer(); 1697 } 1698 1699 top: 1700 prev = NULL; 1701 lock = hash[bucket].dtdh_lock; 1702 1703 dtrace_membar_consumer(); 1704 1705 start = hash[bucket].dtdh_chain; 1706 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1707 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1708 op != DTRACE_DYNVAR_DEALLOC)); 1709 1710 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1711 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1712 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1713 1714 if (dvar->dtdv_hashval != hashval) { 1715 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1716 /* 1717 * We've reached the sink, and therefore the 1718 * end of the hash chain; we can kick out of 1719 * the loop knowing that we have seen a valid 1720 * snapshot of state. 1721 */ 1722 ASSERT(dvar->dtdv_next == NULL); 1723 ASSERT(dvar == &dtrace_dynhash_sink); 1724 break; 1725 } 1726 1727 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1728 /* 1729 * We've gone off the rails: somewhere along 1730 * the line, one of the members of this hash 1731 * chain was deleted. Note that we could also 1732 * detect this by simply letting this loop run 1733 * to completion, as we would eventually hit 1734 * the end of the dirty list. However, we 1735 * want to avoid running the length of the 1736 * dirty list unnecessarily (it might be quite 1737 * long), so we catch this as early as 1738 * possible by detecting the hash marker. In 1739 * this case, we simply set dvar to NULL and 1740 * break; the conditional after the loop will 1741 * send us back to top. 1742 */ 1743 dvar = NULL; 1744 break; 1745 } 1746 1747 goto next; 1748 } 1749 1750 if (dtuple->dtt_nkeys != nkeys) 1751 goto next; 1752 1753 for (i = 0; i < nkeys; i++, dkey++) { 1754 if (dkey->dttk_size != key[i].dttk_size) 1755 goto next; /* size or type mismatch */ 1756 1757 if (dkey->dttk_size != 0) { 1758 if (dtrace_bcmp( 1759 (void *)(uintptr_t)key[i].dttk_value, 1760 (void *)(uintptr_t)dkey->dttk_value, 1761 dkey->dttk_size)) 1762 goto next; 1763 } else { 1764 if (dkey->dttk_value != key[i].dttk_value) 1765 goto next; 1766 } 1767 } 1768 1769 if (op != DTRACE_DYNVAR_DEALLOC) 1770 return (dvar); 1771 1772 ASSERT(dvar->dtdv_next == NULL || 1773 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1774 1775 if (prev != NULL) { 1776 ASSERT(hash[bucket].dtdh_chain != dvar); 1777 ASSERT(start != dvar); 1778 ASSERT(prev->dtdv_next == dvar); 1779 prev->dtdv_next = dvar->dtdv_next; 1780 } else { 1781 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1782 start, dvar->dtdv_next) != start) { 1783 /* 1784 * We have failed to atomically swing the 1785 * hash table head pointer, presumably because 1786 * of a conflicting allocation on another CPU. 1787 * We need to reread the hash chain and try 1788 * again. 1789 */ 1790 goto top; 1791 } 1792 } 1793 1794 dtrace_membar_producer(); 1795 1796 /* 1797 * Now set the hash value to indicate that it's free. 1798 */ 1799 ASSERT(hash[bucket].dtdh_chain != dvar); 1800 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1801 1802 dtrace_membar_producer(); 1803 1804 /* 1805 * Set the next pointer to point at the dirty list, and 1806 * atomically swing the dirty pointer to the newly freed dvar. 1807 */ 1808 do { 1809 next = dcpu->dtdsc_dirty; 1810 dvar->dtdv_next = next; 1811 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1812 1813 /* 1814 * Finally, unlock this hash bucket. 1815 */ 1816 ASSERT(hash[bucket].dtdh_lock == lock); 1817 ASSERT(lock & 1); 1818 hash[bucket].dtdh_lock++; 1819 1820 return (NULL); 1821 next: 1822 prev = dvar; 1823 continue; 1824 } 1825 1826 if (dvar == NULL) { 1827 /* 1828 * If dvar is NULL, it is because we went off the rails: 1829 * one of the elements that we traversed in the hash chain 1830 * was deleted while we were traversing it. In this case, 1831 * we assert that we aren't doing a dealloc (deallocs lock 1832 * the hash bucket to prevent themselves from racing with 1833 * one another), and retry the hash chain traversal. 1834 */ 1835 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1836 goto top; 1837 } 1838 1839 if (op != DTRACE_DYNVAR_ALLOC) { 1840 /* 1841 * If we are not to allocate a new variable, we want to 1842 * return NULL now. Before we return, check that the value 1843 * of the lock word hasn't changed. If it has, we may have 1844 * seen an inconsistent snapshot. 1845 */ 1846 if (op == DTRACE_DYNVAR_NOALLOC) { 1847 if (hash[bucket].dtdh_lock != lock) 1848 goto top; 1849 } else { 1850 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1851 ASSERT(hash[bucket].dtdh_lock == lock); 1852 ASSERT(lock & 1); 1853 hash[bucket].dtdh_lock++; 1854 } 1855 1856 return (NULL); 1857 } 1858 1859 /* 1860 * We need to allocate a new dynamic variable. The size we need is the 1861 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1862 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1863 * the size of any referred-to data (dsize). We then round the final 1864 * size up to the chunksize for allocation. 1865 */ 1866 for (ksize = 0, i = 0; i < nkeys; i++) 1867 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1868 1869 /* 1870 * This should be pretty much impossible, but could happen if, say, 1871 * strange DIF specified the tuple. Ideally, this should be an 1872 * assertion and not an error condition -- but that requires that the 1873 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1874 * bullet-proof. (That is, it must not be able to be fooled by 1875 * malicious DIF.) Given the lack of backwards branches in DIF, 1876 * solving this would presumably not amount to solving the Halting 1877 * Problem -- but it still seems awfully hard. 1878 */ 1879 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1880 ksize + dsize > chunksize) { 1881 dcpu->dtdsc_drops++; 1882 return (NULL); 1883 } 1884 1885 nstate = DTRACE_DSTATE_EMPTY; 1886 1887 do { 1888 retry: 1889 free = dcpu->dtdsc_free; 1890 1891 if (free == NULL) { 1892 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1893 void *rval; 1894 1895 if (clean == NULL) { 1896 /* 1897 * We're out of dynamic variable space on 1898 * this CPU. Unless we have tried all CPUs, 1899 * we'll try to allocate from a different 1900 * CPU. 1901 */ 1902 switch (dstate->dtds_state) { 1903 case DTRACE_DSTATE_CLEAN: { 1904 void *sp = &dstate->dtds_state; 1905 1906 if (++cpu >= NCPU) 1907 cpu = 0; 1908 1909 if (dcpu->dtdsc_dirty != NULL && 1910 nstate == DTRACE_DSTATE_EMPTY) 1911 nstate = DTRACE_DSTATE_DIRTY; 1912 1913 if (dcpu->dtdsc_rinsing != NULL) 1914 nstate = DTRACE_DSTATE_RINSING; 1915 1916 dcpu = &dstate->dtds_percpu[cpu]; 1917 1918 if (cpu != me) 1919 goto retry; 1920 1921 (void) dtrace_cas32(sp, 1922 DTRACE_DSTATE_CLEAN, nstate); 1923 1924 /* 1925 * To increment the correct bean 1926 * counter, take another lap. 1927 */ 1928 goto retry; 1929 } 1930 1931 case DTRACE_DSTATE_DIRTY: 1932 dcpu->dtdsc_dirty_drops++; 1933 break; 1934 1935 case DTRACE_DSTATE_RINSING: 1936 dcpu->dtdsc_rinsing_drops++; 1937 break; 1938 1939 case DTRACE_DSTATE_EMPTY: 1940 dcpu->dtdsc_drops++; 1941 break; 1942 } 1943 1944 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1945 return (NULL); 1946 } 1947 1948 /* 1949 * The clean list appears to be non-empty. We want to 1950 * move the clean list to the free list; we start by 1951 * moving the clean pointer aside. 1952 */ 1953 if (dtrace_casptr(&dcpu->dtdsc_clean, 1954 clean, NULL) != clean) { 1955 /* 1956 * We are in one of two situations: 1957 * 1958 * (a) The clean list was switched to the 1959 * free list by another CPU. 1960 * 1961 * (b) The clean list was added to by the 1962 * cleansing cyclic. 1963 * 1964 * In either of these situations, we can 1965 * just reattempt the free list allocation. 1966 */ 1967 goto retry; 1968 } 1969 1970 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1971 1972 /* 1973 * Now we'll move the clean list to our free list. 1974 * It's impossible for this to fail: the only way 1975 * the free list can be updated is through this 1976 * code path, and only one CPU can own the clean list. 1977 * Thus, it would only be possible for this to fail if 1978 * this code were racing with dtrace_dynvar_clean(). 1979 * (That is, if dtrace_dynvar_clean() updated the clean 1980 * list, and we ended up racing to update the free 1981 * list.) This race is prevented by the dtrace_sync() 1982 * in dtrace_dynvar_clean() -- which flushes the 1983 * owners of the clean lists out before resetting 1984 * the clean lists. 1985 */ 1986 dcpu = &dstate->dtds_percpu[me]; 1987 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1988 ASSERT(rval == NULL); 1989 goto retry; 1990 } 1991 1992 dvar = free; 1993 new_free = dvar->dtdv_next; 1994 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1995 1996 /* 1997 * We have now allocated a new chunk. We copy the tuple keys into the 1998 * tuple array and copy any referenced key data into the data space 1999 * following the tuple array. As we do this, we relocate dttk_value 2000 * in the final tuple to point to the key data address in the chunk. 2001 */ 2002 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2003 dvar->dtdv_data = (void *)(kdata + ksize); 2004 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2005 2006 for (i = 0; i < nkeys; i++) { 2007 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2008 size_t kesize = key[i].dttk_size; 2009 2010 if (kesize != 0) { 2011 dtrace_bcopy( 2012 (const void *)(uintptr_t)key[i].dttk_value, 2013 (void *)kdata, kesize); 2014 dkey->dttk_value = kdata; 2015 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2016 } else { 2017 dkey->dttk_value = key[i].dttk_value; 2018 } 2019 2020 dkey->dttk_size = kesize; 2021 } 2022 2023 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2024 dvar->dtdv_hashval = hashval; 2025 dvar->dtdv_next = start; 2026 2027 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2028 return (dvar); 2029 2030 /* 2031 * The cas has failed. Either another CPU is adding an element to 2032 * this hash chain, or another CPU is deleting an element from this 2033 * hash chain. The simplest way to deal with both of these cases 2034 * (though not necessarily the most efficient) is to free our 2035 * allocated block and tail-call ourselves. Note that the free is 2036 * to the dirty list and _not_ to the free list. This is to prevent 2037 * races with allocators, above. 2038 */ 2039 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2040 2041 dtrace_membar_producer(); 2042 2043 do { 2044 free = dcpu->dtdsc_dirty; 2045 dvar->dtdv_next = free; 2046 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2047 2048 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2049 } 2050 2051 /*ARGSUSED*/ 2052 static void 2053 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2054 { 2055 if ((int64_t)nval < (int64_t)*oval) 2056 *oval = nval; 2057 } 2058 2059 /*ARGSUSED*/ 2060 static void 2061 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2062 { 2063 if ((int64_t)nval > (int64_t)*oval) 2064 *oval = nval; 2065 } 2066 2067 static void 2068 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2069 { 2070 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2071 int64_t val = (int64_t)nval; 2072 2073 if (val < 0) { 2074 for (i = 0; i < zero; i++) { 2075 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2076 quanta[i] += incr; 2077 return; 2078 } 2079 } 2080 } else { 2081 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2082 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2083 quanta[i - 1] += incr; 2084 return; 2085 } 2086 } 2087 2088 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2089 return; 2090 } 2091 2092 ASSERT(0); 2093 } 2094 2095 static void 2096 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2097 { 2098 uint64_t arg = *lquanta++; 2099 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2100 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2101 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2102 int32_t val = (int32_t)nval, level; 2103 2104 ASSERT(step != 0); 2105 ASSERT(levels != 0); 2106 2107 if (val < base) { 2108 /* 2109 * This is an underflow. 2110 */ 2111 lquanta[0] += incr; 2112 return; 2113 } 2114 2115 level = (val - base) / step; 2116 2117 if (level < levels) { 2118 lquanta[level + 1] += incr; 2119 return; 2120 } 2121 2122 /* 2123 * This is an overflow. 2124 */ 2125 lquanta[levels + 1] += incr; 2126 } 2127 2128 static int 2129 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2130 uint16_t high, uint16_t nsteps, int64_t value) 2131 { 2132 int64_t this = 1, last, next; 2133 int base = 1, order; 2134 2135 ASSERT(factor <= nsteps); 2136 ASSERT(nsteps % factor == 0); 2137 2138 for (order = 0; order < low; order++) 2139 this *= factor; 2140 2141 /* 2142 * If our value is less than our factor taken to the power of the 2143 * low order of magnitude, it goes into the zeroth bucket. 2144 */ 2145 if (value < (last = this)) 2146 return (0); 2147 2148 for (this *= factor; order <= high; order++) { 2149 int nbuckets = this > nsteps ? nsteps : this; 2150 2151 if ((next = this * factor) < this) { 2152 /* 2153 * We should not generally get log/linear quantizations 2154 * with a high magnitude that allows 64-bits to 2155 * overflow, but we nonetheless protect against this 2156 * by explicitly checking for overflow, and clamping 2157 * our value accordingly. 2158 */ 2159 value = this - 1; 2160 } 2161 2162 if (value < this) { 2163 /* 2164 * If our value lies within this order of magnitude, 2165 * determine its position by taking the offset within 2166 * the order of magnitude, dividing by the bucket 2167 * width, and adding to our (accumulated) base. 2168 */ 2169 return (base + (value - last) / (this / nbuckets)); 2170 } 2171 2172 base += nbuckets - (nbuckets / factor); 2173 last = this; 2174 this = next; 2175 } 2176 2177 /* 2178 * Our value is greater than or equal to our factor taken to the 2179 * power of one plus the high magnitude -- return the top bucket. 2180 */ 2181 return (base); 2182 } 2183 2184 static void 2185 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2186 { 2187 uint64_t arg = *llquanta++; 2188 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2189 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2190 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2191 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2192 2193 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2194 low, high, nsteps, nval)] += incr; 2195 } 2196 2197 /*ARGSUSED*/ 2198 static void 2199 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2200 { 2201 data[0]++; 2202 data[1] += nval; 2203 } 2204 2205 /*ARGSUSED*/ 2206 static void 2207 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2208 { 2209 int64_t snval = (int64_t)nval; 2210 uint64_t tmp[2]; 2211 2212 data[0]++; 2213 data[1] += nval; 2214 2215 /* 2216 * What we want to say here is: 2217 * 2218 * data[2] += nval * nval; 2219 * 2220 * But given that nval is 64-bit, we could easily overflow, so 2221 * we do this as 128-bit arithmetic. 2222 */ 2223 if (snval < 0) 2224 snval = -snval; 2225 2226 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2227 dtrace_add_128(data + 2, tmp, data + 2); 2228 } 2229 2230 /*ARGSUSED*/ 2231 static void 2232 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2233 { 2234 *oval = *oval + 1; 2235 } 2236 2237 /*ARGSUSED*/ 2238 static void 2239 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2240 { 2241 *oval += nval; 2242 } 2243 2244 /* 2245 * Aggregate given the tuple in the principal data buffer, and the aggregating 2246 * action denoted by the specified dtrace_aggregation_t. The aggregation 2247 * buffer is specified as the buf parameter. This routine does not return 2248 * failure; if there is no space in the aggregation buffer, the data will be 2249 * dropped, and a corresponding counter incremented. 2250 */ 2251 static void 2252 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2253 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2254 { 2255 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2256 uint32_t i, ndx, size, fsize; 2257 uint32_t align = sizeof (uint64_t) - 1; 2258 dtrace_aggbuffer_t *agb; 2259 dtrace_aggkey_t *key; 2260 uint32_t hashval = 0, limit, isstr; 2261 caddr_t tomax, data, kdata; 2262 dtrace_actkind_t action; 2263 dtrace_action_t *act; 2264 uintptr_t offs; 2265 2266 if (buf == NULL) 2267 return; 2268 2269 if (!agg->dtag_hasarg) { 2270 /* 2271 * Currently, only quantize() and lquantize() take additional 2272 * arguments, and they have the same semantics: an increment 2273 * value that defaults to 1 when not present. If additional 2274 * aggregating actions take arguments, the setting of the 2275 * default argument value will presumably have to become more 2276 * sophisticated... 2277 */ 2278 arg = 1; 2279 } 2280 2281 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2282 size = rec->dtrd_offset - agg->dtag_base; 2283 fsize = size + rec->dtrd_size; 2284 2285 ASSERT(dbuf->dtb_tomax != NULL); 2286 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2287 2288 if ((tomax = buf->dtb_tomax) == NULL) { 2289 dtrace_buffer_drop(buf); 2290 return; 2291 } 2292 2293 /* 2294 * The metastructure is always at the bottom of the buffer. 2295 */ 2296 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2297 sizeof (dtrace_aggbuffer_t)); 2298 2299 if (buf->dtb_offset == 0) { 2300 /* 2301 * We just kludge up approximately 1/8th of the size to be 2302 * buckets. If this guess ends up being routinely 2303 * off-the-mark, we may need to dynamically readjust this 2304 * based on past performance. 2305 */ 2306 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2307 2308 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2309 (uintptr_t)tomax || hashsize == 0) { 2310 /* 2311 * We've been given a ludicrously small buffer; 2312 * increment our drop count and leave. 2313 */ 2314 dtrace_buffer_drop(buf); 2315 return; 2316 } 2317 2318 /* 2319 * And now, a pathetic attempt to try to get a an odd (or 2320 * perchance, a prime) hash size for better hash distribution. 2321 */ 2322 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2323 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2324 2325 agb->dtagb_hashsize = hashsize; 2326 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2327 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2328 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2329 2330 for (i = 0; i < agb->dtagb_hashsize; i++) 2331 agb->dtagb_hash[i] = NULL; 2332 } 2333 2334 ASSERT(agg->dtag_first != NULL); 2335 ASSERT(agg->dtag_first->dta_intuple); 2336 2337 /* 2338 * Calculate the hash value based on the key. Note that we _don't_ 2339 * include the aggid in the hashing (but we will store it as part of 2340 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2341 * algorithm: a simple, quick algorithm that has no known funnels, and 2342 * gets good distribution in practice. The efficacy of the hashing 2343 * algorithm (and a comparison with other algorithms) may be found by 2344 * running the ::dtrace_aggstat MDB dcmd. 2345 */ 2346 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2347 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2348 limit = i + act->dta_rec.dtrd_size; 2349 ASSERT(limit <= size); 2350 isstr = DTRACEACT_ISSTRING(act); 2351 2352 for (; i < limit; i++) { 2353 hashval += data[i]; 2354 hashval += (hashval << 10); 2355 hashval ^= (hashval >> 6); 2356 2357 if (isstr && data[i] == '\0') 2358 break; 2359 } 2360 } 2361 2362 hashval += (hashval << 3); 2363 hashval ^= (hashval >> 11); 2364 hashval += (hashval << 15); 2365 2366 /* 2367 * Yes, the divide here is expensive -- but it's generally the least 2368 * of the performance issues given the amount of data that we iterate 2369 * over to compute hash values, compare data, etc. 2370 */ 2371 ndx = hashval % agb->dtagb_hashsize; 2372 2373 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2374 ASSERT((caddr_t)key >= tomax); 2375 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2376 2377 if (hashval != key->dtak_hashval || key->dtak_size != size) 2378 continue; 2379 2380 kdata = key->dtak_data; 2381 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2382 2383 for (act = agg->dtag_first; act->dta_intuple; 2384 act = act->dta_next) { 2385 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2386 limit = i + act->dta_rec.dtrd_size; 2387 ASSERT(limit <= size); 2388 isstr = DTRACEACT_ISSTRING(act); 2389 2390 for (; i < limit; i++) { 2391 if (kdata[i] != data[i]) 2392 goto next; 2393 2394 if (isstr && data[i] == '\0') 2395 break; 2396 } 2397 } 2398 2399 if (action != key->dtak_action) { 2400 /* 2401 * We are aggregating on the same value in the same 2402 * aggregation with two different aggregating actions. 2403 * (This should have been picked up in the compiler, 2404 * so we may be dealing with errant or devious DIF.) 2405 * This is an error condition; we indicate as much, 2406 * and return. 2407 */ 2408 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2409 return; 2410 } 2411 2412 /* 2413 * This is a hit: we need to apply the aggregator to 2414 * the value at this key. 2415 */ 2416 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2417 return; 2418 next: 2419 continue; 2420 } 2421 2422 /* 2423 * We didn't find it. We need to allocate some zero-filled space, 2424 * link it into the hash table appropriately, and apply the aggregator 2425 * to the (zero-filled) value. 2426 */ 2427 offs = buf->dtb_offset; 2428 while (offs & (align - 1)) 2429 offs += sizeof (uint32_t); 2430 2431 /* 2432 * If we don't have enough room to both allocate a new key _and_ 2433 * its associated data, increment the drop count and return. 2434 */ 2435 if ((uintptr_t)tomax + offs + fsize > 2436 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2437 dtrace_buffer_drop(buf); 2438 return; 2439 } 2440 2441 /*CONSTCOND*/ 2442 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2443 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2444 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2445 2446 key->dtak_data = kdata = tomax + offs; 2447 buf->dtb_offset = offs + fsize; 2448 2449 /* 2450 * Now copy the data across. 2451 */ 2452 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2453 2454 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2455 kdata[i] = data[i]; 2456 2457 /* 2458 * Because strings are not zeroed out by default, we need to iterate 2459 * looking for actions that store strings, and we need to explicitly 2460 * pad these strings out with zeroes. 2461 */ 2462 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2463 int nul; 2464 2465 if (!DTRACEACT_ISSTRING(act)) 2466 continue; 2467 2468 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2469 limit = i + act->dta_rec.dtrd_size; 2470 ASSERT(limit <= size); 2471 2472 for (nul = 0; i < limit; i++) { 2473 if (nul) { 2474 kdata[i] = '\0'; 2475 continue; 2476 } 2477 2478 if (data[i] != '\0') 2479 continue; 2480 2481 nul = 1; 2482 } 2483 } 2484 2485 for (i = size; i < fsize; i++) 2486 kdata[i] = 0; 2487 2488 key->dtak_hashval = hashval; 2489 key->dtak_size = size; 2490 key->dtak_action = action; 2491 key->dtak_next = agb->dtagb_hash[ndx]; 2492 agb->dtagb_hash[ndx] = key; 2493 2494 /* 2495 * Finally, apply the aggregator. 2496 */ 2497 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2498 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2499 } 2500 2501 /* 2502 * Given consumer state, this routine finds a speculation in the INACTIVE 2503 * state and transitions it into the ACTIVE state. If there is no speculation 2504 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2505 * incremented -- it is up to the caller to take appropriate action. 2506 */ 2507 static int 2508 dtrace_speculation(dtrace_state_t *state) 2509 { 2510 int i = 0; 2511 dtrace_speculation_state_t current; 2512 uint32_t *stat = &state->dts_speculations_unavail, count; 2513 2514 while (i < state->dts_nspeculations) { 2515 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2516 2517 current = spec->dtsp_state; 2518 2519 if (current != DTRACESPEC_INACTIVE) { 2520 if (current == DTRACESPEC_COMMITTINGMANY || 2521 current == DTRACESPEC_COMMITTING || 2522 current == DTRACESPEC_DISCARDING) 2523 stat = &state->dts_speculations_busy; 2524 i++; 2525 continue; 2526 } 2527 2528 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2529 current, DTRACESPEC_ACTIVE) == current) 2530 return (i + 1); 2531 } 2532 2533 /* 2534 * We couldn't find a speculation. If we found as much as a single 2535 * busy speculation buffer, we'll attribute this failure as "busy" 2536 * instead of "unavail". 2537 */ 2538 do { 2539 count = *stat; 2540 } while (dtrace_cas32(stat, count, count + 1) != count); 2541 2542 return (0); 2543 } 2544 2545 /* 2546 * This routine commits an active speculation. If the specified speculation 2547 * is not in a valid state to perform a commit(), this routine will silently do 2548 * nothing. The state of the specified speculation is transitioned according 2549 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2550 */ 2551 static void 2552 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2553 dtrace_specid_t which) 2554 { 2555 dtrace_speculation_t *spec; 2556 dtrace_buffer_t *src, *dest; 2557 uintptr_t daddr, saddr, dlimit, slimit; 2558 dtrace_speculation_state_t current, new; 2559 intptr_t offs; 2560 uint64_t timestamp; 2561 2562 if (which == 0) 2563 return; 2564 2565 if (which > state->dts_nspeculations) { 2566 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2567 return; 2568 } 2569 2570 spec = &state->dts_speculations[which - 1]; 2571 src = &spec->dtsp_buffer[cpu]; 2572 dest = &state->dts_buffer[cpu]; 2573 2574 do { 2575 current = spec->dtsp_state; 2576 2577 if (current == DTRACESPEC_COMMITTINGMANY) 2578 break; 2579 2580 switch (current) { 2581 case DTRACESPEC_INACTIVE: 2582 case DTRACESPEC_DISCARDING: 2583 return; 2584 2585 case DTRACESPEC_COMMITTING: 2586 /* 2587 * This is only possible if we are (a) commit()'ing 2588 * without having done a prior speculate() on this CPU 2589 * and (b) racing with another commit() on a different 2590 * CPU. There's nothing to do -- we just assert that 2591 * our offset is 0. 2592 */ 2593 ASSERT(src->dtb_offset == 0); 2594 return; 2595 2596 case DTRACESPEC_ACTIVE: 2597 new = DTRACESPEC_COMMITTING; 2598 break; 2599 2600 case DTRACESPEC_ACTIVEONE: 2601 /* 2602 * This speculation is active on one CPU. If our 2603 * buffer offset is non-zero, we know that the one CPU 2604 * must be us. Otherwise, we are committing on a 2605 * different CPU from the speculate(), and we must 2606 * rely on being asynchronously cleaned. 2607 */ 2608 if (src->dtb_offset != 0) { 2609 new = DTRACESPEC_COMMITTING; 2610 break; 2611 } 2612 /*FALLTHROUGH*/ 2613 2614 case DTRACESPEC_ACTIVEMANY: 2615 new = DTRACESPEC_COMMITTINGMANY; 2616 break; 2617 2618 default: 2619 ASSERT(0); 2620 } 2621 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2622 current, new) != current); 2623 2624 /* 2625 * We have set the state to indicate that we are committing this 2626 * speculation. Now reserve the necessary space in the destination 2627 * buffer. 2628 */ 2629 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2630 sizeof (uint64_t), state, NULL)) < 0) { 2631 dtrace_buffer_drop(dest); 2632 goto out; 2633 } 2634 2635 /* 2636 * We have sufficient space to copy the speculative buffer into the 2637 * primary buffer. First, modify the speculative buffer, filling 2638 * in the timestamp of all entries with the current time. The data 2639 * must have the commit() time rather than the time it was traced, 2640 * so that all entries in the primary buffer are in timestamp order. 2641 */ 2642 timestamp = dtrace_gethrtime(); 2643 saddr = (uintptr_t)src->dtb_tomax; 2644 slimit = saddr + src->dtb_offset; 2645 while (saddr < slimit) { 2646 size_t size; 2647 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2648 2649 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2650 saddr += sizeof (dtrace_epid_t); 2651 continue; 2652 } 2653 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2654 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2655 2656 ASSERT3U(saddr + size, <=, slimit); 2657 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2658 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2659 2660 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2661 2662 saddr += size; 2663 } 2664 2665 /* 2666 * Copy the buffer across. (Note that this is a 2667 * highly subobtimal bcopy(); in the unlikely event that this becomes 2668 * a serious performance issue, a high-performance DTrace-specific 2669 * bcopy() should obviously be invented.) 2670 */ 2671 daddr = (uintptr_t)dest->dtb_tomax + offs; 2672 dlimit = daddr + src->dtb_offset; 2673 saddr = (uintptr_t)src->dtb_tomax; 2674 2675 /* 2676 * First, the aligned portion. 2677 */ 2678 while (dlimit - daddr >= sizeof (uint64_t)) { 2679 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2680 2681 daddr += sizeof (uint64_t); 2682 saddr += sizeof (uint64_t); 2683 } 2684 2685 /* 2686 * Now any left-over bit... 2687 */ 2688 while (dlimit - daddr) 2689 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2690 2691 /* 2692 * Finally, commit the reserved space in the destination buffer. 2693 */ 2694 dest->dtb_offset = offs + src->dtb_offset; 2695 2696 out: 2697 /* 2698 * If we're lucky enough to be the only active CPU on this speculation 2699 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2700 */ 2701 if (current == DTRACESPEC_ACTIVE || 2702 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2703 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2704 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2705 2706 ASSERT(rval == DTRACESPEC_COMMITTING); 2707 } 2708 2709 src->dtb_offset = 0; 2710 src->dtb_xamot_drops += src->dtb_drops; 2711 src->dtb_drops = 0; 2712 } 2713 2714 /* 2715 * This routine discards an active speculation. If the specified speculation 2716 * is not in a valid state to perform a discard(), this routine will silently 2717 * do nothing. The state of the specified speculation is transitioned 2718 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2719 */ 2720 static void 2721 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2722 dtrace_specid_t which) 2723 { 2724 dtrace_speculation_t *spec; 2725 dtrace_speculation_state_t current, new; 2726 dtrace_buffer_t *buf; 2727 2728 if (which == 0) 2729 return; 2730 2731 if (which > state->dts_nspeculations) { 2732 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2733 return; 2734 } 2735 2736 spec = &state->dts_speculations[which - 1]; 2737 buf = &spec->dtsp_buffer[cpu]; 2738 2739 do { 2740 current = spec->dtsp_state; 2741 2742 switch (current) { 2743 case DTRACESPEC_INACTIVE: 2744 case DTRACESPEC_COMMITTINGMANY: 2745 case DTRACESPEC_COMMITTING: 2746 case DTRACESPEC_DISCARDING: 2747 return; 2748 2749 case DTRACESPEC_ACTIVE: 2750 case DTRACESPEC_ACTIVEMANY: 2751 new = DTRACESPEC_DISCARDING; 2752 break; 2753 2754 case DTRACESPEC_ACTIVEONE: 2755 if (buf->dtb_offset != 0) { 2756 new = DTRACESPEC_INACTIVE; 2757 } else { 2758 new = DTRACESPEC_DISCARDING; 2759 } 2760 break; 2761 2762 default: 2763 ASSERT(0); 2764 } 2765 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2766 current, new) != current); 2767 2768 buf->dtb_offset = 0; 2769 buf->dtb_drops = 0; 2770 } 2771 2772 /* 2773 * Note: not called from probe context. This function is called 2774 * asynchronously from cross call context to clean any speculations that are 2775 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2776 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2777 * speculation. 2778 */ 2779 static void 2780 dtrace_speculation_clean_here(dtrace_state_t *state) 2781 { 2782 dtrace_icookie_t cookie; 2783 processorid_t cpu = CPU->cpu_id; 2784 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2785 dtrace_specid_t i; 2786 2787 cookie = dtrace_interrupt_disable(); 2788 2789 if (dest->dtb_tomax == NULL) { 2790 dtrace_interrupt_enable(cookie); 2791 return; 2792 } 2793 2794 for (i = 0; i < state->dts_nspeculations; i++) { 2795 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2796 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2797 2798 if (src->dtb_tomax == NULL) 2799 continue; 2800 2801 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2802 src->dtb_offset = 0; 2803 continue; 2804 } 2805 2806 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2807 continue; 2808 2809 if (src->dtb_offset == 0) 2810 continue; 2811 2812 dtrace_speculation_commit(state, cpu, i + 1); 2813 } 2814 2815 dtrace_interrupt_enable(cookie); 2816 } 2817 2818 /* 2819 * Note: not called from probe context. This function is called 2820 * asynchronously (and at a regular interval) to clean any speculations that 2821 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2822 * is work to be done, it cross calls all CPUs to perform that work; 2823 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2824 * INACTIVE state until they have been cleaned by all CPUs. 2825 */ 2826 static void 2827 dtrace_speculation_clean(dtrace_state_t *state) 2828 { 2829 int work = 0, rv; 2830 dtrace_specid_t i; 2831 2832 for (i = 0; i < state->dts_nspeculations; i++) { 2833 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2834 2835 ASSERT(!spec->dtsp_cleaning); 2836 2837 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2838 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2839 continue; 2840 2841 work++; 2842 spec->dtsp_cleaning = 1; 2843 } 2844 2845 if (!work) 2846 return; 2847 2848 dtrace_xcall(DTRACE_CPUALL, 2849 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2850 2851 /* 2852 * We now know that all CPUs have committed or discarded their 2853 * speculation buffers, as appropriate. We can now set the state 2854 * to inactive. 2855 */ 2856 for (i = 0; i < state->dts_nspeculations; i++) { 2857 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2858 dtrace_speculation_state_t current, new; 2859 2860 if (!spec->dtsp_cleaning) 2861 continue; 2862 2863 current = spec->dtsp_state; 2864 ASSERT(current == DTRACESPEC_DISCARDING || 2865 current == DTRACESPEC_COMMITTINGMANY); 2866 2867 new = DTRACESPEC_INACTIVE; 2868 2869 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2870 ASSERT(rv == current); 2871 spec->dtsp_cleaning = 0; 2872 } 2873 } 2874 2875 /* 2876 * Called as part of a speculate() to get the speculative buffer associated 2877 * with a given speculation. Returns NULL if the specified speculation is not 2878 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2879 * the active CPU is not the specified CPU -- the speculation will be 2880 * atomically transitioned into the ACTIVEMANY state. 2881 */ 2882 static dtrace_buffer_t * 2883 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2884 dtrace_specid_t which) 2885 { 2886 dtrace_speculation_t *spec; 2887 dtrace_speculation_state_t current, new; 2888 dtrace_buffer_t *buf; 2889 2890 if (which == 0) 2891 return (NULL); 2892 2893 if (which > state->dts_nspeculations) { 2894 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2895 return (NULL); 2896 } 2897 2898 spec = &state->dts_speculations[which - 1]; 2899 buf = &spec->dtsp_buffer[cpuid]; 2900 2901 do { 2902 current = spec->dtsp_state; 2903 2904 switch (current) { 2905 case DTRACESPEC_INACTIVE: 2906 case DTRACESPEC_COMMITTINGMANY: 2907 case DTRACESPEC_DISCARDING: 2908 return (NULL); 2909 2910 case DTRACESPEC_COMMITTING: 2911 ASSERT(buf->dtb_offset == 0); 2912 return (NULL); 2913 2914 case DTRACESPEC_ACTIVEONE: 2915 /* 2916 * This speculation is currently active on one CPU. 2917 * Check the offset in the buffer; if it's non-zero, 2918 * that CPU must be us (and we leave the state alone). 2919 * If it's zero, assume that we're starting on a new 2920 * CPU -- and change the state to indicate that the 2921 * speculation is active on more than one CPU. 2922 */ 2923 if (buf->dtb_offset != 0) 2924 return (buf); 2925 2926 new = DTRACESPEC_ACTIVEMANY; 2927 break; 2928 2929 case DTRACESPEC_ACTIVEMANY: 2930 return (buf); 2931 2932 case DTRACESPEC_ACTIVE: 2933 new = DTRACESPEC_ACTIVEONE; 2934 break; 2935 2936 default: 2937 ASSERT(0); 2938 } 2939 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2940 current, new) != current); 2941 2942 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2943 return (buf); 2944 } 2945 2946 /* 2947 * Return a string. In the event that the user lacks the privilege to access 2948 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2949 * don't fail access checking. 2950 * 2951 * dtrace_dif_variable() uses this routine as a helper for various 2952 * builtin values such as 'execname' and 'probefunc.' 2953 */ 2954 uintptr_t 2955 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2956 dtrace_mstate_t *mstate) 2957 { 2958 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2959 uintptr_t ret; 2960 size_t strsz; 2961 2962 /* 2963 * The easy case: this probe is allowed to read all of memory, so 2964 * we can just return this as a vanilla pointer. 2965 */ 2966 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2967 return (addr); 2968 2969 /* 2970 * This is the tougher case: we copy the string in question from 2971 * kernel memory into scratch memory and return it that way: this 2972 * ensures that we won't trip up when access checking tests the 2973 * BYREF return value. 2974 */ 2975 strsz = dtrace_strlen((char *)addr, size) + 1; 2976 2977 if (mstate->dtms_scratch_ptr + strsz > 2978 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2979 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2980 return (NULL); 2981 } 2982 2983 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2984 strsz); 2985 ret = mstate->dtms_scratch_ptr; 2986 mstate->dtms_scratch_ptr += strsz; 2987 return (ret); 2988 } 2989 2990 /* 2991 * This function implements the DIF emulator's variable lookups. The emulator 2992 * passes a reserved variable identifier and optional built-in array index. 2993 */ 2994 static uint64_t 2995 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2996 uint64_t ndx) 2997 { 2998 /* 2999 * If we're accessing one of the uncached arguments, we'll turn this 3000 * into a reference in the args array. 3001 */ 3002 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3003 ndx = v - DIF_VAR_ARG0; 3004 v = DIF_VAR_ARGS; 3005 } 3006 3007 switch (v) { 3008 case DIF_VAR_ARGS: 3009 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3010 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3011 CPU_DTRACE_KPRIV; 3012 return (0); 3013 } 3014 3015 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3016 if (ndx >= sizeof (mstate->dtms_arg) / 3017 sizeof (mstate->dtms_arg[0])) { 3018 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3019 dtrace_provider_t *pv; 3020 uint64_t val; 3021 3022 pv = mstate->dtms_probe->dtpr_provider; 3023 if (pv->dtpv_pops.dtps_getargval != NULL) 3024 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3025 mstate->dtms_probe->dtpr_id, 3026 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3027 else 3028 val = dtrace_getarg(ndx, aframes); 3029 3030 /* 3031 * This is regrettably required to keep the compiler 3032 * from tail-optimizing the call to dtrace_getarg(). 3033 * The condition always evaluates to true, but the 3034 * compiler has no way of figuring that out a priori. 3035 * (None of this would be necessary if the compiler 3036 * could be relied upon to _always_ tail-optimize 3037 * the call to dtrace_getarg() -- but it can't.) 3038 */ 3039 if (mstate->dtms_probe != NULL) 3040 return (val); 3041 3042 ASSERT(0); 3043 } 3044 3045 return (mstate->dtms_arg[ndx]); 3046 3047 case DIF_VAR_UREGS: { 3048 klwp_t *lwp; 3049 3050 if (!dtrace_priv_proc(state, mstate)) 3051 return (0); 3052 3053 if ((lwp = curthread->t_lwp) == NULL) { 3054 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3055 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3056 return (0); 3057 } 3058 3059 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3060 } 3061 3062 case DIF_VAR_VMREGS: { 3063 uint64_t rval; 3064 3065 if (!dtrace_priv_kernel(state)) 3066 return (0); 3067 3068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3069 3070 rval = dtrace_getvmreg(ndx, 3071 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3072 3073 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3074 3075 return (rval); 3076 } 3077 3078 case DIF_VAR_CURTHREAD: 3079 if (!dtrace_priv_proc(state, mstate)) 3080 return (0); 3081 return ((uint64_t)(uintptr_t)curthread); 3082 3083 case DIF_VAR_TIMESTAMP: 3084 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3085 mstate->dtms_timestamp = dtrace_gethrtime(); 3086 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3087 } 3088 return (mstate->dtms_timestamp); 3089 3090 case DIF_VAR_VTIMESTAMP: 3091 ASSERT(dtrace_vtime_references != 0); 3092 return (curthread->t_dtrace_vtime); 3093 3094 case DIF_VAR_WALLTIMESTAMP: 3095 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3096 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3097 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3098 } 3099 return (mstate->dtms_walltimestamp); 3100 3101 case DIF_VAR_IPL: 3102 if (!dtrace_priv_kernel(state)) 3103 return (0); 3104 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3105 mstate->dtms_ipl = dtrace_getipl(); 3106 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3107 } 3108 return (mstate->dtms_ipl); 3109 3110 case DIF_VAR_EPID: 3111 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3112 return (mstate->dtms_epid); 3113 3114 case DIF_VAR_ID: 3115 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3116 return (mstate->dtms_probe->dtpr_id); 3117 3118 case DIF_VAR_STACKDEPTH: 3119 if (!dtrace_priv_kernel(state)) 3120 return (0); 3121 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3122 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3123 3124 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3125 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3126 } 3127 return (mstate->dtms_stackdepth); 3128 3129 case DIF_VAR_USTACKDEPTH: 3130 if (!dtrace_priv_proc(state, mstate)) 3131 return (0); 3132 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3133 /* 3134 * See comment in DIF_VAR_PID. 3135 */ 3136 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3137 CPU_ON_INTR(CPU)) { 3138 mstate->dtms_ustackdepth = 0; 3139 } else { 3140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3141 mstate->dtms_ustackdepth = 3142 dtrace_getustackdepth(); 3143 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3144 } 3145 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3146 } 3147 return (mstate->dtms_ustackdepth); 3148 3149 case DIF_VAR_CALLER: 3150 if (!dtrace_priv_kernel(state)) 3151 return (0); 3152 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3153 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3154 3155 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3156 /* 3157 * If this is an unanchored probe, we are 3158 * required to go through the slow path: 3159 * dtrace_caller() only guarantees correct 3160 * results for anchored probes. 3161 */ 3162 pc_t caller[2]; 3163 3164 dtrace_getpcstack(caller, 2, aframes, 3165 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3166 mstate->dtms_caller = caller[1]; 3167 } else if ((mstate->dtms_caller = 3168 dtrace_caller(aframes)) == -1) { 3169 /* 3170 * We have failed to do this the quick way; 3171 * we must resort to the slower approach of 3172 * calling dtrace_getpcstack(). 3173 */ 3174 pc_t caller; 3175 3176 dtrace_getpcstack(&caller, 1, aframes, NULL); 3177 mstate->dtms_caller = caller; 3178 } 3179 3180 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3181 } 3182 return (mstate->dtms_caller); 3183 3184 case DIF_VAR_UCALLER: 3185 if (!dtrace_priv_proc(state, mstate)) 3186 return (0); 3187 3188 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3189 uint64_t ustack[3]; 3190 3191 /* 3192 * dtrace_getupcstack() fills in the first uint64_t 3193 * with the current PID. The second uint64_t will 3194 * be the program counter at user-level. The third 3195 * uint64_t will contain the caller, which is what 3196 * we're after. 3197 */ 3198 ustack[2] = NULL; 3199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3200 dtrace_getupcstack(ustack, 3); 3201 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3202 mstate->dtms_ucaller = ustack[2]; 3203 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3204 } 3205 3206 return (mstate->dtms_ucaller); 3207 3208 case DIF_VAR_PROBEPROV: 3209 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3210 return (dtrace_dif_varstr( 3211 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3212 state, mstate)); 3213 3214 case DIF_VAR_PROBEMOD: 3215 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3216 return (dtrace_dif_varstr( 3217 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3218 state, mstate)); 3219 3220 case DIF_VAR_PROBEFUNC: 3221 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3222 return (dtrace_dif_varstr( 3223 (uintptr_t)mstate->dtms_probe->dtpr_func, 3224 state, mstate)); 3225 3226 case DIF_VAR_PROBENAME: 3227 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3228 return (dtrace_dif_varstr( 3229 (uintptr_t)mstate->dtms_probe->dtpr_name, 3230 state, mstate)); 3231 3232 case DIF_VAR_PID: 3233 if (!dtrace_priv_proc(state, mstate)) 3234 return (0); 3235 3236 /* 3237 * Note that we are assuming that an unanchored probe is 3238 * always due to a high-level interrupt. (And we're assuming 3239 * that there is only a single high level interrupt.) 3240 */ 3241 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3242 return (pid0.pid_id); 3243 3244 /* 3245 * It is always safe to dereference one's own t_procp pointer: 3246 * it always points to a valid, allocated proc structure. 3247 * Further, it is always safe to dereference the p_pidp member 3248 * of one's own proc structure. (These are truisms becuase 3249 * threads and processes don't clean up their own state -- 3250 * they leave that task to whomever reaps them.) 3251 */ 3252 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3253 3254 case DIF_VAR_PPID: 3255 if (!dtrace_priv_proc(state, mstate)) 3256 return (0); 3257 3258 /* 3259 * See comment in DIF_VAR_PID. 3260 */ 3261 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3262 return (pid0.pid_id); 3263 3264 /* 3265 * It is always safe to dereference one's own t_procp pointer: 3266 * it always points to a valid, allocated proc structure. 3267 * (This is true because threads don't clean up their own 3268 * state -- they leave that task to whomever reaps them.) 3269 */ 3270 return ((uint64_t)curthread->t_procp->p_ppid); 3271 3272 case DIF_VAR_TID: 3273 /* 3274 * See comment in DIF_VAR_PID. 3275 */ 3276 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3277 return (0); 3278 3279 return ((uint64_t)curthread->t_tid); 3280 3281 case DIF_VAR_EXECNAME: 3282 if (!dtrace_priv_proc(state, mstate)) 3283 return (0); 3284 3285 /* 3286 * See comment in DIF_VAR_PID. 3287 */ 3288 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3289 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3290 3291 /* 3292 * It is always safe to dereference one's own t_procp pointer: 3293 * it always points to a valid, allocated proc structure. 3294 * (This is true because threads don't clean up their own 3295 * state -- they leave that task to whomever reaps them.) 3296 */ 3297 return (dtrace_dif_varstr( 3298 (uintptr_t)curthread->t_procp->p_user.u_comm, 3299 state, mstate)); 3300 3301 case DIF_VAR_ZONENAME: 3302 if (!dtrace_priv_proc(state, mstate)) 3303 return (0); 3304 3305 /* 3306 * See comment in DIF_VAR_PID. 3307 */ 3308 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3309 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3310 3311 /* 3312 * It is always safe to dereference one's own t_procp pointer: 3313 * it always points to a valid, allocated proc structure. 3314 * (This is true because threads don't clean up their own 3315 * state -- they leave that task to whomever reaps them.) 3316 */ 3317 return (dtrace_dif_varstr( 3318 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3319 state, mstate)); 3320 3321 case DIF_VAR_UID: 3322 if (!dtrace_priv_proc(state, mstate)) 3323 return (0); 3324 3325 /* 3326 * See comment in DIF_VAR_PID. 3327 */ 3328 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3329 return ((uint64_t)p0.p_cred->cr_uid); 3330 3331 /* 3332 * It is always safe to dereference one's own t_procp pointer: 3333 * it always points to a valid, allocated proc structure. 3334 * (This is true because threads don't clean up their own 3335 * state -- they leave that task to whomever reaps them.) 3336 * 3337 * Additionally, it is safe to dereference one's own process 3338 * credential, since this is never NULL after process birth. 3339 */ 3340 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3341 3342 case DIF_VAR_GID: 3343 if (!dtrace_priv_proc(state, mstate)) 3344 return (0); 3345 3346 /* 3347 * See comment in DIF_VAR_PID. 3348 */ 3349 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3350 return ((uint64_t)p0.p_cred->cr_gid); 3351 3352 /* 3353 * It is always safe to dereference one's own t_procp pointer: 3354 * it always points to a valid, allocated proc structure. 3355 * (This is true because threads don't clean up their own 3356 * state -- they leave that task to whomever reaps them.) 3357 * 3358 * Additionally, it is safe to dereference one's own process 3359 * credential, since this is never NULL after process birth. 3360 */ 3361 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3362 3363 case DIF_VAR_ERRNO: { 3364 klwp_t *lwp; 3365 if (!dtrace_priv_proc(state, mstate)) 3366 return (0); 3367 3368 /* 3369 * See comment in DIF_VAR_PID. 3370 */ 3371 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3372 return (0); 3373 3374 /* 3375 * It is always safe to dereference one's own t_lwp pointer in 3376 * the event that this pointer is non-NULL. (This is true 3377 * because threads and lwps don't clean up their own state -- 3378 * they leave that task to whomever reaps them.) 3379 */ 3380 if ((lwp = curthread->t_lwp) == NULL) 3381 return (0); 3382 3383 return ((uint64_t)lwp->lwp_errno); 3384 } 3385 default: 3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3387 return (0); 3388 } 3389 } 3390 3391 3392 typedef enum dtrace_json_state { 3393 DTRACE_JSON_REST = 1, 3394 DTRACE_JSON_OBJECT, 3395 DTRACE_JSON_STRING, 3396 DTRACE_JSON_STRING_ESCAPE, 3397 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3398 DTRACE_JSON_COLON, 3399 DTRACE_JSON_COMMA, 3400 DTRACE_JSON_VALUE, 3401 DTRACE_JSON_IDENTIFIER, 3402 DTRACE_JSON_NUMBER, 3403 DTRACE_JSON_NUMBER_FRAC, 3404 DTRACE_JSON_NUMBER_EXP, 3405 DTRACE_JSON_COLLECT_OBJECT 3406 } dtrace_json_state_t; 3407 3408 /* 3409 * This function possesses just enough knowledge about JSON to extract a single 3410 * value from a JSON string and store it in the scratch buffer. It is able 3411 * to extract nested object values, and members of arrays by index. 3412 * 3413 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3414 * be looked up as we descend into the object tree. e.g. 3415 * 3416 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3417 * with nelems = 5. 3418 * 3419 * The run time of this function must be bounded above by strsize to limit the 3420 * amount of work done in probe context. As such, it is implemented as a 3421 * simple state machine, reading one character at a time using safe loads 3422 * until we find the requested element, hit a parsing error or run off the 3423 * end of the object or string. 3424 * 3425 * As there is no way for a subroutine to return an error without interrupting 3426 * clause execution, we simply return NULL in the event of a missing key or any 3427 * other error condition. Each NULL return in this function is commented with 3428 * the error condition it represents -- parsing or otherwise. 3429 * 3430 * The set of states for the state machine closely matches the JSON 3431 * specification (http://json.org/). Briefly: 3432 * 3433 * DTRACE_JSON_REST: 3434 * Skip whitespace until we find either a top-level Object, moving 3435 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3436 * 3437 * DTRACE_JSON_OBJECT: 3438 * Locate the next key String in an Object. Sets a flag to denote 3439 * the next String as a key string and moves to DTRACE_JSON_STRING. 3440 * 3441 * DTRACE_JSON_COLON: 3442 * Skip whitespace until we find the colon that separates key Strings 3443 * from their values. Once found, move to DTRACE_JSON_VALUE. 3444 * 3445 * DTRACE_JSON_VALUE: 3446 * Detects the type of the next value (String, Number, Identifier, Object 3447 * or Array) and routes to the states that process that type. Here we also 3448 * deal with the element selector list if we are requested to traverse down 3449 * into the object tree. 3450 * 3451 * DTRACE_JSON_COMMA: 3452 * Skip whitespace until we find the comma that separates key-value pairs 3453 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3454 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3455 * states return to this state at the end of their value, unless otherwise 3456 * noted. 3457 * 3458 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3459 * Processes a Number literal from the JSON, including any exponent 3460 * component that may be present. Numbers are returned as strings, which 3461 * may be passed to strtoll() if an integer is required. 3462 * 3463 * DTRACE_JSON_IDENTIFIER: 3464 * Processes a "true", "false" or "null" literal in the JSON. 3465 * 3466 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3467 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3468 * Processes a String literal from the JSON, whether the String denotes 3469 * a key, a value or part of a larger Object. Handles all escape sequences 3470 * present in the specification, including four-digit unicode characters, 3471 * but merely includes the escape sequence without converting it to the 3472 * actual escaped character. If the String is flagged as a key, we 3473 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3474 * 3475 * DTRACE_JSON_COLLECT_OBJECT: 3476 * This state collects an entire Object (or Array), correctly handling 3477 * embedded strings. If the full element selector list matches this nested 3478 * object, we return the Object in full as a string. If not, we use this 3479 * state to skip to the next value at this level and continue processing. 3480 * 3481 * NOTE: This function uses various macros from strtolctype.h to manipulate 3482 * digit values, etc -- these have all been checked to ensure they make 3483 * no additional function calls. 3484 */ 3485 static char * 3486 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3487 char *dest) 3488 { 3489 dtrace_json_state_t state = DTRACE_JSON_REST; 3490 int64_t array_elem = INT64_MIN; 3491 int64_t array_pos = 0; 3492 uint8_t escape_unicount = 0; 3493 boolean_t string_is_key = B_FALSE; 3494 boolean_t collect_object = B_FALSE; 3495 boolean_t found_key = B_FALSE; 3496 boolean_t in_array = B_FALSE; 3497 uint32_t braces = 0, brackets = 0; 3498 char *elem = elemlist; 3499 char *dd = dest; 3500 uintptr_t cur; 3501 3502 for (cur = json; cur < json + size; cur++) { 3503 char cc = dtrace_load8(cur); 3504 if (cc == '\0') 3505 return (NULL); 3506 3507 switch (state) { 3508 case DTRACE_JSON_REST: 3509 if (isspace(cc)) 3510 break; 3511 3512 if (cc == '{') { 3513 state = DTRACE_JSON_OBJECT; 3514 break; 3515 } 3516 3517 if (cc == '[') { 3518 in_array = B_TRUE; 3519 array_pos = 0; 3520 array_elem = dtrace_strtoll(elem, 10, size); 3521 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3522 state = DTRACE_JSON_VALUE; 3523 break; 3524 } 3525 3526 /* 3527 * ERROR: expected to find a top-level object or array. 3528 */ 3529 return (NULL); 3530 case DTRACE_JSON_OBJECT: 3531 if (isspace(cc)) 3532 break; 3533 3534 if (cc == '"') { 3535 state = DTRACE_JSON_STRING; 3536 string_is_key = B_TRUE; 3537 break; 3538 } 3539 3540 /* 3541 * ERROR: either the object did not start with a key 3542 * string, or we've run off the end of the object 3543 * without finding the requested key. 3544 */ 3545 return (NULL); 3546 case DTRACE_JSON_STRING: 3547 if (cc == '\\') { 3548 *dd++ = '\\'; 3549 state = DTRACE_JSON_STRING_ESCAPE; 3550 break; 3551 } 3552 3553 if (cc == '"') { 3554 if (collect_object) { 3555 /* 3556 * We don't reset the dest here, as 3557 * the string is part of a larger 3558 * object being collected. 3559 */ 3560 *dd++ = cc; 3561 collect_object = B_FALSE; 3562 state = DTRACE_JSON_COLLECT_OBJECT; 3563 break; 3564 } 3565 *dd = '\0'; 3566 dd = dest; /* reset string buffer */ 3567 if (string_is_key) { 3568 if (dtrace_strncmp(dest, elem, 3569 size) == 0) 3570 found_key = B_TRUE; 3571 } else if (found_key) { 3572 if (nelems > 1) { 3573 /* 3574 * We expected an object, not 3575 * this string. 3576 */ 3577 return (NULL); 3578 } 3579 return (dest); 3580 } 3581 state = string_is_key ? DTRACE_JSON_COLON : 3582 DTRACE_JSON_COMMA; 3583 string_is_key = B_FALSE; 3584 break; 3585 } 3586 3587 *dd++ = cc; 3588 break; 3589 case DTRACE_JSON_STRING_ESCAPE: 3590 *dd++ = cc; 3591 if (cc == 'u') { 3592 escape_unicount = 0; 3593 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3594 } else { 3595 state = DTRACE_JSON_STRING; 3596 } 3597 break; 3598 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3599 if (!isxdigit(cc)) { 3600 /* 3601 * ERROR: invalid unicode escape, expected 3602 * four valid hexidecimal digits. 3603 */ 3604 return (NULL); 3605 } 3606 3607 *dd++ = cc; 3608 if (++escape_unicount == 4) 3609 state = DTRACE_JSON_STRING; 3610 break; 3611 case DTRACE_JSON_COLON: 3612 if (isspace(cc)) 3613 break; 3614 3615 if (cc == ':') { 3616 state = DTRACE_JSON_VALUE; 3617 break; 3618 } 3619 3620 /* 3621 * ERROR: expected a colon. 3622 */ 3623 return (NULL); 3624 case DTRACE_JSON_COMMA: 3625 if (isspace(cc)) 3626 break; 3627 3628 if (cc == ',') { 3629 if (in_array) { 3630 state = DTRACE_JSON_VALUE; 3631 if (++array_pos == array_elem) 3632 found_key = B_TRUE; 3633 } else { 3634 state = DTRACE_JSON_OBJECT; 3635 } 3636 break; 3637 } 3638 3639 /* 3640 * ERROR: either we hit an unexpected character, or 3641 * we reached the end of the object or array without 3642 * finding the requested key. 3643 */ 3644 return (NULL); 3645 case DTRACE_JSON_IDENTIFIER: 3646 if (islower(cc)) { 3647 *dd++ = cc; 3648 break; 3649 } 3650 3651 *dd = '\0'; 3652 dd = dest; /* reset string buffer */ 3653 3654 if (dtrace_strncmp(dest, "true", 5) == 0 || 3655 dtrace_strncmp(dest, "false", 6) == 0 || 3656 dtrace_strncmp(dest, "null", 5) == 0) { 3657 if (found_key) { 3658 if (nelems > 1) { 3659 /* 3660 * ERROR: We expected an object, 3661 * not this identifier. 3662 */ 3663 return (NULL); 3664 } 3665 return (dest); 3666 } else { 3667 cur--; 3668 state = DTRACE_JSON_COMMA; 3669 break; 3670 } 3671 } 3672 3673 /* 3674 * ERROR: we did not recognise the identifier as one 3675 * of those in the JSON specification. 3676 */ 3677 return (NULL); 3678 case DTRACE_JSON_NUMBER: 3679 if (cc == '.') { 3680 *dd++ = cc; 3681 state = DTRACE_JSON_NUMBER_FRAC; 3682 break; 3683 } 3684 3685 if (cc == 'x' || cc == 'X') { 3686 /* 3687 * ERROR: specification explicitly excludes 3688 * hexidecimal or octal numbers. 3689 */ 3690 return (NULL); 3691 } 3692 3693 /* FALLTHRU */ 3694 case DTRACE_JSON_NUMBER_FRAC: 3695 if (cc == 'e' || cc == 'E') { 3696 *dd++ = cc; 3697 state = DTRACE_JSON_NUMBER_EXP; 3698 break; 3699 } 3700 3701 if (cc == '+' || cc == '-') { 3702 /* 3703 * ERROR: expect sign as part of exponent only. 3704 */ 3705 return (NULL); 3706 } 3707 /* FALLTHRU */ 3708 case DTRACE_JSON_NUMBER_EXP: 3709 if (isdigit(cc) || cc == '+' || cc == '-') { 3710 *dd++ = cc; 3711 break; 3712 } 3713 3714 *dd = '\0'; 3715 dd = dest; /* reset string buffer */ 3716 if (found_key) { 3717 if (nelems > 1) { 3718 /* 3719 * ERROR: We expected an object, not 3720 * this number. 3721 */ 3722 return (NULL); 3723 } 3724 return (dest); 3725 } 3726 3727 cur--; 3728 state = DTRACE_JSON_COMMA; 3729 break; 3730 case DTRACE_JSON_VALUE: 3731 if (isspace(cc)) 3732 break; 3733 3734 if (cc == '{' || cc == '[') { 3735 if (nelems > 1 && found_key) { 3736 in_array = cc == '[' ? B_TRUE : B_FALSE; 3737 /* 3738 * If our element selector directs us 3739 * to descend into this nested object, 3740 * then move to the next selector 3741 * element in the list and restart the 3742 * state machine. 3743 */ 3744 while (*elem != '\0') 3745 elem++; 3746 elem++; /* skip the inter-element NUL */ 3747 nelems--; 3748 dd = dest; 3749 if (in_array) { 3750 state = DTRACE_JSON_VALUE; 3751 array_pos = 0; 3752 array_elem = dtrace_strtoll( 3753 elem, 10, size); 3754 found_key = array_elem == 0 ? 3755 B_TRUE : B_FALSE; 3756 } else { 3757 found_key = B_FALSE; 3758 state = DTRACE_JSON_OBJECT; 3759 } 3760 break; 3761 } 3762 3763 /* 3764 * Otherwise, we wish to either skip this 3765 * nested object or return it in full. 3766 */ 3767 if (cc == '[') 3768 brackets = 1; 3769 else 3770 braces = 1; 3771 *dd++ = cc; 3772 state = DTRACE_JSON_COLLECT_OBJECT; 3773 break; 3774 } 3775 3776 if (cc == '"') { 3777 state = DTRACE_JSON_STRING; 3778 break; 3779 } 3780 3781 if (islower(cc)) { 3782 /* 3783 * Here we deal with true, false and null. 3784 */ 3785 *dd++ = cc; 3786 state = DTRACE_JSON_IDENTIFIER; 3787 break; 3788 } 3789 3790 if (cc == '-' || isdigit(cc)) { 3791 *dd++ = cc; 3792 state = DTRACE_JSON_NUMBER; 3793 break; 3794 } 3795 3796 /* 3797 * ERROR: unexpected character at start of value. 3798 */ 3799 return (NULL); 3800 case DTRACE_JSON_COLLECT_OBJECT: 3801 if (cc == '\0') 3802 /* 3803 * ERROR: unexpected end of input. 3804 */ 3805 return (NULL); 3806 3807 *dd++ = cc; 3808 if (cc == '"') { 3809 collect_object = B_TRUE; 3810 state = DTRACE_JSON_STRING; 3811 break; 3812 } 3813 3814 if (cc == ']') { 3815 if (brackets-- == 0) { 3816 /* 3817 * ERROR: unbalanced brackets. 3818 */ 3819 return (NULL); 3820 } 3821 } else if (cc == '}') { 3822 if (braces-- == 0) { 3823 /* 3824 * ERROR: unbalanced braces. 3825 */ 3826 return (NULL); 3827 } 3828 } else if (cc == '{') { 3829 braces++; 3830 } else if (cc == '[') { 3831 brackets++; 3832 } 3833 3834 if (brackets == 0 && braces == 0) { 3835 if (found_key) { 3836 *dd = '\0'; 3837 return (dest); 3838 } 3839 dd = dest; /* reset string buffer */ 3840 state = DTRACE_JSON_COMMA; 3841 } 3842 break; 3843 } 3844 } 3845 return (NULL); 3846 } 3847 3848 /* 3849 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3850 * Notice that we don't bother validating the proper number of arguments or 3851 * their types in the tuple stack. This isn't needed because all argument 3852 * interpretation is safe because of our load safety -- the worst that can 3853 * happen is that a bogus program can obtain bogus results. 3854 */ 3855 static void 3856 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3857 dtrace_key_t *tupregs, int nargs, 3858 dtrace_mstate_t *mstate, dtrace_state_t *state) 3859 { 3860 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3861 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3862 dtrace_vstate_t *vstate = &state->dts_vstate; 3863 3864 union { 3865 mutex_impl_t mi; 3866 uint64_t mx; 3867 } m; 3868 3869 union { 3870 krwlock_t ri; 3871 uintptr_t rw; 3872 } r; 3873 3874 switch (subr) { 3875 case DIF_SUBR_RAND: 3876 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3877 break; 3878 3879 case DIF_SUBR_MUTEX_OWNED: 3880 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3881 mstate, vstate)) { 3882 regs[rd] = NULL; 3883 break; 3884 } 3885 3886 m.mx = dtrace_load64(tupregs[0].dttk_value); 3887 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3888 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3889 else 3890 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3891 break; 3892 3893 case DIF_SUBR_MUTEX_OWNER: 3894 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3895 mstate, vstate)) { 3896 regs[rd] = NULL; 3897 break; 3898 } 3899 3900 m.mx = dtrace_load64(tupregs[0].dttk_value); 3901 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3902 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3903 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3904 else 3905 regs[rd] = 0; 3906 break; 3907 3908 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3909 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3910 mstate, vstate)) { 3911 regs[rd] = NULL; 3912 break; 3913 } 3914 3915 m.mx = dtrace_load64(tupregs[0].dttk_value); 3916 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3917 break; 3918 3919 case DIF_SUBR_MUTEX_TYPE_SPIN: 3920 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3921 mstate, vstate)) { 3922 regs[rd] = NULL; 3923 break; 3924 } 3925 3926 m.mx = dtrace_load64(tupregs[0].dttk_value); 3927 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3928 break; 3929 3930 case DIF_SUBR_RW_READ_HELD: { 3931 uintptr_t tmp; 3932 3933 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3934 mstate, vstate)) { 3935 regs[rd] = NULL; 3936 break; 3937 } 3938 3939 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3940 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3941 break; 3942 } 3943 3944 case DIF_SUBR_RW_WRITE_HELD: 3945 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3946 mstate, vstate)) { 3947 regs[rd] = NULL; 3948 break; 3949 } 3950 3951 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3952 regs[rd] = _RW_WRITE_HELD(&r.ri); 3953 break; 3954 3955 case DIF_SUBR_RW_ISWRITER: 3956 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3957 mstate, vstate)) { 3958 regs[rd] = NULL; 3959 break; 3960 } 3961 3962 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3963 regs[rd] = _RW_ISWRITER(&r.ri); 3964 break; 3965 3966 case DIF_SUBR_BCOPY: { 3967 /* 3968 * We need to be sure that the destination is in the scratch 3969 * region -- no other region is allowed. 3970 */ 3971 uintptr_t src = tupregs[0].dttk_value; 3972 uintptr_t dest = tupregs[1].dttk_value; 3973 size_t size = tupregs[2].dttk_value; 3974 3975 if (!dtrace_inscratch(dest, size, mstate)) { 3976 *flags |= CPU_DTRACE_BADADDR; 3977 *illval = regs[rd]; 3978 break; 3979 } 3980 3981 if (!dtrace_canload(src, size, mstate, vstate)) { 3982 regs[rd] = NULL; 3983 break; 3984 } 3985 3986 dtrace_bcopy((void *)src, (void *)dest, size); 3987 break; 3988 } 3989 3990 case DIF_SUBR_ALLOCA: 3991 case DIF_SUBR_COPYIN: { 3992 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3993 uint64_t size = 3994 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3995 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3996 3997 /* 3998 * This action doesn't require any credential checks since 3999 * probes will not activate in user contexts to which the 4000 * enabling user does not have permissions. 4001 */ 4002 4003 /* 4004 * Rounding up the user allocation size could have overflowed 4005 * a large, bogus allocation (like -1ULL) to 0. 4006 */ 4007 if (scratch_size < size || 4008 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4009 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4010 regs[rd] = NULL; 4011 break; 4012 } 4013 4014 if (subr == DIF_SUBR_COPYIN) { 4015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4016 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4018 } 4019 4020 mstate->dtms_scratch_ptr += scratch_size; 4021 regs[rd] = dest; 4022 break; 4023 } 4024 4025 case DIF_SUBR_COPYINTO: { 4026 uint64_t size = tupregs[1].dttk_value; 4027 uintptr_t dest = tupregs[2].dttk_value; 4028 4029 /* 4030 * This action doesn't require any credential checks since 4031 * probes will not activate in user contexts to which the 4032 * enabling user does not have permissions. 4033 */ 4034 if (!dtrace_inscratch(dest, size, mstate)) { 4035 *flags |= CPU_DTRACE_BADADDR; 4036 *illval = regs[rd]; 4037 break; 4038 } 4039 4040 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4041 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4042 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4043 break; 4044 } 4045 4046 case DIF_SUBR_COPYINSTR: { 4047 uintptr_t dest = mstate->dtms_scratch_ptr; 4048 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4049 4050 if (nargs > 1 && tupregs[1].dttk_value < size) 4051 size = tupregs[1].dttk_value + 1; 4052 4053 /* 4054 * This action doesn't require any credential checks since 4055 * probes will not activate in user contexts to which the 4056 * enabling user does not have permissions. 4057 */ 4058 if (!DTRACE_INSCRATCH(mstate, size)) { 4059 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4060 regs[rd] = NULL; 4061 break; 4062 } 4063 4064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4065 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4066 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4067 4068 ((char *)dest)[size - 1] = '\0'; 4069 mstate->dtms_scratch_ptr += size; 4070 regs[rd] = dest; 4071 break; 4072 } 4073 4074 case DIF_SUBR_MSGSIZE: 4075 case DIF_SUBR_MSGDSIZE: { 4076 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4077 uintptr_t wptr, rptr; 4078 size_t count = 0; 4079 int cont = 0; 4080 4081 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4082 4083 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4084 vstate)) { 4085 regs[rd] = NULL; 4086 break; 4087 } 4088 4089 wptr = dtrace_loadptr(baddr + 4090 offsetof(mblk_t, b_wptr)); 4091 4092 rptr = dtrace_loadptr(baddr + 4093 offsetof(mblk_t, b_rptr)); 4094 4095 if (wptr < rptr) { 4096 *flags |= CPU_DTRACE_BADADDR; 4097 *illval = tupregs[0].dttk_value; 4098 break; 4099 } 4100 4101 daddr = dtrace_loadptr(baddr + 4102 offsetof(mblk_t, b_datap)); 4103 4104 baddr = dtrace_loadptr(baddr + 4105 offsetof(mblk_t, b_cont)); 4106 4107 /* 4108 * We want to prevent against denial-of-service here, 4109 * so we're only going to search the list for 4110 * dtrace_msgdsize_max mblks. 4111 */ 4112 if (cont++ > dtrace_msgdsize_max) { 4113 *flags |= CPU_DTRACE_ILLOP; 4114 break; 4115 } 4116 4117 if (subr == DIF_SUBR_MSGDSIZE) { 4118 if (dtrace_load8(daddr + 4119 offsetof(dblk_t, db_type)) != M_DATA) 4120 continue; 4121 } 4122 4123 count += wptr - rptr; 4124 } 4125 4126 if (!(*flags & CPU_DTRACE_FAULT)) 4127 regs[rd] = count; 4128 4129 break; 4130 } 4131 4132 case DIF_SUBR_PROGENYOF: { 4133 pid_t pid = tupregs[0].dttk_value; 4134 proc_t *p; 4135 int rval = 0; 4136 4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4138 4139 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4140 if (p->p_pidp->pid_id == pid) { 4141 rval = 1; 4142 break; 4143 } 4144 } 4145 4146 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4147 4148 regs[rd] = rval; 4149 break; 4150 } 4151 4152 case DIF_SUBR_SPECULATION: 4153 regs[rd] = dtrace_speculation(state); 4154 break; 4155 4156 case DIF_SUBR_COPYOUT: { 4157 uintptr_t kaddr = tupregs[0].dttk_value; 4158 uintptr_t uaddr = tupregs[1].dttk_value; 4159 uint64_t size = tupregs[2].dttk_value; 4160 4161 if (!dtrace_destructive_disallow && 4162 dtrace_priv_proc_control(state, mstate) && 4163 !dtrace_istoxic(kaddr, size)) { 4164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4165 dtrace_copyout(kaddr, uaddr, size, flags); 4166 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4167 } 4168 break; 4169 } 4170 4171 case DIF_SUBR_COPYOUTSTR: { 4172 uintptr_t kaddr = tupregs[0].dttk_value; 4173 uintptr_t uaddr = tupregs[1].dttk_value; 4174 uint64_t size = tupregs[2].dttk_value; 4175 4176 if (!dtrace_destructive_disallow && 4177 dtrace_priv_proc_control(state, mstate) && 4178 !dtrace_istoxic(kaddr, size)) { 4179 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4180 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4181 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4182 } 4183 break; 4184 } 4185 4186 case DIF_SUBR_STRLEN: { 4187 size_t sz; 4188 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4189 sz = dtrace_strlen((char *)addr, 4190 state->dts_options[DTRACEOPT_STRSIZE]); 4191 4192 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4193 regs[rd] = NULL; 4194 break; 4195 } 4196 4197 regs[rd] = sz; 4198 4199 break; 4200 } 4201 4202 case DIF_SUBR_STRCHR: 4203 case DIF_SUBR_STRRCHR: { 4204 /* 4205 * We're going to iterate over the string looking for the 4206 * specified character. We will iterate until we have reached 4207 * the string length or we have found the character. If this 4208 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4209 * of the specified character instead of the first. 4210 */ 4211 uintptr_t saddr = tupregs[0].dttk_value; 4212 uintptr_t addr = tupregs[0].dttk_value; 4213 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4214 char c, target = (char)tupregs[1].dttk_value; 4215 4216 for (regs[rd] = NULL; addr < limit; addr++) { 4217 if ((c = dtrace_load8(addr)) == target) { 4218 regs[rd] = addr; 4219 4220 if (subr == DIF_SUBR_STRCHR) 4221 break; 4222 } 4223 4224 if (c == '\0') 4225 break; 4226 } 4227 4228 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4229 regs[rd] = NULL; 4230 break; 4231 } 4232 4233 break; 4234 } 4235 4236 case DIF_SUBR_STRSTR: 4237 case DIF_SUBR_INDEX: 4238 case DIF_SUBR_RINDEX: { 4239 /* 4240 * We're going to iterate over the string looking for the 4241 * specified string. We will iterate until we have reached 4242 * the string length or we have found the string. (Yes, this 4243 * is done in the most naive way possible -- but considering 4244 * that the string we're searching for is likely to be 4245 * relatively short, the complexity of Rabin-Karp or similar 4246 * hardly seems merited.) 4247 */ 4248 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4249 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4250 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4251 size_t len = dtrace_strlen(addr, size); 4252 size_t sublen = dtrace_strlen(substr, size); 4253 char *limit = addr + len, *orig = addr; 4254 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4255 int inc = 1; 4256 4257 regs[rd] = notfound; 4258 4259 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4260 regs[rd] = NULL; 4261 break; 4262 } 4263 4264 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4265 vstate)) { 4266 regs[rd] = NULL; 4267 break; 4268 } 4269 4270 /* 4271 * strstr() and index()/rindex() have similar semantics if 4272 * both strings are the empty string: strstr() returns a 4273 * pointer to the (empty) string, and index() and rindex() 4274 * both return index 0 (regardless of any position argument). 4275 */ 4276 if (sublen == 0 && len == 0) { 4277 if (subr == DIF_SUBR_STRSTR) 4278 regs[rd] = (uintptr_t)addr; 4279 else 4280 regs[rd] = 0; 4281 break; 4282 } 4283 4284 if (subr != DIF_SUBR_STRSTR) { 4285 if (subr == DIF_SUBR_RINDEX) { 4286 limit = orig - 1; 4287 addr += len; 4288 inc = -1; 4289 } 4290 4291 /* 4292 * Both index() and rindex() take an optional position 4293 * argument that denotes the starting position. 4294 */ 4295 if (nargs == 3) { 4296 int64_t pos = (int64_t)tupregs[2].dttk_value; 4297 4298 /* 4299 * If the position argument to index() is 4300 * negative, Perl implicitly clamps it at 4301 * zero. This semantic is a little surprising 4302 * given the special meaning of negative 4303 * positions to similar Perl functions like 4304 * substr(), but it appears to reflect a 4305 * notion that index() can start from a 4306 * negative index and increment its way up to 4307 * the string. Given this notion, Perl's 4308 * rindex() is at least self-consistent in 4309 * that it implicitly clamps positions greater 4310 * than the string length to be the string 4311 * length. Where Perl completely loses 4312 * coherence, however, is when the specified 4313 * substring is the empty string (""). In 4314 * this case, even if the position is 4315 * negative, rindex() returns 0 -- and even if 4316 * the position is greater than the length, 4317 * index() returns the string length. These 4318 * semantics violate the notion that index() 4319 * should never return a value less than the 4320 * specified position and that rindex() should 4321 * never return a value greater than the 4322 * specified position. (One assumes that 4323 * these semantics are artifacts of Perl's 4324 * implementation and not the results of 4325 * deliberate design -- it beggars belief that 4326 * even Larry Wall could desire such oddness.) 4327 * While in the abstract one would wish for 4328 * consistent position semantics across 4329 * substr(), index() and rindex() -- or at the 4330 * very least self-consistent position 4331 * semantics for index() and rindex() -- we 4332 * instead opt to keep with the extant Perl 4333 * semantics, in all their broken glory. (Do 4334 * we have more desire to maintain Perl's 4335 * semantics than Perl does? Probably.) 4336 */ 4337 if (subr == DIF_SUBR_RINDEX) { 4338 if (pos < 0) { 4339 if (sublen == 0) 4340 regs[rd] = 0; 4341 break; 4342 } 4343 4344 if (pos > len) 4345 pos = len; 4346 } else { 4347 if (pos < 0) 4348 pos = 0; 4349 4350 if (pos >= len) { 4351 if (sublen == 0) 4352 regs[rd] = len; 4353 break; 4354 } 4355 } 4356 4357 addr = orig + pos; 4358 } 4359 } 4360 4361 for (regs[rd] = notfound; addr != limit; addr += inc) { 4362 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4363 if (subr != DIF_SUBR_STRSTR) { 4364 /* 4365 * As D index() and rindex() are 4366 * modeled on Perl (and not on awk), 4367 * we return a zero-based (and not a 4368 * one-based) index. (For you Perl 4369 * weenies: no, we're not going to add 4370 * $[ -- and shouldn't you be at a con 4371 * or something?) 4372 */ 4373 regs[rd] = (uintptr_t)(addr - orig); 4374 break; 4375 } 4376 4377 ASSERT(subr == DIF_SUBR_STRSTR); 4378 regs[rd] = (uintptr_t)addr; 4379 break; 4380 } 4381 } 4382 4383 break; 4384 } 4385 4386 case DIF_SUBR_STRTOK: { 4387 uintptr_t addr = tupregs[0].dttk_value; 4388 uintptr_t tokaddr = tupregs[1].dttk_value; 4389 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4390 uintptr_t limit, toklimit = tokaddr + size; 4391 uint8_t c, tokmap[32]; /* 256 / 8 */ 4392 char *dest = (char *)mstate->dtms_scratch_ptr; 4393 int i; 4394 4395 /* 4396 * Check both the token buffer and (later) the input buffer, 4397 * since both could be non-scratch addresses. 4398 */ 4399 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4400 regs[rd] = NULL; 4401 break; 4402 } 4403 4404 if (!DTRACE_INSCRATCH(mstate, size)) { 4405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4406 regs[rd] = NULL; 4407 break; 4408 } 4409 4410 if (addr == NULL) { 4411 /* 4412 * If the address specified is NULL, we use our saved 4413 * strtok pointer from the mstate. Note that this 4414 * means that the saved strtok pointer is _only_ 4415 * valid within multiple enablings of the same probe -- 4416 * it behaves like an implicit clause-local variable. 4417 */ 4418 addr = mstate->dtms_strtok; 4419 } else { 4420 /* 4421 * If the user-specified address is non-NULL we must 4422 * access check it. This is the only time we have 4423 * a chance to do so, since this address may reside 4424 * in the string table of this clause-- future calls 4425 * (when we fetch addr from mstate->dtms_strtok) 4426 * would fail this access check. 4427 */ 4428 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4429 regs[rd] = NULL; 4430 break; 4431 } 4432 } 4433 4434 /* 4435 * First, zero the token map, and then process the token 4436 * string -- setting a bit in the map for every character 4437 * found in the token string. 4438 */ 4439 for (i = 0; i < sizeof (tokmap); i++) 4440 tokmap[i] = 0; 4441 4442 for (; tokaddr < toklimit; tokaddr++) { 4443 if ((c = dtrace_load8(tokaddr)) == '\0') 4444 break; 4445 4446 ASSERT((c >> 3) < sizeof (tokmap)); 4447 tokmap[c >> 3] |= (1 << (c & 0x7)); 4448 } 4449 4450 for (limit = addr + size; addr < limit; addr++) { 4451 /* 4452 * We're looking for a character that is _not_ contained 4453 * in the token string. 4454 */ 4455 if ((c = dtrace_load8(addr)) == '\0') 4456 break; 4457 4458 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4459 break; 4460 } 4461 4462 if (c == '\0') { 4463 /* 4464 * We reached the end of the string without finding 4465 * any character that was not in the token string. 4466 * We return NULL in this case, and we set the saved 4467 * address to NULL as well. 4468 */ 4469 regs[rd] = NULL; 4470 mstate->dtms_strtok = NULL; 4471 break; 4472 } 4473 4474 /* 4475 * From here on, we're copying into the destination string. 4476 */ 4477 for (i = 0; addr < limit && i < size - 1; addr++) { 4478 if ((c = dtrace_load8(addr)) == '\0') 4479 break; 4480 4481 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4482 break; 4483 4484 ASSERT(i < size); 4485 dest[i++] = c; 4486 } 4487 4488 ASSERT(i < size); 4489 dest[i] = '\0'; 4490 regs[rd] = (uintptr_t)dest; 4491 mstate->dtms_scratch_ptr += size; 4492 mstate->dtms_strtok = addr; 4493 break; 4494 } 4495 4496 case DIF_SUBR_SUBSTR: { 4497 uintptr_t s = tupregs[0].dttk_value; 4498 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4499 char *d = (char *)mstate->dtms_scratch_ptr; 4500 int64_t index = (int64_t)tupregs[1].dttk_value; 4501 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4502 size_t len = dtrace_strlen((char *)s, size); 4503 int64_t i; 4504 4505 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4506 regs[rd] = NULL; 4507 break; 4508 } 4509 4510 if (!DTRACE_INSCRATCH(mstate, size)) { 4511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4512 regs[rd] = NULL; 4513 break; 4514 } 4515 4516 if (nargs <= 2) 4517 remaining = (int64_t)size; 4518 4519 if (index < 0) { 4520 index += len; 4521 4522 if (index < 0 && index + remaining > 0) { 4523 remaining += index; 4524 index = 0; 4525 } 4526 } 4527 4528 if (index >= len || index < 0) { 4529 remaining = 0; 4530 } else if (remaining < 0) { 4531 remaining += len - index; 4532 } else if (index + remaining > size) { 4533 remaining = size - index; 4534 } 4535 4536 for (i = 0; i < remaining; i++) { 4537 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4538 break; 4539 } 4540 4541 d[i] = '\0'; 4542 4543 mstate->dtms_scratch_ptr += size; 4544 regs[rd] = (uintptr_t)d; 4545 break; 4546 } 4547 4548 case DIF_SUBR_JSON: { 4549 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4550 uintptr_t json = tupregs[0].dttk_value; 4551 size_t jsonlen = dtrace_strlen((char *)json, size); 4552 uintptr_t elem = tupregs[1].dttk_value; 4553 size_t elemlen = dtrace_strlen((char *)elem, size); 4554 4555 char *dest = (char *)mstate->dtms_scratch_ptr; 4556 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4557 char *ee = elemlist; 4558 int nelems = 1; 4559 uintptr_t cur; 4560 4561 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4562 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4563 regs[rd] = NULL; 4564 break; 4565 } 4566 4567 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4568 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4569 regs[rd] = NULL; 4570 break; 4571 } 4572 4573 /* 4574 * Read the element selector and split it up into a packed list 4575 * of strings. 4576 */ 4577 for (cur = elem; cur < elem + elemlen; cur++) { 4578 char cc = dtrace_load8(cur); 4579 4580 if (cur == elem && cc == '[') { 4581 /* 4582 * If the first element selector key is 4583 * actually an array index then ignore the 4584 * bracket. 4585 */ 4586 continue; 4587 } 4588 4589 if (cc == ']') 4590 continue; 4591 4592 if (cc == '.' || cc == '[') { 4593 nelems++; 4594 cc = '\0'; 4595 } 4596 4597 *ee++ = cc; 4598 } 4599 *ee++ = '\0'; 4600 4601 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4602 nelems, dest)) != NULL) 4603 mstate->dtms_scratch_ptr += jsonlen + 1; 4604 break; 4605 } 4606 4607 case DIF_SUBR_TOUPPER: 4608 case DIF_SUBR_TOLOWER: { 4609 uintptr_t s = tupregs[0].dttk_value; 4610 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4611 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4612 size_t len = dtrace_strlen((char *)s, size); 4613 char lower, upper, convert; 4614 int64_t i; 4615 4616 if (subr == DIF_SUBR_TOUPPER) { 4617 lower = 'a'; 4618 upper = 'z'; 4619 convert = 'A'; 4620 } else { 4621 lower = 'A'; 4622 upper = 'Z'; 4623 convert = 'a'; 4624 } 4625 4626 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4627 regs[rd] = NULL; 4628 break; 4629 } 4630 4631 if (!DTRACE_INSCRATCH(mstate, size)) { 4632 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4633 regs[rd] = NULL; 4634 break; 4635 } 4636 4637 for (i = 0; i < size - 1; i++) { 4638 if ((c = dtrace_load8(s + i)) == '\0') 4639 break; 4640 4641 if (c >= lower && c <= upper) 4642 c = convert + (c - lower); 4643 4644 dest[i] = c; 4645 } 4646 4647 ASSERT(i < size); 4648 dest[i] = '\0'; 4649 regs[rd] = (uintptr_t)dest; 4650 mstate->dtms_scratch_ptr += size; 4651 break; 4652 } 4653 4654 case DIF_SUBR_GETMAJOR: 4655 #ifdef _LP64 4656 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4657 #else 4658 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4659 #endif 4660 break; 4661 4662 case DIF_SUBR_GETMINOR: 4663 #ifdef _LP64 4664 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4665 #else 4666 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4667 #endif 4668 break; 4669 4670 case DIF_SUBR_DDI_PATHNAME: { 4671 /* 4672 * This one is a galactic mess. We are going to roughly 4673 * emulate ddi_pathname(), but it's made more complicated 4674 * by the fact that we (a) want to include the minor name and 4675 * (b) must proceed iteratively instead of recursively. 4676 */ 4677 uintptr_t dest = mstate->dtms_scratch_ptr; 4678 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4679 char *start = (char *)dest, *end = start + size - 1; 4680 uintptr_t daddr = tupregs[0].dttk_value; 4681 int64_t minor = (int64_t)tupregs[1].dttk_value; 4682 char *s; 4683 int i, len, depth = 0; 4684 4685 /* 4686 * Due to all the pointer jumping we do and context we must 4687 * rely upon, we just mandate that the user must have kernel 4688 * read privileges to use this routine. 4689 */ 4690 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4691 *flags |= CPU_DTRACE_KPRIV; 4692 *illval = daddr; 4693 regs[rd] = NULL; 4694 } 4695 4696 if (!DTRACE_INSCRATCH(mstate, size)) { 4697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4698 regs[rd] = NULL; 4699 break; 4700 } 4701 4702 *end = '\0'; 4703 4704 /* 4705 * We want to have a name for the minor. In order to do this, 4706 * we need to walk the minor list from the devinfo. We want 4707 * to be sure that we don't infinitely walk a circular list, 4708 * so we check for circularity by sending a scout pointer 4709 * ahead two elements for every element that we iterate over; 4710 * if the list is circular, these will ultimately point to the 4711 * same element. You may recognize this little trick as the 4712 * answer to a stupid interview question -- one that always 4713 * seems to be asked by those who had to have it laboriously 4714 * explained to them, and who can't even concisely describe 4715 * the conditions under which one would be forced to resort to 4716 * this technique. Needless to say, those conditions are 4717 * found here -- and probably only here. Is this the only use 4718 * of this infamous trick in shipping, production code? If it 4719 * isn't, it probably should be... 4720 */ 4721 if (minor != -1) { 4722 uintptr_t maddr = dtrace_loadptr(daddr + 4723 offsetof(struct dev_info, devi_minor)); 4724 4725 uintptr_t next = offsetof(struct ddi_minor_data, next); 4726 uintptr_t name = offsetof(struct ddi_minor_data, 4727 d_minor) + offsetof(struct ddi_minor, name); 4728 uintptr_t dev = offsetof(struct ddi_minor_data, 4729 d_minor) + offsetof(struct ddi_minor, dev); 4730 uintptr_t scout; 4731 4732 if (maddr != NULL) 4733 scout = dtrace_loadptr(maddr + next); 4734 4735 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4736 uint64_t m; 4737 #ifdef _LP64 4738 m = dtrace_load64(maddr + dev) & MAXMIN64; 4739 #else 4740 m = dtrace_load32(maddr + dev) & MAXMIN; 4741 #endif 4742 if (m != minor) { 4743 maddr = dtrace_loadptr(maddr + next); 4744 4745 if (scout == NULL) 4746 continue; 4747 4748 scout = dtrace_loadptr(scout + next); 4749 4750 if (scout == NULL) 4751 continue; 4752 4753 scout = dtrace_loadptr(scout + next); 4754 4755 if (scout == NULL) 4756 continue; 4757 4758 if (scout == maddr) { 4759 *flags |= CPU_DTRACE_ILLOP; 4760 break; 4761 } 4762 4763 continue; 4764 } 4765 4766 /* 4767 * We have the minor data. Now we need to 4768 * copy the minor's name into the end of the 4769 * pathname. 4770 */ 4771 s = (char *)dtrace_loadptr(maddr + name); 4772 len = dtrace_strlen(s, size); 4773 4774 if (*flags & CPU_DTRACE_FAULT) 4775 break; 4776 4777 if (len != 0) { 4778 if ((end -= (len + 1)) < start) 4779 break; 4780 4781 *end = ':'; 4782 } 4783 4784 for (i = 1; i <= len; i++) 4785 end[i] = dtrace_load8((uintptr_t)s++); 4786 break; 4787 } 4788 } 4789 4790 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4791 ddi_node_state_t devi_state; 4792 4793 devi_state = dtrace_load32(daddr + 4794 offsetof(struct dev_info, devi_node_state)); 4795 4796 if (*flags & CPU_DTRACE_FAULT) 4797 break; 4798 4799 if (devi_state >= DS_INITIALIZED) { 4800 s = (char *)dtrace_loadptr(daddr + 4801 offsetof(struct dev_info, devi_addr)); 4802 len = dtrace_strlen(s, size); 4803 4804 if (*flags & CPU_DTRACE_FAULT) 4805 break; 4806 4807 if (len != 0) { 4808 if ((end -= (len + 1)) < start) 4809 break; 4810 4811 *end = '@'; 4812 } 4813 4814 for (i = 1; i <= len; i++) 4815 end[i] = dtrace_load8((uintptr_t)s++); 4816 } 4817 4818 /* 4819 * Now for the node name... 4820 */ 4821 s = (char *)dtrace_loadptr(daddr + 4822 offsetof(struct dev_info, devi_node_name)); 4823 4824 daddr = dtrace_loadptr(daddr + 4825 offsetof(struct dev_info, devi_parent)); 4826 4827 /* 4828 * If our parent is NULL (that is, if we're the root 4829 * node), we're going to use the special path 4830 * "devices". 4831 */ 4832 if (daddr == NULL) 4833 s = "devices"; 4834 4835 len = dtrace_strlen(s, size); 4836 if (*flags & CPU_DTRACE_FAULT) 4837 break; 4838 4839 if ((end -= (len + 1)) < start) 4840 break; 4841 4842 for (i = 1; i <= len; i++) 4843 end[i] = dtrace_load8((uintptr_t)s++); 4844 *end = '/'; 4845 4846 if (depth++ > dtrace_devdepth_max) { 4847 *flags |= CPU_DTRACE_ILLOP; 4848 break; 4849 } 4850 } 4851 4852 if (end < start) 4853 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4854 4855 if (daddr == NULL) { 4856 regs[rd] = (uintptr_t)end; 4857 mstate->dtms_scratch_ptr += size; 4858 } 4859 4860 break; 4861 } 4862 4863 case DIF_SUBR_STRJOIN: { 4864 char *d = (char *)mstate->dtms_scratch_ptr; 4865 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4866 uintptr_t s1 = tupregs[0].dttk_value; 4867 uintptr_t s2 = tupregs[1].dttk_value; 4868 int i = 0; 4869 4870 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4871 !dtrace_strcanload(s2, size, mstate, vstate)) { 4872 regs[rd] = NULL; 4873 break; 4874 } 4875 4876 if (!DTRACE_INSCRATCH(mstate, size)) { 4877 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4878 regs[rd] = NULL; 4879 break; 4880 } 4881 4882 for (;;) { 4883 if (i >= size) { 4884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4885 regs[rd] = NULL; 4886 break; 4887 } 4888 4889 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4890 i--; 4891 break; 4892 } 4893 } 4894 4895 for (;;) { 4896 if (i >= size) { 4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4898 regs[rd] = NULL; 4899 break; 4900 } 4901 4902 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4903 break; 4904 } 4905 4906 if (i < size) { 4907 mstate->dtms_scratch_ptr += i; 4908 regs[rd] = (uintptr_t)d; 4909 } 4910 4911 break; 4912 } 4913 4914 case DIF_SUBR_STRTOLL: { 4915 uintptr_t s = tupregs[0].dttk_value; 4916 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4917 int base = 10; 4918 4919 if (nargs > 1) { 4920 if ((base = tupregs[1].dttk_value) <= 1 || 4921 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4922 *flags |= CPU_DTRACE_ILLOP; 4923 break; 4924 } 4925 } 4926 4927 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4928 regs[rd] = INT64_MIN; 4929 break; 4930 } 4931 4932 regs[rd] = dtrace_strtoll((char *)s, base, size); 4933 break; 4934 } 4935 4936 case DIF_SUBR_LLTOSTR: { 4937 int64_t i = (int64_t)tupregs[0].dttk_value; 4938 uint64_t val, digit; 4939 uint64_t size = 65; /* enough room for 2^64 in binary */ 4940 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4941 int base = 10; 4942 4943 if (nargs > 1) { 4944 if ((base = tupregs[1].dttk_value) <= 1 || 4945 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4946 *flags |= CPU_DTRACE_ILLOP; 4947 break; 4948 } 4949 } 4950 4951 val = (base == 10 && i < 0) ? i * -1 : i; 4952 4953 if (!DTRACE_INSCRATCH(mstate, size)) { 4954 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4955 regs[rd] = NULL; 4956 break; 4957 } 4958 4959 for (*end-- = '\0'; val; val /= base) { 4960 if ((digit = val % base) <= '9' - '0') { 4961 *end-- = '0' + digit; 4962 } else { 4963 *end-- = 'a' + (digit - ('9' - '0') - 1); 4964 } 4965 } 4966 4967 if (i == 0 && base == 16) 4968 *end-- = '0'; 4969 4970 if (base == 16) 4971 *end-- = 'x'; 4972 4973 if (i == 0 || base == 8 || base == 16) 4974 *end-- = '0'; 4975 4976 if (i < 0 && base == 10) 4977 *end-- = '-'; 4978 4979 regs[rd] = (uintptr_t)end + 1; 4980 mstate->dtms_scratch_ptr += size; 4981 break; 4982 } 4983 4984 case DIF_SUBR_HTONS: 4985 case DIF_SUBR_NTOHS: 4986 #ifdef _BIG_ENDIAN 4987 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4988 #else 4989 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4990 #endif 4991 break; 4992 4993 4994 case DIF_SUBR_HTONL: 4995 case DIF_SUBR_NTOHL: 4996 #ifdef _BIG_ENDIAN 4997 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4998 #else 4999 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5000 #endif 5001 break; 5002 5003 5004 case DIF_SUBR_HTONLL: 5005 case DIF_SUBR_NTOHLL: 5006 #ifdef _BIG_ENDIAN 5007 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5008 #else 5009 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5010 #endif 5011 break; 5012 5013 5014 case DIF_SUBR_DIRNAME: 5015 case DIF_SUBR_BASENAME: { 5016 char *dest = (char *)mstate->dtms_scratch_ptr; 5017 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5018 uintptr_t src = tupregs[0].dttk_value; 5019 int i, j, len = dtrace_strlen((char *)src, size); 5020 int lastbase = -1, firstbase = -1, lastdir = -1; 5021 int start, end; 5022 5023 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5024 regs[rd] = NULL; 5025 break; 5026 } 5027 5028 if (!DTRACE_INSCRATCH(mstate, size)) { 5029 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5030 regs[rd] = NULL; 5031 break; 5032 } 5033 5034 /* 5035 * The basename and dirname for a zero-length string is 5036 * defined to be "." 5037 */ 5038 if (len == 0) { 5039 len = 1; 5040 src = (uintptr_t)"."; 5041 } 5042 5043 /* 5044 * Start from the back of the string, moving back toward the 5045 * front until we see a character that isn't a slash. That 5046 * character is the last character in the basename. 5047 */ 5048 for (i = len - 1; i >= 0; i--) { 5049 if (dtrace_load8(src + i) != '/') 5050 break; 5051 } 5052 5053 if (i >= 0) 5054 lastbase = i; 5055 5056 /* 5057 * Starting from the last character in the basename, move 5058 * towards the front until we find a slash. The character 5059 * that we processed immediately before that is the first 5060 * character in the basename. 5061 */ 5062 for (; i >= 0; i--) { 5063 if (dtrace_load8(src + i) == '/') 5064 break; 5065 } 5066 5067 if (i >= 0) 5068 firstbase = i + 1; 5069 5070 /* 5071 * Now keep going until we find a non-slash character. That 5072 * character is the last character in the dirname. 5073 */ 5074 for (; i >= 0; i--) { 5075 if (dtrace_load8(src + i) != '/') 5076 break; 5077 } 5078 5079 if (i >= 0) 5080 lastdir = i; 5081 5082 ASSERT(!(lastbase == -1 && firstbase != -1)); 5083 ASSERT(!(firstbase == -1 && lastdir != -1)); 5084 5085 if (lastbase == -1) { 5086 /* 5087 * We didn't find a non-slash character. We know that 5088 * the length is non-zero, so the whole string must be 5089 * slashes. In either the dirname or the basename 5090 * case, we return '/'. 5091 */ 5092 ASSERT(firstbase == -1); 5093 firstbase = lastbase = lastdir = 0; 5094 } 5095 5096 if (firstbase == -1) { 5097 /* 5098 * The entire string consists only of a basename 5099 * component. If we're looking for dirname, we need 5100 * to change our string to be just "."; if we're 5101 * looking for a basename, we'll just set the first 5102 * character of the basename to be 0. 5103 */ 5104 if (subr == DIF_SUBR_DIRNAME) { 5105 ASSERT(lastdir == -1); 5106 src = (uintptr_t)"."; 5107 lastdir = 0; 5108 } else { 5109 firstbase = 0; 5110 } 5111 } 5112 5113 if (subr == DIF_SUBR_DIRNAME) { 5114 if (lastdir == -1) { 5115 /* 5116 * We know that we have a slash in the name -- 5117 * or lastdir would be set to 0, above. And 5118 * because lastdir is -1, we know that this 5119 * slash must be the first character. (That 5120 * is, the full string must be of the form 5121 * "/basename".) In this case, the last 5122 * character of the directory name is 0. 5123 */ 5124 lastdir = 0; 5125 } 5126 5127 start = 0; 5128 end = lastdir; 5129 } else { 5130 ASSERT(subr == DIF_SUBR_BASENAME); 5131 ASSERT(firstbase != -1 && lastbase != -1); 5132 start = firstbase; 5133 end = lastbase; 5134 } 5135 5136 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5137 dest[j] = dtrace_load8(src + i); 5138 5139 dest[j] = '\0'; 5140 regs[rd] = (uintptr_t)dest; 5141 mstate->dtms_scratch_ptr += size; 5142 break; 5143 } 5144 5145 case DIF_SUBR_GETF: { 5146 uintptr_t fd = tupregs[0].dttk_value; 5147 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5148 file_t *fp; 5149 5150 if (!dtrace_priv_proc(state, mstate)) { 5151 regs[rd] = NULL; 5152 break; 5153 } 5154 5155 /* 5156 * This is safe because fi_nfiles only increases, and the 5157 * fi_list array is not freed when the array size doubles. 5158 * (See the comment in flist_grow() for details on the 5159 * management of the u_finfo structure.) 5160 */ 5161 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5162 5163 mstate->dtms_getf = fp; 5164 regs[rd] = (uintptr_t)fp; 5165 break; 5166 } 5167 5168 case DIF_SUBR_CLEANPATH: { 5169 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5170 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5171 uintptr_t src = tupregs[0].dttk_value; 5172 int i = 0, j = 0; 5173 zone_t *z; 5174 5175 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5176 regs[rd] = NULL; 5177 break; 5178 } 5179 5180 if (!DTRACE_INSCRATCH(mstate, size)) { 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5182 regs[rd] = NULL; 5183 break; 5184 } 5185 5186 /* 5187 * Move forward, loading each character. 5188 */ 5189 do { 5190 c = dtrace_load8(src + i++); 5191 next: 5192 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5193 break; 5194 5195 if (c != '/') { 5196 dest[j++] = c; 5197 continue; 5198 } 5199 5200 c = dtrace_load8(src + i++); 5201 5202 if (c == '/') { 5203 /* 5204 * We have two slashes -- we can just advance 5205 * to the next character. 5206 */ 5207 goto next; 5208 } 5209 5210 if (c != '.') { 5211 /* 5212 * This is not "." and it's not ".." -- we can 5213 * just store the "/" and this character and 5214 * drive on. 5215 */ 5216 dest[j++] = '/'; 5217 dest[j++] = c; 5218 continue; 5219 } 5220 5221 c = dtrace_load8(src + i++); 5222 5223 if (c == '/') { 5224 /* 5225 * This is a "/./" component. We're not going 5226 * to store anything in the destination buffer; 5227 * we're just going to go to the next component. 5228 */ 5229 goto next; 5230 } 5231 5232 if (c != '.') { 5233 /* 5234 * This is not ".." -- we can just store the 5235 * "/." and this character and continue 5236 * processing. 5237 */ 5238 dest[j++] = '/'; 5239 dest[j++] = '.'; 5240 dest[j++] = c; 5241 continue; 5242 } 5243 5244 c = dtrace_load8(src + i++); 5245 5246 if (c != '/' && c != '\0') { 5247 /* 5248 * This is not ".." -- it's "..[mumble]". 5249 * We'll store the "/.." and this character 5250 * and continue processing. 5251 */ 5252 dest[j++] = '/'; 5253 dest[j++] = '.'; 5254 dest[j++] = '.'; 5255 dest[j++] = c; 5256 continue; 5257 } 5258 5259 /* 5260 * This is "/../" or "/..\0". We need to back up 5261 * our destination pointer until we find a "/". 5262 */ 5263 i--; 5264 while (j != 0 && dest[--j] != '/') 5265 continue; 5266 5267 if (c == '\0') 5268 dest[++j] = '/'; 5269 } while (c != '\0'); 5270 5271 dest[j] = '\0'; 5272 5273 if (mstate->dtms_getf != NULL && 5274 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5275 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5276 /* 5277 * If we've done a getf() as a part of this ECB and we 5278 * don't have kernel access (and we're not in the global 5279 * zone), check if the path we cleaned up begins with 5280 * the zone's root path, and trim it off if so. Note 5281 * that this is an output cleanliness issue, not a 5282 * security issue: knowing one's zone root path does 5283 * not enable privilege escalation. 5284 */ 5285 if (strstr(dest, z->zone_rootpath) == dest) 5286 dest += strlen(z->zone_rootpath) - 1; 5287 } 5288 5289 regs[rd] = (uintptr_t)dest; 5290 mstate->dtms_scratch_ptr += size; 5291 break; 5292 } 5293 5294 case DIF_SUBR_INET_NTOA: 5295 case DIF_SUBR_INET_NTOA6: 5296 case DIF_SUBR_INET_NTOP: { 5297 size_t size; 5298 int af, argi, i; 5299 char *base, *end; 5300 5301 if (subr == DIF_SUBR_INET_NTOP) { 5302 af = (int)tupregs[0].dttk_value; 5303 argi = 1; 5304 } else { 5305 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5306 argi = 0; 5307 } 5308 5309 if (af == AF_INET) { 5310 ipaddr_t ip4; 5311 uint8_t *ptr8, val; 5312 5313 /* 5314 * Safely load the IPv4 address. 5315 */ 5316 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5317 5318 /* 5319 * Check an IPv4 string will fit in scratch. 5320 */ 5321 size = INET_ADDRSTRLEN; 5322 if (!DTRACE_INSCRATCH(mstate, size)) { 5323 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5324 regs[rd] = NULL; 5325 break; 5326 } 5327 base = (char *)mstate->dtms_scratch_ptr; 5328 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5329 5330 /* 5331 * Stringify as a dotted decimal quad. 5332 */ 5333 *end-- = '\0'; 5334 ptr8 = (uint8_t *)&ip4; 5335 for (i = 3; i >= 0; i--) { 5336 val = ptr8[i]; 5337 5338 if (val == 0) { 5339 *end-- = '0'; 5340 } else { 5341 for (; val; val /= 10) { 5342 *end-- = '0' + (val % 10); 5343 } 5344 } 5345 5346 if (i > 0) 5347 *end-- = '.'; 5348 } 5349 ASSERT(end + 1 >= base); 5350 5351 } else if (af == AF_INET6) { 5352 struct in6_addr ip6; 5353 int firstzero, tryzero, numzero, v6end; 5354 uint16_t val; 5355 const char digits[] = "0123456789abcdef"; 5356 5357 /* 5358 * Stringify using RFC 1884 convention 2 - 16 bit 5359 * hexadecimal values with a zero-run compression. 5360 * Lower case hexadecimal digits are used. 5361 * eg, fe80::214:4fff:fe0b:76c8. 5362 * The IPv4 embedded form is returned for inet_ntop, 5363 * just the IPv4 string is returned for inet_ntoa6. 5364 */ 5365 5366 /* 5367 * Safely load the IPv6 address. 5368 */ 5369 dtrace_bcopy( 5370 (void *)(uintptr_t)tupregs[argi].dttk_value, 5371 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5372 5373 /* 5374 * Check an IPv6 string will fit in scratch. 5375 */ 5376 size = INET6_ADDRSTRLEN; 5377 if (!DTRACE_INSCRATCH(mstate, size)) { 5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5379 regs[rd] = NULL; 5380 break; 5381 } 5382 base = (char *)mstate->dtms_scratch_ptr; 5383 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5384 *end-- = '\0'; 5385 5386 /* 5387 * Find the longest run of 16 bit zero values 5388 * for the single allowed zero compression - "::". 5389 */ 5390 firstzero = -1; 5391 tryzero = -1; 5392 numzero = 1; 5393 for (i = 0; i < sizeof (struct in6_addr); i++) { 5394 if (ip6._S6_un._S6_u8[i] == 0 && 5395 tryzero == -1 && i % 2 == 0) { 5396 tryzero = i; 5397 continue; 5398 } 5399 5400 if (tryzero != -1 && 5401 (ip6._S6_un._S6_u8[i] != 0 || 5402 i == sizeof (struct in6_addr) - 1)) { 5403 5404 if (i - tryzero <= numzero) { 5405 tryzero = -1; 5406 continue; 5407 } 5408 5409 firstzero = tryzero; 5410 numzero = i - i % 2 - tryzero; 5411 tryzero = -1; 5412 5413 if (ip6._S6_un._S6_u8[i] == 0 && 5414 i == sizeof (struct in6_addr) - 1) 5415 numzero += 2; 5416 } 5417 } 5418 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5419 5420 /* 5421 * Check for an IPv4 embedded address. 5422 */ 5423 v6end = sizeof (struct in6_addr) - 2; 5424 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5425 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5426 for (i = sizeof (struct in6_addr) - 1; 5427 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5428 ASSERT(end >= base); 5429 5430 val = ip6._S6_un._S6_u8[i]; 5431 5432 if (val == 0) { 5433 *end-- = '0'; 5434 } else { 5435 for (; val; val /= 10) { 5436 *end-- = '0' + val % 10; 5437 } 5438 } 5439 5440 if (i > DTRACE_V4MAPPED_OFFSET) 5441 *end-- = '.'; 5442 } 5443 5444 if (subr == DIF_SUBR_INET_NTOA6) 5445 goto inetout; 5446 5447 /* 5448 * Set v6end to skip the IPv4 address that 5449 * we have already stringified. 5450 */ 5451 v6end = 10; 5452 } 5453 5454 /* 5455 * Build the IPv6 string by working through the 5456 * address in reverse. 5457 */ 5458 for (i = v6end; i >= 0; i -= 2) { 5459 ASSERT(end >= base); 5460 5461 if (i == firstzero + numzero - 2) { 5462 *end-- = ':'; 5463 *end-- = ':'; 5464 i -= numzero - 2; 5465 continue; 5466 } 5467 5468 if (i < 14 && i != firstzero - 2) 5469 *end-- = ':'; 5470 5471 val = (ip6._S6_un._S6_u8[i] << 8) + 5472 ip6._S6_un._S6_u8[i + 1]; 5473 5474 if (val == 0) { 5475 *end-- = '0'; 5476 } else { 5477 for (; val; val /= 16) { 5478 *end-- = digits[val % 16]; 5479 } 5480 } 5481 } 5482 ASSERT(end + 1 >= base); 5483 5484 } else { 5485 /* 5486 * The user didn't use AH_INET or AH_INET6. 5487 */ 5488 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5489 regs[rd] = NULL; 5490 break; 5491 } 5492 5493 inetout: regs[rd] = (uintptr_t)end + 1; 5494 mstate->dtms_scratch_ptr += size; 5495 break; 5496 } 5497 5498 } 5499 } 5500 5501 /* 5502 * Emulate the execution of DTrace IR instructions specified by the given 5503 * DIF object. This function is deliberately void of assertions as all of 5504 * the necessary checks are handled by a call to dtrace_difo_validate(). 5505 */ 5506 static uint64_t 5507 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5508 dtrace_vstate_t *vstate, dtrace_state_t *state) 5509 { 5510 const dif_instr_t *text = difo->dtdo_buf; 5511 const uint_t textlen = difo->dtdo_len; 5512 const char *strtab = difo->dtdo_strtab; 5513 const uint64_t *inttab = difo->dtdo_inttab; 5514 5515 uint64_t rval = 0; 5516 dtrace_statvar_t *svar; 5517 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5518 dtrace_difv_t *v; 5519 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5520 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5521 5522 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5523 uint64_t regs[DIF_DIR_NREGS]; 5524 uint64_t *tmp; 5525 5526 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5527 int64_t cc_r; 5528 uint_t pc = 0, id, opc; 5529 uint8_t ttop = 0; 5530 dif_instr_t instr; 5531 uint_t r1, r2, rd; 5532 5533 /* 5534 * We stash the current DIF object into the machine state: we need it 5535 * for subsequent access checking. 5536 */ 5537 mstate->dtms_difo = difo; 5538 5539 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5540 5541 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5542 opc = pc; 5543 5544 instr = text[pc++]; 5545 r1 = DIF_INSTR_R1(instr); 5546 r2 = DIF_INSTR_R2(instr); 5547 rd = DIF_INSTR_RD(instr); 5548 5549 switch (DIF_INSTR_OP(instr)) { 5550 case DIF_OP_OR: 5551 regs[rd] = regs[r1] | regs[r2]; 5552 break; 5553 case DIF_OP_XOR: 5554 regs[rd] = regs[r1] ^ regs[r2]; 5555 break; 5556 case DIF_OP_AND: 5557 regs[rd] = regs[r1] & regs[r2]; 5558 break; 5559 case DIF_OP_SLL: 5560 regs[rd] = regs[r1] << regs[r2]; 5561 break; 5562 case DIF_OP_SRL: 5563 regs[rd] = regs[r1] >> regs[r2]; 5564 break; 5565 case DIF_OP_SUB: 5566 regs[rd] = regs[r1] - regs[r2]; 5567 break; 5568 case DIF_OP_ADD: 5569 regs[rd] = regs[r1] + regs[r2]; 5570 break; 5571 case DIF_OP_MUL: 5572 regs[rd] = regs[r1] * regs[r2]; 5573 break; 5574 case DIF_OP_SDIV: 5575 if (regs[r2] == 0) { 5576 regs[rd] = 0; 5577 *flags |= CPU_DTRACE_DIVZERO; 5578 } else { 5579 regs[rd] = (int64_t)regs[r1] / 5580 (int64_t)regs[r2]; 5581 } 5582 break; 5583 5584 case DIF_OP_UDIV: 5585 if (regs[r2] == 0) { 5586 regs[rd] = 0; 5587 *flags |= CPU_DTRACE_DIVZERO; 5588 } else { 5589 regs[rd] = regs[r1] / regs[r2]; 5590 } 5591 break; 5592 5593 case DIF_OP_SREM: 5594 if (regs[r2] == 0) { 5595 regs[rd] = 0; 5596 *flags |= CPU_DTRACE_DIVZERO; 5597 } else { 5598 regs[rd] = (int64_t)regs[r1] % 5599 (int64_t)regs[r2]; 5600 } 5601 break; 5602 5603 case DIF_OP_UREM: 5604 if (regs[r2] == 0) { 5605 regs[rd] = 0; 5606 *flags |= CPU_DTRACE_DIVZERO; 5607 } else { 5608 regs[rd] = regs[r1] % regs[r2]; 5609 } 5610 break; 5611 5612 case DIF_OP_NOT: 5613 regs[rd] = ~regs[r1]; 5614 break; 5615 case DIF_OP_MOV: 5616 regs[rd] = regs[r1]; 5617 break; 5618 case DIF_OP_CMP: 5619 cc_r = regs[r1] - regs[r2]; 5620 cc_n = cc_r < 0; 5621 cc_z = cc_r == 0; 5622 cc_v = 0; 5623 cc_c = regs[r1] < regs[r2]; 5624 break; 5625 case DIF_OP_TST: 5626 cc_n = cc_v = cc_c = 0; 5627 cc_z = regs[r1] == 0; 5628 break; 5629 case DIF_OP_BA: 5630 pc = DIF_INSTR_LABEL(instr); 5631 break; 5632 case DIF_OP_BE: 5633 if (cc_z) 5634 pc = DIF_INSTR_LABEL(instr); 5635 break; 5636 case DIF_OP_BNE: 5637 if (cc_z == 0) 5638 pc = DIF_INSTR_LABEL(instr); 5639 break; 5640 case DIF_OP_BG: 5641 if ((cc_z | (cc_n ^ cc_v)) == 0) 5642 pc = DIF_INSTR_LABEL(instr); 5643 break; 5644 case DIF_OP_BGU: 5645 if ((cc_c | cc_z) == 0) 5646 pc = DIF_INSTR_LABEL(instr); 5647 break; 5648 case DIF_OP_BGE: 5649 if ((cc_n ^ cc_v) == 0) 5650 pc = DIF_INSTR_LABEL(instr); 5651 break; 5652 case DIF_OP_BGEU: 5653 if (cc_c == 0) 5654 pc = DIF_INSTR_LABEL(instr); 5655 break; 5656 case DIF_OP_BL: 5657 if (cc_n ^ cc_v) 5658 pc = DIF_INSTR_LABEL(instr); 5659 break; 5660 case DIF_OP_BLU: 5661 if (cc_c) 5662 pc = DIF_INSTR_LABEL(instr); 5663 break; 5664 case DIF_OP_BLE: 5665 if (cc_z | (cc_n ^ cc_v)) 5666 pc = DIF_INSTR_LABEL(instr); 5667 break; 5668 case DIF_OP_BLEU: 5669 if (cc_c | cc_z) 5670 pc = DIF_INSTR_LABEL(instr); 5671 break; 5672 case DIF_OP_RLDSB: 5673 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5674 break; 5675 /*FALLTHROUGH*/ 5676 case DIF_OP_LDSB: 5677 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5678 break; 5679 case DIF_OP_RLDSH: 5680 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5681 break; 5682 /*FALLTHROUGH*/ 5683 case DIF_OP_LDSH: 5684 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5685 break; 5686 case DIF_OP_RLDSW: 5687 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5688 break; 5689 /*FALLTHROUGH*/ 5690 case DIF_OP_LDSW: 5691 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5692 break; 5693 case DIF_OP_RLDUB: 5694 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5695 break; 5696 /*FALLTHROUGH*/ 5697 case DIF_OP_LDUB: 5698 regs[rd] = dtrace_load8(regs[r1]); 5699 break; 5700 case DIF_OP_RLDUH: 5701 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5702 break; 5703 /*FALLTHROUGH*/ 5704 case DIF_OP_LDUH: 5705 regs[rd] = dtrace_load16(regs[r1]); 5706 break; 5707 case DIF_OP_RLDUW: 5708 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5709 break; 5710 /*FALLTHROUGH*/ 5711 case DIF_OP_LDUW: 5712 regs[rd] = dtrace_load32(regs[r1]); 5713 break; 5714 case DIF_OP_RLDX: 5715 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5716 break; 5717 /*FALLTHROUGH*/ 5718 case DIF_OP_LDX: 5719 regs[rd] = dtrace_load64(regs[r1]); 5720 break; 5721 case DIF_OP_ULDSB: 5722 regs[rd] = (int8_t) 5723 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5724 break; 5725 case DIF_OP_ULDSH: 5726 regs[rd] = (int16_t) 5727 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5728 break; 5729 case DIF_OP_ULDSW: 5730 regs[rd] = (int32_t) 5731 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5732 break; 5733 case DIF_OP_ULDUB: 5734 regs[rd] = 5735 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5736 break; 5737 case DIF_OP_ULDUH: 5738 regs[rd] = 5739 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5740 break; 5741 case DIF_OP_ULDUW: 5742 regs[rd] = 5743 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5744 break; 5745 case DIF_OP_ULDX: 5746 regs[rd] = 5747 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5748 break; 5749 case DIF_OP_RET: 5750 rval = regs[rd]; 5751 pc = textlen; 5752 break; 5753 case DIF_OP_NOP: 5754 break; 5755 case DIF_OP_SETX: 5756 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5757 break; 5758 case DIF_OP_SETS: 5759 regs[rd] = (uint64_t)(uintptr_t) 5760 (strtab + DIF_INSTR_STRING(instr)); 5761 break; 5762 case DIF_OP_SCMP: { 5763 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5764 uintptr_t s1 = regs[r1]; 5765 uintptr_t s2 = regs[r2]; 5766 5767 if (s1 != NULL && 5768 !dtrace_strcanload(s1, sz, mstate, vstate)) 5769 break; 5770 if (s2 != NULL && 5771 !dtrace_strcanload(s2, sz, mstate, vstate)) 5772 break; 5773 5774 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5775 5776 cc_n = cc_r < 0; 5777 cc_z = cc_r == 0; 5778 cc_v = cc_c = 0; 5779 break; 5780 } 5781 case DIF_OP_LDGA: 5782 regs[rd] = dtrace_dif_variable(mstate, state, 5783 r1, regs[r2]); 5784 break; 5785 case DIF_OP_LDGS: 5786 id = DIF_INSTR_VAR(instr); 5787 5788 if (id >= DIF_VAR_OTHER_UBASE) { 5789 uintptr_t a; 5790 5791 id -= DIF_VAR_OTHER_UBASE; 5792 svar = vstate->dtvs_globals[id]; 5793 ASSERT(svar != NULL); 5794 v = &svar->dtsv_var; 5795 5796 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5797 regs[rd] = svar->dtsv_data; 5798 break; 5799 } 5800 5801 a = (uintptr_t)svar->dtsv_data; 5802 5803 if (*(uint8_t *)a == UINT8_MAX) { 5804 /* 5805 * If the 0th byte is set to UINT8_MAX 5806 * then this is to be treated as a 5807 * reference to a NULL variable. 5808 */ 5809 regs[rd] = NULL; 5810 } else { 5811 regs[rd] = a + sizeof (uint64_t); 5812 } 5813 5814 break; 5815 } 5816 5817 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5818 break; 5819 5820 case DIF_OP_STGS: 5821 id = DIF_INSTR_VAR(instr); 5822 5823 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5824 id -= DIF_VAR_OTHER_UBASE; 5825 5826 svar = vstate->dtvs_globals[id]; 5827 ASSERT(svar != NULL); 5828 v = &svar->dtsv_var; 5829 5830 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5831 uintptr_t a = (uintptr_t)svar->dtsv_data; 5832 5833 ASSERT(a != NULL); 5834 ASSERT(svar->dtsv_size != 0); 5835 5836 if (regs[rd] == NULL) { 5837 *(uint8_t *)a = UINT8_MAX; 5838 break; 5839 } else { 5840 *(uint8_t *)a = 0; 5841 a += sizeof (uint64_t); 5842 } 5843 if (!dtrace_vcanload( 5844 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5845 mstate, vstate)) 5846 break; 5847 5848 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5849 (void *)a, &v->dtdv_type); 5850 break; 5851 } 5852 5853 svar->dtsv_data = regs[rd]; 5854 break; 5855 5856 case DIF_OP_LDTA: 5857 /* 5858 * There are no DTrace built-in thread-local arrays at 5859 * present. This opcode is saved for future work. 5860 */ 5861 *flags |= CPU_DTRACE_ILLOP; 5862 regs[rd] = 0; 5863 break; 5864 5865 case DIF_OP_LDLS: 5866 id = DIF_INSTR_VAR(instr); 5867 5868 if (id < DIF_VAR_OTHER_UBASE) { 5869 /* 5870 * For now, this has no meaning. 5871 */ 5872 regs[rd] = 0; 5873 break; 5874 } 5875 5876 id -= DIF_VAR_OTHER_UBASE; 5877 5878 ASSERT(id < vstate->dtvs_nlocals); 5879 ASSERT(vstate->dtvs_locals != NULL); 5880 5881 svar = vstate->dtvs_locals[id]; 5882 ASSERT(svar != NULL); 5883 v = &svar->dtsv_var; 5884 5885 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5886 uintptr_t a = (uintptr_t)svar->dtsv_data; 5887 size_t sz = v->dtdv_type.dtdt_size; 5888 5889 sz += sizeof (uint64_t); 5890 ASSERT(svar->dtsv_size == NCPU * sz); 5891 a += CPU->cpu_id * sz; 5892 5893 if (*(uint8_t *)a == UINT8_MAX) { 5894 /* 5895 * If the 0th byte is set to UINT8_MAX 5896 * then this is to be treated as a 5897 * reference to a NULL variable. 5898 */ 5899 regs[rd] = NULL; 5900 } else { 5901 regs[rd] = a + sizeof (uint64_t); 5902 } 5903 5904 break; 5905 } 5906 5907 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5908 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5909 regs[rd] = tmp[CPU->cpu_id]; 5910 break; 5911 5912 case DIF_OP_STLS: 5913 id = DIF_INSTR_VAR(instr); 5914 5915 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5916 id -= DIF_VAR_OTHER_UBASE; 5917 ASSERT(id < vstate->dtvs_nlocals); 5918 5919 ASSERT(vstate->dtvs_locals != NULL); 5920 svar = vstate->dtvs_locals[id]; 5921 ASSERT(svar != NULL); 5922 v = &svar->dtsv_var; 5923 5924 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5925 uintptr_t a = (uintptr_t)svar->dtsv_data; 5926 size_t sz = v->dtdv_type.dtdt_size; 5927 5928 sz += sizeof (uint64_t); 5929 ASSERT(svar->dtsv_size == NCPU * sz); 5930 a += CPU->cpu_id * sz; 5931 5932 if (regs[rd] == NULL) { 5933 *(uint8_t *)a = UINT8_MAX; 5934 break; 5935 } else { 5936 *(uint8_t *)a = 0; 5937 a += sizeof (uint64_t); 5938 } 5939 5940 if (!dtrace_vcanload( 5941 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5942 mstate, vstate)) 5943 break; 5944 5945 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5946 (void *)a, &v->dtdv_type); 5947 break; 5948 } 5949 5950 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5951 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5952 tmp[CPU->cpu_id] = regs[rd]; 5953 break; 5954 5955 case DIF_OP_LDTS: { 5956 dtrace_dynvar_t *dvar; 5957 dtrace_key_t *key; 5958 5959 id = DIF_INSTR_VAR(instr); 5960 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5961 id -= DIF_VAR_OTHER_UBASE; 5962 v = &vstate->dtvs_tlocals[id]; 5963 5964 key = &tupregs[DIF_DTR_NREGS]; 5965 key[0].dttk_value = (uint64_t)id; 5966 key[0].dttk_size = 0; 5967 DTRACE_TLS_THRKEY(key[1].dttk_value); 5968 key[1].dttk_size = 0; 5969 5970 dvar = dtrace_dynvar(dstate, 2, key, 5971 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5972 mstate, vstate); 5973 5974 if (dvar == NULL) { 5975 regs[rd] = 0; 5976 break; 5977 } 5978 5979 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5980 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5981 } else { 5982 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5983 } 5984 5985 break; 5986 } 5987 5988 case DIF_OP_STTS: { 5989 dtrace_dynvar_t *dvar; 5990 dtrace_key_t *key; 5991 5992 id = DIF_INSTR_VAR(instr); 5993 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5994 id -= DIF_VAR_OTHER_UBASE; 5995 5996 key = &tupregs[DIF_DTR_NREGS]; 5997 key[0].dttk_value = (uint64_t)id; 5998 key[0].dttk_size = 0; 5999 DTRACE_TLS_THRKEY(key[1].dttk_value); 6000 key[1].dttk_size = 0; 6001 v = &vstate->dtvs_tlocals[id]; 6002 6003 dvar = dtrace_dynvar(dstate, 2, key, 6004 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6005 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6006 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6007 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6008 6009 /* 6010 * Given that we're storing to thread-local data, 6011 * we need to flush our predicate cache. 6012 */ 6013 curthread->t_predcache = NULL; 6014 6015 if (dvar == NULL) 6016 break; 6017 6018 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6019 if (!dtrace_vcanload( 6020 (void *)(uintptr_t)regs[rd], 6021 &v->dtdv_type, mstate, vstate)) 6022 break; 6023 6024 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6025 dvar->dtdv_data, &v->dtdv_type); 6026 } else { 6027 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6028 } 6029 6030 break; 6031 } 6032 6033 case DIF_OP_SRA: 6034 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6035 break; 6036 6037 case DIF_OP_CALL: 6038 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6039 regs, tupregs, ttop, mstate, state); 6040 break; 6041 6042 case DIF_OP_PUSHTR: 6043 if (ttop == DIF_DTR_NREGS) { 6044 *flags |= CPU_DTRACE_TUPOFLOW; 6045 break; 6046 } 6047 6048 if (r1 == DIF_TYPE_STRING) { 6049 /* 6050 * If this is a string type and the size is 0, 6051 * we'll use the system-wide default string 6052 * size. Note that we are _not_ looking at 6053 * the value of the DTRACEOPT_STRSIZE option; 6054 * had this been set, we would expect to have 6055 * a non-zero size value in the "pushtr". 6056 */ 6057 tupregs[ttop].dttk_size = 6058 dtrace_strlen((char *)(uintptr_t)regs[rd], 6059 regs[r2] ? regs[r2] : 6060 dtrace_strsize_default) + 1; 6061 } else { 6062 tupregs[ttop].dttk_size = regs[r2]; 6063 } 6064 6065 tupregs[ttop++].dttk_value = regs[rd]; 6066 break; 6067 6068 case DIF_OP_PUSHTV: 6069 if (ttop == DIF_DTR_NREGS) { 6070 *flags |= CPU_DTRACE_TUPOFLOW; 6071 break; 6072 } 6073 6074 tupregs[ttop].dttk_value = regs[rd]; 6075 tupregs[ttop++].dttk_size = 0; 6076 break; 6077 6078 case DIF_OP_POPTS: 6079 if (ttop != 0) 6080 ttop--; 6081 break; 6082 6083 case DIF_OP_FLUSHTS: 6084 ttop = 0; 6085 break; 6086 6087 case DIF_OP_LDGAA: 6088 case DIF_OP_LDTAA: { 6089 dtrace_dynvar_t *dvar; 6090 dtrace_key_t *key = tupregs; 6091 uint_t nkeys = ttop; 6092 6093 id = DIF_INSTR_VAR(instr); 6094 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6095 id -= DIF_VAR_OTHER_UBASE; 6096 6097 key[nkeys].dttk_value = (uint64_t)id; 6098 key[nkeys++].dttk_size = 0; 6099 6100 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6101 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6102 key[nkeys++].dttk_size = 0; 6103 v = &vstate->dtvs_tlocals[id]; 6104 } else { 6105 v = &vstate->dtvs_globals[id]->dtsv_var; 6106 } 6107 6108 dvar = dtrace_dynvar(dstate, nkeys, key, 6109 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6110 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6111 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6112 6113 if (dvar == NULL) { 6114 regs[rd] = 0; 6115 break; 6116 } 6117 6118 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6119 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6120 } else { 6121 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6122 } 6123 6124 break; 6125 } 6126 6127 case DIF_OP_STGAA: 6128 case DIF_OP_STTAA: { 6129 dtrace_dynvar_t *dvar; 6130 dtrace_key_t *key = tupregs; 6131 uint_t nkeys = ttop; 6132 6133 id = DIF_INSTR_VAR(instr); 6134 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6135 id -= DIF_VAR_OTHER_UBASE; 6136 6137 key[nkeys].dttk_value = (uint64_t)id; 6138 key[nkeys++].dttk_size = 0; 6139 6140 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6141 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6142 key[nkeys++].dttk_size = 0; 6143 v = &vstate->dtvs_tlocals[id]; 6144 } else { 6145 v = &vstate->dtvs_globals[id]->dtsv_var; 6146 } 6147 6148 dvar = dtrace_dynvar(dstate, nkeys, key, 6149 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6150 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6151 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6152 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6153 6154 if (dvar == NULL) 6155 break; 6156 6157 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6158 if (!dtrace_vcanload( 6159 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6160 mstate, vstate)) 6161 break; 6162 6163 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6164 dvar->dtdv_data, &v->dtdv_type); 6165 } else { 6166 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6167 } 6168 6169 break; 6170 } 6171 6172 case DIF_OP_ALLOCS: { 6173 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6174 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6175 6176 /* 6177 * Rounding up the user allocation size could have 6178 * overflowed large, bogus allocations (like -1ULL) to 6179 * 0. 6180 */ 6181 if (size < regs[r1] || 6182 !DTRACE_INSCRATCH(mstate, size)) { 6183 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6184 regs[rd] = NULL; 6185 break; 6186 } 6187 6188 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6189 mstate->dtms_scratch_ptr += size; 6190 regs[rd] = ptr; 6191 break; 6192 } 6193 6194 case DIF_OP_COPYS: 6195 if (!dtrace_canstore(regs[rd], regs[r2], 6196 mstate, vstate)) { 6197 *flags |= CPU_DTRACE_BADADDR; 6198 *illval = regs[rd]; 6199 break; 6200 } 6201 6202 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6203 break; 6204 6205 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6206 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6207 break; 6208 6209 case DIF_OP_STB: 6210 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6211 *flags |= CPU_DTRACE_BADADDR; 6212 *illval = regs[rd]; 6213 break; 6214 } 6215 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6216 break; 6217 6218 case DIF_OP_STH: 6219 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6220 *flags |= CPU_DTRACE_BADADDR; 6221 *illval = regs[rd]; 6222 break; 6223 } 6224 if (regs[rd] & 1) { 6225 *flags |= CPU_DTRACE_BADALIGN; 6226 *illval = regs[rd]; 6227 break; 6228 } 6229 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6230 break; 6231 6232 case DIF_OP_STW: 6233 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6234 *flags |= CPU_DTRACE_BADADDR; 6235 *illval = regs[rd]; 6236 break; 6237 } 6238 if (regs[rd] & 3) { 6239 *flags |= CPU_DTRACE_BADALIGN; 6240 *illval = regs[rd]; 6241 break; 6242 } 6243 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6244 break; 6245 6246 case DIF_OP_STX: 6247 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6248 *flags |= CPU_DTRACE_BADADDR; 6249 *illval = regs[rd]; 6250 break; 6251 } 6252 if (regs[rd] & 7) { 6253 *flags |= CPU_DTRACE_BADALIGN; 6254 *illval = regs[rd]; 6255 break; 6256 } 6257 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6258 break; 6259 } 6260 } 6261 6262 if (!(*flags & CPU_DTRACE_FAULT)) 6263 return (rval); 6264 6265 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6266 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6267 6268 return (0); 6269 } 6270 6271 static void 6272 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6273 { 6274 dtrace_probe_t *probe = ecb->dte_probe; 6275 dtrace_provider_t *prov = probe->dtpr_provider; 6276 char c[DTRACE_FULLNAMELEN + 80], *str; 6277 char *msg = "dtrace: breakpoint action at probe "; 6278 char *ecbmsg = " (ecb "; 6279 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6280 uintptr_t val = (uintptr_t)ecb; 6281 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6282 6283 if (dtrace_destructive_disallow) 6284 return; 6285 6286 /* 6287 * It's impossible to be taking action on the NULL probe. 6288 */ 6289 ASSERT(probe != NULL); 6290 6291 /* 6292 * This is a poor man's (destitute man's?) sprintf(): we want to 6293 * print the provider name, module name, function name and name of 6294 * the probe, along with the hex address of the ECB with the breakpoint 6295 * action -- all of which we must place in the character buffer by 6296 * hand. 6297 */ 6298 while (*msg != '\0') 6299 c[i++] = *msg++; 6300 6301 for (str = prov->dtpv_name; *str != '\0'; str++) 6302 c[i++] = *str; 6303 c[i++] = ':'; 6304 6305 for (str = probe->dtpr_mod; *str != '\0'; str++) 6306 c[i++] = *str; 6307 c[i++] = ':'; 6308 6309 for (str = probe->dtpr_func; *str != '\0'; str++) 6310 c[i++] = *str; 6311 c[i++] = ':'; 6312 6313 for (str = probe->dtpr_name; *str != '\0'; str++) 6314 c[i++] = *str; 6315 6316 while (*ecbmsg != '\0') 6317 c[i++] = *ecbmsg++; 6318 6319 while (shift >= 0) { 6320 mask = (uintptr_t)0xf << shift; 6321 6322 if (val >= ((uintptr_t)1 << shift)) 6323 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6324 shift -= 4; 6325 } 6326 6327 c[i++] = ')'; 6328 c[i] = '\0'; 6329 6330 debug_enter(c); 6331 } 6332 6333 static void 6334 dtrace_action_panic(dtrace_ecb_t *ecb) 6335 { 6336 dtrace_probe_t *probe = ecb->dte_probe; 6337 6338 /* 6339 * It's impossible to be taking action on the NULL probe. 6340 */ 6341 ASSERT(probe != NULL); 6342 6343 if (dtrace_destructive_disallow) 6344 return; 6345 6346 if (dtrace_panicked != NULL) 6347 return; 6348 6349 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6350 return; 6351 6352 /* 6353 * We won the right to panic. (We want to be sure that only one 6354 * thread calls panic() from dtrace_probe(), and that panic() is 6355 * called exactly once.) 6356 */ 6357 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6358 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6359 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6360 } 6361 6362 static void 6363 dtrace_action_raise(uint64_t sig) 6364 { 6365 if (dtrace_destructive_disallow) 6366 return; 6367 6368 if (sig >= NSIG) { 6369 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6370 return; 6371 } 6372 6373 /* 6374 * raise() has a queue depth of 1 -- we ignore all subsequent 6375 * invocations of the raise() action. 6376 */ 6377 if (curthread->t_dtrace_sig == 0) 6378 curthread->t_dtrace_sig = (uint8_t)sig; 6379 6380 curthread->t_sig_check = 1; 6381 aston(curthread); 6382 } 6383 6384 static void 6385 dtrace_action_stop(void) 6386 { 6387 if (dtrace_destructive_disallow) 6388 return; 6389 6390 if (!curthread->t_dtrace_stop) { 6391 curthread->t_dtrace_stop = 1; 6392 curthread->t_sig_check = 1; 6393 aston(curthread); 6394 } 6395 } 6396 6397 static void 6398 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6399 { 6400 hrtime_t now; 6401 volatile uint16_t *flags; 6402 cpu_t *cpu = CPU; 6403 6404 if (dtrace_destructive_disallow) 6405 return; 6406 6407 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6408 6409 now = dtrace_gethrtime(); 6410 6411 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6412 /* 6413 * We need to advance the mark to the current time. 6414 */ 6415 cpu->cpu_dtrace_chillmark = now; 6416 cpu->cpu_dtrace_chilled = 0; 6417 } 6418 6419 /* 6420 * Now check to see if the requested chill time would take us over 6421 * the maximum amount of time allowed in the chill interval. (Or 6422 * worse, if the calculation itself induces overflow.) 6423 */ 6424 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6425 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6426 *flags |= CPU_DTRACE_ILLOP; 6427 return; 6428 } 6429 6430 while (dtrace_gethrtime() - now < val) 6431 continue; 6432 6433 /* 6434 * Normally, we assure that the value of the variable "timestamp" does 6435 * not change within an ECB. The presence of chill() represents an 6436 * exception to this rule, however. 6437 */ 6438 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6439 cpu->cpu_dtrace_chilled += val; 6440 } 6441 6442 static void 6443 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6444 uint64_t *buf, uint64_t arg) 6445 { 6446 int nframes = DTRACE_USTACK_NFRAMES(arg); 6447 int strsize = DTRACE_USTACK_STRSIZE(arg); 6448 uint64_t *pcs = &buf[1], *fps; 6449 char *str = (char *)&pcs[nframes]; 6450 int size, offs = 0, i, j; 6451 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6452 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6453 char *sym; 6454 6455 /* 6456 * Should be taking a faster path if string space has not been 6457 * allocated. 6458 */ 6459 ASSERT(strsize != 0); 6460 6461 /* 6462 * We will first allocate some temporary space for the frame pointers. 6463 */ 6464 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6465 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6466 (nframes * sizeof (uint64_t)); 6467 6468 if (!DTRACE_INSCRATCH(mstate, size)) { 6469 /* 6470 * Not enough room for our frame pointers -- need to indicate 6471 * that we ran out of scratch space. 6472 */ 6473 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6474 return; 6475 } 6476 6477 mstate->dtms_scratch_ptr += size; 6478 saved = mstate->dtms_scratch_ptr; 6479 6480 /* 6481 * Now get a stack with both program counters and frame pointers. 6482 */ 6483 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6484 dtrace_getufpstack(buf, fps, nframes + 1); 6485 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6486 6487 /* 6488 * If that faulted, we're cooked. 6489 */ 6490 if (*flags & CPU_DTRACE_FAULT) 6491 goto out; 6492 6493 /* 6494 * Now we want to walk up the stack, calling the USTACK helper. For 6495 * each iteration, we restore the scratch pointer. 6496 */ 6497 for (i = 0; i < nframes; i++) { 6498 mstate->dtms_scratch_ptr = saved; 6499 6500 if (offs >= strsize) 6501 break; 6502 6503 sym = (char *)(uintptr_t)dtrace_helper( 6504 DTRACE_HELPER_ACTION_USTACK, 6505 mstate, state, pcs[i], fps[i]); 6506 6507 /* 6508 * If we faulted while running the helper, we're going to 6509 * clear the fault and null out the corresponding string. 6510 */ 6511 if (*flags & CPU_DTRACE_FAULT) { 6512 *flags &= ~CPU_DTRACE_FAULT; 6513 str[offs++] = '\0'; 6514 continue; 6515 } 6516 6517 if (sym == NULL) { 6518 str[offs++] = '\0'; 6519 continue; 6520 } 6521 6522 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6523 6524 /* 6525 * Now copy in the string that the helper returned to us. 6526 */ 6527 for (j = 0; offs + j < strsize; j++) { 6528 if ((str[offs + j] = sym[j]) == '\0') 6529 break; 6530 } 6531 6532 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6533 6534 offs += j + 1; 6535 } 6536 6537 if (offs >= strsize) { 6538 /* 6539 * If we didn't have room for all of the strings, we don't 6540 * abort processing -- this needn't be a fatal error -- but we 6541 * still want to increment a counter (dts_stkstroverflows) to 6542 * allow this condition to be warned about. (If this is from 6543 * a jstack() action, it is easily tuned via jstackstrsize.) 6544 */ 6545 dtrace_error(&state->dts_stkstroverflows); 6546 } 6547 6548 while (offs < strsize) 6549 str[offs++] = '\0'; 6550 6551 out: 6552 mstate->dtms_scratch_ptr = old; 6553 } 6554 6555 /* 6556 * If you're looking for the epicenter of DTrace, you just found it. This 6557 * is the function called by the provider to fire a probe -- from which all 6558 * subsequent probe-context DTrace activity emanates. 6559 */ 6560 void 6561 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6562 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6563 { 6564 processorid_t cpuid; 6565 dtrace_icookie_t cookie; 6566 dtrace_probe_t *probe; 6567 dtrace_mstate_t mstate; 6568 dtrace_ecb_t *ecb; 6569 dtrace_action_t *act; 6570 intptr_t offs; 6571 size_t size; 6572 int vtime, onintr; 6573 volatile uint16_t *flags; 6574 hrtime_t now, end; 6575 6576 /* 6577 * Kick out immediately if this CPU is still being born (in which case 6578 * curthread will be set to -1) or the current thread can't allow 6579 * probes in its current context. 6580 */ 6581 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6582 return; 6583 6584 cookie = dtrace_interrupt_disable(); 6585 probe = dtrace_probes[id - 1]; 6586 cpuid = CPU->cpu_id; 6587 onintr = CPU_ON_INTR(CPU); 6588 6589 CPU->cpu_dtrace_probes++; 6590 6591 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6592 probe->dtpr_predcache == curthread->t_predcache) { 6593 /* 6594 * We have hit in the predicate cache; we know that 6595 * this predicate would evaluate to be false. 6596 */ 6597 dtrace_interrupt_enable(cookie); 6598 return; 6599 } 6600 6601 if (panic_quiesce) { 6602 /* 6603 * We don't trace anything if we're panicking. 6604 */ 6605 dtrace_interrupt_enable(cookie); 6606 return; 6607 } 6608 6609 now = dtrace_gethrtime(); 6610 vtime = dtrace_vtime_references != 0; 6611 6612 if (vtime && curthread->t_dtrace_start) 6613 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6614 6615 mstate.dtms_difo = NULL; 6616 mstate.dtms_probe = probe; 6617 mstate.dtms_strtok = NULL; 6618 mstate.dtms_arg[0] = arg0; 6619 mstate.dtms_arg[1] = arg1; 6620 mstate.dtms_arg[2] = arg2; 6621 mstate.dtms_arg[3] = arg3; 6622 mstate.dtms_arg[4] = arg4; 6623 6624 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6625 6626 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6627 dtrace_predicate_t *pred = ecb->dte_predicate; 6628 dtrace_state_t *state = ecb->dte_state; 6629 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6630 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6631 dtrace_vstate_t *vstate = &state->dts_vstate; 6632 dtrace_provider_t *prov = probe->dtpr_provider; 6633 uint64_t tracememsize = 0; 6634 int committed = 0; 6635 caddr_t tomax; 6636 6637 /* 6638 * A little subtlety with the following (seemingly innocuous) 6639 * declaration of the automatic 'val': by looking at the 6640 * code, you might think that it could be declared in the 6641 * action processing loop, below. (That is, it's only used in 6642 * the action processing loop.) However, it must be declared 6643 * out of that scope because in the case of DIF expression 6644 * arguments to aggregating actions, one iteration of the 6645 * action loop will use the last iteration's value. 6646 */ 6647 #ifdef lint 6648 uint64_t val = 0; 6649 #else 6650 uint64_t val; 6651 #endif 6652 6653 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6654 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6655 mstate.dtms_getf = NULL; 6656 6657 *flags &= ~CPU_DTRACE_ERROR; 6658 6659 if (prov == dtrace_provider) { 6660 /* 6661 * If dtrace itself is the provider of this probe, 6662 * we're only going to continue processing the ECB if 6663 * arg0 (the dtrace_state_t) is equal to the ECB's 6664 * creating state. (This prevents disjoint consumers 6665 * from seeing one another's metaprobes.) 6666 */ 6667 if (arg0 != (uint64_t)(uintptr_t)state) 6668 continue; 6669 } 6670 6671 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6672 /* 6673 * We're not currently active. If our provider isn't 6674 * the dtrace pseudo provider, we're not interested. 6675 */ 6676 if (prov != dtrace_provider) 6677 continue; 6678 6679 /* 6680 * Now we must further check if we are in the BEGIN 6681 * probe. If we are, we will only continue processing 6682 * if we're still in WARMUP -- if one BEGIN enabling 6683 * has invoked the exit() action, we don't want to 6684 * evaluate subsequent BEGIN enablings. 6685 */ 6686 if (probe->dtpr_id == dtrace_probeid_begin && 6687 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6688 ASSERT(state->dts_activity == 6689 DTRACE_ACTIVITY_DRAINING); 6690 continue; 6691 } 6692 } 6693 6694 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6695 continue; 6696 6697 if (now - state->dts_alive > dtrace_deadman_timeout) { 6698 /* 6699 * We seem to be dead. Unless we (a) have kernel 6700 * destructive permissions (b) have explicitly enabled 6701 * destructive actions and (c) destructive actions have 6702 * not been disabled, we're going to transition into 6703 * the KILLED state, from which no further processing 6704 * on this state will be performed. 6705 */ 6706 if (!dtrace_priv_kernel_destructive(state) || 6707 !state->dts_cred.dcr_destructive || 6708 dtrace_destructive_disallow) { 6709 void *activity = &state->dts_activity; 6710 dtrace_activity_t current; 6711 6712 do { 6713 current = state->dts_activity; 6714 } while (dtrace_cas32(activity, current, 6715 DTRACE_ACTIVITY_KILLED) != current); 6716 6717 continue; 6718 } 6719 } 6720 6721 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6722 ecb->dte_alignment, state, &mstate)) < 0) 6723 continue; 6724 6725 tomax = buf->dtb_tomax; 6726 ASSERT(tomax != NULL); 6727 6728 if (ecb->dte_size != 0) { 6729 dtrace_rechdr_t dtrh; 6730 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6731 mstate.dtms_timestamp = dtrace_gethrtime(); 6732 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6733 } 6734 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6735 dtrh.dtrh_epid = ecb->dte_epid; 6736 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6737 mstate.dtms_timestamp); 6738 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6739 } 6740 6741 mstate.dtms_epid = ecb->dte_epid; 6742 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6743 6744 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6745 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6746 6747 if (pred != NULL) { 6748 dtrace_difo_t *dp = pred->dtp_difo; 6749 int rval; 6750 6751 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6752 6753 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6754 dtrace_cacheid_t cid = probe->dtpr_predcache; 6755 6756 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6757 /* 6758 * Update the predicate cache... 6759 */ 6760 ASSERT(cid == pred->dtp_cacheid); 6761 curthread->t_predcache = cid; 6762 } 6763 6764 continue; 6765 } 6766 } 6767 6768 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6769 act != NULL; act = act->dta_next) { 6770 size_t valoffs; 6771 dtrace_difo_t *dp; 6772 dtrace_recdesc_t *rec = &act->dta_rec; 6773 6774 size = rec->dtrd_size; 6775 valoffs = offs + rec->dtrd_offset; 6776 6777 if (DTRACEACT_ISAGG(act->dta_kind)) { 6778 uint64_t v = 0xbad; 6779 dtrace_aggregation_t *agg; 6780 6781 agg = (dtrace_aggregation_t *)act; 6782 6783 if ((dp = act->dta_difo) != NULL) 6784 v = dtrace_dif_emulate(dp, 6785 &mstate, vstate, state); 6786 6787 if (*flags & CPU_DTRACE_ERROR) 6788 continue; 6789 6790 /* 6791 * Note that we always pass the expression 6792 * value from the previous iteration of the 6793 * action loop. This value will only be used 6794 * if there is an expression argument to the 6795 * aggregating action, denoted by the 6796 * dtag_hasarg field. 6797 */ 6798 dtrace_aggregate(agg, buf, 6799 offs, aggbuf, v, val); 6800 continue; 6801 } 6802 6803 switch (act->dta_kind) { 6804 case DTRACEACT_STOP: 6805 if (dtrace_priv_proc_destructive(state, 6806 &mstate)) 6807 dtrace_action_stop(); 6808 continue; 6809 6810 case DTRACEACT_BREAKPOINT: 6811 if (dtrace_priv_kernel_destructive(state)) 6812 dtrace_action_breakpoint(ecb); 6813 continue; 6814 6815 case DTRACEACT_PANIC: 6816 if (dtrace_priv_kernel_destructive(state)) 6817 dtrace_action_panic(ecb); 6818 continue; 6819 6820 case DTRACEACT_STACK: 6821 if (!dtrace_priv_kernel(state)) 6822 continue; 6823 6824 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6825 size / sizeof (pc_t), probe->dtpr_aframes, 6826 DTRACE_ANCHORED(probe) ? NULL : 6827 (uint32_t *)arg0); 6828 6829 continue; 6830 6831 case DTRACEACT_JSTACK: 6832 case DTRACEACT_USTACK: 6833 if (!dtrace_priv_proc(state, &mstate)) 6834 continue; 6835 6836 /* 6837 * See comment in DIF_VAR_PID. 6838 */ 6839 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6840 CPU_ON_INTR(CPU)) { 6841 int depth = DTRACE_USTACK_NFRAMES( 6842 rec->dtrd_arg) + 1; 6843 6844 dtrace_bzero((void *)(tomax + valoffs), 6845 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6846 + depth * sizeof (uint64_t)); 6847 6848 continue; 6849 } 6850 6851 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6852 curproc->p_dtrace_helpers != NULL) { 6853 /* 6854 * This is the slow path -- we have 6855 * allocated string space, and we're 6856 * getting the stack of a process that 6857 * has helpers. Call into a separate 6858 * routine to perform this processing. 6859 */ 6860 dtrace_action_ustack(&mstate, state, 6861 (uint64_t *)(tomax + valoffs), 6862 rec->dtrd_arg); 6863 continue; 6864 } 6865 6866 /* 6867 * Clear the string space, since there's no 6868 * helper to do it for us. 6869 */ 6870 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6871 int depth = DTRACE_USTACK_NFRAMES( 6872 rec->dtrd_arg); 6873 size_t strsize = DTRACE_USTACK_STRSIZE( 6874 rec->dtrd_arg); 6875 uint64_t *buf = (uint64_t *)(tomax + 6876 valoffs); 6877 void *strspace = &buf[depth + 1]; 6878 6879 dtrace_bzero(strspace, 6880 MIN(depth, strsize)); 6881 } 6882 6883 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6884 dtrace_getupcstack((uint64_t *) 6885 (tomax + valoffs), 6886 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6887 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6888 continue; 6889 6890 default: 6891 break; 6892 } 6893 6894 dp = act->dta_difo; 6895 ASSERT(dp != NULL); 6896 6897 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6898 6899 if (*flags & CPU_DTRACE_ERROR) 6900 continue; 6901 6902 switch (act->dta_kind) { 6903 case DTRACEACT_SPECULATE: { 6904 dtrace_rechdr_t *dtrh; 6905 6906 ASSERT(buf == &state->dts_buffer[cpuid]); 6907 buf = dtrace_speculation_buffer(state, 6908 cpuid, val); 6909 6910 if (buf == NULL) { 6911 *flags |= CPU_DTRACE_DROP; 6912 continue; 6913 } 6914 6915 offs = dtrace_buffer_reserve(buf, 6916 ecb->dte_needed, ecb->dte_alignment, 6917 state, NULL); 6918 6919 if (offs < 0) { 6920 *flags |= CPU_DTRACE_DROP; 6921 continue; 6922 } 6923 6924 tomax = buf->dtb_tomax; 6925 ASSERT(tomax != NULL); 6926 6927 if (ecb->dte_size == 0) 6928 continue; 6929 6930 ASSERT3U(ecb->dte_size, >=, 6931 sizeof (dtrace_rechdr_t)); 6932 dtrh = ((void *)(tomax + offs)); 6933 dtrh->dtrh_epid = ecb->dte_epid; 6934 /* 6935 * When the speculation is committed, all of 6936 * the records in the speculative buffer will 6937 * have their timestamps set to the commit 6938 * time. Until then, it is set to a sentinel 6939 * value, for debugability. 6940 */ 6941 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 6942 continue; 6943 } 6944 6945 case DTRACEACT_CHILL: 6946 if (dtrace_priv_kernel_destructive(state)) 6947 dtrace_action_chill(&mstate, val); 6948 continue; 6949 6950 case DTRACEACT_RAISE: 6951 if (dtrace_priv_proc_destructive(state, 6952 &mstate)) 6953 dtrace_action_raise(val); 6954 continue; 6955 6956 case DTRACEACT_COMMIT: 6957 ASSERT(!committed); 6958 6959 /* 6960 * We need to commit our buffer state. 6961 */ 6962 if (ecb->dte_size) 6963 buf->dtb_offset = offs + ecb->dte_size; 6964 buf = &state->dts_buffer[cpuid]; 6965 dtrace_speculation_commit(state, cpuid, val); 6966 committed = 1; 6967 continue; 6968 6969 case DTRACEACT_DISCARD: 6970 dtrace_speculation_discard(state, cpuid, val); 6971 continue; 6972 6973 case DTRACEACT_DIFEXPR: 6974 case DTRACEACT_LIBACT: 6975 case DTRACEACT_PRINTF: 6976 case DTRACEACT_PRINTA: 6977 case DTRACEACT_SYSTEM: 6978 case DTRACEACT_FREOPEN: 6979 case DTRACEACT_TRACEMEM: 6980 break; 6981 6982 case DTRACEACT_TRACEMEM_DYNSIZE: 6983 tracememsize = val; 6984 break; 6985 6986 case DTRACEACT_SYM: 6987 case DTRACEACT_MOD: 6988 if (!dtrace_priv_kernel(state)) 6989 continue; 6990 break; 6991 6992 case DTRACEACT_USYM: 6993 case DTRACEACT_UMOD: 6994 case DTRACEACT_UADDR: { 6995 struct pid *pid = curthread->t_procp->p_pidp; 6996 6997 if (!dtrace_priv_proc(state, &mstate)) 6998 continue; 6999 7000 DTRACE_STORE(uint64_t, tomax, 7001 valoffs, (uint64_t)pid->pid_id); 7002 DTRACE_STORE(uint64_t, tomax, 7003 valoffs + sizeof (uint64_t), val); 7004 7005 continue; 7006 } 7007 7008 case DTRACEACT_EXIT: { 7009 /* 7010 * For the exit action, we are going to attempt 7011 * to atomically set our activity to be 7012 * draining. If this fails (either because 7013 * another CPU has beat us to the exit action, 7014 * or because our current activity is something 7015 * other than ACTIVE or WARMUP), we will 7016 * continue. This assures that the exit action 7017 * can be successfully recorded at most once 7018 * when we're in the ACTIVE state. If we're 7019 * encountering the exit() action while in 7020 * COOLDOWN, however, we want to honor the new 7021 * status code. (We know that we're the only 7022 * thread in COOLDOWN, so there is no race.) 7023 */ 7024 void *activity = &state->dts_activity; 7025 dtrace_activity_t current = state->dts_activity; 7026 7027 if (current == DTRACE_ACTIVITY_COOLDOWN) 7028 break; 7029 7030 if (current != DTRACE_ACTIVITY_WARMUP) 7031 current = DTRACE_ACTIVITY_ACTIVE; 7032 7033 if (dtrace_cas32(activity, current, 7034 DTRACE_ACTIVITY_DRAINING) != current) { 7035 *flags |= CPU_DTRACE_DROP; 7036 continue; 7037 } 7038 7039 break; 7040 } 7041 7042 default: 7043 ASSERT(0); 7044 } 7045 7046 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 7047 uintptr_t end = valoffs + size; 7048 7049 if (tracememsize != 0 && 7050 valoffs + tracememsize < end) { 7051 end = valoffs + tracememsize; 7052 tracememsize = 0; 7053 } 7054 7055 if (!dtrace_vcanload((void *)(uintptr_t)val, 7056 &dp->dtdo_rtype, &mstate, vstate)) 7057 continue; 7058 7059 /* 7060 * If this is a string, we're going to only 7061 * load until we find the zero byte -- after 7062 * which we'll store zero bytes. 7063 */ 7064 if (dp->dtdo_rtype.dtdt_kind == 7065 DIF_TYPE_STRING) { 7066 char c = '\0' + 1; 7067 int intuple = act->dta_intuple; 7068 size_t s; 7069 7070 for (s = 0; s < size; s++) { 7071 if (c != '\0') 7072 c = dtrace_load8(val++); 7073 7074 DTRACE_STORE(uint8_t, tomax, 7075 valoffs++, c); 7076 7077 if (c == '\0' && intuple) 7078 break; 7079 } 7080 7081 continue; 7082 } 7083 7084 while (valoffs < end) { 7085 DTRACE_STORE(uint8_t, tomax, valoffs++, 7086 dtrace_load8(val++)); 7087 } 7088 7089 continue; 7090 } 7091 7092 switch (size) { 7093 case 0: 7094 break; 7095 7096 case sizeof (uint8_t): 7097 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7098 break; 7099 case sizeof (uint16_t): 7100 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7101 break; 7102 case sizeof (uint32_t): 7103 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7104 break; 7105 case sizeof (uint64_t): 7106 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7107 break; 7108 default: 7109 /* 7110 * Any other size should have been returned by 7111 * reference, not by value. 7112 */ 7113 ASSERT(0); 7114 break; 7115 } 7116 } 7117 7118 if (*flags & CPU_DTRACE_DROP) 7119 continue; 7120 7121 if (*flags & CPU_DTRACE_FAULT) { 7122 int ndx; 7123 dtrace_action_t *err; 7124 7125 buf->dtb_errors++; 7126 7127 if (probe->dtpr_id == dtrace_probeid_error) { 7128 /* 7129 * There's nothing we can do -- we had an 7130 * error on the error probe. We bump an 7131 * error counter to at least indicate that 7132 * this condition happened. 7133 */ 7134 dtrace_error(&state->dts_dblerrors); 7135 continue; 7136 } 7137 7138 if (vtime) { 7139 /* 7140 * Before recursing on dtrace_probe(), we 7141 * need to explicitly clear out our start 7142 * time to prevent it from being accumulated 7143 * into t_dtrace_vtime. 7144 */ 7145 curthread->t_dtrace_start = 0; 7146 } 7147 7148 /* 7149 * Iterate over the actions to figure out which action 7150 * we were processing when we experienced the error. 7151 * Note that act points _past_ the faulting action; if 7152 * act is ecb->dte_action, the fault was in the 7153 * predicate, if it's ecb->dte_action->dta_next it's 7154 * in action #1, and so on. 7155 */ 7156 for (err = ecb->dte_action, ndx = 0; 7157 err != act; err = err->dta_next, ndx++) 7158 continue; 7159 7160 dtrace_probe_error(state, ecb->dte_epid, ndx, 7161 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7162 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7163 cpu_core[cpuid].cpuc_dtrace_illval); 7164 7165 continue; 7166 } 7167 7168 if (!committed) 7169 buf->dtb_offset = offs + ecb->dte_size; 7170 } 7171 7172 end = dtrace_gethrtime(); 7173 if (vtime) 7174 curthread->t_dtrace_start = end; 7175 7176 CPU->cpu_dtrace_nsec += end - now; 7177 7178 dtrace_interrupt_enable(cookie); 7179 } 7180 7181 /* 7182 * DTrace Probe Hashing Functions 7183 * 7184 * The functions in this section (and indeed, the functions in remaining 7185 * sections) are not _called_ from probe context. (Any exceptions to this are 7186 * marked with a "Note:".) Rather, they are called from elsewhere in the 7187 * DTrace framework to look-up probes in, add probes to and remove probes from 7188 * the DTrace probe hashes. (Each probe is hashed by each element of the 7189 * probe tuple -- allowing for fast lookups, regardless of what was 7190 * specified.) 7191 */ 7192 static uint_t 7193 dtrace_hash_str(char *p) 7194 { 7195 unsigned int g; 7196 uint_t hval = 0; 7197 7198 while (*p) { 7199 hval = (hval << 4) + *p++; 7200 if ((g = (hval & 0xf0000000)) != 0) 7201 hval ^= g >> 24; 7202 hval &= ~g; 7203 } 7204 return (hval); 7205 } 7206 7207 static dtrace_hash_t * 7208 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7209 { 7210 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7211 7212 hash->dth_stroffs = stroffs; 7213 hash->dth_nextoffs = nextoffs; 7214 hash->dth_prevoffs = prevoffs; 7215 7216 hash->dth_size = 1; 7217 hash->dth_mask = hash->dth_size - 1; 7218 7219 hash->dth_tab = kmem_zalloc(hash->dth_size * 7220 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7221 7222 return (hash); 7223 } 7224 7225 static void 7226 dtrace_hash_destroy(dtrace_hash_t *hash) 7227 { 7228 #ifdef DEBUG 7229 int i; 7230 7231 for (i = 0; i < hash->dth_size; i++) 7232 ASSERT(hash->dth_tab[i] == NULL); 7233 #endif 7234 7235 kmem_free(hash->dth_tab, 7236 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7237 kmem_free(hash, sizeof (dtrace_hash_t)); 7238 } 7239 7240 static void 7241 dtrace_hash_resize(dtrace_hash_t *hash) 7242 { 7243 int size = hash->dth_size, i, ndx; 7244 int new_size = hash->dth_size << 1; 7245 int new_mask = new_size - 1; 7246 dtrace_hashbucket_t **new_tab, *bucket, *next; 7247 7248 ASSERT((new_size & new_mask) == 0); 7249 7250 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7251 7252 for (i = 0; i < size; i++) { 7253 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7254 dtrace_probe_t *probe = bucket->dthb_chain; 7255 7256 ASSERT(probe != NULL); 7257 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7258 7259 next = bucket->dthb_next; 7260 bucket->dthb_next = new_tab[ndx]; 7261 new_tab[ndx] = bucket; 7262 } 7263 } 7264 7265 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7266 hash->dth_tab = new_tab; 7267 hash->dth_size = new_size; 7268 hash->dth_mask = new_mask; 7269 } 7270 7271 static void 7272 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7273 { 7274 int hashval = DTRACE_HASHSTR(hash, new); 7275 int ndx = hashval & hash->dth_mask; 7276 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7277 dtrace_probe_t **nextp, **prevp; 7278 7279 for (; bucket != NULL; bucket = bucket->dthb_next) { 7280 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7281 goto add; 7282 } 7283 7284 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7285 dtrace_hash_resize(hash); 7286 dtrace_hash_add(hash, new); 7287 return; 7288 } 7289 7290 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7291 bucket->dthb_next = hash->dth_tab[ndx]; 7292 hash->dth_tab[ndx] = bucket; 7293 hash->dth_nbuckets++; 7294 7295 add: 7296 nextp = DTRACE_HASHNEXT(hash, new); 7297 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7298 *nextp = bucket->dthb_chain; 7299 7300 if (bucket->dthb_chain != NULL) { 7301 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7302 ASSERT(*prevp == NULL); 7303 *prevp = new; 7304 } 7305 7306 bucket->dthb_chain = new; 7307 bucket->dthb_len++; 7308 } 7309 7310 static dtrace_probe_t * 7311 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7312 { 7313 int hashval = DTRACE_HASHSTR(hash, template); 7314 int ndx = hashval & hash->dth_mask; 7315 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7316 7317 for (; bucket != NULL; bucket = bucket->dthb_next) { 7318 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7319 return (bucket->dthb_chain); 7320 } 7321 7322 return (NULL); 7323 } 7324 7325 static int 7326 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7327 { 7328 int hashval = DTRACE_HASHSTR(hash, template); 7329 int ndx = hashval & hash->dth_mask; 7330 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7331 7332 for (; bucket != NULL; bucket = bucket->dthb_next) { 7333 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7334 return (bucket->dthb_len); 7335 } 7336 7337 return (NULL); 7338 } 7339 7340 static void 7341 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7342 { 7343 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7344 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7345 7346 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7347 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7348 7349 /* 7350 * Find the bucket that we're removing this probe from. 7351 */ 7352 for (; bucket != NULL; bucket = bucket->dthb_next) { 7353 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7354 break; 7355 } 7356 7357 ASSERT(bucket != NULL); 7358 7359 if (*prevp == NULL) { 7360 if (*nextp == NULL) { 7361 /* 7362 * The removed probe was the only probe on this 7363 * bucket; we need to remove the bucket. 7364 */ 7365 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7366 7367 ASSERT(bucket->dthb_chain == probe); 7368 ASSERT(b != NULL); 7369 7370 if (b == bucket) { 7371 hash->dth_tab[ndx] = bucket->dthb_next; 7372 } else { 7373 while (b->dthb_next != bucket) 7374 b = b->dthb_next; 7375 b->dthb_next = bucket->dthb_next; 7376 } 7377 7378 ASSERT(hash->dth_nbuckets > 0); 7379 hash->dth_nbuckets--; 7380 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7381 return; 7382 } 7383 7384 bucket->dthb_chain = *nextp; 7385 } else { 7386 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7387 } 7388 7389 if (*nextp != NULL) 7390 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7391 } 7392 7393 /* 7394 * DTrace Utility Functions 7395 * 7396 * These are random utility functions that are _not_ called from probe context. 7397 */ 7398 static int 7399 dtrace_badattr(const dtrace_attribute_t *a) 7400 { 7401 return (a->dtat_name > DTRACE_STABILITY_MAX || 7402 a->dtat_data > DTRACE_STABILITY_MAX || 7403 a->dtat_class > DTRACE_CLASS_MAX); 7404 } 7405 7406 /* 7407 * Return a duplicate copy of a string. If the specified string is NULL, 7408 * this function returns a zero-length string. 7409 */ 7410 static char * 7411 dtrace_strdup(const char *str) 7412 { 7413 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7414 7415 if (str != NULL) 7416 (void) strcpy(new, str); 7417 7418 return (new); 7419 } 7420 7421 #define DTRACE_ISALPHA(c) \ 7422 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7423 7424 static int 7425 dtrace_badname(const char *s) 7426 { 7427 char c; 7428 7429 if (s == NULL || (c = *s++) == '\0') 7430 return (0); 7431 7432 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7433 return (1); 7434 7435 while ((c = *s++) != '\0') { 7436 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7437 c != '-' && c != '_' && c != '.' && c != '`') 7438 return (1); 7439 } 7440 7441 return (0); 7442 } 7443 7444 static void 7445 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7446 { 7447 uint32_t priv; 7448 7449 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7450 /* 7451 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7452 */ 7453 priv = DTRACE_PRIV_ALL; 7454 } else { 7455 *uidp = crgetuid(cr); 7456 *zoneidp = crgetzoneid(cr); 7457 7458 priv = 0; 7459 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7460 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7461 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7462 priv |= DTRACE_PRIV_USER; 7463 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7464 priv |= DTRACE_PRIV_PROC; 7465 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7466 priv |= DTRACE_PRIV_OWNER; 7467 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7468 priv |= DTRACE_PRIV_ZONEOWNER; 7469 } 7470 7471 *privp = priv; 7472 } 7473 7474 #ifdef DTRACE_ERRDEBUG 7475 static void 7476 dtrace_errdebug(const char *str) 7477 { 7478 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7479 int occupied = 0; 7480 7481 mutex_enter(&dtrace_errlock); 7482 dtrace_errlast = str; 7483 dtrace_errthread = curthread; 7484 7485 while (occupied++ < DTRACE_ERRHASHSZ) { 7486 if (dtrace_errhash[hval].dter_msg == str) { 7487 dtrace_errhash[hval].dter_count++; 7488 goto out; 7489 } 7490 7491 if (dtrace_errhash[hval].dter_msg != NULL) { 7492 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7493 continue; 7494 } 7495 7496 dtrace_errhash[hval].dter_msg = str; 7497 dtrace_errhash[hval].dter_count = 1; 7498 goto out; 7499 } 7500 7501 panic("dtrace: undersized error hash"); 7502 out: 7503 mutex_exit(&dtrace_errlock); 7504 } 7505 #endif 7506 7507 /* 7508 * DTrace Matching Functions 7509 * 7510 * These functions are used to match groups of probes, given some elements of 7511 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7512 */ 7513 static int 7514 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7515 zoneid_t zoneid) 7516 { 7517 if (priv != DTRACE_PRIV_ALL) { 7518 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7519 uint32_t match = priv & ppriv; 7520 7521 /* 7522 * No PRIV_DTRACE_* privileges... 7523 */ 7524 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7525 DTRACE_PRIV_KERNEL)) == 0) 7526 return (0); 7527 7528 /* 7529 * No matching bits, but there were bits to match... 7530 */ 7531 if (match == 0 && ppriv != 0) 7532 return (0); 7533 7534 /* 7535 * Need to have permissions to the process, but don't... 7536 */ 7537 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7538 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7539 return (0); 7540 } 7541 7542 /* 7543 * Need to be in the same zone unless we possess the 7544 * privilege to examine all zones. 7545 */ 7546 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7547 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7548 return (0); 7549 } 7550 } 7551 7552 return (1); 7553 } 7554 7555 /* 7556 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7557 * consists of input pattern strings and an ops-vector to evaluate them. 7558 * This function returns >0 for match, 0 for no match, and <0 for error. 7559 */ 7560 static int 7561 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7562 uint32_t priv, uid_t uid, zoneid_t zoneid) 7563 { 7564 dtrace_provider_t *pvp = prp->dtpr_provider; 7565 int rv; 7566 7567 if (pvp->dtpv_defunct) 7568 return (0); 7569 7570 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7571 return (rv); 7572 7573 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7574 return (rv); 7575 7576 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7577 return (rv); 7578 7579 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7580 return (rv); 7581 7582 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7583 return (0); 7584 7585 return (rv); 7586 } 7587 7588 /* 7589 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7590 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7591 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7592 * In addition, all of the recursion cases except for '*' matching have been 7593 * unwound. For '*', we still implement recursive evaluation, but a depth 7594 * counter is maintained and matching is aborted if we recurse too deep. 7595 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7596 */ 7597 static int 7598 dtrace_match_glob(const char *s, const char *p, int depth) 7599 { 7600 const char *olds; 7601 char s1, c; 7602 int gs; 7603 7604 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7605 return (-1); 7606 7607 if (s == NULL) 7608 s = ""; /* treat NULL as empty string */ 7609 7610 top: 7611 olds = s; 7612 s1 = *s++; 7613 7614 if (p == NULL) 7615 return (0); 7616 7617 if ((c = *p++) == '\0') 7618 return (s1 == '\0'); 7619 7620 switch (c) { 7621 case '[': { 7622 int ok = 0, notflag = 0; 7623 char lc = '\0'; 7624 7625 if (s1 == '\0') 7626 return (0); 7627 7628 if (*p == '!') { 7629 notflag = 1; 7630 p++; 7631 } 7632 7633 if ((c = *p++) == '\0') 7634 return (0); 7635 7636 do { 7637 if (c == '-' && lc != '\0' && *p != ']') { 7638 if ((c = *p++) == '\0') 7639 return (0); 7640 if (c == '\\' && (c = *p++) == '\0') 7641 return (0); 7642 7643 if (notflag) { 7644 if (s1 < lc || s1 > c) 7645 ok++; 7646 else 7647 return (0); 7648 } else if (lc <= s1 && s1 <= c) 7649 ok++; 7650 7651 } else if (c == '\\' && (c = *p++) == '\0') 7652 return (0); 7653 7654 lc = c; /* save left-hand 'c' for next iteration */ 7655 7656 if (notflag) { 7657 if (s1 != c) 7658 ok++; 7659 else 7660 return (0); 7661 } else if (s1 == c) 7662 ok++; 7663 7664 if ((c = *p++) == '\0') 7665 return (0); 7666 7667 } while (c != ']'); 7668 7669 if (ok) 7670 goto top; 7671 7672 return (0); 7673 } 7674 7675 case '\\': 7676 if ((c = *p++) == '\0') 7677 return (0); 7678 /*FALLTHRU*/ 7679 7680 default: 7681 if (c != s1) 7682 return (0); 7683 /*FALLTHRU*/ 7684 7685 case '?': 7686 if (s1 != '\0') 7687 goto top; 7688 return (0); 7689 7690 case '*': 7691 while (*p == '*') 7692 p++; /* consecutive *'s are identical to a single one */ 7693 7694 if (*p == '\0') 7695 return (1); 7696 7697 for (s = olds; *s != '\0'; s++) { 7698 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7699 return (gs); 7700 } 7701 7702 return (0); 7703 } 7704 } 7705 7706 /*ARGSUSED*/ 7707 static int 7708 dtrace_match_string(const char *s, const char *p, int depth) 7709 { 7710 return (s != NULL && strcmp(s, p) == 0); 7711 } 7712 7713 /*ARGSUSED*/ 7714 static int 7715 dtrace_match_nul(const char *s, const char *p, int depth) 7716 { 7717 return (1); /* always match the empty pattern */ 7718 } 7719 7720 /*ARGSUSED*/ 7721 static int 7722 dtrace_match_nonzero(const char *s, const char *p, int depth) 7723 { 7724 return (s != NULL && s[0] != '\0'); 7725 } 7726 7727 static int 7728 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7729 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7730 { 7731 dtrace_probe_t template, *probe; 7732 dtrace_hash_t *hash = NULL; 7733 int len, rc, best = INT_MAX, nmatched = 0; 7734 dtrace_id_t i; 7735 7736 ASSERT(MUTEX_HELD(&dtrace_lock)); 7737 7738 /* 7739 * If the probe ID is specified in the key, just lookup by ID and 7740 * invoke the match callback once if a matching probe is found. 7741 */ 7742 if (pkp->dtpk_id != DTRACE_IDNONE) { 7743 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7744 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7745 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7746 return (DTRACE_MATCH_FAIL); 7747 nmatched++; 7748 } 7749 return (nmatched); 7750 } 7751 7752 template.dtpr_mod = (char *)pkp->dtpk_mod; 7753 template.dtpr_func = (char *)pkp->dtpk_func; 7754 template.dtpr_name = (char *)pkp->dtpk_name; 7755 7756 /* 7757 * We want to find the most distinct of the module name, function 7758 * name, and name. So for each one that is not a glob pattern or 7759 * empty string, we perform a lookup in the corresponding hash and 7760 * use the hash table with the fewest collisions to do our search. 7761 */ 7762 if (pkp->dtpk_mmatch == &dtrace_match_string && 7763 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7764 best = len; 7765 hash = dtrace_bymod; 7766 } 7767 7768 if (pkp->dtpk_fmatch == &dtrace_match_string && 7769 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7770 best = len; 7771 hash = dtrace_byfunc; 7772 } 7773 7774 if (pkp->dtpk_nmatch == &dtrace_match_string && 7775 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7776 best = len; 7777 hash = dtrace_byname; 7778 } 7779 7780 /* 7781 * If we did not select a hash table, iterate over every probe and 7782 * invoke our callback for each one that matches our input probe key. 7783 */ 7784 if (hash == NULL) { 7785 for (i = 0; i < dtrace_nprobes; i++) { 7786 if ((probe = dtrace_probes[i]) == NULL || 7787 dtrace_match_probe(probe, pkp, priv, uid, 7788 zoneid) <= 0) 7789 continue; 7790 7791 nmatched++; 7792 7793 if ((rc = (*matched)(probe, arg)) != 7794 DTRACE_MATCH_NEXT) { 7795 if (rc == DTRACE_MATCH_FAIL) 7796 return (DTRACE_MATCH_FAIL); 7797 break; 7798 } 7799 } 7800 7801 return (nmatched); 7802 } 7803 7804 /* 7805 * If we selected a hash table, iterate over each probe of the same key 7806 * name and invoke the callback for every probe that matches the other 7807 * attributes of our input probe key. 7808 */ 7809 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7810 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7811 7812 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7813 continue; 7814 7815 nmatched++; 7816 7817 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7818 if (rc == DTRACE_MATCH_FAIL) 7819 return (DTRACE_MATCH_FAIL); 7820 break; 7821 } 7822 } 7823 7824 return (nmatched); 7825 } 7826 7827 /* 7828 * Return the function pointer dtrace_probecmp() should use to compare the 7829 * specified pattern with a string. For NULL or empty patterns, we select 7830 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7831 * For non-empty non-glob strings, we use dtrace_match_string(). 7832 */ 7833 static dtrace_probekey_f * 7834 dtrace_probekey_func(const char *p) 7835 { 7836 char c; 7837 7838 if (p == NULL || *p == '\0') 7839 return (&dtrace_match_nul); 7840 7841 while ((c = *p++) != '\0') { 7842 if (c == '[' || c == '?' || c == '*' || c == '\\') 7843 return (&dtrace_match_glob); 7844 } 7845 7846 return (&dtrace_match_string); 7847 } 7848 7849 /* 7850 * Build a probe comparison key for use with dtrace_match_probe() from the 7851 * given probe description. By convention, a null key only matches anchored 7852 * probes: if each field is the empty string, reset dtpk_fmatch to 7853 * dtrace_match_nonzero(). 7854 */ 7855 static void 7856 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7857 { 7858 pkp->dtpk_prov = pdp->dtpd_provider; 7859 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7860 7861 pkp->dtpk_mod = pdp->dtpd_mod; 7862 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7863 7864 pkp->dtpk_func = pdp->dtpd_func; 7865 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7866 7867 pkp->dtpk_name = pdp->dtpd_name; 7868 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7869 7870 pkp->dtpk_id = pdp->dtpd_id; 7871 7872 if (pkp->dtpk_id == DTRACE_IDNONE && 7873 pkp->dtpk_pmatch == &dtrace_match_nul && 7874 pkp->dtpk_mmatch == &dtrace_match_nul && 7875 pkp->dtpk_fmatch == &dtrace_match_nul && 7876 pkp->dtpk_nmatch == &dtrace_match_nul) 7877 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7878 } 7879 7880 /* 7881 * DTrace Provider-to-Framework API Functions 7882 * 7883 * These functions implement much of the Provider-to-Framework API, as 7884 * described in <sys/dtrace.h>. The parts of the API not in this section are 7885 * the functions in the API for probe management (found below), and 7886 * dtrace_probe() itself (found above). 7887 */ 7888 7889 /* 7890 * Register the calling provider with the DTrace framework. This should 7891 * generally be called by DTrace providers in their attach(9E) entry point. 7892 */ 7893 int 7894 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7895 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7896 { 7897 dtrace_provider_t *provider; 7898 7899 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7900 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7901 "arguments", name ? name : "<NULL>"); 7902 return (EINVAL); 7903 } 7904 7905 if (name[0] == '\0' || dtrace_badname(name)) { 7906 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7907 "provider name", name); 7908 return (EINVAL); 7909 } 7910 7911 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7912 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7913 pops->dtps_destroy == NULL || 7914 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7915 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7916 "provider ops", name); 7917 return (EINVAL); 7918 } 7919 7920 if (dtrace_badattr(&pap->dtpa_provider) || 7921 dtrace_badattr(&pap->dtpa_mod) || 7922 dtrace_badattr(&pap->dtpa_func) || 7923 dtrace_badattr(&pap->dtpa_name) || 7924 dtrace_badattr(&pap->dtpa_args)) { 7925 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7926 "provider attributes", name); 7927 return (EINVAL); 7928 } 7929 7930 if (priv & ~DTRACE_PRIV_ALL) { 7931 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7932 "privilege attributes", name); 7933 return (EINVAL); 7934 } 7935 7936 if ((priv & DTRACE_PRIV_KERNEL) && 7937 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7938 pops->dtps_mode == NULL) { 7939 cmn_err(CE_WARN, "failed to register provider '%s': need " 7940 "dtps_mode() op for given privilege attributes", name); 7941 return (EINVAL); 7942 } 7943 7944 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7945 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7946 (void) strcpy(provider->dtpv_name, name); 7947 7948 provider->dtpv_attr = *pap; 7949 provider->dtpv_priv.dtpp_flags = priv; 7950 if (cr != NULL) { 7951 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7952 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7953 } 7954 provider->dtpv_pops = *pops; 7955 7956 if (pops->dtps_provide == NULL) { 7957 ASSERT(pops->dtps_provide_module != NULL); 7958 provider->dtpv_pops.dtps_provide = 7959 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7960 } 7961 7962 if (pops->dtps_provide_module == NULL) { 7963 ASSERT(pops->dtps_provide != NULL); 7964 provider->dtpv_pops.dtps_provide_module = 7965 (void (*)(void *, struct modctl *))dtrace_nullop; 7966 } 7967 7968 if (pops->dtps_suspend == NULL) { 7969 ASSERT(pops->dtps_resume == NULL); 7970 provider->dtpv_pops.dtps_suspend = 7971 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7972 provider->dtpv_pops.dtps_resume = 7973 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7974 } 7975 7976 provider->dtpv_arg = arg; 7977 *idp = (dtrace_provider_id_t)provider; 7978 7979 if (pops == &dtrace_provider_ops) { 7980 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7981 ASSERT(MUTEX_HELD(&dtrace_lock)); 7982 ASSERT(dtrace_anon.dta_enabling == NULL); 7983 7984 /* 7985 * We make sure that the DTrace provider is at the head of 7986 * the provider chain. 7987 */ 7988 provider->dtpv_next = dtrace_provider; 7989 dtrace_provider = provider; 7990 return (0); 7991 } 7992 7993 mutex_enter(&dtrace_provider_lock); 7994 mutex_enter(&dtrace_lock); 7995 7996 /* 7997 * If there is at least one provider registered, we'll add this 7998 * provider after the first provider. 7999 */ 8000 if (dtrace_provider != NULL) { 8001 provider->dtpv_next = dtrace_provider->dtpv_next; 8002 dtrace_provider->dtpv_next = provider; 8003 } else { 8004 dtrace_provider = provider; 8005 } 8006 8007 if (dtrace_retained != NULL) { 8008 dtrace_enabling_provide(provider); 8009 8010 /* 8011 * Now we need to call dtrace_enabling_matchall() -- which 8012 * will acquire cpu_lock and dtrace_lock. We therefore need 8013 * to drop all of our locks before calling into it... 8014 */ 8015 mutex_exit(&dtrace_lock); 8016 mutex_exit(&dtrace_provider_lock); 8017 dtrace_enabling_matchall(); 8018 8019 return (0); 8020 } 8021 8022 mutex_exit(&dtrace_lock); 8023 mutex_exit(&dtrace_provider_lock); 8024 8025 return (0); 8026 } 8027 8028 /* 8029 * Unregister the specified provider from the DTrace framework. This should 8030 * generally be called by DTrace providers in their detach(9E) entry point. 8031 */ 8032 int 8033 dtrace_unregister(dtrace_provider_id_t id) 8034 { 8035 dtrace_provider_t *old = (dtrace_provider_t *)id; 8036 dtrace_provider_t *prev = NULL; 8037 int i, self = 0, noreap = 0; 8038 dtrace_probe_t *probe, *first = NULL; 8039 8040 if (old->dtpv_pops.dtps_enable == 8041 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8042 /* 8043 * If DTrace itself is the provider, we're called with locks 8044 * already held. 8045 */ 8046 ASSERT(old == dtrace_provider); 8047 ASSERT(dtrace_devi != NULL); 8048 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8049 ASSERT(MUTEX_HELD(&dtrace_lock)); 8050 self = 1; 8051 8052 if (dtrace_provider->dtpv_next != NULL) { 8053 /* 8054 * There's another provider here; return failure. 8055 */ 8056 return (EBUSY); 8057 } 8058 } else { 8059 mutex_enter(&dtrace_provider_lock); 8060 mutex_enter(&mod_lock); 8061 mutex_enter(&dtrace_lock); 8062 } 8063 8064 /* 8065 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8066 * probes, we refuse to let providers slither away, unless this 8067 * provider has already been explicitly invalidated. 8068 */ 8069 if (!old->dtpv_defunct && 8070 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8071 dtrace_anon.dta_state->dts_necbs > 0))) { 8072 if (!self) { 8073 mutex_exit(&dtrace_lock); 8074 mutex_exit(&mod_lock); 8075 mutex_exit(&dtrace_provider_lock); 8076 } 8077 return (EBUSY); 8078 } 8079 8080 /* 8081 * Attempt to destroy the probes associated with this provider. 8082 */ 8083 for (i = 0; i < dtrace_nprobes; i++) { 8084 if ((probe = dtrace_probes[i]) == NULL) 8085 continue; 8086 8087 if (probe->dtpr_provider != old) 8088 continue; 8089 8090 if (probe->dtpr_ecb == NULL) 8091 continue; 8092 8093 /* 8094 * If we are trying to unregister a defunct provider, and the 8095 * provider was made defunct within the interval dictated by 8096 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8097 * attempt to reap our enablings. To denote that the provider 8098 * should reattempt to unregister itself at some point in the 8099 * future, we will return a differentiable error code (EAGAIN 8100 * instead of EBUSY) in this case. 8101 */ 8102 if (dtrace_gethrtime() - old->dtpv_defunct > 8103 dtrace_unregister_defunct_reap) 8104 noreap = 1; 8105 8106 if (!self) { 8107 mutex_exit(&dtrace_lock); 8108 mutex_exit(&mod_lock); 8109 mutex_exit(&dtrace_provider_lock); 8110 } 8111 8112 if (noreap) 8113 return (EBUSY); 8114 8115 (void) taskq_dispatch(dtrace_taskq, 8116 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8117 8118 return (EAGAIN); 8119 } 8120 8121 /* 8122 * All of the probes for this provider are disabled; we can safely 8123 * remove all of them from their hash chains and from the probe array. 8124 */ 8125 for (i = 0; i < dtrace_nprobes; i++) { 8126 if ((probe = dtrace_probes[i]) == NULL) 8127 continue; 8128 8129 if (probe->dtpr_provider != old) 8130 continue; 8131 8132 dtrace_probes[i] = NULL; 8133 8134 dtrace_hash_remove(dtrace_bymod, probe); 8135 dtrace_hash_remove(dtrace_byfunc, probe); 8136 dtrace_hash_remove(dtrace_byname, probe); 8137 8138 if (first == NULL) { 8139 first = probe; 8140 probe->dtpr_nextmod = NULL; 8141 } else { 8142 probe->dtpr_nextmod = first; 8143 first = probe; 8144 } 8145 } 8146 8147 /* 8148 * The provider's probes have been removed from the hash chains and 8149 * from the probe array. Now issue a dtrace_sync() to be sure that 8150 * everyone has cleared out from any probe array processing. 8151 */ 8152 dtrace_sync(); 8153 8154 for (probe = first; probe != NULL; probe = first) { 8155 first = probe->dtpr_nextmod; 8156 8157 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8158 probe->dtpr_arg); 8159 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8160 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8161 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8162 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8163 kmem_free(probe, sizeof (dtrace_probe_t)); 8164 } 8165 8166 if ((prev = dtrace_provider) == old) { 8167 ASSERT(self || dtrace_devi == NULL); 8168 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8169 dtrace_provider = old->dtpv_next; 8170 } else { 8171 while (prev != NULL && prev->dtpv_next != old) 8172 prev = prev->dtpv_next; 8173 8174 if (prev == NULL) { 8175 panic("attempt to unregister non-existent " 8176 "dtrace provider %p\n", (void *)id); 8177 } 8178 8179 prev->dtpv_next = old->dtpv_next; 8180 } 8181 8182 if (!self) { 8183 mutex_exit(&dtrace_lock); 8184 mutex_exit(&mod_lock); 8185 mutex_exit(&dtrace_provider_lock); 8186 } 8187 8188 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8189 kmem_free(old, sizeof (dtrace_provider_t)); 8190 8191 return (0); 8192 } 8193 8194 /* 8195 * Invalidate the specified provider. All subsequent probe lookups for the 8196 * specified provider will fail, but its probes will not be removed. 8197 */ 8198 void 8199 dtrace_invalidate(dtrace_provider_id_t id) 8200 { 8201 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8202 8203 ASSERT(pvp->dtpv_pops.dtps_enable != 8204 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8205 8206 mutex_enter(&dtrace_provider_lock); 8207 mutex_enter(&dtrace_lock); 8208 8209 pvp->dtpv_defunct = dtrace_gethrtime(); 8210 8211 mutex_exit(&dtrace_lock); 8212 mutex_exit(&dtrace_provider_lock); 8213 } 8214 8215 /* 8216 * Indicate whether or not DTrace has attached. 8217 */ 8218 int 8219 dtrace_attached(void) 8220 { 8221 /* 8222 * dtrace_provider will be non-NULL iff the DTrace driver has 8223 * attached. (It's non-NULL because DTrace is always itself a 8224 * provider.) 8225 */ 8226 return (dtrace_provider != NULL); 8227 } 8228 8229 /* 8230 * Remove all the unenabled probes for the given provider. This function is 8231 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8232 * -- just as many of its associated probes as it can. 8233 */ 8234 int 8235 dtrace_condense(dtrace_provider_id_t id) 8236 { 8237 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8238 int i; 8239 dtrace_probe_t *probe; 8240 8241 /* 8242 * Make sure this isn't the dtrace provider itself. 8243 */ 8244 ASSERT(prov->dtpv_pops.dtps_enable != 8245 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8246 8247 mutex_enter(&dtrace_provider_lock); 8248 mutex_enter(&dtrace_lock); 8249 8250 /* 8251 * Attempt to destroy the probes associated with this provider. 8252 */ 8253 for (i = 0; i < dtrace_nprobes; i++) { 8254 if ((probe = dtrace_probes[i]) == NULL) 8255 continue; 8256 8257 if (probe->dtpr_provider != prov) 8258 continue; 8259 8260 if (probe->dtpr_ecb != NULL) 8261 continue; 8262 8263 dtrace_probes[i] = NULL; 8264 8265 dtrace_hash_remove(dtrace_bymod, probe); 8266 dtrace_hash_remove(dtrace_byfunc, probe); 8267 dtrace_hash_remove(dtrace_byname, probe); 8268 8269 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8270 probe->dtpr_arg); 8271 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8272 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8273 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8274 kmem_free(probe, sizeof (dtrace_probe_t)); 8275 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8276 } 8277 8278 mutex_exit(&dtrace_lock); 8279 mutex_exit(&dtrace_provider_lock); 8280 8281 return (0); 8282 } 8283 8284 /* 8285 * DTrace Probe Management Functions 8286 * 8287 * The functions in this section perform the DTrace probe management, 8288 * including functions to create probes, look-up probes, and call into the 8289 * providers to request that probes be provided. Some of these functions are 8290 * in the Provider-to-Framework API; these functions can be identified by the 8291 * fact that they are not declared "static". 8292 */ 8293 8294 /* 8295 * Create a probe with the specified module name, function name, and name. 8296 */ 8297 dtrace_id_t 8298 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8299 const char *func, const char *name, int aframes, void *arg) 8300 { 8301 dtrace_probe_t *probe, **probes; 8302 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8303 dtrace_id_t id; 8304 8305 if (provider == dtrace_provider) { 8306 ASSERT(MUTEX_HELD(&dtrace_lock)); 8307 } else { 8308 mutex_enter(&dtrace_lock); 8309 } 8310 8311 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8312 VM_BESTFIT | VM_SLEEP); 8313 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8314 8315 probe->dtpr_id = id; 8316 probe->dtpr_gen = dtrace_probegen++; 8317 probe->dtpr_mod = dtrace_strdup(mod); 8318 probe->dtpr_func = dtrace_strdup(func); 8319 probe->dtpr_name = dtrace_strdup(name); 8320 probe->dtpr_arg = arg; 8321 probe->dtpr_aframes = aframes; 8322 probe->dtpr_provider = provider; 8323 8324 dtrace_hash_add(dtrace_bymod, probe); 8325 dtrace_hash_add(dtrace_byfunc, probe); 8326 dtrace_hash_add(dtrace_byname, probe); 8327 8328 if (id - 1 >= dtrace_nprobes) { 8329 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8330 size_t nsize = osize << 1; 8331 8332 if (nsize == 0) { 8333 ASSERT(osize == 0); 8334 ASSERT(dtrace_probes == NULL); 8335 nsize = sizeof (dtrace_probe_t *); 8336 } 8337 8338 probes = kmem_zalloc(nsize, KM_SLEEP); 8339 8340 if (dtrace_probes == NULL) { 8341 ASSERT(osize == 0); 8342 dtrace_probes = probes; 8343 dtrace_nprobes = 1; 8344 } else { 8345 dtrace_probe_t **oprobes = dtrace_probes; 8346 8347 bcopy(oprobes, probes, osize); 8348 dtrace_membar_producer(); 8349 dtrace_probes = probes; 8350 8351 dtrace_sync(); 8352 8353 /* 8354 * All CPUs are now seeing the new probes array; we can 8355 * safely free the old array. 8356 */ 8357 kmem_free(oprobes, osize); 8358 dtrace_nprobes <<= 1; 8359 } 8360 8361 ASSERT(id - 1 < dtrace_nprobes); 8362 } 8363 8364 ASSERT(dtrace_probes[id - 1] == NULL); 8365 dtrace_probes[id - 1] = probe; 8366 8367 if (provider != dtrace_provider) 8368 mutex_exit(&dtrace_lock); 8369 8370 return (id); 8371 } 8372 8373 static dtrace_probe_t * 8374 dtrace_probe_lookup_id(dtrace_id_t id) 8375 { 8376 ASSERT(MUTEX_HELD(&dtrace_lock)); 8377 8378 if (id == 0 || id > dtrace_nprobes) 8379 return (NULL); 8380 8381 return (dtrace_probes[id - 1]); 8382 } 8383 8384 static int 8385 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8386 { 8387 *((dtrace_id_t *)arg) = probe->dtpr_id; 8388 8389 return (DTRACE_MATCH_DONE); 8390 } 8391 8392 /* 8393 * Look up a probe based on provider and one or more of module name, function 8394 * name and probe name. 8395 */ 8396 dtrace_id_t 8397 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8398 const char *func, const char *name) 8399 { 8400 dtrace_probekey_t pkey; 8401 dtrace_id_t id; 8402 int match; 8403 8404 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8405 pkey.dtpk_pmatch = &dtrace_match_string; 8406 pkey.dtpk_mod = mod; 8407 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8408 pkey.dtpk_func = func; 8409 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8410 pkey.dtpk_name = name; 8411 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8412 pkey.dtpk_id = DTRACE_IDNONE; 8413 8414 mutex_enter(&dtrace_lock); 8415 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8416 dtrace_probe_lookup_match, &id); 8417 mutex_exit(&dtrace_lock); 8418 8419 ASSERT(match == 1 || match == 0); 8420 return (match ? id : 0); 8421 } 8422 8423 /* 8424 * Returns the probe argument associated with the specified probe. 8425 */ 8426 void * 8427 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8428 { 8429 dtrace_probe_t *probe; 8430 void *rval = NULL; 8431 8432 mutex_enter(&dtrace_lock); 8433 8434 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8435 probe->dtpr_provider == (dtrace_provider_t *)id) 8436 rval = probe->dtpr_arg; 8437 8438 mutex_exit(&dtrace_lock); 8439 8440 return (rval); 8441 } 8442 8443 /* 8444 * Copy a probe into a probe description. 8445 */ 8446 static void 8447 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8448 { 8449 bzero(pdp, sizeof (dtrace_probedesc_t)); 8450 pdp->dtpd_id = prp->dtpr_id; 8451 8452 (void) strncpy(pdp->dtpd_provider, 8453 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8454 8455 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8456 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8457 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8458 } 8459 8460 /* 8461 * Called to indicate that a probe -- or probes -- should be provided by a 8462 * specfied provider. If the specified description is NULL, the provider will 8463 * be told to provide all of its probes. (This is done whenever a new 8464 * consumer comes along, or whenever a retained enabling is to be matched.) If 8465 * the specified description is non-NULL, the provider is given the 8466 * opportunity to dynamically provide the specified probe, allowing providers 8467 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8468 * probes.) If the provider is NULL, the operations will be applied to all 8469 * providers; if the provider is non-NULL the operations will only be applied 8470 * to the specified provider. The dtrace_provider_lock must be held, and the 8471 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8472 * will need to grab the dtrace_lock when it reenters the framework through 8473 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8474 */ 8475 static void 8476 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8477 { 8478 struct modctl *ctl; 8479 int all = 0; 8480 8481 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8482 8483 if (prv == NULL) { 8484 all = 1; 8485 prv = dtrace_provider; 8486 } 8487 8488 do { 8489 /* 8490 * First, call the blanket provide operation. 8491 */ 8492 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8493 8494 /* 8495 * Now call the per-module provide operation. We will grab 8496 * mod_lock to prevent the list from being modified. Note 8497 * that this also prevents the mod_busy bits from changing. 8498 * (mod_busy can only be changed with mod_lock held.) 8499 */ 8500 mutex_enter(&mod_lock); 8501 8502 ctl = &modules; 8503 do { 8504 if (ctl->mod_busy || ctl->mod_mp == NULL) 8505 continue; 8506 8507 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8508 8509 } while ((ctl = ctl->mod_next) != &modules); 8510 8511 mutex_exit(&mod_lock); 8512 } while (all && (prv = prv->dtpv_next) != NULL); 8513 } 8514 8515 /* 8516 * Iterate over each probe, and call the Framework-to-Provider API function 8517 * denoted by offs. 8518 */ 8519 static void 8520 dtrace_probe_foreach(uintptr_t offs) 8521 { 8522 dtrace_provider_t *prov; 8523 void (*func)(void *, dtrace_id_t, void *); 8524 dtrace_probe_t *probe; 8525 dtrace_icookie_t cookie; 8526 int i; 8527 8528 /* 8529 * We disable interrupts to walk through the probe array. This is 8530 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8531 * won't see stale data. 8532 */ 8533 cookie = dtrace_interrupt_disable(); 8534 8535 for (i = 0; i < dtrace_nprobes; i++) { 8536 if ((probe = dtrace_probes[i]) == NULL) 8537 continue; 8538 8539 if (probe->dtpr_ecb == NULL) { 8540 /* 8541 * This probe isn't enabled -- don't call the function. 8542 */ 8543 continue; 8544 } 8545 8546 prov = probe->dtpr_provider; 8547 func = *((void(**)(void *, dtrace_id_t, void *)) 8548 ((uintptr_t)&prov->dtpv_pops + offs)); 8549 8550 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8551 } 8552 8553 dtrace_interrupt_enable(cookie); 8554 } 8555 8556 static int 8557 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8558 { 8559 dtrace_probekey_t pkey; 8560 uint32_t priv; 8561 uid_t uid; 8562 zoneid_t zoneid; 8563 8564 ASSERT(MUTEX_HELD(&dtrace_lock)); 8565 dtrace_ecb_create_cache = NULL; 8566 8567 if (desc == NULL) { 8568 /* 8569 * If we're passed a NULL description, we're being asked to 8570 * create an ECB with a NULL probe. 8571 */ 8572 (void) dtrace_ecb_create_enable(NULL, enab); 8573 return (0); 8574 } 8575 8576 dtrace_probekey(desc, &pkey); 8577 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8578 &priv, &uid, &zoneid); 8579 8580 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8581 enab)); 8582 } 8583 8584 /* 8585 * DTrace Helper Provider Functions 8586 */ 8587 static void 8588 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8589 { 8590 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8591 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8592 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8593 } 8594 8595 static void 8596 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8597 const dof_provider_t *dofprov, char *strtab) 8598 { 8599 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8600 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8601 dofprov->dofpv_provattr); 8602 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8603 dofprov->dofpv_modattr); 8604 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8605 dofprov->dofpv_funcattr); 8606 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8607 dofprov->dofpv_nameattr); 8608 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8609 dofprov->dofpv_argsattr); 8610 } 8611 8612 static void 8613 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8614 { 8615 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8616 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8617 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8618 dof_provider_t *provider; 8619 dof_probe_t *probe; 8620 uint32_t *off, *enoff; 8621 uint8_t *arg; 8622 char *strtab; 8623 uint_t i, nprobes; 8624 dtrace_helper_provdesc_t dhpv; 8625 dtrace_helper_probedesc_t dhpb; 8626 dtrace_meta_t *meta = dtrace_meta_pid; 8627 dtrace_mops_t *mops = &meta->dtm_mops; 8628 void *parg; 8629 8630 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8631 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8632 provider->dofpv_strtab * dof->dofh_secsize); 8633 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8634 provider->dofpv_probes * dof->dofh_secsize); 8635 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8636 provider->dofpv_prargs * dof->dofh_secsize); 8637 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8638 provider->dofpv_proffs * dof->dofh_secsize); 8639 8640 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8641 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8642 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8643 enoff = NULL; 8644 8645 /* 8646 * See dtrace_helper_provider_validate(). 8647 */ 8648 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8649 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8650 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8651 provider->dofpv_prenoffs * dof->dofh_secsize); 8652 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8653 } 8654 8655 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8656 8657 /* 8658 * Create the provider. 8659 */ 8660 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8661 8662 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8663 return; 8664 8665 meta->dtm_count++; 8666 8667 /* 8668 * Create the probes. 8669 */ 8670 for (i = 0; i < nprobes; i++) { 8671 probe = (dof_probe_t *)(uintptr_t)(daddr + 8672 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8673 8674 dhpb.dthpb_mod = dhp->dofhp_mod; 8675 dhpb.dthpb_func = strtab + probe->dofpr_func; 8676 dhpb.dthpb_name = strtab + probe->dofpr_name; 8677 dhpb.dthpb_base = probe->dofpr_addr; 8678 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8679 dhpb.dthpb_noffs = probe->dofpr_noffs; 8680 if (enoff != NULL) { 8681 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8682 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8683 } else { 8684 dhpb.dthpb_enoffs = NULL; 8685 dhpb.dthpb_nenoffs = 0; 8686 } 8687 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8688 dhpb.dthpb_nargc = probe->dofpr_nargc; 8689 dhpb.dthpb_xargc = probe->dofpr_xargc; 8690 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8691 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8692 8693 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8694 } 8695 } 8696 8697 static void 8698 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8699 { 8700 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8701 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8702 int i; 8703 8704 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8705 8706 for (i = 0; i < dof->dofh_secnum; i++) { 8707 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8708 dof->dofh_secoff + i * dof->dofh_secsize); 8709 8710 if (sec->dofs_type != DOF_SECT_PROVIDER) 8711 continue; 8712 8713 dtrace_helper_provide_one(dhp, sec, pid); 8714 } 8715 8716 /* 8717 * We may have just created probes, so we must now rematch against 8718 * any retained enablings. Note that this call will acquire both 8719 * cpu_lock and dtrace_lock; the fact that we are holding 8720 * dtrace_meta_lock now is what defines the ordering with respect to 8721 * these three locks. 8722 */ 8723 dtrace_enabling_matchall(); 8724 } 8725 8726 static void 8727 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8728 { 8729 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8730 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8731 dof_sec_t *str_sec; 8732 dof_provider_t *provider; 8733 char *strtab; 8734 dtrace_helper_provdesc_t dhpv; 8735 dtrace_meta_t *meta = dtrace_meta_pid; 8736 dtrace_mops_t *mops = &meta->dtm_mops; 8737 8738 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8739 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8740 provider->dofpv_strtab * dof->dofh_secsize); 8741 8742 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8743 8744 /* 8745 * Create the provider. 8746 */ 8747 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8748 8749 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8750 8751 meta->dtm_count--; 8752 } 8753 8754 static void 8755 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8756 { 8757 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8758 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8759 int i; 8760 8761 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8762 8763 for (i = 0; i < dof->dofh_secnum; i++) { 8764 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8765 dof->dofh_secoff + i * dof->dofh_secsize); 8766 8767 if (sec->dofs_type != DOF_SECT_PROVIDER) 8768 continue; 8769 8770 dtrace_helper_provider_remove_one(dhp, sec, pid); 8771 } 8772 } 8773 8774 /* 8775 * DTrace Meta Provider-to-Framework API Functions 8776 * 8777 * These functions implement the Meta Provider-to-Framework API, as described 8778 * in <sys/dtrace.h>. 8779 */ 8780 int 8781 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8782 dtrace_meta_provider_id_t *idp) 8783 { 8784 dtrace_meta_t *meta; 8785 dtrace_helpers_t *help, *next; 8786 int i; 8787 8788 *idp = DTRACE_METAPROVNONE; 8789 8790 /* 8791 * We strictly don't need the name, but we hold onto it for 8792 * debuggability. All hail error queues! 8793 */ 8794 if (name == NULL) { 8795 cmn_err(CE_WARN, "failed to register meta-provider: " 8796 "invalid name"); 8797 return (EINVAL); 8798 } 8799 8800 if (mops == NULL || 8801 mops->dtms_create_probe == NULL || 8802 mops->dtms_provide_pid == NULL || 8803 mops->dtms_remove_pid == NULL) { 8804 cmn_err(CE_WARN, "failed to register meta-register %s: " 8805 "invalid ops", name); 8806 return (EINVAL); 8807 } 8808 8809 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8810 meta->dtm_mops = *mops; 8811 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8812 (void) strcpy(meta->dtm_name, name); 8813 meta->dtm_arg = arg; 8814 8815 mutex_enter(&dtrace_meta_lock); 8816 mutex_enter(&dtrace_lock); 8817 8818 if (dtrace_meta_pid != NULL) { 8819 mutex_exit(&dtrace_lock); 8820 mutex_exit(&dtrace_meta_lock); 8821 cmn_err(CE_WARN, "failed to register meta-register %s: " 8822 "user-land meta-provider exists", name); 8823 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8824 kmem_free(meta, sizeof (dtrace_meta_t)); 8825 return (EINVAL); 8826 } 8827 8828 dtrace_meta_pid = meta; 8829 *idp = (dtrace_meta_provider_id_t)meta; 8830 8831 /* 8832 * If there are providers and probes ready to go, pass them 8833 * off to the new meta provider now. 8834 */ 8835 8836 help = dtrace_deferred_pid; 8837 dtrace_deferred_pid = NULL; 8838 8839 mutex_exit(&dtrace_lock); 8840 8841 while (help != NULL) { 8842 for (i = 0; i < help->dthps_nprovs; i++) { 8843 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8844 help->dthps_pid); 8845 } 8846 8847 next = help->dthps_next; 8848 help->dthps_next = NULL; 8849 help->dthps_prev = NULL; 8850 help->dthps_deferred = 0; 8851 help = next; 8852 } 8853 8854 mutex_exit(&dtrace_meta_lock); 8855 8856 return (0); 8857 } 8858 8859 int 8860 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8861 { 8862 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8863 8864 mutex_enter(&dtrace_meta_lock); 8865 mutex_enter(&dtrace_lock); 8866 8867 if (old == dtrace_meta_pid) { 8868 pp = &dtrace_meta_pid; 8869 } else { 8870 panic("attempt to unregister non-existent " 8871 "dtrace meta-provider %p\n", (void *)old); 8872 } 8873 8874 if (old->dtm_count != 0) { 8875 mutex_exit(&dtrace_lock); 8876 mutex_exit(&dtrace_meta_lock); 8877 return (EBUSY); 8878 } 8879 8880 *pp = NULL; 8881 8882 mutex_exit(&dtrace_lock); 8883 mutex_exit(&dtrace_meta_lock); 8884 8885 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8886 kmem_free(old, sizeof (dtrace_meta_t)); 8887 8888 return (0); 8889 } 8890 8891 8892 /* 8893 * DTrace DIF Object Functions 8894 */ 8895 static int 8896 dtrace_difo_err(uint_t pc, const char *format, ...) 8897 { 8898 if (dtrace_err_verbose) { 8899 va_list alist; 8900 8901 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8902 va_start(alist, format); 8903 (void) vuprintf(format, alist); 8904 va_end(alist); 8905 } 8906 8907 #ifdef DTRACE_ERRDEBUG 8908 dtrace_errdebug(format); 8909 #endif 8910 return (1); 8911 } 8912 8913 /* 8914 * Validate a DTrace DIF object by checking the IR instructions. The following 8915 * rules are currently enforced by dtrace_difo_validate(): 8916 * 8917 * 1. Each instruction must have a valid opcode 8918 * 2. Each register, string, variable, or subroutine reference must be valid 8919 * 3. No instruction can modify register %r0 (must be zero) 8920 * 4. All instruction reserved bits must be set to zero 8921 * 5. The last instruction must be a "ret" instruction 8922 * 6. All branch targets must reference a valid instruction _after_ the branch 8923 */ 8924 static int 8925 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8926 cred_t *cr) 8927 { 8928 int err = 0, i; 8929 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8930 int kcheckload; 8931 uint_t pc; 8932 8933 kcheckload = cr == NULL || 8934 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8935 8936 dp->dtdo_destructive = 0; 8937 8938 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8939 dif_instr_t instr = dp->dtdo_buf[pc]; 8940 8941 uint_t r1 = DIF_INSTR_R1(instr); 8942 uint_t r2 = DIF_INSTR_R2(instr); 8943 uint_t rd = DIF_INSTR_RD(instr); 8944 uint_t rs = DIF_INSTR_RS(instr); 8945 uint_t label = DIF_INSTR_LABEL(instr); 8946 uint_t v = DIF_INSTR_VAR(instr); 8947 uint_t subr = DIF_INSTR_SUBR(instr); 8948 uint_t type = DIF_INSTR_TYPE(instr); 8949 uint_t op = DIF_INSTR_OP(instr); 8950 8951 switch (op) { 8952 case DIF_OP_OR: 8953 case DIF_OP_XOR: 8954 case DIF_OP_AND: 8955 case DIF_OP_SLL: 8956 case DIF_OP_SRL: 8957 case DIF_OP_SRA: 8958 case DIF_OP_SUB: 8959 case DIF_OP_ADD: 8960 case DIF_OP_MUL: 8961 case DIF_OP_SDIV: 8962 case DIF_OP_UDIV: 8963 case DIF_OP_SREM: 8964 case DIF_OP_UREM: 8965 case DIF_OP_COPYS: 8966 if (r1 >= nregs) 8967 err += efunc(pc, "invalid register %u\n", r1); 8968 if (r2 >= nregs) 8969 err += efunc(pc, "invalid register %u\n", r2); 8970 if (rd >= nregs) 8971 err += efunc(pc, "invalid register %u\n", rd); 8972 if (rd == 0) 8973 err += efunc(pc, "cannot write to %r0\n"); 8974 break; 8975 case DIF_OP_NOT: 8976 case DIF_OP_MOV: 8977 case DIF_OP_ALLOCS: 8978 if (r1 >= nregs) 8979 err += efunc(pc, "invalid register %u\n", r1); 8980 if (r2 != 0) 8981 err += efunc(pc, "non-zero reserved bits\n"); 8982 if (rd >= nregs) 8983 err += efunc(pc, "invalid register %u\n", rd); 8984 if (rd == 0) 8985 err += efunc(pc, "cannot write to %r0\n"); 8986 break; 8987 case DIF_OP_LDSB: 8988 case DIF_OP_LDSH: 8989 case DIF_OP_LDSW: 8990 case DIF_OP_LDUB: 8991 case DIF_OP_LDUH: 8992 case DIF_OP_LDUW: 8993 case DIF_OP_LDX: 8994 if (r1 >= nregs) 8995 err += efunc(pc, "invalid register %u\n", r1); 8996 if (r2 != 0) 8997 err += efunc(pc, "non-zero reserved bits\n"); 8998 if (rd >= nregs) 8999 err += efunc(pc, "invalid register %u\n", rd); 9000 if (rd == 0) 9001 err += efunc(pc, "cannot write to %r0\n"); 9002 if (kcheckload) 9003 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9004 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9005 break; 9006 case DIF_OP_RLDSB: 9007 case DIF_OP_RLDSH: 9008 case DIF_OP_RLDSW: 9009 case DIF_OP_RLDUB: 9010 case DIF_OP_RLDUH: 9011 case DIF_OP_RLDUW: 9012 case DIF_OP_RLDX: 9013 if (r1 >= nregs) 9014 err += efunc(pc, "invalid register %u\n", r1); 9015 if (r2 != 0) 9016 err += efunc(pc, "non-zero reserved bits\n"); 9017 if (rd >= nregs) 9018 err += efunc(pc, "invalid register %u\n", rd); 9019 if (rd == 0) 9020 err += efunc(pc, "cannot write to %r0\n"); 9021 break; 9022 case DIF_OP_ULDSB: 9023 case DIF_OP_ULDSH: 9024 case DIF_OP_ULDSW: 9025 case DIF_OP_ULDUB: 9026 case DIF_OP_ULDUH: 9027 case DIF_OP_ULDUW: 9028 case DIF_OP_ULDX: 9029 if (r1 >= nregs) 9030 err += efunc(pc, "invalid register %u\n", r1); 9031 if (r2 != 0) 9032 err += efunc(pc, "non-zero reserved bits\n"); 9033 if (rd >= nregs) 9034 err += efunc(pc, "invalid register %u\n", rd); 9035 if (rd == 0) 9036 err += efunc(pc, "cannot write to %r0\n"); 9037 break; 9038 case DIF_OP_STB: 9039 case DIF_OP_STH: 9040 case DIF_OP_STW: 9041 case DIF_OP_STX: 9042 if (r1 >= nregs) 9043 err += efunc(pc, "invalid register %u\n", r1); 9044 if (r2 != 0) 9045 err += efunc(pc, "non-zero reserved bits\n"); 9046 if (rd >= nregs) 9047 err += efunc(pc, "invalid register %u\n", rd); 9048 if (rd == 0) 9049 err += efunc(pc, "cannot write to 0 address\n"); 9050 break; 9051 case DIF_OP_CMP: 9052 case DIF_OP_SCMP: 9053 if (r1 >= nregs) 9054 err += efunc(pc, "invalid register %u\n", r1); 9055 if (r2 >= nregs) 9056 err += efunc(pc, "invalid register %u\n", r2); 9057 if (rd != 0) 9058 err += efunc(pc, "non-zero reserved bits\n"); 9059 break; 9060 case DIF_OP_TST: 9061 if (r1 >= nregs) 9062 err += efunc(pc, "invalid register %u\n", r1); 9063 if (r2 != 0 || rd != 0) 9064 err += efunc(pc, "non-zero reserved bits\n"); 9065 break; 9066 case DIF_OP_BA: 9067 case DIF_OP_BE: 9068 case DIF_OP_BNE: 9069 case DIF_OP_BG: 9070 case DIF_OP_BGU: 9071 case DIF_OP_BGE: 9072 case DIF_OP_BGEU: 9073 case DIF_OP_BL: 9074 case DIF_OP_BLU: 9075 case DIF_OP_BLE: 9076 case DIF_OP_BLEU: 9077 if (label >= dp->dtdo_len) { 9078 err += efunc(pc, "invalid branch target %u\n", 9079 label); 9080 } 9081 if (label <= pc) { 9082 err += efunc(pc, "backward branch to %u\n", 9083 label); 9084 } 9085 break; 9086 case DIF_OP_RET: 9087 if (r1 != 0 || r2 != 0) 9088 err += efunc(pc, "non-zero reserved bits\n"); 9089 if (rd >= nregs) 9090 err += efunc(pc, "invalid register %u\n", rd); 9091 break; 9092 case DIF_OP_NOP: 9093 case DIF_OP_POPTS: 9094 case DIF_OP_FLUSHTS: 9095 if (r1 != 0 || r2 != 0 || rd != 0) 9096 err += efunc(pc, "non-zero reserved bits\n"); 9097 break; 9098 case DIF_OP_SETX: 9099 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9100 err += efunc(pc, "invalid integer ref %u\n", 9101 DIF_INSTR_INTEGER(instr)); 9102 } 9103 if (rd >= nregs) 9104 err += efunc(pc, "invalid register %u\n", rd); 9105 if (rd == 0) 9106 err += efunc(pc, "cannot write to %r0\n"); 9107 break; 9108 case DIF_OP_SETS: 9109 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9110 err += efunc(pc, "invalid string ref %u\n", 9111 DIF_INSTR_STRING(instr)); 9112 } 9113 if (rd >= nregs) 9114 err += efunc(pc, "invalid register %u\n", rd); 9115 if (rd == 0) 9116 err += efunc(pc, "cannot write to %r0\n"); 9117 break; 9118 case DIF_OP_LDGA: 9119 case DIF_OP_LDTA: 9120 if (r1 > DIF_VAR_ARRAY_MAX) 9121 err += efunc(pc, "invalid array %u\n", r1); 9122 if (r2 >= nregs) 9123 err += efunc(pc, "invalid register %u\n", r2); 9124 if (rd >= nregs) 9125 err += efunc(pc, "invalid register %u\n", rd); 9126 if (rd == 0) 9127 err += efunc(pc, "cannot write to %r0\n"); 9128 break; 9129 case DIF_OP_LDGS: 9130 case DIF_OP_LDTS: 9131 case DIF_OP_LDLS: 9132 case DIF_OP_LDGAA: 9133 case DIF_OP_LDTAA: 9134 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9135 err += efunc(pc, "invalid variable %u\n", v); 9136 if (rd >= nregs) 9137 err += efunc(pc, "invalid register %u\n", rd); 9138 if (rd == 0) 9139 err += efunc(pc, "cannot write to %r0\n"); 9140 break; 9141 case DIF_OP_STGS: 9142 case DIF_OP_STTS: 9143 case DIF_OP_STLS: 9144 case DIF_OP_STGAA: 9145 case DIF_OP_STTAA: 9146 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9147 err += efunc(pc, "invalid variable %u\n", v); 9148 if (rs >= nregs) 9149 err += efunc(pc, "invalid register %u\n", rd); 9150 break; 9151 case DIF_OP_CALL: 9152 if (subr > DIF_SUBR_MAX) 9153 err += efunc(pc, "invalid subr %u\n", subr); 9154 if (rd >= nregs) 9155 err += efunc(pc, "invalid register %u\n", rd); 9156 if (rd == 0) 9157 err += efunc(pc, "cannot write to %r0\n"); 9158 9159 if (subr == DIF_SUBR_COPYOUT || 9160 subr == DIF_SUBR_COPYOUTSTR) { 9161 dp->dtdo_destructive = 1; 9162 } 9163 9164 if (subr == DIF_SUBR_GETF) { 9165 /* 9166 * If we have a getf() we need to record that 9167 * in our state. Note that our state can be 9168 * NULL if this is a helper -- but in that 9169 * case, the call to getf() is itself illegal, 9170 * and will be caught (slightly later) when 9171 * the helper is validated. 9172 */ 9173 if (vstate->dtvs_state != NULL) 9174 vstate->dtvs_state->dts_getf++; 9175 } 9176 9177 break; 9178 case DIF_OP_PUSHTR: 9179 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9180 err += efunc(pc, "invalid ref type %u\n", type); 9181 if (r2 >= nregs) 9182 err += efunc(pc, "invalid register %u\n", r2); 9183 if (rs >= nregs) 9184 err += efunc(pc, "invalid register %u\n", rs); 9185 break; 9186 case DIF_OP_PUSHTV: 9187 if (type != DIF_TYPE_CTF) 9188 err += efunc(pc, "invalid val type %u\n", type); 9189 if (r2 >= nregs) 9190 err += efunc(pc, "invalid register %u\n", r2); 9191 if (rs >= nregs) 9192 err += efunc(pc, "invalid register %u\n", rs); 9193 break; 9194 default: 9195 err += efunc(pc, "invalid opcode %u\n", 9196 DIF_INSTR_OP(instr)); 9197 } 9198 } 9199 9200 if (dp->dtdo_len != 0 && 9201 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9202 err += efunc(dp->dtdo_len - 1, 9203 "expected 'ret' as last DIF instruction\n"); 9204 } 9205 9206 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 9207 /* 9208 * If we're not returning by reference, the size must be either 9209 * 0 or the size of one of the base types. 9210 */ 9211 switch (dp->dtdo_rtype.dtdt_size) { 9212 case 0: 9213 case sizeof (uint8_t): 9214 case sizeof (uint16_t): 9215 case sizeof (uint32_t): 9216 case sizeof (uint64_t): 9217 break; 9218 9219 default: 9220 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9221 } 9222 } 9223 9224 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9225 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9226 dtrace_diftype_t *vt, *et; 9227 uint_t id, ndx; 9228 9229 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9230 v->dtdv_scope != DIFV_SCOPE_THREAD && 9231 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9232 err += efunc(i, "unrecognized variable scope %d\n", 9233 v->dtdv_scope); 9234 break; 9235 } 9236 9237 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9238 v->dtdv_kind != DIFV_KIND_SCALAR) { 9239 err += efunc(i, "unrecognized variable type %d\n", 9240 v->dtdv_kind); 9241 break; 9242 } 9243 9244 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9245 err += efunc(i, "%d exceeds variable id limit\n", id); 9246 break; 9247 } 9248 9249 if (id < DIF_VAR_OTHER_UBASE) 9250 continue; 9251 9252 /* 9253 * For user-defined variables, we need to check that this 9254 * definition is identical to any previous definition that we 9255 * encountered. 9256 */ 9257 ndx = id - DIF_VAR_OTHER_UBASE; 9258 9259 switch (v->dtdv_scope) { 9260 case DIFV_SCOPE_GLOBAL: 9261 if (ndx < vstate->dtvs_nglobals) { 9262 dtrace_statvar_t *svar; 9263 9264 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9265 existing = &svar->dtsv_var; 9266 } 9267 9268 break; 9269 9270 case DIFV_SCOPE_THREAD: 9271 if (ndx < vstate->dtvs_ntlocals) 9272 existing = &vstate->dtvs_tlocals[ndx]; 9273 break; 9274 9275 case DIFV_SCOPE_LOCAL: 9276 if (ndx < vstate->dtvs_nlocals) { 9277 dtrace_statvar_t *svar; 9278 9279 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9280 existing = &svar->dtsv_var; 9281 } 9282 9283 break; 9284 } 9285 9286 vt = &v->dtdv_type; 9287 9288 if (vt->dtdt_flags & DIF_TF_BYREF) { 9289 if (vt->dtdt_size == 0) { 9290 err += efunc(i, "zero-sized variable\n"); 9291 break; 9292 } 9293 9294 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9295 vt->dtdt_size > dtrace_global_maxsize) { 9296 err += efunc(i, "oversized by-ref global\n"); 9297 break; 9298 } 9299 } 9300 9301 if (existing == NULL || existing->dtdv_id == 0) 9302 continue; 9303 9304 ASSERT(existing->dtdv_id == v->dtdv_id); 9305 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9306 9307 if (existing->dtdv_kind != v->dtdv_kind) 9308 err += efunc(i, "%d changed variable kind\n", id); 9309 9310 et = &existing->dtdv_type; 9311 9312 if (vt->dtdt_flags != et->dtdt_flags) { 9313 err += efunc(i, "%d changed variable type flags\n", id); 9314 break; 9315 } 9316 9317 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9318 err += efunc(i, "%d changed variable type size\n", id); 9319 break; 9320 } 9321 } 9322 9323 return (err); 9324 } 9325 9326 /* 9327 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9328 * are much more constrained than normal DIFOs. Specifically, they may 9329 * not: 9330 * 9331 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9332 * miscellaneous string routines 9333 * 2. Access DTrace variables other than the args[] array, and the 9334 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9335 * 3. Have thread-local variables. 9336 * 4. Have dynamic variables. 9337 */ 9338 static int 9339 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9340 { 9341 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9342 int err = 0; 9343 uint_t pc; 9344 9345 for (pc = 0; pc < dp->dtdo_len; pc++) { 9346 dif_instr_t instr = dp->dtdo_buf[pc]; 9347 9348 uint_t v = DIF_INSTR_VAR(instr); 9349 uint_t subr = DIF_INSTR_SUBR(instr); 9350 uint_t op = DIF_INSTR_OP(instr); 9351 9352 switch (op) { 9353 case DIF_OP_OR: 9354 case DIF_OP_XOR: 9355 case DIF_OP_AND: 9356 case DIF_OP_SLL: 9357 case DIF_OP_SRL: 9358 case DIF_OP_SRA: 9359 case DIF_OP_SUB: 9360 case DIF_OP_ADD: 9361 case DIF_OP_MUL: 9362 case DIF_OP_SDIV: 9363 case DIF_OP_UDIV: 9364 case DIF_OP_SREM: 9365 case DIF_OP_UREM: 9366 case DIF_OP_COPYS: 9367 case DIF_OP_NOT: 9368 case DIF_OP_MOV: 9369 case DIF_OP_RLDSB: 9370 case DIF_OP_RLDSH: 9371 case DIF_OP_RLDSW: 9372 case DIF_OP_RLDUB: 9373 case DIF_OP_RLDUH: 9374 case DIF_OP_RLDUW: 9375 case DIF_OP_RLDX: 9376 case DIF_OP_ULDSB: 9377 case DIF_OP_ULDSH: 9378 case DIF_OP_ULDSW: 9379 case DIF_OP_ULDUB: 9380 case DIF_OP_ULDUH: 9381 case DIF_OP_ULDUW: 9382 case DIF_OP_ULDX: 9383 case DIF_OP_STB: 9384 case DIF_OP_STH: 9385 case DIF_OP_STW: 9386 case DIF_OP_STX: 9387 case DIF_OP_ALLOCS: 9388 case DIF_OP_CMP: 9389 case DIF_OP_SCMP: 9390 case DIF_OP_TST: 9391 case DIF_OP_BA: 9392 case DIF_OP_BE: 9393 case DIF_OP_BNE: 9394 case DIF_OP_BG: 9395 case DIF_OP_BGU: 9396 case DIF_OP_BGE: 9397 case DIF_OP_BGEU: 9398 case DIF_OP_BL: 9399 case DIF_OP_BLU: 9400 case DIF_OP_BLE: 9401 case DIF_OP_BLEU: 9402 case DIF_OP_RET: 9403 case DIF_OP_NOP: 9404 case DIF_OP_POPTS: 9405 case DIF_OP_FLUSHTS: 9406 case DIF_OP_SETX: 9407 case DIF_OP_SETS: 9408 case DIF_OP_LDGA: 9409 case DIF_OP_LDLS: 9410 case DIF_OP_STGS: 9411 case DIF_OP_STLS: 9412 case DIF_OP_PUSHTR: 9413 case DIF_OP_PUSHTV: 9414 break; 9415 9416 case DIF_OP_LDGS: 9417 if (v >= DIF_VAR_OTHER_UBASE) 9418 break; 9419 9420 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9421 break; 9422 9423 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9424 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9425 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9426 v == DIF_VAR_UID || v == DIF_VAR_GID) 9427 break; 9428 9429 err += efunc(pc, "illegal variable %u\n", v); 9430 break; 9431 9432 case DIF_OP_LDTA: 9433 case DIF_OP_LDTS: 9434 case DIF_OP_LDGAA: 9435 case DIF_OP_LDTAA: 9436 err += efunc(pc, "illegal dynamic variable load\n"); 9437 break; 9438 9439 case DIF_OP_STTS: 9440 case DIF_OP_STGAA: 9441 case DIF_OP_STTAA: 9442 err += efunc(pc, "illegal dynamic variable store\n"); 9443 break; 9444 9445 case DIF_OP_CALL: 9446 if (subr == DIF_SUBR_ALLOCA || 9447 subr == DIF_SUBR_BCOPY || 9448 subr == DIF_SUBR_COPYIN || 9449 subr == DIF_SUBR_COPYINTO || 9450 subr == DIF_SUBR_COPYINSTR || 9451 subr == DIF_SUBR_INDEX || 9452 subr == DIF_SUBR_INET_NTOA || 9453 subr == DIF_SUBR_INET_NTOA6 || 9454 subr == DIF_SUBR_INET_NTOP || 9455 subr == DIF_SUBR_JSON || 9456 subr == DIF_SUBR_LLTOSTR || 9457 subr == DIF_SUBR_STRTOLL || 9458 subr == DIF_SUBR_RINDEX || 9459 subr == DIF_SUBR_STRCHR || 9460 subr == DIF_SUBR_STRJOIN || 9461 subr == DIF_SUBR_STRRCHR || 9462 subr == DIF_SUBR_STRSTR || 9463 subr == DIF_SUBR_HTONS || 9464 subr == DIF_SUBR_HTONL || 9465 subr == DIF_SUBR_HTONLL || 9466 subr == DIF_SUBR_NTOHS || 9467 subr == DIF_SUBR_NTOHL || 9468 subr == DIF_SUBR_NTOHLL) 9469 break; 9470 9471 err += efunc(pc, "invalid subr %u\n", subr); 9472 break; 9473 9474 default: 9475 err += efunc(pc, "invalid opcode %u\n", 9476 DIF_INSTR_OP(instr)); 9477 } 9478 } 9479 9480 return (err); 9481 } 9482 9483 /* 9484 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9485 * basis; 0 if not. 9486 */ 9487 static int 9488 dtrace_difo_cacheable(dtrace_difo_t *dp) 9489 { 9490 int i; 9491 9492 if (dp == NULL) 9493 return (0); 9494 9495 for (i = 0; i < dp->dtdo_varlen; i++) { 9496 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9497 9498 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9499 continue; 9500 9501 switch (v->dtdv_id) { 9502 case DIF_VAR_CURTHREAD: 9503 case DIF_VAR_PID: 9504 case DIF_VAR_TID: 9505 case DIF_VAR_EXECNAME: 9506 case DIF_VAR_ZONENAME: 9507 break; 9508 9509 default: 9510 return (0); 9511 } 9512 } 9513 9514 /* 9515 * This DIF object may be cacheable. Now we need to look for any 9516 * array loading instructions, any memory loading instructions, or 9517 * any stores to thread-local variables. 9518 */ 9519 for (i = 0; i < dp->dtdo_len; i++) { 9520 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9521 9522 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9523 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9524 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9525 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9526 return (0); 9527 } 9528 9529 return (1); 9530 } 9531 9532 static void 9533 dtrace_difo_hold(dtrace_difo_t *dp) 9534 { 9535 int i; 9536 9537 ASSERT(MUTEX_HELD(&dtrace_lock)); 9538 9539 dp->dtdo_refcnt++; 9540 ASSERT(dp->dtdo_refcnt != 0); 9541 9542 /* 9543 * We need to check this DIF object for references to the variable 9544 * DIF_VAR_VTIMESTAMP. 9545 */ 9546 for (i = 0; i < dp->dtdo_varlen; i++) { 9547 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9548 9549 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9550 continue; 9551 9552 if (dtrace_vtime_references++ == 0) 9553 dtrace_vtime_enable(); 9554 } 9555 } 9556 9557 /* 9558 * This routine calculates the dynamic variable chunksize for a given DIF 9559 * object. The calculation is not fool-proof, and can probably be tricked by 9560 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9561 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9562 * if a dynamic variable size exceeds the chunksize. 9563 */ 9564 static void 9565 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9566 { 9567 uint64_t sval; 9568 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9569 const dif_instr_t *text = dp->dtdo_buf; 9570 uint_t pc, srd = 0; 9571 uint_t ttop = 0; 9572 size_t size, ksize; 9573 uint_t id, i; 9574 9575 for (pc = 0; pc < dp->dtdo_len; pc++) { 9576 dif_instr_t instr = text[pc]; 9577 uint_t op = DIF_INSTR_OP(instr); 9578 uint_t rd = DIF_INSTR_RD(instr); 9579 uint_t r1 = DIF_INSTR_R1(instr); 9580 uint_t nkeys = 0; 9581 uchar_t scope; 9582 9583 dtrace_key_t *key = tupregs; 9584 9585 switch (op) { 9586 case DIF_OP_SETX: 9587 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9588 srd = rd; 9589 continue; 9590 9591 case DIF_OP_STTS: 9592 key = &tupregs[DIF_DTR_NREGS]; 9593 key[0].dttk_size = 0; 9594 key[1].dttk_size = 0; 9595 nkeys = 2; 9596 scope = DIFV_SCOPE_THREAD; 9597 break; 9598 9599 case DIF_OP_STGAA: 9600 case DIF_OP_STTAA: 9601 nkeys = ttop; 9602 9603 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9604 key[nkeys++].dttk_size = 0; 9605 9606 key[nkeys++].dttk_size = 0; 9607 9608 if (op == DIF_OP_STTAA) { 9609 scope = DIFV_SCOPE_THREAD; 9610 } else { 9611 scope = DIFV_SCOPE_GLOBAL; 9612 } 9613 9614 break; 9615 9616 case DIF_OP_PUSHTR: 9617 if (ttop == DIF_DTR_NREGS) 9618 return; 9619 9620 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9621 /* 9622 * If the register for the size of the "pushtr" 9623 * is %r0 (or the value is 0) and the type is 9624 * a string, we'll use the system-wide default 9625 * string size. 9626 */ 9627 tupregs[ttop++].dttk_size = 9628 dtrace_strsize_default; 9629 } else { 9630 if (srd == 0) 9631 return; 9632 9633 tupregs[ttop++].dttk_size = sval; 9634 } 9635 9636 break; 9637 9638 case DIF_OP_PUSHTV: 9639 if (ttop == DIF_DTR_NREGS) 9640 return; 9641 9642 tupregs[ttop++].dttk_size = 0; 9643 break; 9644 9645 case DIF_OP_FLUSHTS: 9646 ttop = 0; 9647 break; 9648 9649 case DIF_OP_POPTS: 9650 if (ttop != 0) 9651 ttop--; 9652 break; 9653 } 9654 9655 sval = 0; 9656 srd = 0; 9657 9658 if (nkeys == 0) 9659 continue; 9660 9661 /* 9662 * We have a dynamic variable allocation; calculate its size. 9663 */ 9664 for (ksize = 0, i = 0; i < nkeys; i++) 9665 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9666 9667 size = sizeof (dtrace_dynvar_t); 9668 size += sizeof (dtrace_key_t) * (nkeys - 1); 9669 size += ksize; 9670 9671 /* 9672 * Now we need to determine the size of the stored data. 9673 */ 9674 id = DIF_INSTR_VAR(instr); 9675 9676 for (i = 0; i < dp->dtdo_varlen; i++) { 9677 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9678 9679 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9680 size += v->dtdv_type.dtdt_size; 9681 break; 9682 } 9683 } 9684 9685 if (i == dp->dtdo_varlen) 9686 return; 9687 9688 /* 9689 * We have the size. If this is larger than the chunk size 9690 * for our dynamic variable state, reset the chunk size. 9691 */ 9692 size = P2ROUNDUP(size, sizeof (uint64_t)); 9693 9694 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9695 vstate->dtvs_dynvars.dtds_chunksize = size; 9696 } 9697 } 9698 9699 static void 9700 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9701 { 9702 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9703 uint_t id; 9704 9705 ASSERT(MUTEX_HELD(&dtrace_lock)); 9706 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9707 9708 for (i = 0; i < dp->dtdo_varlen; i++) { 9709 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9710 dtrace_statvar_t *svar, ***svarp; 9711 size_t dsize = 0; 9712 uint8_t scope = v->dtdv_scope; 9713 int *np; 9714 9715 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9716 continue; 9717 9718 id -= DIF_VAR_OTHER_UBASE; 9719 9720 switch (scope) { 9721 case DIFV_SCOPE_THREAD: 9722 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9723 dtrace_difv_t *tlocals; 9724 9725 if ((ntlocals = (otlocals << 1)) == 0) 9726 ntlocals = 1; 9727 9728 osz = otlocals * sizeof (dtrace_difv_t); 9729 nsz = ntlocals * sizeof (dtrace_difv_t); 9730 9731 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9732 9733 if (osz != 0) { 9734 bcopy(vstate->dtvs_tlocals, 9735 tlocals, osz); 9736 kmem_free(vstate->dtvs_tlocals, osz); 9737 } 9738 9739 vstate->dtvs_tlocals = tlocals; 9740 vstate->dtvs_ntlocals = ntlocals; 9741 } 9742 9743 vstate->dtvs_tlocals[id] = *v; 9744 continue; 9745 9746 case DIFV_SCOPE_LOCAL: 9747 np = &vstate->dtvs_nlocals; 9748 svarp = &vstate->dtvs_locals; 9749 9750 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9751 dsize = NCPU * (v->dtdv_type.dtdt_size + 9752 sizeof (uint64_t)); 9753 else 9754 dsize = NCPU * sizeof (uint64_t); 9755 9756 break; 9757 9758 case DIFV_SCOPE_GLOBAL: 9759 np = &vstate->dtvs_nglobals; 9760 svarp = &vstate->dtvs_globals; 9761 9762 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9763 dsize = v->dtdv_type.dtdt_size + 9764 sizeof (uint64_t); 9765 9766 break; 9767 9768 default: 9769 ASSERT(0); 9770 } 9771 9772 while (id >= (oldsvars = *np)) { 9773 dtrace_statvar_t **statics; 9774 int newsvars, oldsize, newsize; 9775 9776 if ((newsvars = (oldsvars << 1)) == 0) 9777 newsvars = 1; 9778 9779 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9780 newsize = newsvars * sizeof (dtrace_statvar_t *); 9781 9782 statics = kmem_zalloc(newsize, KM_SLEEP); 9783 9784 if (oldsize != 0) { 9785 bcopy(*svarp, statics, oldsize); 9786 kmem_free(*svarp, oldsize); 9787 } 9788 9789 *svarp = statics; 9790 *np = newsvars; 9791 } 9792 9793 if ((svar = (*svarp)[id]) == NULL) { 9794 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9795 svar->dtsv_var = *v; 9796 9797 if ((svar->dtsv_size = dsize) != 0) { 9798 svar->dtsv_data = (uint64_t)(uintptr_t) 9799 kmem_zalloc(dsize, KM_SLEEP); 9800 } 9801 9802 (*svarp)[id] = svar; 9803 } 9804 9805 svar->dtsv_refcnt++; 9806 } 9807 9808 dtrace_difo_chunksize(dp, vstate); 9809 dtrace_difo_hold(dp); 9810 } 9811 9812 static dtrace_difo_t * 9813 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9814 { 9815 dtrace_difo_t *new; 9816 size_t sz; 9817 9818 ASSERT(dp->dtdo_buf != NULL); 9819 ASSERT(dp->dtdo_refcnt != 0); 9820 9821 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9822 9823 ASSERT(dp->dtdo_buf != NULL); 9824 sz = dp->dtdo_len * sizeof (dif_instr_t); 9825 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9826 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9827 new->dtdo_len = dp->dtdo_len; 9828 9829 if (dp->dtdo_strtab != NULL) { 9830 ASSERT(dp->dtdo_strlen != 0); 9831 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9832 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9833 new->dtdo_strlen = dp->dtdo_strlen; 9834 } 9835 9836 if (dp->dtdo_inttab != NULL) { 9837 ASSERT(dp->dtdo_intlen != 0); 9838 sz = dp->dtdo_intlen * sizeof (uint64_t); 9839 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9840 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9841 new->dtdo_intlen = dp->dtdo_intlen; 9842 } 9843 9844 if (dp->dtdo_vartab != NULL) { 9845 ASSERT(dp->dtdo_varlen != 0); 9846 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9847 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9848 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9849 new->dtdo_varlen = dp->dtdo_varlen; 9850 } 9851 9852 dtrace_difo_init(new, vstate); 9853 return (new); 9854 } 9855 9856 static void 9857 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9858 { 9859 int i; 9860 9861 ASSERT(dp->dtdo_refcnt == 0); 9862 9863 for (i = 0; i < dp->dtdo_varlen; i++) { 9864 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9865 dtrace_statvar_t *svar, **svarp; 9866 uint_t id; 9867 uint8_t scope = v->dtdv_scope; 9868 int *np; 9869 9870 switch (scope) { 9871 case DIFV_SCOPE_THREAD: 9872 continue; 9873 9874 case DIFV_SCOPE_LOCAL: 9875 np = &vstate->dtvs_nlocals; 9876 svarp = vstate->dtvs_locals; 9877 break; 9878 9879 case DIFV_SCOPE_GLOBAL: 9880 np = &vstate->dtvs_nglobals; 9881 svarp = vstate->dtvs_globals; 9882 break; 9883 9884 default: 9885 ASSERT(0); 9886 } 9887 9888 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9889 continue; 9890 9891 id -= DIF_VAR_OTHER_UBASE; 9892 ASSERT(id < *np); 9893 9894 svar = svarp[id]; 9895 ASSERT(svar != NULL); 9896 ASSERT(svar->dtsv_refcnt > 0); 9897 9898 if (--svar->dtsv_refcnt > 0) 9899 continue; 9900 9901 if (svar->dtsv_size != 0) { 9902 ASSERT(svar->dtsv_data != NULL); 9903 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9904 svar->dtsv_size); 9905 } 9906 9907 kmem_free(svar, sizeof (dtrace_statvar_t)); 9908 svarp[id] = NULL; 9909 } 9910 9911 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9912 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9913 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9914 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9915 9916 kmem_free(dp, sizeof (dtrace_difo_t)); 9917 } 9918 9919 static void 9920 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9921 { 9922 int i; 9923 9924 ASSERT(MUTEX_HELD(&dtrace_lock)); 9925 ASSERT(dp->dtdo_refcnt != 0); 9926 9927 for (i = 0; i < dp->dtdo_varlen; i++) { 9928 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9929 9930 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9931 continue; 9932 9933 ASSERT(dtrace_vtime_references > 0); 9934 if (--dtrace_vtime_references == 0) 9935 dtrace_vtime_disable(); 9936 } 9937 9938 if (--dp->dtdo_refcnt == 0) 9939 dtrace_difo_destroy(dp, vstate); 9940 } 9941 9942 /* 9943 * DTrace Format Functions 9944 */ 9945 static uint16_t 9946 dtrace_format_add(dtrace_state_t *state, char *str) 9947 { 9948 char *fmt, **new; 9949 uint16_t ndx, len = strlen(str) + 1; 9950 9951 fmt = kmem_zalloc(len, KM_SLEEP); 9952 bcopy(str, fmt, len); 9953 9954 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9955 if (state->dts_formats[ndx] == NULL) { 9956 state->dts_formats[ndx] = fmt; 9957 return (ndx + 1); 9958 } 9959 } 9960 9961 if (state->dts_nformats == USHRT_MAX) { 9962 /* 9963 * This is only likely if a denial-of-service attack is being 9964 * attempted. As such, it's okay to fail silently here. 9965 */ 9966 kmem_free(fmt, len); 9967 return (0); 9968 } 9969 9970 /* 9971 * For simplicity, we always resize the formats array to be exactly the 9972 * number of formats. 9973 */ 9974 ndx = state->dts_nformats++; 9975 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9976 9977 if (state->dts_formats != NULL) { 9978 ASSERT(ndx != 0); 9979 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9980 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9981 } 9982 9983 state->dts_formats = new; 9984 state->dts_formats[ndx] = fmt; 9985 9986 return (ndx + 1); 9987 } 9988 9989 static void 9990 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9991 { 9992 char *fmt; 9993 9994 ASSERT(state->dts_formats != NULL); 9995 ASSERT(format <= state->dts_nformats); 9996 ASSERT(state->dts_formats[format - 1] != NULL); 9997 9998 fmt = state->dts_formats[format - 1]; 9999 kmem_free(fmt, strlen(fmt) + 1); 10000 state->dts_formats[format - 1] = NULL; 10001 } 10002 10003 static void 10004 dtrace_format_destroy(dtrace_state_t *state) 10005 { 10006 int i; 10007 10008 if (state->dts_nformats == 0) { 10009 ASSERT(state->dts_formats == NULL); 10010 return; 10011 } 10012 10013 ASSERT(state->dts_formats != NULL); 10014 10015 for (i = 0; i < state->dts_nformats; i++) { 10016 char *fmt = state->dts_formats[i]; 10017 10018 if (fmt == NULL) 10019 continue; 10020 10021 kmem_free(fmt, strlen(fmt) + 1); 10022 } 10023 10024 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10025 state->dts_nformats = 0; 10026 state->dts_formats = NULL; 10027 } 10028 10029 /* 10030 * DTrace Predicate Functions 10031 */ 10032 static dtrace_predicate_t * 10033 dtrace_predicate_create(dtrace_difo_t *dp) 10034 { 10035 dtrace_predicate_t *pred; 10036 10037 ASSERT(MUTEX_HELD(&dtrace_lock)); 10038 ASSERT(dp->dtdo_refcnt != 0); 10039 10040 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10041 pred->dtp_difo = dp; 10042 pred->dtp_refcnt = 1; 10043 10044 if (!dtrace_difo_cacheable(dp)) 10045 return (pred); 10046 10047 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10048 /* 10049 * This is only theoretically possible -- we have had 2^32 10050 * cacheable predicates on this machine. We cannot allow any 10051 * more predicates to become cacheable: as unlikely as it is, 10052 * there may be a thread caching a (now stale) predicate cache 10053 * ID. (N.B.: the temptation is being successfully resisted to 10054 * have this cmn_err() "Holy shit -- we executed this code!") 10055 */ 10056 return (pred); 10057 } 10058 10059 pred->dtp_cacheid = dtrace_predcache_id++; 10060 10061 return (pred); 10062 } 10063 10064 static void 10065 dtrace_predicate_hold(dtrace_predicate_t *pred) 10066 { 10067 ASSERT(MUTEX_HELD(&dtrace_lock)); 10068 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10069 ASSERT(pred->dtp_refcnt > 0); 10070 10071 pred->dtp_refcnt++; 10072 } 10073 10074 static void 10075 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10076 { 10077 dtrace_difo_t *dp = pred->dtp_difo; 10078 10079 ASSERT(MUTEX_HELD(&dtrace_lock)); 10080 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10081 ASSERT(pred->dtp_refcnt > 0); 10082 10083 if (--pred->dtp_refcnt == 0) { 10084 dtrace_difo_release(pred->dtp_difo, vstate); 10085 kmem_free(pred, sizeof (dtrace_predicate_t)); 10086 } 10087 } 10088 10089 /* 10090 * DTrace Action Description Functions 10091 */ 10092 static dtrace_actdesc_t * 10093 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10094 uint64_t uarg, uint64_t arg) 10095 { 10096 dtrace_actdesc_t *act; 10097 10098 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10099 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10100 10101 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10102 act->dtad_kind = kind; 10103 act->dtad_ntuple = ntuple; 10104 act->dtad_uarg = uarg; 10105 act->dtad_arg = arg; 10106 act->dtad_refcnt = 1; 10107 10108 return (act); 10109 } 10110 10111 static void 10112 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10113 { 10114 ASSERT(act->dtad_refcnt >= 1); 10115 act->dtad_refcnt++; 10116 } 10117 10118 static void 10119 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10120 { 10121 dtrace_actkind_t kind = act->dtad_kind; 10122 dtrace_difo_t *dp; 10123 10124 ASSERT(act->dtad_refcnt >= 1); 10125 10126 if (--act->dtad_refcnt != 0) 10127 return; 10128 10129 if ((dp = act->dtad_difo) != NULL) 10130 dtrace_difo_release(dp, vstate); 10131 10132 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10133 char *str = (char *)(uintptr_t)act->dtad_arg; 10134 10135 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10136 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10137 10138 if (str != NULL) 10139 kmem_free(str, strlen(str) + 1); 10140 } 10141 10142 kmem_free(act, sizeof (dtrace_actdesc_t)); 10143 } 10144 10145 /* 10146 * DTrace ECB Functions 10147 */ 10148 static dtrace_ecb_t * 10149 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10150 { 10151 dtrace_ecb_t *ecb; 10152 dtrace_epid_t epid; 10153 10154 ASSERT(MUTEX_HELD(&dtrace_lock)); 10155 10156 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10157 ecb->dte_predicate = NULL; 10158 ecb->dte_probe = probe; 10159 10160 /* 10161 * The default size is the size of the default action: recording 10162 * the header. 10163 */ 10164 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10165 ecb->dte_alignment = sizeof (dtrace_epid_t); 10166 10167 epid = state->dts_epid++; 10168 10169 if (epid - 1 >= state->dts_necbs) { 10170 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10171 int necbs = state->dts_necbs << 1; 10172 10173 ASSERT(epid == state->dts_necbs + 1); 10174 10175 if (necbs == 0) { 10176 ASSERT(oecbs == NULL); 10177 necbs = 1; 10178 } 10179 10180 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10181 10182 if (oecbs != NULL) 10183 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10184 10185 dtrace_membar_producer(); 10186 state->dts_ecbs = ecbs; 10187 10188 if (oecbs != NULL) { 10189 /* 10190 * If this state is active, we must dtrace_sync() 10191 * before we can free the old dts_ecbs array: we're 10192 * coming in hot, and there may be active ring 10193 * buffer processing (which indexes into the dts_ecbs 10194 * array) on another CPU. 10195 */ 10196 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10197 dtrace_sync(); 10198 10199 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10200 } 10201 10202 dtrace_membar_producer(); 10203 state->dts_necbs = necbs; 10204 } 10205 10206 ecb->dte_state = state; 10207 10208 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10209 dtrace_membar_producer(); 10210 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10211 10212 return (ecb); 10213 } 10214 10215 static int 10216 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10217 { 10218 dtrace_probe_t *probe = ecb->dte_probe; 10219 10220 ASSERT(MUTEX_HELD(&cpu_lock)); 10221 ASSERT(MUTEX_HELD(&dtrace_lock)); 10222 ASSERT(ecb->dte_next == NULL); 10223 10224 if (probe == NULL) { 10225 /* 10226 * This is the NULL probe -- there's nothing to do. 10227 */ 10228 return (0); 10229 } 10230 10231 if (probe->dtpr_ecb == NULL) { 10232 dtrace_provider_t *prov = probe->dtpr_provider; 10233 10234 /* 10235 * We're the first ECB on this probe. 10236 */ 10237 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10238 10239 if (ecb->dte_predicate != NULL) 10240 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10241 10242 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10243 probe->dtpr_id, probe->dtpr_arg)); 10244 } else { 10245 /* 10246 * This probe is already active. Swing the last pointer to 10247 * point to the new ECB, and issue a dtrace_sync() to assure 10248 * that all CPUs have seen the change. 10249 */ 10250 ASSERT(probe->dtpr_ecb_last != NULL); 10251 probe->dtpr_ecb_last->dte_next = ecb; 10252 probe->dtpr_ecb_last = ecb; 10253 probe->dtpr_predcache = 0; 10254 10255 dtrace_sync(); 10256 return (0); 10257 } 10258 } 10259 10260 static void 10261 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10262 { 10263 dtrace_action_t *act; 10264 uint32_t curneeded = UINT32_MAX; 10265 uint32_t aggbase = UINT32_MAX; 10266 10267 /* 10268 * If we record anything, we always record the dtrace_rechdr_t. (And 10269 * we always record it first.) 10270 */ 10271 ecb->dte_size = sizeof (dtrace_rechdr_t); 10272 ecb->dte_alignment = sizeof (dtrace_epid_t); 10273 10274 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10275 dtrace_recdesc_t *rec = &act->dta_rec; 10276 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10277 10278 ecb->dte_alignment = MAX(ecb->dte_alignment, 10279 rec->dtrd_alignment); 10280 10281 if (DTRACEACT_ISAGG(act->dta_kind)) { 10282 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10283 10284 ASSERT(rec->dtrd_size != 0); 10285 ASSERT(agg->dtag_first != NULL); 10286 ASSERT(act->dta_prev->dta_intuple); 10287 ASSERT(aggbase != UINT32_MAX); 10288 ASSERT(curneeded != UINT32_MAX); 10289 10290 agg->dtag_base = aggbase; 10291 10292 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10293 rec->dtrd_offset = curneeded; 10294 curneeded += rec->dtrd_size; 10295 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10296 10297 aggbase = UINT32_MAX; 10298 curneeded = UINT32_MAX; 10299 } else if (act->dta_intuple) { 10300 if (curneeded == UINT32_MAX) { 10301 /* 10302 * This is the first record in a tuple. Align 10303 * curneeded to be at offset 4 in an 8-byte 10304 * aligned block. 10305 */ 10306 ASSERT(act->dta_prev == NULL || 10307 !act->dta_prev->dta_intuple); 10308 ASSERT3U(aggbase, ==, UINT32_MAX); 10309 curneeded = P2PHASEUP(ecb->dte_size, 10310 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10311 10312 aggbase = curneeded - sizeof (dtrace_aggid_t); 10313 ASSERT(IS_P2ALIGNED(aggbase, 10314 sizeof (uint64_t))); 10315 } 10316 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10317 rec->dtrd_offset = curneeded; 10318 curneeded += rec->dtrd_size; 10319 } else { 10320 /* tuples must be followed by an aggregation */ 10321 ASSERT(act->dta_prev == NULL || 10322 !act->dta_prev->dta_intuple); 10323 10324 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10325 rec->dtrd_alignment); 10326 rec->dtrd_offset = ecb->dte_size; 10327 ecb->dte_size += rec->dtrd_size; 10328 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10329 } 10330 } 10331 10332 if ((act = ecb->dte_action) != NULL && 10333 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10334 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10335 /* 10336 * If the size is still sizeof (dtrace_rechdr_t), then all 10337 * actions store no data; set the size to 0. 10338 */ 10339 ecb->dte_size = 0; 10340 } 10341 10342 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10343 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10344 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10345 ecb->dte_needed); 10346 } 10347 10348 static dtrace_action_t * 10349 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10350 { 10351 dtrace_aggregation_t *agg; 10352 size_t size = sizeof (uint64_t); 10353 int ntuple = desc->dtad_ntuple; 10354 dtrace_action_t *act; 10355 dtrace_recdesc_t *frec; 10356 dtrace_aggid_t aggid; 10357 dtrace_state_t *state = ecb->dte_state; 10358 10359 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10360 agg->dtag_ecb = ecb; 10361 10362 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10363 10364 switch (desc->dtad_kind) { 10365 case DTRACEAGG_MIN: 10366 agg->dtag_initial = INT64_MAX; 10367 agg->dtag_aggregate = dtrace_aggregate_min; 10368 break; 10369 10370 case DTRACEAGG_MAX: 10371 agg->dtag_initial = INT64_MIN; 10372 agg->dtag_aggregate = dtrace_aggregate_max; 10373 break; 10374 10375 case DTRACEAGG_COUNT: 10376 agg->dtag_aggregate = dtrace_aggregate_count; 10377 break; 10378 10379 case DTRACEAGG_QUANTIZE: 10380 agg->dtag_aggregate = dtrace_aggregate_quantize; 10381 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10382 sizeof (uint64_t); 10383 break; 10384 10385 case DTRACEAGG_LQUANTIZE: { 10386 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10387 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10388 10389 agg->dtag_initial = desc->dtad_arg; 10390 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10391 10392 if (step == 0 || levels == 0) 10393 goto err; 10394 10395 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10396 break; 10397 } 10398 10399 case DTRACEAGG_LLQUANTIZE: { 10400 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10401 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10402 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10403 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10404 int64_t v; 10405 10406 agg->dtag_initial = desc->dtad_arg; 10407 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10408 10409 if (factor < 2 || low >= high || nsteps < factor) 10410 goto err; 10411 10412 /* 10413 * Now check that the number of steps evenly divides a power 10414 * of the factor. (This assures both integer bucket size and 10415 * linearity within each magnitude.) 10416 */ 10417 for (v = factor; v < nsteps; v *= factor) 10418 continue; 10419 10420 if ((v % nsteps) || (nsteps % factor)) 10421 goto err; 10422 10423 size = (dtrace_aggregate_llquantize_bucket(factor, 10424 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10425 break; 10426 } 10427 10428 case DTRACEAGG_AVG: 10429 agg->dtag_aggregate = dtrace_aggregate_avg; 10430 size = sizeof (uint64_t) * 2; 10431 break; 10432 10433 case DTRACEAGG_STDDEV: 10434 agg->dtag_aggregate = dtrace_aggregate_stddev; 10435 size = sizeof (uint64_t) * 4; 10436 break; 10437 10438 case DTRACEAGG_SUM: 10439 agg->dtag_aggregate = dtrace_aggregate_sum; 10440 break; 10441 10442 default: 10443 goto err; 10444 } 10445 10446 agg->dtag_action.dta_rec.dtrd_size = size; 10447 10448 if (ntuple == 0) 10449 goto err; 10450 10451 /* 10452 * We must make sure that we have enough actions for the n-tuple. 10453 */ 10454 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10455 if (DTRACEACT_ISAGG(act->dta_kind)) 10456 break; 10457 10458 if (--ntuple == 0) { 10459 /* 10460 * This is the action with which our n-tuple begins. 10461 */ 10462 agg->dtag_first = act; 10463 goto success; 10464 } 10465 } 10466 10467 /* 10468 * This n-tuple is short by ntuple elements. Return failure. 10469 */ 10470 ASSERT(ntuple != 0); 10471 err: 10472 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10473 return (NULL); 10474 10475 success: 10476 /* 10477 * If the last action in the tuple has a size of zero, it's actually 10478 * an expression argument for the aggregating action. 10479 */ 10480 ASSERT(ecb->dte_action_last != NULL); 10481 act = ecb->dte_action_last; 10482 10483 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10484 ASSERT(act->dta_difo != NULL); 10485 10486 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10487 agg->dtag_hasarg = 1; 10488 } 10489 10490 /* 10491 * We need to allocate an id for this aggregation. 10492 */ 10493 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10494 VM_BESTFIT | VM_SLEEP); 10495 10496 if (aggid - 1 >= state->dts_naggregations) { 10497 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10498 dtrace_aggregation_t **aggs; 10499 int naggs = state->dts_naggregations << 1; 10500 int onaggs = state->dts_naggregations; 10501 10502 ASSERT(aggid == state->dts_naggregations + 1); 10503 10504 if (naggs == 0) { 10505 ASSERT(oaggs == NULL); 10506 naggs = 1; 10507 } 10508 10509 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10510 10511 if (oaggs != NULL) { 10512 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10513 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10514 } 10515 10516 state->dts_aggregations = aggs; 10517 state->dts_naggregations = naggs; 10518 } 10519 10520 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10521 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10522 10523 frec = &agg->dtag_first->dta_rec; 10524 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10525 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10526 10527 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10528 ASSERT(!act->dta_intuple); 10529 act->dta_intuple = 1; 10530 } 10531 10532 return (&agg->dtag_action); 10533 } 10534 10535 static void 10536 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10537 { 10538 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10539 dtrace_state_t *state = ecb->dte_state; 10540 dtrace_aggid_t aggid = agg->dtag_id; 10541 10542 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10543 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10544 10545 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10546 state->dts_aggregations[aggid - 1] = NULL; 10547 10548 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10549 } 10550 10551 static int 10552 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10553 { 10554 dtrace_action_t *action, *last; 10555 dtrace_difo_t *dp = desc->dtad_difo; 10556 uint32_t size = 0, align = sizeof (uint8_t), mask; 10557 uint16_t format = 0; 10558 dtrace_recdesc_t *rec; 10559 dtrace_state_t *state = ecb->dte_state; 10560 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10561 uint64_t arg = desc->dtad_arg; 10562 10563 ASSERT(MUTEX_HELD(&dtrace_lock)); 10564 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10565 10566 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10567 /* 10568 * If this is an aggregating action, there must be neither 10569 * a speculate nor a commit on the action chain. 10570 */ 10571 dtrace_action_t *act; 10572 10573 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10574 if (act->dta_kind == DTRACEACT_COMMIT) 10575 return (EINVAL); 10576 10577 if (act->dta_kind == DTRACEACT_SPECULATE) 10578 return (EINVAL); 10579 } 10580 10581 action = dtrace_ecb_aggregation_create(ecb, desc); 10582 10583 if (action == NULL) 10584 return (EINVAL); 10585 } else { 10586 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10587 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10588 dp != NULL && dp->dtdo_destructive)) { 10589 state->dts_destructive = 1; 10590 } 10591 10592 switch (desc->dtad_kind) { 10593 case DTRACEACT_PRINTF: 10594 case DTRACEACT_PRINTA: 10595 case DTRACEACT_SYSTEM: 10596 case DTRACEACT_FREOPEN: 10597 case DTRACEACT_DIFEXPR: 10598 /* 10599 * We know that our arg is a string -- turn it into a 10600 * format. 10601 */ 10602 if (arg == NULL) { 10603 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10604 desc->dtad_kind == DTRACEACT_DIFEXPR); 10605 format = 0; 10606 } else { 10607 ASSERT(arg != NULL); 10608 ASSERT(arg > KERNELBASE); 10609 format = dtrace_format_add(state, 10610 (char *)(uintptr_t)arg); 10611 } 10612 10613 /*FALLTHROUGH*/ 10614 case DTRACEACT_LIBACT: 10615 case DTRACEACT_TRACEMEM: 10616 case DTRACEACT_TRACEMEM_DYNSIZE: 10617 if (dp == NULL) 10618 return (EINVAL); 10619 10620 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10621 break; 10622 10623 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10624 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10625 return (EINVAL); 10626 10627 size = opt[DTRACEOPT_STRSIZE]; 10628 } 10629 10630 break; 10631 10632 case DTRACEACT_STACK: 10633 if ((nframes = arg) == 0) { 10634 nframes = opt[DTRACEOPT_STACKFRAMES]; 10635 ASSERT(nframes > 0); 10636 arg = nframes; 10637 } 10638 10639 size = nframes * sizeof (pc_t); 10640 break; 10641 10642 case DTRACEACT_JSTACK: 10643 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10644 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10645 10646 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10647 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10648 10649 arg = DTRACE_USTACK_ARG(nframes, strsize); 10650 10651 /*FALLTHROUGH*/ 10652 case DTRACEACT_USTACK: 10653 if (desc->dtad_kind != DTRACEACT_JSTACK && 10654 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10655 strsize = DTRACE_USTACK_STRSIZE(arg); 10656 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10657 ASSERT(nframes > 0); 10658 arg = DTRACE_USTACK_ARG(nframes, strsize); 10659 } 10660 10661 /* 10662 * Save a slot for the pid. 10663 */ 10664 size = (nframes + 1) * sizeof (uint64_t); 10665 size += DTRACE_USTACK_STRSIZE(arg); 10666 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10667 10668 break; 10669 10670 case DTRACEACT_SYM: 10671 case DTRACEACT_MOD: 10672 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10673 sizeof (uint64_t)) || 10674 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10675 return (EINVAL); 10676 break; 10677 10678 case DTRACEACT_USYM: 10679 case DTRACEACT_UMOD: 10680 case DTRACEACT_UADDR: 10681 if (dp == NULL || 10682 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10683 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10684 return (EINVAL); 10685 10686 /* 10687 * We have a slot for the pid, plus a slot for the 10688 * argument. To keep things simple (aligned with 10689 * bitness-neutral sizing), we store each as a 64-bit 10690 * quantity. 10691 */ 10692 size = 2 * sizeof (uint64_t); 10693 break; 10694 10695 case DTRACEACT_STOP: 10696 case DTRACEACT_BREAKPOINT: 10697 case DTRACEACT_PANIC: 10698 break; 10699 10700 case DTRACEACT_CHILL: 10701 case DTRACEACT_DISCARD: 10702 case DTRACEACT_RAISE: 10703 if (dp == NULL) 10704 return (EINVAL); 10705 break; 10706 10707 case DTRACEACT_EXIT: 10708 if (dp == NULL || 10709 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10710 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10711 return (EINVAL); 10712 break; 10713 10714 case DTRACEACT_SPECULATE: 10715 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10716 return (EINVAL); 10717 10718 if (dp == NULL) 10719 return (EINVAL); 10720 10721 state->dts_speculates = 1; 10722 break; 10723 10724 case DTRACEACT_COMMIT: { 10725 dtrace_action_t *act = ecb->dte_action; 10726 10727 for (; act != NULL; act = act->dta_next) { 10728 if (act->dta_kind == DTRACEACT_COMMIT) 10729 return (EINVAL); 10730 } 10731 10732 if (dp == NULL) 10733 return (EINVAL); 10734 break; 10735 } 10736 10737 default: 10738 return (EINVAL); 10739 } 10740 10741 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10742 /* 10743 * If this is a data-storing action or a speculate, 10744 * we must be sure that there isn't a commit on the 10745 * action chain. 10746 */ 10747 dtrace_action_t *act = ecb->dte_action; 10748 10749 for (; act != NULL; act = act->dta_next) { 10750 if (act->dta_kind == DTRACEACT_COMMIT) 10751 return (EINVAL); 10752 } 10753 } 10754 10755 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10756 action->dta_rec.dtrd_size = size; 10757 } 10758 10759 action->dta_refcnt = 1; 10760 rec = &action->dta_rec; 10761 size = rec->dtrd_size; 10762 10763 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10764 if (!(size & mask)) { 10765 align = mask + 1; 10766 break; 10767 } 10768 } 10769 10770 action->dta_kind = desc->dtad_kind; 10771 10772 if ((action->dta_difo = dp) != NULL) 10773 dtrace_difo_hold(dp); 10774 10775 rec->dtrd_action = action->dta_kind; 10776 rec->dtrd_arg = arg; 10777 rec->dtrd_uarg = desc->dtad_uarg; 10778 rec->dtrd_alignment = (uint16_t)align; 10779 rec->dtrd_format = format; 10780 10781 if ((last = ecb->dte_action_last) != NULL) { 10782 ASSERT(ecb->dte_action != NULL); 10783 action->dta_prev = last; 10784 last->dta_next = action; 10785 } else { 10786 ASSERT(ecb->dte_action == NULL); 10787 ecb->dte_action = action; 10788 } 10789 10790 ecb->dte_action_last = action; 10791 10792 return (0); 10793 } 10794 10795 static void 10796 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10797 { 10798 dtrace_action_t *act = ecb->dte_action, *next; 10799 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10800 dtrace_difo_t *dp; 10801 uint16_t format; 10802 10803 if (act != NULL && act->dta_refcnt > 1) { 10804 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10805 act->dta_refcnt--; 10806 } else { 10807 for (; act != NULL; act = next) { 10808 next = act->dta_next; 10809 ASSERT(next != NULL || act == ecb->dte_action_last); 10810 ASSERT(act->dta_refcnt == 1); 10811 10812 if ((format = act->dta_rec.dtrd_format) != 0) 10813 dtrace_format_remove(ecb->dte_state, format); 10814 10815 if ((dp = act->dta_difo) != NULL) 10816 dtrace_difo_release(dp, vstate); 10817 10818 if (DTRACEACT_ISAGG(act->dta_kind)) { 10819 dtrace_ecb_aggregation_destroy(ecb, act); 10820 } else { 10821 kmem_free(act, sizeof (dtrace_action_t)); 10822 } 10823 } 10824 } 10825 10826 ecb->dte_action = NULL; 10827 ecb->dte_action_last = NULL; 10828 ecb->dte_size = 0; 10829 } 10830 10831 static void 10832 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10833 { 10834 /* 10835 * We disable the ECB by removing it from its probe. 10836 */ 10837 dtrace_ecb_t *pecb, *prev = NULL; 10838 dtrace_probe_t *probe = ecb->dte_probe; 10839 10840 ASSERT(MUTEX_HELD(&dtrace_lock)); 10841 10842 if (probe == NULL) { 10843 /* 10844 * This is the NULL probe; there is nothing to disable. 10845 */ 10846 return; 10847 } 10848 10849 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10850 if (pecb == ecb) 10851 break; 10852 prev = pecb; 10853 } 10854 10855 ASSERT(pecb != NULL); 10856 10857 if (prev == NULL) { 10858 probe->dtpr_ecb = ecb->dte_next; 10859 } else { 10860 prev->dte_next = ecb->dte_next; 10861 } 10862 10863 if (ecb == probe->dtpr_ecb_last) { 10864 ASSERT(ecb->dte_next == NULL); 10865 probe->dtpr_ecb_last = prev; 10866 } 10867 10868 /* 10869 * The ECB has been disconnected from the probe; now sync to assure 10870 * that all CPUs have seen the change before returning. 10871 */ 10872 dtrace_sync(); 10873 10874 if (probe->dtpr_ecb == NULL) { 10875 /* 10876 * That was the last ECB on the probe; clear the predicate 10877 * cache ID for the probe, disable it and sync one more time 10878 * to assure that we'll never hit it again. 10879 */ 10880 dtrace_provider_t *prov = probe->dtpr_provider; 10881 10882 ASSERT(ecb->dte_next == NULL); 10883 ASSERT(probe->dtpr_ecb_last == NULL); 10884 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10885 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10886 probe->dtpr_id, probe->dtpr_arg); 10887 dtrace_sync(); 10888 } else { 10889 /* 10890 * There is at least one ECB remaining on the probe. If there 10891 * is _exactly_ one, set the probe's predicate cache ID to be 10892 * the predicate cache ID of the remaining ECB. 10893 */ 10894 ASSERT(probe->dtpr_ecb_last != NULL); 10895 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10896 10897 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10898 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10899 10900 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10901 10902 if (p != NULL) 10903 probe->dtpr_predcache = p->dtp_cacheid; 10904 } 10905 10906 ecb->dte_next = NULL; 10907 } 10908 } 10909 10910 static void 10911 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10912 { 10913 dtrace_state_t *state = ecb->dte_state; 10914 dtrace_vstate_t *vstate = &state->dts_vstate; 10915 dtrace_predicate_t *pred; 10916 dtrace_epid_t epid = ecb->dte_epid; 10917 10918 ASSERT(MUTEX_HELD(&dtrace_lock)); 10919 ASSERT(ecb->dte_next == NULL); 10920 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10921 10922 if ((pred = ecb->dte_predicate) != NULL) 10923 dtrace_predicate_release(pred, vstate); 10924 10925 dtrace_ecb_action_remove(ecb); 10926 10927 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10928 state->dts_ecbs[epid - 1] = NULL; 10929 10930 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10931 } 10932 10933 static dtrace_ecb_t * 10934 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10935 dtrace_enabling_t *enab) 10936 { 10937 dtrace_ecb_t *ecb; 10938 dtrace_predicate_t *pred; 10939 dtrace_actdesc_t *act; 10940 dtrace_provider_t *prov; 10941 dtrace_ecbdesc_t *desc = enab->dten_current; 10942 10943 ASSERT(MUTEX_HELD(&dtrace_lock)); 10944 ASSERT(state != NULL); 10945 10946 ecb = dtrace_ecb_add(state, probe); 10947 ecb->dte_uarg = desc->dted_uarg; 10948 10949 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10950 dtrace_predicate_hold(pred); 10951 ecb->dte_predicate = pred; 10952 } 10953 10954 if (probe != NULL) { 10955 /* 10956 * If the provider shows more leg than the consumer is old 10957 * enough to see, we need to enable the appropriate implicit 10958 * predicate bits to prevent the ecb from activating at 10959 * revealing times. 10960 * 10961 * Providers specifying DTRACE_PRIV_USER at register time 10962 * are stating that they need the /proc-style privilege 10963 * model to be enforced, and this is what DTRACE_COND_OWNER 10964 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10965 */ 10966 prov = probe->dtpr_provider; 10967 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10968 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10969 ecb->dte_cond |= DTRACE_COND_OWNER; 10970 10971 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10972 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10973 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10974 10975 /* 10976 * If the provider shows us kernel innards and the user 10977 * is lacking sufficient privilege, enable the 10978 * DTRACE_COND_USERMODE implicit predicate. 10979 */ 10980 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10981 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10982 ecb->dte_cond |= DTRACE_COND_USERMODE; 10983 } 10984 10985 if (dtrace_ecb_create_cache != NULL) { 10986 /* 10987 * If we have a cached ecb, we'll use its action list instead 10988 * of creating our own (saving both time and space). 10989 */ 10990 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10991 dtrace_action_t *act = cached->dte_action; 10992 10993 if (act != NULL) { 10994 ASSERT(act->dta_refcnt > 0); 10995 act->dta_refcnt++; 10996 ecb->dte_action = act; 10997 ecb->dte_action_last = cached->dte_action_last; 10998 ecb->dte_needed = cached->dte_needed; 10999 ecb->dte_size = cached->dte_size; 11000 ecb->dte_alignment = cached->dte_alignment; 11001 } 11002 11003 return (ecb); 11004 } 11005 11006 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11007 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11008 dtrace_ecb_destroy(ecb); 11009 return (NULL); 11010 } 11011 } 11012 11013 dtrace_ecb_resize(ecb); 11014 11015 return (dtrace_ecb_create_cache = ecb); 11016 } 11017 11018 static int 11019 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11020 { 11021 dtrace_ecb_t *ecb; 11022 dtrace_enabling_t *enab = arg; 11023 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11024 11025 ASSERT(state != NULL); 11026 11027 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11028 /* 11029 * This probe was created in a generation for which this 11030 * enabling has previously created ECBs; we don't want to 11031 * enable it again, so just kick out. 11032 */ 11033 return (DTRACE_MATCH_NEXT); 11034 } 11035 11036 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11037 return (DTRACE_MATCH_DONE); 11038 11039 if (dtrace_ecb_enable(ecb) < 0) 11040 return (DTRACE_MATCH_FAIL); 11041 11042 return (DTRACE_MATCH_NEXT); 11043 } 11044 11045 static dtrace_ecb_t * 11046 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11047 { 11048 dtrace_ecb_t *ecb; 11049 11050 ASSERT(MUTEX_HELD(&dtrace_lock)); 11051 11052 if (id == 0 || id > state->dts_necbs) 11053 return (NULL); 11054 11055 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11056 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11057 11058 return (state->dts_ecbs[id - 1]); 11059 } 11060 11061 static dtrace_aggregation_t * 11062 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11063 { 11064 dtrace_aggregation_t *agg; 11065 11066 ASSERT(MUTEX_HELD(&dtrace_lock)); 11067 11068 if (id == 0 || id > state->dts_naggregations) 11069 return (NULL); 11070 11071 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11072 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11073 agg->dtag_id == id); 11074 11075 return (state->dts_aggregations[id - 1]); 11076 } 11077 11078 /* 11079 * DTrace Buffer Functions 11080 * 11081 * The following functions manipulate DTrace buffers. Most of these functions 11082 * are called in the context of establishing or processing consumer state; 11083 * exceptions are explicitly noted. 11084 */ 11085 11086 /* 11087 * Note: called from cross call context. This function switches the two 11088 * buffers on a given CPU. The atomicity of this operation is assured by 11089 * disabling interrupts while the actual switch takes place; the disabling of 11090 * interrupts serializes the execution with any execution of dtrace_probe() on 11091 * the same CPU. 11092 */ 11093 static void 11094 dtrace_buffer_switch(dtrace_buffer_t *buf) 11095 { 11096 caddr_t tomax = buf->dtb_tomax; 11097 caddr_t xamot = buf->dtb_xamot; 11098 dtrace_icookie_t cookie; 11099 hrtime_t now; 11100 11101 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11102 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11103 11104 cookie = dtrace_interrupt_disable(); 11105 now = dtrace_gethrtime(); 11106 buf->dtb_tomax = xamot; 11107 buf->dtb_xamot = tomax; 11108 buf->dtb_xamot_drops = buf->dtb_drops; 11109 buf->dtb_xamot_offset = buf->dtb_offset; 11110 buf->dtb_xamot_errors = buf->dtb_errors; 11111 buf->dtb_xamot_flags = buf->dtb_flags; 11112 buf->dtb_offset = 0; 11113 buf->dtb_drops = 0; 11114 buf->dtb_errors = 0; 11115 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11116 buf->dtb_interval = now - buf->dtb_switched; 11117 buf->dtb_switched = now; 11118 dtrace_interrupt_enable(cookie); 11119 } 11120 11121 /* 11122 * Note: called from cross call context. This function activates a buffer 11123 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11124 * is guaranteed by the disabling of interrupts. 11125 */ 11126 static void 11127 dtrace_buffer_activate(dtrace_state_t *state) 11128 { 11129 dtrace_buffer_t *buf; 11130 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11131 11132 buf = &state->dts_buffer[CPU->cpu_id]; 11133 11134 if (buf->dtb_tomax != NULL) { 11135 /* 11136 * We might like to assert that the buffer is marked inactive, 11137 * but this isn't necessarily true: the buffer for the CPU 11138 * that processes the BEGIN probe has its buffer activated 11139 * manually. In this case, we take the (harmless) action 11140 * re-clearing the bit INACTIVE bit. 11141 */ 11142 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11143 } 11144 11145 dtrace_interrupt_enable(cookie); 11146 } 11147 11148 static int 11149 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11150 processorid_t cpu, int *factor) 11151 { 11152 cpu_t *cp; 11153 dtrace_buffer_t *buf; 11154 int allocated = 0, desired = 0; 11155 11156 ASSERT(MUTEX_HELD(&cpu_lock)); 11157 ASSERT(MUTEX_HELD(&dtrace_lock)); 11158 11159 *factor = 1; 11160 11161 if (size > dtrace_nonroot_maxsize && 11162 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11163 return (EFBIG); 11164 11165 cp = cpu_list; 11166 11167 do { 11168 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11169 continue; 11170 11171 buf = &bufs[cp->cpu_id]; 11172 11173 /* 11174 * If there is already a buffer allocated for this CPU, it 11175 * is only possible that this is a DR event. In this case, 11176 * the buffer size must match our specified size. 11177 */ 11178 if (buf->dtb_tomax != NULL) { 11179 ASSERT(buf->dtb_size == size); 11180 continue; 11181 } 11182 11183 ASSERT(buf->dtb_xamot == NULL); 11184 11185 if ((buf->dtb_tomax = kmem_zalloc(size, 11186 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11187 goto err; 11188 11189 buf->dtb_size = size; 11190 buf->dtb_flags = flags; 11191 buf->dtb_offset = 0; 11192 buf->dtb_drops = 0; 11193 11194 if (flags & DTRACEBUF_NOSWITCH) 11195 continue; 11196 11197 if ((buf->dtb_xamot = kmem_zalloc(size, 11198 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11199 goto err; 11200 } while ((cp = cp->cpu_next) != cpu_list); 11201 11202 return (0); 11203 11204 err: 11205 cp = cpu_list; 11206 11207 do { 11208 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11209 continue; 11210 11211 buf = &bufs[cp->cpu_id]; 11212 desired += 2; 11213 11214 if (buf->dtb_xamot != NULL) { 11215 ASSERT(buf->dtb_tomax != NULL); 11216 ASSERT(buf->dtb_size == size); 11217 kmem_free(buf->dtb_xamot, size); 11218 allocated++; 11219 } 11220 11221 if (buf->dtb_tomax != NULL) { 11222 ASSERT(buf->dtb_size == size); 11223 kmem_free(buf->dtb_tomax, size); 11224 allocated++; 11225 } 11226 11227 buf->dtb_tomax = NULL; 11228 buf->dtb_xamot = NULL; 11229 buf->dtb_size = 0; 11230 } while ((cp = cp->cpu_next) != cpu_list); 11231 11232 *factor = desired / (allocated > 0 ? allocated : 1); 11233 11234 return (ENOMEM); 11235 } 11236 11237 /* 11238 * Note: called from probe context. This function just increments the drop 11239 * count on a buffer. It has been made a function to allow for the 11240 * possibility of understanding the source of mysterious drop counts. (A 11241 * problem for which one may be particularly disappointed that DTrace cannot 11242 * be used to understand DTrace.) 11243 */ 11244 static void 11245 dtrace_buffer_drop(dtrace_buffer_t *buf) 11246 { 11247 buf->dtb_drops++; 11248 } 11249 11250 /* 11251 * Note: called from probe context. This function is called to reserve space 11252 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11253 * mstate. Returns the new offset in the buffer, or a negative value if an 11254 * error has occurred. 11255 */ 11256 static intptr_t 11257 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11258 dtrace_state_t *state, dtrace_mstate_t *mstate) 11259 { 11260 intptr_t offs = buf->dtb_offset, soffs; 11261 intptr_t woffs; 11262 caddr_t tomax; 11263 size_t total; 11264 11265 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11266 return (-1); 11267 11268 if ((tomax = buf->dtb_tomax) == NULL) { 11269 dtrace_buffer_drop(buf); 11270 return (-1); 11271 } 11272 11273 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11274 while (offs & (align - 1)) { 11275 /* 11276 * Assert that our alignment is off by a number which 11277 * is itself sizeof (uint32_t) aligned. 11278 */ 11279 ASSERT(!((align - (offs & (align - 1))) & 11280 (sizeof (uint32_t) - 1))); 11281 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11282 offs += sizeof (uint32_t); 11283 } 11284 11285 if ((soffs = offs + needed) > buf->dtb_size) { 11286 dtrace_buffer_drop(buf); 11287 return (-1); 11288 } 11289 11290 if (mstate == NULL) 11291 return (offs); 11292 11293 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11294 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11295 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11296 11297 return (offs); 11298 } 11299 11300 if (buf->dtb_flags & DTRACEBUF_FILL) { 11301 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11302 (buf->dtb_flags & DTRACEBUF_FULL)) 11303 return (-1); 11304 goto out; 11305 } 11306 11307 total = needed + (offs & (align - 1)); 11308 11309 /* 11310 * For a ring buffer, life is quite a bit more complicated. Before 11311 * we can store any padding, we need to adjust our wrapping offset. 11312 * (If we've never before wrapped or we're not about to, no adjustment 11313 * is required.) 11314 */ 11315 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11316 offs + total > buf->dtb_size) { 11317 woffs = buf->dtb_xamot_offset; 11318 11319 if (offs + total > buf->dtb_size) { 11320 /* 11321 * We can't fit in the end of the buffer. First, a 11322 * sanity check that we can fit in the buffer at all. 11323 */ 11324 if (total > buf->dtb_size) { 11325 dtrace_buffer_drop(buf); 11326 return (-1); 11327 } 11328 11329 /* 11330 * We're going to be storing at the top of the buffer, 11331 * so now we need to deal with the wrapped offset. We 11332 * only reset our wrapped offset to 0 if it is 11333 * currently greater than the current offset. If it 11334 * is less than the current offset, it is because a 11335 * previous allocation induced a wrap -- but the 11336 * allocation didn't subsequently take the space due 11337 * to an error or false predicate evaluation. In this 11338 * case, we'll just leave the wrapped offset alone: if 11339 * the wrapped offset hasn't been advanced far enough 11340 * for this allocation, it will be adjusted in the 11341 * lower loop. 11342 */ 11343 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11344 if (woffs >= offs) 11345 woffs = 0; 11346 } else { 11347 woffs = 0; 11348 } 11349 11350 /* 11351 * Now we know that we're going to be storing to the 11352 * top of the buffer and that there is room for us 11353 * there. We need to clear the buffer from the current 11354 * offset to the end (there may be old gunk there). 11355 */ 11356 while (offs < buf->dtb_size) 11357 tomax[offs++] = 0; 11358 11359 /* 11360 * We need to set our offset to zero. And because we 11361 * are wrapping, we need to set the bit indicating as 11362 * much. We can also adjust our needed space back 11363 * down to the space required by the ECB -- we know 11364 * that the top of the buffer is aligned. 11365 */ 11366 offs = 0; 11367 total = needed; 11368 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11369 } else { 11370 /* 11371 * There is room for us in the buffer, so we simply 11372 * need to check the wrapped offset. 11373 */ 11374 if (woffs < offs) { 11375 /* 11376 * The wrapped offset is less than the offset. 11377 * This can happen if we allocated buffer space 11378 * that induced a wrap, but then we didn't 11379 * subsequently take the space due to an error 11380 * or false predicate evaluation. This is 11381 * okay; we know that _this_ allocation isn't 11382 * going to induce a wrap. We still can't 11383 * reset the wrapped offset to be zero, 11384 * however: the space may have been trashed in 11385 * the previous failed probe attempt. But at 11386 * least the wrapped offset doesn't need to 11387 * be adjusted at all... 11388 */ 11389 goto out; 11390 } 11391 } 11392 11393 while (offs + total > woffs) { 11394 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11395 size_t size; 11396 11397 if (epid == DTRACE_EPIDNONE) { 11398 size = sizeof (uint32_t); 11399 } else { 11400 ASSERT3U(epid, <=, state->dts_necbs); 11401 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11402 11403 size = state->dts_ecbs[epid - 1]->dte_size; 11404 } 11405 11406 ASSERT(woffs + size <= buf->dtb_size); 11407 ASSERT(size != 0); 11408 11409 if (woffs + size == buf->dtb_size) { 11410 /* 11411 * We've reached the end of the buffer; we want 11412 * to set the wrapped offset to 0 and break 11413 * out. However, if the offs is 0, then we're 11414 * in a strange edge-condition: the amount of 11415 * space that we want to reserve plus the size 11416 * of the record that we're overwriting is 11417 * greater than the size of the buffer. This 11418 * is problematic because if we reserve the 11419 * space but subsequently don't consume it (due 11420 * to a failed predicate or error) the wrapped 11421 * offset will be 0 -- yet the EPID at offset 0 11422 * will not be committed. This situation is 11423 * relatively easy to deal with: if we're in 11424 * this case, the buffer is indistinguishable 11425 * from one that hasn't wrapped; we need only 11426 * finish the job by clearing the wrapped bit, 11427 * explicitly setting the offset to be 0, and 11428 * zero'ing out the old data in the buffer. 11429 */ 11430 if (offs == 0) { 11431 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11432 buf->dtb_offset = 0; 11433 woffs = total; 11434 11435 while (woffs < buf->dtb_size) 11436 tomax[woffs++] = 0; 11437 } 11438 11439 woffs = 0; 11440 break; 11441 } 11442 11443 woffs += size; 11444 } 11445 11446 /* 11447 * We have a wrapped offset. It may be that the wrapped offset 11448 * has become zero -- that's okay. 11449 */ 11450 buf->dtb_xamot_offset = woffs; 11451 } 11452 11453 out: 11454 /* 11455 * Now we can plow the buffer with any necessary padding. 11456 */ 11457 while (offs & (align - 1)) { 11458 /* 11459 * Assert that our alignment is off by a number which 11460 * is itself sizeof (uint32_t) aligned. 11461 */ 11462 ASSERT(!((align - (offs & (align - 1))) & 11463 (sizeof (uint32_t) - 1))); 11464 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11465 offs += sizeof (uint32_t); 11466 } 11467 11468 if (buf->dtb_flags & DTRACEBUF_FILL) { 11469 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11470 buf->dtb_flags |= DTRACEBUF_FULL; 11471 return (-1); 11472 } 11473 } 11474 11475 if (mstate == NULL) 11476 return (offs); 11477 11478 /* 11479 * For ring buffers and fill buffers, the scratch space is always 11480 * the inactive buffer. 11481 */ 11482 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11483 mstate->dtms_scratch_size = buf->dtb_size; 11484 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11485 11486 return (offs); 11487 } 11488 11489 static void 11490 dtrace_buffer_polish(dtrace_buffer_t *buf) 11491 { 11492 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11493 ASSERT(MUTEX_HELD(&dtrace_lock)); 11494 11495 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11496 return; 11497 11498 /* 11499 * We need to polish the ring buffer. There are three cases: 11500 * 11501 * - The first (and presumably most common) is that there is no gap 11502 * between the buffer offset and the wrapped offset. In this case, 11503 * there is nothing in the buffer that isn't valid data; we can 11504 * mark the buffer as polished and return. 11505 * 11506 * - The second (less common than the first but still more common 11507 * than the third) is that there is a gap between the buffer offset 11508 * and the wrapped offset, and the wrapped offset is larger than the 11509 * buffer offset. This can happen because of an alignment issue, or 11510 * can happen because of a call to dtrace_buffer_reserve() that 11511 * didn't subsequently consume the buffer space. In this case, 11512 * we need to zero the data from the buffer offset to the wrapped 11513 * offset. 11514 * 11515 * - The third (and least common) is that there is a gap between the 11516 * buffer offset and the wrapped offset, but the wrapped offset is 11517 * _less_ than the buffer offset. This can only happen because a 11518 * call to dtrace_buffer_reserve() induced a wrap, but the space 11519 * was not subsequently consumed. In this case, we need to zero the 11520 * space from the offset to the end of the buffer _and_ from the 11521 * top of the buffer to the wrapped offset. 11522 */ 11523 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11524 bzero(buf->dtb_tomax + buf->dtb_offset, 11525 buf->dtb_xamot_offset - buf->dtb_offset); 11526 } 11527 11528 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11529 bzero(buf->dtb_tomax + buf->dtb_offset, 11530 buf->dtb_size - buf->dtb_offset); 11531 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11532 } 11533 } 11534 11535 /* 11536 * This routine determines if data generated at the specified time has likely 11537 * been entirely consumed at user-level. This routine is called to determine 11538 * if an ECB on a defunct probe (but for an active enabling) can be safely 11539 * disabled and destroyed. 11540 */ 11541 static int 11542 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11543 { 11544 int i; 11545 11546 for (i = 0; i < NCPU; i++) { 11547 dtrace_buffer_t *buf = &bufs[i]; 11548 11549 if (buf->dtb_size == 0) 11550 continue; 11551 11552 if (buf->dtb_flags & DTRACEBUF_RING) 11553 return (0); 11554 11555 if (!buf->dtb_switched && buf->dtb_offset != 0) 11556 return (0); 11557 11558 if (buf->dtb_switched - buf->dtb_interval < when) 11559 return (0); 11560 } 11561 11562 return (1); 11563 } 11564 11565 static void 11566 dtrace_buffer_free(dtrace_buffer_t *bufs) 11567 { 11568 int i; 11569 11570 for (i = 0; i < NCPU; i++) { 11571 dtrace_buffer_t *buf = &bufs[i]; 11572 11573 if (buf->dtb_tomax == NULL) { 11574 ASSERT(buf->dtb_xamot == NULL); 11575 ASSERT(buf->dtb_size == 0); 11576 continue; 11577 } 11578 11579 if (buf->dtb_xamot != NULL) { 11580 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11581 kmem_free(buf->dtb_xamot, buf->dtb_size); 11582 } 11583 11584 kmem_free(buf->dtb_tomax, buf->dtb_size); 11585 buf->dtb_size = 0; 11586 buf->dtb_tomax = NULL; 11587 buf->dtb_xamot = NULL; 11588 } 11589 } 11590 11591 /* 11592 * DTrace Enabling Functions 11593 */ 11594 static dtrace_enabling_t * 11595 dtrace_enabling_create(dtrace_vstate_t *vstate) 11596 { 11597 dtrace_enabling_t *enab; 11598 11599 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11600 enab->dten_vstate = vstate; 11601 11602 return (enab); 11603 } 11604 11605 static void 11606 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11607 { 11608 dtrace_ecbdesc_t **ndesc; 11609 size_t osize, nsize; 11610 11611 /* 11612 * We can't add to enablings after we've enabled them, or after we've 11613 * retained them. 11614 */ 11615 ASSERT(enab->dten_probegen == 0); 11616 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11617 11618 if (enab->dten_ndesc < enab->dten_maxdesc) { 11619 enab->dten_desc[enab->dten_ndesc++] = ecb; 11620 return; 11621 } 11622 11623 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11624 11625 if (enab->dten_maxdesc == 0) { 11626 enab->dten_maxdesc = 1; 11627 } else { 11628 enab->dten_maxdesc <<= 1; 11629 } 11630 11631 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11632 11633 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11634 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11635 bcopy(enab->dten_desc, ndesc, osize); 11636 kmem_free(enab->dten_desc, osize); 11637 11638 enab->dten_desc = ndesc; 11639 enab->dten_desc[enab->dten_ndesc++] = ecb; 11640 } 11641 11642 static void 11643 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11644 dtrace_probedesc_t *pd) 11645 { 11646 dtrace_ecbdesc_t *new; 11647 dtrace_predicate_t *pred; 11648 dtrace_actdesc_t *act; 11649 11650 /* 11651 * We're going to create a new ECB description that matches the 11652 * specified ECB in every way, but has the specified probe description. 11653 */ 11654 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11655 11656 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11657 dtrace_predicate_hold(pred); 11658 11659 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11660 dtrace_actdesc_hold(act); 11661 11662 new->dted_action = ecb->dted_action; 11663 new->dted_pred = ecb->dted_pred; 11664 new->dted_probe = *pd; 11665 new->dted_uarg = ecb->dted_uarg; 11666 11667 dtrace_enabling_add(enab, new); 11668 } 11669 11670 static void 11671 dtrace_enabling_dump(dtrace_enabling_t *enab) 11672 { 11673 int i; 11674 11675 for (i = 0; i < enab->dten_ndesc; i++) { 11676 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11677 11678 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11679 desc->dtpd_provider, desc->dtpd_mod, 11680 desc->dtpd_func, desc->dtpd_name); 11681 } 11682 } 11683 11684 static void 11685 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11686 { 11687 int i; 11688 dtrace_ecbdesc_t *ep; 11689 dtrace_vstate_t *vstate = enab->dten_vstate; 11690 11691 ASSERT(MUTEX_HELD(&dtrace_lock)); 11692 11693 for (i = 0; i < enab->dten_ndesc; i++) { 11694 dtrace_actdesc_t *act, *next; 11695 dtrace_predicate_t *pred; 11696 11697 ep = enab->dten_desc[i]; 11698 11699 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11700 dtrace_predicate_release(pred, vstate); 11701 11702 for (act = ep->dted_action; act != NULL; act = next) { 11703 next = act->dtad_next; 11704 dtrace_actdesc_release(act, vstate); 11705 } 11706 11707 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11708 } 11709 11710 kmem_free(enab->dten_desc, 11711 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11712 11713 /* 11714 * If this was a retained enabling, decrement the dts_nretained count 11715 * and take it off of the dtrace_retained list. 11716 */ 11717 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11718 dtrace_retained == enab) { 11719 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11720 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11721 enab->dten_vstate->dtvs_state->dts_nretained--; 11722 dtrace_retained_gen++; 11723 } 11724 11725 if (enab->dten_prev == NULL) { 11726 if (dtrace_retained == enab) { 11727 dtrace_retained = enab->dten_next; 11728 11729 if (dtrace_retained != NULL) 11730 dtrace_retained->dten_prev = NULL; 11731 } 11732 } else { 11733 ASSERT(enab != dtrace_retained); 11734 ASSERT(dtrace_retained != NULL); 11735 enab->dten_prev->dten_next = enab->dten_next; 11736 } 11737 11738 if (enab->dten_next != NULL) { 11739 ASSERT(dtrace_retained != NULL); 11740 enab->dten_next->dten_prev = enab->dten_prev; 11741 } 11742 11743 kmem_free(enab, sizeof (dtrace_enabling_t)); 11744 } 11745 11746 static int 11747 dtrace_enabling_retain(dtrace_enabling_t *enab) 11748 { 11749 dtrace_state_t *state; 11750 11751 ASSERT(MUTEX_HELD(&dtrace_lock)); 11752 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11753 ASSERT(enab->dten_vstate != NULL); 11754 11755 state = enab->dten_vstate->dtvs_state; 11756 ASSERT(state != NULL); 11757 11758 /* 11759 * We only allow each state to retain dtrace_retain_max enablings. 11760 */ 11761 if (state->dts_nretained >= dtrace_retain_max) 11762 return (ENOSPC); 11763 11764 state->dts_nretained++; 11765 dtrace_retained_gen++; 11766 11767 if (dtrace_retained == NULL) { 11768 dtrace_retained = enab; 11769 return (0); 11770 } 11771 11772 enab->dten_next = dtrace_retained; 11773 dtrace_retained->dten_prev = enab; 11774 dtrace_retained = enab; 11775 11776 return (0); 11777 } 11778 11779 static int 11780 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11781 dtrace_probedesc_t *create) 11782 { 11783 dtrace_enabling_t *new, *enab; 11784 int found = 0, err = ENOENT; 11785 11786 ASSERT(MUTEX_HELD(&dtrace_lock)); 11787 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11788 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11789 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11790 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11791 11792 new = dtrace_enabling_create(&state->dts_vstate); 11793 11794 /* 11795 * Iterate over all retained enablings, looking for enablings that 11796 * match the specified state. 11797 */ 11798 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11799 int i; 11800 11801 /* 11802 * dtvs_state can only be NULL for helper enablings -- and 11803 * helper enablings can't be retained. 11804 */ 11805 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11806 11807 if (enab->dten_vstate->dtvs_state != state) 11808 continue; 11809 11810 /* 11811 * Now iterate over each probe description; we're looking for 11812 * an exact match to the specified probe description. 11813 */ 11814 for (i = 0; i < enab->dten_ndesc; i++) { 11815 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11816 dtrace_probedesc_t *pd = &ep->dted_probe; 11817 11818 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11819 continue; 11820 11821 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11822 continue; 11823 11824 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11825 continue; 11826 11827 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11828 continue; 11829 11830 /* 11831 * We have a winning probe! Add it to our growing 11832 * enabling. 11833 */ 11834 found = 1; 11835 dtrace_enabling_addlike(new, ep, create); 11836 } 11837 } 11838 11839 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11840 dtrace_enabling_destroy(new); 11841 return (err); 11842 } 11843 11844 return (0); 11845 } 11846 11847 static void 11848 dtrace_enabling_retract(dtrace_state_t *state) 11849 { 11850 dtrace_enabling_t *enab, *next; 11851 11852 ASSERT(MUTEX_HELD(&dtrace_lock)); 11853 11854 /* 11855 * Iterate over all retained enablings, destroy the enablings retained 11856 * for the specified state. 11857 */ 11858 for (enab = dtrace_retained; enab != NULL; enab = next) { 11859 next = enab->dten_next; 11860 11861 /* 11862 * dtvs_state can only be NULL for helper enablings -- and 11863 * helper enablings can't be retained. 11864 */ 11865 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11866 11867 if (enab->dten_vstate->dtvs_state == state) { 11868 ASSERT(state->dts_nretained > 0); 11869 dtrace_enabling_destroy(enab); 11870 } 11871 } 11872 11873 ASSERT(state->dts_nretained == 0); 11874 } 11875 11876 static int 11877 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11878 { 11879 int i = 0; 11880 int total_matched = 0, matched = 0; 11881 11882 ASSERT(MUTEX_HELD(&cpu_lock)); 11883 ASSERT(MUTEX_HELD(&dtrace_lock)); 11884 11885 for (i = 0; i < enab->dten_ndesc; i++) { 11886 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11887 11888 enab->dten_current = ep; 11889 enab->dten_error = 0; 11890 11891 /* 11892 * If a provider failed to enable a probe then get out and 11893 * let the consumer know we failed. 11894 */ 11895 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11896 return (EBUSY); 11897 11898 total_matched += matched; 11899 11900 if (enab->dten_error != 0) { 11901 /* 11902 * If we get an error half-way through enabling the 11903 * probes, we kick out -- perhaps with some number of 11904 * them enabled. Leaving enabled probes enabled may 11905 * be slightly confusing for user-level, but we expect 11906 * that no one will attempt to actually drive on in 11907 * the face of such errors. If this is an anonymous 11908 * enabling (indicated with a NULL nmatched pointer), 11909 * we cmn_err() a message. We aren't expecting to 11910 * get such an error -- such as it can exist at all, 11911 * it would be a result of corrupted DOF in the driver 11912 * properties. 11913 */ 11914 if (nmatched == NULL) { 11915 cmn_err(CE_WARN, "dtrace_enabling_match() " 11916 "error on %p: %d", (void *)ep, 11917 enab->dten_error); 11918 } 11919 11920 return (enab->dten_error); 11921 } 11922 } 11923 11924 enab->dten_probegen = dtrace_probegen; 11925 if (nmatched != NULL) 11926 *nmatched = total_matched; 11927 11928 return (0); 11929 } 11930 11931 static void 11932 dtrace_enabling_matchall(void) 11933 { 11934 dtrace_enabling_t *enab; 11935 11936 mutex_enter(&cpu_lock); 11937 mutex_enter(&dtrace_lock); 11938 11939 /* 11940 * Iterate over all retained enablings to see if any probes match 11941 * against them. We only perform this operation on enablings for which 11942 * we have sufficient permissions by virtue of being in the global zone 11943 * or in the same zone as the DTrace client. Because we can be called 11944 * after dtrace_detach() has been called, we cannot assert that there 11945 * are retained enablings. We can safely load from dtrace_retained, 11946 * however: the taskq_destroy() at the end of dtrace_detach() will 11947 * block pending our completion. 11948 */ 11949 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11950 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11951 cred_t *cr = dcr->dcr_cred; 11952 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11953 11954 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11955 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11956 (void) dtrace_enabling_match(enab, NULL); 11957 } 11958 11959 mutex_exit(&dtrace_lock); 11960 mutex_exit(&cpu_lock); 11961 } 11962 11963 /* 11964 * If an enabling is to be enabled without having matched probes (that is, if 11965 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11966 * enabling must be _primed_ by creating an ECB for every ECB description. 11967 * This must be done to assure that we know the number of speculations, the 11968 * number of aggregations, the minimum buffer size needed, etc. before we 11969 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11970 * enabling any probes, we create ECBs for every ECB decription, but with a 11971 * NULL probe -- which is exactly what this function does. 11972 */ 11973 static void 11974 dtrace_enabling_prime(dtrace_state_t *state) 11975 { 11976 dtrace_enabling_t *enab; 11977 int i; 11978 11979 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11980 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11981 11982 if (enab->dten_vstate->dtvs_state != state) 11983 continue; 11984 11985 /* 11986 * We don't want to prime an enabling more than once, lest 11987 * we allow a malicious user to induce resource exhaustion. 11988 * (The ECBs that result from priming an enabling aren't 11989 * leaked -- but they also aren't deallocated until the 11990 * consumer state is destroyed.) 11991 */ 11992 if (enab->dten_primed) 11993 continue; 11994 11995 for (i = 0; i < enab->dten_ndesc; i++) { 11996 enab->dten_current = enab->dten_desc[i]; 11997 (void) dtrace_probe_enable(NULL, enab); 11998 } 11999 12000 enab->dten_primed = 1; 12001 } 12002 } 12003 12004 /* 12005 * Called to indicate that probes should be provided due to retained 12006 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12007 * must take an initial lap through the enabling calling the dtps_provide() 12008 * entry point explicitly to allow for autocreated probes. 12009 */ 12010 static void 12011 dtrace_enabling_provide(dtrace_provider_t *prv) 12012 { 12013 int i, all = 0; 12014 dtrace_probedesc_t desc; 12015 dtrace_genid_t gen; 12016 12017 ASSERT(MUTEX_HELD(&dtrace_lock)); 12018 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12019 12020 if (prv == NULL) { 12021 all = 1; 12022 prv = dtrace_provider; 12023 } 12024 12025 do { 12026 dtrace_enabling_t *enab; 12027 void *parg = prv->dtpv_arg; 12028 12029 retry: 12030 gen = dtrace_retained_gen; 12031 for (enab = dtrace_retained; enab != NULL; 12032 enab = enab->dten_next) { 12033 for (i = 0; i < enab->dten_ndesc; i++) { 12034 desc = enab->dten_desc[i]->dted_probe; 12035 mutex_exit(&dtrace_lock); 12036 prv->dtpv_pops.dtps_provide(parg, &desc); 12037 mutex_enter(&dtrace_lock); 12038 /* 12039 * Process the retained enablings again if 12040 * they have changed while we weren't holding 12041 * dtrace_lock. 12042 */ 12043 if (gen != dtrace_retained_gen) 12044 goto retry; 12045 } 12046 } 12047 } while (all && (prv = prv->dtpv_next) != NULL); 12048 12049 mutex_exit(&dtrace_lock); 12050 dtrace_probe_provide(NULL, all ? NULL : prv); 12051 mutex_enter(&dtrace_lock); 12052 } 12053 12054 /* 12055 * Called to reap ECBs that are attached to probes from defunct providers. 12056 */ 12057 static void 12058 dtrace_enabling_reap(void) 12059 { 12060 dtrace_provider_t *prov; 12061 dtrace_probe_t *probe; 12062 dtrace_ecb_t *ecb; 12063 hrtime_t when; 12064 int i; 12065 12066 mutex_enter(&cpu_lock); 12067 mutex_enter(&dtrace_lock); 12068 12069 for (i = 0; i < dtrace_nprobes; i++) { 12070 if ((probe = dtrace_probes[i]) == NULL) 12071 continue; 12072 12073 if (probe->dtpr_ecb == NULL) 12074 continue; 12075 12076 prov = probe->dtpr_provider; 12077 12078 if ((when = prov->dtpv_defunct) == 0) 12079 continue; 12080 12081 /* 12082 * We have ECBs on a defunct provider: we want to reap these 12083 * ECBs to allow the provider to unregister. The destruction 12084 * of these ECBs must be done carefully: if we destroy the ECB 12085 * and the consumer later wishes to consume an EPID that 12086 * corresponds to the destroyed ECB (and if the EPID metadata 12087 * has not been previously consumed), the consumer will abort 12088 * processing on the unknown EPID. To reduce (but not, sadly, 12089 * eliminate) the possibility of this, we will only destroy an 12090 * ECB for a defunct provider if, for the state that 12091 * corresponds to the ECB: 12092 * 12093 * (a) There is no speculative tracing (which can effectively 12094 * cache an EPID for an arbitrary amount of time). 12095 * 12096 * (b) The principal buffers have been switched twice since the 12097 * provider became defunct. 12098 * 12099 * (c) The aggregation buffers are of zero size or have been 12100 * switched twice since the provider became defunct. 12101 * 12102 * We use dts_speculates to determine (a) and call a function 12103 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12104 * that as soon as we've been unable to destroy one of the ECBs 12105 * associated with the probe, we quit trying -- reaping is only 12106 * fruitful in as much as we can destroy all ECBs associated 12107 * with the defunct provider's probes. 12108 */ 12109 while ((ecb = probe->dtpr_ecb) != NULL) { 12110 dtrace_state_t *state = ecb->dte_state; 12111 dtrace_buffer_t *buf = state->dts_buffer; 12112 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12113 12114 if (state->dts_speculates) 12115 break; 12116 12117 if (!dtrace_buffer_consumed(buf, when)) 12118 break; 12119 12120 if (!dtrace_buffer_consumed(aggbuf, when)) 12121 break; 12122 12123 dtrace_ecb_disable(ecb); 12124 ASSERT(probe->dtpr_ecb != ecb); 12125 dtrace_ecb_destroy(ecb); 12126 } 12127 } 12128 12129 mutex_exit(&dtrace_lock); 12130 mutex_exit(&cpu_lock); 12131 } 12132 12133 /* 12134 * DTrace DOF Functions 12135 */ 12136 /*ARGSUSED*/ 12137 static void 12138 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12139 { 12140 if (dtrace_err_verbose) 12141 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12142 12143 #ifdef DTRACE_ERRDEBUG 12144 dtrace_errdebug(str); 12145 #endif 12146 } 12147 12148 /* 12149 * Create DOF out of a currently enabled state. Right now, we only create 12150 * DOF containing the run-time options -- but this could be expanded to create 12151 * complete DOF representing the enabled state. 12152 */ 12153 static dof_hdr_t * 12154 dtrace_dof_create(dtrace_state_t *state) 12155 { 12156 dof_hdr_t *dof; 12157 dof_sec_t *sec; 12158 dof_optdesc_t *opt; 12159 int i, len = sizeof (dof_hdr_t) + 12160 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12161 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12162 12163 ASSERT(MUTEX_HELD(&dtrace_lock)); 12164 12165 dof = kmem_zalloc(len, KM_SLEEP); 12166 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12167 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12168 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12169 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12170 12171 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12172 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12173 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12174 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12175 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12176 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12177 12178 dof->dofh_flags = 0; 12179 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12180 dof->dofh_secsize = sizeof (dof_sec_t); 12181 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12182 dof->dofh_secoff = sizeof (dof_hdr_t); 12183 dof->dofh_loadsz = len; 12184 dof->dofh_filesz = len; 12185 dof->dofh_pad = 0; 12186 12187 /* 12188 * Fill in the option section header... 12189 */ 12190 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12191 sec->dofs_type = DOF_SECT_OPTDESC; 12192 sec->dofs_align = sizeof (uint64_t); 12193 sec->dofs_flags = DOF_SECF_LOAD; 12194 sec->dofs_entsize = sizeof (dof_optdesc_t); 12195 12196 opt = (dof_optdesc_t *)((uintptr_t)sec + 12197 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12198 12199 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12200 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12201 12202 for (i = 0; i < DTRACEOPT_MAX; i++) { 12203 opt[i].dofo_option = i; 12204 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12205 opt[i].dofo_value = state->dts_options[i]; 12206 } 12207 12208 return (dof); 12209 } 12210 12211 static dof_hdr_t * 12212 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12213 { 12214 dof_hdr_t hdr, *dof; 12215 12216 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12217 12218 /* 12219 * First, we're going to copyin() the sizeof (dof_hdr_t). 12220 */ 12221 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12222 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12223 *errp = EFAULT; 12224 return (NULL); 12225 } 12226 12227 /* 12228 * Now we'll allocate the entire DOF and copy it in -- provided 12229 * that the length isn't outrageous. 12230 */ 12231 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12232 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12233 *errp = E2BIG; 12234 return (NULL); 12235 } 12236 12237 if (hdr.dofh_loadsz < sizeof (hdr)) { 12238 dtrace_dof_error(&hdr, "invalid load size"); 12239 *errp = EINVAL; 12240 return (NULL); 12241 } 12242 12243 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12244 12245 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12246 dof->dofh_loadsz != hdr.dofh_loadsz) { 12247 kmem_free(dof, hdr.dofh_loadsz); 12248 *errp = EFAULT; 12249 return (NULL); 12250 } 12251 12252 return (dof); 12253 } 12254 12255 static dof_hdr_t * 12256 dtrace_dof_property(const char *name) 12257 { 12258 uchar_t *buf; 12259 uint64_t loadsz; 12260 unsigned int len, i; 12261 dof_hdr_t *dof; 12262 12263 /* 12264 * Unfortunately, array of values in .conf files are always (and 12265 * only) interpreted to be integer arrays. We must read our DOF 12266 * as an integer array, and then squeeze it into a byte array. 12267 */ 12268 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12269 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12270 return (NULL); 12271 12272 for (i = 0; i < len; i++) 12273 buf[i] = (uchar_t)(((int *)buf)[i]); 12274 12275 if (len < sizeof (dof_hdr_t)) { 12276 ddi_prop_free(buf); 12277 dtrace_dof_error(NULL, "truncated header"); 12278 return (NULL); 12279 } 12280 12281 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12282 ddi_prop_free(buf); 12283 dtrace_dof_error(NULL, "truncated DOF"); 12284 return (NULL); 12285 } 12286 12287 if (loadsz >= dtrace_dof_maxsize) { 12288 ddi_prop_free(buf); 12289 dtrace_dof_error(NULL, "oversized DOF"); 12290 return (NULL); 12291 } 12292 12293 dof = kmem_alloc(loadsz, KM_SLEEP); 12294 bcopy(buf, dof, loadsz); 12295 ddi_prop_free(buf); 12296 12297 return (dof); 12298 } 12299 12300 static void 12301 dtrace_dof_destroy(dof_hdr_t *dof) 12302 { 12303 kmem_free(dof, dof->dofh_loadsz); 12304 } 12305 12306 /* 12307 * Return the dof_sec_t pointer corresponding to a given section index. If the 12308 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12309 * a type other than DOF_SECT_NONE is specified, the header is checked against 12310 * this type and NULL is returned if the types do not match. 12311 */ 12312 static dof_sec_t * 12313 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12314 { 12315 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12316 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12317 12318 if (i >= dof->dofh_secnum) { 12319 dtrace_dof_error(dof, "referenced section index is invalid"); 12320 return (NULL); 12321 } 12322 12323 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12324 dtrace_dof_error(dof, "referenced section is not loadable"); 12325 return (NULL); 12326 } 12327 12328 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12329 dtrace_dof_error(dof, "referenced section is the wrong type"); 12330 return (NULL); 12331 } 12332 12333 return (sec); 12334 } 12335 12336 static dtrace_probedesc_t * 12337 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12338 { 12339 dof_probedesc_t *probe; 12340 dof_sec_t *strtab; 12341 uintptr_t daddr = (uintptr_t)dof; 12342 uintptr_t str; 12343 size_t size; 12344 12345 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12346 dtrace_dof_error(dof, "invalid probe section"); 12347 return (NULL); 12348 } 12349 12350 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12351 dtrace_dof_error(dof, "bad alignment in probe description"); 12352 return (NULL); 12353 } 12354 12355 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12356 dtrace_dof_error(dof, "truncated probe description"); 12357 return (NULL); 12358 } 12359 12360 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12361 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12362 12363 if (strtab == NULL) 12364 return (NULL); 12365 12366 str = daddr + strtab->dofs_offset; 12367 size = strtab->dofs_size; 12368 12369 if (probe->dofp_provider >= strtab->dofs_size) { 12370 dtrace_dof_error(dof, "corrupt probe provider"); 12371 return (NULL); 12372 } 12373 12374 (void) strncpy(desc->dtpd_provider, 12375 (char *)(str + probe->dofp_provider), 12376 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12377 12378 if (probe->dofp_mod >= strtab->dofs_size) { 12379 dtrace_dof_error(dof, "corrupt probe module"); 12380 return (NULL); 12381 } 12382 12383 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12384 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12385 12386 if (probe->dofp_func >= strtab->dofs_size) { 12387 dtrace_dof_error(dof, "corrupt probe function"); 12388 return (NULL); 12389 } 12390 12391 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12392 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12393 12394 if (probe->dofp_name >= strtab->dofs_size) { 12395 dtrace_dof_error(dof, "corrupt probe name"); 12396 return (NULL); 12397 } 12398 12399 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12400 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12401 12402 return (desc); 12403 } 12404 12405 static dtrace_difo_t * 12406 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12407 cred_t *cr) 12408 { 12409 dtrace_difo_t *dp; 12410 size_t ttl = 0; 12411 dof_difohdr_t *dofd; 12412 uintptr_t daddr = (uintptr_t)dof; 12413 size_t max = dtrace_difo_maxsize; 12414 int i, l, n; 12415 12416 static const struct { 12417 int section; 12418 int bufoffs; 12419 int lenoffs; 12420 int entsize; 12421 int align; 12422 const char *msg; 12423 } difo[] = { 12424 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12425 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12426 sizeof (dif_instr_t), "multiple DIF sections" }, 12427 12428 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12429 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12430 sizeof (uint64_t), "multiple integer tables" }, 12431 12432 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12433 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12434 sizeof (char), "multiple string tables" }, 12435 12436 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12437 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12438 sizeof (uint_t), "multiple variable tables" }, 12439 12440 { DOF_SECT_NONE, 0, 0, 0, NULL } 12441 }; 12442 12443 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12444 dtrace_dof_error(dof, "invalid DIFO header section"); 12445 return (NULL); 12446 } 12447 12448 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12449 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12450 return (NULL); 12451 } 12452 12453 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12454 sec->dofs_size % sizeof (dof_secidx_t)) { 12455 dtrace_dof_error(dof, "bad size in DIFO header"); 12456 return (NULL); 12457 } 12458 12459 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12460 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12461 12462 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12463 dp->dtdo_rtype = dofd->dofd_rtype; 12464 12465 for (l = 0; l < n; l++) { 12466 dof_sec_t *subsec; 12467 void **bufp; 12468 uint32_t *lenp; 12469 12470 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12471 dofd->dofd_links[l])) == NULL) 12472 goto err; /* invalid section link */ 12473 12474 if (ttl + subsec->dofs_size > max) { 12475 dtrace_dof_error(dof, "exceeds maximum size"); 12476 goto err; 12477 } 12478 12479 ttl += subsec->dofs_size; 12480 12481 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12482 if (subsec->dofs_type != difo[i].section) 12483 continue; 12484 12485 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12486 dtrace_dof_error(dof, "section not loaded"); 12487 goto err; 12488 } 12489 12490 if (subsec->dofs_align != difo[i].align) { 12491 dtrace_dof_error(dof, "bad alignment"); 12492 goto err; 12493 } 12494 12495 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12496 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12497 12498 if (*bufp != NULL) { 12499 dtrace_dof_error(dof, difo[i].msg); 12500 goto err; 12501 } 12502 12503 if (difo[i].entsize != subsec->dofs_entsize) { 12504 dtrace_dof_error(dof, "entry size mismatch"); 12505 goto err; 12506 } 12507 12508 if (subsec->dofs_entsize != 0 && 12509 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12510 dtrace_dof_error(dof, "corrupt entry size"); 12511 goto err; 12512 } 12513 12514 *lenp = subsec->dofs_size; 12515 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12516 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12517 *bufp, subsec->dofs_size); 12518 12519 if (subsec->dofs_entsize != 0) 12520 *lenp /= subsec->dofs_entsize; 12521 12522 break; 12523 } 12524 12525 /* 12526 * If we encounter a loadable DIFO sub-section that is not 12527 * known to us, assume this is a broken program and fail. 12528 */ 12529 if (difo[i].section == DOF_SECT_NONE && 12530 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12531 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12532 goto err; 12533 } 12534 } 12535 12536 if (dp->dtdo_buf == NULL) { 12537 /* 12538 * We can't have a DIF object without DIF text. 12539 */ 12540 dtrace_dof_error(dof, "missing DIF text"); 12541 goto err; 12542 } 12543 12544 /* 12545 * Before we validate the DIF object, run through the variable table 12546 * looking for the strings -- if any of their size are under, we'll set 12547 * their size to be the system-wide default string size. Note that 12548 * this should _not_ happen if the "strsize" option has been set -- 12549 * in this case, the compiler should have set the size to reflect the 12550 * setting of the option. 12551 */ 12552 for (i = 0; i < dp->dtdo_varlen; i++) { 12553 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12554 dtrace_diftype_t *t = &v->dtdv_type; 12555 12556 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12557 continue; 12558 12559 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12560 t->dtdt_size = dtrace_strsize_default; 12561 } 12562 12563 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12564 goto err; 12565 12566 dtrace_difo_init(dp, vstate); 12567 return (dp); 12568 12569 err: 12570 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12571 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12572 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12573 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12574 12575 kmem_free(dp, sizeof (dtrace_difo_t)); 12576 return (NULL); 12577 } 12578 12579 static dtrace_predicate_t * 12580 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12581 cred_t *cr) 12582 { 12583 dtrace_difo_t *dp; 12584 12585 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12586 return (NULL); 12587 12588 return (dtrace_predicate_create(dp)); 12589 } 12590 12591 static dtrace_actdesc_t * 12592 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12593 cred_t *cr) 12594 { 12595 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12596 dof_actdesc_t *desc; 12597 dof_sec_t *difosec; 12598 size_t offs; 12599 uintptr_t daddr = (uintptr_t)dof; 12600 uint64_t arg; 12601 dtrace_actkind_t kind; 12602 12603 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12604 dtrace_dof_error(dof, "invalid action section"); 12605 return (NULL); 12606 } 12607 12608 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12609 dtrace_dof_error(dof, "truncated action description"); 12610 return (NULL); 12611 } 12612 12613 if (sec->dofs_align != sizeof (uint64_t)) { 12614 dtrace_dof_error(dof, "bad alignment in action description"); 12615 return (NULL); 12616 } 12617 12618 if (sec->dofs_size < sec->dofs_entsize) { 12619 dtrace_dof_error(dof, "section entry size exceeds total size"); 12620 return (NULL); 12621 } 12622 12623 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12624 dtrace_dof_error(dof, "bad entry size in action description"); 12625 return (NULL); 12626 } 12627 12628 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12629 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12630 return (NULL); 12631 } 12632 12633 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12634 desc = (dof_actdesc_t *)(daddr + 12635 (uintptr_t)sec->dofs_offset + offs); 12636 kind = (dtrace_actkind_t)desc->dofa_kind; 12637 12638 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12639 (kind != DTRACEACT_PRINTA || 12640 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12641 (kind == DTRACEACT_DIFEXPR && 12642 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12643 dof_sec_t *strtab; 12644 char *str, *fmt; 12645 uint64_t i; 12646 12647 /* 12648 * The argument to these actions is an index into the 12649 * DOF string table. For printf()-like actions, this 12650 * is the format string. For print(), this is the 12651 * CTF type of the expression result. 12652 */ 12653 if ((strtab = dtrace_dof_sect(dof, 12654 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12655 goto err; 12656 12657 str = (char *)((uintptr_t)dof + 12658 (uintptr_t)strtab->dofs_offset); 12659 12660 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12661 if (str[i] == '\0') 12662 break; 12663 } 12664 12665 if (i >= strtab->dofs_size) { 12666 dtrace_dof_error(dof, "bogus format string"); 12667 goto err; 12668 } 12669 12670 if (i == desc->dofa_arg) { 12671 dtrace_dof_error(dof, "empty format string"); 12672 goto err; 12673 } 12674 12675 i -= desc->dofa_arg; 12676 fmt = kmem_alloc(i + 1, KM_SLEEP); 12677 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12678 arg = (uint64_t)(uintptr_t)fmt; 12679 } else { 12680 if (kind == DTRACEACT_PRINTA) { 12681 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12682 arg = 0; 12683 } else { 12684 arg = desc->dofa_arg; 12685 } 12686 } 12687 12688 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12689 desc->dofa_uarg, arg); 12690 12691 if (last != NULL) { 12692 last->dtad_next = act; 12693 } else { 12694 first = act; 12695 } 12696 12697 last = act; 12698 12699 if (desc->dofa_difo == DOF_SECIDX_NONE) 12700 continue; 12701 12702 if ((difosec = dtrace_dof_sect(dof, 12703 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12704 goto err; 12705 12706 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12707 12708 if (act->dtad_difo == NULL) 12709 goto err; 12710 } 12711 12712 ASSERT(first != NULL); 12713 return (first); 12714 12715 err: 12716 for (act = first; act != NULL; act = next) { 12717 next = act->dtad_next; 12718 dtrace_actdesc_release(act, vstate); 12719 } 12720 12721 return (NULL); 12722 } 12723 12724 static dtrace_ecbdesc_t * 12725 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12726 cred_t *cr) 12727 { 12728 dtrace_ecbdesc_t *ep; 12729 dof_ecbdesc_t *ecb; 12730 dtrace_probedesc_t *desc; 12731 dtrace_predicate_t *pred = NULL; 12732 12733 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12734 dtrace_dof_error(dof, "truncated ECB description"); 12735 return (NULL); 12736 } 12737 12738 if (sec->dofs_align != sizeof (uint64_t)) { 12739 dtrace_dof_error(dof, "bad alignment in ECB description"); 12740 return (NULL); 12741 } 12742 12743 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12744 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12745 12746 if (sec == NULL) 12747 return (NULL); 12748 12749 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12750 ep->dted_uarg = ecb->dofe_uarg; 12751 desc = &ep->dted_probe; 12752 12753 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12754 goto err; 12755 12756 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12757 if ((sec = dtrace_dof_sect(dof, 12758 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12759 goto err; 12760 12761 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12762 goto err; 12763 12764 ep->dted_pred.dtpdd_predicate = pred; 12765 } 12766 12767 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12768 if ((sec = dtrace_dof_sect(dof, 12769 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12770 goto err; 12771 12772 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12773 12774 if (ep->dted_action == NULL) 12775 goto err; 12776 } 12777 12778 return (ep); 12779 12780 err: 12781 if (pred != NULL) 12782 dtrace_predicate_release(pred, vstate); 12783 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12784 return (NULL); 12785 } 12786 12787 /* 12788 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12789 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12790 * site of any user SETX relocations to account for load object base address. 12791 * In the future, if we need other relocations, this function can be extended. 12792 */ 12793 static int 12794 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12795 { 12796 uintptr_t daddr = (uintptr_t)dof; 12797 dof_relohdr_t *dofr = 12798 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12799 dof_sec_t *ss, *rs, *ts; 12800 dof_relodesc_t *r; 12801 uint_t i, n; 12802 12803 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12804 sec->dofs_align != sizeof (dof_secidx_t)) { 12805 dtrace_dof_error(dof, "invalid relocation header"); 12806 return (-1); 12807 } 12808 12809 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12810 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12811 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12812 12813 if (ss == NULL || rs == NULL || ts == NULL) 12814 return (-1); /* dtrace_dof_error() has been called already */ 12815 12816 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12817 rs->dofs_align != sizeof (uint64_t)) { 12818 dtrace_dof_error(dof, "invalid relocation section"); 12819 return (-1); 12820 } 12821 12822 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12823 n = rs->dofs_size / rs->dofs_entsize; 12824 12825 for (i = 0; i < n; i++) { 12826 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12827 12828 switch (r->dofr_type) { 12829 case DOF_RELO_NONE: 12830 break; 12831 case DOF_RELO_SETX: 12832 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12833 sizeof (uint64_t) > ts->dofs_size) { 12834 dtrace_dof_error(dof, "bad relocation offset"); 12835 return (-1); 12836 } 12837 12838 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12839 dtrace_dof_error(dof, "misaligned setx relo"); 12840 return (-1); 12841 } 12842 12843 *(uint64_t *)taddr += ubase; 12844 break; 12845 default: 12846 dtrace_dof_error(dof, "invalid relocation type"); 12847 return (-1); 12848 } 12849 12850 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12851 } 12852 12853 return (0); 12854 } 12855 12856 /* 12857 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12858 * header: it should be at the front of a memory region that is at least 12859 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12860 * size. It need not be validated in any other way. 12861 */ 12862 static int 12863 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12864 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12865 { 12866 uint64_t len = dof->dofh_loadsz, seclen; 12867 uintptr_t daddr = (uintptr_t)dof; 12868 dtrace_ecbdesc_t *ep; 12869 dtrace_enabling_t *enab; 12870 uint_t i; 12871 12872 ASSERT(MUTEX_HELD(&dtrace_lock)); 12873 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12874 12875 /* 12876 * Check the DOF header identification bytes. In addition to checking 12877 * valid settings, we also verify that unused bits/bytes are zeroed so 12878 * we can use them later without fear of regressing existing binaries. 12879 */ 12880 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12881 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12882 dtrace_dof_error(dof, "DOF magic string mismatch"); 12883 return (-1); 12884 } 12885 12886 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12887 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12888 dtrace_dof_error(dof, "DOF has invalid data model"); 12889 return (-1); 12890 } 12891 12892 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12893 dtrace_dof_error(dof, "DOF encoding mismatch"); 12894 return (-1); 12895 } 12896 12897 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12898 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12899 dtrace_dof_error(dof, "DOF version mismatch"); 12900 return (-1); 12901 } 12902 12903 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12904 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12905 return (-1); 12906 } 12907 12908 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12909 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12910 return (-1); 12911 } 12912 12913 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12914 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12915 return (-1); 12916 } 12917 12918 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12919 if (dof->dofh_ident[i] != 0) { 12920 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12921 return (-1); 12922 } 12923 } 12924 12925 if (dof->dofh_flags & ~DOF_FL_VALID) { 12926 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12927 return (-1); 12928 } 12929 12930 if (dof->dofh_secsize == 0) { 12931 dtrace_dof_error(dof, "zero section header size"); 12932 return (-1); 12933 } 12934 12935 /* 12936 * Check that the section headers don't exceed the amount of DOF 12937 * data. Note that we cast the section size and number of sections 12938 * to uint64_t's to prevent possible overflow in the multiplication. 12939 */ 12940 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12941 12942 if (dof->dofh_secoff > len || seclen > len || 12943 dof->dofh_secoff + seclen > len) { 12944 dtrace_dof_error(dof, "truncated section headers"); 12945 return (-1); 12946 } 12947 12948 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12949 dtrace_dof_error(dof, "misaligned section headers"); 12950 return (-1); 12951 } 12952 12953 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12954 dtrace_dof_error(dof, "misaligned section size"); 12955 return (-1); 12956 } 12957 12958 /* 12959 * Take an initial pass through the section headers to be sure that 12960 * the headers don't have stray offsets. If the 'noprobes' flag is 12961 * set, do not permit sections relating to providers, probes, or args. 12962 */ 12963 for (i = 0; i < dof->dofh_secnum; i++) { 12964 dof_sec_t *sec = (dof_sec_t *)(daddr + 12965 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12966 12967 if (noprobes) { 12968 switch (sec->dofs_type) { 12969 case DOF_SECT_PROVIDER: 12970 case DOF_SECT_PROBES: 12971 case DOF_SECT_PRARGS: 12972 case DOF_SECT_PROFFS: 12973 dtrace_dof_error(dof, "illegal sections " 12974 "for enabling"); 12975 return (-1); 12976 } 12977 } 12978 12979 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12980 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12981 dtrace_dof_error(dof, "loadable section with load " 12982 "flag unset"); 12983 return (-1); 12984 } 12985 12986 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12987 continue; /* just ignore non-loadable sections */ 12988 12989 if (sec->dofs_align & (sec->dofs_align - 1)) { 12990 dtrace_dof_error(dof, "bad section alignment"); 12991 return (-1); 12992 } 12993 12994 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12995 dtrace_dof_error(dof, "misaligned section"); 12996 return (-1); 12997 } 12998 12999 if (sec->dofs_offset > len || sec->dofs_size > len || 13000 sec->dofs_offset + sec->dofs_size > len) { 13001 dtrace_dof_error(dof, "corrupt section header"); 13002 return (-1); 13003 } 13004 13005 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13006 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13007 dtrace_dof_error(dof, "non-terminating string table"); 13008 return (-1); 13009 } 13010 } 13011 13012 /* 13013 * Take a second pass through the sections and locate and perform any 13014 * relocations that are present. We do this after the first pass to 13015 * be sure that all sections have had their headers validated. 13016 */ 13017 for (i = 0; i < dof->dofh_secnum; i++) { 13018 dof_sec_t *sec = (dof_sec_t *)(daddr + 13019 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13020 13021 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13022 continue; /* skip sections that are not loadable */ 13023 13024 switch (sec->dofs_type) { 13025 case DOF_SECT_URELHDR: 13026 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13027 return (-1); 13028 break; 13029 } 13030 } 13031 13032 if ((enab = *enabp) == NULL) 13033 enab = *enabp = dtrace_enabling_create(vstate); 13034 13035 for (i = 0; i < dof->dofh_secnum; i++) { 13036 dof_sec_t *sec = (dof_sec_t *)(daddr + 13037 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13038 13039 if (sec->dofs_type != DOF_SECT_ECBDESC) 13040 continue; 13041 13042 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13043 dtrace_enabling_destroy(enab); 13044 *enabp = NULL; 13045 return (-1); 13046 } 13047 13048 dtrace_enabling_add(enab, ep); 13049 } 13050 13051 return (0); 13052 } 13053 13054 /* 13055 * Process DOF for any options. This routine assumes that the DOF has been 13056 * at least processed by dtrace_dof_slurp(). 13057 */ 13058 static int 13059 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13060 { 13061 int i, rval; 13062 uint32_t entsize; 13063 size_t offs; 13064 dof_optdesc_t *desc; 13065 13066 for (i = 0; i < dof->dofh_secnum; i++) { 13067 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13068 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13069 13070 if (sec->dofs_type != DOF_SECT_OPTDESC) 13071 continue; 13072 13073 if (sec->dofs_align != sizeof (uint64_t)) { 13074 dtrace_dof_error(dof, "bad alignment in " 13075 "option description"); 13076 return (EINVAL); 13077 } 13078 13079 if ((entsize = sec->dofs_entsize) == 0) { 13080 dtrace_dof_error(dof, "zeroed option entry size"); 13081 return (EINVAL); 13082 } 13083 13084 if (entsize < sizeof (dof_optdesc_t)) { 13085 dtrace_dof_error(dof, "bad option entry size"); 13086 return (EINVAL); 13087 } 13088 13089 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13090 desc = (dof_optdesc_t *)((uintptr_t)dof + 13091 (uintptr_t)sec->dofs_offset + offs); 13092 13093 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13094 dtrace_dof_error(dof, "non-zero option string"); 13095 return (EINVAL); 13096 } 13097 13098 if (desc->dofo_value == DTRACEOPT_UNSET) { 13099 dtrace_dof_error(dof, "unset option"); 13100 return (EINVAL); 13101 } 13102 13103 if ((rval = dtrace_state_option(state, 13104 desc->dofo_option, desc->dofo_value)) != 0) { 13105 dtrace_dof_error(dof, "rejected option"); 13106 return (rval); 13107 } 13108 } 13109 } 13110 13111 return (0); 13112 } 13113 13114 /* 13115 * DTrace Consumer State Functions 13116 */ 13117 int 13118 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13119 { 13120 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13121 void *base; 13122 uintptr_t limit; 13123 dtrace_dynvar_t *dvar, *next, *start; 13124 int i; 13125 13126 ASSERT(MUTEX_HELD(&dtrace_lock)); 13127 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13128 13129 bzero(dstate, sizeof (dtrace_dstate_t)); 13130 13131 if ((dstate->dtds_chunksize = chunksize) == 0) 13132 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13133 13134 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13135 size = min; 13136 13137 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13138 return (ENOMEM); 13139 13140 dstate->dtds_size = size; 13141 dstate->dtds_base = base; 13142 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13143 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13144 13145 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13146 13147 if (hashsize != 1 && (hashsize & 1)) 13148 hashsize--; 13149 13150 dstate->dtds_hashsize = hashsize; 13151 dstate->dtds_hash = dstate->dtds_base; 13152 13153 /* 13154 * Set all of our hash buckets to point to the single sink, and (if 13155 * it hasn't already been set), set the sink's hash value to be the 13156 * sink sentinel value. The sink is needed for dynamic variable 13157 * lookups to know that they have iterated over an entire, valid hash 13158 * chain. 13159 */ 13160 for (i = 0; i < hashsize; i++) 13161 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13162 13163 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13164 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13165 13166 /* 13167 * Determine number of active CPUs. Divide free list evenly among 13168 * active CPUs. 13169 */ 13170 start = (dtrace_dynvar_t *) 13171 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13172 limit = (uintptr_t)base + size; 13173 13174 maxper = (limit - (uintptr_t)start) / NCPU; 13175 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13176 13177 for (i = 0; i < NCPU; i++) { 13178 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13179 13180 /* 13181 * If we don't even have enough chunks to make it once through 13182 * NCPUs, we're just going to allocate everything to the first 13183 * CPU. And if we're on the last CPU, we're going to allocate 13184 * whatever is left over. In either case, we set the limit to 13185 * be the limit of the dynamic variable space. 13186 */ 13187 if (maxper == 0 || i == NCPU - 1) { 13188 limit = (uintptr_t)base + size; 13189 start = NULL; 13190 } else { 13191 limit = (uintptr_t)start + maxper; 13192 start = (dtrace_dynvar_t *)limit; 13193 } 13194 13195 ASSERT(limit <= (uintptr_t)base + size); 13196 13197 for (;;) { 13198 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13199 dstate->dtds_chunksize); 13200 13201 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13202 break; 13203 13204 dvar->dtdv_next = next; 13205 dvar = next; 13206 } 13207 13208 if (maxper == 0) 13209 break; 13210 } 13211 13212 return (0); 13213 } 13214 13215 void 13216 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13217 { 13218 ASSERT(MUTEX_HELD(&cpu_lock)); 13219 13220 if (dstate->dtds_base == NULL) 13221 return; 13222 13223 kmem_free(dstate->dtds_base, dstate->dtds_size); 13224 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13225 } 13226 13227 static void 13228 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13229 { 13230 /* 13231 * Logical XOR, where are you? 13232 */ 13233 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13234 13235 if (vstate->dtvs_nglobals > 0) { 13236 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13237 sizeof (dtrace_statvar_t *)); 13238 } 13239 13240 if (vstate->dtvs_ntlocals > 0) { 13241 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13242 sizeof (dtrace_difv_t)); 13243 } 13244 13245 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13246 13247 if (vstate->dtvs_nlocals > 0) { 13248 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13249 sizeof (dtrace_statvar_t *)); 13250 } 13251 } 13252 13253 static void 13254 dtrace_state_clean(dtrace_state_t *state) 13255 { 13256 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13257 return; 13258 13259 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13260 dtrace_speculation_clean(state); 13261 } 13262 13263 static void 13264 dtrace_state_deadman(dtrace_state_t *state) 13265 { 13266 hrtime_t now; 13267 13268 dtrace_sync(); 13269 13270 now = dtrace_gethrtime(); 13271 13272 if (state != dtrace_anon.dta_state && 13273 now - state->dts_laststatus >= dtrace_deadman_user) 13274 return; 13275 13276 /* 13277 * We must be sure that dts_alive never appears to be less than the 13278 * value upon entry to dtrace_state_deadman(), and because we lack a 13279 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13280 * store INT64_MAX to it, followed by a memory barrier, followed by 13281 * the new value. This assures that dts_alive never appears to be 13282 * less than its true value, regardless of the order in which the 13283 * stores to the underlying storage are issued. 13284 */ 13285 state->dts_alive = INT64_MAX; 13286 dtrace_membar_producer(); 13287 state->dts_alive = now; 13288 } 13289 13290 dtrace_state_t * 13291 dtrace_state_create(dev_t *devp, cred_t *cr) 13292 { 13293 minor_t minor; 13294 major_t major; 13295 char c[30]; 13296 dtrace_state_t *state; 13297 dtrace_optval_t *opt; 13298 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13299 13300 ASSERT(MUTEX_HELD(&dtrace_lock)); 13301 ASSERT(MUTEX_HELD(&cpu_lock)); 13302 13303 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13304 VM_BESTFIT | VM_SLEEP); 13305 13306 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13307 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13308 return (NULL); 13309 } 13310 13311 state = ddi_get_soft_state(dtrace_softstate, minor); 13312 state->dts_epid = DTRACE_EPIDNONE + 1; 13313 13314 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13315 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13316 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13317 13318 if (devp != NULL) { 13319 major = getemajor(*devp); 13320 } else { 13321 major = ddi_driver_major(dtrace_devi); 13322 } 13323 13324 state->dts_dev = makedevice(major, minor); 13325 13326 if (devp != NULL) 13327 *devp = state->dts_dev; 13328 13329 /* 13330 * We allocate NCPU buffers. On the one hand, this can be quite 13331 * a bit of memory per instance (nearly 36K on a Starcat). On the 13332 * other hand, it saves an additional memory reference in the probe 13333 * path. 13334 */ 13335 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13336 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13337 state->dts_cleaner = CYCLIC_NONE; 13338 state->dts_deadman = CYCLIC_NONE; 13339 state->dts_vstate.dtvs_state = state; 13340 13341 for (i = 0; i < DTRACEOPT_MAX; i++) 13342 state->dts_options[i] = DTRACEOPT_UNSET; 13343 13344 /* 13345 * Set the default options. 13346 */ 13347 opt = state->dts_options; 13348 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13349 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13350 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13351 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13352 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13353 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13354 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13355 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13356 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13357 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13358 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13359 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13360 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13361 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13362 13363 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13364 13365 /* 13366 * Depending on the user credentials, we set flag bits which alter probe 13367 * visibility or the amount of destructiveness allowed. In the case of 13368 * actual anonymous tracing, or the possession of all privileges, all of 13369 * the normal checks are bypassed. 13370 */ 13371 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13372 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13373 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13374 } else { 13375 /* 13376 * Set up the credentials for this instantiation. We take a 13377 * hold on the credential to prevent it from disappearing on 13378 * us; this in turn prevents the zone_t referenced by this 13379 * credential from disappearing. This means that we can 13380 * examine the credential and the zone from probe context. 13381 */ 13382 crhold(cr); 13383 state->dts_cred.dcr_cred = cr; 13384 13385 /* 13386 * CRA_PROC means "we have *some* privilege for dtrace" and 13387 * unlocks the use of variables like pid, zonename, etc. 13388 */ 13389 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13390 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13391 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13392 } 13393 13394 /* 13395 * dtrace_user allows use of syscall and profile providers. 13396 * If the user also has proc_owner and/or proc_zone, we 13397 * extend the scope to include additional visibility and 13398 * destructive power. 13399 */ 13400 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13401 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13402 state->dts_cred.dcr_visible |= 13403 DTRACE_CRV_ALLPROC; 13404 13405 state->dts_cred.dcr_action |= 13406 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13407 } 13408 13409 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13410 state->dts_cred.dcr_visible |= 13411 DTRACE_CRV_ALLZONE; 13412 13413 state->dts_cred.dcr_action |= 13414 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13415 } 13416 13417 /* 13418 * If we have all privs in whatever zone this is, 13419 * we can do destructive things to processes which 13420 * have altered credentials. 13421 */ 13422 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13423 cr->cr_zone->zone_privset)) { 13424 state->dts_cred.dcr_action |= 13425 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13426 } 13427 } 13428 13429 /* 13430 * Holding the dtrace_kernel privilege also implies that 13431 * the user has the dtrace_user privilege from a visibility 13432 * perspective. But without further privileges, some 13433 * destructive actions are not available. 13434 */ 13435 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13436 /* 13437 * Make all probes in all zones visible. However, 13438 * this doesn't mean that all actions become available 13439 * to all zones. 13440 */ 13441 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13442 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13443 13444 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13445 DTRACE_CRA_PROC; 13446 /* 13447 * Holding proc_owner means that destructive actions 13448 * for *this* zone are allowed. 13449 */ 13450 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13451 state->dts_cred.dcr_action |= 13452 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13453 13454 /* 13455 * Holding proc_zone means that destructive actions 13456 * for this user/group ID in all zones is allowed. 13457 */ 13458 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13459 state->dts_cred.dcr_action |= 13460 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13461 13462 /* 13463 * If we have all privs in whatever zone this is, 13464 * we can do destructive things to processes which 13465 * have altered credentials. 13466 */ 13467 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13468 cr->cr_zone->zone_privset)) { 13469 state->dts_cred.dcr_action |= 13470 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13471 } 13472 } 13473 13474 /* 13475 * Holding the dtrace_proc privilege gives control over fasttrap 13476 * and pid providers. We need to grant wider destructive 13477 * privileges in the event that the user has proc_owner and/or 13478 * proc_zone. 13479 */ 13480 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13481 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13482 state->dts_cred.dcr_action |= 13483 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13484 13485 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13486 state->dts_cred.dcr_action |= 13487 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13488 } 13489 } 13490 13491 return (state); 13492 } 13493 13494 static int 13495 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13496 { 13497 dtrace_optval_t *opt = state->dts_options, size; 13498 processorid_t cpu; 13499 int flags = 0, rval, factor, divisor = 1; 13500 13501 ASSERT(MUTEX_HELD(&dtrace_lock)); 13502 ASSERT(MUTEX_HELD(&cpu_lock)); 13503 ASSERT(which < DTRACEOPT_MAX); 13504 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13505 (state == dtrace_anon.dta_state && 13506 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13507 13508 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13509 return (0); 13510 13511 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13512 cpu = opt[DTRACEOPT_CPU]; 13513 13514 if (which == DTRACEOPT_SPECSIZE) 13515 flags |= DTRACEBUF_NOSWITCH; 13516 13517 if (which == DTRACEOPT_BUFSIZE) { 13518 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13519 flags |= DTRACEBUF_RING; 13520 13521 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13522 flags |= DTRACEBUF_FILL; 13523 13524 if (state != dtrace_anon.dta_state || 13525 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13526 flags |= DTRACEBUF_INACTIVE; 13527 } 13528 13529 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13530 /* 13531 * The size must be 8-byte aligned. If the size is not 8-byte 13532 * aligned, drop it down by the difference. 13533 */ 13534 if (size & (sizeof (uint64_t) - 1)) 13535 size -= size & (sizeof (uint64_t) - 1); 13536 13537 if (size < state->dts_reserve) { 13538 /* 13539 * Buffers always must be large enough to accommodate 13540 * their prereserved space. We return E2BIG instead 13541 * of ENOMEM in this case to allow for user-level 13542 * software to differentiate the cases. 13543 */ 13544 return (E2BIG); 13545 } 13546 13547 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13548 13549 if (rval != ENOMEM) { 13550 opt[which] = size; 13551 return (rval); 13552 } 13553 13554 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13555 return (rval); 13556 13557 for (divisor = 2; divisor < factor; divisor <<= 1) 13558 continue; 13559 } 13560 13561 return (ENOMEM); 13562 } 13563 13564 static int 13565 dtrace_state_buffers(dtrace_state_t *state) 13566 { 13567 dtrace_speculation_t *spec = state->dts_speculations; 13568 int rval, i; 13569 13570 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13571 DTRACEOPT_BUFSIZE)) != 0) 13572 return (rval); 13573 13574 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13575 DTRACEOPT_AGGSIZE)) != 0) 13576 return (rval); 13577 13578 for (i = 0; i < state->dts_nspeculations; i++) { 13579 if ((rval = dtrace_state_buffer(state, 13580 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13581 return (rval); 13582 } 13583 13584 return (0); 13585 } 13586 13587 static void 13588 dtrace_state_prereserve(dtrace_state_t *state) 13589 { 13590 dtrace_ecb_t *ecb; 13591 dtrace_probe_t *probe; 13592 13593 state->dts_reserve = 0; 13594 13595 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13596 return; 13597 13598 /* 13599 * If our buffer policy is a "fill" buffer policy, we need to set the 13600 * prereserved space to be the space required by the END probes. 13601 */ 13602 probe = dtrace_probes[dtrace_probeid_end - 1]; 13603 ASSERT(probe != NULL); 13604 13605 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13606 if (ecb->dte_state != state) 13607 continue; 13608 13609 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13610 } 13611 } 13612 13613 static int 13614 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13615 { 13616 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13617 dtrace_speculation_t *spec; 13618 dtrace_buffer_t *buf; 13619 cyc_handler_t hdlr; 13620 cyc_time_t when; 13621 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13622 dtrace_icookie_t cookie; 13623 13624 mutex_enter(&cpu_lock); 13625 mutex_enter(&dtrace_lock); 13626 13627 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13628 rval = EBUSY; 13629 goto out; 13630 } 13631 13632 /* 13633 * Before we can perform any checks, we must prime all of the 13634 * retained enablings that correspond to this state. 13635 */ 13636 dtrace_enabling_prime(state); 13637 13638 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13639 rval = EACCES; 13640 goto out; 13641 } 13642 13643 dtrace_state_prereserve(state); 13644 13645 /* 13646 * Now we want to do is try to allocate our speculations. 13647 * We do not automatically resize the number of speculations; if 13648 * this fails, we will fail the operation. 13649 */ 13650 nspec = opt[DTRACEOPT_NSPEC]; 13651 ASSERT(nspec != DTRACEOPT_UNSET); 13652 13653 if (nspec > INT_MAX) { 13654 rval = ENOMEM; 13655 goto out; 13656 } 13657 13658 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13659 KM_NOSLEEP | KM_NORMALPRI); 13660 13661 if (spec == NULL) { 13662 rval = ENOMEM; 13663 goto out; 13664 } 13665 13666 state->dts_speculations = spec; 13667 state->dts_nspeculations = (int)nspec; 13668 13669 for (i = 0; i < nspec; i++) { 13670 if ((buf = kmem_zalloc(bufsize, 13671 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13672 rval = ENOMEM; 13673 goto err; 13674 } 13675 13676 spec[i].dtsp_buffer = buf; 13677 } 13678 13679 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13680 if (dtrace_anon.dta_state == NULL) { 13681 rval = ENOENT; 13682 goto out; 13683 } 13684 13685 if (state->dts_necbs != 0) { 13686 rval = EALREADY; 13687 goto out; 13688 } 13689 13690 state->dts_anon = dtrace_anon_grab(); 13691 ASSERT(state->dts_anon != NULL); 13692 state = state->dts_anon; 13693 13694 /* 13695 * We want "grabanon" to be set in the grabbed state, so we'll 13696 * copy that option value from the grabbing state into the 13697 * grabbed state. 13698 */ 13699 state->dts_options[DTRACEOPT_GRABANON] = 13700 opt[DTRACEOPT_GRABANON]; 13701 13702 *cpu = dtrace_anon.dta_beganon; 13703 13704 /* 13705 * If the anonymous state is active (as it almost certainly 13706 * is if the anonymous enabling ultimately matched anything), 13707 * we don't allow any further option processing -- but we 13708 * don't return failure. 13709 */ 13710 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13711 goto out; 13712 } 13713 13714 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13715 opt[DTRACEOPT_AGGSIZE] != 0) { 13716 if (state->dts_aggregations == NULL) { 13717 /* 13718 * We're not going to create an aggregation buffer 13719 * because we don't have any ECBs that contain 13720 * aggregations -- set this option to 0. 13721 */ 13722 opt[DTRACEOPT_AGGSIZE] = 0; 13723 } else { 13724 /* 13725 * If we have an aggregation buffer, we must also have 13726 * a buffer to use as scratch. 13727 */ 13728 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13729 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13730 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13731 } 13732 } 13733 } 13734 13735 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13736 opt[DTRACEOPT_SPECSIZE] != 0) { 13737 if (!state->dts_speculates) { 13738 /* 13739 * We're not going to create speculation buffers 13740 * because we don't have any ECBs that actually 13741 * speculate -- set the speculation size to 0. 13742 */ 13743 opt[DTRACEOPT_SPECSIZE] = 0; 13744 } 13745 } 13746 13747 /* 13748 * The bare minimum size for any buffer that we're actually going to 13749 * do anything to is sizeof (uint64_t). 13750 */ 13751 sz = sizeof (uint64_t); 13752 13753 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13754 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13755 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13756 /* 13757 * A buffer size has been explicitly set to 0 (or to a size 13758 * that will be adjusted to 0) and we need the space -- we 13759 * need to return failure. We return ENOSPC to differentiate 13760 * it from failing to allocate a buffer due to failure to meet 13761 * the reserve (for which we return E2BIG). 13762 */ 13763 rval = ENOSPC; 13764 goto out; 13765 } 13766 13767 if ((rval = dtrace_state_buffers(state)) != 0) 13768 goto err; 13769 13770 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13771 sz = dtrace_dstate_defsize; 13772 13773 do { 13774 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13775 13776 if (rval == 0) 13777 break; 13778 13779 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13780 goto err; 13781 } while (sz >>= 1); 13782 13783 opt[DTRACEOPT_DYNVARSIZE] = sz; 13784 13785 if (rval != 0) 13786 goto err; 13787 13788 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13789 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13790 13791 if (opt[DTRACEOPT_CLEANRATE] == 0) 13792 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13793 13794 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13795 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13796 13797 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13798 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13799 13800 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13801 hdlr.cyh_arg = state; 13802 hdlr.cyh_level = CY_LOW_LEVEL; 13803 13804 when.cyt_when = 0; 13805 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13806 13807 state->dts_cleaner = cyclic_add(&hdlr, &when); 13808 13809 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13810 hdlr.cyh_arg = state; 13811 hdlr.cyh_level = CY_LOW_LEVEL; 13812 13813 when.cyt_when = 0; 13814 when.cyt_interval = dtrace_deadman_interval; 13815 13816 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13817 state->dts_deadman = cyclic_add(&hdlr, &when); 13818 13819 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13820 13821 if (state->dts_getf != 0 && 13822 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13823 /* 13824 * We don't have kernel privs but we have at least one call 13825 * to getf(); we need to bump our zone's count, and (if 13826 * this is the first enabling to have an unprivileged call 13827 * to getf()) we need to hook into closef(). 13828 */ 13829 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13830 13831 if (dtrace_getf++ == 0) { 13832 ASSERT(dtrace_closef == NULL); 13833 dtrace_closef = dtrace_getf_barrier; 13834 } 13835 } 13836 13837 /* 13838 * Now it's time to actually fire the BEGIN probe. We need to disable 13839 * interrupts here both to record the CPU on which we fired the BEGIN 13840 * probe (the data from this CPU will be processed first at user 13841 * level) and to manually activate the buffer for this CPU. 13842 */ 13843 cookie = dtrace_interrupt_disable(); 13844 *cpu = CPU->cpu_id; 13845 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13846 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13847 13848 dtrace_probe(dtrace_probeid_begin, 13849 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13850 dtrace_interrupt_enable(cookie); 13851 /* 13852 * We may have had an exit action from a BEGIN probe; only change our 13853 * state to ACTIVE if we're still in WARMUP. 13854 */ 13855 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13856 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13857 13858 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13859 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13860 13861 /* 13862 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13863 * want each CPU to transition its principal buffer out of the 13864 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13865 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13866 * atomically transition from processing none of a state's ECBs to 13867 * processing all of them. 13868 */ 13869 dtrace_xcall(DTRACE_CPUALL, 13870 (dtrace_xcall_t)dtrace_buffer_activate, state); 13871 goto out; 13872 13873 err: 13874 dtrace_buffer_free(state->dts_buffer); 13875 dtrace_buffer_free(state->dts_aggbuffer); 13876 13877 if ((nspec = state->dts_nspeculations) == 0) { 13878 ASSERT(state->dts_speculations == NULL); 13879 goto out; 13880 } 13881 13882 spec = state->dts_speculations; 13883 ASSERT(spec != NULL); 13884 13885 for (i = 0; i < state->dts_nspeculations; i++) { 13886 if ((buf = spec[i].dtsp_buffer) == NULL) 13887 break; 13888 13889 dtrace_buffer_free(buf); 13890 kmem_free(buf, bufsize); 13891 } 13892 13893 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13894 state->dts_nspeculations = 0; 13895 state->dts_speculations = NULL; 13896 13897 out: 13898 mutex_exit(&dtrace_lock); 13899 mutex_exit(&cpu_lock); 13900 13901 return (rval); 13902 } 13903 13904 static int 13905 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13906 { 13907 dtrace_icookie_t cookie; 13908 13909 ASSERT(MUTEX_HELD(&dtrace_lock)); 13910 13911 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13912 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13913 return (EINVAL); 13914 13915 /* 13916 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13917 * to be sure that every CPU has seen it. See below for the details 13918 * on why this is done. 13919 */ 13920 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13921 dtrace_sync(); 13922 13923 /* 13924 * By this point, it is impossible for any CPU to be still processing 13925 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13926 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13927 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13928 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13929 * iff we're in the END probe. 13930 */ 13931 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13932 dtrace_sync(); 13933 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13934 13935 /* 13936 * Finally, we can release the reserve and call the END probe. We 13937 * disable interrupts across calling the END probe to allow us to 13938 * return the CPU on which we actually called the END probe. This 13939 * allows user-land to be sure that this CPU's principal buffer is 13940 * processed last. 13941 */ 13942 state->dts_reserve = 0; 13943 13944 cookie = dtrace_interrupt_disable(); 13945 *cpu = CPU->cpu_id; 13946 dtrace_probe(dtrace_probeid_end, 13947 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13948 dtrace_interrupt_enable(cookie); 13949 13950 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13951 dtrace_sync(); 13952 13953 if (state->dts_getf != 0 && 13954 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13955 /* 13956 * We don't have kernel privs but we have at least one call 13957 * to getf(); we need to lower our zone's count, and (if 13958 * this is the last enabling to have an unprivileged call 13959 * to getf()) we need to clear the closef() hook. 13960 */ 13961 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 13962 ASSERT(dtrace_closef == dtrace_getf_barrier); 13963 ASSERT(dtrace_getf > 0); 13964 13965 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 13966 13967 if (--dtrace_getf == 0) 13968 dtrace_closef = NULL; 13969 } 13970 13971 return (0); 13972 } 13973 13974 static int 13975 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13976 dtrace_optval_t val) 13977 { 13978 ASSERT(MUTEX_HELD(&dtrace_lock)); 13979 13980 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13981 return (EBUSY); 13982 13983 if (option >= DTRACEOPT_MAX) 13984 return (EINVAL); 13985 13986 if (option != DTRACEOPT_CPU && val < 0) 13987 return (EINVAL); 13988 13989 switch (option) { 13990 case DTRACEOPT_DESTRUCTIVE: 13991 if (dtrace_destructive_disallow) 13992 return (EACCES); 13993 13994 state->dts_cred.dcr_destructive = 1; 13995 break; 13996 13997 case DTRACEOPT_BUFSIZE: 13998 case DTRACEOPT_DYNVARSIZE: 13999 case DTRACEOPT_AGGSIZE: 14000 case DTRACEOPT_SPECSIZE: 14001 case DTRACEOPT_STRSIZE: 14002 if (val < 0) 14003 return (EINVAL); 14004 14005 if (val >= LONG_MAX) { 14006 /* 14007 * If this is an otherwise negative value, set it to 14008 * the highest multiple of 128m less than LONG_MAX. 14009 * Technically, we're adjusting the size without 14010 * regard to the buffer resizing policy, but in fact, 14011 * this has no effect -- if we set the buffer size to 14012 * ~LONG_MAX and the buffer policy is ultimately set to 14013 * be "manual", the buffer allocation is guaranteed to 14014 * fail, if only because the allocation requires two 14015 * buffers. (We set the the size to the highest 14016 * multiple of 128m because it ensures that the size 14017 * will remain a multiple of a megabyte when 14018 * repeatedly halved -- all the way down to 15m.) 14019 */ 14020 val = LONG_MAX - (1 << 27) + 1; 14021 } 14022 } 14023 14024 state->dts_options[option] = val; 14025 14026 return (0); 14027 } 14028 14029 static void 14030 dtrace_state_destroy(dtrace_state_t *state) 14031 { 14032 dtrace_ecb_t *ecb; 14033 dtrace_vstate_t *vstate = &state->dts_vstate; 14034 minor_t minor = getminor(state->dts_dev); 14035 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14036 dtrace_speculation_t *spec = state->dts_speculations; 14037 int nspec = state->dts_nspeculations; 14038 uint32_t match; 14039 14040 ASSERT(MUTEX_HELD(&dtrace_lock)); 14041 ASSERT(MUTEX_HELD(&cpu_lock)); 14042 14043 /* 14044 * First, retract any retained enablings for this state. 14045 */ 14046 dtrace_enabling_retract(state); 14047 ASSERT(state->dts_nretained == 0); 14048 14049 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14050 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14051 /* 14052 * We have managed to come into dtrace_state_destroy() on a 14053 * hot enabling -- almost certainly because of a disorderly 14054 * shutdown of a consumer. (That is, a consumer that is 14055 * exiting without having called dtrace_stop().) In this case, 14056 * we're going to set our activity to be KILLED, and then 14057 * issue a sync to be sure that everyone is out of probe 14058 * context before we start blowing away ECBs. 14059 */ 14060 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14061 dtrace_sync(); 14062 } 14063 14064 /* 14065 * Release the credential hold we took in dtrace_state_create(). 14066 */ 14067 if (state->dts_cred.dcr_cred != NULL) 14068 crfree(state->dts_cred.dcr_cred); 14069 14070 /* 14071 * Now we can safely disable and destroy any enabled probes. Because 14072 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14073 * (especially if they're all enabled), we take two passes through the 14074 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14075 * in the second we disable whatever is left over. 14076 */ 14077 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14078 for (i = 0; i < state->dts_necbs; i++) { 14079 if ((ecb = state->dts_ecbs[i]) == NULL) 14080 continue; 14081 14082 if (match && ecb->dte_probe != NULL) { 14083 dtrace_probe_t *probe = ecb->dte_probe; 14084 dtrace_provider_t *prov = probe->dtpr_provider; 14085 14086 if (!(prov->dtpv_priv.dtpp_flags & match)) 14087 continue; 14088 } 14089 14090 dtrace_ecb_disable(ecb); 14091 dtrace_ecb_destroy(ecb); 14092 } 14093 14094 if (!match) 14095 break; 14096 } 14097 14098 /* 14099 * Before we free the buffers, perform one more sync to assure that 14100 * every CPU is out of probe context. 14101 */ 14102 dtrace_sync(); 14103 14104 dtrace_buffer_free(state->dts_buffer); 14105 dtrace_buffer_free(state->dts_aggbuffer); 14106 14107 for (i = 0; i < nspec; i++) 14108 dtrace_buffer_free(spec[i].dtsp_buffer); 14109 14110 if (state->dts_cleaner != CYCLIC_NONE) 14111 cyclic_remove(state->dts_cleaner); 14112 14113 if (state->dts_deadman != CYCLIC_NONE) 14114 cyclic_remove(state->dts_deadman); 14115 14116 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14117 dtrace_vstate_fini(vstate); 14118 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14119 14120 if (state->dts_aggregations != NULL) { 14121 #ifdef DEBUG 14122 for (i = 0; i < state->dts_naggregations; i++) 14123 ASSERT(state->dts_aggregations[i] == NULL); 14124 #endif 14125 ASSERT(state->dts_naggregations > 0); 14126 kmem_free(state->dts_aggregations, 14127 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14128 } 14129 14130 kmem_free(state->dts_buffer, bufsize); 14131 kmem_free(state->dts_aggbuffer, bufsize); 14132 14133 for (i = 0; i < nspec; i++) 14134 kmem_free(spec[i].dtsp_buffer, bufsize); 14135 14136 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14137 14138 dtrace_format_destroy(state); 14139 14140 vmem_destroy(state->dts_aggid_arena); 14141 ddi_soft_state_free(dtrace_softstate, minor); 14142 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14143 } 14144 14145 /* 14146 * DTrace Anonymous Enabling Functions 14147 */ 14148 static dtrace_state_t * 14149 dtrace_anon_grab(void) 14150 { 14151 dtrace_state_t *state; 14152 14153 ASSERT(MUTEX_HELD(&dtrace_lock)); 14154 14155 if ((state = dtrace_anon.dta_state) == NULL) { 14156 ASSERT(dtrace_anon.dta_enabling == NULL); 14157 return (NULL); 14158 } 14159 14160 ASSERT(dtrace_anon.dta_enabling != NULL); 14161 ASSERT(dtrace_retained != NULL); 14162 14163 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14164 dtrace_anon.dta_enabling = NULL; 14165 dtrace_anon.dta_state = NULL; 14166 14167 return (state); 14168 } 14169 14170 static void 14171 dtrace_anon_property(void) 14172 { 14173 int i, rv; 14174 dtrace_state_t *state; 14175 dof_hdr_t *dof; 14176 char c[32]; /* enough for "dof-data-" + digits */ 14177 14178 ASSERT(MUTEX_HELD(&dtrace_lock)); 14179 ASSERT(MUTEX_HELD(&cpu_lock)); 14180 14181 for (i = 0; ; i++) { 14182 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14183 14184 dtrace_err_verbose = 1; 14185 14186 if ((dof = dtrace_dof_property(c)) == NULL) { 14187 dtrace_err_verbose = 0; 14188 break; 14189 } 14190 14191 /* 14192 * We want to create anonymous state, so we need to transition 14193 * the kernel debugger to indicate that DTrace is active. If 14194 * this fails (e.g. because the debugger has modified text in 14195 * some way), we won't continue with the processing. 14196 */ 14197 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14198 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14199 "enabling ignored."); 14200 dtrace_dof_destroy(dof); 14201 break; 14202 } 14203 14204 /* 14205 * If we haven't allocated an anonymous state, we'll do so now. 14206 */ 14207 if ((state = dtrace_anon.dta_state) == NULL) { 14208 state = dtrace_state_create(NULL, NULL); 14209 dtrace_anon.dta_state = state; 14210 14211 if (state == NULL) { 14212 /* 14213 * This basically shouldn't happen: the only 14214 * failure mode from dtrace_state_create() is a 14215 * failure of ddi_soft_state_zalloc() that 14216 * itself should never happen. Still, the 14217 * interface allows for a failure mode, and 14218 * we want to fail as gracefully as possible: 14219 * we'll emit an error message and cease 14220 * processing anonymous state in this case. 14221 */ 14222 cmn_err(CE_WARN, "failed to create " 14223 "anonymous state"); 14224 dtrace_dof_destroy(dof); 14225 break; 14226 } 14227 } 14228 14229 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14230 &dtrace_anon.dta_enabling, 0, B_TRUE); 14231 14232 if (rv == 0) 14233 rv = dtrace_dof_options(dof, state); 14234 14235 dtrace_err_verbose = 0; 14236 dtrace_dof_destroy(dof); 14237 14238 if (rv != 0) { 14239 /* 14240 * This is malformed DOF; chuck any anonymous state 14241 * that we created. 14242 */ 14243 ASSERT(dtrace_anon.dta_enabling == NULL); 14244 dtrace_state_destroy(state); 14245 dtrace_anon.dta_state = NULL; 14246 break; 14247 } 14248 14249 ASSERT(dtrace_anon.dta_enabling != NULL); 14250 } 14251 14252 if (dtrace_anon.dta_enabling != NULL) { 14253 int rval; 14254 14255 /* 14256 * dtrace_enabling_retain() can only fail because we are 14257 * trying to retain more enablings than are allowed -- but 14258 * we only have one anonymous enabling, and we are guaranteed 14259 * to be allowed at least one retained enabling; we assert 14260 * that dtrace_enabling_retain() returns success. 14261 */ 14262 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14263 ASSERT(rval == 0); 14264 14265 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14266 } 14267 } 14268 14269 /* 14270 * DTrace Helper Functions 14271 */ 14272 static void 14273 dtrace_helper_trace(dtrace_helper_action_t *helper, 14274 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14275 { 14276 uint32_t size, next, nnext, i; 14277 dtrace_helptrace_t *ent; 14278 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14279 14280 if (!dtrace_helptrace_enabled) 14281 return; 14282 14283 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14284 14285 /* 14286 * What would a tracing framework be without its own tracing 14287 * framework? (Well, a hell of a lot simpler, for starters...) 14288 */ 14289 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14290 sizeof (uint64_t) - sizeof (uint64_t); 14291 14292 /* 14293 * Iterate until we can allocate a slot in the trace buffer. 14294 */ 14295 do { 14296 next = dtrace_helptrace_next; 14297 14298 if (next + size < dtrace_helptrace_bufsize) { 14299 nnext = next + size; 14300 } else { 14301 nnext = size; 14302 } 14303 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14304 14305 /* 14306 * We have our slot; fill it in. 14307 */ 14308 if (nnext == size) 14309 next = 0; 14310 14311 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 14312 ent->dtht_helper = helper; 14313 ent->dtht_where = where; 14314 ent->dtht_nlocals = vstate->dtvs_nlocals; 14315 14316 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14317 mstate->dtms_fltoffs : -1; 14318 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14319 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14320 14321 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14322 dtrace_statvar_t *svar; 14323 14324 if ((svar = vstate->dtvs_locals[i]) == NULL) 14325 continue; 14326 14327 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14328 ent->dtht_locals[i] = 14329 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14330 } 14331 } 14332 14333 static uint64_t 14334 dtrace_helper(int which, dtrace_mstate_t *mstate, 14335 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14336 { 14337 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14338 uint64_t sarg0 = mstate->dtms_arg[0]; 14339 uint64_t sarg1 = mstate->dtms_arg[1]; 14340 uint64_t rval; 14341 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14342 dtrace_helper_action_t *helper; 14343 dtrace_vstate_t *vstate; 14344 dtrace_difo_t *pred; 14345 int i, trace = dtrace_helptrace_enabled; 14346 14347 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14348 14349 if (helpers == NULL) 14350 return (0); 14351 14352 if ((helper = helpers->dthps_actions[which]) == NULL) 14353 return (0); 14354 14355 vstate = &helpers->dthps_vstate; 14356 mstate->dtms_arg[0] = arg0; 14357 mstate->dtms_arg[1] = arg1; 14358 14359 /* 14360 * Now iterate over each helper. If its predicate evaluates to 'true', 14361 * we'll call the corresponding actions. Note that the below calls 14362 * to dtrace_dif_emulate() may set faults in machine state. This is 14363 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14364 * the stored DIF offset with its own (which is the desired behavior). 14365 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14366 * from machine state; this is okay, too. 14367 */ 14368 for (; helper != NULL; helper = helper->dtha_next) { 14369 if ((pred = helper->dtha_predicate) != NULL) { 14370 if (trace) 14371 dtrace_helper_trace(helper, mstate, vstate, 0); 14372 14373 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14374 goto next; 14375 14376 if (*flags & CPU_DTRACE_FAULT) 14377 goto err; 14378 } 14379 14380 for (i = 0; i < helper->dtha_nactions; i++) { 14381 if (trace) 14382 dtrace_helper_trace(helper, 14383 mstate, vstate, i + 1); 14384 14385 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14386 mstate, vstate, state); 14387 14388 if (*flags & CPU_DTRACE_FAULT) 14389 goto err; 14390 } 14391 14392 next: 14393 if (trace) 14394 dtrace_helper_trace(helper, mstate, vstate, 14395 DTRACE_HELPTRACE_NEXT); 14396 } 14397 14398 if (trace) 14399 dtrace_helper_trace(helper, mstate, vstate, 14400 DTRACE_HELPTRACE_DONE); 14401 14402 /* 14403 * Restore the arg0 that we saved upon entry. 14404 */ 14405 mstate->dtms_arg[0] = sarg0; 14406 mstate->dtms_arg[1] = sarg1; 14407 14408 return (rval); 14409 14410 err: 14411 if (trace) 14412 dtrace_helper_trace(helper, mstate, vstate, 14413 DTRACE_HELPTRACE_ERR); 14414 14415 /* 14416 * Restore the arg0 that we saved upon entry. 14417 */ 14418 mstate->dtms_arg[0] = sarg0; 14419 mstate->dtms_arg[1] = sarg1; 14420 14421 return (NULL); 14422 } 14423 14424 static void 14425 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14426 dtrace_vstate_t *vstate) 14427 { 14428 int i; 14429 14430 if (helper->dtha_predicate != NULL) 14431 dtrace_difo_release(helper->dtha_predicate, vstate); 14432 14433 for (i = 0; i < helper->dtha_nactions; i++) { 14434 ASSERT(helper->dtha_actions[i] != NULL); 14435 dtrace_difo_release(helper->dtha_actions[i], vstate); 14436 } 14437 14438 kmem_free(helper->dtha_actions, 14439 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14440 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14441 } 14442 14443 static int 14444 dtrace_helper_destroygen(int gen) 14445 { 14446 proc_t *p = curproc; 14447 dtrace_helpers_t *help = p->p_dtrace_helpers; 14448 dtrace_vstate_t *vstate; 14449 int i; 14450 14451 ASSERT(MUTEX_HELD(&dtrace_lock)); 14452 14453 if (help == NULL || gen > help->dthps_generation) 14454 return (EINVAL); 14455 14456 vstate = &help->dthps_vstate; 14457 14458 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14459 dtrace_helper_action_t *last = NULL, *h, *next; 14460 14461 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14462 next = h->dtha_next; 14463 14464 if (h->dtha_generation == gen) { 14465 if (last != NULL) { 14466 last->dtha_next = next; 14467 } else { 14468 help->dthps_actions[i] = next; 14469 } 14470 14471 dtrace_helper_action_destroy(h, vstate); 14472 } else { 14473 last = h; 14474 } 14475 } 14476 } 14477 14478 /* 14479 * Interate until we've cleared out all helper providers with the 14480 * given generation number. 14481 */ 14482 for (;;) { 14483 dtrace_helper_provider_t *prov; 14484 14485 /* 14486 * Look for a helper provider with the right generation. We 14487 * have to start back at the beginning of the list each time 14488 * because we drop dtrace_lock. It's unlikely that we'll make 14489 * more than two passes. 14490 */ 14491 for (i = 0; i < help->dthps_nprovs; i++) { 14492 prov = help->dthps_provs[i]; 14493 14494 if (prov->dthp_generation == gen) 14495 break; 14496 } 14497 14498 /* 14499 * If there were no matches, we're done. 14500 */ 14501 if (i == help->dthps_nprovs) 14502 break; 14503 14504 /* 14505 * Move the last helper provider into this slot. 14506 */ 14507 help->dthps_nprovs--; 14508 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14509 help->dthps_provs[help->dthps_nprovs] = NULL; 14510 14511 mutex_exit(&dtrace_lock); 14512 14513 /* 14514 * If we have a meta provider, remove this helper provider. 14515 */ 14516 mutex_enter(&dtrace_meta_lock); 14517 if (dtrace_meta_pid != NULL) { 14518 ASSERT(dtrace_deferred_pid == NULL); 14519 dtrace_helper_provider_remove(&prov->dthp_prov, 14520 p->p_pid); 14521 } 14522 mutex_exit(&dtrace_meta_lock); 14523 14524 dtrace_helper_provider_destroy(prov); 14525 14526 mutex_enter(&dtrace_lock); 14527 } 14528 14529 return (0); 14530 } 14531 14532 static int 14533 dtrace_helper_validate(dtrace_helper_action_t *helper) 14534 { 14535 int err = 0, i; 14536 dtrace_difo_t *dp; 14537 14538 if ((dp = helper->dtha_predicate) != NULL) 14539 err += dtrace_difo_validate_helper(dp); 14540 14541 for (i = 0; i < helper->dtha_nactions; i++) 14542 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14543 14544 return (err == 0); 14545 } 14546 14547 static int 14548 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14549 { 14550 dtrace_helpers_t *help; 14551 dtrace_helper_action_t *helper, *last; 14552 dtrace_actdesc_t *act; 14553 dtrace_vstate_t *vstate; 14554 dtrace_predicate_t *pred; 14555 int count = 0, nactions = 0, i; 14556 14557 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14558 return (EINVAL); 14559 14560 help = curproc->p_dtrace_helpers; 14561 last = help->dthps_actions[which]; 14562 vstate = &help->dthps_vstate; 14563 14564 for (count = 0; last != NULL; last = last->dtha_next) { 14565 count++; 14566 if (last->dtha_next == NULL) 14567 break; 14568 } 14569 14570 /* 14571 * If we already have dtrace_helper_actions_max helper actions for this 14572 * helper action type, we'll refuse to add a new one. 14573 */ 14574 if (count >= dtrace_helper_actions_max) 14575 return (ENOSPC); 14576 14577 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14578 helper->dtha_generation = help->dthps_generation; 14579 14580 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14581 ASSERT(pred->dtp_difo != NULL); 14582 dtrace_difo_hold(pred->dtp_difo); 14583 helper->dtha_predicate = pred->dtp_difo; 14584 } 14585 14586 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14587 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14588 goto err; 14589 14590 if (act->dtad_difo == NULL) 14591 goto err; 14592 14593 nactions++; 14594 } 14595 14596 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14597 (helper->dtha_nactions = nactions), KM_SLEEP); 14598 14599 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14600 dtrace_difo_hold(act->dtad_difo); 14601 helper->dtha_actions[i++] = act->dtad_difo; 14602 } 14603 14604 if (!dtrace_helper_validate(helper)) 14605 goto err; 14606 14607 if (last == NULL) { 14608 help->dthps_actions[which] = helper; 14609 } else { 14610 last->dtha_next = helper; 14611 } 14612 14613 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14614 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14615 dtrace_helptrace_next = 0; 14616 } 14617 14618 return (0); 14619 err: 14620 dtrace_helper_action_destroy(helper, vstate); 14621 return (EINVAL); 14622 } 14623 14624 static void 14625 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14626 dof_helper_t *dofhp) 14627 { 14628 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14629 14630 mutex_enter(&dtrace_meta_lock); 14631 mutex_enter(&dtrace_lock); 14632 14633 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14634 /* 14635 * If the dtrace module is loaded but not attached, or if 14636 * there aren't isn't a meta provider registered to deal with 14637 * these provider descriptions, we need to postpone creating 14638 * the actual providers until later. 14639 */ 14640 14641 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14642 dtrace_deferred_pid != help) { 14643 help->dthps_deferred = 1; 14644 help->dthps_pid = p->p_pid; 14645 help->dthps_next = dtrace_deferred_pid; 14646 help->dthps_prev = NULL; 14647 if (dtrace_deferred_pid != NULL) 14648 dtrace_deferred_pid->dthps_prev = help; 14649 dtrace_deferred_pid = help; 14650 } 14651 14652 mutex_exit(&dtrace_lock); 14653 14654 } else if (dofhp != NULL) { 14655 /* 14656 * If the dtrace module is loaded and we have a particular 14657 * helper provider description, pass that off to the 14658 * meta provider. 14659 */ 14660 14661 mutex_exit(&dtrace_lock); 14662 14663 dtrace_helper_provide(dofhp, p->p_pid); 14664 14665 } else { 14666 /* 14667 * Otherwise, just pass all the helper provider descriptions 14668 * off to the meta provider. 14669 */ 14670 14671 int i; 14672 mutex_exit(&dtrace_lock); 14673 14674 for (i = 0; i < help->dthps_nprovs; i++) { 14675 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14676 p->p_pid); 14677 } 14678 } 14679 14680 mutex_exit(&dtrace_meta_lock); 14681 } 14682 14683 static int 14684 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14685 { 14686 dtrace_helpers_t *help; 14687 dtrace_helper_provider_t *hprov, **tmp_provs; 14688 uint_t tmp_maxprovs, i; 14689 14690 ASSERT(MUTEX_HELD(&dtrace_lock)); 14691 14692 help = curproc->p_dtrace_helpers; 14693 ASSERT(help != NULL); 14694 14695 /* 14696 * If we already have dtrace_helper_providers_max helper providers, 14697 * we're refuse to add a new one. 14698 */ 14699 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14700 return (ENOSPC); 14701 14702 /* 14703 * Check to make sure this isn't a duplicate. 14704 */ 14705 for (i = 0; i < help->dthps_nprovs; i++) { 14706 if (dofhp->dofhp_dof == 14707 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14708 return (EALREADY); 14709 } 14710 14711 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14712 hprov->dthp_prov = *dofhp; 14713 hprov->dthp_ref = 1; 14714 hprov->dthp_generation = gen; 14715 14716 /* 14717 * Allocate a bigger table for helper providers if it's already full. 14718 */ 14719 if (help->dthps_maxprovs == help->dthps_nprovs) { 14720 tmp_maxprovs = help->dthps_maxprovs; 14721 tmp_provs = help->dthps_provs; 14722 14723 if (help->dthps_maxprovs == 0) 14724 help->dthps_maxprovs = 2; 14725 else 14726 help->dthps_maxprovs *= 2; 14727 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14728 help->dthps_maxprovs = dtrace_helper_providers_max; 14729 14730 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14731 14732 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14733 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14734 14735 if (tmp_provs != NULL) { 14736 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14737 sizeof (dtrace_helper_provider_t *)); 14738 kmem_free(tmp_provs, tmp_maxprovs * 14739 sizeof (dtrace_helper_provider_t *)); 14740 } 14741 } 14742 14743 help->dthps_provs[help->dthps_nprovs] = hprov; 14744 help->dthps_nprovs++; 14745 14746 return (0); 14747 } 14748 14749 static void 14750 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14751 { 14752 mutex_enter(&dtrace_lock); 14753 14754 if (--hprov->dthp_ref == 0) { 14755 dof_hdr_t *dof; 14756 mutex_exit(&dtrace_lock); 14757 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14758 dtrace_dof_destroy(dof); 14759 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14760 } else { 14761 mutex_exit(&dtrace_lock); 14762 } 14763 } 14764 14765 static int 14766 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14767 { 14768 uintptr_t daddr = (uintptr_t)dof; 14769 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14770 dof_provider_t *provider; 14771 dof_probe_t *probe; 14772 uint8_t *arg; 14773 char *strtab, *typestr; 14774 dof_stridx_t typeidx; 14775 size_t typesz; 14776 uint_t nprobes, j, k; 14777 14778 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14779 14780 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14781 dtrace_dof_error(dof, "misaligned section offset"); 14782 return (-1); 14783 } 14784 14785 /* 14786 * The section needs to be large enough to contain the DOF provider 14787 * structure appropriate for the given version. 14788 */ 14789 if (sec->dofs_size < 14790 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14791 offsetof(dof_provider_t, dofpv_prenoffs) : 14792 sizeof (dof_provider_t))) { 14793 dtrace_dof_error(dof, "provider section too small"); 14794 return (-1); 14795 } 14796 14797 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14798 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14799 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14800 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14801 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14802 14803 if (str_sec == NULL || prb_sec == NULL || 14804 arg_sec == NULL || off_sec == NULL) 14805 return (-1); 14806 14807 enoff_sec = NULL; 14808 14809 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14810 provider->dofpv_prenoffs != DOF_SECT_NONE && 14811 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14812 provider->dofpv_prenoffs)) == NULL) 14813 return (-1); 14814 14815 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14816 14817 if (provider->dofpv_name >= str_sec->dofs_size || 14818 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14819 dtrace_dof_error(dof, "invalid provider name"); 14820 return (-1); 14821 } 14822 14823 if (prb_sec->dofs_entsize == 0 || 14824 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14825 dtrace_dof_error(dof, "invalid entry size"); 14826 return (-1); 14827 } 14828 14829 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14830 dtrace_dof_error(dof, "misaligned entry size"); 14831 return (-1); 14832 } 14833 14834 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14835 dtrace_dof_error(dof, "invalid entry size"); 14836 return (-1); 14837 } 14838 14839 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14840 dtrace_dof_error(dof, "misaligned section offset"); 14841 return (-1); 14842 } 14843 14844 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14845 dtrace_dof_error(dof, "invalid entry size"); 14846 return (-1); 14847 } 14848 14849 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14850 14851 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14852 14853 /* 14854 * Take a pass through the probes to check for errors. 14855 */ 14856 for (j = 0; j < nprobes; j++) { 14857 probe = (dof_probe_t *)(uintptr_t)(daddr + 14858 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14859 14860 if (probe->dofpr_func >= str_sec->dofs_size) { 14861 dtrace_dof_error(dof, "invalid function name"); 14862 return (-1); 14863 } 14864 14865 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14866 dtrace_dof_error(dof, "function name too long"); 14867 return (-1); 14868 } 14869 14870 if (probe->dofpr_name >= str_sec->dofs_size || 14871 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14872 dtrace_dof_error(dof, "invalid probe name"); 14873 return (-1); 14874 } 14875 14876 /* 14877 * The offset count must not wrap the index, and the offsets 14878 * must also not overflow the section's data. 14879 */ 14880 if (probe->dofpr_offidx + probe->dofpr_noffs < 14881 probe->dofpr_offidx || 14882 (probe->dofpr_offidx + probe->dofpr_noffs) * 14883 off_sec->dofs_entsize > off_sec->dofs_size) { 14884 dtrace_dof_error(dof, "invalid probe offset"); 14885 return (-1); 14886 } 14887 14888 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14889 /* 14890 * If there's no is-enabled offset section, make sure 14891 * there aren't any is-enabled offsets. Otherwise 14892 * perform the same checks as for probe offsets 14893 * (immediately above). 14894 */ 14895 if (enoff_sec == NULL) { 14896 if (probe->dofpr_enoffidx != 0 || 14897 probe->dofpr_nenoffs != 0) { 14898 dtrace_dof_error(dof, "is-enabled " 14899 "offsets with null section"); 14900 return (-1); 14901 } 14902 } else if (probe->dofpr_enoffidx + 14903 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14904 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14905 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14906 dtrace_dof_error(dof, "invalid is-enabled " 14907 "offset"); 14908 return (-1); 14909 } 14910 14911 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14912 dtrace_dof_error(dof, "zero probe and " 14913 "is-enabled offsets"); 14914 return (-1); 14915 } 14916 } else if (probe->dofpr_noffs == 0) { 14917 dtrace_dof_error(dof, "zero probe offsets"); 14918 return (-1); 14919 } 14920 14921 if (probe->dofpr_argidx + probe->dofpr_xargc < 14922 probe->dofpr_argidx || 14923 (probe->dofpr_argidx + probe->dofpr_xargc) * 14924 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14925 dtrace_dof_error(dof, "invalid args"); 14926 return (-1); 14927 } 14928 14929 typeidx = probe->dofpr_nargv; 14930 typestr = strtab + probe->dofpr_nargv; 14931 for (k = 0; k < probe->dofpr_nargc; k++) { 14932 if (typeidx >= str_sec->dofs_size) { 14933 dtrace_dof_error(dof, "bad " 14934 "native argument type"); 14935 return (-1); 14936 } 14937 14938 typesz = strlen(typestr) + 1; 14939 if (typesz > DTRACE_ARGTYPELEN) { 14940 dtrace_dof_error(dof, "native " 14941 "argument type too long"); 14942 return (-1); 14943 } 14944 typeidx += typesz; 14945 typestr += typesz; 14946 } 14947 14948 typeidx = probe->dofpr_xargv; 14949 typestr = strtab + probe->dofpr_xargv; 14950 for (k = 0; k < probe->dofpr_xargc; k++) { 14951 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14952 dtrace_dof_error(dof, "bad " 14953 "native argument index"); 14954 return (-1); 14955 } 14956 14957 if (typeidx >= str_sec->dofs_size) { 14958 dtrace_dof_error(dof, "bad " 14959 "translated argument type"); 14960 return (-1); 14961 } 14962 14963 typesz = strlen(typestr) + 1; 14964 if (typesz > DTRACE_ARGTYPELEN) { 14965 dtrace_dof_error(dof, "translated argument " 14966 "type too long"); 14967 return (-1); 14968 } 14969 14970 typeidx += typesz; 14971 typestr += typesz; 14972 } 14973 } 14974 14975 return (0); 14976 } 14977 14978 static int 14979 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14980 { 14981 dtrace_helpers_t *help; 14982 dtrace_vstate_t *vstate; 14983 dtrace_enabling_t *enab = NULL; 14984 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14985 uintptr_t daddr = (uintptr_t)dof; 14986 14987 ASSERT(MUTEX_HELD(&dtrace_lock)); 14988 14989 if ((help = curproc->p_dtrace_helpers) == NULL) 14990 help = dtrace_helpers_create(curproc); 14991 14992 vstate = &help->dthps_vstate; 14993 14994 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14995 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14996 dtrace_dof_destroy(dof); 14997 return (rv); 14998 } 14999 15000 /* 15001 * Look for helper providers and validate their descriptions. 15002 */ 15003 if (dhp != NULL) { 15004 for (i = 0; i < dof->dofh_secnum; i++) { 15005 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15006 dof->dofh_secoff + i * dof->dofh_secsize); 15007 15008 if (sec->dofs_type != DOF_SECT_PROVIDER) 15009 continue; 15010 15011 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15012 dtrace_enabling_destroy(enab); 15013 dtrace_dof_destroy(dof); 15014 return (-1); 15015 } 15016 15017 nprovs++; 15018 } 15019 } 15020 15021 /* 15022 * Now we need to walk through the ECB descriptions in the enabling. 15023 */ 15024 for (i = 0; i < enab->dten_ndesc; i++) { 15025 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15026 dtrace_probedesc_t *desc = &ep->dted_probe; 15027 15028 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15029 continue; 15030 15031 if (strcmp(desc->dtpd_mod, "helper") != 0) 15032 continue; 15033 15034 if (strcmp(desc->dtpd_func, "ustack") != 0) 15035 continue; 15036 15037 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15038 ep)) != 0) { 15039 /* 15040 * Adding this helper action failed -- we are now going 15041 * to rip out the entire generation and return failure. 15042 */ 15043 (void) dtrace_helper_destroygen(help->dthps_generation); 15044 dtrace_enabling_destroy(enab); 15045 dtrace_dof_destroy(dof); 15046 return (-1); 15047 } 15048 15049 nhelpers++; 15050 } 15051 15052 if (nhelpers < enab->dten_ndesc) 15053 dtrace_dof_error(dof, "unmatched helpers"); 15054 15055 gen = help->dthps_generation++; 15056 dtrace_enabling_destroy(enab); 15057 15058 if (dhp != NULL && nprovs > 0) { 15059 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15060 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15061 mutex_exit(&dtrace_lock); 15062 dtrace_helper_provider_register(curproc, help, dhp); 15063 mutex_enter(&dtrace_lock); 15064 15065 destroy = 0; 15066 } 15067 } 15068 15069 if (destroy) 15070 dtrace_dof_destroy(dof); 15071 15072 return (gen); 15073 } 15074 15075 static dtrace_helpers_t * 15076 dtrace_helpers_create(proc_t *p) 15077 { 15078 dtrace_helpers_t *help; 15079 15080 ASSERT(MUTEX_HELD(&dtrace_lock)); 15081 ASSERT(p->p_dtrace_helpers == NULL); 15082 15083 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15084 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15085 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15086 15087 p->p_dtrace_helpers = help; 15088 dtrace_helpers++; 15089 15090 return (help); 15091 } 15092 15093 static void 15094 dtrace_helpers_destroy(void) 15095 { 15096 dtrace_helpers_t *help; 15097 dtrace_vstate_t *vstate; 15098 proc_t *p = curproc; 15099 int i; 15100 15101 mutex_enter(&dtrace_lock); 15102 15103 ASSERT(p->p_dtrace_helpers != NULL); 15104 ASSERT(dtrace_helpers > 0); 15105 15106 help = p->p_dtrace_helpers; 15107 vstate = &help->dthps_vstate; 15108 15109 /* 15110 * We're now going to lose the help from this process. 15111 */ 15112 p->p_dtrace_helpers = NULL; 15113 dtrace_sync(); 15114 15115 /* 15116 * Destory the helper actions. 15117 */ 15118 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15119 dtrace_helper_action_t *h, *next; 15120 15121 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15122 next = h->dtha_next; 15123 dtrace_helper_action_destroy(h, vstate); 15124 h = next; 15125 } 15126 } 15127 15128 mutex_exit(&dtrace_lock); 15129 15130 /* 15131 * Destroy the helper providers. 15132 */ 15133 if (help->dthps_maxprovs > 0) { 15134 mutex_enter(&dtrace_meta_lock); 15135 if (dtrace_meta_pid != NULL) { 15136 ASSERT(dtrace_deferred_pid == NULL); 15137 15138 for (i = 0; i < help->dthps_nprovs; i++) { 15139 dtrace_helper_provider_remove( 15140 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15141 } 15142 } else { 15143 mutex_enter(&dtrace_lock); 15144 ASSERT(help->dthps_deferred == 0 || 15145 help->dthps_next != NULL || 15146 help->dthps_prev != NULL || 15147 help == dtrace_deferred_pid); 15148 15149 /* 15150 * Remove the helper from the deferred list. 15151 */ 15152 if (help->dthps_next != NULL) 15153 help->dthps_next->dthps_prev = help->dthps_prev; 15154 if (help->dthps_prev != NULL) 15155 help->dthps_prev->dthps_next = help->dthps_next; 15156 if (dtrace_deferred_pid == help) { 15157 dtrace_deferred_pid = help->dthps_next; 15158 ASSERT(help->dthps_prev == NULL); 15159 } 15160 15161 mutex_exit(&dtrace_lock); 15162 } 15163 15164 mutex_exit(&dtrace_meta_lock); 15165 15166 for (i = 0; i < help->dthps_nprovs; i++) { 15167 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15168 } 15169 15170 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15171 sizeof (dtrace_helper_provider_t *)); 15172 } 15173 15174 mutex_enter(&dtrace_lock); 15175 15176 dtrace_vstate_fini(&help->dthps_vstate); 15177 kmem_free(help->dthps_actions, 15178 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15179 kmem_free(help, sizeof (dtrace_helpers_t)); 15180 15181 --dtrace_helpers; 15182 mutex_exit(&dtrace_lock); 15183 } 15184 15185 static void 15186 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15187 { 15188 dtrace_helpers_t *help, *newhelp; 15189 dtrace_helper_action_t *helper, *new, *last; 15190 dtrace_difo_t *dp; 15191 dtrace_vstate_t *vstate; 15192 int i, j, sz, hasprovs = 0; 15193 15194 mutex_enter(&dtrace_lock); 15195 ASSERT(from->p_dtrace_helpers != NULL); 15196 ASSERT(dtrace_helpers > 0); 15197 15198 help = from->p_dtrace_helpers; 15199 newhelp = dtrace_helpers_create(to); 15200 ASSERT(to->p_dtrace_helpers != NULL); 15201 15202 newhelp->dthps_generation = help->dthps_generation; 15203 vstate = &newhelp->dthps_vstate; 15204 15205 /* 15206 * Duplicate the helper actions. 15207 */ 15208 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15209 if ((helper = help->dthps_actions[i]) == NULL) 15210 continue; 15211 15212 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15213 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15214 KM_SLEEP); 15215 new->dtha_generation = helper->dtha_generation; 15216 15217 if ((dp = helper->dtha_predicate) != NULL) { 15218 dp = dtrace_difo_duplicate(dp, vstate); 15219 new->dtha_predicate = dp; 15220 } 15221 15222 new->dtha_nactions = helper->dtha_nactions; 15223 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15224 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15225 15226 for (j = 0; j < new->dtha_nactions; j++) { 15227 dtrace_difo_t *dp = helper->dtha_actions[j]; 15228 15229 ASSERT(dp != NULL); 15230 dp = dtrace_difo_duplicate(dp, vstate); 15231 new->dtha_actions[j] = dp; 15232 } 15233 15234 if (last != NULL) { 15235 last->dtha_next = new; 15236 } else { 15237 newhelp->dthps_actions[i] = new; 15238 } 15239 15240 last = new; 15241 } 15242 } 15243 15244 /* 15245 * Duplicate the helper providers and register them with the 15246 * DTrace framework. 15247 */ 15248 if (help->dthps_nprovs > 0) { 15249 newhelp->dthps_nprovs = help->dthps_nprovs; 15250 newhelp->dthps_maxprovs = help->dthps_nprovs; 15251 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15252 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15253 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15254 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15255 newhelp->dthps_provs[i]->dthp_ref++; 15256 } 15257 15258 hasprovs = 1; 15259 } 15260 15261 mutex_exit(&dtrace_lock); 15262 15263 if (hasprovs) 15264 dtrace_helper_provider_register(to, newhelp, NULL); 15265 } 15266 15267 /* 15268 * DTrace Hook Functions 15269 */ 15270 static void 15271 dtrace_module_loaded(struct modctl *ctl) 15272 { 15273 dtrace_provider_t *prv; 15274 15275 mutex_enter(&dtrace_provider_lock); 15276 mutex_enter(&mod_lock); 15277 15278 ASSERT(ctl->mod_busy); 15279 15280 /* 15281 * We're going to call each providers per-module provide operation 15282 * specifying only this module. 15283 */ 15284 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15285 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15286 15287 mutex_exit(&mod_lock); 15288 mutex_exit(&dtrace_provider_lock); 15289 15290 /* 15291 * If we have any retained enablings, we need to match against them. 15292 * Enabling probes requires that cpu_lock be held, and we cannot hold 15293 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15294 * module. (In particular, this happens when loading scheduling 15295 * classes.) So if we have any retained enablings, we need to dispatch 15296 * our task queue to do the match for us. 15297 */ 15298 mutex_enter(&dtrace_lock); 15299 15300 if (dtrace_retained == NULL) { 15301 mutex_exit(&dtrace_lock); 15302 return; 15303 } 15304 15305 (void) taskq_dispatch(dtrace_taskq, 15306 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15307 15308 mutex_exit(&dtrace_lock); 15309 15310 /* 15311 * And now, for a little heuristic sleaze: in general, we want to 15312 * match modules as soon as they load. However, we cannot guarantee 15313 * this, because it would lead us to the lock ordering violation 15314 * outlined above. The common case, of course, is that cpu_lock is 15315 * _not_ held -- so we delay here for a clock tick, hoping that that's 15316 * long enough for the task queue to do its work. If it's not, it's 15317 * not a serious problem -- it just means that the module that we 15318 * just loaded may not be immediately instrumentable. 15319 */ 15320 delay(1); 15321 } 15322 15323 static void 15324 dtrace_module_unloaded(struct modctl *ctl) 15325 { 15326 dtrace_probe_t template, *probe, *first, *next; 15327 dtrace_provider_t *prov; 15328 15329 template.dtpr_mod = ctl->mod_modname; 15330 15331 mutex_enter(&dtrace_provider_lock); 15332 mutex_enter(&mod_lock); 15333 mutex_enter(&dtrace_lock); 15334 15335 if (dtrace_bymod == NULL) { 15336 /* 15337 * The DTrace module is loaded (obviously) but not attached; 15338 * we don't have any work to do. 15339 */ 15340 mutex_exit(&dtrace_provider_lock); 15341 mutex_exit(&mod_lock); 15342 mutex_exit(&dtrace_lock); 15343 return; 15344 } 15345 15346 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15347 probe != NULL; probe = probe->dtpr_nextmod) { 15348 if (probe->dtpr_ecb != NULL) { 15349 mutex_exit(&dtrace_provider_lock); 15350 mutex_exit(&mod_lock); 15351 mutex_exit(&dtrace_lock); 15352 15353 /* 15354 * This shouldn't _actually_ be possible -- we're 15355 * unloading a module that has an enabled probe in it. 15356 * (It's normally up to the provider to make sure that 15357 * this can't happen.) However, because dtps_enable() 15358 * doesn't have a failure mode, there can be an 15359 * enable/unload race. Upshot: we don't want to 15360 * assert, but we're not going to disable the 15361 * probe, either. 15362 */ 15363 if (dtrace_err_verbose) { 15364 cmn_err(CE_WARN, "unloaded module '%s' had " 15365 "enabled probes", ctl->mod_modname); 15366 } 15367 15368 return; 15369 } 15370 } 15371 15372 probe = first; 15373 15374 for (first = NULL; probe != NULL; probe = next) { 15375 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15376 15377 dtrace_probes[probe->dtpr_id - 1] = NULL; 15378 15379 next = probe->dtpr_nextmod; 15380 dtrace_hash_remove(dtrace_bymod, probe); 15381 dtrace_hash_remove(dtrace_byfunc, probe); 15382 dtrace_hash_remove(dtrace_byname, probe); 15383 15384 if (first == NULL) { 15385 first = probe; 15386 probe->dtpr_nextmod = NULL; 15387 } else { 15388 probe->dtpr_nextmod = first; 15389 first = probe; 15390 } 15391 } 15392 15393 /* 15394 * We've removed all of the module's probes from the hash chains and 15395 * from the probe array. Now issue a dtrace_sync() to be sure that 15396 * everyone has cleared out from any probe array processing. 15397 */ 15398 dtrace_sync(); 15399 15400 for (probe = first; probe != NULL; probe = first) { 15401 first = probe->dtpr_nextmod; 15402 prov = probe->dtpr_provider; 15403 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15404 probe->dtpr_arg); 15405 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15406 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15407 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15408 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15409 kmem_free(probe, sizeof (dtrace_probe_t)); 15410 } 15411 15412 mutex_exit(&dtrace_lock); 15413 mutex_exit(&mod_lock); 15414 mutex_exit(&dtrace_provider_lock); 15415 } 15416 15417 void 15418 dtrace_suspend(void) 15419 { 15420 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15421 } 15422 15423 void 15424 dtrace_resume(void) 15425 { 15426 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15427 } 15428 15429 static int 15430 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15431 { 15432 ASSERT(MUTEX_HELD(&cpu_lock)); 15433 mutex_enter(&dtrace_lock); 15434 15435 switch (what) { 15436 case CPU_CONFIG: { 15437 dtrace_state_t *state; 15438 dtrace_optval_t *opt, rs, c; 15439 15440 /* 15441 * For now, we only allocate a new buffer for anonymous state. 15442 */ 15443 if ((state = dtrace_anon.dta_state) == NULL) 15444 break; 15445 15446 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15447 break; 15448 15449 opt = state->dts_options; 15450 c = opt[DTRACEOPT_CPU]; 15451 15452 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15453 break; 15454 15455 /* 15456 * Regardless of what the actual policy is, we're going to 15457 * temporarily set our resize policy to be manual. We're 15458 * also going to temporarily set our CPU option to denote 15459 * the newly configured CPU. 15460 */ 15461 rs = opt[DTRACEOPT_BUFRESIZE]; 15462 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15463 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15464 15465 (void) dtrace_state_buffers(state); 15466 15467 opt[DTRACEOPT_BUFRESIZE] = rs; 15468 opt[DTRACEOPT_CPU] = c; 15469 15470 break; 15471 } 15472 15473 case CPU_UNCONFIG: 15474 /* 15475 * We don't free the buffer in the CPU_UNCONFIG case. (The 15476 * buffer will be freed when the consumer exits.) 15477 */ 15478 break; 15479 15480 default: 15481 break; 15482 } 15483 15484 mutex_exit(&dtrace_lock); 15485 return (0); 15486 } 15487 15488 static void 15489 dtrace_cpu_setup_initial(processorid_t cpu) 15490 { 15491 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15492 } 15493 15494 static void 15495 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15496 { 15497 if (dtrace_toxranges >= dtrace_toxranges_max) { 15498 int osize, nsize; 15499 dtrace_toxrange_t *range; 15500 15501 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15502 15503 if (osize == 0) { 15504 ASSERT(dtrace_toxrange == NULL); 15505 ASSERT(dtrace_toxranges_max == 0); 15506 dtrace_toxranges_max = 1; 15507 } else { 15508 dtrace_toxranges_max <<= 1; 15509 } 15510 15511 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15512 range = kmem_zalloc(nsize, KM_SLEEP); 15513 15514 if (dtrace_toxrange != NULL) { 15515 ASSERT(osize != 0); 15516 bcopy(dtrace_toxrange, range, osize); 15517 kmem_free(dtrace_toxrange, osize); 15518 } 15519 15520 dtrace_toxrange = range; 15521 } 15522 15523 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15524 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15525 15526 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15527 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15528 dtrace_toxranges++; 15529 } 15530 15531 static void 15532 dtrace_getf_barrier() 15533 { 15534 /* 15535 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15536 * that contain calls to getf(), this routine will be called on every 15537 * closef() before either the underlying vnode is released or the 15538 * file_t itself is freed. By the time we are here, it is essential 15539 * that the file_t can no longer be accessed from a call to getf() 15540 * in probe context -- that assures that a dtrace_sync() can be used 15541 * to clear out any enablings referring to the old structures. 15542 */ 15543 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15544 kcred->cr_zone->zone_dtrace_getf != 0) 15545 dtrace_sync(); 15546 } 15547 15548 /* 15549 * DTrace Driver Cookbook Functions 15550 */ 15551 /*ARGSUSED*/ 15552 static int 15553 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15554 { 15555 dtrace_provider_id_t id; 15556 dtrace_state_t *state = NULL; 15557 dtrace_enabling_t *enab; 15558 15559 mutex_enter(&cpu_lock); 15560 mutex_enter(&dtrace_provider_lock); 15561 mutex_enter(&dtrace_lock); 15562 15563 if (ddi_soft_state_init(&dtrace_softstate, 15564 sizeof (dtrace_state_t), 0) != 0) { 15565 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15566 mutex_exit(&cpu_lock); 15567 mutex_exit(&dtrace_provider_lock); 15568 mutex_exit(&dtrace_lock); 15569 return (DDI_FAILURE); 15570 } 15571 15572 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15573 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15574 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15575 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15576 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15577 ddi_remove_minor_node(devi, NULL); 15578 ddi_soft_state_fini(&dtrace_softstate); 15579 mutex_exit(&cpu_lock); 15580 mutex_exit(&dtrace_provider_lock); 15581 mutex_exit(&dtrace_lock); 15582 return (DDI_FAILURE); 15583 } 15584 15585 ddi_report_dev(devi); 15586 dtrace_devi = devi; 15587 15588 dtrace_modload = dtrace_module_loaded; 15589 dtrace_modunload = dtrace_module_unloaded; 15590 dtrace_cpu_init = dtrace_cpu_setup_initial; 15591 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15592 dtrace_helpers_fork = dtrace_helpers_duplicate; 15593 dtrace_cpustart_init = dtrace_suspend; 15594 dtrace_cpustart_fini = dtrace_resume; 15595 dtrace_debugger_init = dtrace_suspend; 15596 dtrace_debugger_fini = dtrace_resume; 15597 15598 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15599 15600 ASSERT(MUTEX_HELD(&cpu_lock)); 15601 15602 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15603 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15604 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15605 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15606 VM_SLEEP | VMC_IDENTIFIER); 15607 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15608 1, INT_MAX, 0); 15609 15610 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15611 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15612 NULL, NULL, NULL, NULL, NULL, 0); 15613 15614 ASSERT(MUTEX_HELD(&cpu_lock)); 15615 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15616 offsetof(dtrace_probe_t, dtpr_nextmod), 15617 offsetof(dtrace_probe_t, dtpr_prevmod)); 15618 15619 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15620 offsetof(dtrace_probe_t, dtpr_nextfunc), 15621 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15622 15623 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15624 offsetof(dtrace_probe_t, dtpr_nextname), 15625 offsetof(dtrace_probe_t, dtpr_prevname)); 15626 15627 if (dtrace_retain_max < 1) { 15628 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15629 "setting to 1", dtrace_retain_max); 15630 dtrace_retain_max = 1; 15631 } 15632 15633 /* 15634 * Now discover our toxic ranges. 15635 */ 15636 dtrace_toxic_ranges(dtrace_toxrange_add); 15637 15638 /* 15639 * Before we register ourselves as a provider to our own framework, 15640 * we would like to assert that dtrace_provider is NULL -- but that's 15641 * not true if we were loaded as a dependency of a DTrace provider. 15642 * Once we've registered, we can assert that dtrace_provider is our 15643 * pseudo provider. 15644 */ 15645 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15646 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15647 15648 ASSERT(dtrace_provider != NULL); 15649 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15650 15651 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15652 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15653 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15654 dtrace_provider, NULL, NULL, "END", 0, NULL); 15655 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15656 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15657 15658 dtrace_anon_property(); 15659 mutex_exit(&cpu_lock); 15660 15661 /* 15662 * If DTrace helper tracing is enabled, we need to allocate the 15663 * trace buffer and initialize the values. 15664 */ 15665 if (dtrace_helptrace_enabled) { 15666 ASSERT(dtrace_helptrace_buffer == NULL); 15667 dtrace_helptrace_buffer = 15668 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15669 dtrace_helptrace_next = 0; 15670 } 15671 15672 /* 15673 * If there are already providers, we must ask them to provide their 15674 * probes, and then match any anonymous enabling against them. Note 15675 * that there should be no other retained enablings at this time: 15676 * the only retained enablings at this time should be the anonymous 15677 * enabling. 15678 */ 15679 if (dtrace_anon.dta_enabling != NULL) { 15680 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15681 15682 dtrace_enabling_provide(NULL); 15683 state = dtrace_anon.dta_state; 15684 15685 /* 15686 * We couldn't hold cpu_lock across the above call to 15687 * dtrace_enabling_provide(), but we must hold it to actually 15688 * enable the probes. We have to drop all of our locks, pick 15689 * up cpu_lock, and regain our locks before matching the 15690 * retained anonymous enabling. 15691 */ 15692 mutex_exit(&dtrace_lock); 15693 mutex_exit(&dtrace_provider_lock); 15694 15695 mutex_enter(&cpu_lock); 15696 mutex_enter(&dtrace_provider_lock); 15697 mutex_enter(&dtrace_lock); 15698 15699 if ((enab = dtrace_anon.dta_enabling) != NULL) 15700 (void) dtrace_enabling_match(enab, NULL); 15701 15702 mutex_exit(&cpu_lock); 15703 } 15704 15705 mutex_exit(&dtrace_lock); 15706 mutex_exit(&dtrace_provider_lock); 15707 15708 if (state != NULL) { 15709 /* 15710 * If we created any anonymous state, set it going now. 15711 */ 15712 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15713 } 15714 15715 return (DDI_SUCCESS); 15716 } 15717 15718 /*ARGSUSED*/ 15719 static int 15720 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15721 { 15722 dtrace_state_t *state; 15723 uint32_t priv; 15724 uid_t uid; 15725 zoneid_t zoneid; 15726 15727 if (getminor(*devp) == DTRACEMNRN_HELPER) 15728 return (0); 15729 15730 /* 15731 * If this wasn't an open with the "helper" minor, then it must be 15732 * the "dtrace" minor. 15733 */ 15734 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15735 return (ENXIO); 15736 15737 /* 15738 * If no DTRACE_PRIV_* bits are set in the credential, then the 15739 * caller lacks sufficient permission to do anything with DTrace. 15740 */ 15741 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15742 if (priv == DTRACE_PRIV_NONE) 15743 return (EACCES); 15744 15745 /* 15746 * Ask all providers to provide all their probes. 15747 */ 15748 mutex_enter(&dtrace_provider_lock); 15749 dtrace_probe_provide(NULL, NULL); 15750 mutex_exit(&dtrace_provider_lock); 15751 15752 mutex_enter(&cpu_lock); 15753 mutex_enter(&dtrace_lock); 15754 dtrace_opens++; 15755 dtrace_membar_producer(); 15756 15757 /* 15758 * If the kernel debugger is active (that is, if the kernel debugger 15759 * modified text in some way), we won't allow the open. 15760 */ 15761 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15762 dtrace_opens--; 15763 mutex_exit(&cpu_lock); 15764 mutex_exit(&dtrace_lock); 15765 return (EBUSY); 15766 } 15767 15768 state = dtrace_state_create(devp, cred_p); 15769 mutex_exit(&cpu_lock); 15770 15771 if (state == NULL) { 15772 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15773 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15774 mutex_exit(&dtrace_lock); 15775 return (EAGAIN); 15776 } 15777 15778 mutex_exit(&dtrace_lock); 15779 15780 return (0); 15781 } 15782 15783 /*ARGSUSED*/ 15784 static int 15785 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15786 { 15787 minor_t minor = getminor(dev); 15788 dtrace_state_t *state; 15789 15790 if (minor == DTRACEMNRN_HELPER) 15791 return (0); 15792 15793 state = ddi_get_soft_state(dtrace_softstate, minor); 15794 15795 mutex_enter(&cpu_lock); 15796 mutex_enter(&dtrace_lock); 15797 15798 if (state->dts_anon) { 15799 /* 15800 * There is anonymous state. Destroy that first. 15801 */ 15802 ASSERT(dtrace_anon.dta_state == NULL); 15803 dtrace_state_destroy(state->dts_anon); 15804 } 15805 15806 dtrace_state_destroy(state); 15807 ASSERT(dtrace_opens > 0); 15808 15809 /* 15810 * Only relinquish control of the kernel debugger interface when there 15811 * are no consumers and no anonymous enablings. 15812 */ 15813 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15814 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15815 15816 mutex_exit(&dtrace_lock); 15817 mutex_exit(&cpu_lock); 15818 15819 return (0); 15820 } 15821 15822 /*ARGSUSED*/ 15823 static int 15824 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15825 { 15826 int rval; 15827 dof_helper_t help, *dhp = NULL; 15828 15829 switch (cmd) { 15830 case DTRACEHIOC_ADDDOF: 15831 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15832 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15833 return (EFAULT); 15834 } 15835 15836 dhp = &help; 15837 arg = (intptr_t)help.dofhp_dof; 15838 /*FALLTHROUGH*/ 15839 15840 case DTRACEHIOC_ADD: { 15841 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15842 15843 if (dof == NULL) 15844 return (rval); 15845 15846 mutex_enter(&dtrace_lock); 15847 15848 /* 15849 * dtrace_helper_slurp() takes responsibility for the dof -- 15850 * it may free it now or it may save it and free it later. 15851 */ 15852 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15853 *rv = rval; 15854 rval = 0; 15855 } else { 15856 rval = EINVAL; 15857 } 15858 15859 mutex_exit(&dtrace_lock); 15860 return (rval); 15861 } 15862 15863 case DTRACEHIOC_REMOVE: { 15864 mutex_enter(&dtrace_lock); 15865 rval = dtrace_helper_destroygen(arg); 15866 mutex_exit(&dtrace_lock); 15867 15868 return (rval); 15869 } 15870 15871 default: 15872 break; 15873 } 15874 15875 return (ENOTTY); 15876 } 15877 15878 /*ARGSUSED*/ 15879 static int 15880 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15881 { 15882 minor_t minor = getminor(dev); 15883 dtrace_state_t *state; 15884 int rval; 15885 15886 if (minor == DTRACEMNRN_HELPER) 15887 return (dtrace_ioctl_helper(cmd, arg, rv)); 15888 15889 state = ddi_get_soft_state(dtrace_softstate, minor); 15890 15891 if (state->dts_anon) { 15892 ASSERT(dtrace_anon.dta_state == NULL); 15893 state = state->dts_anon; 15894 } 15895 15896 switch (cmd) { 15897 case DTRACEIOC_PROVIDER: { 15898 dtrace_providerdesc_t pvd; 15899 dtrace_provider_t *pvp; 15900 15901 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15902 return (EFAULT); 15903 15904 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15905 mutex_enter(&dtrace_provider_lock); 15906 15907 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15908 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15909 break; 15910 } 15911 15912 mutex_exit(&dtrace_provider_lock); 15913 15914 if (pvp == NULL) 15915 return (ESRCH); 15916 15917 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15918 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15919 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15920 return (EFAULT); 15921 15922 return (0); 15923 } 15924 15925 case DTRACEIOC_EPROBE: { 15926 dtrace_eprobedesc_t epdesc; 15927 dtrace_ecb_t *ecb; 15928 dtrace_action_t *act; 15929 void *buf; 15930 size_t size; 15931 uintptr_t dest; 15932 int nrecs; 15933 15934 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15935 return (EFAULT); 15936 15937 mutex_enter(&dtrace_lock); 15938 15939 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15940 mutex_exit(&dtrace_lock); 15941 return (EINVAL); 15942 } 15943 15944 if (ecb->dte_probe == NULL) { 15945 mutex_exit(&dtrace_lock); 15946 return (EINVAL); 15947 } 15948 15949 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15950 epdesc.dtepd_uarg = ecb->dte_uarg; 15951 epdesc.dtepd_size = ecb->dte_size; 15952 15953 nrecs = epdesc.dtepd_nrecs; 15954 epdesc.dtepd_nrecs = 0; 15955 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15956 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15957 continue; 15958 15959 epdesc.dtepd_nrecs++; 15960 } 15961 15962 /* 15963 * Now that we have the size, we need to allocate a temporary 15964 * buffer in which to store the complete description. We need 15965 * the temporary buffer to be able to drop dtrace_lock() 15966 * across the copyout(), below. 15967 */ 15968 size = sizeof (dtrace_eprobedesc_t) + 15969 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15970 15971 buf = kmem_alloc(size, KM_SLEEP); 15972 dest = (uintptr_t)buf; 15973 15974 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15975 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15976 15977 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15978 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15979 continue; 15980 15981 if (nrecs-- == 0) 15982 break; 15983 15984 bcopy(&act->dta_rec, (void *)dest, 15985 sizeof (dtrace_recdesc_t)); 15986 dest += sizeof (dtrace_recdesc_t); 15987 } 15988 15989 mutex_exit(&dtrace_lock); 15990 15991 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15992 kmem_free(buf, size); 15993 return (EFAULT); 15994 } 15995 15996 kmem_free(buf, size); 15997 return (0); 15998 } 15999 16000 case DTRACEIOC_AGGDESC: { 16001 dtrace_aggdesc_t aggdesc; 16002 dtrace_action_t *act; 16003 dtrace_aggregation_t *agg; 16004 int nrecs; 16005 uint32_t offs; 16006 dtrace_recdesc_t *lrec; 16007 void *buf; 16008 size_t size; 16009 uintptr_t dest; 16010 16011 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16012 return (EFAULT); 16013 16014 mutex_enter(&dtrace_lock); 16015 16016 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16017 mutex_exit(&dtrace_lock); 16018 return (EINVAL); 16019 } 16020 16021 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16022 16023 nrecs = aggdesc.dtagd_nrecs; 16024 aggdesc.dtagd_nrecs = 0; 16025 16026 offs = agg->dtag_base; 16027 lrec = &agg->dtag_action.dta_rec; 16028 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16029 16030 for (act = agg->dtag_first; ; act = act->dta_next) { 16031 ASSERT(act->dta_intuple || 16032 DTRACEACT_ISAGG(act->dta_kind)); 16033 16034 /* 16035 * If this action has a record size of zero, it 16036 * denotes an argument to the aggregating action. 16037 * Because the presence of this record doesn't (or 16038 * shouldn't) affect the way the data is interpreted, 16039 * we don't copy it out to save user-level the 16040 * confusion of dealing with a zero-length record. 16041 */ 16042 if (act->dta_rec.dtrd_size == 0) { 16043 ASSERT(agg->dtag_hasarg); 16044 continue; 16045 } 16046 16047 aggdesc.dtagd_nrecs++; 16048 16049 if (act == &agg->dtag_action) 16050 break; 16051 } 16052 16053 /* 16054 * Now that we have the size, we need to allocate a temporary 16055 * buffer in which to store the complete description. We need 16056 * the temporary buffer to be able to drop dtrace_lock() 16057 * across the copyout(), below. 16058 */ 16059 size = sizeof (dtrace_aggdesc_t) + 16060 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16061 16062 buf = kmem_alloc(size, KM_SLEEP); 16063 dest = (uintptr_t)buf; 16064 16065 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16066 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16067 16068 for (act = agg->dtag_first; ; act = act->dta_next) { 16069 dtrace_recdesc_t rec = act->dta_rec; 16070 16071 /* 16072 * See the comment in the above loop for why we pass 16073 * over zero-length records. 16074 */ 16075 if (rec.dtrd_size == 0) { 16076 ASSERT(agg->dtag_hasarg); 16077 continue; 16078 } 16079 16080 if (nrecs-- == 0) 16081 break; 16082 16083 rec.dtrd_offset -= offs; 16084 bcopy(&rec, (void *)dest, sizeof (rec)); 16085 dest += sizeof (dtrace_recdesc_t); 16086 16087 if (act == &agg->dtag_action) 16088 break; 16089 } 16090 16091 mutex_exit(&dtrace_lock); 16092 16093 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16094 kmem_free(buf, size); 16095 return (EFAULT); 16096 } 16097 16098 kmem_free(buf, size); 16099 return (0); 16100 } 16101 16102 case DTRACEIOC_ENABLE: { 16103 dof_hdr_t *dof; 16104 dtrace_enabling_t *enab = NULL; 16105 dtrace_vstate_t *vstate; 16106 int err = 0; 16107 16108 *rv = 0; 16109 16110 /* 16111 * If a NULL argument has been passed, we take this as our 16112 * cue to reevaluate our enablings. 16113 */ 16114 if (arg == NULL) { 16115 dtrace_enabling_matchall(); 16116 16117 return (0); 16118 } 16119 16120 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16121 return (rval); 16122 16123 mutex_enter(&cpu_lock); 16124 mutex_enter(&dtrace_lock); 16125 vstate = &state->dts_vstate; 16126 16127 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16128 mutex_exit(&dtrace_lock); 16129 mutex_exit(&cpu_lock); 16130 dtrace_dof_destroy(dof); 16131 return (EBUSY); 16132 } 16133 16134 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16135 mutex_exit(&dtrace_lock); 16136 mutex_exit(&cpu_lock); 16137 dtrace_dof_destroy(dof); 16138 return (EINVAL); 16139 } 16140 16141 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16142 dtrace_enabling_destroy(enab); 16143 mutex_exit(&dtrace_lock); 16144 mutex_exit(&cpu_lock); 16145 dtrace_dof_destroy(dof); 16146 return (rval); 16147 } 16148 16149 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16150 err = dtrace_enabling_retain(enab); 16151 } else { 16152 dtrace_enabling_destroy(enab); 16153 } 16154 16155 mutex_exit(&cpu_lock); 16156 mutex_exit(&dtrace_lock); 16157 dtrace_dof_destroy(dof); 16158 16159 return (err); 16160 } 16161 16162 case DTRACEIOC_REPLICATE: { 16163 dtrace_repldesc_t desc; 16164 dtrace_probedesc_t *match = &desc.dtrpd_match; 16165 dtrace_probedesc_t *create = &desc.dtrpd_create; 16166 int err; 16167 16168 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16169 return (EFAULT); 16170 16171 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16172 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16173 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16174 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16175 16176 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16177 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16178 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16179 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16180 16181 mutex_enter(&dtrace_lock); 16182 err = dtrace_enabling_replicate(state, match, create); 16183 mutex_exit(&dtrace_lock); 16184 16185 return (err); 16186 } 16187 16188 case DTRACEIOC_PROBEMATCH: 16189 case DTRACEIOC_PROBES: { 16190 dtrace_probe_t *probe = NULL; 16191 dtrace_probedesc_t desc; 16192 dtrace_probekey_t pkey; 16193 dtrace_id_t i; 16194 int m = 0; 16195 uint32_t priv; 16196 uid_t uid; 16197 zoneid_t zoneid; 16198 16199 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16200 return (EFAULT); 16201 16202 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16203 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16204 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16205 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16206 16207 /* 16208 * Before we attempt to match this probe, we want to give 16209 * all providers the opportunity to provide it. 16210 */ 16211 if (desc.dtpd_id == DTRACE_IDNONE) { 16212 mutex_enter(&dtrace_provider_lock); 16213 dtrace_probe_provide(&desc, NULL); 16214 mutex_exit(&dtrace_provider_lock); 16215 desc.dtpd_id++; 16216 } 16217 16218 if (cmd == DTRACEIOC_PROBEMATCH) { 16219 dtrace_probekey(&desc, &pkey); 16220 pkey.dtpk_id = DTRACE_IDNONE; 16221 } 16222 16223 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16224 16225 mutex_enter(&dtrace_lock); 16226 16227 if (cmd == DTRACEIOC_PROBEMATCH) { 16228 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16229 if ((probe = dtrace_probes[i - 1]) != NULL && 16230 (m = dtrace_match_probe(probe, &pkey, 16231 priv, uid, zoneid)) != 0) 16232 break; 16233 } 16234 16235 if (m < 0) { 16236 mutex_exit(&dtrace_lock); 16237 return (EINVAL); 16238 } 16239 16240 } else { 16241 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16242 if ((probe = dtrace_probes[i - 1]) != NULL && 16243 dtrace_match_priv(probe, priv, uid, zoneid)) 16244 break; 16245 } 16246 } 16247 16248 if (probe == NULL) { 16249 mutex_exit(&dtrace_lock); 16250 return (ESRCH); 16251 } 16252 16253 dtrace_probe_description(probe, &desc); 16254 mutex_exit(&dtrace_lock); 16255 16256 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16257 return (EFAULT); 16258 16259 return (0); 16260 } 16261 16262 case DTRACEIOC_PROBEARG: { 16263 dtrace_argdesc_t desc; 16264 dtrace_probe_t *probe; 16265 dtrace_provider_t *prov; 16266 16267 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16268 return (EFAULT); 16269 16270 if (desc.dtargd_id == DTRACE_IDNONE) 16271 return (EINVAL); 16272 16273 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16274 return (EINVAL); 16275 16276 mutex_enter(&dtrace_provider_lock); 16277 mutex_enter(&mod_lock); 16278 mutex_enter(&dtrace_lock); 16279 16280 if (desc.dtargd_id > dtrace_nprobes) { 16281 mutex_exit(&dtrace_lock); 16282 mutex_exit(&mod_lock); 16283 mutex_exit(&dtrace_provider_lock); 16284 return (EINVAL); 16285 } 16286 16287 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16288 mutex_exit(&dtrace_lock); 16289 mutex_exit(&mod_lock); 16290 mutex_exit(&dtrace_provider_lock); 16291 return (EINVAL); 16292 } 16293 16294 mutex_exit(&dtrace_lock); 16295 16296 prov = probe->dtpr_provider; 16297 16298 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16299 /* 16300 * There isn't any typed information for this probe. 16301 * Set the argument number to DTRACE_ARGNONE. 16302 */ 16303 desc.dtargd_ndx = DTRACE_ARGNONE; 16304 } else { 16305 desc.dtargd_native[0] = '\0'; 16306 desc.dtargd_xlate[0] = '\0'; 16307 desc.dtargd_mapping = desc.dtargd_ndx; 16308 16309 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16310 probe->dtpr_id, probe->dtpr_arg, &desc); 16311 } 16312 16313 mutex_exit(&mod_lock); 16314 mutex_exit(&dtrace_provider_lock); 16315 16316 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16317 return (EFAULT); 16318 16319 return (0); 16320 } 16321 16322 case DTRACEIOC_GO: { 16323 processorid_t cpuid; 16324 rval = dtrace_state_go(state, &cpuid); 16325 16326 if (rval != 0) 16327 return (rval); 16328 16329 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16330 return (EFAULT); 16331 16332 return (0); 16333 } 16334 16335 case DTRACEIOC_STOP: { 16336 processorid_t cpuid; 16337 16338 mutex_enter(&dtrace_lock); 16339 rval = dtrace_state_stop(state, &cpuid); 16340 mutex_exit(&dtrace_lock); 16341 16342 if (rval != 0) 16343 return (rval); 16344 16345 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16346 return (EFAULT); 16347 16348 return (0); 16349 } 16350 16351 case DTRACEIOC_DOFGET: { 16352 dof_hdr_t hdr, *dof; 16353 uint64_t len; 16354 16355 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16356 return (EFAULT); 16357 16358 mutex_enter(&dtrace_lock); 16359 dof = dtrace_dof_create(state); 16360 mutex_exit(&dtrace_lock); 16361 16362 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16363 rval = copyout(dof, (void *)arg, len); 16364 dtrace_dof_destroy(dof); 16365 16366 return (rval == 0 ? 0 : EFAULT); 16367 } 16368 16369 case DTRACEIOC_AGGSNAP: 16370 case DTRACEIOC_BUFSNAP: { 16371 dtrace_bufdesc_t desc; 16372 caddr_t cached; 16373 dtrace_buffer_t *buf; 16374 16375 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16376 return (EFAULT); 16377 16378 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16379 return (EINVAL); 16380 16381 mutex_enter(&dtrace_lock); 16382 16383 if (cmd == DTRACEIOC_BUFSNAP) { 16384 buf = &state->dts_buffer[desc.dtbd_cpu]; 16385 } else { 16386 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16387 } 16388 16389 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16390 size_t sz = buf->dtb_offset; 16391 16392 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16393 mutex_exit(&dtrace_lock); 16394 return (EBUSY); 16395 } 16396 16397 /* 16398 * If this buffer has already been consumed, we're 16399 * going to indicate that there's nothing left here 16400 * to consume. 16401 */ 16402 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16403 mutex_exit(&dtrace_lock); 16404 16405 desc.dtbd_size = 0; 16406 desc.dtbd_drops = 0; 16407 desc.dtbd_errors = 0; 16408 desc.dtbd_oldest = 0; 16409 sz = sizeof (desc); 16410 16411 if (copyout(&desc, (void *)arg, sz) != 0) 16412 return (EFAULT); 16413 16414 return (0); 16415 } 16416 16417 /* 16418 * If this is a ring buffer that has wrapped, we want 16419 * to copy the whole thing out. 16420 */ 16421 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16422 dtrace_buffer_polish(buf); 16423 sz = buf->dtb_size; 16424 } 16425 16426 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16427 mutex_exit(&dtrace_lock); 16428 return (EFAULT); 16429 } 16430 16431 desc.dtbd_size = sz; 16432 desc.dtbd_drops = buf->dtb_drops; 16433 desc.dtbd_errors = buf->dtb_errors; 16434 desc.dtbd_oldest = buf->dtb_xamot_offset; 16435 desc.dtbd_timestamp = dtrace_gethrtime(); 16436 16437 mutex_exit(&dtrace_lock); 16438 16439 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16440 return (EFAULT); 16441 16442 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16443 16444 return (0); 16445 } 16446 16447 if (buf->dtb_tomax == NULL) { 16448 ASSERT(buf->dtb_xamot == NULL); 16449 mutex_exit(&dtrace_lock); 16450 return (ENOENT); 16451 } 16452 16453 cached = buf->dtb_tomax; 16454 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16455 16456 dtrace_xcall(desc.dtbd_cpu, 16457 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16458 16459 state->dts_errors += buf->dtb_xamot_errors; 16460 16461 /* 16462 * If the buffers did not actually switch, then the cross call 16463 * did not take place -- presumably because the given CPU is 16464 * not in the ready set. If this is the case, we'll return 16465 * ENOENT. 16466 */ 16467 if (buf->dtb_tomax == cached) { 16468 ASSERT(buf->dtb_xamot != cached); 16469 mutex_exit(&dtrace_lock); 16470 return (ENOENT); 16471 } 16472 16473 ASSERT(cached == buf->dtb_xamot); 16474 16475 /* 16476 * We have our snapshot; now copy it out. 16477 */ 16478 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16479 buf->dtb_xamot_offset) != 0) { 16480 mutex_exit(&dtrace_lock); 16481 return (EFAULT); 16482 } 16483 16484 desc.dtbd_size = buf->dtb_xamot_offset; 16485 desc.dtbd_drops = buf->dtb_xamot_drops; 16486 desc.dtbd_errors = buf->dtb_xamot_errors; 16487 desc.dtbd_oldest = 0; 16488 desc.dtbd_timestamp = buf->dtb_switched; 16489 16490 mutex_exit(&dtrace_lock); 16491 16492 /* 16493 * Finally, copy out the buffer description. 16494 */ 16495 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16496 return (EFAULT); 16497 16498 return (0); 16499 } 16500 16501 case DTRACEIOC_CONF: { 16502 dtrace_conf_t conf; 16503 16504 bzero(&conf, sizeof (conf)); 16505 conf.dtc_difversion = DIF_VERSION; 16506 conf.dtc_difintregs = DIF_DIR_NREGS; 16507 conf.dtc_diftupregs = DIF_DTR_NREGS; 16508 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16509 16510 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16511 return (EFAULT); 16512 16513 return (0); 16514 } 16515 16516 case DTRACEIOC_STATUS: { 16517 dtrace_status_t stat; 16518 dtrace_dstate_t *dstate; 16519 int i, j; 16520 uint64_t nerrs; 16521 16522 /* 16523 * See the comment in dtrace_state_deadman() for the reason 16524 * for setting dts_laststatus to INT64_MAX before setting 16525 * it to the correct value. 16526 */ 16527 state->dts_laststatus = INT64_MAX; 16528 dtrace_membar_producer(); 16529 state->dts_laststatus = dtrace_gethrtime(); 16530 16531 bzero(&stat, sizeof (stat)); 16532 16533 mutex_enter(&dtrace_lock); 16534 16535 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16536 mutex_exit(&dtrace_lock); 16537 return (ENOENT); 16538 } 16539 16540 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16541 stat.dtst_exiting = 1; 16542 16543 nerrs = state->dts_errors; 16544 dstate = &state->dts_vstate.dtvs_dynvars; 16545 16546 for (i = 0; i < NCPU; i++) { 16547 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16548 16549 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16550 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16551 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16552 16553 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16554 stat.dtst_filled++; 16555 16556 nerrs += state->dts_buffer[i].dtb_errors; 16557 16558 for (j = 0; j < state->dts_nspeculations; j++) { 16559 dtrace_speculation_t *spec; 16560 dtrace_buffer_t *buf; 16561 16562 spec = &state->dts_speculations[j]; 16563 buf = &spec->dtsp_buffer[i]; 16564 stat.dtst_specdrops += buf->dtb_xamot_drops; 16565 } 16566 } 16567 16568 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16569 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16570 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16571 stat.dtst_dblerrors = state->dts_dblerrors; 16572 stat.dtst_killed = 16573 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16574 stat.dtst_errors = nerrs; 16575 16576 mutex_exit(&dtrace_lock); 16577 16578 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16579 return (EFAULT); 16580 16581 return (0); 16582 } 16583 16584 case DTRACEIOC_FORMAT: { 16585 dtrace_fmtdesc_t fmt; 16586 char *str; 16587 int len; 16588 16589 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16590 return (EFAULT); 16591 16592 mutex_enter(&dtrace_lock); 16593 16594 if (fmt.dtfd_format == 0 || 16595 fmt.dtfd_format > state->dts_nformats) { 16596 mutex_exit(&dtrace_lock); 16597 return (EINVAL); 16598 } 16599 16600 /* 16601 * Format strings are allocated contiguously and they are 16602 * never freed; if a format index is less than the number 16603 * of formats, we can assert that the format map is non-NULL 16604 * and that the format for the specified index is non-NULL. 16605 */ 16606 ASSERT(state->dts_formats != NULL); 16607 str = state->dts_formats[fmt.dtfd_format - 1]; 16608 ASSERT(str != NULL); 16609 16610 len = strlen(str) + 1; 16611 16612 if (len > fmt.dtfd_length) { 16613 fmt.dtfd_length = len; 16614 16615 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16616 mutex_exit(&dtrace_lock); 16617 return (EINVAL); 16618 } 16619 } else { 16620 if (copyout(str, fmt.dtfd_string, len) != 0) { 16621 mutex_exit(&dtrace_lock); 16622 return (EINVAL); 16623 } 16624 } 16625 16626 mutex_exit(&dtrace_lock); 16627 return (0); 16628 } 16629 16630 default: 16631 break; 16632 } 16633 16634 return (ENOTTY); 16635 } 16636 16637 /*ARGSUSED*/ 16638 static int 16639 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16640 { 16641 dtrace_state_t *state; 16642 16643 switch (cmd) { 16644 case DDI_DETACH: 16645 break; 16646 16647 case DDI_SUSPEND: 16648 return (DDI_SUCCESS); 16649 16650 default: 16651 return (DDI_FAILURE); 16652 } 16653 16654 mutex_enter(&cpu_lock); 16655 mutex_enter(&dtrace_provider_lock); 16656 mutex_enter(&dtrace_lock); 16657 16658 ASSERT(dtrace_opens == 0); 16659 16660 if (dtrace_helpers > 0) { 16661 mutex_exit(&dtrace_provider_lock); 16662 mutex_exit(&dtrace_lock); 16663 mutex_exit(&cpu_lock); 16664 return (DDI_FAILURE); 16665 } 16666 16667 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16668 mutex_exit(&dtrace_provider_lock); 16669 mutex_exit(&dtrace_lock); 16670 mutex_exit(&cpu_lock); 16671 return (DDI_FAILURE); 16672 } 16673 16674 dtrace_provider = NULL; 16675 16676 if ((state = dtrace_anon_grab()) != NULL) { 16677 /* 16678 * If there were ECBs on this state, the provider should 16679 * have not been allowed to detach; assert that there is 16680 * none. 16681 */ 16682 ASSERT(state->dts_necbs == 0); 16683 dtrace_state_destroy(state); 16684 16685 /* 16686 * If we're being detached with anonymous state, we need to 16687 * indicate to the kernel debugger that DTrace is now inactive. 16688 */ 16689 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16690 } 16691 16692 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16693 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16694 dtrace_cpu_init = NULL; 16695 dtrace_helpers_cleanup = NULL; 16696 dtrace_helpers_fork = NULL; 16697 dtrace_cpustart_init = NULL; 16698 dtrace_cpustart_fini = NULL; 16699 dtrace_debugger_init = NULL; 16700 dtrace_debugger_fini = NULL; 16701 dtrace_modload = NULL; 16702 dtrace_modunload = NULL; 16703 16704 ASSERT(dtrace_getf == 0); 16705 ASSERT(dtrace_closef == NULL); 16706 16707 mutex_exit(&cpu_lock); 16708 16709 if (dtrace_helptrace_enabled) { 16710 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 16711 dtrace_helptrace_buffer = NULL; 16712 } 16713 16714 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16715 dtrace_probes = NULL; 16716 dtrace_nprobes = 0; 16717 16718 dtrace_hash_destroy(dtrace_bymod); 16719 dtrace_hash_destroy(dtrace_byfunc); 16720 dtrace_hash_destroy(dtrace_byname); 16721 dtrace_bymod = NULL; 16722 dtrace_byfunc = NULL; 16723 dtrace_byname = NULL; 16724 16725 kmem_cache_destroy(dtrace_state_cache); 16726 vmem_destroy(dtrace_minor); 16727 vmem_destroy(dtrace_arena); 16728 16729 if (dtrace_toxrange != NULL) { 16730 kmem_free(dtrace_toxrange, 16731 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16732 dtrace_toxrange = NULL; 16733 dtrace_toxranges = 0; 16734 dtrace_toxranges_max = 0; 16735 } 16736 16737 ddi_remove_minor_node(dtrace_devi, NULL); 16738 dtrace_devi = NULL; 16739 16740 ddi_soft_state_fini(&dtrace_softstate); 16741 16742 ASSERT(dtrace_vtime_references == 0); 16743 ASSERT(dtrace_opens == 0); 16744 ASSERT(dtrace_retained == NULL); 16745 16746 mutex_exit(&dtrace_lock); 16747 mutex_exit(&dtrace_provider_lock); 16748 16749 /* 16750 * We don't destroy the task queue until after we have dropped our 16751 * locks (taskq_destroy() may block on running tasks). To prevent 16752 * attempting to do work after we have effectively detached but before 16753 * the task queue has been destroyed, all tasks dispatched via the 16754 * task queue must check that DTrace is still attached before 16755 * performing any operation. 16756 */ 16757 taskq_destroy(dtrace_taskq); 16758 dtrace_taskq = NULL; 16759 16760 return (DDI_SUCCESS); 16761 } 16762 16763 /*ARGSUSED*/ 16764 static int 16765 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16766 { 16767 int error; 16768 16769 switch (infocmd) { 16770 case DDI_INFO_DEVT2DEVINFO: 16771 *result = (void *)dtrace_devi; 16772 error = DDI_SUCCESS; 16773 break; 16774 case DDI_INFO_DEVT2INSTANCE: 16775 *result = (void *)0; 16776 error = DDI_SUCCESS; 16777 break; 16778 default: 16779 error = DDI_FAILURE; 16780 } 16781 return (error); 16782 } 16783 16784 static struct cb_ops dtrace_cb_ops = { 16785 dtrace_open, /* open */ 16786 dtrace_close, /* close */ 16787 nulldev, /* strategy */ 16788 nulldev, /* print */ 16789 nodev, /* dump */ 16790 nodev, /* read */ 16791 nodev, /* write */ 16792 dtrace_ioctl, /* ioctl */ 16793 nodev, /* devmap */ 16794 nodev, /* mmap */ 16795 nodev, /* segmap */ 16796 nochpoll, /* poll */ 16797 ddi_prop_op, /* cb_prop_op */ 16798 0, /* streamtab */ 16799 D_NEW | D_MP /* Driver compatibility flag */ 16800 }; 16801 16802 static struct dev_ops dtrace_ops = { 16803 DEVO_REV, /* devo_rev */ 16804 0, /* refcnt */ 16805 dtrace_info, /* get_dev_info */ 16806 nulldev, /* identify */ 16807 nulldev, /* probe */ 16808 dtrace_attach, /* attach */ 16809 dtrace_detach, /* detach */ 16810 nodev, /* reset */ 16811 &dtrace_cb_ops, /* driver operations */ 16812 NULL, /* bus operations */ 16813 nodev, /* dev power */ 16814 ddi_quiesce_not_needed, /* quiesce */ 16815 }; 16816 16817 static struct modldrv modldrv = { 16818 &mod_driverops, /* module type (this is a pseudo driver) */ 16819 "Dynamic Tracing", /* name of module */ 16820 &dtrace_ops, /* driver ops */ 16821 }; 16822 16823 static struct modlinkage modlinkage = { 16824 MODREV_1, 16825 (void *)&modldrv, 16826 NULL 16827 }; 16828 16829 int 16830 _init(void) 16831 { 16832 return (mod_install(&modlinkage)); 16833 } 16834 16835 int 16836 _info(struct modinfo *modinfop) 16837 { 16838 return (mod_info(&modlinkage, modinfop)); 16839 } 16840 16841 int 16842 _fini(void) 16843 { 16844 return (mod_remove(&modlinkage)); 16845 } 16846