xref: /titanic_50/usr/src/uts/common/dtrace/dtrace.c (revision e9958a6c9e7427ed38c0957f2c72bde3068b0f3b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 #include <sys/socket.h>
95 #include <netinet/in.h>
96 
97 /*
98  * DTrace Tunable Variables
99  *
100  * The following variables may be tuned by adding a line to /etc/system that
101  * includes both the name of the DTrace module ("dtrace") and the name of the
102  * variable.  For example:
103  *
104  *   set dtrace:dtrace_destructive_disallow = 1
105  *
106  * In general, the only variables that one should be tuning this way are those
107  * that affect system-wide DTrace behavior, and for which the default behavior
108  * is undesirable.  Most of these variables are tunable on a per-consumer
109  * basis using DTrace options, and need not be tuned on a system-wide basis.
110  * When tuning these variables, avoid pathological values; while some attempt
111  * is made to verify the integrity of these variables, they are not considered
112  * part of the supported interface to DTrace, and they are therefore not
113  * checked comprehensively.  Further, these variables should not be tuned
114  * dynamically via "mdb -kw" or other means; they should only be tuned via
115  * /etc/system.
116  */
117 int		dtrace_destructive_disallow = 0;
118 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t		dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
121 size_t		dtrace_global_maxsize = (16 * 1024);
122 size_t		dtrace_actions_max = (16 * 1024);
123 size_t		dtrace_retain_max = 1024;
124 dtrace_optval_t	dtrace_helper_actions_max = 32;
125 dtrace_optval_t	dtrace_helper_providers_max = 32;
126 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t		dtrace_strsize_default = 256;
128 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
129 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
130 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
131 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
134 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
135 dtrace_optval_t	dtrace_nspec_default = 1;
136 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int		dtrace_msgdsize_max = 128;
142 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
143 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
144 int		dtrace_devdepth_max = 32;
145 int		dtrace_err_verbose;
146 hrtime_t	dtrace_deadman_interval = NANOSEC;
147 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 
150 /*
151  * DTrace External Variables
152  *
153  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
154  * available to DTrace consumers via the backtick (`) syntax.  One of these,
155  * dtrace_zero, is made deliberately so:  it is provided as a source of
156  * well-known, zero-filled memory.  While this variable is not documented,
157  * it is used by some translators as an implementation detail.
158  */
159 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
160 
161 /*
162  * DTrace Internal Variables
163  */
164 static dev_info_t	*dtrace_devi;		/* device info */
165 static vmem_t		*dtrace_arena;		/* probe ID arena */
166 static vmem_t		*dtrace_minor;		/* minor number arena */
167 static taskq_t		*dtrace_taskq;		/* task queue */
168 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
169 static int		dtrace_nprobes;		/* number of probes */
170 static dtrace_provider_t *dtrace_provider;	/* provider list */
171 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
172 static int		dtrace_opens;		/* number of opens */
173 static int		dtrace_helpers;		/* number of helpers */
174 static void		*dtrace_softstate;	/* softstate pointer */
175 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
176 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
177 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
178 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
179 static int		dtrace_toxranges;	/* number of toxic ranges */
180 static int		dtrace_toxranges_max;	/* size of toxic range array */
181 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
182 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
183 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
184 static kthread_t	*dtrace_panicked;	/* panicking thread */
185 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
186 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
187 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
188 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
189 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
190 
191 /*
192  * DTrace Locking
193  * DTrace is protected by three (relatively coarse-grained) locks:
194  *
195  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
196  *     including enabling state, probes, ECBs, consumer state, helper state,
197  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
198  *     probe context is lock-free -- synchronization is handled via the
199  *     dtrace_sync() cross call mechanism.
200  *
201  * (2) dtrace_provider_lock is required when manipulating provider state, or
202  *     when provider state must be held constant.
203  *
204  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
205  *     when meta provider state must be held constant.
206  *
207  * The lock ordering between these three locks is dtrace_meta_lock before
208  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
209  * several places where dtrace_provider_lock is held by the framework as it
210  * calls into the providers -- which then call back into the framework,
211  * grabbing dtrace_lock.)
212  *
213  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
214  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
215  * role as a coarse-grained lock; it is acquired before both of these locks.
216  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
217  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
218  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
219  * acquired _between_ dtrace_provider_lock and dtrace_lock.
220  */
221 static kmutex_t		dtrace_lock;		/* probe state lock */
222 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
223 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
224 
225 /*
226  * DTrace Provider Variables
227  *
228  * These are the variables relating to DTrace as a provider (that is, the
229  * provider of the BEGIN, END, and ERROR probes).
230  */
231 static dtrace_pattr_t	dtrace_provider_attr = {
232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 };
238 
239 static void
240 dtrace_nullop(void)
241 {}
242 
243 static dtrace_pops_t	dtrace_provider_ops = {
244 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
245 	(void (*)(void *, struct modctl *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
249 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
250 	NULL,
251 	NULL,
252 	NULL,
253 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
254 };
255 
256 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
257 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
258 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
259 
260 /*
261  * DTrace Helper Tracing Variables
262  */
263 uint32_t dtrace_helptrace_next = 0;
264 uint32_t dtrace_helptrace_nlocals;
265 char	*dtrace_helptrace_buffer;
266 int	dtrace_helptrace_bufsize = 512 * 1024;
267 
268 #ifdef DEBUG
269 int	dtrace_helptrace_enabled = 1;
270 #else
271 int	dtrace_helptrace_enabled = 0;
272 #endif
273 
274 /*
275  * DTrace Error Hashing
276  *
277  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
278  * table.  This is very useful for checking coverage of tests that are
279  * expected to induce DIF or DOF processing errors, and may be useful for
280  * debugging problems in the DIF code generator or in DOF generation .  The
281  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
282  */
283 #ifdef DEBUG
284 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
285 static const char *dtrace_errlast;
286 static kthread_t *dtrace_errthread;
287 static kmutex_t dtrace_errlock;
288 #endif
289 
290 /*
291  * DTrace Macros and Constants
292  *
293  * These are various macros that are useful in various spots in the
294  * implementation, along with a few random constants that have no meaning
295  * outside of the implementation.  There is no real structure to this cpp
296  * mishmash -- but is there ever?
297  */
298 #define	DTRACE_HASHSTR(hash, probe)	\
299 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
300 
301 #define	DTRACE_HASHNEXT(hash, probe)	\
302 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
303 
304 #define	DTRACE_HASHPREV(hash, probe)	\
305 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
306 
307 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
308 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
309 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
310 
311 #define	DTRACE_AGGHASHSIZE_SLEW		17
312 
313 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
314 
315 /*
316  * The key for a thread-local variable consists of the lower 61 bits of the
317  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
318  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
319  * equal to a variable identifier.  This is necessary (but not sufficient) to
320  * assure that global associative arrays never collide with thread-local
321  * variables.  To guarantee that they cannot collide, we must also define the
322  * order for keying dynamic variables.  That order is:
323  *
324  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
325  *
326  * Because the variable-key and the tls-key are in orthogonal spaces, there is
327  * no way for a global variable key signature to match a thread-local key
328  * signature.
329  */
330 #define	DTRACE_TLS_THRKEY(where) { \
331 	uint_t intr = 0; \
332 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
333 	for (; actv; actv >>= 1) \
334 		intr++; \
335 	ASSERT(intr < (1 << 3)); \
336 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
337 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
338 }
339 
340 #define	DT_BSWAP_8(x)	((x) & 0xff)
341 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
342 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
343 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
344 
345 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
346 
347 #define	DTRACE_STORE(type, tomax, offset, what) \
348 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
349 
350 #ifndef __i386
351 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
352 	if (addr & (size - 1)) {					\
353 		*flags |= CPU_DTRACE_BADALIGN;				\
354 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
355 		return (0);						\
356 	}
357 #else
358 #define	DTRACE_ALIGNCHECK(addr, size, flags)
359 #endif
360 
361 /*
362  * Test whether a range of memory starting at testaddr of size testsz falls
363  * within the range of memory described by addr, sz.  We take care to avoid
364  * problems with overflow and underflow of the unsigned quantities, and
365  * disallow all negative sizes.  Ranges of size 0 are allowed.
366  */
367 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
368 	((testaddr) - (baseaddr) < (basesz) && \
369 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
370 	(testaddr) + (testsz) >= (testaddr))
371 
372 /*
373  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
374  * alloc_sz on the righthand side of the comparison in order to avoid overflow
375  * or underflow in the comparison with it.  This is simpler than the INRANGE
376  * check above, because we know that the dtms_scratch_ptr is valid in the
377  * range.  Allocations of size zero are allowed.
378  */
379 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
380 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
381 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
382 
383 #define	DTRACE_LOADFUNC(bits)						\
384 /*CSTYLED*/								\
385 uint##bits##_t								\
386 dtrace_load##bits(uintptr_t addr)					\
387 {									\
388 	size_t size = bits / NBBY;					\
389 	/*CSTYLED*/							\
390 	uint##bits##_t rval;						\
391 	int i;								\
392 	volatile uint16_t *flags = (volatile uint16_t *)		\
393 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
394 									\
395 	DTRACE_ALIGNCHECK(addr, size, flags);				\
396 									\
397 	for (i = 0; i < dtrace_toxranges; i++) {			\
398 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
399 			continue;					\
400 									\
401 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
402 			continue;					\
403 									\
404 		/*							\
405 		 * This address falls within a toxic region; return 0.	\
406 		 */							\
407 		*flags |= CPU_DTRACE_BADADDR;				\
408 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
409 		return (0);						\
410 	}								\
411 									\
412 	*flags |= CPU_DTRACE_NOFAULT;					\
413 	/*CSTYLED*/							\
414 	rval = *((volatile uint##bits##_t *)addr);			\
415 	*flags &= ~CPU_DTRACE_NOFAULT;					\
416 									\
417 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
418 }
419 
420 #ifdef _LP64
421 #define	dtrace_loadptr	dtrace_load64
422 #else
423 #define	dtrace_loadptr	dtrace_load32
424 #endif
425 
426 #define	DTRACE_DYNHASH_FREE	0
427 #define	DTRACE_DYNHASH_SINK	1
428 #define	DTRACE_DYNHASH_VALID	2
429 
430 #define	DTRACE_MATCH_NEXT	0
431 #define	DTRACE_MATCH_DONE	1
432 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
433 #define	DTRACE_STATE_ALIGN	64
434 
435 #define	DTRACE_FLAGS2FLT(flags)						\
436 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
437 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
438 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
439 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
440 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
441 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
442 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
443 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
444 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
445 	DTRACEFLT_UNKNOWN)
446 
447 #define	DTRACEACT_ISSTRING(act)						\
448 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
449 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
450 
451 static size_t dtrace_strlen(const char *, size_t);
452 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
453 static void dtrace_enabling_provide(dtrace_provider_t *);
454 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
455 static void dtrace_enabling_matchall(void);
456 static dtrace_state_t *dtrace_anon_grab(void);
457 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
458     dtrace_state_t *, uint64_t, uint64_t);
459 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
460 static void dtrace_buffer_drop(dtrace_buffer_t *);
461 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
462     dtrace_state_t *, dtrace_mstate_t *);
463 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
464     dtrace_optval_t);
465 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
466 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
467 
468 /*
469  * DTrace Probe Context Functions
470  *
471  * These functions are called from probe context.  Because probe context is
472  * any context in which C may be called, arbitrarily locks may be held,
473  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
474  * As a result, functions called from probe context may only call other DTrace
475  * support functions -- they may not interact at all with the system at large.
476  * (Note that the ASSERT macro is made probe-context safe by redefining it in
477  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
478  * loads are to be performed from probe context, they _must_ be in terms of
479  * the safe dtrace_load*() variants.
480  *
481  * Some functions in this block are not actually called from probe context;
482  * for these functions, there will be a comment above the function reading
483  * "Note:  not called from probe context."
484  */
485 void
486 dtrace_panic(const char *format, ...)
487 {
488 	va_list alist;
489 
490 	va_start(alist, format);
491 	dtrace_vpanic(format, alist);
492 	va_end(alist);
493 }
494 
495 int
496 dtrace_assfail(const char *a, const char *f, int l)
497 {
498 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
499 
500 	/*
501 	 * We just need something here that even the most clever compiler
502 	 * cannot optimize away.
503 	 */
504 	return (a[(uintptr_t)f]);
505 }
506 
507 /*
508  * Atomically increment a specified error counter from probe context.
509  */
510 static void
511 dtrace_error(uint32_t *counter)
512 {
513 	/*
514 	 * Most counters stored to in probe context are per-CPU counters.
515 	 * However, there are some error conditions that are sufficiently
516 	 * arcane that they don't merit per-CPU storage.  If these counters
517 	 * are incremented concurrently on different CPUs, scalability will be
518 	 * adversely affected -- but we don't expect them to be white-hot in a
519 	 * correctly constructed enabling...
520 	 */
521 	uint32_t oval, nval;
522 
523 	do {
524 		oval = *counter;
525 
526 		if ((nval = oval + 1) == 0) {
527 			/*
528 			 * If the counter would wrap, set it to 1 -- assuring
529 			 * that the counter is never zero when we have seen
530 			 * errors.  (The counter must be 32-bits because we
531 			 * aren't guaranteed a 64-bit compare&swap operation.)
532 			 * To save this code both the infamy of being fingered
533 			 * by a priggish news story and the indignity of being
534 			 * the target of a neo-puritan witch trial, we're
535 			 * carefully avoiding any colorful description of the
536 			 * likelihood of this condition -- but suffice it to
537 			 * say that it is only slightly more likely than the
538 			 * overflow of predicate cache IDs, as discussed in
539 			 * dtrace_predicate_create().
540 			 */
541 			nval = 1;
542 		}
543 	} while (dtrace_cas32(counter, oval, nval) != oval);
544 }
545 
546 /*
547  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
548  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
549  */
550 DTRACE_LOADFUNC(8)
551 DTRACE_LOADFUNC(16)
552 DTRACE_LOADFUNC(32)
553 DTRACE_LOADFUNC(64)
554 
555 static int
556 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
557 {
558 	if (dest < mstate->dtms_scratch_base)
559 		return (0);
560 
561 	if (dest + size < dest)
562 		return (0);
563 
564 	if (dest + size > mstate->dtms_scratch_ptr)
565 		return (0);
566 
567 	return (1);
568 }
569 
570 static int
571 dtrace_canstore_statvar(uint64_t addr, size_t sz,
572     dtrace_statvar_t **svars, int nsvars)
573 {
574 	int i;
575 
576 	for (i = 0; i < nsvars; i++) {
577 		dtrace_statvar_t *svar = svars[i];
578 
579 		if (svar == NULL || svar->dtsv_size == 0)
580 			continue;
581 
582 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
583 			return (1);
584 	}
585 
586 	return (0);
587 }
588 
589 /*
590  * Check to see if the address is within a memory region to which a store may
591  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
592  * region.  The caller of dtrace_canstore() is responsible for performing any
593  * alignment checks that are needed before stores are actually executed.
594  */
595 static int
596 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
597     dtrace_vstate_t *vstate)
598 {
599 	/*
600 	 * First, check to see if the address is in scratch space...
601 	 */
602 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
603 	    mstate->dtms_scratch_size))
604 		return (1);
605 
606 	/*
607 	 * Now check to see if it's a dynamic variable.  This check will pick
608 	 * up both thread-local variables and any global dynamically-allocated
609 	 * variables.
610 	 */
611 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
612 	    vstate->dtvs_dynvars.dtds_size)) {
613 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
614 		uintptr_t base = (uintptr_t)dstate->dtds_base +
615 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
616 		uintptr_t chunkoffs;
617 
618 		/*
619 		 * Before we assume that we can store here, we need to make
620 		 * sure that it isn't in our metadata -- storing to our
621 		 * dynamic variable metadata would corrupt our state.  For
622 		 * the range to not include any dynamic variable metadata,
623 		 * it must:
624 		 *
625 		 *	(1) Start above the hash table that is at the base of
626 		 *	the dynamic variable space
627 		 *
628 		 *	(2) Have a starting chunk offset that is beyond the
629 		 *	dtrace_dynvar_t that is at the base of every chunk
630 		 *
631 		 *	(3) Not span a chunk boundary
632 		 *
633 		 */
634 		if (addr < base)
635 			return (0);
636 
637 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
638 
639 		if (chunkoffs < sizeof (dtrace_dynvar_t))
640 			return (0);
641 
642 		if (chunkoffs + sz > dstate->dtds_chunksize)
643 			return (0);
644 
645 		return (1);
646 	}
647 
648 	/*
649 	 * Finally, check the static local and global variables.  These checks
650 	 * take the longest, so we perform them last.
651 	 */
652 	if (dtrace_canstore_statvar(addr, sz,
653 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
654 		return (1);
655 
656 	if (dtrace_canstore_statvar(addr, sz,
657 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
658 		return (1);
659 
660 	return (0);
661 }
662 
663 
664 /*
665  * Convenience routine to check to see if the address is within a memory
666  * region in which a load may be issued given the user's privilege level;
667  * if not, it sets the appropriate error flags and loads 'addr' into the
668  * illegal value slot.
669  *
670  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
671  * appropriate memory access protection.
672  */
673 static int
674 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
675     dtrace_vstate_t *vstate)
676 {
677 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
678 
679 	/*
680 	 * If we hold the privilege to read from kernel memory, then
681 	 * everything is readable.
682 	 */
683 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
684 		return (1);
685 
686 	/*
687 	 * You can obviously read that which you can store.
688 	 */
689 	if (dtrace_canstore(addr, sz, mstate, vstate))
690 		return (1);
691 
692 	/*
693 	 * We're allowed to read from our own string table.
694 	 */
695 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
696 	    mstate->dtms_difo->dtdo_strlen))
697 		return (1);
698 
699 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
700 	*illval = addr;
701 	return (0);
702 }
703 
704 /*
705  * Convenience routine to check to see if a given string is within a memory
706  * region in which a load may be issued given the user's privilege level;
707  * this exists so that we don't need to issue unnecessary dtrace_strlen()
708  * calls in the event that the user has all privileges.
709  */
710 static int
711 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
712     dtrace_vstate_t *vstate)
713 {
714 	size_t strsz;
715 
716 	/*
717 	 * If we hold the privilege to read from kernel memory, then
718 	 * everything is readable.
719 	 */
720 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
721 		return (1);
722 
723 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
724 	if (dtrace_canload(addr, strsz, mstate, vstate))
725 		return (1);
726 
727 	return (0);
728 }
729 
730 /*
731  * Convenience routine to check to see if a given variable is within a memory
732  * region in which a load may be issued given the user's privilege level.
733  */
734 static int
735 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
736     dtrace_vstate_t *vstate)
737 {
738 	size_t sz;
739 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
740 
741 	/*
742 	 * If we hold the privilege to read from kernel memory, then
743 	 * everything is readable.
744 	 */
745 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
746 		return (1);
747 
748 	if (type->dtdt_kind == DIF_TYPE_STRING)
749 		sz = dtrace_strlen(src,
750 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
751 	else
752 		sz = type->dtdt_size;
753 
754 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
755 }
756 
757 /*
758  * Compare two strings using safe loads.
759  */
760 static int
761 dtrace_strncmp(char *s1, char *s2, size_t limit)
762 {
763 	uint8_t c1, c2;
764 	volatile uint16_t *flags;
765 
766 	if (s1 == s2 || limit == 0)
767 		return (0);
768 
769 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
770 
771 	do {
772 		if (s1 == NULL) {
773 			c1 = '\0';
774 		} else {
775 			c1 = dtrace_load8((uintptr_t)s1++);
776 		}
777 
778 		if (s2 == NULL) {
779 			c2 = '\0';
780 		} else {
781 			c2 = dtrace_load8((uintptr_t)s2++);
782 		}
783 
784 		if (c1 != c2)
785 			return (c1 - c2);
786 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
787 
788 	return (0);
789 }
790 
791 /*
792  * Compute strlen(s) for a string using safe memory accesses.  The additional
793  * len parameter is used to specify a maximum length to ensure completion.
794  */
795 static size_t
796 dtrace_strlen(const char *s, size_t lim)
797 {
798 	uint_t len;
799 
800 	for (len = 0; len != lim; len++) {
801 		if (dtrace_load8((uintptr_t)s++) == '\0')
802 			break;
803 	}
804 
805 	return (len);
806 }
807 
808 /*
809  * Check if an address falls within a toxic region.
810  */
811 static int
812 dtrace_istoxic(uintptr_t kaddr, size_t size)
813 {
814 	uintptr_t taddr, tsize;
815 	int i;
816 
817 	for (i = 0; i < dtrace_toxranges; i++) {
818 		taddr = dtrace_toxrange[i].dtt_base;
819 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
820 
821 		if (kaddr - taddr < tsize) {
822 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
823 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
824 			return (1);
825 		}
826 
827 		if (taddr - kaddr < size) {
828 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
829 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
830 			return (1);
831 		}
832 	}
833 
834 	return (0);
835 }
836 
837 /*
838  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
839  * memory specified by the DIF program.  The dst is assumed to be safe memory
840  * that we can store to directly because it is managed by DTrace.  As with
841  * standard bcopy, overlapping copies are handled properly.
842  */
843 static void
844 dtrace_bcopy(const void *src, void *dst, size_t len)
845 {
846 	if (len != 0) {
847 		uint8_t *s1 = dst;
848 		const uint8_t *s2 = src;
849 
850 		if (s1 <= s2) {
851 			do {
852 				*s1++ = dtrace_load8((uintptr_t)s2++);
853 			} while (--len != 0);
854 		} else {
855 			s2 += len;
856 			s1 += len;
857 
858 			do {
859 				*--s1 = dtrace_load8((uintptr_t)--s2);
860 			} while (--len != 0);
861 		}
862 	}
863 }
864 
865 /*
866  * Copy src to dst using safe memory accesses, up to either the specified
867  * length, or the point that a nul byte is encountered.  The src is assumed to
868  * be unsafe memory specified by the DIF program.  The dst is assumed to be
869  * safe memory that we can store to directly because it is managed by DTrace.
870  * Unlike dtrace_bcopy(), overlapping regions are not handled.
871  */
872 static void
873 dtrace_strcpy(const void *src, void *dst, size_t len)
874 {
875 	if (len != 0) {
876 		uint8_t *s1 = dst, c;
877 		const uint8_t *s2 = src;
878 
879 		do {
880 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
881 		} while (--len != 0 && c != '\0');
882 	}
883 }
884 
885 /*
886  * Copy src to dst, deriving the size and type from the specified (BYREF)
887  * variable type.  The src is assumed to be unsafe memory specified by the DIF
888  * program.  The dst is assumed to be DTrace variable memory that is of the
889  * specified type; we assume that we can store to directly.
890  */
891 static void
892 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
893 {
894 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
895 
896 	if (type->dtdt_kind == DIF_TYPE_STRING) {
897 		dtrace_strcpy(src, dst, type->dtdt_size);
898 	} else {
899 		dtrace_bcopy(src, dst, type->dtdt_size);
900 	}
901 }
902 
903 /*
904  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
905  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
906  * safe memory that we can access directly because it is managed by DTrace.
907  */
908 static int
909 dtrace_bcmp(const void *s1, const void *s2, size_t len)
910 {
911 	volatile uint16_t *flags;
912 
913 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
914 
915 	if (s1 == s2)
916 		return (0);
917 
918 	if (s1 == NULL || s2 == NULL)
919 		return (1);
920 
921 	if (s1 != s2 && len != 0) {
922 		const uint8_t *ps1 = s1;
923 		const uint8_t *ps2 = s2;
924 
925 		do {
926 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
927 				return (1);
928 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
929 	}
930 	return (0);
931 }
932 
933 /*
934  * Zero the specified region using a simple byte-by-byte loop.  Note that this
935  * is for safe DTrace-managed memory only.
936  */
937 static void
938 dtrace_bzero(void *dst, size_t len)
939 {
940 	uchar_t *cp;
941 
942 	for (cp = dst; len != 0; len--)
943 		*cp++ = 0;
944 }
945 
946 static void
947 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
948 {
949 	uint64_t result[2];
950 
951 	result[0] = addend1[0] + addend2[0];
952 	result[1] = addend1[1] + addend2[1] +
953 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
954 
955 	sum[0] = result[0];
956 	sum[1] = result[1];
957 }
958 
959 /*
960  * Shift the 128-bit value in a by b. If b is positive, shift left.
961  * If b is negative, shift right.
962  */
963 static void
964 dtrace_shift_128(uint64_t *a, int b)
965 {
966 	uint64_t mask;
967 
968 	if (b == 0)
969 		return;
970 
971 	if (b < 0) {
972 		b = -b;
973 		if (b >= 64) {
974 			a[0] = a[1] >> (b - 64);
975 			a[1] = 0;
976 		} else {
977 			a[0] >>= b;
978 			mask = 1LL << (64 - b);
979 			mask -= 1;
980 			a[0] |= ((a[1] & mask) << (64 - b));
981 			a[1] >>= b;
982 		}
983 	} else {
984 		if (b >= 64) {
985 			a[1] = a[0] << (b - 64);
986 			a[0] = 0;
987 		} else {
988 			a[1] <<= b;
989 			mask = a[0] >> (64 - b);
990 			a[1] |= mask;
991 			a[0] <<= b;
992 		}
993 	}
994 }
995 
996 /*
997  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
998  * use native multiplication on those, and then re-combine into the
999  * resulting 128-bit value.
1000  *
1001  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1002  *     hi1 * hi2 << 64 +
1003  *     hi1 * lo2 << 32 +
1004  *     hi2 * lo1 << 32 +
1005  *     lo1 * lo2
1006  */
1007 static void
1008 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1009 {
1010 	uint64_t hi1, hi2, lo1, lo2;
1011 	uint64_t tmp[2];
1012 
1013 	hi1 = factor1 >> 32;
1014 	hi2 = factor2 >> 32;
1015 
1016 	lo1 = factor1 & DT_MASK_LO;
1017 	lo2 = factor2 & DT_MASK_LO;
1018 
1019 	product[0] = lo1 * lo2;
1020 	product[1] = hi1 * hi2;
1021 
1022 	tmp[0] = hi1 * lo2;
1023 	tmp[1] = 0;
1024 	dtrace_shift_128(tmp, 32);
1025 	dtrace_add_128(product, tmp, product);
1026 
1027 	tmp[0] = hi2 * lo1;
1028 	tmp[1] = 0;
1029 	dtrace_shift_128(tmp, 32);
1030 	dtrace_add_128(product, tmp, product);
1031 }
1032 
1033 /*
1034  * This privilege check should be used by actions and subroutines to
1035  * verify that the user credentials of the process that enabled the
1036  * invoking ECB match the target credentials
1037  */
1038 static int
1039 dtrace_priv_proc_common_user(dtrace_state_t *state)
1040 {
1041 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1042 
1043 	/*
1044 	 * We should always have a non-NULL state cred here, since if cred
1045 	 * is null (anonymous tracing), we fast-path bypass this routine.
1046 	 */
1047 	ASSERT(s_cr != NULL);
1048 
1049 	if ((cr = CRED()) != NULL &&
1050 	    s_cr->cr_uid == cr->cr_uid &&
1051 	    s_cr->cr_uid == cr->cr_ruid &&
1052 	    s_cr->cr_uid == cr->cr_suid &&
1053 	    s_cr->cr_gid == cr->cr_gid &&
1054 	    s_cr->cr_gid == cr->cr_rgid &&
1055 	    s_cr->cr_gid == cr->cr_sgid)
1056 		return (1);
1057 
1058 	return (0);
1059 }
1060 
1061 /*
1062  * This privilege check should be used by actions and subroutines to
1063  * verify that the zone of the process that enabled the invoking ECB
1064  * matches the target credentials
1065  */
1066 static int
1067 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1068 {
1069 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1070 
1071 	/*
1072 	 * We should always have a non-NULL state cred here, since if cred
1073 	 * is null (anonymous tracing), we fast-path bypass this routine.
1074 	 */
1075 	ASSERT(s_cr != NULL);
1076 
1077 	if ((cr = CRED()) != NULL &&
1078 	    s_cr->cr_zone == cr->cr_zone)
1079 		return (1);
1080 
1081 	return (0);
1082 }
1083 
1084 /*
1085  * This privilege check should be used by actions and subroutines to
1086  * verify that the process has not setuid or changed credentials.
1087  */
1088 static int
1089 dtrace_priv_proc_common_nocd()
1090 {
1091 	proc_t *proc;
1092 
1093 	if ((proc = ttoproc(curthread)) != NULL &&
1094 	    !(proc->p_flag & SNOCD))
1095 		return (1);
1096 
1097 	return (0);
1098 }
1099 
1100 static int
1101 dtrace_priv_proc_destructive(dtrace_state_t *state)
1102 {
1103 	int action = state->dts_cred.dcr_action;
1104 
1105 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1106 	    dtrace_priv_proc_common_zone(state) == 0)
1107 		goto bad;
1108 
1109 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1110 	    dtrace_priv_proc_common_user(state) == 0)
1111 		goto bad;
1112 
1113 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1114 	    dtrace_priv_proc_common_nocd() == 0)
1115 		goto bad;
1116 
1117 	return (1);
1118 
1119 bad:
1120 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1121 
1122 	return (0);
1123 }
1124 
1125 static int
1126 dtrace_priv_proc_control(dtrace_state_t *state)
1127 {
1128 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1129 		return (1);
1130 
1131 	if (dtrace_priv_proc_common_zone(state) &&
1132 	    dtrace_priv_proc_common_user(state) &&
1133 	    dtrace_priv_proc_common_nocd())
1134 		return (1);
1135 
1136 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1137 
1138 	return (0);
1139 }
1140 
1141 static int
1142 dtrace_priv_proc(dtrace_state_t *state)
1143 {
1144 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1145 		return (1);
1146 
1147 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1148 
1149 	return (0);
1150 }
1151 
1152 static int
1153 dtrace_priv_kernel(dtrace_state_t *state)
1154 {
1155 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1156 		return (1);
1157 
1158 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1159 
1160 	return (0);
1161 }
1162 
1163 static int
1164 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1165 {
1166 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1167 		return (1);
1168 
1169 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1170 
1171 	return (0);
1172 }
1173 
1174 /*
1175  * Note:  not called from probe context.  This function is called
1176  * asynchronously (and at a regular interval) from outside of probe context to
1177  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1178  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1179  */
1180 void
1181 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1182 {
1183 	dtrace_dynvar_t *dirty;
1184 	dtrace_dstate_percpu_t *dcpu;
1185 	int i, work = 0;
1186 
1187 	for (i = 0; i < NCPU; i++) {
1188 		dcpu = &dstate->dtds_percpu[i];
1189 
1190 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1191 
1192 		/*
1193 		 * If the dirty list is NULL, there is no dirty work to do.
1194 		 */
1195 		if (dcpu->dtdsc_dirty == NULL)
1196 			continue;
1197 
1198 		/*
1199 		 * If the clean list is non-NULL, then we're not going to do
1200 		 * any work for this CPU -- it means that there has not been
1201 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1202 		 * since the last time we cleaned house.
1203 		 */
1204 		if (dcpu->dtdsc_clean != NULL)
1205 			continue;
1206 
1207 		work = 1;
1208 
1209 		/*
1210 		 * Atomically move the dirty list aside.
1211 		 */
1212 		do {
1213 			dirty = dcpu->dtdsc_dirty;
1214 
1215 			/*
1216 			 * Before we zap the dirty list, set the rinsing list.
1217 			 * (This allows for a potential assertion in
1218 			 * dtrace_dynvar():  if a free dynamic variable appears
1219 			 * on a hash chain, either the dirty list or the
1220 			 * rinsing list for some CPU must be non-NULL.)
1221 			 */
1222 			dcpu->dtdsc_rinsing = dirty;
1223 			dtrace_membar_producer();
1224 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1225 		    dirty, NULL) != dirty);
1226 	}
1227 
1228 	if (!work) {
1229 		/*
1230 		 * We have no work to do; we can simply return.
1231 		 */
1232 		return;
1233 	}
1234 
1235 	dtrace_sync();
1236 
1237 	for (i = 0; i < NCPU; i++) {
1238 		dcpu = &dstate->dtds_percpu[i];
1239 
1240 		if (dcpu->dtdsc_rinsing == NULL)
1241 			continue;
1242 
1243 		/*
1244 		 * We are now guaranteed that no hash chain contains a pointer
1245 		 * into this dirty list; we can make it clean.
1246 		 */
1247 		ASSERT(dcpu->dtdsc_clean == NULL);
1248 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1249 		dcpu->dtdsc_rinsing = NULL;
1250 	}
1251 
1252 	/*
1253 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1254 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1255 	 * This prevents a race whereby a CPU incorrectly decides that
1256 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1257 	 * after dtrace_dynvar_clean() has completed.
1258 	 */
1259 	dtrace_sync();
1260 
1261 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1262 }
1263 
1264 /*
1265  * Depending on the value of the op parameter, this function looks-up,
1266  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1267  * allocation is requested, this function will return a pointer to a
1268  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1269  * variable can be allocated.  If NULL is returned, the appropriate counter
1270  * will be incremented.
1271  */
1272 dtrace_dynvar_t *
1273 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1274     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1275     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1276 {
1277 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1278 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1279 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1280 	processorid_t me = CPU->cpu_id, cpu = me;
1281 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1282 	size_t bucket, ksize;
1283 	size_t chunksize = dstate->dtds_chunksize;
1284 	uintptr_t kdata, lock, nstate;
1285 	uint_t i;
1286 
1287 	ASSERT(nkeys != 0);
1288 
1289 	/*
1290 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1291 	 * algorithm.  For the by-value portions, we perform the algorithm in
1292 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1293 	 * bit, and seems to have only a minute effect on distribution.  For
1294 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1295 	 * over each referenced byte.  It's painful to do this, but it's much
1296 	 * better than pathological hash distribution.  The efficacy of the
1297 	 * hashing algorithm (and a comparison with other algorithms) may be
1298 	 * found by running the ::dtrace_dynstat MDB dcmd.
1299 	 */
1300 	for (i = 0; i < nkeys; i++) {
1301 		if (key[i].dttk_size == 0) {
1302 			uint64_t val = key[i].dttk_value;
1303 
1304 			hashval += (val >> 48) & 0xffff;
1305 			hashval += (hashval << 10);
1306 			hashval ^= (hashval >> 6);
1307 
1308 			hashval += (val >> 32) & 0xffff;
1309 			hashval += (hashval << 10);
1310 			hashval ^= (hashval >> 6);
1311 
1312 			hashval += (val >> 16) & 0xffff;
1313 			hashval += (hashval << 10);
1314 			hashval ^= (hashval >> 6);
1315 
1316 			hashval += val & 0xffff;
1317 			hashval += (hashval << 10);
1318 			hashval ^= (hashval >> 6);
1319 		} else {
1320 			/*
1321 			 * This is incredibly painful, but it beats the hell
1322 			 * out of the alternative.
1323 			 */
1324 			uint64_t j, size = key[i].dttk_size;
1325 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1326 
1327 			if (!dtrace_canload(base, size, mstate, vstate))
1328 				break;
1329 
1330 			for (j = 0; j < size; j++) {
1331 				hashval += dtrace_load8(base + j);
1332 				hashval += (hashval << 10);
1333 				hashval ^= (hashval >> 6);
1334 			}
1335 		}
1336 	}
1337 
1338 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1339 		return (NULL);
1340 
1341 	hashval += (hashval << 3);
1342 	hashval ^= (hashval >> 11);
1343 	hashval += (hashval << 15);
1344 
1345 	/*
1346 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1347 	 * comes out to be one of our two sentinel hash values.  If this
1348 	 * actually happens, we set the hashval to be a value known to be a
1349 	 * non-sentinel value.
1350 	 */
1351 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1352 		hashval = DTRACE_DYNHASH_VALID;
1353 
1354 	/*
1355 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1356 	 * important here, tricks can be pulled to reduce it.  (However, it's
1357 	 * critical that hash collisions be kept to an absolute minimum;
1358 	 * they're much more painful than a divide.)  It's better to have a
1359 	 * solution that generates few collisions and still keeps things
1360 	 * relatively simple.
1361 	 */
1362 	bucket = hashval % dstate->dtds_hashsize;
1363 
1364 	if (op == DTRACE_DYNVAR_DEALLOC) {
1365 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1366 
1367 		for (;;) {
1368 			while ((lock = *lockp) & 1)
1369 				continue;
1370 
1371 			if (dtrace_casptr((void *)lockp,
1372 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1373 				break;
1374 		}
1375 
1376 		dtrace_membar_producer();
1377 	}
1378 
1379 top:
1380 	prev = NULL;
1381 	lock = hash[bucket].dtdh_lock;
1382 
1383 	dtrace_membar_consumer();
1384 
1385 	start = hash[bucket].dtdh_chain;
1386 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1387 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1388 	    op != DTRACE_DYNVAR_DEALLOC));
1389 
1390 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1391 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1392 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1393 
1394 		if (dvar->dtdv_hashval != hashval) {
1395 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1396 				/*
1397 				 * We've reached the sink, and therefore the
1398 				 * end of the hash chain; we can kick out of
1399 				 * the loop knowing that we have seen a valid
1400 				 * snapshot of state.
1401 				 */
1402 				ASSERT(dvar->dtdv_next == NULL);
1403 				ASSERT(dvar == &dtrace_dynhash_sink);
1404 				break;
1405 			}
1406 
1407 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1408 				/*
1409 				 * We've gone off the rails:  somewhere along
1410 				 * the line, one of the members of this hash
1411 				 * chain was deleted.  Note that we could also
1412 				 * detect this by simply letting this loop run
1413 				 * to completion, as we would eventually hit
1414 				 * the end of the dirty list.  However, we
1415 				 * want to avoid running the length of the
1416 				 * dirty list unnecessarily (it might be quite
1417 				 * long), so we catch this as early as
1418 				 * possible by detecting the hash marker.  In
1419 				 * this case, we simply set dvar to NULL and
1420 				 * break; the conditional after the loop will
1421 				 * send us back to top.
1422 				 */
1423 				dvar = NULL;
1424 				break;
1425 			}
1426 
1427 			goto next;
1428 		}
1429 
1430 		if (dtuple->dtt_nkeys != nkeys)
1431 			goto next;
1432 
1433 		for (i = 0; i < nkeys; i++, dkey++) {
1434 			if (dkey->dttk_size != key[i].dttk_size)
1435 				goto next; /* size or type mismatch */
1436 
1437 			if (dkey->dttk_size != 0) {
1438 				if (dtrace_bcmp(
1439 				    (void *)(uintptr_t)key[i].dttk_value,
1440 				    (void *)(uintptr_t)dkey->dttk_value,
1441 				    dkey->dttk_size))
1442 					goto next;
1443 			} else {
1444 				if (dkey->dttk_value != key[i].dttk_value)
1445 					goto next;
1446 			}
1447 		}
1448 
1449 		if (op != DTRACE_DYNVAR_DEALLOC)
1450 			return (dvar);
1451 
1452 		ASSERT(dvar->dtdv_next == NULL ||
1453 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1454 
1455 		if (prev != NULL) {
1456 			ASSERT(hash[bucket].dtdh_chain != dvar);
1457 			ASSERT(start != dvar);
1458 			ASSERT(prev->dtdv_next == dvar);
1459 			prev->dtdv_next = dvar->dtdv_next;
1460 		} else {
1461 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1462 			    start, dvar->dtdv_next) != start) {
1463 				/*
1464 				 * We have failed to atomically swing the
1465 				 * hash table head pointer, presumably because
1466 				 * of a conflicting allocation on another CPU.
1467 				 * We need to reread the hash chain and try
1468 				 * again.
1469 				 */
1470 				goto top;
1471 			}
1472 		}
1473 
1474 		dtrace_membar_producer();
1475 
1476 		/*
1477 		 * Now set the hash value to indicate that it's free.
1478 		 */
1479 		ASSERT(hash[bucket].dtdh_chain != dvar);
1480 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1481 
1482 		dtrace_membar_producer();
1483 
1484 		/*
1485 		 * Set the next pointer to point at the dirty list, and
1486 		 * atomically swing the dirty pointer to the newly freed dvar.
1487 		 */
1488 		do {
1489 			next = dcpu->dtdsc_dirty;
1490 			dvar->dtdv_next = next;
1491 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1492 
1493 		/*
1494 		 * Finally, unlock this hash bucket.
1495 		 */
1496 		ASSERT(hash[bucket].dtdh_lock == lock);
1497 		ASSERT(lock & 1);
1498 		hash[bucket].dtdh_lock++;
1499 
1500 		return (NULL);
1501 next:
1502 		prev = dvar;
1503 		continue;
1504 	}
1505 
1506 	if (dvar == NULL) {
1507 		/*
1508 		 * If dvar is NULL, it is because we went off the rails:
1509 		 * one of the elements that we traversed in the hash chain
1510 		 * was deleted while we were traversing it.  In this case,
1511 		 * we assert that we aren't doing a dealloc (deallocs lock
1512 		 * the hash bucket to prevent themselves from racing with
1513 		 * one another), and retry the hash chain traversal.
1514 		 */
1515 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1516 		goto top;
1517 	}
1518 
1519 	if (op != DTRACE_DYNVAR_ALLOC) {
1520 		/*
1521 		 * If we are not to allocate a new variable, we want to
1522 		 * return NULL now.  Before we return, check that the value
1523 		 * of the lock word hasn't changed.  If it has, we may have
1524 		 * seen an inconsistent snapshot.
1525 		 */
1526 		if (op == DTRACE_DYNVAR_NOALLOC) {
1527 			if (hash[bucket].dtdh_lock != lock)
1528 				goto top;
1529 		} else {
1530 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1531 			ASSERT(hash[bucket].dtdh_lock == lock);
1532 			ASSERT(lock & 1);
1533 			hash[bucket].dtdh_lock++;
1534 		}
1535 
1536 		return (NULL);
1537 	}
1538 
1539 	/*
1540 	 * We need to allocate a new dynamic variable.  The size we need is the
1541 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1542 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1543 	 * the size of any referred-to data (dsize).  We then round the final
1544 	 * size up to the chunksize for allocation.
1545 	 */
1546 	for (ksize = 0, i = 0; i < nkeys; i++)
1547 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1548 
1549 	/*
1550 	 * This should be pretty much impossible, but could happen if, say,
1551 	 * strange DIF specified the tuple.  Ideally, this should be an
1552 	 * assertion and not an error condition -- but that requires that the
1553 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1554 	 * bullet-proof.  (That is, it must not be able to be fooled by
1555 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1556 	 * solving this would presumably not amount to solving the Halting
1557 	 * Problem -- but it still seems awfully hard.
1558 	 */
1559 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1560 	    ksize + dsize > chunksize) {
1561 		dcpu->dtdsc_drops++;
1562 		return (NULL);
1563 	}
1564 
1565 	nstate = DTRACE_DSTATE_EMPTY;
1566 
1567 	do {
1568 retry:
1569 		free = dcpu->dtdsc_free;
1570 
1571 		if (free == NULL) {
1572 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1573 			void *rval;
1574 
1575 			if (clean == NULL) {
1576 				/*
1577 				 * We're out of dynamic variable space on
1578 				 * this CPU.  Unless we have tried all CPUs,
1579 				 * we'll try to allocate from a different
1580 				 * CPU.
1581 				 */
1582 				switch (dstate->dtds_state) {
1583 				case DTRACE_DSTATE_CLEAN: {
1584 					void *sp = &dstate->dtds_state;
1585 
1586 					if (++cpu >= NCPU)
1587 						cpu = 0;
1588 
1589 					if (dcpu->dtdsc_dirty != NULL &&
1590 					    nstate == DTRACE_DSTATE_EMPTY)
1591 						nstate = DTRACE_DSTATE_DIRTY;
1592 
1593 					if (dcpu->dtdsc_rinsing != NULL)
1594 						nstate = DTRACE_DSTATE_RINSING;
1595 
1596 					dcpu = &dstate->dtds_percpu[cpu];
1597 
1598 					if (cpu != me)
1599 						goto retry;
1600 
1601 					(void) dtrace_cas32(sp,
1602 					    DTRACE_DSTATE_CLEAN, nstate);
1603 
1604 					/*
1605 					 * To increment the correct bean
1606 					 * counter, take another lap.
1607 					 */
1608 					goto retry;
1609 				}
1610 
1611 				case DTRACE_DSTATE_DIRTY:
1612 					dcpu->dtdsc_dirty_drops++;
1613 					break;
1614 
1615 				case DTRACE_DSTATE_RINSING:
1616 					dcpu->dtdsc_rinsing_drops++;
1617 					break;
1618 
1619 				case DTRACE_DSTATE_EMPTY:
1620 					dcpu->dtdsc_drops++;
1621 					break;
1622 				}
1623 
1624 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1625 				return (NULL);
1626 			}
1627 
1628 			/*
1629 			 * The clean list appears to be non-empty.  We want to
1630 			 * move the clean list to the free list; we start by
1631 			 * moving the clean pointer aside.
1632 			 */
1633 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1634 			    clean, NULL) != clean) {
1635 				/*
1636 				 * We are in one of two situations:
1637 				 *
1638 				 *  (a)	The clean list was switched to the
1639 				 *	free list by another CPU.
1640 				 *
1641 				 *  (b)	The clean list was added to by the
1642 				 *	cleansing cyclic.
1643 				 *
1644 				 * In either of these situations, we can
1645 				 * just reattempt the free list allocation.
1646 				 */
1647 				goto retry;
1648 			}
1649 
1650 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1651 
1652 			/*
1653 			 * Now we'll move the clean list to the free list.
1654 			 * It's impossible for this to fail:  the only way
1655 			 * the free list can be updated is through this
1656 			 * code path, and only one CPU can own the clean list.
1657 			 * Thus, it would only be possible for this to fail if
1658 			 * this code were racing with dtrace_dynvar_clean().
1659 			 * (That is, if dtrace_dynvar_clean() updated the clean
1660 			 * list, and we ended up racing to update the free
1661 			 * list.)  This race is prevented by the dtrace_sync()
1662 			 * in dtrace_dynvar_clean() -- which flushes the
1663 			 * owners of the clean lists out before resetting
1664 			 * the clean lists.
1665 			 */
1666 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1667 			ASSERT(rval == NULL);
1668 			goto retry;
1669 		}
1670 
1671 		dvar = free;
1672 		new_free = dvar->dtdv_next;
1673 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1674 
1675 	/*
1676 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1677 	 * tuple array and copy any referenced key data into the data space
1678 	 * following the tuple array.  As we do this, we relocate dttk_value
1679 	 * in the final tuple to point to the key data address in the chunk.
1680 	 */
1681 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1682 	dvar->dtdv_data = (void *)(kdata + ksize);
1683 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1684 
1685 	for (i = 0; i < nkeys; i++) {
1686 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1687 		size_t kesize = key[i].dttk_size;
1688 
1689 		if (kesize != 0) {
1690 			dtrace_bcopy(
1691 			    (const void *)(uintptr_t)key[i].dttk_value,
1692 			    (void *)kdata, kesize);
1693 			dkey->dttk_value = kdata;
1694 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1695 		} else {
1696 			dkey->dttk_value = key[i].dttk_value;
1697 		}
1698 
1699 		dkey->dttk_size = kesize;
1700 	}
1701 
1702 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1703 	dvar->dtdv_hashval = hashval;
1704 	dvar->dtdv_next = start;
1705 
1706 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1707 		return (dvar);
1708 
1709 	/*
1710 	 * The cas has failed.  Either another CPU is adding an element to
1711 	 * this hash chain, or another CPU is deleting an element from this
1712 	 * hash chain.  The simplest way to deal with both of these cases
1713 	 * (though not necessarily the most efficient) is to free our
1714 	 * allocated block and tail-call ourselves.  Note that the free is
1715 	 * to the dirty list and _not_ to the free list.  This is to prevent
1716 	 * races with allocators, above.
1717 	 */
1718 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1719 
1720 	dtrace_membar_producer();
1721 
1722 	do {
1723 		free = dcpu->dtdsc_dirty;
1724 		dvar->dtdv_next = free;
1725 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1726 
1727 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1728 }
1729 
1730 /*ARGSUSED*/
1731 static void
1732 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1733 {
1734 	if ((int64_t)nval < (int64_t)*oval)
1735 		*oval = nval;
1736 }
1737 
1738 /*ARGSUSED*/
1739 static void
1740 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1741 {
1742 	if ((int64_t)nval > (int64_t)*oval)
1743 		*oval = nval;
1744 }
1745 
1746 static void
1747 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1748 {
1749 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1750 	int64_t val = (int64_t)nval;
1751 
1752 	if (val < 0) {
1753 		for (i = 0; i < zero; i++) {
1754 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1755 				quanta[i] += incr;
1756 				return;
1757 			}
1758 		}
1759 	} else {
1760 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1761 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1762 				quanta[i - 1] += incr;
1763 				return;
1764 			}
1765 		}
1766 
1767 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1768 		return;
1769 	}
1770 
1771 	ASSERT(0);
1772 }
1773 
1774 static void
1775 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1776 {
1777 	uint64_t arg = *lquanta++;
1778 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1779 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1780 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1781 	int32_t val = (int32_t)nval, level;
1782 
1783 	ASSERT(step != 0);
1784 	ASSERT(levels != 0);
1785 
1786 	if (val < base) {
1787 		/*
1788 		 * This is an underflow.
1789 		 */
1790 		lquanta[0] += incr;
1791 		return;
1792 	}
1793 
1794 	level = (val - base) / step;
1795 
1796 	if (level < levels) {
1797 		lquanta[level + 1] += incr;
1798 		return;
1799 	}
1800 
1801 	/*
1802 	 * This is an overflow.
1803 	 */
1804 	lquanta[levels + 1] += incr;
1805 }
1806 
1807 /*ARGSUSED*/
1808 static void
1809 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1810 {
1811 	data[0]++;
1812 	data[1] += nval;
1813 }
1814 
1815 /*ARGSUSED*/
1816 static void
1817 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1818 {
1819 	int64_t snval = (int64_t)nval;
1820 	uint64_t tmp[2];
1821 
1822 	data[0]++;
1823 	data[1] += nval;
1824 
1825 	/*
1826 	 * What we want to say here is:
1827 	 *
1828 	 * data[2] += nval * nval;
1829 	 *
1830 	 * But given that nval is 64-bit, we could easily overflow, so
1831 	 * we do this as 128-bit arithmetic.
1832 	 */
1833 	if (snval < 0)
1834 		snval = -snval;
1835 
1836 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1837 	dtrace_add_128(data + 2, tmp, data + 2);
1838 }
1839 
1840 /*ARGSUSED*/
1841 static void
1842 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1843 {
1844 	*oval = *oval + 1;
1845 }
1846 
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851 	*oval += nval;
1852 }
1853 
1854 /*
1855  * Aggregate given the tuple in the principal data buffer, and the aggregating
1856  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1857  * buffer is specified as the buf parameter.  This routine does not return
1858  * failure; if there is no space in the aggregation buffer, the data will be
1859  * dropped, and a corresponding counter incremented.
1860  */
1861 static void
1862 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1863     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1864 {
1865 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1866 	uint32_t i, ndx, size, fsize;
1867 	uint32_t align = sizeof (uint64_t) - 1;
1868 	dtrace_aggbuffer_t *agb;
1869 	dtrace_aggkey_t *key;
1870 	uint32_t hashval = 0, limit, isstr;
1871 	caddr_t tomax, data, kdata;
1872 	dtrace_actkind_t action;
1873 	dtrace_action_t *act;
1874 	uintptr_t offs;
1875 
1876 	if (buf == NULL)
1877 		return;
1878 
1879 	if (!agg->dtag_hasarg) {
1880 		/*
1881 		 * Currently, only quantize() and lquantize() take additional
1882 		 * arguments, and they have the same semantics:  an increment
1883 		 * value that defaults to 1 when not present.  If additional
1884 		 * aggregating actions take arguments, the setting of the
1885 		 * default argument value will presumably have to become more
1886 		 * sophisticated...
1887 		 */
1888 		arg = 1;
1889 	}
1890 
1891 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1892 	size = rec->dtrd_offset - agg->dtag_base;
1893 	fsize = size + rec->dtrd_size;
1894 
1895 	ASSERT(dbuf->dtb_tomax != NULL);
1896 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1897 
1898 	if ((tomax = buf->dtb_tomax) == NULL) {
1899 		dtrace_buffer_drop(buf);
1900 		return;
1901 	}
1902 
1903 	/*
1904 	 * The metastructure is always at the bottom of the buffer.
1905 	 */
1906 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1907 	    sizeof (dtrace_aggbuffer_t));
1908 
1909 	if (buf->dtb_offset == 0) {
1910 		/*
1911 		 * We just kludge up approximately 1/8th of the size to be
1912 		 * buckets.  If this guess ends up being routinely
1913 		 * off-the-mark, we may need to dynamically readjust this
1914 		 * based on past performance.
1915 		 */
1916 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1917 
1918 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1919 		    (uintptr_t)tomax || hashsize == 0) {
1920 			/*
1921 			 * We've been given a ludicrously small buffer;
1922 			 * increment our drop count and leave.
1923 			 */
1924 			dtrace_buffer_drop(buf);
1925 			return;
1926 		}
1927 
1928 		/*
1929 		 * And now, a pathetic attempt to try to get a an odd (or
1930 		 * perchance, a prime) hash size for better hash distribution.
1931 		 */
1932 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1933 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1934 
1935 		agb->dtagb_hashsize = hashsize;
1936 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1937 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1938 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1939 
1940 		for (i = 0; i < agb->dtagb_hashsize; i++)
1941 			agb->dtagb_hash[i] = NULL;
1942 	}
1943 
1944 	ASSERT(agg->dtag_first != NULL);
1945 	ASSERT(agg->dtag_first->dta_intuple);
1946 
1947 	/*
1948 	 * Calculate the hash value based on the key.  Note that we _don't_
1949 	 * include the aggid in the hashing (but we will store it as part of
1950 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1951 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1952 	 * gets good distribution in practice.  The efficacy of the hashing
1953 	 * algorithm (and a comparison with other algorithms) may be found by
1954 	 * running the ::dtrace_aggstat MDB dcmd.
1955 	 */
1956 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1957 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1958 		limit = i + act->dta_rec.dtrd_size;
1959 		ASSERT(limit <= size);
1960 		isstr = DTRACEACT_ISSTRING(act);
1961 
1962 		for (; i < limit; i++) {
1963 			hashval += data[i];
1964 			hashval += (hashval << 10);
1965 			hashval ^= (hashval >> 6);
1966 
1967 			if (isstr && data[i] == '\0')
1968 				break;
1969 		}
1970 	}
1971 
1972 	hashval += (hashval << 3);
1973 	hashval ^= (hashval >> 11);
1974 	hashval += (hashval << 15);
1975 
1976 	/*
1977 	 * Yes, the divide here is expensive -- but it's generally the least
1978 	 * of the performance issues given the amount of data that we iterate
1979 	 * over to compute hash values, compare data, etc.
1980 	 */
1981 	ndx = hashval % agb->dtagb_hashsize;
1982 
1983 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1984 		ASSERT((caddr_t)key >= tomax);
1985 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1986 
1987 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1988 			continue;
1989 
1990 		kdata = key->dtak_data;
1991 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1992 
1993 		for (act = agg->dtag_first; act->dta_intuple;
1994 		    act = act->dta_next) {
1995 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1996 			limit = i + act->dta_rec.dtrd_size;
1997 			ASSERT(limit <= size);
1998 			isstr = DTRACEACT_ISSTRING(act);
1999 
2000 			for (; i < limit; i++) {
2001 				if (kdata[i] != data[i])
2002 					goto next;
2003 
2004 				if (isstr && data[i] == '\0')
2005 					break;
2006 			}
2007 		}
2008 
2009 		if (action != key->dtak_action) {
2010 			/*
2011 			 * We are aggregating on the same value in the same
2012 			 * aggregation with two different aggregating actions.
2013 			 * (This should have been picked up in the compiler,
2014 			 * so we may be dealing with errant or devious DIF.)
2015 			 * This is an error condition; we indicate as much,
2016 			 * and return.
2017 			 */
2018 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2019 			return;
2020 		}
2021 
2022 		/*
2023 		 * This is a hit:  we need to apply the aggregator to
2024 		 * the value at this key.
2025 		 */
2026 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2027 		return;
2028 next:
2029 		continue;
2030 	}
2031 
2032 	/*
2033 	 * We didn't find it.  We need to allocate some zero-filled space,
2034 	 * link it into the hash table appropriately, and apply the aggregator
2035 	 * to the (zero-filled) value.
2036 	 */
2037 	offs = buf->dtb_offset;
2038 	while (offs & (align - 1))
2039 		offs += sizeof (uint32_t);
2040 
2041 	/*
2042 	 * If we don't have enough room to both allocate a new key _and_
2043 	 * its associated data, increment the drop count and return.
2044 	 */
2045 	if ((uintptr_t)tomax + offs + fsize >
2046 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2047 		dtrace_buffer_drop(buf);
2048 		return;
2049 	}
2050 
2051 	/*CONSTCOND*/
2052 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2053 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2054 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2055 
2056 	key->dtak_data = kdata = tomax + offs;
2057 	buf->dtb_offset = offs + fsize;
2058 
2059 	/*
2060 	 * Now copy the data across.
2061 	 */
2062 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2063 
2064 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2065 		kdata[i] = data[i];
2066 
2067 	/*
2068 	 * Because strings are not zeroed out by default, we need to iterate
2069 	 * looking for actions that store strings, and we need to explicitly
2070 	 * pad these strings out with zeroes.
2071 	 */
2072 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2073 		int nul;
2074 
2075 		if (!DTRACEACT_ISSTRING(act))
2076 			continue;
2077 
2078 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2079 		limit = i + act->dta_rec.dtrd_size;
2080 		ASSERT(limit <= size);
2081 
2082 		for (nul = 0; i < limit; i++) {
2083 			if (nul) {
2084 				kdata[i] = '\0';
2085 				continue;
2086 			}
2087 
2088 			if (data[i] != '\0')
2089 				continue;
2090 
2091 			nul = 1;
2092 		}
2093 	}
2094 
2095 	for (i = size; i < fsize; i++)
2096 		kdata[i] = 0;
2097 
2098 	key->dtak_hashval = hashval;
2099 	key->dtak_size = size;
2100 	key->dtak_action = action;
2101 	key->dtak_next = agb->dtagb_hash[ndx];
2102 	agb->dtagb_hash[ndx] = key;
2103 
2104 	/*
2105 	 * Finally, apply the aggregator.
2106 	 */
2107 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2108 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2109 }
2110 
2111 /*
2112  * Given consumer state, this routine finds a speculation in the INACTIVE
2113  * state and transitions it into the ACTIVE state.  If there is no speculation
2114  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2115  * incremented -- it is up to the caller to take appropriate action.
2116  */
2117 static int
2118 dtrace_speculation(dtrace_state_t *state)
2119 {
2120 	int i = 0;
2121 	dtrace_speculation_state_t current;
2122 	uint32_t *stat = &state->dts_speculations_unavail, count;
2123 
2124 	while (i < state->dts_nspeculations) {
2125 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2126 
2127 		current = spec->dtsp_state;
2128 
2129 		if (current != DTRACESPEC_INACTIVE) {
2130 			if (current == DTRACESPEC_COMMITTINGMANY ||
2131 			    current == DTRACESPEC_COMMITTING ||
2132 			    current == DTRACESPEC_DISCARDING)
2133 				stat = &state->dts_speculations_busy;
2134 			i++;
2135 			continue;
2136 		}
2137 
2138 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2139 		    current, DTRACESPEC_ACTIVE) == current)
2140 			return (i + 1);
2141 	}
2142 
2143 	/*
2144 	 * We couldn't find a speculation.  If we found as much as a single
2145 	 * busy speculation buffer, we'll attribute this failure as "busy"
2146 	 * instead of "unavail".
2147 	 */
2148 	do {
2149 		count = *stat;
2150 	} while (dtrace_cas32(stat, count, count + 1) != count);
2151 
2152 	return (0);
2153 }
2154 
2155 /*
2156  * This routine commits an active speculation.  If the specified speculation
2157  * is not in a valid state to perform a commit(), this routine will silently do
2158  * nothing.  The state of the specified speculation is transitioned according
2159  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2160  */
2161 static void
2162 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2163     dtrace_specid_t which)
2164 {
2165 	dtrace_speculation_t *spec;
2166 	dtrace_buffer_t *src, *dest;
2167 	uintptr_t daddr, saddr, dlimit;
2168 	dtrace_speculation_state_t current, new;
2169 	intptr_t offs;
2170 
2171 	if (which == 0)
2172 		return;
2173 
2174 	if (which > state->dts_nspeculations) {
2175 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2176 		return;
2177 	}
2178 
2179 	spec = &state->dts_speculations[which - 1];
2180 	src = &spec->dtsp_buffer[cpu];
2181 	dest = &state->dts_buffer[cpu];
2182 
2183 	do {
2184 		current = spec->dtsp_state;
2185 
2186 		if (current == DTRACESPEC_COMMITTINGMANY)
2187 			break;
2188 
2189 		switch (current) {
2190 		case DTRACESPEC_INACTIVE:
2191 		case DTRACESPEC_DISCARDING:
2192 			return;
2193 
2194 		case DTRACESPEC_COMMITTING:
2195 			/*
2196 			 * This is only possible if we are (a) commit()'ing
2197 			 * without having done a prior speculate() on this CPU
2198 			 * and (b) racing with another commit() on a different
2199 			 * CPU.  There's nothing to do -- we just assert that
2200 			 * our offset is 0.
2201 			 */
2202 			ASSERT(src->dtb_offset == 0);
2203 			return;
2204 
2205 		case DTRACESPEC_ACTIVE:
2206 			new = DTRACESPEC_COMMITTING;
2207 			break;
2208 
2209 		case DTRACESPEC_ACTIVEONE:
2210 			/*
2211 			 * This speculation is active on one CPU.  If our
2212 			 * buffer offset is non-zero, we know that the one CPU
2213 			 * must be us.  Otherwise, we are committing on a
2214 			 * different CPU from the speculate(), and we must
2215 			 * rely on being asynchronously cleaned.
2216 			 */
2217 			if (src->dtb_offset != 0) {
2218 				new = DTRACESPEC_COMMITTING;
2219 				break;
2220 			}
2221 			/*FALLTHROUGH*/
2222 
2223 		case DTRACESPEC_ACTIVEMANY:
2224 			new = DTRACESPEC_COMMITTINGMANY;
2225 			break;
2226 
2227 		default:
2228 			ASSERT(0);
2229 		}
2230 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2231 	    current, new) != current);
2232 
2233 	/*
2234 	 * We have set the state to indicate that we are committing this
2235 	 * speculation.  Now reserve the necessary space in the destination
2236 	 * buffer.
2237 	 */
2238 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2239 	    sizeof (uint64_t), state, NULL)) < 0) {
2240 		dtrace_buffer_drop(dest);
2241 		goto out;
2242 	}
2243 
2244 	/*
2245 	 * We have the space; copy the buffer across.  (Note that this is a
2246 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2247 	 * a serious performance issue, a high-performance DTrace-specific
2248 	 * bcopy() should obviously be invented.)
2249 	 */
2250 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2251 	dlimit = daddr + src->dtb_offset;
2252 	saddr = (uintptr_t)src->dtb_tomax;
2253 
2254 	/*
2255 	 * First, the aligned portion.
2256 	 */
2257 	while (dlimit - daddr >= sizeof (uint64_t)) {
2258 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2259 
2260 		daddr += sizeof (uint64_t);
2261 		saddr += sizeof (uint64_t);
2262 	}
2263 
2264 	/*
2265 	 * Now any left-over bit...
2266 	 */
2267 	while (dlimit - daddr)
2268 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2269 
2270 	/*
2271 	 * Finally, commit the reserved space in the destination buffer.
2272 	 */
2273 	dest->dtb_offset = offs + src->dtb_offset;
2274 
2275 out:
2276 	/*
2277 	 * If we're lucky enough to be the only active CPU on this speculation
2278 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2279 	 */
2280 	if (current == DTRACESPEC_ACTIVE ||
2281 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2282 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2283 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2284 
2285 		ASSERT(rval == DTRACESPEC_COMMITTING);
2286 	}
2287 
2288 	src->dtb_offset = 0;
2289 	src->dtb_xamot_drops += src->dtb_drops;
2290 	src->dtb_drops = 0;
2291 }
2292 
2293 /*
2294  * This routine discards an active speculation.  If the specified speculation
2295  * is not in a valid state to perform a discard(), this routine will silently
2296  * do nothing.  The state of the specified speculation is transitioned
2297  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2298  */
2299 static void
2300 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2301     dtrace_specid_t which)
2302 {
2303 	dtrace_speculation_t *spec;
2304 	dtrace_speculation_state_t current, new;
2305 	dtrace_buffer_t *buf;
2306 
2307 	if (which == 0)
2308 		return;
2309 
2310 	if (which > state->dts_nspeculations) {
2311 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2312 		return;
2313 	}
2314 
2315 	spec = &state->dts_speculations[which - 1];
2316 	buf = &spec->dtsp_buffer[cpu];
2317 
2318 	do {
2319 		current = spec->dtsp_state;
2320 
2321 		switch (current) {
2322 		case DTRACESPEC_INACTIVE:
2323 		case DTRACESPEC_COMMITTINGMANY:
2324 		case DTRACESPEC_COMMITTING:
2325 		case DTRACESPEC_DISCARDING:
2326 			return;
2327 
2328 		case DTRACESPEC_ACTIVE:
2329 		case DTRACESPEC_ACTIVEMANY:
2330 			new = DTRACESPEC_DISCARDING;
2331 			break;
2332 
2333 		case DTRACESPEC_ACTIVEONE:
2334 			if (buf->dtb_offset != 0) {
2335 				new = DTRACESPEC_INACTIVE;
2336 			} else {
2337 				new = DTRACESPEC_DISCARDING;
2338 			}
2339 			break;
2340 
2341 		default:
2342 			ASSERT(0);
2343 		}
2344 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2345 	    current, new) != current);
2346 
2347 	buf->dtb_offset = 0;
2348 	buf->dtb_drops = 0;
2349 }
2350 
2351 /*
2352  * Note:  not called from probe context.  This function is called
2353  * asynchronously from cross call context to clean any speculations that are
2354  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2355  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2356  * speculation.
2357  */
2358 static void
2359 dtrace_speculation_clean_here(dtrace_state_t *state)
2360 {
2361 	dtrace_icookie_t cookie;
2362 	processorid_t cpu = CPU->cpu_id;
2363 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2364 	dtrace_specid_t i;
2365 
2366 	cookie = dtrace_interrupt_disable();
2367 
2368 	if (dest->dtb_tomax == NULL) {
2369 		dtrace_interrupt_enable(cookie);
2370 		return;
2371 	}
2372 
2373 	for (i = 0; i < state->dts_nspeculations; i++) {
2374 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2375 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2376 
2377 		if (src->dtb_tomax == NULL)
2378 			continue;
2379 
2380 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2381 			src->dtb_offset = 0;
2382 			continue;
2383 		}
2384 
2385 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2386 			continue;
2387 
2388 		if (src->dtb_offset == 0)
2389 			continue;
2390 
2391 		dtrace_speculation_commit(state, cpu, i + 1);
2392 	}
2393 
2394 	dtrace_interrupt_enable(cookie);
2395 }
2396 
2397 /*
2398  * Note:  not called from probe context.  This function is called
2399  * asynchronously (and at a regular interval) to clean any speculations that
2400  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2401  * is work to be done, it cross calls all CPUs to perform that work;
2402  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2403  * INACTIVE state until they have been cleaned by all CPUs.
2404  */
2405 static void
2406 dtrace_speculation_clean(dtrace_state_t *state)
2407 {
2408 	int work = 0, rv;
2409 	dtrace_specid_t i;
2410 
2411 	for (i = 0; i < state->dts_nspeculations; i++) {
2412 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2413 
2414 		ASSERT(!spec->dtsp_cleaning);
2415 
2416 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2417 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2418 			continue;
2419 
2420 		work++;
2421 		spec->dtsp_cleaning = 1;
2422 	}
2423 
2424 	if (!work)
2425 		return;
2426 
2427 	dtrace_xcall(DTRACE_CPUALL,
2428 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2429 
2430 	/*
2431 	 * We now know that all CPUs have committed or discarded their
2432 	 * speculation buffers, as appropriate.  We can now set the state
2433 	 * to inactive.
2434 	 */
2435 	for (i = 0; i < state->dts_nspeculations; i++) {
2436 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2437 		dtrace_speculation_state_t current, new;
2438 
2439 		if (!spec->dtsp_cleaning)
2440 			continue;
2441 
2442 		current = spec->dtsp_state;
2443 		ASSERT(current == DTRACESPEC_DISCARDING ||
2444 		    current == DTRACESPEC_COMMITTINGMANY);
2445 
2446 		new = DTRACESPEC_INACTIVE;
2447 
2448 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2449 		ASSERT(rv == current);
2450 		spec->dtsp_cleaning = 0;
2451 	}
2452 }
2453 
2454 /*
2455  * Called as part of a speculate() to get the speculative buffer associated
2456  * with a given speculation.  Returns NULL if the specified speculation is not
2457  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2458  * the active CPU is not the specified CPU -- the speculation will be
2459  * atomically transitioned into the ACTIVEMANY state.
2460  */
2461 static dtrace_buffer_t *
2462 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2463     dtrace_specid_t which)
2464 {
2465 	dtrace_speculation_t *spec;
2466 	dtrace_speculation_state_t current, new;
2467 	dtrace_buffer_t *buf;
2468 
2469 	if (which == 0)
2470 		return (NULL);
2471 
2472 	if (which > state->dts_nspeculations) {
2473 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2474 		return (NULL);
2475 	}
2476 
2477 	spec = &state->dts_speculations[which - 1];
2478 	buf = &spec->dtsp_buffer[cpuid];
2479 
2480 	do {
2481 		current = spec->dtsp_state;
2482 
2483 		switch (current) {
2484 		case DTRACESPEC_INACTIVE:
2485 		case DTRACESPEC_COMMITTINGMANY:
2486 		case DTRACESPEC_DISCARDING:
2487 			return (NULL);
2488 
2489 		case DTRACESPEC_COMMITTING:
2490 			ASSERT(buf->dtb_offset == 0);
2491 			return (NULL);
2492 
2493 		case DTRACESPEC_ACTIVEONE:
2494 			/*
2495 			 * This speculation is currently active on one CPU.
2496 			 * Check the offset in the buffer; if it's non-zero,
2497 			 * that CPU must be us (and we leave the state alone).
2498 			 * If it's zero, assume that we're starting on a new
2499 			 * CPU -- and change the state to indicate that the
2500 			 * speculation is active on more than one CPU.
2501 			 */
2502 			if (buf->dtb_offset != 0)
2503 				return (buf);
2504 
2505 			new = DTRACESPEC_ACTIVEMANY;
2506 			break;
2507 
2508 		case DTRACESPEC_ACTIVEMANY:
2509 			return (buf);
2510 
2511 		case DTRACESPEC_ACTIVE:
2512 			new = DTRACESPEC_ACTIVEONE;
2513 			break;
2514 
2515 		default:
2516 			ASSERT(0);
2517 		}
2518 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2519 	    current, new) != current);
2520 
2521 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2522 	return (buf);
2523 }
2524 
2525 /*
2526  * Return a string.  In the event that the user lacks the privilege to access
2527  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2528  * don't fail access checking.
2529  *
2530  * dtrace_dif_variable() uses this routine as a helper for various
2531  * builtin values such as 'execname' and 'probefunc.'
2532  */
2533 uintptr_t
2534 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2535     dtrace_mstate_t *mstate)
2536 {
2537 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2538 	uintptr_t ret;
2539 	size_t strsz;
2540 
2541 	/*
2542 	 * The easy case: this probe is allowed to read all of memory, so
2543 	 * we can just return this as a vanilla pointer.
2544 	 */
2545 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2546 		return (addr);
2547 
2548 	/*
2549 	 * This is the tougher case: we copy the string in question from
2550 	 * kernel memory into scratch memory and return it that way: this
2551 	 * ensures that we won't trip up when access checking tests the
2552 	 * BYREF return value.
2553 	 */
2554 	strsz = dtrace_strlen((char *)addr, size) + 1;
2555 
2556 	if (mstate->dtms_scratch_ptr + strsz >
2557 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2558 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2559 		return (NULL);
2560 	}
2561 
2562 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2563 	    strsz);
2564 	ret = mstate->dtms_scratch_ptr;
2565 	mstate->dtms_scratch_ptr += strsz;
2566 	return (ret);
2567 }
2568 
2569 /*
2570  * This function implements the DIF emulator's variable lookups.  The emulator
2571  * passes a reserved variable identifier and optional built-in array index.
2572  */
2573 static uint64_t
2574 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2575     uint64_t ndx)
2576 {
2577 	/*
2578 	 * If we're accessing one of the uncached arguments, we'll turn this
2579 	 * into a reference in the args array.
2580 	 */
2581 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2582 		ndx = v - DIF_VAR_ARG0;
2583 		v = DIF_VAR_ARGS;
2584 	}
2585 
2586 	switch (v) {
2587 	case DIF_VAR_ARGS:
2588 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2589 		if (ndx >= sizeof (mstate->dtms_arg) /
2590 		    sizeof (mstate->dtms_arg[0])) {
2591 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2592 			dtrace_provider_t *pv;
2593 			uint64_t val;
2594 
2595 			pv = mstate->dtms_probe->dtpr_provider;
2596 			if (pv->dtpv_pops.dtps_getargval != NULL)
2597 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2598 				    mstate->dtms_probe->dtpr_id,
2599 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2600 			else
2601 				val = dtrace_getarg(ndx, aframes);
2602 
2603 			/*
2604 			 * This is regrettably required to keep the compiler
2605 			 * from tail-optimizing the call to dtrace_getarg().
2606 			 * The condition always evaluates to true, but the
2607 			 * compiler has no way of figuring that out a priori.
2608 			 * (None of this would be necessary if the compiler
2609 			 * could be relied upon to _always_ tail-optimize
2610 			 * the call to dtrace_getarg() -- but it can't.)
2611 			 */
2612 			if (mstate->dtms_probe != NULL)
2613 				return (val);
2614 
2615 			ASSERT(0);
2616 		}
2617 
2618 		return (mstate->dtms_arg[ndx]);
2619 
2620 	case DIF_VAR_UREGS: {
2621 		klwp_t *lwp;
2622 
2623 		if (!dtrace_priv_proc(state))
2624 			return (0);
2625 
2626 		if ((lwp = curthread->t_lwp) == NULL) {
2627 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2628 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2629 			return (0);
2630 		}
2631 
2632 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2633 	}
2634 
2635 	case DIF_VAR_CURTHREAD:
2636 		if (!dtrace_priv_kernel(state))
2637 			return (0);
2638 		return ((uint64_t)(uintptr_t)curthread);
2639 
2640 	case DIF_VAR_TIMESTAMP:
2641 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2642 			mstate->dtms_timestamp = dtrace_gethrtime();
2643 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2644 		}
2645 		return (mstate->dtms_timestamp);
2646 
2647 	case DIF_VAR_VTIMESTAMP:
2648 		ASSERT(dtrace_vtime_references != 0);
2649 		return (curthread->t_dtrace_vtime);
2650 
2651 	case DIF_VAR_WALLTIMESTAMP:
2652 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2653 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2654 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2655 		}
2656 		return (mstate->dtms_walltimestamp);
2657 
2658 	case DIF_VAR_IPL:
2659 		if (!dtrace_priv_kernel(state))
2660 			return (0);
2661 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2662 			mstate->dtms_ipl = dtrace_getipl();
2663 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2664 		}
2665 		return (mstate->dtms_ipl);
2666 
2667 	case DIF_VAR_EPID:
2668 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2669 		return (mstate->dtms_epid);
2670 
2671 	case DIF_VAR_ID:
2672 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2673 		return (mstate->dtms_probe->dtpr_id);
2674 
2675 	case DIF_VAR_STACKDEPTH:
2676 		if (!dtrace_priv_kernel(state))
2677 			return (0);
2678 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2679 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2680 
2681 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2682 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2683 		}
2684 		return (mstate->dtms_stackdepth);
2685 
2686 	case DIF_VAR_USTACKDEPTH:
2687 		if (!dtrace_priv_proc(state))
2688 			return (0);
2689 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2690 			/*
2691 			 * See comment in DIF_VAR_PID.
2692 			 */
2693 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2694 			    CPU_ON_INTR(CPU)) {
2695 				mstate->dtms_ustackdepth = 0;
2696 			} else {
2697 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2698 				mstate->dtms_ustackdepth =
2699 				    dtrace_getustackdepth();
2700 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2701 			}
2702 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2703 		}
2704 		return (mstate->dtms_ustackdepth);
2705 
2706 	case DIF_VAR_CALLER:
2707 		if (!dtrace_priv_kernel(state))
2708 			return (0);
2709 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2710 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2711 
2712 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2713 				/*
2714 				 * If this is an unanchored probe, we are
2715 				 * required to go through the slow path:
2716 				 * dtrace_caller() only guarantees correct
2717 				 * results for anchored probes.
2718 				 */
2719 				pc_t caller[2];
2720 
2721 				dtrace_getpcstack(caller, 2, aframes,
2722 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2723 				mstate->dtms_caller = caller[1];
2724 			} else if ((mstate->dtms_caller =
2725 			    dtrace_caller(aframes)) == -1) {
2726 				/*
2727 				 * We have failed to do this the quick way;
2728 				 * we must resort to the slower approach of
2729 				 * calling dtrace_getpcstack().
2730 				 */
2731 				pc_t caller;
2732 
2733 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2734 				mstate->dtms_caller = caller;
2735 			}
2736 
2737 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2738 		}
2739 		return (mstate->dtms_caller);
2740 
2741 	case DIF_VAR_UCALLER:
2742 		if (!dtrace_priv_proc(state))
2743 			return (0);
2744 
2745 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2746 			uint64_t ustack[3];
2747 
2748 			/*
2749 			 * dtrace_getupcstack() fills in the first uint64_t
2750 			 * with the current PID.  The second uint64_t will
2751 			 * be the program counter at user-level.  The third
2752 			 * uint64_t will contain the caller, which is what
2753 			 * we're after.
2754 			 */
2755 			ustack[2] = NULL;
2756 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2757 			dtrace_getupcstack(ustack, 3);
2758 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2759 			mstate->dtms_ucaller = ustack[2];
2760 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2761 		}
2762 
2763 		return (mstate->dtms_ucaller);
2764 
2765 	case DIF_VAR_PROBEPROV:
2766 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2767 		return (dtrace_dif_varstr(
2768 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2769 		    state, mstate));
2770 
2771 	case DIF_VAR_PROBEMOD:
2772 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2773 		return (dtrace_dif_varstr(
2774 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2775 		    state, mstate));
2776 
2777 	case DIF_VAR_PROBEFUNC:
2778 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2779 		return (dtrace_dif_varstr(
2780 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2781 		    state, mstate));
2782 
2783 	case DIF_VAR_PROBENAME:
2784 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2785 		return (dtrace_dif_varstr(
2786 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2787 		    state, mstate));
2788 
2789 	case DIF_VAR_PID:
2790 		if (!dtrace_priv_proc(state))
2791 			return (0);
2792 
2793 		/*
2794 		 * Note that we are assuming that an unanchored probe is
2795 		 * always due to a high-level interrupt.  (And we're assuming
2796 		 * that there is only a single high level interrupt.)
2797 		 */
2798 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2799 			return (pid0.pid_id);
2800 
2801 		/*
2802 		 * It is always safe to dereference one's own t_procp pointer:
2803 		 * it always points to a valid, allocated proc structure.
2804 		 * Further, it is always safe to dereference the p_pidp member
2805 		 * of one's own proc structure.  (These are truisms becuase
2806 		 * threads and processes don't clean up their own state --
2807 		 * they leave that task to whomever reaps them.)
2808 		 */
2809 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2810 
2811 	case DIF_VAR_PPID:
2812 		if (!dtrace_priv_proc(state))
2813 			return (0);
2814 
2815 		/*
2816 		 * See comment in DIF_VAR_PID.
2817 		 */
2818 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2819 			return (pid0.pid_id);
2820 
2821 		/*
2822 		 * It is always safe to dereference one's own t_procp pointer:
2823 		 * it always points to a valid, allocated proc structure.
2824 		 * (This is true because threads don't clean up their own
2825 		 * state -- they leave that task to whomever reaps them.)
2826 		 */
2827 		return ((uint64_t)curthread->t_procp->p_ppid);
2828 
2829 	case DIF_VAR_TID:
2830 		/*
2831 		 * See comment in DIF_VAR_PID.
2832 		 */
2833 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2834 			return (0);
2835 
2836 		return ((uint64_t)curthread->t_tid);
2837 
2838 	case DIF_VAR_EXECNAME:
2839 		if (!dtrace_priv_proc(state))
2840 			return (0);
2841 
2842 		/*
2843 		 * See comment in DIF_VAR_PID.
2844 		 */
2845 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2846 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2847 
2848 		/*
2849 		 * It is always safe to dereference one's own t_procp pointer:
2850 		 * it always points to a valid, allocated proc structure.
2851 		 * (This is true because threads don't clean up their own
2852 		 * state -- they leave that task to whomever reaps them.)
2853 		 */
2854 		return (dtrace_dif_varstr(
2855 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2856 		    state, mstate));
2857 
2858 	case DIF_VAR_ZONENAME:
2859 		if (!dtrace_priv_proc(state))
2860 			return (0);
2861 
2862 		/*
2863 		 * See comment in DIF_VAR_PID.
2864 		 */
2865 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2866 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2867 
2868 		/*
2869 		 * It is always safe to dereference one's own t_procp pointer:
2870 		 * it always points to a valid, allocated proc structure.
2871 		 * (This is true because threads don't clean up their own
2872 		 * state -- they leave that task to whomever reaps them.)
2873 		 */
2874 		return (dtrace_dif_varstr(
2875 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2876 		    state, mstate));
2877 
2878 	case DIF_VAR_UID:
2879 		if (!dtrace_priv_proc(state))
2880 			return (0);
2881 
2882 		/*
2883 		 * See comment in DIF_VAR_PID.
2884 		 */
2885 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2886 			return ((uint64_t)p0.p_cred->cr_uid);
2887 
2888 		/*
2889 		 * It is always safe to dereference one's own t_procp pointer:
2890 		 * it always points to a valid, allocated proc structure.
2891 		 * (This is true because threads don't clean up their own
2892 		 * state -- they leave that task to whomever reaps them.)
2893 		 *
2894 		 * Additionally, it is safe to dereference one's own process
2895 		 * credential, since this is never NULL after process birth.
2896 		 */
2897 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2898 
2899 	case DIF_VAR_GID:
2900 		if (!dtrace_priv_proc(state))
2901 			return (0);
2902 
2903 		/*
2904 		 * See comment in DIF_VAR_PID.
2905 		 */
2906 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2907 			return ((uint64_t)p0.p_cred->cr_gid);
2908 
2909 		/*
2910 		 * It is always safe to dereference one's own t_procp pointer:
2911 		 * it always points to a valid, allocated proc structure.
2912 		 * (This is true because threads don't clean up their own
2913 		 * state -- they leave that task to whomever reaps them.)
2914 		 *
2915 		 * Additionally, it is safe to dereference one's own process
2916 		 * credential, since this is never NULL after process birth.
2917 		 */
2918 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2919 
2920 	case DIF_VAR_ERRNO: {
2921 		klwp_t *lwp;
2922 		if (!dtrace_priv_proc(state))
2923 			return (0);
2924 
2925 		/*
2926 		 * See comment in DIF_VAR_PID.
2927 		 */
2928 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2929 			return (0);
2930 
2931 		/*
2932 		 * It is always safe to dereference one's own t_lwp pointer in
2933 		 * the event that this pointer is non-NULL.  (This is true
2934 		 * because threads and lwps don't clean up their own state --
2935 		 * they leave that task to whomever reaps them.)
2936 		 */
2937 		if ((lwp = curthread->t_lwp) == NULL)
2938 			return (0);
2939 
2940 		return ((uint64_t)lwp->lwp_errno);
2941 	}
2942 	default:
2943 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2944 		return (0);
2945 	}
2946 }
2947 
2948 /*
2949  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2950  * Notice that we don't bother validating the proper number of arguments or
2951  * their types in the tuple stack.  This isn't needed because all argument
2952  * interpretation is safe because of our load safety -- the worst that can
2953  * happen is that a bogus program can obtain bogus results.
2954  */
2955 static void
2956 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2957     dtrace_key_t *tupregs, int nargs,
2958     dtrace_mstate_t *mstate, dtrace_state_t *state)
2959 {
2960 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2961 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2962 	dtrace_vstate_t *vstate = &state->dts_vstate;
2963 
2964 	union {
2965 		mutex_impl_t mi;
2966 		uint64_t mx;
2967 	} m;
2968 
2969 	union {
2970 		krwlock_t ri;
2971 		uintptr_t rw;
2972 	} r;
2973 
2974 	switch (subr) {
2975 	case DIF_SUBR_RAND:
2976 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2977 		break;
2978 
2979 	case DIF_SUBR_MUTEX_OWNED:
2980 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2981 		    mstate, vstate)) {
2982 			regs[rd] = NULL;
2983 			break;
2984 		}
2985 
2986 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2987 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2988 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2989 		else
2990 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2991 		break;
2992 
2993 	case DIF_SUBR_MUTEX_OWNER:
2994 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2995 		    mstate, vstate)) {
2996 			regs[rd] = NULL;
2997 			break;
2998 		}
2999 
3000 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3001 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3002 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3003 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3004 		else
3005 			regs[rd] = 0;
3006 		break;
3007 
3008 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3009 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3010 		    mstate, vstate)) {
3011 			regs[rd] = NULL;
3012 			break;
3013 		}
3014 
3015 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3016 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3017 		break;
3018 
3019 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3020 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3021 		    mstate, vstate)) {
3022 			regs[rd] = NULL;
3023 			break;
3024 		}
3025 
3026 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3027 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3028 		break;
3029 
3030 	case DIF_SUBR_RW_READ_HELD: {
3031 		uintptr_t tmp;
3032 
3033 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3034 		    mstate, vstate)) {
3035 			regs[rd] = NULL;
3036 			break;
3037 		}
3038 
3039 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3040 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3041 		break;
3042 	}
3043 
3044 	case DIF_SUBR_RW_WRITE_HELD:
3045 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3046 		    mstate, vstate)) {
3047 			regs[rd] = NULL;
3048 			break;
3049 		}
3050 
3051 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3052 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3053 		break;
3054 
3055 	case DIF_SUBR_RW_ISWRITER:
3056 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3057 		    mstate, vstate)) {
3058 			regs[rd] = NULL;
3059 			break;
3060 		}
3061 
3062 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3063 		regs[rd] = _RW_ISWRITER(&r.ri);
3064 		break;
3065 
3066 	case DIF_SUBR_BCOPY: {
3067 		/*
3068 		 * We need to be sure that the destination is in the scratch
3069 		 * region -- no other region is allowed.
3070 		 */
3071 		uintptr_t src = tupregs[0].dttk_value;
3072 		uintptr_t dest = tupregs[1].dttk_value;
3073 		size_t size = tupregs[2].dttk_value;
3074 
3075 		if (!dtrace_inscratch(dest, size, mstate)) {
3076 			*flags |= CPU_DTRACE_BADADDR;
3077 			*illval = regs[rd];
3078 			break;
3079 		}
3080 
3081 		if (!dtrace_canload(src, size, mstate, vstate)) {
3082 			regs[rd] = NULL;
3083 			break;
3084 		}
3085 
3086 		dtrace_bcopy((void *)src, (void *)dest, size);
3087 		break;
3088 	}
3089 
3090 	case DIF_SUBR_ALLOCA:
3091 	case DIF_SUBR_COPYIN: {
3092 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3093 		uint64_t size =
3094 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3095 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3096 
3097 		/*
3098 		 * This action doesn't require any credential checks since
3099 		 * probes will not activate in user contexts to which the
3100 		 * enabling user does not have permissions.
3101 		 */
3102 
3103 		/*
3104 		 * Rounding up the user allocation size could have overflowed
3105 		 * a large, bogus allocation (like -1ULL) to 0.
3106 		 */
3107 		if (scratch_size < size ||
3108 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3109 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3110 			regs[rd] = NULL;
3111 			break;
3112 		}
3113 
3114 		if (subr == DIF_SUBR_COPYIN) {
3115 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3116 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3117 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3118 		}
3119 
3120 		mstate->dtms_scratch_ptr += scratch_size;
3121 		regs[rd] = dest;
3122 		break;
3123 	}
3124 
3125 	case DIF_SUBR_COPYINTO: {
3126 		uint64_t size = tupregs[1].dttk_value;
3127 		uintptr_t dest = tupregs[2].dttk_value;
3128 
3129 		/*
3130 		 * This action doesn't require any credential checks since
3131 		 * probes will not activate in user contexts to which the
3132 		 * enabling user does not have permissions.
3133 		 */
3134 		if (!dtrace_inscratch(dest, size, mstate)) {
3135 			*flags |= CPU_DTRACE_BADADDR;
3136 			*illval = regs[rd];
3137 			break;
3138 		}
3139 
3140 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3141 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3142 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3143 		break;
3144 	}
3145 
3146 	case DIF_SUBR_COPYINSTR: {
3147 		uintptr_t dest = mstate->dtms_scratch_ptr;
3148 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3149 
3150 		if (nargs > 1 && tupregs[1].dttk_value < size)
3151 			size = tupregs[1].dttk_value + 1;
3152 
3153 		/*
3154 		 * This action doesn't require any credential checks since
3155 		 * probes will not activate in user contexts to which the
3156 		 * enabling user does not have permissions.
3157 		 */
3158 		if (!DTRACE_INSCRATCH(mstate, size)) {
3159 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3160 			regs[rd] = NULL;
3161 			break;
3162 		}
3163 
3164 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3165 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3166 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3167 
3168 		((char *)dest)[size - 1] = '\0';
3169 		mstate->dtms_scratch_ptr += size;
3170 		regs[rd] = dest;
3171 		break;
3172 	}
3173 
3174 	case DIF_SUBR_MSGSIZE:
3175 	case DIF_SUBR_MSGDSIZE: {
3176 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3177 		uintptr_t wptr, rptr;
3178 		size_t count = 0;
3179 		int cont = 0;
3180 
3181 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3182 
3183 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3184 			    vstate)) {
3185 				regs[rd] = NULL;
3186 				break;
3187 			}
3188 
3189 			wptr = dtrace_loadptr(baddr +
3190 			    offsetof(mblk_t, b_wptr));
3191 
3192 			rptr = dtrace_loadptr(baddr +
3193 			    offsetof(mblk_t, b_rptr));
3194 
3195 			if (wptr < rptr) {
3196 				*flags |= CPU_DTRACE_BADADDR;
3197 				*illval = tupregs[0].dttk_value;
3198 				break;
3199 			}
3200 
3201 			daddr = dtrace_loadptr(baddr +
3202 			    offsetof(mblk_t, b_datap));
3203 
3204 			baddr = dtrace_loadptr(baddr +
3205 			    offsetof(mblk_t, b_cont));
3206 
3207 			/*
3208 			 * We want to prevent against denial-of-service here,
3209 			 * so we're only going to search the list for
3210 			 * dtrace_msgdsize_max mblks.
3211 			 */
3212 			if (cont++ > dtrace_msgdsize_max) {
3213 				*flags |= CPU_DTRACE_ILLOP;
3214 				break;
3215 			}
3216 
3217 			if (subr == DIF_SUBR_MSGDSIZE) {
3218 				if (dtrace_load8(daddr +
3219 				    offsetof(dblk_t, db_type)) != M_DATA)
3220 					continue;
3221 			}
3222 
3223 			count += wptr - rptr;
3224 		}
3225 
3226 		if (!(*flags & CPU_DTRACE_FAULT))
3227 			regs[rd] = count;
3228 
3229 		break;
3230 	}
3231 
3232 	case DIF_SUBR_PROGENYOF: {
3233 		pid_t pid = tupregs[0].dttk_value;
3234 		proc_t *p;
3235 		int rval = 0;
3236 
3237 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3238 
3239 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3240 			if (p->p_pidp->pid_id == pid) {
3241 				rval = 1;
3242 				break;
3243 			}
3244 		}
3245 
3246 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3247 
3248 		regs[rd] = rval;
3249 		break;
3250 	}
3251 
3252 	case DIF_SUBR_SPECULATION:
3253 		regs[rd] = dtrace_speculation(state);
3254 		break;
3255 
3256 	case DIF_SUBR_COPYOUT: {
3257 		uintptr_t kaddr = tupregs[0].dttk_value;
3258 		uintptr_t uaddr = tupregs[1].dttk_value;
3259 		uint64_t size = tupregs[2].dttk_value;
3260 
3261 		if (!dtrace_destructive_disallow &&
3262 		    dtrace_priv_proc_control(state) &&
3263 		    !dtrace_istoxic(kaddr, size)) {
3264 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3265 			dtrace_copyout(kaddr, uaddr, size, flags);
3266 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3267 		}
3268 		break;
3269 	}
3270 
3271 	case DIF_SUBR_COPYOUTSTR: {
3272 		uintptr_t kaddr = tupregs[0].dttk_value;
3273 		uintptr_t uaddr = tupregs[1].dttk_value;
3274 		uint64_t size = tupregs[2].dttk_value;
3275 
3276 		if (!dtrace_destructive_disallow &&
3277 		    dtrace_priv_proc_control(state) &&
3278 		    !dtrace_istoxic(kaddr, size)) {
3279 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3280 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3281 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3282 		}
3283 		break;
3284 	}
3285 
3286 	case DIF_SUBR_STRLEN: {
3287 		size_t sz;
3288 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3289 		sz = dtrace_strlen((char *)addr,
3290 		    state->dts_options[DTRACEOPT_STRSIZE]);
3291 
3292 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3293 			regs[rd] = NULL;
3294 			break;
3295 		}
3296 
3297 		regs[rd] = sz;
3298 
3299 		break;
3300 	}
3301 
3302 	case DIF_SUBR_STRCHR:
3303 	case DIF_SUBR_STRRCHR: {
3304 		/*
3305 		 * We're going to iterate over the string looking for the
3306 		 * specified character.  We will iterate until we have reached
3307 		 * the string length or we have found the character.  If this
3308 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3309 		 * of the specified character instead of the first.
3310 		 */
3311 		uintptr_t saddr = tupregs[0].dttk_value;
3312 		uintptr_t addr = tupregs[0].dttk_value;
3313 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3314 		char c, target = (char)tupregs[1].dttk_value;
3315 
3316 		for (regs[rd] = NULL; addr < limit; addr++) {
3317 			if ((c = dtrace_load8(addr)) == target) {
3318 				regs[rd] = addr;
3319 
3320 				if (subr == DIF_SUBR_STRCHR)
3321 					break;
3322 			}
3323 
3324 			if (c == '\0')
3325 				break;
3326 		}
3327 
3328 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3329 			regs[rd] = NULL;
3330 			break;
3331 		}
3332 
3333 		break;
3334 	}
3335 
3336 	case DIF_SUBR_STRSTR:
3337 	case DIF_SUBR_INDEX:
3338 	case DIF_SUBR_RINDEX: {
3339 		/*
3340 		 * We're going to iterate over the string looking for the
3341 		 * specified string.  We will iterate until we have reached
3342 		 * the string length or we have found the string.  (Yes, this
3343 		 * is done in the most naive way possible -- but considering
3344 		 * that the string we're searching for is likely to be
3345 		 * relatively short, the complexity of Rabin-Karp or similar
3346 		 * hardly seems merited.)
3347 		 */
3348 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3349 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3350 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3351 		size_t len = dtrace_strlen(addr, size);
3352 		size_t sublen = dtrace_strlen(substr, size);
3353 		char *limit = addr + len, *orig = addr;
3354 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3355 		int inc = 1;
3356 
3357 		regs[rd] = notfound;
3358 
3359 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3360 			regs[rd] = NULL;
3361 			break;
3362 		}
3363 
3364 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3365 		    vstate)) {
3366 			regs[rd] = NULL;
3367 			break;
3368 		}
3369 
3370 		/*
3371 		 * strstr() and index()/rindex() have similar semantics if
3372 		 * both strings are the empty string: strstr() returns a
3373 		 * pointer to the (empty) string, and index() and rindex()
3374 		 * both return index 0 (regardless of any position argument).
3375 		 */
3376 		if (sublen == 0 && len == 0) {
3377 			if (subr == DIF_SUBR_STRSTR)
3378 				regs[rd] = (uintptr_t)addr;
3379 			else
3380 				regs[rd] = 0;
3381 			break;
3382 		}
3383 
3384 		if (subr != DIF_SUBR_STRSTR) {
3385 			if (subr == DIF_SUBR_RINDEX) {
3386 				limit = orig - 1;
3387 				addr += len;
3388 				inc = -1;
3389 			}
3390 
3391 			/*
3392 			 * Both index() and rindex() take an optional position
3393 			 * argument that denotes the starting position.
3394 			 */
3395 			if (nargs == 3) {
3396 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3397 
3398 				/*
3399 				 * If the position argument to index() is
3400 				 * negative, Perl implicitly clamps it at
3401 				 * zero.  This semantic is a little surprising
3402 				 * given the special meaning of negative
3403 				 * positions to similar Perl functions like
3404 				 * substr(), but it appears to reflect a
3405 				 * notion that index() can start from a
3406 				 * negative index and increment its way up to
3407 				 * the string.  Given this notion, Perl's
3408 				 * rindex() is at least self-consistent in
3409 				 * that it implicitly clamps positions greater
3410 				 * than the string length to be the string
3411 				 * length.  Where Perl completely loses
3412 				 * coherence, however, is when the specified
3413 				 * substring is the empty string ("").  In
3414 				 * this case, even if the position is
3415 				 * negative, rindex() returns 0 -- and even if
3416 				 * the position is greater than the length,
3417 				 * index() returns the string length.  These
3418 				 * semantics violate the notion that index()
3419 				 * should never return a value less than the
3420 				 * specified position and that rindex() should
3421 				 * never return a value greater than the
3422 				 * specified position.  (One assumes that
3423 				 * these semantics are artifacts of Perl's
3424 				 * implementation and not the results of
3425 				 * deliberate design -- it beggars belief that
3426 				 * even Larry Wall could desire such oddness.)
3427 				 * While in the abstract one would wish for
3428 				 * consistent position semantics across
3429 				 * substr(), index() and rindex() -- or at the
3430 				 * very least self-consistent position
3431 				 * semantics for index() and rindex() -- we
3432 				 * instead opt to keep with the extant Perl
3433 				 * semantics, in all their broken glory.  (Do
3434 				 * we have more desire to maintain Perl's
3435 				 * semantics than Perl does?  Probably.)
3436 				 */
3437 				if (subr == DIF_SUBR_RINDEX) {
3438 					if (pos < 0) {
3439 						if (sublen == 0)
3440 							regs[rd] = 0;
3441 						break;
3442 					}
3443 
3444 					if (pos > len)
3445 						pos = len;
3446 				} else {
3447 					if (pos < 0)
3448 						pos = 0;
3449 
3450 					if (pos >= len) {
3451 						if (sublen == 0)
3452 							regs[rd] = len;
3453 						break;
3454 					}
3455 				}
3456 
3457 				addr = orig + pos;
3458 			}
3459 		}
3460 
3461 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3462 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3463 				if (subr != DIF_SUBR_STRSTR) {
3464 					/*
3465 					 * As D index() and rindex() are
3466 					 * modeled on Perl (and not on awk),
3467 					 * we return a zero-based (and not a
3468 					 * one-based) index.  (For you Perl
3469 					 * weenies: no, we're not going to add
3470 					 * $[ -- and shouldn't you be at a con
3471 					 * or something?)
3472 					 */
3473 					regs[rd] = (uintptr_t)(addr - orig);
3474 					break;
3475 				}
3476 
3477 				ASSERT(subr == DIF_SUBR_STRSTR);
3478 				regs[rd] = (uintptr_t)addr;
3479 				break;
3480 			}
3481 		}
3482 
3483 		break;
3484 	}
3485 
3486 	case DIF_SUBR_STRTOK: {
3487 		uintptr_t addr = tupregs[0].dttk_value;
3488 		uintptr_t tokaddr = tupregs[1].dttk_value;
3489 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3490 		uintptr_t limit, toklimit = tokaddr + size;
3491 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3492 		char *dest = (char *)mstate->dtms_scratch_ptr;
3493 		int i;
3494 
3495 		/*
3496 		 * Check both the token buffer and (later) the input buffer,
3497 		 * since both could be non-scratch addresses.
3498 		 */
3499 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3500 			regs[rd] = NULL;
3501 			break;
3502 		}
3503 
3504 		if (!DTRACE_INSCRATCH(mstate, size)) {
3505 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3506 			regs[rd] = NULL;
3507 			break;
3508 		}
3509 
3510 		if (addr == NULL) {
3511 			/*
3512 			 * If the address specified is NULL, we use our saved
3513 			 * strtok pointer from the mstate.  Note that this
3514 			 * means that the saved strtok pointer is _only_
3515 			 * valid within multiple enablings of the same probe --
3516 			 * it behaves like an implicit clause-local variable.
3517 			 */
3518 			addr = mstate->dtms_strtok;
3519 		} else {
3520 			/*
3521 			 * If the user-specified address is non-NULL we must
3522 			 * access check it.  This is the only time we have
3523 			 * a chance to do so, since this address may reside
3524 			 * in the string table of this clause-- future calls
3525 			 * (when we fetch addr from mstate->dtms_strtok)
3526 			 * would fail this access check.
3527 			 */
3528 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3529 				regs[rd] = NULL;
3530 				break;
3531 			}
3532 		}
3533 
3534 		/*
3535 		 * First, zero the token map, and then process the token
3536 		 * string -- setting a bit in the map for every character
3537 		 * found in the token string.
3538 		 */
3539 		for (i = 0; i < sizeof (tokmap); i++)
3540 			tokmap[i] = 0;
3541 
3542 		for (; tokaddr < toklimit; tokaddr++) {
3543 			if ((c = dtrace_load8(tokaddr)) == '\0')
3544 				break;
3545 
3546 			ASSERT((c >> 3) < sizeof (tokmap));
3547 			tokmap[c >> 3] |= (1 << (c & 0x7));
3548 		}
3549 
3550 		for (limit = addr + size; addr < limit; addr++) {
3551 			/*
3552 			 * We're looking for a character that is _not_ contained
3553 			 * in the token string.
3554 			 */
3555 			if ((c = dtrace_load8(addr)) == '\0')
3556 				break;
3557 
3558 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3559 				break;
3560 		}
3561 
3562 		if (c == '\0') {
3563 			/*
3564 			 * We reached the end of the string without finding
3565 			 * any character that was not in the token string.
3566 			 * We return NULL in this case, and we set the saved
3567 			 * address to NULL as well.
3568 			 */
3569 			regs[rd] = NULL;
3570 			mstate->dtms_strtok = NULL;
3571 			break;
3572 		}
3573 
3574 		/*
3575 		 * From here on, we're copying into the destination string.
3576 		 */
3577 		for (i = 0; addr < limit && i < size - 1; addr++) {
3578 			if ((c = dtrace_load8(addr)) == '\0')
3579 				break;
3580 
3581 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3582 				break;
3583 
3584 			ASSERT(i < size);
3585 			dest[i++] = c;
3586 		}
3587 
3588 		ASSERT(i < size);
3589 		dest[i] = '\0';
3590 		regs[rd] = (uintptr_t)dest;
3591 		mstate->dtms_scratch_ptr += size;
3592 		mstate->dtms_strtok = addr;
3593 		break;
3594 	}
3595 
3596 	case DIF_SUBR_SUBSTR: {
3597 		uintptr_t s = tupregs[0].dttk_value;
3598 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3599 		char *d = (char *)mstate->dtms_scratch_ptr;
3600 		int64_t index = (int64_t)tupregs[1].dttk_value;
3601 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3602 		size_t len = dtrace_strlen((char *)s, size);
3603 		int64_t i = 0;
3604 
3605 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3606 			regs[rd] = NULL;
3607 			break;
3608 		}
3609 
3610 		if (nargs <= 2)
3611 			remaining = (int64_t)size;
3612 
3613 		if (!DTRACE_INSCRATCH(mstate, size)) {
3614 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3615 			regs[rd] = NULL;
3616 			break;
3617 		}
3618 
3619 		if (index < 0) {
3620 			index += len;
3621 
3622 			if (index < 0 && index + remaining > 0) {
3623 				remaining += index;
3624 				index = 0;
3625 			}
3626 		}
3627 
3628 		if (index >= len || index < 0)
3629 			index = len;
3630 
3631 		for (d[0] = '\0'; remaining > 0; remaining--) {
3632 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3633 				break;
3634 
3635 			if (i == size) {
3636 				d[i - 1] = '\0';
3637 				break;
3638 			}
3639 		}
3640 
3641 		mstate->dtms_scratch_ptr += size;
3642 		regs[rd] = (uintptr_t)d;
3643 		break;
3644 	}
3645 
3646 	case DIF_SUBR_GETMAJOR:
3647 #ifdef _LP64
3648 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3649 #else
3650 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3651 #endif
3652 		break;
3653 
3654 	case DIF_SUBR_GETMINOR:
3655 #ifdef _LP64
3656 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3657 #else
3658 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3659 #endif
3660 		break;
3661 
3662 	case DIF_SUBR_DDI_PATHNAME: {
3663 		/*
3664 		 * This one is a galactic mess.  We are going to roughly
3665 		 * emulate ddi_pathname(), but it's made more complicated
3666 		 * by the fact that we (a) want to include the minor name and
3667 		 * (b) must proceed iteratively instead of recursively.
3668 		 */
3669 		uintptr_t dest = mstate->dtms_scratch_ptr;
3670 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3671 		char *start = (char *)dest, *end = start + size - 1;
3672 		uintptr_t daddr = tupregs[0].dttk_value;
3673 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3674 		char *s;
3675 		int i, len, depth = 0;
3676 
3677 		/*
3678 		 * Due to all the pointer jumping we do and context we must
3679 		 * rely upon, we just mandate that the user must have kernel
3680 		 * read privileges to use this routine.
3681 		 */
3682 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3683 			*flags |= CPU_DTRACE_KPRIV;
3684 			*illval = daddr;
3685 			regs[rd] = NULL;
3686 		}
3687 
3688 		if (!DTRACE_INSCRATCH(mstate, size)) {
3689 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3690 			regs[rd] = NULL;
3691 			break;
3692 		}
3693 
3694 		*end = '\0';
3695 
3696 		/*
3697 		 * We want to have a name for the minor.  In order to do this,
3698 		 * we need to walk the minor list from the devinfo.  We want
3699 		 * to be sure that we don't infinitely walk a circular list,
3700 		 * so we check for circularity by sending a scout pointer
3701 		 * ahead two elements for every element that we iterate over;
3702 		 * if the list is circular, these will ultimately point to the
3703 		 * same element.  You may recognize this little trick as the
3704 		 * answer to a stupid interview question -- one that always
3705 		 * seems to be asked by those who had to have it laboriously
3706 		 * explained to them, and who can't even concisely describe
3707 		 * the conditions under which one would be forced to resort to
3708 		 * this technique.  Needless to say, those conditions are
3709 		 * found here -- and probably only here.  Is this is the only
3710 		 * use of this infamous trick in shipping, production code?
3711 		 * If it isn't, it probably should be...
3712 		 */
3713 		if (minor != -1) {
3714 			uintptr_t maddr = dtrace_loadptr(daddr +
3715 			    offsetof(struct dev_info, devi_minor));
3716 
3717 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3718 			uintptr_t name = offsetof(struct ddi_minor_data,
3719 			    d_minor) + offsetof(struct ddi_minor, name);
3720 			uintptr_t dev = offsetof(struct ddi_minor_data,
3721 			    d_minor) + offsetof(struct ddi_minor, dev);
3722 			uintptr_t scout;
3723 
3724 			if (maddr != NULL)
3725 				scout = dtrace_loadptr(maddr + next);
3726 
3727 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3728 				uint64_t m;
3729 #ifdef _LP64
3730 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3731 #else
3732 				m = dtrace_load32(maddr + dev) & MAXMIN;
3733 #endif
3734 				if (m != minor) {
3735 					maddr = dtrace_loadptr(maddr + next);
3736 
3737 					if (scout == NULL)
3738 						continue;
3739 
3740 					scout = dtrace_loadptr(scout + next);
3741 
3742 					if (scout == NULL)
3743 						continue;
3744 
3745 					scout = dtrace_loadptr(scout + next);
3746 
3747 					if (scout == NULL)
3748 						continue;
3749 
3750 					if (scout == maddr) {
3751 						*flags |= CPU_DTRACE_ILLOP;
3752 						break;
3753 					}
3754 
3755 					continue;
3756 				}
3757 
3758 				/*
3759 				 * We have the minor data.  Now we need to
3760 				 * copy the minor's name into the end of the
3761 				 * pathname.
3762 				 */
3763 				s = (char *)dtrace_loadptr(maddr + name);
3764 				len = dtrace_strlen(s, size);
3765 
3766 				if (*flags & CPU_DTRACE_FAULT)
3767 					break;
3768 
3769 				if (len != 0) {
3770 					if ((end -= (len + 1)) < start)
3771 						break;
3772 
3773 					*end = ':';
3774 				}
3775 
3776 				for (i = 1; i <= len; i++)
3777 					end[i] = dtrace_load8((uintptr_t)s++);
3778 				break;
3779 			}
3780 		}
3781 
3782 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3783 			ddi_node_state_t devi_state;
3784 
3785 			devi_state = dtrace_load32(daddr +
3786 			    offsetof(struct dev_info, devi_node_state));
3787 
3788 			if (*flags & CPU_DTRACE_FAULT)
3789 				break;
3790 
3791 			if (devi_state >= DS_INITIALIZED) {
3792 				s = (char *)dtrace_loadptr(daddr +
3793 				    offsetof(struct dev_info, devi_addr));
3794 				len = dtrace_strlen(s, size);
3795 
3796 				if (*flags & CPU_DTRACE_FAULT)
3797 					break;
3798 
3799 				if (len != 0) {
3800 					if ((end -= (len + 1)) < start)
3801 						break;
3802 
3803 					*end = '@';
3804 				}
3805 
3806 				for (i = 1; i <= len; i++)
3807 					end[i] = dtrace_load8((uintptr_t)s++);
3808 			}
3809 
3810 			/*
3811 			 * Now for the node name...
3812 			 */
3813 			s = (char *)dtrace_loadptr(daddr +
3814 			    offsetof(struct dev_info, devi_node_name));
3815 
3816 			daddr = dtrace_loadptr(daddr +
3817 			    offsetof(struct dev_info, devi_parent));
3818 
3819 			/*
3820 			 * If our parent is NULL (that is, if we're the root
3821 			 * node), we're going to use the special path
3822 			 * "devices".
3823 			 */
3824 			if (daddr == NULL)
3825 				s = "devices";
3826 
3827 			len = dtrace_strlen(s, size);
3828 			if (*flags & CPU_DTRACE_FAULT)
3829 				break;
3830 
3831 			if ((end -= (len + 1)) < start)
3832 				break;
3833 
3834 			for (i = 1; i <= len; i++)
3835 				end[i] = dtrace_load8((uintptr_t)s++);
3836 			*end = '/';
3837 
3838 			if (depth++ > dtrace_devdepth_max) {
3839 				*flags |= CPU_DTRACE_ILLOP;
3840 				break;
3841 			}
3842 		}
3843 
3844 		if (end < start)
3845 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3846 
3847 		if (daddr == NULL) {
3848 			regs[rd] = (uintptr_t)end;
3849 			mstate->dtms_scratch_ptr += size;
3850 		}
3851 
3852 		break;
3853 	}
3854 
3855 	case DIF_SUBR_STRJOIN: {
3856 		char *d = (char *)mstate->dtms_scratch_ptr;
3857 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3858 		uintptr_t s1 = tupregs[0].dttk_value;
3859 		uintptr_t s2 = tupregs[1].dttk_value;
3860 		int i = 0;
3861 
3862 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3863 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3864 			regs[rd] = NULL;
3865 			break;
3866 		}
3867 
3868 		if (!DTRACE_INSCRATCH(mstate, size)) {
3869 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3870 			regs[rd] = NULL;
3871 			break;
3872 		}
3873 
3874 		for (;;) {
3875 			if (i >= size) {
3876 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3877 				regs[rd] = NULL;
3878 				break;
3879 			}
3880 
3881 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3882 				i--;
3883 				break;
3884 			}
3885 		}
3886 
3887 		for (;;) {
3888 			if (i >= size) {
3889 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3890 				regs[rd] = NULL;
3891 				break;
3892 			}
3893 
3894 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3895 				break;
3896 		}
3897 
3898 		if (i < size) {
3899 			mstate->dtms_scratch_ptr += i;
3900 			regs[rd] = (uintptr_t)d;
3901 		}
3902 
3903 		break;
3904 	}
3905 
3906 	case DIF_SUBR_LLTOSTR: {
3907 		int64_t i = (int64_t)tupregs[0].dttk_value;
3908 		int64_t val = i < 0 ? i * -1 : i;
3909 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3910 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3911 
3912 		if (!DTRACE_INSCRATCH(mstate, size)) {
3913 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3914 			regs[rd] = NULL;
3915 			break;
3916 		}
3917 
3918 		for (*end-- = '\0'; val; val /= 10)
3919 			*end-- = '0' + (val % 10);
3920 
3921 		if (i == 0)
3922 			*end-- = '0';
3923 
3924 		if (i < 0)
3925 			*end-- = '-';
3926 
3927 		regs[rd] = (uintptr_t)end + 1;
3928 		mstate->dtms_scratch_ptr += size;
3929 		break;
3930 	}
3931 
3932 	case DIF_SUBR_HTONS:
3933 	case DIF_SUBR_NTOHS:
3934 #ifdef _BIG_ENDIAN
3935 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3936 #else
3937 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3938 #endif
3939 		break;
3940 
3941 
3942 	case DIF_SUBR_HTONL:
3943 	case DIF_SUBR_NTOHL:
3944 #ifdef _BIG_ENDIAN
3945 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
3946 #else
3947 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
3948 #endif
3949 		break;
3950 
3951 
3952 	case DIF_SUBR_HTONLL:
3953 	case DIF_SUBR_NTOHLL:
3954 #ifdef _BIG_ENDIAN
3955 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
3956 #else
3957 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
3958 #endif
3959 		break;
3960 
3961 
3962 	case DIF_SUBR_DIRNAME:
3963 	case DIF_SUBR_BASENAME: {
3964 		char *dest = (char *)mstate->dtms_scratch_ptr;
3965 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3966 		uintptr_t src = tupregs[0].dttk_value;
3967 		int i, j, len = dtrace_strlen((char *)src, size);
3968 		int lastbase = -1, firstbase = -1, lastdir = -1;
3969 		int start, end;
3970 
3971 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
3972 			regs[rd] = NULL;
3973 			break;
3974 		}
3975 
3976 		if (!DTRACE_INSCRATCH(mstate, size)) {
3977 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3978 			regs[rd] = NULL;
3979 			break;
3980 		}
3981 
3982 		/*
3983 		 * The basename and dirname for a zero-length string is
3984 		 * defined to be "."
3985 		 */
3986 		if (len == 0) {
3987 			len = 1;
3988 			src = (uintptr_t)".";
3989 		}
3990 
3991 		/*
3992 		 * Start from the back of the string, moving back toward the
3993 		 * front until we see a character that isn't a slash.  That
3994 		 * character is the last character in the basename.
3995 		 */
3996 		for (i = len - 1; i >= 0; i--) {
3997 			if (dtrace_load8(src + i) != '/')
3998 				break;
3999 		}
4000 
4001 		if (i >= 0)
4002 			lastbase = i;
4003 
4004 		/*
4005 		 * Starting from the last character in the basename, move
4006 		 * towards the front until we find a slash.  The character
4007 		 * that we processed immediately before that is the first
4008 		 * character in the basename.
4009 		 */
4010 		for (; i >= 0; i--) {
4011 			if (dtrace_load8(src + i) == '/')
4012 				break;
4013 		}
4014 
4015 		if (i >= 0)
4016 			firstbase = i + 1;
4017 
4018 		/*
4019 		 * Now keep going until we find a non-slash character.  That
4020 		 * character is the last character in the dirname.
4021 		 */
4022 		for (; i >= 0; i--) {
4023 			if (dtrace_load8(src + i) != '/')
4024 				break;
4025 		}
4026 
4027 		if (i >= 0)
4028 			lastdir = i;
4029 
4030 		ASSERT(!(lastbase == -1 && firstbase != -1));
4031 		ASSERT(!(firstbase == -1 && lastdir != -1));
4032 
4033 		if (lastbase == -1) {
4034 			/*
4035 			 * We didn't find a non-slash character.  We know that
4036 			 * the length is non-zero, so the whole string must be
4037 			 * slashes.  In either the dirname or the basename
4038 			 * case, we return '/'.
4039 			 */
4040 			ASSERT(firstbase == -1);
4041 			firstbase = lastbase = lastdir = 0;
4042 		}
4043 
4044 		if (firstbase == -1) {
4045 			/*
4046 			 * The entire string consists only of a basename
4047 			 * component.  If we're looking for dirname, we need
4048 			 * to change our string to be just "."; if we're
4049 			 * looking for a basename, we'll just set the first
4050 			 * character of the basename to be 0.
4051 			 */
4052 			if (subr == DIF_SUBR_DIRNAME) {
4053 				ASSERT(lastdir == -1);
4054 				src = (uintptr_t)".";
4055 				lastdir = 0;
4056 			} else {
4057 				firstbase = 0;
4058 			}
4059 		}
4060 
4061 		if (subr == DIF_SUBR_DIRNAME) {
4062 			if (lastdir == -1) {
4063 				/*
4064 				 * We know that we have a slash in the name --
4065 				 * or lastdir would be set to 0, above.  And
4066 				 * because lastdir is -1, we know that this
4067 				 * slash must be the first character.  (That
4068 				 * is, the full string must be of the form
4069 				 * "/basename".)  In this case, the last
4070 				 * character of the directory name is 0.
4071 				 */
4072 				lastdir = 0;
4073 			}
4074 
4075 			start = 0;
4076 			end = lastdir;
4077 		} else {
4078 			ASSERT(subr == DIF_SUBR_BASENAME);
4079 			ASSERT(firstbase != -1 && lastbase != -1);
4080 			start = firstbase;
4081 			end = lastbase;
4082 		}
4083 
4084 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4085 			dest[j] = dtrace_load8(src + i);
4086 
4087 		dest[j] = '\0';
4088 		regs[rd] = (uintptr_t)dest;
4089 		mstate->dtms_scratch_ptr += size;
4090 		break;
4091 	}
4092 
4093 	case DIF_SUBR_CLEANPATH: {
4094 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4095 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4096 		uintptr_t src = tupregs[0].dttk_value;
4097 		int i = 0, j = 0;
4098 
4099 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4100 			regs[rd] = NULL;
4101 			break;
4102 		}
4103 
4104 		if (!DTRACE_INSCRATCH(mstate, size)) {
4105 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4106 			regs[rd] = NULL;
4107 			break;
4108 		}
4109 
4110 		/*
4111 		 * Move forward, loading each character.
4112 		 */
4113 		do {
4114 			c = dtrace_load8(src + i++);
4115 next:
4116 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4117 				break;
4118 
4119 			if (c != '/') {
4120 				dest[j++] = c;
4121 				continue;
4122 			}
4123 
4124 			c = dtrace_load8(src + i++);
4125 
4126 			if (c == '/') {
4127 				/*
4128 				 * We have two slashes -- we can just advance
4129 				 * to the next character.
4130 				 */
4131 				goto next;
4132 			}
4133 
4134 			if (c != '.') {
4135 				/*
4136 				 * This is not "." and it's not ".." -- we can
4137 				 * just store the "/" and this character and
4138 				 * drive on.
4139 				 */
4140 				dest[j++] = '/';
4141 				dest[j++] = c;
4142 				continue;
4143 			}
4144 
4145 			c = dtrace_load8(src + i++);
4146 
4147 			if (c == '/') {
4148 				/*
4149 				 * This is a "/./" component.  We're not going
4150 				 * to store anything in the destination buffer;
4151 				 * we're just going to go to the next component.
4152 				 */
4153 				goto next;
4154 			}
4155 
4156 			if (c != '.') {
4157 				/*
4158 				 * This is not ".." -- we can just store the
4159 				 * "/." and this character and continue
4160 				 * processing.
4161 				 */
4162 				dest[j++] = '/';
4163 				dest[j++] = '.';
4164 				dest[j++] = c;
4165 				continue;
4166 			}
4167 
4168 			c = dtrace_load8(src + i++);
4169 
4170 			if (c != '/' && c != '\0') {
4171 				/*
4172 				 * This is not ".." -- it's "..[mumble]".
4173 				 * We'll store the "/.." and this character
4174 				 * and continue processing.
4175 				 */
4176 				dest[j++] = '/';
4177 				dest[j++] = '.';
4178 				dest[j++] = '.';
4179 				dest[j++] = c;
4180 				continue;
4181 			}
4182 
4183 			/*
4184 			 * This is "/../" or "/..\0".  We need to back up
4185 			 * our destination pointer until we find a "/".
4186 			 */
4187 			i--;
4188 			while (j != 0 && dest[--j] != '/')
4189 				continue;
4190 
4191 			if (c == '\0')
4192 				dest[++j] = '/';
4193 		} while (c != '\0');
4194 
4195 		dest[j] = '\0';
4196 		regs[rd] = (uintptr_t)dest;
4197 		mstate->dtms_scratch_ptr += size;
4198 		break;
4199 	}
4200 
4201 	case DIF_SUBR_INET_NTOA:
4202 	case DIF_SUBR_INET_NTOA6:
4203 	case DIF_SUBR_INET_NTOP: {
4204 		size_t size;
4205 		int af, argi, i;
4206 		char *base, *end;
4207 
4208 		if (subr == DIF_SUBR_INET_NTOP) {
4209 			af = (int)tupregs[0].dttk_value;
4210 			argi = 1;
4211 		} else {
4212 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4213 			argi = 0;
4214 		}
4215 
4216 		if (af == AF_INET) {
4217 			ipaddr_t ip4;
4218 			uint8_t *ptr8, val;
4219 
4220 			/*
4221 			 * Safely load the IPv4 address.
4222 			 */
4223 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4224 
4225 			/*
4226 			 * Check an IPv4 string will fit in scratch.
4227 			 */
4228 			size = INET_ADDRSTRLEN;
4229 			if (!DTRACE_INSCRATCH(mstate, size)) {
4230 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4231 				regs[rd] = NULL;
4232 				break;
4233 			}
4234 			base = (char *)mstate->dtms_scratch_ptr;
4235 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4236 
4237 			/*
4238 			 * Stringify as a dotted decimal quad.
4239 			 */
4240 			*end-- = '\0';
4241 			ptr8 = (uint8_t *)&ip4;
4242 			for (i = 3; i >= 0; i--) {
4243 				val = ptr8[i];
4244 
4245 				if (val == 0) {
4246 					*end-- = '0';
4247 				} else {
4248 					for (; val; val /= 10) {
4249 						*end-- = '0' + (val % 10);
4250 					}
4251 				}
4252 
4253 				if (i > 0)
4254 					*end-- = '.';
4255 			}
4256 			ASSERT(end + 1 >= base);
4257 
4258 		} else if (af == AF_INET6) {
4259 			struct in6_addr ip6;
4260 			int firstzero, tryzero, numzero, v6end;
4261 			uint16_t val;
4262 			const char digits[] = "0123456789abcdef";
4263 
4264 			/*
4265 			 * Stringify using RFC 1884 convention 2 - 16 bit
4266 			 * hexadecimal values with a zero-run compression.
4267 			 * Lower case hexadecimal digits are used.
4268 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4269 			 * The IPv4 embedded form is returned for inet_ntop,
4270 			 * just the IPv4 string is returned for inet_ntoa6.
4271 			 */
4272 
4273 			/*
4274 			 * Safely load the IPv6 address.
4275 			 */
4276 			dtrace_bcopy(
4277 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4278 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4279 
4280 			/*
4281 			 * Check an IPv6 string will fit in scratch.
4282 			 */
4283 			size = INET6_ADDRSTRLEN;
4284 			if (!DTRACE_INSCRATCH(mstate, size)) {
4285 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4286 				regs[rd] = NULL;
4287 				break;
4288 			}
4289 			base = (char *)mstate->dtms_scratch_ptr;
4290 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4291 			*end-- = '\0';
4292 
4293 			/*
4294 			 * Find the longest run of 16 bit zero values
4295 			 * for the single allowed zero compression - "::".
4296 			 */
4297 			firstzero = -1;
4298 			tryzero = -1;
4299 			numzero = 1;
4300 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4301 				if (ip6._S6_un._S6_u8[i] == 0 &&
4302 				    tryzero == -1 && i % 2 == 0) {
4303 					tryzero = i;
4304 					continue;
4305 				}
4306 
4307 				if (tryzero != -1 &&
4308 				    (ip6._S6_un._S6_u8[i] != 0 ||
4309 				    i == sizeof (struct in6_addr) - 1)) {
4310 
4311 					if (i - tryzero <= numzero) {
4312 						tryzero = -1;
4313 						continue;
4314 					}
4315 
4316 					firstzero = tryzero;
4317 					numzero = i - i % 2 - tryzero;
4318 					tryzero = -1;
4319 
4320 					if (ip6._S6_un._S6_u8[i] == 0 &&
4321 					    i == sizeof (struct in6_addr) - 1)
4322 						numzero += 2;
4323 				}
4324 			}
4325 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4326 
4327 			/*
4328 			 * Check for an IPv4 embedded address.
4329 			 */
4330 			v6end = sizeof (struct in6_addr) - 2;
4331 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4332 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4333 				for (i = sizeof (struct in6_addr) - 1;
4334 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4335 					ASSERT(end >= base);
4336 
4337 					val = ip6._S6_un._S6_u8[i];
4338 
4339 					if (val == 0) {
4340 						*end-- = '0';
4341 					} else {
4342 						for (; val; val /= 10) {
4343 							*end-- = '0' + val % 10;
4344 						}
4345 					}
4346 
4347 					if (i > DTRACE_V4MAPPED_OFFSET)
4348 						*end-- = '.';
4349 				}
4350 
4351 				if (subr == DIF_SUBR_INET_NTOA6)
4352 					goto inetout;
4353 
4354 				/*
4355 				 * Set v6end to skip the IPv4 address that
4356 				 * we have already stringified.
4357 				 */
4358 				v6end = 10;
4359 			}
4360 
4361 			/*
4362 			 * Build the IPv6 string by working through the
4363 			 * address in reverse.
4364 			 */
4365 			for (i = v6end; i >= 0; i -= 2) {
4366 				ASSERT(end >= base);
4367 
4368 				if (i == firstzero + numzero - 2) {
4369 					*end-- = ':';
4370 					*end-- = ':';
4371 					i -= numzero - 2;
4372 					continue;
4373 				}
4374 
4375 				if (i < 14 && i != firstzero - 2)
4376 					*end-- = ':';
4377 
4378 				val = (ip6._S6_un._S6_u8[i] << 8) +
4379 				    ip6._S6_un._S6_u8[i + 1];
4380 
4381 				if (val == 0) {
4382 					*end-- = '0';
4383 				} else {
4384 					for (; val; val /= 16) {
4385 						*end-- = digits[val % 16];
4386 					}
4387 				}
4388 			}
4389 			ASSERT(end + 1 >= base);
4390 
4391 		} else {
4392 			/*
4393 			 * The user didn't use AH_INET or AH_INET6.
4394 			 */
4395 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4396 			regs[rd] = NULL;
4397 			break;
4398 		}
4399 
4400 inetout:	regs[rd] = (uintptr_t)end + 1;
4401 		mstate->dtms_scratch_ptr += size;
4402 		break;
4403 	}
4404 
4405 	}
4406 }
4407 
4408 /*
4409  * Emulate the execution of DTrace IR instructions specified by the given
4410  * DIF object.  This function is deliberately void of assertions as all of
4411  * the necessary checks are handled by a call to dtrace_difo_validate().
4412  */
4413 static uint64_t
4414 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4415     dtrace_vstate_t *vstate, dtrace_state_t *state)
4416 {
4417 	const dif_instr_t *text = difo->dtdo_buf;
4418 	const uint_t textlen = difo->dtdo_len;
4419 	const char *strtab = difo->dtdo_strtab;
4420 	const uint64_t *inttab = difo->dtdo_inttab;
4421 
4422 	uint64_t rval = 0;
4423 	dtrace_statvar_t *svar;
4424 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4425 	dtrace_difv_t *v;
4426 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4427 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4428 
4429 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4430 	uint64_t regs[DIF_DIR_NREGS];
4431 	uint64_t *tmp;
4432 
4433 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4434 	int64_t cc_r;
4435 	uint_t pc = 0, id, opc;
4436 	uint8_t ttop = 0;
4437 	dif_instr_t instr;
4438 	uint_t r1, r2, rd;
4439 
4440 	/*
4441 	 * We stash the current DIF object into the machine state: we need it
4442 	 * for subsequent access checking.
4443 	 */
4444 	mstate->dtms_difo = difo;
4445 
4446 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4447 
4448 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4449 		opc = pc;
4450 
4451 		instr = text[pc++];
4452 		r1 = DIF_INSTR_R1(instr);
4453 		r2 = DIF_INSTR_R2(instr);
4454 		rd = DIF_INSTR_RD(instr);
4455 
4456 		switch (DIF_INSTR_OP(instr)) {
4457 		case DIF_OP_OR:
4458 			regs[rd] = regs[r1] | regs[r2];
4459 			break;
4460 		case DIF_OP_XOR:
4461 			regs[rd] = regs[r1] ^ regs[r2];
4462 			break;
4463 		case DIF_OP_AND:
4464 			regs[rd] = regs[r1] & regs[r2];
4465 			break;
4466 		case DIF_OP_SLL:
4467 			regs[rd] = regs[r1] << regs[r2];
4468 			break;
4469 		case DIF_OP_SRL:
4470 			regs[rd] = regs[r1] >> regs[r2];
4471 			break;
4472 		case DIF_OP_SUB:
4473 			regs[rd] = regs[r1] - regs[r2];
4474 			break;
4475 		case DIF_OP_ADD:
4476 			regs[rd] = regs[r1] + regs[r2];
4477 			break;
4478 		case DIF_OP_MUL:
4479 			regs[rd] = regs[r1] * regs[r2];
4480 			break;
4481 		case DIF_OP_SDIV:
4482 			if (regs[r2] == 0) {
4483 				regs[rd] = 0;
4484 				*flags |= CPU_DTRACE_DIVZERO;
4485 			} else {
4486 				regs[rd] = (int64_t)regs[r1] /
4487 				    (int64_t)regs[r2];
4488 			}
4489 			break;
4490 
4491 		case DIF_OP_UDIV:
4492 			if (regs[r2] == 0) {
4493 				regs[rd] = 0;
4494 				*flags |= CPU_DTRACE_DIVZERO;
4495 			} else {
4496 				regs[rd] = regs[r1] / regs[r2];
4497 			}
4498 			break;
4499 
4500 		case DIF_OP_SREM:
4501 			if (regs[r2] == 0) {
4502 				regs[rd] = 0;
4503 				*flags |= CPU_DTRACE_DIVZERO;
4504 			} else {
4505 				regs[rd] = (int64_t)regs[r1] %
4506 				    (int64_t)regs[r2];
4507 			}
4508 			break;
4509 
4510 		case DIF_OP_UREM:
4511 			if (regs[r2] == 0) {
4512 				regs[rd] = 0;
4513 				*flags |= CPU_DTRACE_DIVZERO;
4514 			} else {
4515 				regs[rd] = regs[r1] % regs[r2];
4516 			}
4517 			break;
4518 
4519 		case DIF_OP_NOT:
4520 			regs[rd] = ~regs[r1];
4521 			break;
4522 		case DIF_OP_MOV:
4523 			regs[rd] = regs[r1];
4524 			break;
4525 		case DIF_OP_CMP:
4526 			cc_r = regs[r1] - regs[r2];
4527 			cc_n = cc_r < 0;
4528 			cc_z = cc_r == 0;
4529 			cc_v = 0;
4530 			cc_c = regs[r1] < regs[r2];
4531 			break;
4532 		case DIF_OP_TST:
4533 			cc_n = cc_v = cc_c = 0;
4534 			cc_z = regs[r1] == 0;
4535 			break;
4536 		case DIF_OP_BA:
4537 			pc = DIF_INSTR_LABEL(instr);
4538 			break;
4539 		case DIF_OP_BE:
4540 			if (cc_z)
4541 				pc = DIF_INSTR_LABEL(instr);
4542 			break;
4543 		case DIF_OP_BNE:
4544 			if (cc_z == 0)
4545 				pc = DIF_INSTR_LABEL(instr);
4546 			break;
4547 		case DIF_OP_BG:
4548 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4549 				pc = DIF_INSTR_LABEL(instr);
4550 			break;
4551 		case DIF_OP_BGU:
4552 			if ((cc_c | cc_z) == 0)
4553 				pc = DIF_INSTR_LABEL(instr);
4554 			break;
4555 		case DIF_OP_BGE:
4556 			if ((cc_n ^ cc_v) == 0)
4557 				pc = DIF_INSTR_LABEL(instr);
4558 			break;
4559 		case DIF_OP_BGEU:
4560 			if (cc_c == 0)
4561 				pc = DIF_INSTR_LABEL(instr);
4562 			break;
4563 		case DIF_OP_BL:
4564 			if (cc_n ^ cc_v)
4565 				pc = DIF_INSTR_LABEL(instr);
4566 			break;
4567 		case DIF_OP_BLU:
4568 			if (cc_c)
4569 				pc = DIF_INSTR_LABEL(instr);
4570 			break;
4571 		case DIF_OP_BLE:
4572 			if (cc_z | (cc_n ^ cc_v))
4573 				pc = DIF_INSTR_LABEL(instr);
4574 			break;
4575 		case DIF_OP_BLEU:
4576 			if (cc_c | cc_z)
4577 				pc = DIF_INSTR_LABEL(instr);
4578 			break;
4579 		case DIF_OP_RLDSB:
4580 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4581 				*flags |= CPU_DTRACE_KPRIV;
4582 				*illval = regs[r1];
4583 				break;
4584 			}
4585 			/*FALLTHROUGH*/
4586 		case DIF_OP_LDSB:
4587 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4588 			break;
4589 		case DIF_OP_RLDSH:
4590 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4591 				*flags |= CPU_DTRACE_KPRIV;
4592 				*illval = regs[r1];
4593 				break;
4594 			}
4595 			/*FALLTHROUGH*/
4596 		case DIF_OP_LDSH:
4597 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4598 			break;
4599 		case DIF_OP_RLDSW:
4600 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4601 				*flags |= CPU_DTRACE_KPRIV;
4602 				*illval = regs[r1];
4603 				break;
4604 			}
4605 			/*FALLTHROUGH*/
4606 		case DIF_OP_LDSW:
4607 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4608 			break;
4609 		case DIF_OP_RLDUB:
4610 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4611 				*flags |= CPU_DTRACE_KPRIV;
4612 				*illval = regs[r1];
4613 				break;
4614 			}
4615 			/*FALLTHROUGH*/
4616 		case DIF_OP_LDUB:
4617 			regs[rd] = dtrace_load8(regs[r1]);
4618 			break;
4619 		case DIF_OP_RLDUH:
4620 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4621 				*flags |= CPU_DTRACE_KPRIV;
4622 				*illval = regs[r1];
4623 				break;
4624 			}
4625 			/*FALLTHROUGH*/
4626 		case DIF_OP_LDUH:
4627 			regs[rd] = dtrace_load16(regs[r1]);
4628 			break;
4629 		case DIF_OP_RLDUW:
4630 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4631 				*flags |= CPU_DTRACE_KPRIV;
4632 				*illval = regs[r1];
4633 				break;
4634 			}
4635 			/*FALLTHROUGH*/
4636 		case DIF_OP_LDUW:
4637 			regs[rd] = dtrace_load32(regs[r1]);
4638 			break;
4639 		case DIF_OP_RLDX:
4640 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4641 				*flags |= CPU_DTRACE_KPRIV;
4642 				*illval = regs[r1];
4643 				break;
4644 			}
4645 			/*FALLTHROUGH*/
4646 		case DIF_OP_LDX:
4647 			regs[rd] = dtrace_load64(regs[r1]);
4648 			break;
4649 		case DIF_OP_ULDSB:
4650 			regs[rd] = (int8_t)
4651 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4652 			break;
4653 		case DIF_OP_ULDSH:
4654 			regs[rd] = (int16_t)
4655 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4656 			break;
4657 		case DIF_OP_ULDSW:
4658 			regs[rd] = (int32_t)
4659 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4660 			break;
4661 		case DIF_OP_ULDUB:
4662 			regs[rd] =
4663 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4664 			break;
4665 		case DIF_OP_ULDUH:
4666 			regs[rd] =
4667 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4668 			break;
4669 		case DIF_OP_ULDUW:
4670 			regs[rd] =
4671 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4672 			break;
4673 		case DIF_OP_ULDX:
4674 			regs[rd] =
4675 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4676 			break;
4677 		case DIF_OP_RET:
4678 			rval = regs[rd];
4679 			pc = textlen;
4680 			break;
4681 		case DIF_OP_NOP:
4682 			break;
4683 		case DIF_OP_SETX:
4684 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4685 			break;
4686 		case DIF_OP_SETS:
4687 			regs[rd] = (uint64_t)(uintptr_t)
4688 			    (strtab + DIF_INSTR_STRING(instr));
4689 			break;
4690 		case DIF_OP_SCMP: {
4691 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4692 			uintptr_t s1 = regs[r1];
4693 			uintptr_t s2 = regs[r2];
4694 
4695 			if (s1 != NULL &&
4696 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4697 				break;
4698 			if (s2 != NULL &&
4699 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4700 				break;
4701 
4702 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4703 
4704 			cc_n = cc_r < 0;
4705 			cc_z = cc_r == 0;
4706 			cc_v = cc_c = 0;
4707 			break;
4708 		}
4709 		case DIF_OP_LDGA:
4710 			regs[rd] = dtrace_dif_variable(mstate, state,
4711 			    r1, regs[r2]);
4712 			break;
4713 		case DIF_OP_LDGS:
4714 			id = DIF_INSTR_VAR(instr);
4715 
4716 			if (id >= DIF_VAR_OTHER_UBASE) {
4717 				uintptr_t a;
4718 
4719 				id -= DIF_VAR_OTHER_UBASE;
4720 				svar = vstate->dtvs_globals[id];
4721 				ASSERT(svar != NULL);
4722 				v = &svar->dtsv_var;
4723 
4724 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4725 					regs[rd] = svar->dtsv_data;
4726 					break;
4727 				}
4728 
4729 				a = (uintptr_t)svar->dtsv_data;
4730 
4731 				if (*(uint8_t *)a == UINT8_MAX) {
4732 					/*
4733 					 * If the 0th byte is set to UINT8_MAX
4734 					 * then this is to be treated as a
4735 					 * reference to a NULL variable.
4736 					 */
4737 					regs[rd] = NULL;
4738 				} else {
4739 					regs[rd] = a + sizeof (uint64_t);
4740 				}
4741 
4742 				break;
4743 			}
4744 
4745 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4746 			break;
4747 
4748 		case DIF_OP_STGS:
4749 			id = DIF_INSTR_VAR(instr);
4750 
4751 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4752 			id -= DIF_VAR_OTHER_UBASE;
4753 
4754 			svar = vstate->dtvs_globals[id];
4755 			ASSERT(svar != NULL);
4756 			v = &svar->dtsv_var;
4757 
4758 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4759 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4760 
4761 				ASSERT(a != NULL);
4762 				ASSERT(svar->dtsv_size != 0);
4763 
4764 				if (regs[rd] == NULL) {
4765 					*(uint8_t *)a = UINT8_MAX;
4766 					break;
4767 				} else {
4768 					*(uint8_t *)a = 0;
4769 					a += sizeof (uint64_t);
4770 				}
4771 				if (!dtrace_vcanload(
4772 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4773 				    mstate, vstate))
4774 					break;
4775 
4776 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4777 				    (void *)a, &v->dtdv_type);
4778 				break;
4779 			}
4780 
4781 			svar->dtsv_data = regs[rd];
4782 			break;
4783 
4784 		case DIF_OP_LDTA:
4785 			/*
4786 			 * There are no DTrace built-in thread-local arrays at
4787 			 * present.  This opcode is saved for future work.
4788 			 */
4789 			*flags |= CPU_DTRACE_ILLOP;
4790 			regs[rd] = 0;
4791 			break;
4792 
4793 		case DIF_OP_LDLS:
4794 			id = DIF_INSTR_VAR(instr);
4795 
4796 			if (id < DIF_VAR_OTHER_UBASE) {
4797 				/*
4798 				 * For now, this has no meaning.
4799 				 */
4800 				regs[rd] = 0;
4801 				break;
4802 			}
4803 
4804 			id -= DIF_VAR_OTHER_UBASE;
4805 
4806 			ASSERT(id < vstate->dtvs_nlocals);
4807 			ASSERT(vstate->dtvs_locals != NULL);
4808 
4809 			svar = vstate->dtvs_locals[id];
4810 			ASSERT(svar != NULL);
4811 			v = &svar->dtsv_var;
4812 
4813 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4814 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4815 				size_t sz = v->dtdv_type.dtdt_size;
4816 
4817 				sz += sizeof (uint64_t);
4818 				ASSERT(svar->dtsv_size == NCPU * sz);
4819 				a += CPU->cpu_id * sz;
4820 
4821 				if (*(uint8_t *)a == UINT8_MAX) {
4822 					/*
4823 					 * If the 0th byte is set to UINT8_MAX
4824 					 * then this is to be treated as a
4825 					 * reference to a NULL variable.
4826 					 */
4827 					regs[rd] = NULL;
4828 				} else {
4829 					regs[rd] = a + sizeof (uint64_t);
4830 				}
4831 
4832 				break;
4833 			}
4834 
4835 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4836 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4837 			regs[rd] = tmp[CPU->cpu_id];
4838 			break;
4839 
4840 		case DIF_OP_STLS:
4841 			id = DIF_INSTR_VAR(instr);
4842 
4843 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4844 			id -= DIF_VAR_OTHER_UBASE;
4845 			ASSERT(id < vstate->dtvs_nlocals);
4846 
4847 			ASSERT(vstate->dtvs_locals != NULL);
4848 			svar = vstate->dtvs_locals[id];
4849 			ASSERT(svar != NULL);
4850 			v = &svar->dtsv_var;
4851 
4852 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4853 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4854 				size_t sz = v->dtdv_type.dtdt_size;
4855 
4856 				sz += sizeof (uint64_t);
4857 				ASSERT(svar->dtsv_size == NCPU * sz);
4858 				a += CPU->cpu_id * sz;
4859 
4860 				if (regs[rd] == NULL) {
4861 					*(uint8_t *)a = UINT8_MAX;
4862 					break;
4863 				} else {
4864 					*(uint8_t *)a = 0;
4865 					a += sizeof (uint64_t);
4866 				}
4867 
4868 				if (!dtrace_vcanload(
4869 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4870 				    mstate, vstate))
4871 					break;
4872 
4873 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4874 				    (void *)a, &v->dtdv_type);
4875 				break;
4876 			}
4877 
4878 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4879 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4880 			tmp[CPU->cpu_id] = regs[rd];
4881 			break;
4882 
4883 		case DIF_OP_LDTS: {
4884 			dtrace_dynvar_t *dvar;
4885 			dtrace_key_t *key;
4886 
4887 			id = DIF_INSTR_VAR(instr);
4888 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4889 			id -= DIF_VAR_OTHER_UBASE;
4890 			v = &vstate->dtvs_tlocals[id];
4891 
4892 			key = &tupregs[DIF_DTR_NREGS];
4893 			key[0].dttk_value = (uint64_t)id;
4894 			key[0].dttk_size = 0;
4895 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4896 			key[1].dttk_size = 0;
4897 
4898 			dvar = dtrace_dynvar(dstate, 2, key,
4899 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4900 			    mstate, vstate);
4901 
4902 			if (dvar == NULL) {
4903 				regs[rd] = 0;
4904 				break;
4905 			}
4906 
4907 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4908 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4909 			} else {
4910 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4911 			}
4912 
4913 			break;
4914 		}
4915 
4916 		case DIF_OP_STTS: {
4917 			dtrace_dynvar_t *dvar;
4918 			dtrace_key_t *key;
4919 
4920 			id = DIF_INSTR_VAR(instr);
4921 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4922 			id -= DIF_VAR_OTHER_UBASE;
4923 
4924 			key = &tupregs[DIF_DTR_NREGS];
4925 			key[0].dttk_value = (uint64_t)id;
4926 			key[0].dttk_size = 0;
4927 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4928 			key[1].dttk_size = 0;
4929 			v = &vstate->dtvs_tlocals[id];
4930 
4931 			dvar = dtrace_dynvar(dstate, 2, key,
4932 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4933 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4934 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4935 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4936 
4937 			/*
4938 			 * Given that we're storing to thread-local data,
4939 			 * we need to flush our predicate cache.
4940 			 */
4941 			curthread->t_predcache = NULL;
4942 
4943 			if (dvar == NULL)
4944 				break;
4945 
4946 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4947 				if (!dtrace_vcanload(
4948 				    (void *)(uintptr_t)regs[rd],
4949 				    &v->dtdv_type, mstate, vstate))
4950 					break;
4951 
4952 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4953 				    dvar->dtdv_data, &v->dtdv_type);
4954 			} else {
4955 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4956 			}
4957 
4958 			break;
4959 		}
4960 
4961 		case DIF_OP_SRA:
4962 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4963 			break;
4964 
4965 		case DIF_OP_CALL:
4966 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4967 			    regs, tupregs, ttop, mstate, state);
4968 			break;
4969 
4970 		case DIF_OP_PUSHTR:
4971 			if (ttop == DIF_DTR_NREGS) {
4972 				*flags |= CPU_DTRACE_TUPOFLOW;
4973 				break;
4974 			}
4975 
4976 			if (r1 == DIF_TYPE_STRING) {
4977 				/*
4978 				 * If this is a string type and the size is 0,
4979 				 * we'll use the system-wide default string
4980 				 * size.  Note that we are _not_ looking at
4981 				 * the value of the DTRACEOPT_STRSIZE option;
4982 				 * had this been set, we would expect to have
4983 				 * a non-zero size value in the "pushtr".
4984 				 */
4985 				tupregs[ttop].dttk_size =
4986 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4987 				    regs[r2] ? regs[r2] :
4988 				    dtrace_strsize_default) + 1;
4989 			} else {
4990 				tupregs[ttop].dttk_size = regs[r2];
4991 			}
4992 
4993 			tupregs[ttop++].dttk_value = regs[rd];
4994 			break;
4995 
4996 		case DIF_OP_PUSHTV:
4997 			if (ttop == DIF_DTR_NREGS) {
4998 				*flags |= CPU_DTRACE_TUPOFLOW;
4999 				break;
5000 			}
5001 
5002 			tupregs[ttop].dttk_value = regs[rd];
5003 			tupregs[ttop++].dttk_size = 0;
5004 			break;
5005 
5006 		case DIF_OP_POPTS:
5007 			if (ttop != 0)
5008 				ttop--;
5009 			break;
5010 
5011 		case DIF_OP_FLUSHTS:
5012 			ttop = 0;
5013 			break;
5014 
5015 		case DIF_OP_LDGAA:
5016 		case DIF_OP_LDTAA: {
5017 			dtrace_dynvar_t *dvar;
5018 			dtrace_key_t *key = tupregs;
5019 			uint_t nkeys = ttop;
5020 
5021 			id = DIF_INSTR_VAR(instr);
5022 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5023 			id -= DIF_VAR_OTHER_UBASE;
5024 
5025 			key[nkeys].dttk_value = (uint64_t)id;
5026 			key[nkeys++].dttk_size = 0;
5027 
5028 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5029 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5030 				key[nkeys++].dttk_size = 0;
5031 				v = &vstate->dtvs_tlocals[id];
5032 			} else {
5033 				v = &vstate->dtvs_globals[id]->dtsv_var;
5034 			}
5035 
5036 			dvar = dtrace_dynvar(dstate, nkeys, key,
5037 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5038 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5039 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5040 
5041 			if (dvar == NULL) {
5042 				regs[rd] = 0;
5043 				break;
5044 			}
5045 
5046 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5047 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5048 			} else {
5049 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5050 			}
5051 
5052 			break;
5053 		}
5054 
5055 		case DIF_OP_STGAA:
5056 		case DIF_OP_STTAA: {
5057 			dtrace_dynvar_t *dvar;
5058 			dtrace_key_t *key = tupregs;
5059 			uint_t nkeys = ttop;
5060 
5061 			id = DIF_INSTR_VAR(instr);
5062 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5063 			id -= DIF_VAR_OTHER_UBASE;
5064 
5065 			key[nkeys].dttk_value = (uint64_t)id;
5066 			key[nkeys++].dttk_size = 0;
5067 
5068 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5069 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5070 				key[nkeys++].dttk_size = 0;
5071 				v = &vstate->dtvs_tlocals[id];
5072 			} else {
5073 				v = &vstate->dtvs_globals[id]->dtsv_var;
5074 			}
5075 
5076 			dvar = dtrace_dynvar(dstate, nkeys, key,
5077 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5078 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5079 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5080 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5081 
5082 			if (dvar == NULL)
5083 				break;
5084 
5085 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5086 				if (!dtrace_vcanload(
5087 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5088 				    mstate, vstate))
5089 					break;
5090 
5091 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5092 				    dvar->dtdv_data, &v->dtdv_type);
5093 			} else {
5094 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5095 			}
5096 
5097 			break;
5098 		}
5099 
5100 		case DIF_OP_ALLOCS: {
5101 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5102 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5103 
5104 			/*
5105 			 * Rounding up the user allocation size could have
5106 			 * overflowed large, bogus allocations (like -1ULL) to
5107 			 * 0.
5108 			 */
5109 			if (size < regs[r1] ||
5110 			    !DTRACE_INSCRATCH(mstate, size)) {
5111 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5112 				regs[rd] = NULL;
5113 				break;
5114 			}
5115 
5116 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5117 			mstate->dtms_scratch_ptr += size;
5118 			regs[rd] = ptr;
5119 			break;
5120 		}
5121 
5122 		case DIF_OP_COPYS:
5123 			if (!dtrace_canstore(regs[rd], regs[r2],
5124 			    mstate, vstate)) {
5125 				*flags |= CPU_DTRACE_BADADDR;
5126 				*illval = regs[rd];
5127 				break;
5128 			}
5129 
5130 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5131 				break;
5132 
5133 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5134 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5135 			break;
5136 
5137 		case DIF_OP_STB:
5138 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5139 				*flags |= CPU_DTRACE_BADADDR;
5140 				*illval = regs[rd];
5141 				break;
5142 			}
5143 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5144 			break;
5145 
5146 		case DIF_OP_STH:
5147 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5148 				*flags |= CPU_DTRACE_BADADDR;
5149 				*illval = regs[rd];
5150 				break;
5151 			}
5152 			if (regs[rd] & 1) {
5153 				*flags |= CPU_DTRACE_BADALIGN;
5154 				*illval = regs[rd];
5155 				break;
5156 			}
5157 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5158 			break;
5159 
5160 		case DIF_OP_STW:
5161 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5162 				*flags |= CPU_DTRACE_BADADDR;
5163 				*illval = regs[rd];
5164 				break;
5165 			}
5166 			if (regs[rd] & 3) {
5167 				*flags |= CPU_DTRACE_BADALIGN;
5168 				*illval = regs[rd];
5169 				break;
5170 			}
5171 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5172 			break;
5173 
5174 		case DIF_OP_STX:
5175 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5176 				*flags |= CPU_DTRACE_BADADDR;
5177 				*illval = regs[rd];
5178 				break;
5179 			}
5180 			if (regs[rd] & 7) {
5181 				*flags |= CPU_DTRACE_BADALIGN;
5182 				*illval = regs[rd];
5183 				break;
5184 			}
5185 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5186 			break;
5187 		}
5188 	}
5189 
5190 	if (!(*flags & CPU_DTRACE_FAULT))
5191 		return (rval);
5192 
5193 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5194 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5195 
5196 	return (0);
5197 }
5198 
5199 static void
5200 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5201 {
5202 	dtrace_probe_t *probe = ecb->dte_probe;
5203 	dtrace_provider_t *prov = probe->dtpr_provider;
5204 	char c[DTRACE_FULLNAMELEN + 80], *str;
5205 	char *msg = "dtrace: breakpoint action at probe ";
5206 	char *ecbmsg = " (ecb ";
5207 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5208 	uintptr_t val = (uintptr_t)ecb;
5209 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5210 
5211 	if (dtrace_destructive_disallow)
5212 		return;
5213 
5214 	/*
5215 	 * It's impossible to be taking action on the NULL probe.
5216 	 */
5217 	ASSERT(probe != NULL);
5218 
5219 	/*
5220 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5221 	 * print the provider name, module name, function name and name of
5222 	 * the probe, along with the hex address of the ECB with the breakpoint
5223 	 * action -- all of which we must place in the character buffer by
5224 	 * hand.
5225 	 */
5226 	while (*msg != '\0')
5227 		c[i++] = *msg++;
5228 
5229 	for (str = prov->dtpv_name; *str != '\0'; str++)
5230 		c[i++] = *str;
5231 	c[i++] = ':';
5232 
5233 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5234 		c[i++] = *str;
5235 	c[i++] = ':';
5236 
5237 	for (str = probe->dtpr_func; *str != '\0'; str++)
5238 		c[i++] = *str;
5239 	c[i++] = ':';
5240 
5241 	for (str = probe->dtpr_name; *str != '\0'; str++)
5242 		c[i++] = *str;
5243 
5244 	while (*ecbmsg != '\0')
5245 		c[i++] = *ecbmsg++;
5246 
5247 	while (shift >= 0) {
5248 		mask = (uintptr_t)0xf << shift;
5249 
5250 		if (val >= ((uintptr_t)1 << shift))
5251 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5252 		shift -= 4;
5253 	}
5254 
5255 	c[i++] = ')';
5256 	c[i] = '\0';
5257 
5258 	debug_enter(c);
5259 }
5260 
5261 static void
5262 dtrace_action_panic(dtrace_ecb_t *ecb)
5263 {
5264 	dtrace_probe_t *probe = ecb->dte_probe;
5265 
5266 	/*
5267 	 * It's impossible to be taking action on the NULL probe.
5268 	 */
5269 	ASSERT(probe != NULL);
5270 
5271 	if (dtrace_destructive_disallow)
5272 		return;
5273 
5274 	if (dtrace_panicked != NULL)
5275 		return;
5276 
5277 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5278 		return;
5279 
5280 	/*
5281 	 * We won the right to panic.  (We want to be sure that only one
5282 	 * thread calls panic() from dtrace_probe(), and that panic() is
5283 	 * called exactly once.)
5284 	 */
5285 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5286 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5287 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5288 }
5289 
5290 static void
5291 dtrace_action_raise(uint64_t sig)
5292 {
5293 	if (dtrace_destructive_disallow)
5294 		return;
5295 
5296 	if (sig >= NSIG) {
5297 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5298 		return;
5299 	}
5300 
5301 	/*
5302 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5303 	 * invocations of the raise() action.
5304 	 */
5305 	if (curthread->t_dtrace_sig == 0)
5306 		curthread->t_dtrace_sig = (uint8_t)sig;
5307 
5308 	curthread->t_sig_check = 1;
5309 	aston(curthread);
5310 }
5311 
5312 static void
5313 dtrace_action_stop(void)
5314 {
5315 	if (dtrace_destructive_disallow)
5316 		return;
5317 
5318 	if (!curthread->t_dtrace_stop) {
5319 		curthread->t_dtrace_stop = 1;
5320 		curthread->t_sig_check = 1;
5321 		aston(curthread);
5322 	}
5323 }
5324 
5325 static void
5326 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5327 {
5328 	hrtime_t now;
5329 	volatile uint16_t *flags;
5330 	cpu_t *cpu = CPU;
5331 
5332 	if (dtrace_destructive_disallow)
5333 		return;
5334 
5335 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5336 
5337 	now = dtrace_gethrtime();
5338 
5339 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5340 		/*
5341 		 * We need to advance the mark to the current time.
5342 		 */
5343 		cpu->cpu_dtrace_chillmark = now;
5344 		cpu->cpu_dtrace_chilled = 0;
5345 	}
5346 
5347 	/*
5348 	 * Now check to see if the requested chill time would take us over
5349 	 * the maximum amount of time allowed in the chill interval.  (Or
5350 	 * worse, if the calculation itself induces overflow.)
5351 	 */
5352 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5353 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5354 		*flags |= CPU_DTRACE_ILLOP;
5355 		return;
5356 	}
5357 
5358 	while (dtrace_gethrtime() - now < val)
5359 		continue;
5360 
5361 	/*
5362 	 * Normally, we assure that the value of the variable "timestamp" does
5363 	 * not change within an ECB.  The presence of chill() represents an
5364 	 * exception to this rule, however.
5365 	 */
5366 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5367 	cpu->cpu_dtrace_chilled += val;
5368 }
5369 
5370 static void
5371 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5372     uint64_t *buf, uint64_t arg)
5373 {
5374 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5375 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5376 	uint64_t *pcs = &buf[1], *fps;
5377 	char *str = (char *)&pcs[nframes];
5378 	int size, offs = 0, i, j;
5379 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5380 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5381 	char *sym;
5382 
5383 	/*
5384 	 * Should be taking a faster path if string space has not been
5385 	 * allocated.
5386 	 */
5387 	ASSERT(strsize != 0);
5388 
5389 	/*
5390 	 * We will first allocate some temporary space for the frame pointers.
5391 	 */
5392 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5393 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5394 	    (nframes * sizeof (uint64_t));
5395 
5396 	if (!DTRACE_INSCRATCH(mstate, size)) {
5397 		/*
5398 		 * Not enough room for our frame pointers -- need to indicate
5399 		 * that we ran out of scratch space.
5400 		 */
5401 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5402 		return;
5403 	}
5404 
5405 	mstate->dtms_scratch_ptr += size;
5406 	saved = mstate->dtms_scratch_ptr;
5407 
5408 	/*
5409 	 * Now get a stack with both program counters and frame pointers.
5410 	 */
5411 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5412 	dtrace_getufpstack(buf, fps, nframes + 1);
5413 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5414 
5415 	/*
5416 	 * If that faulted, we're cooked.
5417 	 */
5418 	if (*flags & CPU_DTRACE_FAULT)
5419 		goto out;
5420 
5421 	/*
5422 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5423 	 * each iteration, we restore the scratch pointer.
5424 	 */
5425 	for (i = 0; i < nframes; i++) {
5426 		mstate->dtms_scratch_ptr = saved;
5427 
5428 		if (offs >= strsize)
5429 			break;
5430 
5431 		sym = (char *)(uintptr_t)dtrace_helper(
5432 		    DTRACE_HELPER_ACTION_USTACK,
5433 		    mstate, state, pcs[i], fps[i]);
5434 
5435 		/*
5436 		 * If we faulted while running the helper, we're going to
5437 		 * clear the fault and null out the corresponding string.
5438 		 */
5439 		if (*flags & CPU_DTRACE_FAULT) {
5440 			*flags &= ~CPU_DTRACE_FAULT;
5441 			str[offs++] = '\0';
5442 			continue;
5443 		}
5444 
5445 		if (sym == NULL) {
5446 			str[offs++] = '\0';
5447 			continue;
5448 		}
5449 
5450 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5451 
5452 		/*
5453 		 * Now copy in the string that the helper returned to us.
5454 		 */
5455 		for (j = 0; offs + j < strsize; j++) {
5456 			if ((str[offs + j] = sym[j]) == '\0')
5457 				break;
5458 		}
5459 
5460 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5461 
5462 		offs += j + 1;
5463 	}
5464 
5465 	if (offs >= strsize) {
5466 		/*
5467 		 * If we didn't have room for all of the strings, we don't
5468 		 * abort processing -- this needn't be a fatal error -- but we
5469 		 * still want to increment a counter (dts_stkstroverflows) to
5470 		 * allow this condition to be warned about.  (If this is from
5471 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5472 		 */
5473 		dtrace_error(&state->dts_stkstroverflows);
5474 	}
5475 
5476 	while (offs < strsize)
5477 		str[offs++] = '\0';
5478 
5479 out:
5480 	mstate->dtms_scratch_ptr = old;
5481 }
5482 
5483 /*
5484  * If you're looking for the epicenter of DTrace, you just found it.  This
5485  * is the function called by the provider to fire a probe -- from which all
5486  * subsequent probe-context DTrace activity emanates.
5487  */
5488 void
5489 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5490     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5491 {
5492 	processorid_t cpuid;
5493 	dtrace_icookie_t cookie;
5494 	dtrace_probe_t *probe;
5495 	dtrace_mstate_t mstate;
5496 	dtrace_ecb_t *ecb;
5497 	dtrace_action_t *act;
5498 	intptr_t offs;
5499 	size_t size;
5500 	int vtime, onintr;
5501 	volatile uint16_t *flags;
5502 	hrtime_t now;
5503 
5504 	/*
5505 	 * Kick out immediately if this CPU is still being born (in which case
5506 	 * curthread will be set to -1) or the current thread can't allow
5507 	 * probes in its current context.
5508 	 */
5509 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5510 		return;
5511 
5512 	cookie = dtrace_interrupt_disable();
5513 	probe = dtrace_probes[id - 1];
5514 	cpuid = CPU->cpu_id;
5515 	onintr = CPU_ON_INTR(CPU);
5516 
5517 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5518 	    probe->dtpr_predcache == curthread->t_predcache) {
5519 		/*
5520 		 * We have hit in the predicate cache; we know that
5521 		 * this predicate would evaluate to be false.
5522 		 */
5523 		dtrace_interrupt_enable(cookie);
5524 		return;
5525 	}
5526 
5527 	if (panic_quiesce) {
5528 		/*
5529 		 * We don't trace anything if we're panicking.
5530 		 */
5531 		dtrace_interrupt_enable(cookie);
5532 		return;
5533 	}
5534 
5535 	now = dtrace_gethrtime();
5536 	vtime = dtrace_vtime_references != 0;
5537 
5538 	if (vtime && curthread->t_dtrace_start)
5539 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5540 
5541 	mstate.dtms_difo = NULL;
5542 	mstate.dtms_probe = probe;
5543 	mstate.dtms_strtok = NULL;
5544 	mstate.dtms_arg[0] = arg0;
5545 	mstate.dtms_arg[1] = arg1;
5546 	mstate.dtms_arg[2] = arg2;
5547 	mstate.dtms_arg[3] = arg3;
5548 	mstate.dtms_arg[4] = arg4;
5549 
5550 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5551 
5552 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5553 		dtrace_predicate_t *pred = ecb->dte_predicate;
5554 		dtrace_state_t *state = ecb->dte_state;
5555 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5556 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5557 		dtrace_vstate_t *vstate = &state->dts_vstate;
5558 		dtrace_provider_t *prov = probe->dtpr_provider;
5559 		int committed = 0;
5560 		caddr_t tomax;
5561 
5562 		/*
5563 		 * A little subtlety with the following (seemingly innocuous)
5564 		 * declaration of the automatic 'val':  by looking at the
5565 		 * code, you might think that it could be declared in the
5566 		 * action processing loop, below.  (That is, it's only used in
5567 		 * the action processing loop.)  However, it must be declared
5568 		 * out of that scope because in the case of DIF expression
5569 		 * arguments to aggregating actions, one iteration of the
5570 		 * action loop will use the last iteration's value.
5571 		 */
5572 #ifdef lint
5573 		uint64_t val = 0;
5574 #else
5575 		uint64_t val;
5576 #endif
5577 
5578 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5579 		*flags &= ~CPU_DTRACE_ERROR;
5580 
5581 		if (prov == dtrace_provider) {
5582 			/*
5583 			 * If dtrace itself is the provider of this probe,
5584 			 * we're only going to continue processing the ECB if
5585 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5586 			 * creating state.  (This prevents disjoint consumers
5587 			 * from seeing one another's metaprobes.)
5588 			 */
5589 			if (arg0 != (uint64_t)(uintptr_t)state)
5590 				continue;
5591 		}
5592 
5593 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5594 			/*
5595 			 * We're not currently active.  If our provider isn't
5596 			 * the dtrace pseudo provider, we're not interested.
5597 			 */
5598 			if (prov != dtrace_provider)
5599 				continue;
5600 
5601 			/*
5602 			 * Now we must further check if we are in the BEGIN
5603 			 * probe.  If we are, we will only continue processing
5604 			 * if we're still in WARMUP -- if one BEGIN enabling
5605 			 * has invoked the exit() action, we don't want to
5606 			 * evaluate subsequent BEGIN enablings.
5607 			 */
5608 			if (probe->dtpr_id == dtrace_probeid_begin &&
5609 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5610 				ASSERT(state->dts_activity ==
5611 				    DTRACE_ACTIVITY_DRAINING);
5612 				continue;
5613 			}
5614 		}
5615 
5616 		if (ecb->dte_cond) {
5617 			/*
5618 			 * If the dte_cond bits indicate that this
5619 			 * consumer is only allowed to see user-mode firings
5620 			 * of this probe, call the provider's dtps_usermode()
5621 			 * entry point to check that the probe was fired
5622 			 * while in a user context. Skip this ECB if that's
5623 			 * not the case.
5624 			 */
5625 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5626 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5627 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5628 				continue;
5629 
5630 			/*
5631 			 * This is more subtle than it looks. We have to be
5632 			 * absolutely certain that CRED() isn't going to
5633 			 * change out from under us so it's only legit to
5634 			 * examine that structure if we're in constrained
5635 			 * situations. Currently, the only times we'll this
5636 			 * check is if a non-super-user has enabled the
5637 			 * profile or syscall providers -- providers that
5638 			 * allow visibility of all processes. For the
5639 			 * profile case, the check above will ensure that
5640 			 * we're examining a user context.
5641 			 */
5642 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5643 				cred_t *cr;
5644 				cred_t *s_cr =
5645 				    ecb->dte_state->dts_cred.dcr_cred;
5646 				proc_t *proc;
5647 
5648 				ASSERT(s_cr != NULL);
5649 
5650 				if ((cr = CRED()) == NULL ||
5651 				    s_cr->cr_uid != cr->cr_uid ||
5652 				    s_cr->cr_uid != cr->cr_ruid ||
5653 				    s_cr->cr_uid != cr->cr_suid ||
5654 				    s_cr->cr_gid != cr->cr_gid ||
5655 				    s_cr->cr_gid != cr->cr_rgid ||
5656 				    s_cr->cr_gid != cr->cr_sgid ||
5657 				    (proc = ttoproc(curthread)) == NULL ||
5658 				    (proc->p_flag & SNOCD))
5659 					continue;
5660 			}
5661 
5662 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5663 				cred_t *cr;
5664 				cred_t *s_cr =
5665 				    ecb->dte_state->dts_cred.dcr_cred;
5666 
5667 				ASSERT(s_cr != NULL);
5668 
5669 				if ((cr = CRED()) == NULL ||
5670 				    s_cr->cr_zone->zone_id !=
5671 				    cr->cr_zone->zone_id)
5672 					continue;
5673 			}
5674 		}
5675 
5676 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5677 			/*
5678 			 * We seem to be dead.  Unless we (a) have kernel
5679 			 * destructive permissions (b) have expicitly enabled
5680 			 * destructive actions and (c) destructive actions have
5681 			 * not been disabled, we're going to transition into
5682 			 * the KILLED state, from which no further processing
5683 			 * on this state will be performed.
5684 			 */
5685 			if (!dtrace_priv_kernel_destructive(state) ||
5686 			    !state->dts_cred.dcr_destructive ||
5687 			    dtrace_destructive_disallow) {
5688 				void *activity = &state->dts_activity;
5689 				dtrace_activity_t current;
5690 
5691 				do {
5692 					current = state->dts_activity;
5693 				} while (dtrace_cas32(activity, current,
5694 				    DTRACE_ACTIVITY_KILLED) != current);
5695 
5696 				continue;
5697 			}
5698 		}
5699 
5700 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5701 		    ecb->dte_alignment, state, &mstate)) < 0)
5702 			continue;
5703 
5704 		tomax = buf->dtb_tomax;
5705 		ASSERT(tomax != NULL);
5706 
5707 		if (ecb->dte_size != 0)
5708 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5709 
5710 		mstate.dtms_epid = ecb->dte_epid;
5711 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5712 
5713 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5714 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5715 		else
5716 			mstate.dtms_access = 0;
5717 
5718 		if (pred != NULL) {
5719 			dtrace_difo_t *dp = pred->dtp_difo;
5720 			int rval;
5721 
5722 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5723 
5724 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5725 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5726 
5727 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5728 					/*
5729 					 * Update the predicate cache...
5730 					 */
5731 					ASSERT(cid == pred->dtp_cacheid);
5732 					curthread->t_predcache = cid;
5733 				}
5734 
5735 				continue;
5736 			}
5737 		}
5738 
5739 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5740 		    act != NULL; act = act->dta_next) {
5741 			size_t valoffs;
5742 			dtrace_difo_t *dp;
5743 			dtrace_recdesc_t *rec = &act->dta_rec;
5744 
5745 			size = rec->dtrd_size;
5746 			valoffs = offs + rec->dtrd_offset;
5747 
5748 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5749 				uint64_t v = 0xbad;
5750 				dtrace_aggregation_t *agg;
5751 
5752 				agg = (dtrace_aggregation_t *)act;
5753 
5754 				if ((dp = act->dta_difo) != NULL)
5755 					v = dtrace_dif_emulate(dp,
5756 					    &mstate, vstate, state);
5757 
5758 				if (*flags & CPU_DTRACE_ERROR)
5759 					continue;
5760 
5761 				/*
5762 				 * Note that we always pass the expression
5763 				 * value from the previous iteration of the
5764 				 * action loop.  This value will only be used
5765 				 * if there is an expression argument to the
5766 				 * aggregating action, denoted by the
5767 				 * dtag_hasarg field.
5768 				 */
5769 				dtrace_aggregate(agg, buf,
5770 				    offs, aggbuf, v, val);
5771 				continue;
5772 			}
5773 
5774 			switch (act->dta_kind) {
5775 			case DTRACEACT_STOP:
5776 				if (dtrace_priv_proc_destructive(state))
5777 					dtrace_action_stop();
5778 				continue;
5779 
5780 			case DTRACEACT_BREAKPOINT:
5781 				if (dtrace_priv_kernel_destructive(state))
5782 					dtrace_action_breakpoint(ecb);
5783 				continue;
5784 
5785 			case DTRACEACT_PANIC:
5786 				if (dtrace_priv_kernel_destructive(state))
5787 					dtrace_action_panic(ecb);
5788 				continue;
5789 
5790 			case DTRACEACT_STACK:
5791 				if (!dtrace_priv_kernel(state))
5792 					continue;
5793 
5794 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5795 				    size / sizeof (pc_t), probe->dtpr_aframes,
5796 				    DTRACE_ANCHORED(probe) ? NULL :
5797 				    (uint32_t *)arg0);
5798 
5799 				continue;
5800 
5801 			case DTRACEACT_JSTACK:
5802 			case DTRACEACT_USTACK:
5803 				if (!dtrace_priv_proc(state))
5804 					continue;
5805 
5806 				/*
5807 				 * See comment in DIF_VAR_PID.
5808 				 */
5809 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5810 				    CPU_ON_INTR(CPU)) {
5811 					int depth = DTRACE_USTACK_NFRAMES(
5812 					    rec->dtrd_arg) + 1;
5813 
5814 					dtrace_bzero((void *)(tomax + valoffs),
5815 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5816 					    + depth * sizeof (uint64_t));
5817 
5818 					continue;
5819 				}
5820 
5821 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5822 				    curproc->p_dtrace_helpers != NULL) {
5823 					/*
5824 					 * This is the slow path -- we have
5825 					 * allocated string space, and we're
5826 					 * getting the stack of a process that
5827 					 * has helpers.  Call into a separate
5828 					 * routine to perform this processing.
5829 					 */
5830 					dtrace_action_ustack(&mstate, state,
5831 					    (uint64_t *)(tomax + valoffs),
5832 					    rec->dtrd_arg);
5833 					continue;
5834 				}
5835 
5836 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5837 				dtrace_getupcstack((uint64_t *)
5838 				    (tomax + valoffs),
5839 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5840 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5841 				continue;
5842 
5843 			default:
5844 				break;
5845 			}
5846 
5847 			dp = act->dta_difo;
5848 			ASSERT(dp != NULL);
5849 
5850 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5851 
5852 			if (*flags & CPU_DTRACE_ERROR)
5853 				continue;
5854 
5855 			switch (act->dta_kind) {
5856 			case DTRACEACT_SPECULATE:
5857 				ASSERT(buf == &state->dts_buffer[cpuid]);
5858 				buf = dtrace_speculation_buffer(state,
5859 				    cpuid, val);
5860 
5861 				if (buf == NULL) {
5862 					*flags |= CPU_DTRACE_DROP;
5863 					continue;
5864 				}
5865 
5866 				offs = dtrace_buffer_reserve(buf,
5867 				    ecb->dte_needed, ecb->dte_alignment,
5868 				    state, NULL);
5869 
5870 				if (offs < 0) {
5871 					*flags |= CPU_DTRACE_DROP;
5872 					continue;
5873 				}
5874 
5875 				tomax = buf->dtb_tomax;
5876 				ASSERT(tomax != NULL);
5877 
5878 				if (ecb->dte_size != 0)
5879 					DTRACE_STORE(uint32_t, tomax, offs,
5880 					    ecb->dte_epid);
5881 				continue;
5882 
5883 			case DTRACEACT_CHILL:
5884 				if (dtrace_priv_kernel_destructive(state))
5885 					dtrace_action_chill(&mstate, val);
5886 				continue;
5887 
5888 			case DTRACEACT_RAISE:
5889 				if (dtrace_priv_proc_destructive(state))
5890 					dtrace_action_raise(val);
5891 				continue;
5892 
5893 			case DTRACEACT_COMMIT:
5894 				ASSERT(!committed);
5895 
5896 				/*
5897 				 * We need to commit our buffer state.
5898 				 */
5899 				if (ecb->dte_size)
5900 					buf->dtb_offset = offs + ecb->dte_size;
5901 				buf = &state->dts_buffer[cpuid];
5902 				dtrace_speculation_commit(state, cpuid, val);
5903 				committed = 1;
5904 				continue;
5905 
5906 			case DTRACEACT_DISCARD:
5907 				dtrace_speculation_discard(state, cpuid, val);
5908 				continue;
5909 
5910 			case DTRACEACT_DIFEXPR:
5911 			case DTRACEACT_LIBACT:
5912 			case DTRACEACT_PRINTF:
5913 			case DTRACEACT_PRINTA:
5914 			case DTRACEACT_SYSTEM:
5915 			case DTRACEACT_FREOPEN:
5916 				break;
5917 
5918 			case DTRACEACT_SYM:
5919 			case DTRACEACT_MOD:
5920 				if (!dtrace_priv_kernel(state))
5921 					continue;
5922 				break;
5923 
5924 			case DTRACEACT_USYM:
5925 			case DTRACEACT_UMOD:
5926 			case DTRACEACT_UADDR: {
5927 				struct pid *pid = curthread->t_procp->p_pidp;
5928 
5929 				if (!dtrace_priv_proc(state))
5930 					continue;
5931 
5932 				DTRACE_STORE(uint64_t, tomax,
5933 				    valoffs, (uint64_t)pid->pid_id);
5934 				DTRACE_STORE(uint64_t, tomax,
5935 				    valoffs + sizeof (uint64_t), val);
5936 
5937 				continue;
5938 			}
5939 
5940 			case DTRACEACT_EXIT: {
5941 				/*
5942 				 * For the exit action, we are going to attempt
5943 				 * to atomically set our activity to be
5944 				 * draining.  If this fails (either because
5945 				 * another CPU has beat us to the exit action,
5946 				 * or because our current activity is something
5947 				 * other than ACTIVE or WARMUP), we will
5948 				 * continue.  This assures that the exit action
5949 				 * can be successfully recorded at most once
5950 				 * when we're in the ACTIVE state.  If we're
5951 				 * encountering the exit() action while in
5952 				 * COOLDOWN, however, we want to honor the new
5953 				 * status code.  (We know that we're the only
5954 				 * thread in COOLDOWN, so there is no race.)
5955 				 */
5956 				void *activity = &state->dts_activity;
5957 				dtrace_activity_t current = state->dts_activity;
5958 
5959 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5960 					break;
5961 
5962 				if (current != DTRACE_ACTIVITY_WARMUP)
5963 					current = DTRACE_ACTIVITY_ACTIVE;
5964 
5965 				if (dtrace_cas32(activity, current,
5966 				    DTRACE_ACTIVITY_DRAINING) != current) {
5967 					*flags |= CPU_DTRACE_DROP;
5968 					continue;
5969 				}
5970 
5971 				break;
5972 			}
5973 
5974 			default:
5975 				ASSERT(0);
5976 			}
5977 
5978 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5979 				uintptr_t end = valoffs + size;
5980 
5981 				if (!dtrace_vcanload((void *)(uintptr_t)val,
5982 				    &dp->dtdo_rtype, &mstate, vstate))
5983 					continue;
5984 
5985 				/*
5986 				 * If this is a string, we're going to only
5987 				 * load until we find the zero byte -- after
5988 				 * which we'll store zero bytes.
5989 				 */
5990 				if (dp->dtdo_rtype.dtdt_kind ==
5991 				    DIF_TYPE_STRING) {
5992 					char c = '\0' + 1;
5993 					int intuple = act->dta_intuple;
5994 					size_t s;
5995 
5996 					for (s = 0; s < size; s++) {
5997 						if (c != '\0')
5998 							c = dtrace_load8(val++);
5999 
6000 						DTRACE_STORE(uint8_t, tomax,
6001 						    valoffs++, c);
6002 
6003 						if (c == '\0' && intuple)
6004 							break;
6005 					}
6006 
6007 					continue;
6008 				}
6009 
6010 				while (valoffs < end) {
6011 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6012 					    dtrace_load8(val++));
6013 				}
6014 
6015 				continue;
6016 			}
6017 
6018 			switch (size) {
6019 			case 0:
6020 				break;
6021 
6022 			case sizeof (uint8_t):
6023 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6024 				break;
6025 			case sizeof (uint16_t):
6026 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6027 				break;
6028 			case sizeof (uint32_t):
6029 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6030 				break;
6031 			case sizeof (uint64_t):
6032 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6033 				break;
6034 			default:
6035 				/*
6036 				 * Any other size should have been returned by
6037 				 * reference, not by value.
6038 				 */
6039 				ASSERT(0);
6040 				break;
6041 			}
6042 		}
6043 
6044 		if (*flags & CPU_DTRACE_DROP)
6045 			continue;
6046 
6047 		if (*flags & CPU_DTRACE_FAULT) {
6048 			int ndx;
6049 			dtrace_action_t *err;
6050 
6051 			buf->dtb_errors++;
6052 
6053 			if (probe->dtpr_id == dtrace_probeid_error) {
6054 				/*
6055 				 * There's nothing we can do -- we had an
6056 				 * error on the error probe.  We bump an
6057 				 * error counter to at least indicate that
6058 				 * this condition happened.
6059 				 */
6060 				dtrace_error(&state->dts_dblerrors);
6061 				continue;
6062 			}
6063 
6064 			if (vtime) {
6065 				/*
6066 				 * Before recursing on dtrace_probe(), we
6067 				 * need to explicitly clear out our start
6068 				 * time to prevent it from being accumulated
6069 				 * into t_dtrace_vtime.
6070 				 */
6071 				curthread->t_dtrace_start = 0;
6072 			}
6073 
6074 			/*
6075 			 * Iterate over the actions to figure out which action
6076 			 * we were processing when we experienced the error.
6077 			 * Note that act points _past_ the faulting action; if
6078 			 * act is ecb->dte_action, the fault was in the
6079 			 * predicate, if it's ecb->dte_action->dta_next it's
6080 			 * in action #1, and so on.
6081 			 */
6082 			for (err = ecb->dte_action, ndx = 0;
6083 			    err != act; err = err->dta_next, ndx++)
6084 				continue;
6085 
6086 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6087 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6088 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6089 			    cpu_core[cpuid].cpuc_dtrace_illval);
6090 
6091 			continue;
6092 		}
6093 
6094 		if (!committed)
6095 			buf->dtb_offset = offs + ecb->dte_size;
6096 	}
6097 
6098 	if (vtime)
6099 		curthread->t_dtrace_start = dtrace_gethrtime();
6100 
6101 	dtrace_interrupt_enable(cookie);
6102 }
6103 
6104 /*
6105  * DTrace Probe Hashing Functions
6106  *
6107  * The functions in this section (and indeed, the functions in remaining
6108  * sections) are not _called_ from probe context.  (Any exceptions to this are
6109  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6110  * DTrace framework to look-up probes in, add probes to and remove probes from
6111  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6112  * probe tuple -- allowing for fast lookups, regardless of what was
6113  * specified.)
6114  */
6115 static uint_t
6116 dtrace_hash_str(char *p)
6117 {
6118 	unsigned int g;
6119 	uint_t hval = 0;
6120 
6121 	while (*p) {
6122 		hval = (hval << 4) + *p++;
6123 		if ((g = (hval & 0xf0000000)) != 0)
6124 			hval ^= g >> 24;
6125 		hval &= ~g;
6126 	}
6127 	return (hval);
6128 }
6129 
6130 static dtrace_hash_t *
6131 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6132 {
6133 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6134 
6135 	hash->dth_stroffs = stroffs;
6136 	hash->dth_nextoffs = nextoffs;
6137 	hash->dth_prevoffs = prevoffs;
6138 
6139 	hash->dth_size = 1;
6140 	hash->dth_mask = hash->dth_size - 1;
6141 
6142 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6143 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6144 
6145 	return (hash);
6146 }
6147 
6148 static void
6149 dtrace_hash_destroy(dtrace_hash_t *hash)
6150 {
6151 #ifdef DEBUG
6152 	int i;
6153 
6154 	for (i = 0; i < hash->dth_size; i++)
6155 		ASSERT(hash->dth_tab[i] == NULL);
6156 #endif
6157 
6158 	kmem_free(hash->dth_tab,
6159 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6160 	kmem_free(hash, sizeof (dtrace_hash_t));
6161 }
6162 
6163 static void
6164 dtrace_hash_resize(dtrace_hash_t *hash)
6165 {
6166 	int size = hash->dth_size, i, ndx;
6167 	int new_size = hash->dth_size << 1;
6168 	int new_mask = new_size - 1;
6169 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6170 
6171 	ASSERT((new_size & new_mask) == 0);
6172 
6173 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6174 
6175 	for (i = 0; i < size; i++) {
6176 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6177 			dtrace_probe_t *probe = bucket->dthb_chain;
6178 
6179 			ASSERT(probe != NULL);
6180 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6181 
6182 			next = bucket->dthb_next;
6183 			bucket->dthb_next = new_tab[ndx];
6184 			new_tab[ndx] = bucket;
6185 		}
6186 	}
6187 
6188 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6189 	hash->dth_tab = new_tab;
6190 	hash->dth_size = new_size;
6191 	hash->dth_mask = new_mask;
6192 }
6193 
6194 static void
6195 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6196 {
6197 	int hashval = DTRACE_HASHSTR(hash, new);
6198 	int ndx = hashval & hash->dth_mask;
6199 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6200 	dtrace_probe_t **nextp, **prevp;
6201 
6202 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6203 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6204 			goto add;
6205 	}
6206 
6207 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6208 		dtrace_hash_resize(hash);
6209 		dtrace_hash_add(hash, new);
6210 		return;
6211 	}
6212 
6213 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6214 	bucket->dthb_next = hash->dth_tab[ndx];
6215 	hash->dth_tab[ndx] = bucket;
6216 	hash->dth_nbuckets++;
6217 
6218 add:
6219 	nextp = DTRACE_HASHNEXT(hash, new);
6220 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6221 	*nextp = bucket->dthb_chain;
6222 
6223 	if (bucket->dthb_chain != NULL) {
6224 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6225 		ASSERT(*prevp == NULL);
6226 		*prevp = new;
6227 	}
6228 
6229 	bucket->dthb_chain = new;
6230 	bucket->dthb_len++;
6231 }
6232 
6233 static dtrace_probe_t *
6234 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6235 {
6236 	int hashval = DTRACE_HASHSTR(hash, template);
6237 	int ndx = hashval & hash->dth_mask;
6238 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6239 
6240 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6241 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6242 			return (bucket->dthb_chain);
6243 	}
6244 
6245 	return (NULL);
6246 }
6247 
6248 static int
6249 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6250 {
6251 	int hashval = DTRACE_HASHSTR(hash, template);
6252 	int ndx = hashval & hash->dth_mask;
6253 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6254 
6255 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6256 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6257 			return (bucket->dthb_len);
6258 	}
6259 
6260 	return (NULL);
6261 }
6262 
6263 static void
6264 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6265 {
6266 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6267 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6268 
6269 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6270 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6271 
6272 	/*
6273 	 * Find the bucket that we're removing this probe from.
6274 	 */
6275 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6276 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6277 			break;
6278 	}
6279 
6280 	ASSERT(bucket != NULL);
6281 
6282 	if (*prevp == NULL) {
6283 		if (*nextp == NULL) {
6284 			/*
6285 			 * The removed probe was the only probe on this
6286 			 * bucket; we need to remove the bucket.
6287 			 */
6288 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6289 
6290 			ASSERT(bucket->dthb_chain == probe);
6291 			ASSERT(b != NULL);
6292 
6293 			if (b == bucket) {
6294 				hash->dth_tab[ndx] = bucket->dthb_next;
6295 			} else {
6296 				while (b->dthb_next != bucket)
6297 					b = b->dthb_next;
6298 				b->dthb_next = bucket->dthb_next;
6299 			}
6300 
6301 			ASSERT(hash->dth_nbuckets > 0);
6302 			hash->dth_nbuckets--;
6303 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6304 			return;
6305 		}
6306 
6307 		bucket->dthb_chain = *nextp;
6308 	} else {
6309 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6310 	}
6311 
6312 	if (*nextp != NULL)
6313 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6314 }
6315 
6316 /*
6317  * DTrace Utility Functions
6318  *
6319  * These are random utility functions that are _not_ called from probe context.
6320  */
6321 static int
6322 dtrace_badattr(const dtrace_attribute_t *a)
6323 {
6324 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6325 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6326 	    a->dtat_class > DTRACE_CLASS_MAX);
6327 }
6328 
6329 /*
6330  * Return a duplicate copy of a string.  If the specified string is NULL,
6331  * this function returns a zero-length string.
6332  */
6333 static char *
6334 dtrace_strdup(const char *str)
6335 {
6336 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6337 
6338 	if (str != NULL)
6339 		(void) strcpy(new, str);
6340 
6341 	return (new);
6342 }
6343 
6344 #define	DTRACE_ISALPHA(c)	\
6345 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6346 
6347 static int
6348 dtrace_badname(const char *s)
6349 {
6350 	char c;
6351 
6352 	if (s == NULL || (c = *s++) == '\0')
6353 		return (0);
6354 
6355 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6356 		return (1);
6357 
6358 	while ((c = *s++) != '\0') {
6359 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6360 		    c != '-' && c != '_' && c != '.' && c != '`')
6361 			return (1);
6362 	}
6363 
6364 	return (0);
6365 }
6366 
6367 static void
6368 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6369 {
6370 	uint32_t priv;
6371 
6372 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6373 		/*
6374 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6375 		 */
6376 		priv = DTRACE_PRIV_ALL;
6377 	} else {
6378 		*uidp = crgetuid(cr);
6379 		*zoneidp = crgetzoneid(cr);
6380 
6381 		priv = 0;
6382 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6383 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6384 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6385 			priv |= DTRACE_PRIV_USER;
6386 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6387 			priv |= DTRACE_PRIV_PROC;
6388 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6389 			priv |= DTRACE_PRIV_OWNER;
6390 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6391 			priv |= DTRACE_PRIV_ZONEOWNER;
6392 	}
6393 
6394 	*privp = priv;
6395 }
6396 
6397 #ifdef DTRACE_ERRDEBUG
6398 static void
6399 dtrace_errdebug(const char *str)
6400 {
6401 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6402 	int occupied = 0;
6403 
6404 	mutex_enter(&dtrace_errlock);
6405 	dtrace_errlast = str;
6406 	dtrace_errthread = curthread;
6407 
6408 	while (occupied++ < DTRACE_ERRHASHSZ) {
6409 		if (dtrace_errhash[hval].dter_msg == str) {
6410 			dtrace_errhash[hval].dter_count++;
6411 			goto out;
6412 		}
6413 
6414 		if (dtrace_errhash[hval].dter_msg != NULL) {
6415 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6416 			continue;
6417 		}
6418 
6419 		dtrace_errhash[hval].dter_msg = str;
6420 		dtrace_errhash[hval].dter_count = 1;
6421 		goto out;
6422 	}
6423 
6424 	panic("dtrace: undersized error hash");
6425 out:
6426 	mutex_exit(&dtrace_errlock);
6427 }
6428 #endif
6429 
6430 /*
6431  * DTrace Matching Functions
6432  *
6433  * These functions are used to match groups of probes, given some elements of
6434  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6435  */
6436 static int
6437 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6438     zoneid_t zoneid)
6439 {
6440 	if (priv != DTRACE_PRIV_ALL) {
6441 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6442 		uint32_t match = priv & ppriv;
6443 
6444 		/*
6445 		 * No PRIV_DTRACE_* privileges...
6446 		 */
6447 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6448 		    DTRACE_PRIV_KERNEL)) == 0)
6449 			return (0);
6450 
6451 		/*
6452 		 * No matching bits, but there were bits to match...
6453 		 */
6454 		if (match == 0 && ppriv != 0)
6455 			return (0);
6456 
6457 		/*
6458 		 * Need to have permissions to the process, but don't...
6459 		 */
6460 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6461 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6462 			return (0);
6463 		}
6464 
6465 		/*
6466 		 * Need to be in the same zone unless we possess the
6467 		 * privilege to examine all zones.
6468 		 */
6469 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6470 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6471 			return (0);
6472 		}
6473 	}
6474 
6475 	return (1);
6476 }
6477 
6478 /*
6479  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6480  * consists of input pattern strings and an ops-vector to evaluate them.
6481  * This function returns >0 for match, 0 for no match, and <0 for error.
6482  */
6483 static int
6484 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6485     uint32_t priv, uid_t uid, zoneid_t zoneid)
6486 {
6487 	dtrace_provider_t *pvp = prp->dtpr_provider;
6488 	int rv;
6489 
6490 	if (pvp->dtpv_defunct)
6491 		return (0);
6492 
6493 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6494 		return (rv);
6495 
6496 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6497 		return (rv);
6498 
6499 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6500 		return (rv);
6501 
6502 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6503 		return (rv);
6504 
6505 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6506 		return (0);
6507 
6508 	return (rv);
6509 }
6510 
6511 /*
6512  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6513  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6514  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6515  * In addition, all of the recursion cases except for '*' matching have been
6516  * unwound.  For '*', we still implement recursive evaluation, but a depth
6517  * counter is maintained and matching is aborted if we recurse too deep.
6518  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6519  */
6520 static int
6521 dtrace_match_glob(const char *s, const char *p, int depth)
6522 {
6523 	const char *olds;
6524 	char s1, c;
6525 	int gs;
6526 
6527 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6528 		return (-1);
6529 
6530 	if (s == NULL)
6531 		s = ""; /* treat NULL as empty string */
6532 
6533 top:
6534 	olds = s;
6535 	s1 = *s++;
6536 
6537 	if (p == NULL)
6538 		return (0);
6539 
6540 	if ((c = *p++) == '\0')
6541 		return (s1 == '\0');
6542 
6543 	switch (c) {
6544 	case '[': {
6545 		int ok = 0, notflag = 0;
6546 		char lc = '\0';
6547 
6548 		if (s1 == '\0')
6549 			return (0);
6550 
6551 		if (*p == '!') {
6552 			notflag = 1;
6553 			p++;
6554 		}
6555 
6556 		if ((c = *p++) == '\0')
6557 			return (0);
6558 
6559 		do {
6560 			if (c == '-' && lc != '\0' && *p != ']') {
6561 				if ((c = *p++) == '\0')
6562 					return (0);
6563 				if (c == '\\' && (c = *p++) == '\0')
6564 					return (0);
6565 
6566 				if (notflag) {
6567 					if (s1 < lc || s1 > c)
6568 						ok++;
6569 					else
6570 						return (0);
6571 				} else if (lc <= s1 && s1 <= c)
6572 					ok++;
6573 
6574 			} else if (c == '\\' && (c = *p++) == '\0')
6575 				return (0);
6576 
6577 			lc = c; /* save left-hand 'c' for next iteration */
6578 
6579 			if (notflag) {
6580 				if (s1 != c)
6581 					ok++;
6582 				else
6583 					return (0);
6584 			} else if (s1 == c)
6585 				ok++;
6586 
6587 			if ((c = *p++) == '\0')
6588 				return (0);
6589 
6590 		} while (c != ']');
6591 
6592 		if (ok)
6593 			goto top;
6594 
6595 		return (0);
6596 	}
6597 
6598 	case '\\':
6599 		if ((c = *p++) == '\0')
6600 			return (0);
6601 		/*FALLTHRU*/
6602 
6603 	default:
6604 		if (c != s1)
6605 			return (0);
6606 		/*FALLTHRU*/
6607 
6608 	case '?':
6609 		if (s1 != '\0')
6610 			goto top;
6611 		return (0);
6612 
6613 	case '*':
6614 		while (*p == '*')
6615 			p++; /* consecutive *'s are identical to a single one */
6616 
6617 		if (*p == '\0')
6618 			return (1);
6619 
6620 		for (s = olds; *s != '\0'; s++) {
6621 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6622 				return (gs);
6623 		}
6624 
6625 		return (0);
6626 	}
6627 }
6628 
6629 /*ARGSUSED*/
6630 static int
6631 dtrace_match_string(const char *s, const char *p, int depth)
6632 {
6633 	return (s != NULL && strcmp(s, p) == 0);
6634 }
6635 
6636 /*ARGSUSED*/
6637 static int
6638 dtrace_match_nul(const char *s, const char *p, int depth)
6639 {
6640 	return (1); /* always match the empty pattern */
6641 }
6642 
6643 /*ARGSUSED*/
6644 static int
6645 dtrace_match_nonzero(const char *s, const char *p, int depth)
6646 {
6647 	return (s != NULL && s[0] != '\0');
6648 }
6649 
6650 static int
6651 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6652     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6653 {
6654 	dtrace_probe_t template, *probe;
6655 	dtrace_hash_t *hash = NULL;
6656 	int len, best = INT_MAX, nmatched = 0;
6657 	dtrace_id_t i;
6658 
6659 	ASSERT(MUTEX_HELD(&dtrace_lock));
6660 
6661 	/*
6662 	 * If the probe ID is specified in the key, just lookup by ID and
6663 	 * invoke the match callback once if a matching probe is found.
6664 	 */
6665 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6666 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6667 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6668 			(void) (*matched)(probe, arg);
6669 			nmatched++;
6670 		}
6671 		return (nmatched);
6672 	}
6673 
6674 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6675 	template.dtpr_func = (char *)pkp->dtpk_func;
6676 	template.dtpr_name = (char *)pkp->dtpk_name;
6677 
6678 	/*
6679 	 * We want to find the most distinct of the module name, function
6680 	 * name, and name.  So for each one that is not a glob pattern or
6681 	 * empty string, we perform a lookup in the corresponding hash and
6682 	 * use the hash table with the fewest collisions to do our search.
6683 	 */
6684 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6685 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6686 		best = len;
6687 		hash = dtrace_bymod;
6688 	}
6689 
6690 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6691 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6692 		best = len;
6693 		hash = dtrace_byfunc;
6694 	}
6695 
6696 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6697 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6698 		best = len;
6699 		hash = dtrace_byname;
6700 	}
6701 
6702 	/*
6703 	 * If we did not select a hash table, iterate over every probe and
6704 	 * invoke our callback for each one that matches our input probe key.
6705 	 */
6706 	if (hash == NULL) {
6707 		for (i = 0; i < dtrace_nprobes; i++) {
6708 			if ((probe = dtrace_probes[i]) == NULL ||
6709 			    dtrace_match_probe(probe, pkp, priv, uid,
6710 			    zoneid) <= 0)
6711 				continue;
6712 
6713 			nmatched++;
6714 
6715 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6716 				break;
6717 		}
6718 
6719 		return (nmatched);
6720 	}
6721 
6722 	/*
6723 	 * If we selected a hash table, iterate over each probe of the same key
6724 	 * name and invoke the callback for every probe that matches the other
6725 	 * attributes of our input probe key.
6726 	 */
6727 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6728 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6729 
6730 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6731 			continue;
6732 
6733 		nmatched++;
6734 
6735 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6736 			break;
6737 	}
6738 
6739 	return (nmatched);
6740 }
6741 
6742 /*
6743  * Return the function pointer dtrace_probecmp() should use to compare the
6744  * specified pattern with a string.  For NULL or empty patterns, we select
6745  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6746  * For non-empty non-glob strings, we use dtrace_match_string().
6747  */
6748 static dtrace_probekey_f *
6749 dtrace_probekey_func(const char *p)
6750 {
6751 	char c;
6752 
6753 	if (p == NULL || *p == '\0')
6754 		return (&dtrace_match_nul);
6755 
6756 	while ((c = *p++) != '\0') {
6757 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6758 			return (&dtrace_match_glob);
6759 	}
6760 
6761 	return (&dtrace_match_string);
6762 }
6763 
6764 /*
6765  * Build a probe comparison key for use with dtrace_match_probe() from the
6766  * given probe description.  By convention, a null key only matches anchored
6767  * probes: if each field is the empty string, reset dtpk_fmatch to
6768  * dtrace_match_nonzero().
6769  */
6770 static void
6771 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6772 {
6773 	pkp->dtpk_prov = pdp->dtpd_provider;
6774 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6775 
6776 	pkp->dtpk_mod = pdp->dtpd_mod;
6777 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6778 
6779 	pkp->dtpk_func = pdp->dtpd_func;
6780 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6781 
6782 	pkp->dtpk_name = pdp->dtpd_name;
6783 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6784 
6785 	pkp->dtpk_id = pdp->dtpd_id;
6786 
6787 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6788 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6789 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6790 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6791 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6792 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6793 }
6794 
6795 /*
6796  * DTrace Provider-to-Framework API Functions
6797  *
6798  * These functions implement much of the Provider-to-Framework API, as
6799  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6800  * the functions in the API for probe management (found below), and
6801  * dtrace_probe() itself (found above).
6802  */
6803 
6804 /*
6805  * Register the calling provider with the DTrace framework.  This should
6806  * generally be called by DTrace providers in their attach(9E) entry point.
6807  */
6808 int
6809 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6810     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6811 {
6812 	dtrace_provider_t *provider;
6813 
6814 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6815 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6816 		    "arguments", name ? name : "<NULL>");
6817 		return (EINVAL);
6818 	}
6819 
6820 	if (name[0] == '\0' || dtrace_badname(name)) {
6821 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6822 		    "provider name", name);
6823 		return (EINVAL);
6824 	}
6825 
6826 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6827 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6828 	    pops->dtps_destroy == NULL ||
6829 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6830 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6831 		    "provider ops", name);
6832 		return (EINVAL);
6833 	}
6834 
6835 	if (dtrace_badattr(&pap->dtpa_provider) ||
6836 	    dtrace_badattr(&pap->dtpa_mod) ||
6837 	    dtrace_badattr(&pap->dtpa_func) ||
6838 	    dtrace_badattr(&pap->dtpa_name) ||
6839 	    dtrace_badattr(&pap->dtpa_args)) {
6840 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6841 		    "provider attributes", name);
6842 		return (EINVAL);
6843 	}
6844 
6845 	if (priv & ~DTRACE_PRIV_ALL) {
6846 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6847 		    "privilege attributes", name);
6848 		return (EINVAL);
6849 	}
6850 
6851 	if ((priv & DTRACE_PRIV_KERNEL) &&
6852 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6853 	    pops->dtps_usermode == NULL) {
6854 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6855 		    "dtps_usermode() op for given privilege attributes", name);
6856 		return (EINVAL);
6857 	}
6858 
6859 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6860 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6861 	(void) strcpy(provider->dtpv_name, name);
6862 
6863 	provider->dtpv_attr = *pap;
6864 	provider->dtpv_priv.dtpp_flags = priv;
6865 	if (cr != NULL) {
6866 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6867 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6868 	}
6869 	provider->dtpv_pops = *pops;
6870 
6871 	if (pops->dtps_provide == NULL) {
6872 		ASSERT(pops->dtps_provide_module != NULL);
6873 		provider->dtpv_pops.dtps_provide =
6874 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6875 	}
6876 
6877 	if (pops->dtps_provide_module == NULL) {
6878 		ASSERT(pops->dtps_provide != NULL);
6879 		provider->dtpv_pops.dtps_provide_module =
6880 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6881 	}
6882 
6883 	if (pops->dtps_suspend == NULL) {
6884 		ASSERT(pops->dtps_resume == NULL);
6885 		provider->dtpv_pops.dtps_suspend =
6886 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6887 		provider->dtpv_pops.dtps_resume =
6888 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6889 	}
6890 
6891 	provider->dtpv_arg = arg;
6892 	*idp = (dtrace_provider_id_t)provider;
6893 
6894 	if (pops == &dtrace_provider_ops) {
6895 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6896 		ASSERT(MUTEX_HELD(&dtrace_lock));
6897 		ASSERT(dtrace_anon.dta_enabling == NULL);
6898 
6899 		/*
6900 		 * We make sure that the DTrace provider is at the head of
6901 		 * the provider chain.
6902 		 */
6903 		provider->dtpv_next = dtrace_provider;
6904 		dtrace_provider = provider;
6905 		return (0);
6906 	}
6907 
6908 	mutex_enter(&dtrace_provider_lock);
6909 	mutex_enter(&dtrace_lock);
6910 
6911 	/*
6912 	 * If there is at least one provider registered, we'll add this
6913 	 * provider after the first provider.
6914 	 */
6915 	if (dtrace_provider != NULL) {
6916 		provider->dtpv_next = dtrace_provider->dtpv_next;
6917 		dtrace_provider->dtpv_next = provider;
6918 	} else {
6919 		dtrace_provider = provider;
6920 	}
6921 
6922 	if (dtrace_retained != NULL) {
6923 		dtrace_enabling_provide(provider);
6924 
6925 		/*
6926 		 * Now we need to call dtrace_enabling_matchall() -- which
6927 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6928 		 * to drop all of our locks before calling into it...
6929 		 */
6930 		mutex_exit(&dtrace_lock);
6931 		mutex_exit(&dtrace_provider_lock);
6932 		dtrace_enabling_matchall();
6933 
6934 		return (0);
6935 	}
6936 
6937 	mutex_exit(&dtrace_lock);
6938 	mutex_exit(&dtrace_provider_lock);
6939 
6940 	return (0);
6941 }
6942 
6943 /*
6944  * Unregister the specified provider from the DTrace framework.  This should
6945  * generally be called by DTrace providers in their detach(9E) entry point.
6946  */
6947 int
6948 dtrace_unregister(dtrace_provider_id_t id)
6949 {
6950 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6951 	dtrace_provider_t *prev = NULL;
6952 	int i, self = 0;
6953 	dtrace_probe_t *probe, *first = NULL;
6954 
6955 	if (old->dtpv_pops.dtps_enable ==
6956 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6957 		/*
6958 		 * If DTrace itself is the provider, we're called with locks
6959 		 * already held.
6960 		 */
6961 		ASSERT(old == dtrace_provider);
6962 		ASSERT(dtrace_devi != NULL);
6963 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6964 		ASSERT(MUTEX_HELD(&dtrace_lock));
6965 		self = 1;
6966 
6967 		if (dtrace_provider->dtpv_next != NULL) {
6968 			/*
6969 			 * There's another provider here; return failure.
6970 			 */
6971 			return (EBUSY);
6972 		}
6973 	} else {
6974 		mutex_enter(&dtrace_provider_lock);
6975 		mutex_enter(&mod_lock);
6976 		mutex_enter(&dtrace_lock);
6977 	}
6978 
6979 	/*
6980 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6981 	 * probes, we refuse to let providers slither away, unless this
6982 	 * provider has already been explicitly invalidated.
6983 	 */
6984 	if (!old->dtpv_defunct &&
6985 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6986 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6987 		if (!self) {
6988 			mutex_exit(&dtrace_lock);
6989 			mutex_exit(&mod_lock);
6990 			mutex_exit(&dtrace_provider_lock);
6991 		}
6992 		return (EBUSY);
6993 	}
6994 
6995 	/*
6996 	 * Attempt to destroy the probes associated with this provider.
6997 	 */
6998 	for (i = 0; i < dtrace_nprobes; i++) {
6999 		if ((probe = dtrace_probes[i]) == NULL)
7000 			continue;
7001 
7002 		if (probe->dtpr_provider != old)
7003 			continue;
7004 
7005 		if (probe->dtpr_ecb == NULL)
7006 			continue;
7007 
7008 		/*
7009 		 * We have at least one ECB; we can't remove this provider.
7010 		 */
7011 		if (!self) {
7012 			mutex_exit(&dtrace_lock);
7013 			mutex_exit(&mod_lock);
7014 			mutex_exit(&dtrace_provider_lock);
7015 		}
7016 		return (EBUSY);
7017 	}
7018 
7019 	/*
7020 	 * All of the probes for this provider are disabled; we can safely
7021 	 * remove all of them from their hash chains and from the probe array.
7022 	 */
7023 	for (i = 0; i < dtrace_nprobes; i++) {
7024 		if ((probe = dtrace_probes[i]) == NULL)
7025 			continue;
7026 
7027 		if (probe->dtpr_provider != old)
7028 			continue;
7029 
7030 		dtrace_probes[i] = NULL;
7031 
7032 		dtrace_hash_remove(dtrace_bymod, probe);
7033 		dtrace_hash_remove(dtrace_byfunc, probe);
7034 		dtrace_hash_remove(dtrace_byname, probe);
7035 
7036 		if (first == NULL) {
7037 			first = probe;
7038 			probe->dtpr_nextmod = NULL;
7039 		} else {
7040 			probe->dtpr_nextmod = first;
7041 			first = probe;
7042 		}
7043 	}
7044 
7045 	/*
7046 	 * The provider's probes have been removed from the hash chains and
7047 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7048 	 * everyone has cleared out from any probe array processing.
7049 	 */
7050 	dtrace_sync();
7051 
7052 	for (probe = first; probe != NULL; probe = first) {
7053 		first = probe->dtpr_nextmod;
7054 
7055 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7056 		    probe->dtpr_arg);
7057 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7058 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7059 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7060 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7061 		kmem_free(probe, sizeof (dtrace_probe_t));
7062 	}
7063 
7064 	if ((prev = dtrace_provider) == old) {
7065 		ASSERT(self || dtrace_devi == NULL);
7066 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7067 		dtrace_provider = old->dtpv_next;
7068 	} else {
7069 		while (prev != NULL && prev->dtpv_next != old)
7070 			prev = prev->dtpv_next;
7071 
7072 		if (prev == NULL) {
7073 			panic("attempt to unregister non-existent "
7074 			    "dtrace provider %p\n", (void *)id);
7075 		}
7076 
7077 		prev->dtpv_next = old->dtpv_next;
7078 	}
7079 
7080 	if (!self) {
7081 		mutex_exit(&dtrace_lock);
7082 		mutex_exit(&mod_lock);
7083 		mutex_exit(&dtrace_provider_lock);
7084 	}
7085 
7086 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7087 	kmem_free(old, sizeof (dtrace_provider_t));
7088 
7089 	return (0);
7090 }
7091 
7092 /*
7093  * Invalidate the specified provider.  All subsequent probe lookups for the
7094  * specified provider will fail, but its probes will not be removed.
7095  */
7096 void
7097 dtrace_invalidate(dtrace_provider_id_t id)
7098 {
7099 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7100 
7101 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7102 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7103 
7104 	mutex_enter(&dtrace_provider_lock);
7105 	mutex_enter(&dtrace_lock);
7106 
7107 	pvp->dtpv_defunct = 1;
7108 
7109 	mutex_exit(&dtrace_lock);
7110 	mutex_exit(&dtrace_provider_lock);
7111 }
7112 
7113 /*
7114  * Indicate whether or not DTrace has attached.
7115  */
7116 int
7117 dtrace_attached(void)
7118 {
7119 	/*
7120 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7121 	 * attached.  (It's non-NULL because DTrace is always itself a
7122 	 * provider.)
7123 	 */
7124 	return (dtrace_provider != NULL);
7125 }
7126 
7127 /*
7128  * Remove all the unenabled probes for the given provider.  This function is
7129  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7130  * -- just as many of its associated probes as it can.
7131  */
7132 int
7133 dtrace_condense(dtrace_provider_id_t id)
7134 {
7135 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7136 	int i;
7137 	dtrace_probe_t *probe;
7138 
7139 	/*
7140 	 * Make sure this isn't the dtrace provider itself.
7141 	 */
7142 	ASSERT(prov->dtpv_pops.dtps_enable !=
7143 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7144 
7145 	mutex_enter(&dtrace_provider_lock);
7146 	mutex_enter(&dtrace_lock);
7147 
7148 	/*
7149 	 * Attempt to destroy the probes associated with this provider.
7150 	 */
7151 	for (i = 0; i < dtrace_nprobes; i++) {
7152 		if ((probe = dtrace_probes[i]) == NULL)
7153 			continue;
7154 
7155 		if (probe->dtpr_provider != prov)
7156 			continue;
7157 
7158 		if (probe->dtpr_ecb != NULL)
7159 			continue;
7160 
7161 		dtrace_probes[i] = NULL;
7162 
7163 		dtrace_hash_remove(dtrace_bymod, probe);
7164 		dtrace_hash_remove(dtrace_byfunc, probe);
7165 		dtrace_hash_remove(dtrace_byname, probe);
7166 
7167 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7168 		    probe->dtpr_arg);
7169 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7170 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7171 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7172 		kmem_free(probe, sizeof (dtrace_probe_t));
7173 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7174 	}
7175 
7176 	mutex_exit(&dtrace_lock);
7177 	mutex_exit(&dtrace_provider_lock);
7178 
7179 	return (0);
7180 }
7181 
7182 /*
7183  * DTrace Probe Management Functions
7184  *
7185  * The functions in this section perform the DTrace probe management,
7186  * including functions to create probes, look-up probes, and call into the
7187  * providers to request that probes be provided.  Some of these functions are
7188  * in the Provider-to-Framework API; these functions can be identified by the
7189  * fact that they are not declared "static".
7190  */
7191 
7192 /*
7193  * Create a probe with the specified module name, function name, and name.
7194  */
7195 dtrace_id_t
7196 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7197     const char *func, const char *name, int aframes, void *arg)
7198 {
7199 	dtrace_probe_t *probe, **probes;
7200 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7201 	dtrace_id_t id;
7202 
7203 	if (provider == dtrace_provider) {
7204 		ASSERT(MUTEX_HELD(&dtrace_lock));
7205 	} else {
7206 		mutex_enter(&dtrace_lock);
7207 	}
7208 
7209 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7210 	    VM_BESTFIT | VM_SLEEP);
7211 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7212 
7213 	probe->dtpr_id = id;
7214 	probe->dtpr_gen = dtrace_probegen++;
7215 	probe->dtpr_mod = dtrace_strdup(mod);
7216 	probe->dtpr_func = dtrace_strdup(func);
7217 	probe->dtpr_name = dtrace_strdup(name);
7218 	probe->dtpr_arg = arg;
7219 	probe->dtpr_aframes = aframes;
7220 	probe->dtpr_provider = provider;
7221 
7222 	dtrace_hash_add(dtrace_bymod, probe);
7223 	dtrace_hash_add(dtrace_byfunc, probe);
7224 	dtrace_hash_add(dtrace_byname, probe);
7225 
7226 	if (id - 1 >= dtrace_nprobes) {
7227 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7228 		size_t nsize = osize << 1;
7229 
7230 		if (nsize == 0) {
7231 			ASSERT(osize == 0);
7232 			ASSERT(dtrace_probes == NULL);
7233 			nsize = sizeof (dtrace_probe_t *);
7234 		}
7235 
7236 		probes = kmem_zalloc(nsize, KM_SLEEP);
7237 
7238 		if (dtrace_probes == NULL) {
7239 			ASSERT(osize == 0);
7240 			dtrace_probes = probes;
7241 			dtrace_nprobes = 1;
7242 		} else {
7243 			dtrace_probe_t **oprobes = dtrace_probes;
7244 
7245 			bcopy(oprobes, probes, osize);
7246 			dtrace_membar_producer();
7247 			dtrace_probes = probes;
7248 
7249 			dtrace_sync();
7250 
7251 			/*
7252 			 * All CPUs are now seeing the new probes array; we can
7253 			 * safely free the old array.
7254 			 */
7255 			kmem_free(oprobes, osize);
7256 			dtrace_nprobes <<= 1;
7257 		}
7258 
7259 		ASSERT(id - 1 < dtrace_nprobes);
7260 	}
7261 
7262 	ASSERT(dtrace_probes[id - 1] == NULL);
7263 	dtrace_probes[id - 1] = probe;
7264 
7265 	if (provider != dtrace_provider)
7266 		mutex_exit(&dtrace_lock);
7267 
7268 	return (id);
7269 }
7270 
7271 static dtrace_probe_t *
7272 dtrace_probe_lookup_id(dtrace_id_t id)
7273 {
7274 	ASSERT(MUTEX_HELD(&dtrace_lock));
7275 
7276 	if (id == 0 || id > dtrace_nprobes)
7277 		return (NULL);
7278 
7279 	return (dtrace_probes[id - 1]);
7280 }
7281 
7282 static int
7283 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7284 {
7285 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7286 
7287 	return (DTRACE_MATCH_DONE);
7288 }
7289 
7290 /*
7291  * Look up a probe based on provider and one or more of module name, function
7292  * name and probe name.
7293  */
7294 dtrace_id_t
7295 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7296     const char *func, const char *name)
7297 {
7298 	dtrace_probekey_t pkey;
7299 	dtrace_id_t id;
7300 	int match;
7301 
7302 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7303 	pkey.dtpk_pmatch = &dtrace_match_string;
7304 	pkey.dtpk_mod = mod;
7305 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7306 	pkey.dtpk_func = func;
7307 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7308 	pkey.dtpk_name = name;
7309 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7310 	pkey.dtpk_id = DTRACE_IDNONE;
7311 
7312 	mutex_enter(&dtrace_lock);
7313 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7314 	    dtrace_probe_lookup_match, &id);
7315 	mutex_exit(&dtrace_lock);
7316 
7317 	ASSERT(match == 1 || match == 0);
7318 	return (match ? id : 0);
7319 }
7320 
7321 /*
7322  * Returns the probe argument associated with the specified probe.
7323  */
7324 void *
7325 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7326 {
7327 	dtrace_probe_t *probe;
7328 	void *rval = NULL;
7329 
7330 	mutex_enter(&dtrace_lock);
7331 
7332 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7333 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7334 		rval = probe->dtpr_arg;
7335 
7336 	mutex_exit(&dtrace_lock);
7337 
7338 	return (rval);
7339 }
7340 
7341 /*
7342  * Copy a probe into a probe description.
7343  */
7344 static void
7345 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7346 {
7347 	bzero(pdp, sizeof (dtrace_probedesc_t));
7348 	pdp->dtpd_id = prp->dtpr_id;
7349 
7350 	(void) strncpy(pdp->dtpd_provider,
7351 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7352 
7353 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7354 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7355 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7356 }
7357 
7358 /*
7359  * Called to indicate that a probe -- or probes -- should be provided by a
7360  * specfied provider.  If the specified description is NULL, the provider will
7361  * be told to provide all of its probes.  (This is done whenever a new
7362  * consumer comes along, or whenever a retained enabling is to be matched.) If
7363  * the specified description is non-NULL, the provider is given the
7364  * opportunity to dynamically provide the specified probe, allowing providers
7365  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7366  * probes.)  If the provider is NULL, the operations will be applied to all
7367  * providers; if the provider is non-NULL the operations will only be applied
7368  * to the specified provider.  The dtrace_provider_lock must be held, and the
7369  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7370  * will need to grab the dtrace_lock when it reenters the framework through
7371  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7372  */
7373 static void
7374 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7375 {
7376 	struct modctl *ctl;
7377 	int all = 0;
7378 
7379 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7380 
7381 	if (prv == NULL) {
7382 		all = 1;
7383 		prv = dtrace_provider;
7384 	}
7385 
7386 	do {
7387 		/*
7388 		 * First, call the blanket provide operation.
7389 		 */
7390 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7391 
7392 		/*
7393 		 * Now call the per-module provide operation.  We will grab
7394 		 * mod_lock to prevent the list from being modified.  Note
7395 		 * that this also prevents the mod_busy bits from changing.
7396 		 * (mod_busy can only be changed with mod_lock held.)
7397 		 */
7398 		mutex_enter(&mod_lock);
7399 
7400 		ctl = &modules;
7401 		do {
7402 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7403 				continue;
7404 
7405 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7406 
7407 		} while ((ctl = ctl->mod_next) != &modules);
7408 
7409 		mutex_exit(&mod_lock);
7410 	} while (all && (prv = prv->dtpv_next) != NULL);
7411 }
7412 
7413 /*
7414  * Iterate over each probe, and call the Framework-to-Provider API function
7415  * denoted by offs.
7416  */
7417 static void
7418 dtrace_probe_foreach(uintptr_t offs)
7419 {
7420 	dtrace_provider_t *prov;
7421 	void (*func)(void *, dtrace_id_t, void *);
7422 	dtrace_probe_t *probe;
7423 	dtrace_icookie_t cookie;
7424 	int i;
7425 
7426 	/*
7427 	 * We disable interrupts to walk through the probe array.  This is
7428 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7429 	 * won't see stale data.
7430 	 */
7431 	cookie = dtrace_interrupt_disable();
7432 
7433 	for (i = 0; i < dtrace_nprobes; i++) {
7434 		if ((probe = dtrace_probes[i]) == NULL)
7435 			continue;
7436 
7437 		if (probe->dtpr_ecb == NULL) {
7438 			/*
7439 			 * This probe isn't enabled -- don't call the function.
7440 			 */
7441 			continue;
7442 		}
7443 
7444 		prov = probe->dtpr_provider;
7445 		func = *((void(**)(void *, dtrace_id_t, void *))
7446 		    ((uintptr_t)&prov->dtpv_pops + offs));
7447 
7448 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7449 	}
7450 
7451 	dtrace_interrupt_enable(cookie);
7452 }
7453 
7454 static int
7455 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7456 {
7457 	dtrace_probekey_t pkey;
7458 	uint32_t priv;
7459 	uid_t uid;
7460 	zoneid_t zoneid;
7461 
7462 	ASSERT(MUTEX_HELD(&dtrace_lock));
7463 	dtrace_ecb_create_cache = NULL;
7464 
7465 	if (desc == NULL) {
7466 		/*
7467 		 * If we're passed a NULL description, we're being asked to
7468 		 * create an ECB with a NULL probe.
7469 		 */
7470 		(void) dtrace_ecb_create_enable(NULL, enab);
7471 		return (0);
7472 	}
7473 
7474 	dtrace_probekey(desc, &pkey);
7475 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7476 	    &priv, &uid, &zoneid);
7477 
7478 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7479 	    enab));
7480 }
7481 
7482 /*
7483  * DTrace Helper Provider Functions
7484  */
7485 static void
7486 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7487 {
7488 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7489 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7490 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7491 }
7492 
7493 static void
7494 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7495     const dof_provider_t *dofprov, char *strtab)
7496 {
7497 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7498 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7499 	    dofprov->dofpv_provattr);
7500 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7501 	    dofprov->dofpv_modattr);
7502 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7503 	    dofprov->dofpv_funcattr);
7504 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7505 	    dofprov->dofpv_nameattr);
7506 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7507 	    dofprov->dofpv_argsattr);
7508 }
7509 
7510 static void
7511 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7512 {
7513 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7514 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7515 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7516 	dof_provider_t *provider;
7517 	dof_probe_t *probe;
7518 	uint32_t *off, *enoff;
7519 	uint8_t *arg;
7520 	char *strtab;
7521 	uint_t i, nprobes;
7522 	dtrace_helper_provdesc_t dhpv;
7523 	dtrace_helper_probedesc_t dhpb;
7524 	dtrace_meta_t *meta = dtrace_meta_pid;
7525 	dtrace_mops_t *mops = &meta->dtm_mops;
7526 	void *parg;
7527 
7528 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7529 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7530 	    provider->dofpv_strtab * dof->dofh_secsize);
7531 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7532 	    provider->dofpv_probes * dof->dofh_secsize);
7533 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7534 	    provider->dofpv_prargs * dof->dofh_secsize);
7535 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7536 	    provider->dofpv_proffs * dof->dofh_secsize);
7537 
7538 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7539 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7540 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7541 	enoff = NULL;
7542 
7543 	/*
7544 	 * See dtrace_helper_provider_validate().
7545 	 */
7546 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7547 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7548 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7549 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7550 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7551 	}
7552 
7553 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7554 
7555 	/*
7556 	 * Create the provider.
7557 	 */
7558 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7559 
7560 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7561 		return;
7562 
7563 	meta->dtm_count++;
7564 
7565 	/*
7566 	 * Create the probes.
7567 	 */
7568 	for (i = 0; i < nprobes; i++) {
7569 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7570 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7571 
7572 		dhpb.dthpb_mod = dhp->dofhp_mod;
7573 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7574 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7575 		dhpb.dthpb_base = probe->dofpr_addr;
7576 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7577 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7578 		if (enoff != NULL) {
7579 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7580 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7581 		} else {
7582 			dhpb.dthpb_enoffs = NULL;
7583 			dhpb.dthpb_nenoffs = 0;
7584 		}
7585 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7586 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7587 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7588 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7589 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7590 
7591 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7592 	}
7593 }
7594 
7595 static void
7596 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7597 {
7598 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7599 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7600 	int i;
7601 
7602 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7603 
7604 	for (i = 0; i < dof->dofh_secnum; i++) {
7605 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7606 		    dof->dofh_secoff + i * dof->dofh_secsize);
7607 
7608 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7609 			continue;
7610 
7611 		dtrace_helper_provide_one(dhp, sec, pid);
7612 	}
7613 
7614 	/*
7615 	 * We may have just created probes, so we must now rematch against
7616 	 * any retained enablings.  Note that this call will acquire both
7617 	 * cpu_lock and dtrace_lock; the fact that we are holding
7618 	 * dtrace_meta_lock now is what defines the ordering with respect to
7619 	 * these three locks.
7620 	 */
7621 	dtrace_enabling_matchall();
7622 }
7623 
7624 static void
7625 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7626 {
7627 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7628 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7629 	dof_sec_t *str_sec;
7630 	dof_provider_t *provider;
7631 	char *strtab;
7632 	dtrace_helper_provdesc_t dhpv;
7633 	dtrace_meta_t *meta = dtrace_meta_pid;
7634 	dtrace_mops_t *mops = &meta->dtm_mops;
7635 
7636 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7637 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7638 	    provider->dofpv_strtab * dof->dofh_secsize);
7639 
7640 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7641 
7642 	/*
7643 	 * Create the provider.
7644 	 */
7645 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7646 
7647 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7648 
7649 	meta->dtm_count--;
7650 }
7651 
7652 static void
7653 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7654 {
7655 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7656 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7657 	int i;
7658 
7659 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7660 
7661 	for (i = 0; i < dof->dofh_secnum; i++) {
7662 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7663 		    dof->dofh_secoff + i * dof->dofh_secsize);
7664 
7665 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7666 			continue;
7667 
7668 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7669 	}
7670 }
7671 
7672 /*
7673  * DTrace Meta Provider-to-Framework API Functions
7674  *
7675  * These functions implement the Meta Provider-to-Framework API, as described
7676  * in <sys/dtrace.h>.
7677  */
7678 int
7679 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7680     dtrace_meta_provider_id_t *idp)
7681 {
7682 	dtrace_meta_t *meta;
7683 	dtrace_helpers_t *help, *next;
7684 	int i;
7685 
7686 	*idp = DTRACE_METAPROVNONE;
7687 
7688 	/*
7689 	 * We strictly don't need the name, but we hold onto it for
7690 	 * debuggability. All hail error queues!
7691 	 */
7692 	if (name == NULL) {
7693 		cmn_err(CE_WARN, "failed to register meta-provider: "
7694 		    "invalid name");
7695 		return (EINVAL);
7696 	}
7697 
7698 	if (mops == NULL ||
7699 	    mops->dtms_create_probe == NULL ||
7700 	    mops->dtms_provide_pid == NULL ||
7701 	    mops->dtms_remove_pid == NULL) {
7702 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7703 		    "invalid ops", name);
7704 		return (EINVAL);
7705 	}
7706 
7707 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7708 	meta->dtm_mops = *mops;
7709 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7710 	(void) strcpy(meta->dtm_name, name);
7711 	meta->dtm_arg = arg;
7712 
7713 	mutex_enter(&dtrace_meta_lock);
7714 	mutex_enter(&dtrace_lock);
7715 
7716 	if (dtrace_meta_pid != NULL) {
7717 		mutex_exit(&dtrace_lock);
7718 		mutex_exit(&dtrace_meta_lock);
7719 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7720 		    "user-land meta-provider exists", name);
7721 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7722 		kmem_free(meta, sizeof (dtrace_meta_t));
7723 		return (EINVAL);
7724 	}
7725 
7726 	dtrace_meta_pid = meta;
7727 	*idp = (dtrace_meta_provider_id_t)meta;
7728 
7729 	/*
7730 	 * If there are providers and probes ready to go, pass them
7731 	 * off to the new meta provider now.
7732 	 */
7733 
7734 	help = dtrace_deferred_pid;
7735 	dtrace_deferred_pid = NULL;
7736 
7737 	mutex_exit(&dtrace_lock);
7738 
7739 	while (help != NULL) {
7740 		for (i = 0; i < help->dthps_nprovs; i++) {
7741 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7742 			    help->dthps_pid);
7743 		}
7744 
7745 		next = help->dthps_next;
7746 		help->dthps_next = NULL;
7747 		help->dthps_prev = NULL;
7748 		help->dthps_deferred = 0;
7749 		help = next;
7750 	}
7751 
7752 	mutex_exit(&dtrace_meta_lock);
7753 
7754 	return (0);
7755 }
7756 
7757 int
7758 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7759 {
7760 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7761 
7762 	mutex_enter(&dtrace_meta_lock);
7763 	mutex_enter(&dtrace_lock);
7764 
7765 	if (old == dtrace_meta_pid) {
7766 		pp = &dtrace_meta_pid;
7767 	} else {
7768 		panic("attempt to unregister non-existent "
7769 		    "dtrace meta-provider %p\n", (void *)old);
7770 	}
7771 
7772 	if (old->dtm_count != 0) {
7773 		mutex_exit(&dtrace_lock);
7774 		mutex_exit(&dtrace_meta_lock);
7775 		return (EBUSY);
7776 	}
7777 
7778 	*pp = NULL;
7779 
7780 	mutex_exit(&dtrace_lock);
7781 	mutex_exit(&dtrace_meta_lock);
7782 
7783 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7784 	kmem_free(old, sizeof (dtrace_meta_t));
7785 
7786 	return (0);
7787 }
7788 
7789 
7790 /*
7791  * DTrace DIF Object Functions
7792  */
7793 static int
7794 dtrace_difo_err(uint_t pc, const char *format, ...)
7795 {
7796 	if (dtrace_err_verbose) {
7797 		va_list alist;
7798 
7799 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7800 		va_start(alist, format);
7801 		(void) vuprintf(format, alist);
7802 		va_end(alist);
7803 	}
7804 
7805 #ifdef DTRACE_ERRDEBUG
7806 	dtrace_errdebug(format);
7807 #endif
7808 	return (1);
7809 }
7810 
7811 /*
7812  * Validate a DTrace DIF object by checking the IR instructions.  The following
7813  * rules are currently enforced by dtrace_difo_validate():
7814  *
7815  * 1. Each instruction must have a valid opcode
7816  * 2. Each register, string, variable, or subroutine reference must be valid
7817  * 3. No instruction can modify register %r0 (must be zero)
7818  * 4. All instruction reserved bits must be set to zero
7819  * 5. The last instruction must be a "ret" instruction
7820  * 6. All branch targets must reference a valid instruction _after_ the branch
7821  */
7822 static int
7823 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7824     cred_t *cr)
7825 {
7826 	int err = 0, i;
7827 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7828 	int kcheckload;
7829 	uint_t pc;
7830 
7831 	kcheckload = cr == NULL ||
7832 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7833 
7834 	dp->dtdo_destructive = 0;
7835 
7836 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7837 		dif_instr_t instr = dp->dtdo_buf[pc];
7838 
7839 		uint_t r1 = DIF_INSTR_R1(instr);
7840 		uint_t r2 = DIF_INSTR_R2(instr);
7841 		uint_t rd = DIF_INSTR_RD(instr);
7842 		uint_t rs = DIF_INSTR_RS(instr);
7843 		uint_t label = DIF_INSTR_LABEL(instr);
7844 		uint_t v = DIF_INSTR_VAR(instr);
7845 		uint_t subr = DIF_INSTR_SUBR(instr);
7846 		uint_t type = DIF_INSTR_TYPE(instr);
7847 		uint_t op = DIF_INSTR_OP(instr);
7848 
7849 		switch (op) {
7850 		case DIF_OP_OR:
7851 		case DIF_OP_XOR:
7852 		case DIF_OP_AND:
7853 		case DIF_OP_SLL:
7854 		case DIF_OP_SRL:
7855 		case DIF_OP_SRA:
7856 		case DIF_OP_SUB:
7857 		case DIF_OP_ADD:
7858 		case DIF_OP_MUL:
7859 		case DIF_OP_SDIV:
7860 		case DIF_OP_UDIV:
7861 		case DIF_OP_SREM:
7862 		case DIF_OP_UREM:
7863 		case DIF_OP_COPYS:
7864 			if (r1 >= nregs)
7865 				err += efunc(pc, "invalid register %u\n", r1);
7866 			if (r2 >= nregs)
7867 				err += efunc(pc, "invalid register %u\n", r2);
7868 			if (rd >= nregs)
7869 				err += efunc(pc, "invalid register %u\n", rd);
7870 			if (rd == 0)
7871 				err += efunc(pc, "cannot write to %r0\n");
7872 			break;
7873 		case DIF_OP_NOT:
7874 		case DIF_OP_MOV:
7875 		case DIF_OP_ALLOCS:
7876 			if (r1 >= nregs)
7877 				err += efunc(pc, "invalid register %u\n", r1);
7878 			if (r2 != 0)
7879 				err += efunc(pc, "non-zero reserved bits\n");
7880 			if (rd >= nregs)
7881 				err += efunc(pc, "invalid register %u\n", rd);
7882 			if (rd == 0)
7883 				err += efunc(pc, "cannot write to %r0\n");
7884 			break;
7885 		case DIF_OP_LDSB:
7886 		case DIF_OP_LDSH:
7887 		case DIF_OP_LDSW:
7888 		case DIF_OP_LDUB:
7889 		case DIF_OP_LDUH:
7890 		case DIF_OP_LDUW:
7891 		case DIF_OP_LDX:
7892 			if (r1 >= nregs)
7893 				err += efunc(pc, "invalid register %u\n", r1);
7894 			if (r2 != 0)
7895 				err += efunc(pc, "non-zero reserved bits\n");
7896 			if (rd >= nregs)
7897 				err += efunc(pc, "invalid register %u\n", rd);
7898 			if (rd == 0)
7899 				err += efunc(pc, "cannot write to %r0\n");
7900 			if (kcheckload)
7901 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7902 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7903 			break;
7904 		case DIF_OP_RLDSB:
7905 		case DIF_OP_RLDSH:
7906 		case DIF_OP_RLDSW:
7907 		case DIF_OP_RLDUB:
7908 		case DIF_OP_RLDUH:
7909 		case DIF_OP_RLDUW:
7910 		case DIF_OP_RLDX:
7911 			if (r1 >= nregs)
7912 				err += efunc(pc, "invalid register %u\n", r1);
7913 			if (r2 != 0)
7914 				err += efunc(pc, "non-zero reserved bits\n");
7915 			if (rd >= nregs)
7916 				err += efunc(pc, "invalid register %u\n", rd);
7917 			if (rd == 0)
7918 				err += efunc(pc, "cannot write to %r0\n");
7919 			break;
7920 		case DIF_OP_ULDSB:
7921 		case DIF_OP_ULDSH:
7922 		case DIF_OP_ULDSW:
7923 		case DIF_OP_ULDUB:
7924 		case DIF_OP_ULDUH:
7925 		case DIF_OP_ULDUW:
7926 		case DIF_OP_ULDX:
7927 			if (r1 >= nregs)
7928 				err += efunc(pc, "invalid register %u\n", r1);
7929 			if (r2 != 0)
7930 				err += efunc(pc, "non-zero reserved bits\n");
7931 			if (rd >= nregs)
7932 				err += efunc(pc, "invalid register %u\n", rd);
7933 			if (rd == 0)
7934 				err += efunc(pc, "cannot write to %r0\n");
7935 			break;
7936 		case DIF_OP_STB:
7937 		case DIF_OP_STH:
7938 		case DIF_OP_STW:
7939 		case DIF_OP_STX:
7940 			if (r1 >= nregs)
7941 				err += efunc(pc, "invalid register %u\n", r1);
7942 			if (r2 != 0)
7943 				err += efunc(pc, "non-zero reserved bits\n");
7944 			if (rd >= nregs)
7945 				err += efunc(pc, "invalid register %u\n", rd);
7946 			if (rd == 0)
7947 				err += efunc(pc, "cannot write to 0 address\n");
7948 			break;
7949 		case DIF_OP_CMP:
7950 		case DIF_OP_SCMP:
7951 			if (r1 >= nregs)
7952 				err += efunc(pc, "invalid register %u\n", r1);
7953 			if (r2 >= nregs)
7954 				err += efunc(pc, "invalid register %u\n", r2);
7955 			if (rd != 0)
7956 				err += efunc(pc, "non-zero reserved bits\n");
7957 			break;
7958 		case DIF_OP_TST:
7959 			if (r1 >= nregs)
7960 				err += efunc(pc, "invalid register %u\n", r1);
7961 			if (r2 != 0 || rd != 0)
7962 				err += efunc(pc, "non-zero reserved bits\n");
7963 			break;
7964 		case DIF_OP_BA:
7965 		case DIF_OP_BE:
7966 		case DIF_OP_BNE:
7967 		case DIF_OP_BG:
7968 		case DIF_OP_BGU:
7969 		case DIF_OP_BGE:
7970 		case DIF_OP_BGEU:
7971 		case DIF_OP_BL:
7972 		case DIF_OP_BLU:
7973 		case DIF_OP_BLE:
7974 		case DIF_OP_BLEU:
7975 			if (label >= dp->dtdo_len) {
7976 				err += efunc(pc, "invalid branch target %u\n",
7977 				    label);
7978 			}
7979 			if (label <= pc) {
7980 				err += efunc(pc, "backward branch to %u\n",
7981 				    label);
7982 			}
7983 			break;
7984 		case DIF_OP_RET:
7985 			if (r1 != 0 || r2 != 0)
7986 				err += efunc(pc, "non-zero reserved bits\n");
7987 			if (rd >= nregs)
7988 				err += efunc(pc, "invalid register %u\n", rd);
7989 			break;
7990 		case DIF_OP_NOP:
7991 		case DIF_OP_POPTS:
7992 		case DIF_OP_FLUSHTS:
7993 			if (r1 != 0 || r2 != 0 || rd != 0)
7994 				err += efunc(pc, "non-zero reserved bits\n");
7995 			break;
7996 		case DIF_OP_SETX:
7997 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7998 				err += efunc(pc, "invalid integer ref %u\n",
7999 				    DIF_INSTR_INTEGER(instr));
8000 			}
8001 			if (rd >= nregs)
8002 				err += efunc(pc, "invalid register %u\n", rd);
8003 			if (rd == 0)
8004 				err += efunc(pc, "cannot write to %r0\n");
8005 			break;
8006 		case DIF_OP_SETS:
8007 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8008 				err += efunc(pc, "invalid string ref %u\n",
8009 				    DIF_INSTR_STRING(instr));
8010 			}
8011 			if (rd >= nregs)
8012 				err += efunc(pc, "invalid register %u\n", rd);
8013 			if (rd == 0)
8014 				err += efunc(pc, "cannot write to %r0\n");
8015 			break;
8016 		case DIF_OP_LDGA:
8017 		case DIF_OP_LDTA:
8018 			if (r1 > DIF_VAR_ARRAY_MAX)
8019 				err += efunc(pc, "invalid array %u\n", r1);
8020 			if (r2 >= nregs)
8021 				err += efunc(pc, "invalid register %u\n", r2);
8022 			if (rd >= nregs)
8023 				err += efunc(pc, "invalid register %u\n", rd);
8024 			if (rd == 0)
8025 				err += efunc(pc, "cannot write to %r0\n");
8026 			break;
8027 		case DIF_OP_LDGS:
8028 		case DIF_OP_LDTS:
8029 		case DIF_OP_LDLS:
8030 		case DIF_OP_LDGAA:
8031 		case DIF_OP_LDTAA:
8032 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8033 				err += efunc(pc, "invalid variable %u\n", v);
8034 			if (rd >= nregs)
8035 				err += efunc(pc, "invalid register %u\n", rd);
8036 			if (rd == 0)
8037 				err += efunc(pc, "cannot write to %r0\n");
8038 			break;
8039 		case DIF_OP_STGS:
8040 		case DIF_OP_STTS:
8041 		case DIF_OP_STLS:
8042 		case DIF_OP_STGAA:
8043 		case DIF_OP_STTAA:
8044 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8045 				err += efunc(pc, "invalid variable %u\n", v);
8046 			if (rs >= nregs)
8047 				err += efunc(pc, "invalid register %u\n", rd);
8048 			break;
8049 		case DIF_OP_CALL:
8050 			if (subr > DIF_SUBR_MAX)
8051 				err += efunc(pc, "invalid subr %u\n", subr);
8052 			if (rd >= nregs)
8053 				err += efunc(pc, "invalid register %u\n", rd);
8054 			if (rd == 0)
8055 				err += efunc(pc, "cannot write to %r0\n");
8056 
8057 			if (subr == DIF_SUBR_COPYOUT ||
8058 			    subr == DIF_SUBR_COPYOUTSTR) {
8059 				dp->dtdo_destructive = 1;
8060 			}
8061 			break;
8062 		case DIF_OP_PUSHTR:
8063 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8064 				err += efunc(pc, "invalid ref type %u\n", type);
8065 			if (r2 >= nregs)
8066 				err += efunc(pc, "invalid register %u\n", r2);
8067 			if (rs >= nregs)
8068 				err += efunc(pc, "invalid register %u\n", rs);
8069 			break;
8070 		case DIF_OP_PUSHTV:
8071 			if (type != DIF_TYPE_CTF)
8072 				err += efunc(pc, "invalid val type %u\n", type);
8073 			if (r2 >= nregs)
8074 				err += efunc(pc, "invalid register %u\n", r2);
8075 			if (rs >= nregs)
8076 				err += efunc(pc, "invalid register %u\n", rs);
8077 			break;
8078 		default:
8079 			err += efunc(pc, "invalid opcode %u\n",
8080 			    DIF_INSTR_OP(instr));
8081 		}
8082 	}
8083 
8084 	if (dp->dtdo_len != 0 &&
8085 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8086 		err += efunc(dp->dtdo_len - 1,
8087 		    "expected 'ret' as last DIF instruction\n");
8088 	}
8089 
8090 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8091 		/*
8092 		 * If we're not returning by reference, the size must be either
8093 		 * 0 or the size of one of the base types.
8094 		 */
8095 		switch (dp->dtdo_rtype.dtdt_size) {
8096 		case 0:
8097 		case sizeof (uint8_t):
8098 		case sizeof (uint16_t):
8099 		case sizeof (uint32_t):
8100 		case sizeof (uint64_t):
8101 			break;
8102 
8103 		default:
8104 			err += efunc(dp->dtdo_len - 1, "bad return size");
8105 		}
8106 	}
8107 
8108 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8109 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8110 		dtrace_diftype_t *vt, *et;
8111 		uint_t id, ndx;
8112 
8113 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8114 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8115 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8116 			err += efunc(i, "unrecognized variable scope %d\n",
8117 			    v->dtdv_scope);
8118 			break;
8119 		}
8120 
8121 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8122 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8123 			err += efunc(i, "unrecognized variable type %d\n",
8124 			    v->dtdv_kind);
8125 			break;
8126 		}
8127 
8128 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8129 			err += efunc(i, "%d exceeds variable id limit\n", id);
8130 			break;
8131 		}
8132 
8133 		if (id < DIF_VAR_OTHER_UBASE)
8134 			continue;
8135 
8136 		/*
8137 		 * For user-defined variables, we need to check that this
8138 		 * definition is identical to any previous definition that we
8139 		 * encountered.
8140 		 */
8141 		ndx = id - DIF_VAR_OTHER_UBASE;
8142 
8143 		switch (v->dtdv_scope) {
8144 		case DIFV_SCOPE_GLOBAL:
8145 			if (ndx < vstate->dtvs_nglobals) {
8146 				dtrace_statvar_t *svar;
8147 
8148 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8149 					existing = &svar->dtsv_var;
8150 			}
8151 
8152 			break;
8153 
8154 		case DIFV_SCOPE_THREAD:
8155 			if (ndx < vstate->dtvs_ntlocals)
8156 				existing = &vstate->dtvs_tlocals[ndx];
8157 			break;
8158 
8159 		case DIFV_SCOPE_LOCAL:
8160 			if (ndx < vstate->dtvs_nlocals) {
8161 				dtrace_statvar_t *svar;
8162 
8163 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8164 					existing = &svar->dtsv_var;
8165 			}
8166 
8167 			break;
8168 		}
8169 
8170 		vt = &v->dtdv_type;
8171 
8172 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8173 			if (vt->dtdt_size == 0) {
8174 				err += efunc(i, "zero-sized variable\n");
8175 				break;
8176 			}
8177 
8178 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8179 			    vt->dtdt_size > dtrace_global_maxsize) {
8180 				err += efunc(i, "oversized by-ref global\n");
8181 				break;
8182 			}
8183 		}
8184 
8185 		if (existing == NULL || existing->dtdv_id == 0)
8186 			continue;
8187 
8188 		ASSERT(existing->dtdv_id == v->dtdv_id);
8189 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8190 
8191 		if (existing->dtdv_kind != v->dtdv_kind)
8192 			err += efunc(i, "%d changed variable kind\n", id);
8193 
8194 		et = &existing->dtdv_type;
8195 
8196 		if (vt->dtdt_flags != et->dtdt_flags) {
8197 			err += efunc(i, "%d changed variable type flags\n", id);
8198 			break;
8199 		}
8200 
8201 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8202 			err += efunc(i, "%d changed variable type size\n", id);
8203 			break;
8204 		}
8205 	}
8206 
8207 	return (err);
8208 }
8209 
8210 /*
8211  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8212  * are much more constrained than normal DIFOs.  Specifically, they may
8213  * not:
8214  *
8215  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8216  *    miscellaneous string routines
8217  * 2. Access DTrace variables other than the args[] array, and the
8218  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8219  * 3. Have thread-local variables.
8220  * 4. Have dynamic variables.
8221  */
8222 static int
8223 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8224 {
8225 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8226 	int err = 0;
8227 	uint_t pc;
8228 
8229 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8230 		dif_instr_t instr = dp->dtdo_buf[pc];
8231 
8232 		uint_t v = DIF_INSTR_VAR(instr);
8233 		uint_t subr = DIF_INSTR_SUBR(instr);
8234 		uint_t op = DIF_INSTR_OP(instr);
8235 
8236 		switch (op) {
8237 		case DIF_OP_OR:
8238 		case DIF_OP_XOR:
8239 		case DIF_OP_AND:
8240 		case DIF_OP_SLL:
8241 		case DIF_OP_SRL:
8242 		case DIF_OP_SRA:
8243 		case DIF_OP_SUB:
8244 		case DIF_OP_ADD:
8245 		case DIF_OP_MUL:
8246 		case DIF_OP_SDIV:
8247 		case DIF_OP_UDIV:
8248 		case DIF_OP_SREM:
8249 		case DIF_OP_UREM:
8250 		case DIF_OP_COPYS:
8251 		case DIF_OP_NOT:
8252 		case DIF_OP_MOV:
8253 		case DIF_OP_RLDSB:
8254 		case DIF_OP_RLDSH:
8255 		case DIF_OP_RLDSW:
8256 		case DIF_OP_RLDUB:
8257 		case DIF_OP_RLDUH:
8258 		case DIF_OP_RLDUW:
8259 		case DIF_OP_RLDX:
8260 		case DIF_OP_ULDSB:
8261 		case DIF_OP_ULDSH:
8262 		case DIF_OP_ULDSW:
8263 		case DIF_OP_ULDUB:
8264 		case DIF_OP_ULDUH:
8265 		case DIF_OP_ULDUW:
8266 		case DIF_OP_ULDX:
8267 		case DIF_OP_STB:
8268 		case DIF_OP_STH:
8269 		case DIF_OP_STW:
8270 		case DIF_OP_STX:
8271 		case DIF_OP_ALLOCS:
8272 		case DIF_OP_CMP:
8273 		case DIF_OP_SCMP:
8274 		case DIF_OP_TST:
8275 		case DIF_OP_BA:
8276 		case DIF_OP_BE:
8277 		case DIF_OP_BNE:
8278 		case DIF_OP_BG:
8279 		case DIF_OP_BGU:
8280 		case DIF_OP_BGE:
8281 		case DIF_OP_BGEU:
8282 		case DIF_OP_BL:
8283 		case DIF_OP_BLU:
8284 		case DIF_OP_BLE:
8285 		case DIF_OP_BLEU:
8286 		case DIF_OP_RET:
8287 		case DIF_OP_NOP:
8288 		case DIF_OP_POPTS:
8289 		case DIF_OP_FLUSHTS:
8290 		case DIF_OP_SETX:
8291 		case DIF_OP_SETS:
8292 		case DIF_OP_LDGA:
8293 		case DIF_OP_LDLS:
8294 		case DIF_OP_STGS:
8295 		case DIF_OP_STLS:
8296 		case DIF_OP_PUSHTR:
8297 		case DIF_OP_PUSHTV:
8298 			break;
8299 
8300 		case DIF_OP_LDGS:
8301 			if (v >= DIF_VAR_OTHER_UBASE)
8302 				break;
8303 
8304 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8305 				break;
8306 
8307 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8308 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8309 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8310 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8311 				break;
8312 
8313 			err += efunc(pc, "illegal variable %u\n", v);
8314 			break;
8315 
8316 		case DIF_OP_LDTA:
8317 		case DIF_OP_LDTS:
8318 		case DIF_OP_LDGAA:
8319 		case DIF_OP_LDTAA:
8320 			err += efunc(pc, "illegal dynamic variable load\n");
8321 			break;
8322 
8323 		case DIF_OP_STTS:
8324 		case DIF_OP_STGAA:
8325 		case DIF_OP_STTAA:
8326 			err += efunc(pc, "illegal dynamic variable store\n");
8327 			break;
8328 
8329 		case DIF_OP_CALL:
8330 			if (subr == DIF_SUBR_ALLOCA ||
8331 			    subr == DIF_SUBR_BCOPY ||
8332 			    subr == DIF_SUBR_COPYIN ||
8333 			    subr == DIF_SUBR_COPYINTO ||
8334 			    subr == DIF_SUBR_COPYINSTR ||
8335 			    subr == DIF_SUBR_INDEX ||
8336 			    subr == DIF_SUBR_INET_NTOA ||
8337 			    subr == DIF_SUBR_INET_NTOA6 ||
8338 			    subr == DIF_SUBR_INET_NTOP ||
8339 			    subr == DIF_SUBR_LLTOSTR ||
8340 			    subr == DIF_SUBR_RINDEX ||
8341 			    subr == DIF_SUBR_STRCHR ||
8342 			    subr == DIF_SUBR_STRJOIN ||
8343 			    subr == DIF_SUBR_STRRCHR ||
8344 			    subr == DIF_SUBR_STRSTR ||
8345 			    subr == DIF_SUBR_HTONS ||
8346 			    subr == DIF_SUBR_HTONL ||
8347 			    subr == DIF_SUBR_HTONLL ||
8348 			    subr == DIF_SUBR_NTOHS ||
8349 			    subr == DIF_SUBR_NTOHL ||
8350 			    subr == DIF_SUBR_NTOHLL)
8351 				break;
8352 
8353 			err += efunc(pc, "invalid subr %u\n", subr);
8354 			break;
8355 
8356 		default:
8357 			err += efunc(pc, "invalid opcode %u\n",
8358 			    DIF_INSTR_OP(instr));
8359 		}
8360 	}
8361 
8362 	return (err);
8363 }
8364 
8365 /*
8366  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8367  * basis; 0 if not.
8368  */
8369 static int
8370 dtrace_difo_cacheable(dtrace_difo_t *dp)
8371 {
8372 	int i;
8373 
8374 	if (dp == NULL)
8375 		return (0);
8376 
8377 	for (i = 0; i < dp->dtdo_varlen; i++) {
8378 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8379 
8380 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8381 			continue;
8382 
8383 		switch (v->dtdv_id) {
8384 		case DIF_VAR_CURTHREAD:
8385 		case DIF_VAR_PID:
8386 		case DIF_VAR_TID:
8387 		case DIF_VAR_EXECNAME:
8388 		case DIF_VAR_ZONENAME:
8389 			break;
8390 
8391 		default:
8392 			return (0);
8393 		}
8394 	}
8395 
8396 	/*
8397 	 * This DIF object may be cacheable.  Now we need to look for any
8398 	 * array loading instructions, any memory loading instructions, or
8399 	 * any stores to thread-local variables.
8400 	 */
8401 	for (i = 0; i < dp->dtdo_len; i++) {
8402 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8403 
8404 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8405 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8406 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8407 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8408 			return (0);
8409 	}
8410 
8411 	return (1);
8412 }
8413 
8414 static void
8415 dtrace_difo_hold(dtrace_difo_t *dp)
8416 {
8417 	int i;
8418 
8419 	ASSERT(MUTEX_HELD(&dtrace_lock));
8420 
8421 	dp->dtdo_refcnt++;
8422 	ASSERT(dp->dtdo_refcnt != 0);
8423 
8424 	/*
8425 	 * We need to check this DIF object for references to the variable
8426 	 * DIF_VAR_VTIMESTAMP.
8427 	 */
8428 	for (i = 0; i < dp->dtdo_varlen; i++) {
8429 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8430 
8431 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8432 			continue;
8433 
8434 		if (dtrace_vtime_references++ == 0)
8435 			dtrace_vtime_enable();
8436 	}
8437 }
8438 
8439 /*
8440  * This routine calculates the dynamic variable chunksize for a given DIF
8441  * object.  The calculation is not fool-proof, and can probably be tricked by
8442  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8443  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8444  * if a dynamic variable size exceeds the chunksize.
8445  */
8446 static void
8447 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8448 {
8449 	uint64_t sval;
8450 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8451 	const dif_instr_t *text = dp->dtdo_buf;
8452 	uint_t pc, srd = 0;
8453 	uint_t ttop = 0;
8454 	size_t size, ksize;
8455 	uint_t id, i;
8456 
8457 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8458 		dif_instr_t instr = text[pc];
8459 		uint_t op = DIF_INSTR_OP(instr);
8460 		uint_t rd = DIF_INSTR_RD(instr);
8461 		uint_t r1 = DIF_INSTR_R1(instr);
8462 		uint_t nkeys = 0;
8463 		uchar_t scope;
8464 
8465 		dtrace_key_t *key = tupregs;
8466 
8467 		switch (op) {
8468 		case DIF_OP_SETX:
8469 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8470 			srd = rd;
8471 			continue;
8472 
8473 		case DIF_OP_STTS:
8474 			key = &tupregs[DIF_DTR_NREGS];
8475 			key[0].dttk_size = 0;
8476 			key[1].dttk_size = 0;
8477 			nkeys = 2;
8478 			scope = DIFV_SCOPE_THREAD;
8479 			break;
8480 
8481 		case DIF_OP_STGAA:
8482 		case DIF_OP_STTAA:
8483 			nkeys = ttop;
8484 
8485 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8486 				key[nkeys++].dttk_size = 0;
8487 
8488 			key[nkeys++].dttk_size = 0;
8489 
8490 			if (op == DIF_OP_STTAA) {
8491 				scope = DIFV_SCOPE_THREAD;
8492 			} else {
8493 				scope = DIFV_SCOPE_GLOBAL;
8494 			}
8495 
8496 			break;
8497 
8498 		case DIF_OP_PUSHTR:
8499 			if (ttop == DIF_DTR_NREGS)
8500 				return;
8501 
8502 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8503 				/*
8504 				 * If the register for the size of the "pushtr"
8505 				 * is %r0 (or the value is 0) and the type is
8506 				 * a string, we'll use the system-wide default
8507 				 * string size.
8508 				 */
8509 				tupregs[ttop++].dttk_size =
8510 				    dtrace_strsize_default;
8511 			} else {
8512 				if (srd == 0)
8513 					return;
8514 
8515 				tupregs[ttop++].dttk_size = sval;
8516 			}
8517 
8518 			break;
8519 
8520 		case DIF_OP_PUSHTV:
8521 			if (ttop == DIF_DTR_NREGS)
8522 				return;
8523 
8524 			tupregs[ttop++].dttk_size = 0;
8525 			break;
8526 
8527 		case DIF_OP_FLUSHTS:
8528 			ttop = 0;
8529 			break;
8530 
8531 		case DIF_OP_POPTS:
8532 			if (ttop != 0)
8533 				ttop--;
8534 			break;
8535 		}
8536 
8537 		sval = 0;
8538 		srd = 0;
8539 
8540 		if (nkeys == 0)
8541 			continue;
8542 
8543 		/*
8544 		 * We have a dynamic variable allocation; calculate its size.
8545 		 */
8546 		for (ksize = 0, i = 0; i < nkeys; i++)
8547 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8548 
8549 		size = sizeof (dtrace_dynvar_t);
8550 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8551 		size += ksize;
8552 
8553 		/*
8554 		 * Now we need to determine the size of the stored data.
8555 		 */
8556 		id = DIF_INSTR_VAR(instr);
8557 
8558 		for (i = 0; i < dp->dtdo_varlen; i++) {
8559 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8560 
8561 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8562 				size += v->dtdv_type.dtdt_size;
8563 				break;
8564 			}
8565 		}
8566 
8567 		if (i == dp->dtdo_varlen)
8568 			return;
8569 
8570 		/*
8571 		 * We have the size.  If this is larger than the chunk size
8572 		 * for our dynamic variable state, reset the chunk size.
8573 		 */
8574 		size = P2ROUNDUP(size, sizeof (uint64_t));
8575 
8576 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8577 			vstate->dtvs_dynvars.dtds_chunksize = size;
8578 	}
8579 }
8580 
8581 static void
8582 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8583 {
8584 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8585 	uint_t id;
8586 
8587 	ASSERT(MUTEX_HELD(&dtrace_lock));
8588 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8589 
8590 	for (i = 0; i < dp->dtdo_varlen; i++) {
8591 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8592 		dtrace_statvar_t *svar, ***svarp;
8593 		size_t dsize = 0;
8594 		uint8_t scope = v->dtdv_scope;
8595 		int *np;
8596 
8597 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8598 			continue;
8599 
8600 		id -= DIF_VAR_OTHER_UBASE;
8601 
8602 		switch (scope) {
8603 		case DIFV_SCOPE_THREAD:
8604 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8605 				dtrace_difv_t *tlocals;
8606 
8607 				if ((ntlocals = (otlocals << 1)) == 0)
8608 					ntlocals = 1;
8609 
8610 				osz = otlocals * sizeof (dtrace_difv_t);
8611 				nsz = ntlocals * sizeof (dtrace_difv_t);
8612 
8613 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8614 
8615 				if (osz != 0) {
8616 					bcopy(vstate->dtvs_tlocals,
8617 					    tlocals, osz);
8618 					kmem_free(vstate->dtvs_tlocals, osz);
8619 				}
8620 
8621 				vstate->dtvs_tlocals = tlocals;
8622 				vstate->dtvs_ntlocals = ntlocals;
8623 			}
8624 
8625 			vstate->dtvs_tlocals[id] = *v;
8626 			continue;
8627 
8628 		case DIFV_SCOPE_LOCAL:
8629 			np = &vstate->dtvs_nlocals;
8630 			svarp = &vstate->dtvs_locals;
8631 
8632 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8633 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8634 				    sizeof (uint64_t));
8635 			else
8636 				dsize = NCPU * sizeof (uint64_t);
8637 
8638 			break;
8639 
8640 		case DIFV_SCOPE_GLOBAL:
8641 			np = &vstate->dtvs_nglobals;
8642 			svarp = &vstate->dtvs_globals;
8643 
8644 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8645 				dsize = v->dtdv_type.dtdt_size +
8646 				    sizeof (uint64_t);
8647 
8648 			break;
8649 
8650 		default:
8651 			ASSERT(0);
8652 		}
8653 
8654 		while (id >= (oldsvars = *np)) {
8655 			dtrace_statvar_t **statics;
8656 			int newsvars, oldsize, newsize;
8657 
8658 			if ((newsvars = (oldsvars << 1)) == 0)
8659 				newsvars = 1;
8660 
8661 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8662 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8663 
8664 			statics = kmem_zalloc(newsize, KM_SLEEP);
8665 
8666 			if (oldsize != 0) {
8667 				bcopy(*svarp, statics, oldsize);
8668 				kmem_free(*svarp, oldsize);
8669 			}
8670 
8671 			*svarp = statics;
8672 			*np = newsvars;
8673 		}
8674 
8675 		if ((svar = (*svarp)[id]) == NULL) {
8676 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8677 			svar->dtsv_var = *v;
8678 
8679 			if ((svar->dtsv_size = dsize) != 0) {
8680 				svar->dtsv_data = (uint64_t)(uintptr_t)
8681 				    kmem_zalloc(dsize, KM_SLEEP);
8682 			}
8683 
8684 			(*svarp)[id] = svar;
8685 		}
8686 
8687 		svar->dtsv_refcnt++;
8688 	}
8689 
8690 	dtrace_difo_chunksize(dp, vstate);
8691 	dtrace_difo_hold(dp);
8692 }
8693 
8694 static dtrace_difo_t *
8695 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8696 {
8697 	dtrace_difo_t *new;
8698 	size_t sz;
8699 
8700 	ASSERT(dp->dtdo_buf != NULL);
8701 	ASSERT(dp->dtdo_refcnt != 0);
8702 
8703 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8704 
8705 	ASSERT(dp->dtdo_buf != NULL);
8706 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8707 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8708 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8709 	new->dtdo_len = dp->dtdo_len;
8710 
8711 	if (dp->dtdo_strtab != NULL) {
8712 		ASSERT(dp->dtdo_strlen != 0);
8713 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8714 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8715 		new->dtdo_strlen = dp->dtdo_strlen;
8716 	}
8717 
8718 	if (dp->dtdo_inttab != NULL) {
8719 		ASSERT(dp->dtdo_intlen != 0);
8720 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8721 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8722 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8723 		new->dtdo_intlen = dp->dtdo_intlen;
8724 	}
8725 
8726 	if (dp->dtdo_vartab != NULL) {
8727 		ASSERT(dp->dtdo_varlen != 0);
8728 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8729 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8730 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8731 		new->dtdo_varlen = dp->dtdo_varlen;
8732 	}
8733 
8734 	dtrace_difo_init(new, vstate);
8735 	return (new);
8736 }
8737 
8738 static void
8739 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8740 {
8741 	int i;
8742 
8743 	ASSERT(dp->dtdo_refcnt == 0);
8744 
8745 	for (i = 0; i < dp->dtdo_varlen; i++) {
8746 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8747 		dtrace_statvar_t *svar, **svarp;
8748 		uint_t id;
8749 		uint8_t scope = v->dtdv_scope;
8750 		int *np;
8751 
8752 		switch (scope) {
8753 		case DIFV_SCOPE_THREAD:
8754 			continue;
8755 
8756 		case DIFV_SCOPE_LOCAL:
8757 			np = &vstate->dtvs_nlocals;
8758 			svarp = vstate->dtvs_locals;
8759 			break;
8760 
8761 		case DIFV_SCOPE_GLOBAL:
8762 			np = &vstate->dtvs_nglobals;
8763 			svarp = vstate->dtvs_globals;
8764 			break;
8765 
8766 		default:
8767 			ASSERT(0);
8768 		}
8769 
8770 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8771 			continue;
8772 
8773 		id -= DIF_VAR_OTHER_UBASE;
8774 		ASSERT(id < *np);
8775 
8776 		svar = svarp[id];
8777 		ASSERT(svar != NULL);
8778 		ASSERT(svar->dtsv_refcnt > 0);
8779 
8780 		if (--svar->dtsv_refcnt > 0)
8781 			continue;
8782 
8783 		if (svar->dtsv_size != 0) {
8784 			ASSERT(svar->dtsv_data != NULL);
8785 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8786 			    svar->dtsv_size);
8787 		}
8788 
8789 		kmem_free(svar, sizeof (dtrace_statvar_t));
8790 		svarp[id] = NULL;
8791 	}
8792 
8793 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8794 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8795 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8796 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8797 
8798 	kmem_free(dp, sizeof (dtrace_difo_t));
8799 }
8800 
8801 static void
8802 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8803 {
8804 	int i;
8805 
8806 	ASSERT(MUTEX_HELD(&dtrace_lock));
8807 	ASSERT(dp->dtdo_refcnt != 0);
8808 
8809 	for (i = 0; i < dp->dtdo_varlen; i++) {
8810 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8811 
8812 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8813 			continue;
8814 
8815 		ASSERT(dtrace_vtime_references > 0);
8816 		if (--dtrace_vtime_references == 0)
8817 			dtrace_vtime_disable();
8818 	}
8819 
8820 	if (--dp->dtdo_refcnt == 0)
8821 		dtrace_difo_destroy(dp, vstate);
8822 }
8823 
8824 /*
8825  * DTrace Format Functions
8826  */
8827 static uint16_t
8828 dtrace_format_add(dtrace_state_t *state, char *str)
8829 {
8830 	char *fmt, **new;
8831 	uint16_t ndx, len = strlen(str) + 1;
8832 
8833 	fmt = kmem_zalloc(len, KM_SLEEP);
8834 	bcopy(str, fmt, len);
8835 
8836 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8837 		if (state->dts_formats[ndx] == NULL) {
8838 			state->dts_formats[ndx] = fmt;
8839 			return (ndx + 1);
8840 		}
8841 	}
8842 
8843 	if (state->dts_nformats == USHRT_MAX) {
8844 		/*
8845 		 * This is only likely if a denial-of-service attack is being
8846 		 * attempted.  As such, it's okay to fail silently here.
8847 		 */
8848 		kmem_free(fmt, len);
8849 		return (0);
8850 	}
8851 
8852 	/*
8853 	 * For simplicity, we always resize the formats array to be exactly the
8854 	 * number of formats.
8855 	 */
8856 	ndx = state->dts_nformats++;
8857 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8858 
8859 	if (state->dts_formats != NULL) {
8860 		ASSERT(ndx != 0);
8861 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8862 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8863 	}
8864 
8865 	state->dts_formats = new;
8866 	state->dts_formats[ndx] = fmt;
8867 
8868 	return (ndx + 1);
8869 }
8870 
8871 static void
8872 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8873 {
8874 	char *fmt;
8875 
8876 	ASSERT(state->dts_formats != NULL);
8877 	ASSERT(format <= state->dts_nformats);
8878 	ASSERT(state->dts_formats[format - 1] != NULL);
8879 
8880 	fmt = state->dts_formats[format - 1];
8881 	kmem_free(fmt, strlen(fmt) + 1);
8882 	state->dts_formats[format - 1] = NULL;
8883 }
8884 
8885 static void
8886 dtrace_format_destroy(dtrace_state_t *state)
8887 {
8888 	int i;
8889 
8890 	if (state->dts_nformats == 0) {
8891 		ASSERT(state->dts_formats == NULL);
8892 		return;
8893 	}
8894 
8895 	ASSERT(state->dts_formats != NULL);
8896 
8897 	for (i = 0; i < state->dts_nformats; i++) {
8898 		char *fmt = state->dts_formats[i];
8899 
8900 		if (fmt == NULL)
8901 			continue;
8902 
8903 		kmem_free(fmt, strlen(fmt) + 1);
8904 	}
8905 
8906 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8907 	state->dts_nformats = 0;
8908 	state->dts_formats = NULL;
8909 }
8910 
8911 /*
8912  * DTrace Predicate Functions
8913  */
8914 static dtrace_predicate_t *
8915 dtrace_predicate_create(dtrace_difo_t *dp)
8916 {
8917 	dtrace_predicate_t *pred;
8918 
8919 	ASSERT(MUTEX_HELD(&dtrace_lock));
8920 	ASSERT(dp->dtdo_refcnt != 0);
8921 
8922 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8923 	pred->dtp_difo = dp;
8924 	pred->dtp_refcnt = 1;
8925 
8926 	if (!dtrace_difo_cacheable(dp))
8927 		return (pred);
8928 
8929 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8930 		/*
8931 		 * This is only theoretically possible -- we have had 2^32
8932 		 * cacheable predicates on this machine.  We cannot allow any
8933 		 * more predicates to become cacheable:  as unlikely as it is,
8934 		 * there may be a thread caching a (now stale) predicate cache
8935 		 * ID. (N.B.: the temptation is being successfully resisted to
8936 		 * have this cmn_err() "Holy shit -- we executed this code!")
8937 		 */
8938 		return (pred);
8939 	}
8940 
8941 	pred->dtp_cacheid = dtrace_predcache_id++;
8942 
8943 	return (pred);
8944 }
8945 
8946 static void
8947 dtrace_predicate_hold(dtrace_predicate_t *pred)
8948 {
8949 	ASSERT(MUTEX_HELD(&dtrace_lock));
8950 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8951 	ASSERT(pred->dtp_refcnt > 0);
8952 
8953 	pred->dtp_refcnt++;
8954 }
8955 
8956 static void
8957 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8958 {
8959 	dtrace_difo_t *dp = pred->dtp_difo;
8960 
8961 	ASSERT(MUTEX_HELD(&dtrace_lock));
8962 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8963 	ASSERT(pred->dtp_refcnt > 0);
8964 
8965 	if (--pred->dtp_refcnt == 0) {
8966 		dtrace_difo_release(pred->dtp_difo, vstate);
8967 		kmem_free(pred, sizeof (dtrace_predicate_t));
8968 	}
8969 }
8970 
8971 /*
8972  * DTrace Action Description Functions
8973  */
8974 static dtrace_actdesc_t *
8975 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8976     uint64_t uarg, uint64_t arg)
8977 {
8978 	dtrace_actdesc_t *act;
8979 
8980 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8981 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8982 
8983 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8984 	act->dtad_kind = kind;
8985 	act->dtad_ntuple = ntuple;
8986 	act->dtad_uarg = uarg;
8987 	act->dtad_arg = arg;
8988 	act->dtad_refcnt = 1;
8989 
8990 	return (act);
8991 }
8992 
8993 static void
8994 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8995 {
8996 	ASSERT(act->dtad_refcnt >= 1);
8997 	act->dtad_refcnt++;
8998 }
8999 
9000 static void
9001 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9002 {
9003 	dtrace_actkind_t kind = act->dtad_kind;
9004 	dtrace_difo_t *dp;
9005 
9006 	ASSERT(act->dtad_refcnt >= 1);
9007 
9008 	if (--act->dtad_refcnt != 0)
9009 		return;
9010 
9011 	if ((dp = act->dtad_difo) != NULL)
9012 		dtrace_difo_release(dp, vstate);
9013 
9014 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9015 		char *str = (char *)(uintptr_t)act->dtad_arg;
9016 
9017 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9018 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9019 
9020 		if (str != NULL)
9021 			kmem_free(str, strlen(str) + 1);
9022 	}
9023 
9024 	kmem_free(act, sizeof (dtrace_actdesc_t));
9025 }
9026 
9027 /*
9028  * DTrace ECB Functions
9029  */
9030 static dtrace_ecb_t *
9031 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9032 {
9033 	dtrace_ecb_t *ecb;
9034 	dtrace_epid_t epid;
9035 
9036 	ASSERT(MUTEX_HELD(&dtrace_lock));
9037 
9038 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9039 	ecb->dte_predicate = NULL;
9040 	ecb->dte_probe = probe;
9041 
9042 	/*
9043 	 * The default size is the size of the default action: recording
9044 	 * the epid.
9045 	 */
9046 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9047 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9048 
9049 	epid = state->dts_epid++;
9050 
9051 	if (epid - 1 >= state->dts_necbs) {
9052 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9053 		int necbs = state->dts_necbs << 1;
9054 
9055 		ASSERT(epid == state->dts_necbs + 1);
9056 
9057 		if (necbs == 0) {
9058 			ASSERT(oecbs == NULL);
9059 			necbs = 1;
9060 		}
9061 
9062 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9063 
9064 		if (oecbs != NULL)
9065 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9066 
9067 		dtrace_membar_producer();
9068 		state->dts_ecbs = ecbs;
9069 
9070 		if (oecbs != NULL) {
9071 			/*
9072 			 * If this state is active, we must dtrace_sync()
9073 			 * before we can free the old dts_ecbs array:  we're
9074 			 * coming in hot, and there may be active ring
9075 			 * buffer processing (which indexes into the dts_ecbs
9076 			 * array) on another CPU.
9077 			 */
9078 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9079 				dtrace_sync();
9080 
9081 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9082 		}
9083 
9084 		dtrace_membar_producer();
9085 		state->dts_necbs = necbs;
9086 	}
9087 
9088 	ecb->dte_state = state;
9089 
9090 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9091 	dtrace_membar_producer();
9092 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9093 
9094 	return (ecb);
9095 }
9096 
9097 static void
9098 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9099 {
9100 	dtrace_probe_t *probe = ecb->dte_probe;
9101 
9102 	ASSERT(MUTEX_HELD(&cpu_lock));
9103 	ASSERT(MUTEX_HELD(&dtrace_lock));
9104 	ASSERT(ecb->dte_next == NULL);
9105 
9106 	if (probe == NULL) {
9107 		/*
9108 		 * This is the NULL probe -- there's nothing to do.
9109 		 */
9110 		return;
9111 	}
9112 
9113 	if (probe->dtpr_ecb == NULL) {
9114 		dtrace_provider_t *prov = probe->dtpr_provider;
9115 
9116 		/*
9117 		 * We're the first ECB on this probe.
9118 		 */
9119 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9120 
9121 		if (ecb->dte_predicate != NULL)
9122 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9123 
9124 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9125 		    probe->dtpr_id, probe->dtpr_arg);
9126 	} else {
9127 		/*
9128 		 * This probe is already active.  Swing the last pointer to
9129 		 * point to the new ECB, and issue a dtrace_sync() to assure
9130 		 * that all CPUs have seen the change.
9131 		 */
9132 		ASSERT(probe->dtpr_ecb_last != NULL);
9133 		probe->dtpr_ecb_last->dte_next = ecb;
9134 		probe->dtpr_ecb_last = ecb;
9135 		probe->dtpr_predcache = 0;
9136 
9137 		dtrace_sync();
9138 	}
9139 }
9140 
9141 static void
9142 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9143 {
9144 	uint32_t maxalign = sizeof (dtrace_epid_t);
9145 	uint32_t align = sizeof (uint8_t), offs, diff;
9146 	dtrace_action_t *act;
9147 	int wastuple = 0;
9148 	uint32_t aggbase = UINT32_MAX;
9149 	dtrace_state_t *state = ecb->dte_state;
9150 
9151 	/*
9152 	 * If we record anything, we always record the epid.  (And we always
9153 	 * record it first.)
9154 	 */
9155 	offs = sizeof (dtrace_epid_t);
9156 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9157 
9158 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9159 		dtrace_recdesc_t *rec = &act->dta_rec;
9160 
9161 		if ((align = rec->dtrd_alignment) > maxalign)
9162 			maxalign = align;
9163 
9164 		if (!wastuple && act->dta_intuple) {
9165 			/*
9166 			 * This is the first record in a tuple.  Align the
9167 			 * offset to be at offset 4 in an 8-byte aligned
9168 			 * block.
9169 			 */
9170 			diff = offs + sizeof (dtrace_aggid_t);
9171 
9172 			if (diff = (diff & (sizeof (uint64_t) - 1)))
9173 				offs += sizeof (uint64_t) - diff;
9174 
9175 			aggbase = offs - sizeof (dtrace_aggid_t);
9176 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9177 		}
9178 
9179 		/*LINTED*/
9180 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9181 			/*
9182 			 * The current offset is not properly aligned; align it.
9183 			 */
9184 			offs += align - diff;
9185 		}
9186 
9187 		rec->dtrd_offset = offs;
9188 
9189 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9190 			ecb->dte_needed = offs + rec->dtrd_size;
9191 
9192 			if (ecb->dte_needed > state->dts_needed)
9193 				state->dts_needed = ecb->dte_needed;
9194 		}
9195 
9196 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9197 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9198 			dtrace_action_t *first = agg->dtag_first, *prev;
9199 
9200 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9201 			ASSERT(wastuple);
9202 			ASSERT(aggbase != UINT32_MAX);
9203 
9204 			agg->dtag_base = aggbase;
9205 
9206 			while ((prev = first->dta_prev) != NULL &&
9207 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9208 				agg = (dtrace_aggregation_t *)prev;
9209 				first = agg->dtag_first;
9210 			}
9211 
9212 			if (prev != NULL) {
9213 				offs = prev->dta_rec.dtrd_offset +
9214 				    prev->dta_rec.dtrd_size;
9215 			} else {
9216 				offs = sizeof (dtrace_epid_t);
9217 			}
9218 			wastuple = 0;
9219 		} else {
9220 			if (!act->dta_intuple)
9221 				ecb->dte_size = offs + rec->dtrd_size;
9222 
9223 			offs += rec->dtrd_size;
9224 		}
9225 
9226 		wastuple = act->dta_intuple;
9227 	}
9228 
9229 	if ((act = ecb->dte_action) != NULL &&
9230 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9231 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9232 		/*
9233 		 * If the size is still sizeof (dtrace_epid_t), then all
9234 		 * actions store no data; set the size to 0.
9235 		 */
9236 		ecb->dte_alignment = maxalign;
9237 		ecb->dte_size = 0;
9238 
9239 		/*
9240 		 * If the needed space is still sizeof (dtrace_epid_t), then
9241 		 * all actions need no additional space; set the needed
9242 		 * size to 0.
9243 		 */
9244 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9245 			ecb->dte_needed = 0;
9246 
9247 		return;
9248 	}
9249 
9250 	/*
9251 	 * Set our alignment, and make sure that the dte_size and dte_needed
9252 	 * are aligned to the size of an EPID.
9253 	 */
9254 	ecb->dte_alignment = maxalign;
9255 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9256 	    ~(sizeof (dtrace_epid_t) - 1);
9257 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9258 	    ~(sizeof (dtrace_epid_t) - 1);
9259 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9260 }
9261 
9262 static dtrace_action_t *
9263 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9264 {
9265 	dtrace_aggregation_t *agg;
9266 	size_t size = sizeof (uint64_t);
9267 	int ntuple = desc->dtad_ntuple;
9268 	dtrace_action_t *act;
9269 	dtrace_recdesc_t *frec;
9270 	dtrace_aggid_t aggid;
9271 	dtrace_state_t *state = ecb->dte_state;
9272 
9273 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9274 	agg->dtag_ecb = ecb;
9275 
9276 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9277 
9278 	switch (desc->dtad_kind) {
9279 	case DTRACEAGG_MIN:
9280 		agg->dtag_initial = INT64_MAX;
9281 		agg->dtag_aggregate = dtrace_aggregate_min;
9282 		break;
9283 
9284 	case DTRACEAGG_MAX:
9285 		agg->dtag_initial = INT64_MIN;
9286 		agg->dtag_aggregate = dtrace_aggregate_max;
9287 		break;
9288 
9289 	case DTRACEAGG_COUNT:
9290 		agg->dtag_aggregate = dtrace_aggregate_count;
9291 		break;
9292 
9293 	case DTRACEAGG_QUANTIZE:
9294 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9295 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9296 		    sizeof (uint64_t);
9297 		break;
9298 
9299 	case DTRACEAGG_LQUANTIZE: {
9300 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9301 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9302 
9303 		agg->dtag_initial = desc->dtad_arg;
9304 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9305 
9306 		if (step == 0 || levels == 0)
9307 			goto err;
9308 
9309 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9310 		break;
9311 	}
9312 
9313 	case DTRACEAGG_AVG:
9314 		agg->dtag_aggregate = dtrace_aggregate_avg;
9315 		size = sizeof (uint64_t) * 2;
9316 		break;
9317 
9318 	case DTRACEAGG_STDDEV:
9319 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9320 		size = sizeof (uint64_t) * 4;
9321 		break;
9322 
9323 	case DTRACEAGG_SUM:
9324 		agg->dtag_aggregate = dtrace_aggregate_sum;
9325 		break;
9326 
9327 	default:
9328 		goto err;
9329 	}
9330 
9331 	agg->dtag_action.dta_rec.dtrd_size = size;
9332 
9333 	if (ntuple == 0)
9334 		goto err;
9335 
9336 	/*
9337 	 * We must make sure that we have enough actions for the n-tuple.
9338 	 */
9339 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9340 		if (DTRACEACT_ISAGG(act->dta_kind))
9341 			break;
9342 
9343 		if (--ntuple == 0) {
9344 			/*
9345 			 * This is the action with which our n-tuple begins.
9346 			 */
9347 			agg->dtag_first = act;
9348 			goto success;
9349 		}
9350 	}
9351 
9352 	/*
9353 	 * This n-tuple is short by ntuple elements.  Return failure.
9354 	 */
9355 	ASSERT(ntuple != 0);
9356 err:
9357 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9358 	return (NULL);
9359 
9360 success:
9361 	/*
9362 	 * If the last action in the tuple has a size of zero, it's actually
9363 	 * an expression argument for the aggregating action.
9364 	 */
9365 	ASSERT(ecb->dte_action_last != NULL);
9366 	act = ecb->dte_action_last;
9367 
9368 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9369 		ASSERT(act->dta_difo != NULL);
9370 
9371 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9372 			agg->dtag_hasarg = 1;
9373 	}
9374 
9375 	/*
9376 	 * We need to allocate an id for this aggregation.
9377 	 */
9378 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9379 	    VM_BESTFIT | VM_SLEEP);
9380 
9381 	if (aggid - 1 >= state->dts_naggregations) {
9382 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9383 		dtrace_aggregation_t **aggs;
9384 		int naggs = state->dts_naggregations << 1;
9385 		int onaggs = state->dts_naggregations;
9386 
9387 		ASSERT(aggid == state->dts_naggregations + 1);
9388 
9389 		if (naggs == 0) {
9390 			ASSERT(oaggs == NULL);
9391 			naggs = 1;
9392 		}
9393 
9394 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9395 
9396 		if (oaggs != NULL) {
9397 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9398 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9399 		}
9400 
9401 		state->dts_aggregations = aggs;
9402 		state->dts_naggregations = naggs;
9403 	}
9404 
9405 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9406 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9407 
9408 	frec = &agg->dtag_first->dta_rec;
9409 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9410 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9411 
9412 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9413 		ASSERT(!act->dta_intuple);
9414 		act->dta_intuple = 1;
9415 	}
9416 
9417 	return (&agg->dtag_action);
9418 }
9419 
9420 static void
9421 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9422 {
9423 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9424 	dtrace_state_t *state = ecb->dte_state;
9425 	dtrace_aggid_t aggid = agg->dtag_id;
9426 
9427 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9428 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9429 
9430 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9431 	state->dts_aggregations[aggid - 1] = NULL;
9432 
9433 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9434 }
9435 
9436 static int
9437 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9438 {
9439 	dtrace_action_t *action, *last;
9440 	dtrace_difo_t *dp = desc->dtad_difo;
9441 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9442 	uint16_t format = 0;
9443 	dtrace_recdesc_t *rec;
9444 	dtrace_state_t *state = ecb->dte_state;
9445 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9446 	uint64_t arg = desc->dtad_arg;
9447 
9448 	ASSERT(MUTEX_HELD(&dtrace_lock));
9449 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9450 
9451 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9452 		/*
9453 		 * If this is an aggregating action, there must be neither
9454 		 * a speculate nor a commit on the action chain.
9455 		 */
9456 		dtrace_action_t *act;
9457 
9458 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9459 			if (act->dta_kind == DTRACEACT_COMMIT)
9460 				return (EINVAL);
9461 
9462 			if (act->dta_kind == DTRACEACT_SPECULATE)
9463 				return (EINVAL);
9464 		}
9465 
9466 		action = dtrace_ecb_aggregation_create(ecb, desc);
9467 
9468 		if (action == NULL)
9469 			return (EINVAL);
9470 	} else {
9471 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9472 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9473 		    dp != NULL && dp->dtdo_destructive)) {
9474 			state->dts_destructive = 1;
9475 		}
9476 
9477 		switch (desc->dtad_kind) {
9478 		case DTRACEACT_PRINTF:
9479 		case DTRACEACT_PRINTA:
9480 		case DTRACEACT_SYSTEM:
9481 		case DTRACEACT_FREOPEN:
9482 			/*
9483 			 * We know that our arg is a string -- turn it into a
9484 			 * format.
9485 			 */
9486 			if (arg == NULL) {
9487 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9488 				format = 0;
9489 			} else {
9490 				ASSERT(arg != NULL);
9491 				ASSERT(arg > KERNELBASE);
9492 				format = dtrace_format_add(state,
9493 				    (char *)(uintptr_t)arg);
9494 			}
9495 
9496 			/*FALLTHROUGH*/
9497 		case DTRACEACT_LIBACT:
9498 		case DTRACEACT_DIFEXPR:
9499 			if (dp == NULL)
9500 				return (EINVAL);
9501 
9502 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9503 				break;
9504 
9505 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9506 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9507 					return (EINVAL);
9508 
9509 				size = opt[DTRACEOPT_STRSIZE];
9510 			}
9511 
9512 			break;
9513 
9514 		case DTRACEACT_STACK:
9515 			if ((nframes = arg) == 0) {
9516 				nframes = opt[DTRACEOPT_STACKFRAMES];
9517 				ASSERT(nframes > 0);
9518 				arg = nframes;
9519 			}
9520 
9521 			size = nframes * sizeof (pc_t);
9522 			break;
9523 
9524 		case DTRACEACT_JSTACK:
9525 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9526 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9527 
9528 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9529 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9530 
9531 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9532 
9533 			/*FALLTHROUGH*/
9534 		case DTRACEACT_USTACK:
9535 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9536 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9537 				strsize = DTRACE_USTACK_STRSIZE(arg);
9538 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9539 				ASSERT(nframes > 0);
9540 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9541 			}
9542 
9543 			/*
9544 			 * Save a slot for the pid.
9545 			 */
9546 			size = (nframes + 1) * sizeof (uint64_t);
9547 			size += DTRACE_USTACK_STRSIZE(arg);
9548 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9549 
9550 			break;
9551 
9552 		case DTRACEACT_SYM:
9553 		case DTRACEACT_MOD:
9554 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9555 			    sizeof (uint64_t)) ||
9556 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9557 				return (EINVAL);
9558 			break;
9559 
9560 		case DTRACEACT_USYM:
9561 		case DTRACEACT_UMOD:
9562 		case DTRACEACT_UADDR:
9563 			if (dp == NULL ||
9564 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9565 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9566 				return (EINVAL);
9567 
9568 			/*
9569 			 * We have a slot for the pid, plus a slot for the
9570 			 * argument.  To keep things simple (aligned with
9571 			 * bitness-neutral sizing), we store each as a 64-bit
9572 			 * quantity.
9573 			 */
9574 			size = 2 * sizeof (uint64_t);
9575 			break;
9576 
9577 		case DTRACEACT_STOP:
9578 		case DTRACEACT_BREAKPOINT:
9579 		case DTRACEACT_PANIC:
9580 			break;
9581 
9582 		case DTRACEACT_CHILL:
9583 		case DTRACEACT_DISCARD:
9584 		case DTRACEACT_RAISE:
9585 			if (dp == NULL)
9586 				return (EINVAL);
9587 			break;
9588 
9589 		case DTRACEACT_EXIT:
9590 			if (dp == NULL ||
9591 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9592 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9593 				return (EINVAL);
9594 			break;
9595 
9596 		case DTRACEACT_SPECULATE:
9597 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9598 				return (EINVAL);
9599 
9600 			if (dp == NULL)
9601 				return (EINVAL);
9602 
9603 			state->dts_speculates = 1;
9604 			break;
9605 
9606 		case DTRACEACT_COMMIT: {
9607 			dtrace_action_t *act = ecb->dte_action;
9608 
9609 			for (; act != NULL; act = act->dta_next) {
9610 				if (act->dta_kind == DTRACEACT_COMMIT)
9611 					return (EINVAL);
9612 			}
9613 
9614 			if (dp == NULL)
9615 				return (EINVAL);
9616 			break;
9617 		}
9618 
9619 		default:
9620 			return (EINVAL);
9621 		}
9622 
9623 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9624 			/*
9625 			 * If this is a data-storing action or a speculate,
9626 			 * we must be sure that there isn't a commit on the
9627 			 * action chain.
9628 			 */
9629 			dtrace_action_t *act = ecb->dte_action;
9630 
9631 			for (; act != NULL; act = act->dta_next) {
9632 				if (act->dta_kind == DTRACEACT_COMMIT)
9633 					return (EINVAL);
9634 			}
9635 		}
9636 
9637 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9638 		action->dta_rec.dtrd_size = size;
9639 	}
9640 
9641 	action->dta_refcnt = 1;
9642 	rec = &action->dta_rec;
9643 	size = rec->dtrd_size;
9644 
9645 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9646 		if (!(size & mask)) {
9647 			align = mask + 1;
9648 			break;
9649 		}
9650 	}
9651 
9652 	action->dta_kind = desc->dtad_kind;
9653 
9654 	if ((action->dta_difo = dp) != NULL)
9655 		dtrace_difo_hold(dp);
9656 
9657 	rec->dtrd_action = action->dta_kind;
9658 	rec->dtrd_arg = arg;
9659 	rec->dtrd_uarg = desc->dtad_uarg;
9660 	rec->dtrd_alignment = (uint16_t)align;
9661 	rec->dtrd_format = format;
9662 
9663 	if ((last = ecb->dte_action_last) != NULL) {
9664 		ASSERT(ecb->dte_action != NULL);
9665 		action->dta_prev = last;
9666 		last->dta_next = action;
9667 	} else {
9668 		ASSERT(ecb->dte_action == NULL);
9669 		ecb->dte_action = action;
9670 	}
9671 
9672 	ecb->dte_action_last = action;
9673 
9674 	return (0);
9675 }
9676 
9677 static void
9678 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9679 {
9680 	dtrace_action_t *act = ecb->dte_action, *next;
9681 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9682 	dtrace_difo_t *dp;
9683 	uint16_t format;
9684 
9685 	if (act != NULL && act->dta_refcnt > 1) {
9686 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9687 		act->dta_refcnt--;
9688 	} else {
9689 		for (; act != NULL; act = next) {
9690 			next = act->dta_next;
9691 			ASSERT(next != NULL || act == ecb->dte_action_last);
9692 			ASSERT(act->dta_refcnt == 1);
9693 
9694 			if ((format = act->dta_rec.dtrd_format) != 0)
9695 				dtrace_format_remove(ecb->dte_state, format);
9696 
9697 			if ((dp = act->dta_difo) != NULL)
9698 				dtrace_difo_release(dp, vstate);
9699 
9700 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9701 				dtrace_ecb_aggregation_destroy(ecb, act);
9702 			} else {
9703 				kmem_free(act, sizeof (dtrace_action_t));
9704 			}
9705 		}
9706 	}
9707 
9708 	ecb->dte_action = NULL;
9709 	ecb->dte_action_last = NULL;
9710 	ecb->dte_size = sizeof (dtrace_epid_t);
9711 }
9712 
9713 static void
9714 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9715 {
9716 	/*
9717 	 * We disable the ECB by removing it from its probe.
9718 	 */
9719 	dtrace_ecb_t *pecb, *prev = NULL;
9720 	dtrace_probe_t *probe = ecb->dte_probe;
9721 
9722 	ASSERT(MUTEX_HELD(&dtrace_lock));
9723 
9724 	if (probe == NULL) {
9725 		/*
9726 		 * This is the NULL probe; there is nothing to disable.
9727 		 */
9728 		return;
9729 	}
9730 
9731 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9732 		if (pecb == ecb)
9733 			break;
9734 		prev = pecb;
9735 	}
9736 
9737 	ASSERT(pecb != NULL);
9738 
9739 	if (prev == NULL) {
9740 		probe->dtpr_ecb = ecb->dte_next;
9741 	} else {
9742 		prev->dte_next = ecb->dte_next;
9743 	}
9744 
9745 	if (ecb == probe->dtpr_ecb_last) {
9746 		ASSERT(ecb->dte_next == NULL);
9747 		probe->dtpr_ecb_last = prev;
9748 	}
9749 
9750 	/*
9751 	 * The ECB has been disconnected from the probe; now sync to assure
9752 	 * that all CPUs have seen the change before returning.
9753 	 */
9754 	dtrace_sync();
9755 
9756 	if (probe->dtpr_ecb == NULL) {
9757 		/*
9758 		 * That was the last ECB on the probe; clear the predicate
9759 		 * cache ID for the probe, disable it and sync one more time
9760 		 * to assure that we'll never hit it again.
9761 		 */
9762 		dtrace_provider_t *prov = probe->dtpr_provider;
9763 
9764 		ASSERT(ecb->dte_next == NULL);
9765 		ASSERT(probe->dtpr_ecb_last == NULL);
9766 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9767 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9768 		    probe->dtpr_id, probe->dtpr_arg);
9769 		dtrace_sync();
9770 	} else {
9771 		/*
9772 		 * There is at least one ECB remaining on the probe.  If there
9773 		 * is _exactly_ one, set the probe's predicate cache ID to be
9774 		 * the predicate cache ID of the remaining ECB.
9775 		 */
9776 		ASSERT(probe->dtpr_ecb_last != NULL);
9777 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9778 
9779 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9780 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9781 
9782 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9783 
9784 			if (p != NULL)
9785 				probe->dtpr_predcache = p->dtp_cacheid;
9786 		}
9787 
9788 		ecb->dte_next = NULL;
9789 	}
9790 }
9791 
9792 static void
9793 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9794 {
9795 	dtrace_state_t *state = ecb->dte_state;
9796 	dtrace_vstate_t *vstate = &state->dts_vstate;
9797 	dtrace_predicate_t *pred;
9798 	dtrace_epid_t epid = ecb->dte_epid;
9799 
9800 	ASSERT(MUTEX_HELD(&dtrace_lock));
9801 	ASSERT(ecb->dte_next == NULL);
9802 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9803 
9804 	if ((pred = ecb->dte_predicate) != NULL)
9805 		dtrace_predicate_release(pred, vstate);
9806 
9807 	dtrace_ecb_action_remove(ecb);
9808 
9809 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9810 	state->dts_ecbs[epid - 1] = NULL;
9811 
9812 	kmem_free(ecb, sizeof (dtrace_ecb_t));
9813 }
9814 
9815 static dtrace_ecb_t *
9816 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9817     dtrace_enabling_t *enab)
9818 {
9819 	dtrace_ecb_t *ecb;
9820 	dtrace_predicate_t *pred;
9821 	dtrace_actdesc_t *act;
9822 	dtrace_provider_t *prov;
9823 	dtrace_ecbdesc_t *desc = enab->dten_current;
9824 
9825 	ASSERT(MUTEX_HELD(&dtrace_lock));
9826 	ASSERT(state != NULL);
9827 
9828 	ecb = dtrace_ecb_add(state, probe);
9829 	ecb->dte_uarg = desc->dted_uarg;
9830 
9831 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9832 		dtrace_predicate_hold(pred);
9833 		ecb->dte_predicate = pred;
9834 	}
9835 
9836 	if (probe != NULL) {
9837 		/*
9838 		 * If the provider shows more leg than the consumer is old
9839 		 * enough to see, we need to enable the appropriate implicit
9840 		 * predicate bits to prevent the ecb from activating at
9841 		 * revealing times.
9842 		 *
9843 		 * Providers specifying DTRACE_PRIV_USER at register time
9844 		 * are stating that they need the /proc-style privilege
9845 		 * model to be enforced, and this is what DTRACE_COND_OWNER
9846 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9847 		 */
9848 		prov = probe->dtpr_provider;
9849 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9850 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9851 			ecb->dte_cond |= DTRACE_COND_OWNER;
9852 
9853 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9854 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9855 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9856 
9857 		/*
9858 		 * If the provider shows us kernel innards and the user
9859 		 * is lacking sufficient privilege, enable the
9860 		 * DTRACE_COND_USERMODE implicit predicate.
9861 		 */
9862 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9863 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9864 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9865 	}
9866 
9867 	if (dtrace_ecb_create_cache != NULL) {
9868 		/*
9869 		 * If we have a cached ecb, we'll use its action list instead
9870 		 * of creating our own (saving both time and space).
9871 		 */
9872 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9873 		dtrace_action_t *act = cached->dte_action;
9874 
9875 		if (act != NULL) {
9876 			ASSERT(act->dta_refcnt > 0);
9877 			act->dta_refcnt++;
9878 			ecb->dte_action = act;
9879 			ecb->dte_action_last = cached->dte_action_last;
9880 			ecb->dte_needed = cached->dte_needed;
9881 			ecb->dte_size = cached->dte_size;
9882 			ecb->dte_alignment = cached->dte_alignment;
9883 		}
9884 
9885 		return (ecb);
9886 	}
9887 
9888 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9889 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9890 			dtrace_ecb_destroy(ecb);
9891 			return (NULL);
9892 		}
9893 	}
9894 
9895 	dtrace_ecb_resize(ecb);
9896 
9897 	return (dtrace_ecb_create_cache = ecb);
9898 }
9899 
9900 static int
9901 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9902 {
9903 	dtrace_ecb_t *ecb;
9904 	dtrace_enabling_t *enab = arg;
9905 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9906 
9907 	ASSERT(state != NULL);
9908 
9909 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9910 		/*
9911 		 * This probe was created in a generation for which this
9912 		 * enabling has previously created ECBs; we don't want to
9913 		 * enable it again, so just kick out.
9914 		 */
9915 		return (DTRACE_MATCH_NEXT);
9916 	}
9917 
9918 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9919 		return (DTRACE_MATCH_DONE);
9920 
9921 	dtrace_ecb_enable(ecb);
9922 	return (DTRACE_MATCH_NEXT);
9923 }
9924 
9925 static dtrace_ecb_t *
9926 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9927 {
9928 	dtrace_ecb_t *ecb;
9929 
9930 	ASSERT(MUTEX_HELD(&dtrace_lock));
9931 
9932 	if (id == 0 || id > state->dts_necbs)
9933 		return (NULL);
9934 
9935 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9936 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9937 
9938 	return (state->dts_ecbs[id - 1]);
9939 }
9940 
9941 static dtrace_aggregation_t *
9942 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9943 {
9944 	dtrace_aggregation_t *agg;
9945 
9946 	ASSERT(MUTEX_HELD(&dtrace_lock));
9947 
9948 	if (id == 0 || id > state->dts_naggregations)
9949 		return (NULL);
9950 
9951 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9952 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9953 	    agg->dtag_id == id);
9954 
9955 	return (state->dts_aggregations[id - 1]);
9956 }
9957 
9958 /*
9959  * DTrace Buffer Functions
9960  *
9961  * The following functions manipulate DTrace buffers.  Most of these functions
9962  * are called in the context of establishing or processing consumer state;
9963  * exceptions are explicitly noted.
9964  */
9965 
9966 /*
9967  * Note:  called from cross call context.  This function switches the two
9968  * buffers on a given CPU.  The atomicity of this operation is assured by
9969  * disabling interrupts while the actual switch takes place; the disabling of
9970  * interrupts serializes the execution with any execution of dtrace_probe() on
9971  * the same CPU.
9972  */
9973 static void
9974 dtrace_buffer_switch(dtrace_buffer_t *buf)
9975 {
9976 	caddr_t tomax = buf->dtb_tomax;
9977 	caddr_t xamot = buf->dtb_xamot;
9978 	dtrace_icookie_t cookie;
9979 
9980 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9981 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9982 
9983 	cookie = dtrace_interrupt_disable();
9984 	buf->dtb_tomax = xamot;
9985 	buf->dtb_xamot = tomax;
9986 	buf->dtb_xamot_drops = buf->dtb_drops;
9987 	buf->dtb_xamot_offset = buf->dtb_offset;
9988 	buf->dtb_xamot_errors = buf->dtb_errors;
9989 	buf->dtb_xamot_flags = buf->dtb_flags;
9990 	buf->dtb_offset = 0;
9991 	buf->dtb_drops = 0;
9992 	buf->dtb_errors = 0;
9993 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9994 	dtrace_interrupt_enable(cookie);
9995 }
9996 
9997 /*
9998  * Note:  called from cross call context.  This function activates a buffer
9999  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10000  * is guaranteed by the disabling of interrupts.
10001  */
10002 static void
10003 dtrace_buffer_activate(dtrace_state_t *state)
10004 {
10005 	dtrace_buffer_t *buf;
10006 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10007 
10008 	buf = &state->dts_buffer[CPU->cpu_id];
10009 
10010 	if (buf->dtb_tomax != NULL) {
10011 		/*
10012 		 * We might like to assert that the buffer is marked inactive,
10013 		 * but this isn't necessarily true:  the buffer for the CPU
10014 		 * that processes the BEGIN probe has its buffer activated
10015 		 * manually.  In this case, we take the (harmless) action
10016 		 * re-clearing the bit INACTIVE bit.
10017 		 */
10018 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10019 	}
10020 
10021 	dtrace_interrupt_enable(cookie);
10022 }
10023 
10024 static int
10025 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10026     processorid_t cpu)
10027 {
10028 	cpu_t *cp;
10029 	dtrace_buffer_t *buf;
10030 
10031 	ASSERT(MUTEX_HELD(&cpu_lock));
10032 	ASSERT(MUTEX_HELD(&dtrace_lock));
10033 
10034 	if (size > dtrace_nonroot_maxsize &&
10035 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10036 		return (EFBIG);
10037 
10038 	cp = cpu_list;
10039 
10040 	do {
10041 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10042 			continue;
10043 
10044 		buf = &bufs[cp->cpu_id];
10045 
10046 		/*
10047 		 * If there is already a buffer allocated for this CPU, it
10048 		 * is only possible that this is a DR event.  In this case,
10049 		 * the buffer size must match our specified size.
10050 		 */
10051 		if (buf->dtb_tomax != NULL) {
10052 			ASSERT(buf->dtb_size == size);
10053 			continue;
10054 		}
10055 
10056 		ASSERT(buf->dtb_xamot == NULL);
10057 
10058 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10059 			goto err;
10060 
10061 		buf->dtb_size = size;
10062 		buf->dtb_flags = flags;
10063 		buf->dtb_offset = 0;
10064 		buf->dtb_drops = 0;
10065 
10066 		if (flags & DTRACEBUF_NOSWITCH)
10067 			continue;
10068 
10069 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10070 			goto err;
10071 	} while ((cp = cp->cpu_next) != cpu_list);
10072 
10073 	return (0);
10074 
10075 err:
10076 	cp = cpu_list;
10077 
10078 	do {
10079 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10080 			continue;
10081 
10082 		buf = &bufs[cp->cpu_id];
10083 
10084 		if (buf->dtb_xamot != NULL) {
10085 			ASSERT(buf->dtb_tomax != NULL);
10086 			ASSERT(buf->dtb_size == size);
10087 			kmem_free(buf->dtb_xamot, size);
10088 		}
10089 
10090 		if (buf->dtb_tomax != NULL) {
10091 			ASSERT(buf->dtb_size == size);
10092 			kmem_free(buf->dtb_tomax, size);
10093 		}
10094 
10095 		buf->dtb_tomax = NULL;
10096 		buf->dtb_xamot = NULL;
10097 		buf->dtb_size = 0;
10098 	} while ((cp = cp->cpu_next) != cpu_list);
10099 
10100 	return (ENOMEM);
10101 }
10102 
10103 /*
10104  * Note:  called from probe context.  This function just increments the drop
10105  * count on a buffer.  It has been made a function to allow for the
10106  * possibility of understanding the source of mysterious drop counts.  (A
10107  * problem for which one may be particularly disappointed that DTrace cannot
10108  * be used to understand DTrace.)
10109  */
10110 static void
10111 dtrace_buffer_drop(dtrace_buffer_t *buf)
10112 {
10113 	buf->dtb_drops++;
10114 }
10115 
10116 /*
10117  * Note:  called from probe context.  This function is called to reserve space
10118  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10119  * mstate.  Returns the new offset in the buffer, or a negative value if an
10120  * error has occurred.
10121  */
10122 static intptr_t
10123 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10124     dtrace_state_t *state, dtrace_mstate_t *mstate)
10125 {
10126 	intptr_t offs = buf->dtb_offset, soffs;
10127 	intptr_t woffs;
10128 	caddr_t tomax;
10129 	size_t total;
10130 
10131 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10132 		return (-1);
10133 
10134 	if ((tomax = buf->dtb_tomax) == NULL) {
10135 		dtrace_buffer_drop(buf);
10136 		return (-1);
10137 	}
10138 
10139 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10140 		while (offs & (align - 1)) {
10141 			/*
10142 			 * Assert that our alignment is off by a number which
10143 			 * is itself sizeof (uint32_t) aligned.
10144 			 */
10145 			ASSERT(!((align - (offs & (align - 1))) &
10146 			    (sizeof (uint32_t) - 1)));
10147 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10148 			offs += sizeof (uint32_t);
10149 		}
10150 
10151 		if ((soffs = offs + needed) > buf->dtb_size) {
10152 			dtrace_buffer_drop(buf);
10153 			return (-1);
10154 		}
10155 
10156 		if (mstate == NULL)
10157 			return (offs);
10158 
10159 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10160 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10161 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10162 
10163 		return (offs);
10164 	}
10165 
10166 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10167 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10168 		    (buf->dtb_flags & DTRACEBUF_FULL))
10169 			return (-1);
10170 		goto out;
10171 	}
10172 
10173 	total = needed + (offs & (align - 1));
10174 
10175 	/*
10176 	 * For a ring buffer, life is quite a bit more complicated.  Before
10177 	 * we can store any padding, we need to adjust our wrapping offset.
10178 	 * (If we've never before wrapped or we're not about to, no adjustment
10179 	 * is required.)
10180 	 */
10181 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10182 	    offs + total > buf->dtb_size) {
10183 		woffs = buf->dtb_xamot_offset;
10184 
10185 		if (offs + total > buf->dtb_size) {
10186 			/*
10187 			 * We can't fit in the end of the buffer.  First, a
10188 			 * sanity check that we can fit in the buffer at all.
10189 			 */
10190 			if (total > buf->dtb_size) {
10191 				dtrace_buffer_drop(buf);
10192 				return (-1);
10193 			}
10194 
10195 			/*
10196 			 * We're going to be storing at the top of the buffer,
10197 			 * so now we need to deal with the wrapped offset.  We
10198 			 * only reset our wrapped offset to 0 if it is
10199 			 * currently greater than the current offset.  If it
10200 			 * is less than the current offset, it is because a
10201 			 * previous allocation induced a wrap -- but the
10202 			 * allocation didn't subsequently take the space due
10203 			 * to an error or false predicate evaluation.  In this
10204 			 * case, we'll just leave the wrapped offset alone: if
10205 			 * the wrapped offset hasn't been advanced far enough
10206 			 * for this allocation, it will be adjusted in the
10207 			 * lower loop.
10208 			 */
10209 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10210 				if (woffs >= offs)
10211 					woffs = 0;
10212 			} else {
10213 				woffs = 0;
10214 			}
10215 
10216 			/*
10217 			 * Now we know that we're going to be storing to the
10218 			 * top of the buffer and that there is room for us
10219 			 * there.  We need to clear the buffer from the current
10220 			 * offset to the end (there may be old gunk there).
10221 			 */
10222 			while (offs < buf->dtb_size)
10223 				tomax[offs++] = 0;
10224 
10225 			/*
10226 			 * We need to set our offset to zero.  And because we
10227 			 * are wrapping, we need to set the bit indicating as
10228 			 * much.  We can also adjust our needed space back
10229 			 * down to the space required by the ECB -- we know
10230 			 * that the top of the buffer is aligned.
10231 			 */
10232 			offs = 0;
10233 			total = needed;
10234 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10235 		} else {
10236 			/*
10237 			 * There is room for us in the buffer, so we simply
10238 			 * need to check the wrapped offset.
10239 			 */
10240 			if (woffs < offs) {
10241 				/*
10242 				 * The wrapped offset is less than the offset.
10243 				 * This can happen if we allocated buffer space
10244 				 * that induced a wrap, but then we didn't
10245 				 * subsequently take the space due to an error
10246 				 * or false predicate evaluation.  This is
10247 				 * okay; we know that _this_ allocation isn't
10248 				 * going to induce a wrap.  We still can't
10249 				 * reset the wrapped offset to be zero,
10250 				 * however: the space may have been trashed in
10251 				 * the previous failed probe attempt.  But at
10252 				 * least the wrapped offset doesn't need to
10253 				 * be adjusted at all...
10254 				 */
10255 				goto out;
10256 			}
10257 		}
10258 
10259 		while (offs + total > woffs) {
10260 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10261 			size_t size;
10262 
10263 			if (epid == DTRACE_EPIDNONE) {
10264 				size = sizeof (uint32_t);
10265 			} else {
10266 				ASSERT(epid <= state->dts_necbs);
10267 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10268 
10269 				size = state->dts_ecbs[epid - 1]->dte_size;
10270 			}
10271 
10272 			ASSERT(woffs + size <= buf->dtb_size);
10273 			ASSERT(size != 0);
10274 
10275 			if (woffs + size == buf->dtb_size) {
10276 				/*
10277 				 * We've reached the end of the buffer; we want
10278 				 * to set the wrapped offset to 0 and break
10279 				 * out.  However, if the offs is 0, then we're
10280 				 * in a strange edge-condition:  the amount of
10281 				 * space that we want to reserve plus the size
10282 				 * of the record that we're overwriting is
10283 				 * greater than the size of the buffer.  This
10284 				 * is problematic because if we reserve the
10285 				 * space but subsequently don't consume it (due
10286 				 * to a failed predicate or error) the wrapped
10287 				 * offset will be 0 -- yet the EPID at offset 0
10288 				 * will not be committed.  This situation is
10289 				 * relatively easy to deal with:  if we're in
10290 				 * this case, the buffer is indistinguishable
10291 				 * from one that hasn't wrapped; we need only
10292 				 * finish the job by clearing the wrapped bit,
10293 				 * explicitly setting the offset to be 0, and
10294 				 * zero'ing out the old data in the buffer.
10295 				 */
10296 				if (offs == 0) {
10297 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10298 					buf->dtb_offset = 0;
10299 					woffs = total;
10300 
10301 					while (woffs < buf->dtb_size)
10302 						tomax[woffs++] = 0;
10303 				}
10304 
10305 				woffs = 0;
10306 				break;
10307 			}
10308 
10309 			woffs += size;
10310 		}
10311 
10312 		/*
10313 		 * We have a wrapped offset.  It may be that the wrapped offset
10314 		 * has become zero -- that's okay.
10315 		 */
10316 		buf->dtb_xamot_offset = woffs;
10317 	}
10318 
10319 out:
10320 	/*
10321 	 * Now we can plow the buffer with any necessary padding.
10322 	 */
10323 	while (offs & (align - 1)) {
10324 		/*
10325 		 * Assert that our alignment is off by a number which
10326 		 * is itself sizeof (uint32_t) aligned.
10327 		 */
10328 		ASSERT(!((align - (offs & (align - 1))) &
10329 		    (sizeof (uint32_t) - 1)));
10330 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10331 		offs += sizeof (uint32_t);
10332 	}
10333 
10334 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10335 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10336 			buf->dtb_flags |= DTRACEBUF_FULL;
10337 			return (-1);
10338 		}
10339 	}
10340 
10341 	if (mstate == NULL)
10342 		return (offs);
10343 
10344 	/*
10345 	 * For ring buffers and fill buffers, the scratch space is always
10346 	 * the inactive buffer.
10347 	 */
10348 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10349 	mstate->dtms_scratch_size = buf->dtb_size;
10350 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10351 
10352 	return (offs);
10353 }
10354 
10355 static void
10356 dtrace_buffer_polish(dtrace_buffer_t *buf)
10357 {
10358 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10359 	ASSERT(MUTEX_HELD(&dtrace_lock));
10360 
10361 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10362 		return;
10363 
10364 	/*
10365 	 * We need to polish the ring buffer.  There are three cases:
10366 	 *
10367 	 * - The first (and presumably most common) is that there is no gap
10368 	 *   between the buffer offset and the wrapped offset.  In this case,
10369 	 *   there is nothing in the buffer that isn't valid data; we can
10370 	 *   mark the buffer as polished and return.
10371 	 *
10372 	 * - The second (less common than the first but still more common
10373 	 *   than the third) is that there is a gap between the buffer offset
10374 	 *   and the wrapped offset, and the wrapped offset is larger than the
10375 	 *   buffer offset.  This can happen because of an alignment issue, or
10376 	 *   can happen because of a call to dtrace_buffer_reserve() that
10377 	 *   didn't subsequently consume the buffer space.  In this case,
10378 	 *   we need to zero the data from the buffer offset to the wrapped
10379 	 *   offset.
10380 	 *
10381 	 * - The third (and least common) is that there is a gap between the
10382 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10383 	 *   _less_ than the buffer offset.  This can only happen because a
10384 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10385 	 *   was not subsequently consumed.  In this case, we need to zero the
10386 	 *   space from the offset to the end of the buffer _and_ from the
10387 	 *   top of the buffer to the wrapped offset.
10388 	 */
10389 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10390 		bzero(buf->dtb_tomax + buf->dtb_offset,
10391 		    buf->dtb_xamot_offset - buf->dtb_offset);
10392 	}
10393 
10394 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10395 		bzero(buf->dtb_tomax + buf->dtb_offset,
10396 		    buf->dtb_size - buf->dtb_offset);
10397 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10398 	}
10399 }
10400 
10401 static void
10402 dtrace_buffer_free(dtrace_buffer_t *bufs)
10403 {
10404 	int i;
10405 
10406 	for (i = 0; i < NCPU; i++) {
10407 		dtrace_buffer_t *buf = &bufs[i];
10408 
10409 		if (buf->dtb_tomax == NULL) {
10410 			ASSERT(buf->dtb_xamot == NULL);
10411 			ASSERT(buf->dtb_size == 0);
10412 			continue;
10413 		}
10414 
10415 		if (buf->dtb_xamot != NULL) {
10416 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10417 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10418 		}
10419 
10420 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10421 		buf->dtb_size = 0;
10422 		buf->dtb_tomax = NULL;
10423 		buf->dtb_xamot = NULL;
10424 	}
10425 }
10426 
10427 /*
10428  * DTrace Enabling Functions
10429  */
10430 static dtrace_enabling_t *
10431 dtrace_enabling_create(dtrace_vstate_t *vstate)
10432 {
10433 	dtrace_enabling_t *enab;
10434 
10435 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10436 	enab->dten_vstate = vstate;
10437 
10438 	return (enab);
10439 }
10440 
10441 static void
10442 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10443 {
10444 	dtrace_ecbdesc_t **ndesc;
10445 	size_t osize, nsize;
10446 
10447 	/*
10448 	 * We can't add to enablings after we've enabled them, or after we've
10449 	 * retained them.
10450 	 */
10451 	ASSERT(enab->dten_probegen == 0);
10452 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10453 
10454 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10455 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10456 		return;
10457 	}
10458 
10459 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10460 
10461 	if (enab->dten_maxdesc == 0) {
10462 		enab->dten_maxdesc = 1;
10463 	} else {
10464 		enab->dten_maxdesc <<= 1;
10465 	}
10466 
10467 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10468 
10469 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10470 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10471 	bcopy(enab->dten_desc, ndesc, osize);
10472 	kmem_free(enab->dten_desc, osize);
10473 
10474 	enab->dten_desc = ndesc;
10475 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10476 }
10477 
10478 static void
10479 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10480     dtrace_probedesc_t *pd)
10481 {
10482 	dtrace_ecbdesc_t *new;
10483 	dtrace_predicate_t *pred;
10484 	dtrace_actdesc_t *act;
10485 
10486 	/*
10487 	 * We're going to create a new ECB description that matches the
10488 	 * specified ECB in every way, but has the specified probe description.
10489 	 */
10490 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10491 
10492 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10493 		dtrace_predicate_hold(pred);
10494 
10495 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10496 		dtrace_actdesc_hold(act);
10497 
10498 	new->dted_action = ecb->dted_action;
10499 	new->dted_pred = ecb->dted_pred;
10500 	new->dted_probe = *pd;
10501 	new->dted_uarg = ecb->dted_uarg;
10502 
10503 	dtrace_enabling_add(enab, new);
10504 }
10505 
10506 static void
10507 dtrace_enabling_dump(dtrace_enabling_t *enab)
10508 {
10509 	int i;
10510 
10511 	for (i = 0; i < enab->dten_ndesc; i++) {
10512 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10513 
10514 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10515 		    desc->dtpd_provider, desc->dtpd_mod,
10516 		    desc->dtpd_func, desc->dtpd_name);
10517 	}
10518 }
10519 
10520 static void
10521 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10522 {
10523 	int i;
10524 	dtrace_ecbdesc_t *ep;
10525 	dtrace_vstate_t *vstate = enab->dten_vstate;
10526 
10527 	ASSERT(MUTEX_HELD(&dtrace_lock));
10528 
10529 	for (i = 0; i < enab->dten_ndesc; i++) {
10530 		dtrace_actdesc_t *act, *next;
10531 		dtrace_predicate_t *pred;
10532 
10533 		ep = enab->dten_desc[i];
10534 
10535 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10536 			dtrace_predicate_release(pred, vstate);
10537 
10538 		for (act = ep->dted_action; act != NULL; act = next) {
10539 			next = act->dtad_next;
10540 			dtrace_actdesc_release(act, vstate);
10541 		}
10542 
10543 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10544 	}
10545 
10546 	kmem_free(enab->dten_desc,
10547 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10548 
10549 	/*
10550 	 * If this was a retained enabling, decrement the dts_nretained count
10551 	 * and take it off of the dtrace_retained list.
10552 	 */
10553 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10554 	    dtrace_retained == enab) {
10555 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10556 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10557 		enab->dten_vstate->dtvs_state->dts_nretained--;
10558 	}
10559 
10560 	if (enab->dten_prev == NULL) {
10561 		if (dtrace_retained == enab) {
10562 			dtrace_retained = enab->dten_next;
10563 
10564 			if (dtrace_retained != NULL)
10565 				dtrace_retained->dten_prev = NULL;
10566 		}
10567 	} else {
10568 		ASSERT(enab != dtrace_retained);
10569 		ASSERT(dtrace_retained != NULL);
10570 		enab->dten_prev->dten_next = enab->dten_next;
10571 	}
10572 
10573 	if (enab->dten_next != NULL) {
10574 		ASSERT(dtrace_retained != NULL);
10575 		enab->dten_next->dten_prev = enab->dten_prev;
10576 	}
10577 
10578 	kmem_free(enab, sizeof (dtrace_enabling_t));
10579 }
10580 
10581 static int
10582 dtrace_enabling_retain(dtrace_enabling_t *enab)
10583 {
10584 	dtrace_state_t *state;
10585 
10586 	ASSERT(MUTEX_HELD(&dtrace_lock));
10587 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10588 	ASSERT(enab->dten_vstate != NULL);
10589 
10590 	state = enab->dten_vstate->dtvs_state;
10591 	ASSERT(state != NULL);
10592 
10593 	/*
10594 	 * We only allow each state to retain dtrace_retain_max enablings.
10595 	 */
10596 	if (state->dts_nretained >= dtrace_retain_max)
10597 		return (ENOSPC);
10598 
10599 	state->dts_nretained++;
10600 
10601 	if (dtrace_retained == NULL) {
10602 		dtrace_retained = enab;
10603 		return (0);
10604 	}
10605 
10606 	enab->dten_next = dtrace_retained;
10607 	dtrace_retained->dten_prev = enab;
10608 	dtrace_retained = enab;
10609 
10610 	return (0);
10611 }
10612 
10613 static int
10614 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10615     dtrace_probedesc_t *create)
10616 {
10617 	dtrace_enabling_t *new, *enab;
10618 	int found = 0, err = ENOENT;
10619 
10620 	ASSERT(MUTEX_HELD(&dtrace_lock));
10621 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10622 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10623 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10624 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10625 
10626 	new = dtrace_enabling_create(&state->dts_vstate);
10627 
10628 	/*
10629 	 * Iterate over all retained enablings, looking for enablings that
10630 	 * match the specified state.
10631 	 */
10632 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10633 		int i;
10634 
10635 		/*
10636 		 * dtvs_state can only be NULL for helper enablings -- and
10637 		 * helper enablings can't be retained.
10638 		 */
10639 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10640 
10641 		if (enab->dten_vstate->dtvs_state != state)
10642 			continue;
10643 
10644 		/*
10645 		 * Now iterate over each probe description; we're looking for
10646 		 * an exact match to the specified probe description.
10647 		 */
10648 		for (i = 0; i < enab->dten_ndesc; i++) {
10649 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10650 			dtrace_probedesc_t *pd = &ep->dted_probe;
10651 
10652 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10653 				continue;
10654 
10655 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10656 				continue;
10657 
10658 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10659 				continue;
10660 
10661 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10662 				continue;
10663 
10664 			/*
10665 			 * We have a winning probe!  Add it to our growing
10666 			 * enabling.
10667 			 */
10668 			found = 1;
10669 			dtrace_enabling_addlike(new, ep, create);
10670 		}
10671 	}
10672 
10673 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10674 		dtrace_enabling_destroy(new);
10675 		return (err);
10676 	}
10677 
10678 	return (0);
10679 }
10680 
10681 static void
10682 dtrace_enabling_retract(dtrace_state_t *state)
10683 {
10684 	dtrace_enabling_t *enab, *next;
10685 
10686 	ASSERT(MUTEX_HELD(&dtrace_lock));
10687 
10688 	/*
10689 	 * Iterate over all retained enablings, destroy the enablings retained
10690 	 * for the specified state.
10691 	 */
10692 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10693 		next = enab->dten_next;
10694 
10695 		/*
10696 		 * dtvs_state can only be NULL for helper enablings -- and
10697 		 * helper enablings can't be retained.
10698 		 */
10699 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10700 
10701 		if (enab->dten_vstate->dtvs_state == state) {
10702 			ASSERT(state->dts_nretained > 0);
10703 			dtrace_enabling_destroy(enab);
10704 		}
10705 	}
10706 
10707 	ASSERT(state->dts_nretained == 0);
10708 }
10709 
10710 static int
10711 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10712 {
10713 	int i = 0;
10714 	int matched = 0;
10715 
10716 	ASSERT(MUTEX_HELD(&cpu_lock));
10717 	ASSERT(MUTEX_HELD(&dtrace_lock));
10718 
10719 	for (i = 0; i < enab->dten_ndesc; i++) {
10720 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10721 
10722 		enab->dten_current = ep;
10723 		enab->dten_error = 0;
10724 
10725 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
10726 
10727 		if (enab->dten_error != 0) {
10728 			/*
10729 			 * If we get an error half-way through enabling the
10730 			 * probes, we kick out -- perhaps with some number of
10731 			 * them enabled.  Leaving enabled probes enabled may
10732 			 * be slightly confusing for user-level, but we expect
10733 			 * that no one will attempt to actually drive on in
10734 			 * the face of such errors.  If this is an anonymous
10735 			 * enabling (indicated with a NULL nmatched pointer),
10736 			 * we cmn_err() a message.  We aren't expecting to
10737 			 * get such an error -- such as it can exist at all,
10738 			 * it would be a result of corrupted DOF in the driver
10739 			 * properties.
10740 			 */
10741 			if (nmatched == NULL) {
10742 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10743 				    "error on %p: %d", (void *)ep,
10744 				    enab->dten_error);
10745 			}
10746 
10747 			return (enab->dten_error);
10748 		}
10749 	}
10750 
10751 	enab->dten_probegen = dtrace_probegen;
10752 	if (nmatched != NULL)
10753 		*nmatched = matched;
10754 
10755 	return (0);
10756 }
10757 
10758 static void
10759 dtrace_enabling_matchall(void)
10760 {
10761 	dtrace_enabling_t *enab;
10762 
10763 	mutex_enter(&cpu_lock);
10764 	mutex_enter(&dtrace_lock);
10765 
10766 	/*
10767 	 * Because we can be called after dtrace_detach() has been called, we
10768 	 * cannot assert that there are retained enablings.  We can safely
10769 	 * load from dtrace_retained, however:  the taskq_destroy() at the
10770 	 * end of dtrace_detach() will block pending our completion.
10771 	 */
10772 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
10773 		(void) dtrace_enabling_match(enab, NULL);
10774 
10775 	mutex_exit(&dtrace_lock);
10776 	mutex_exit(&cpu_lock);
10777 }
10778 
10779 static int
10780 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
10781 {
10782 	dtrace_enabling_t *enab;
10783 	int matched, total = 0, err;
10784 
10785 	ASSERT(MUTEX_HELD(&cpu_lock));
10786 	ASSERT(MUTEX_HELD(&dtrace_lock));
10787 
10788 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10789 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10790 
10791 		if (enab->dten_vstate->dtvs_state != state)
10792 			continue;
10793 
10794 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
10795 			return (err);
10796 
10797 		total += matched;
10798 	}
10799 
10800 	if (nmatched != NULL)
10801 		*nmatched = total;
10802 
10803 	return (0);
10804 }
10805 
10806 /*
10807  * If an enabling is to be enabled without having matched probes (that is, if
10808  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10809  * enabling must be _primed_ by creating an ECB for every ECB description.
10810  * This must be done to assure that we know the number of speculations, the
10811  * number of aggregations, the minimum buffer size needed, etc. before we
10812  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10813  * enabling any probes, we create ECBs for every ECB decription, but with a
10814  * NULL probe -- which is exactly what this function does.
10815  */
10816 static void
10817 dtrace_enabling_prime(dtrace_state_t *state)
10818 {
10819 	dtrace_enabling_t *enab;
10820 	int i;
10821 
10822 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10823 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10824 
10825 		if (enab->dten_vstate->dtvs_state != state)
10826 			continue;
10827 
10828 		/*
10829 		 * We don't want to prime an enabling more than once, lest
10830 		 * we allow a malicious user to induce resource exhaustion.
10831 		 * (The ECBs that result from priming an enabling aren't
10832 		 * leaked -- but they also aren't deallocated until the
10833 		 * consumer state is destroyed.)
10834 		 */
10835 		if (enab->dten_primed)
10836 			continue;
10837 
10838 		for (i = 0; i < enab->dten_ndesc; i++) {
10839 			enab->dten_current = enab->dten_desc[i];
10840 			(void) dtrace_probe_enable(NULL, enab);
10841 		}
10842 
10843 		enab->dten_primed = 1;
10844 	}
10845 }
10846 
10847 /*
10848  * Called to indicate that probes should be provided due to retained
10849  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10850  * must take an initial lap through the enabling calling the dtps_provide()
10851  * entry point explicitly to allow for autocreated probes.
10852  */
10853 static void
10854 dtrace_enabling_provide(dtrace_provider_t *prv)
10855 {
10856 	int i, all = 0;
10857 	dtrace_probedesc_t desc;
10858 
10859 	ASSERT(MUTEX_HELD(&dtrace_lock));
10860 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10861 
10862 	if (prv == NULL) {
10863 		all = 1;
10864 		prv = dtrace_provider;
10865 	}
10866 
10867 	do {
10868 		dtrace_enabling_t *enab = dtrace_retained;
10869 		void *parg = prv->dtpv_arg;
10870 
10871 		for (; enab != NULL; enab = enab->dten_next) {
10872 			for (i = 0; i < enab->dten_ndesc; i++) {
10873 				desc = enab->dten_desc[i]->dted_probe;
10874 				mutex_exit(&dtrace_lock);
10875 				prv->dtpv_pops.dtps_provide(parg, &desc);
10876 				mutex_enter(&dtrace_lock);
10877 			}
10878 		}
10879 	} while (all && (prv = prv->dtpv_next) != NULL);
10880 
10881 	mutex_exit(&dtrace_lock);
10882 	dtrace_probe_provide(NULL, all ? NULL : prv);
10883 	mutex_enter(&dtrace_lock);
10884 }
10885 
10886 /*
10887  * DTrace DOF Functions
10888  */
10889 /*ARGSUSED*/
10890 static void
10891 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10892 {
10893 	if (dtrace_err_verbose)
10894 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10895 
10896 #ifdef DTRACE_ERRDEBUG
10897 	dtrace_errdebug(str);
10898 #endif
10899 }
10900 
10901 /*
10902  * Create DOF out of a currently enabled state.  Right now, we only create
10903  * DOF containing the run-time options -- but this could be expanded to create
10904  * complete DOF representing the enabled state.
10905  */
10906 static dof_hdr_t *
10907 dtrace_dof_create(dtrace_state_t *state)
10908 {
10909 	dof_hdr_t *dof;
10910 	dof_sec_t *sec;
10911 	dof_optdesc_t *opt;
10912 	int i, len = sizeof (dof_hdr_t) +
10913 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10914 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10915 
10916 	ASSERT(MUTEX_HELD(&dtrace_lock));
10917 
10918 	dof = kmem_zalloc(len, KM_SLEEP);
10919 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10920 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10921 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10922 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10923 
10924 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10925 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10926 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10927 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10928 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10929 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10930 
10931 	dof->dofh_flags = 0;
10932 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10933 	dof->dofh_secsize = sizeof (dof_sec_t);
10934 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10935 	dof->dofh_secoff = sizeof (dof_hdr_t);
10936 	dof->dofh_loadsz = len;
10937 	dof->dofh_filesz = len;
10938 	dof->dofh_pad = 0;
10939 
10940 	/*
10941 	 * Fill in the option section header...
10942 	 */
10943 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10944 	sec->dofs_type = DOF_SECT_OPTDESC;
10945 	sec->dofs_align = sizeof (uint64_t);
10946 	sec->dofs_flags = DOF_SECF_LOAD;
10947 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10948 
10949 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10950 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10951 
10952 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10953 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10954 
10955 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10956 		opt[i].dofo_option = i;
10957 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10958 		opt[i].dofo_value = state->dts_options[i];
10959 	}
10960 
10961 	return (dof);
10962 }
10963 
10964 static dof_hdr_t *
10965 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10966 {
10967 	dof_hdr_t hdr, *dof;
10968 
10969 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10970 
10971 	/*
10972 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10973 	 */
10974 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10975 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10976 		*errp = EFAULT;
10977 		return (NULL);
10978 	}
10979 
10980 	/*
10981 	 * Now we'll allocate the entire DOF and copy it in -- provided
10982 	 * that the length isn't outrageous.
10983 	 */
10984 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10985 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10986 		*errp = E2BIG;
10987 		return (NULL);
10988 	}
10989 
10990 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10991 		dtrace_dof_error(&hdr, "invalid load size");
10992 		*errp = EINVAL;
10993 		return (NULL);
10994 	}
10995 
10996 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10997 
10998 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10999 		kmem_free(dof, hdr.dofh_loadsz);
11000 		*errp = EFAULT;
11001 		return (NULL);
11002 	}
11003 
11004 	return (dof);
11005 }
11006 
11007 static dof_hdr_t *
11008 dtrace_dof_property(const char *name)
11009 {
11010 	uchar_t *buf;
11011 	uint64_t loadsz;
11012 	unsigned int len, i;
11013 	dof_hdr_t *dof;
11014 
11015 	/*
11016 	 * Unfortunately, array of values in .conf files are always (and
11017 	 * only) interpreted to be integer arrays.  We must read our DOF
11018 	 * as an integer array, and then squeeze it into a byte array.
11019 	 */
11020 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11021 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11022 		return (NULL);
11023 
11024 	for (i = 0; i < len; i++)
11025 		buf[i] = (uchar_t)(((int *)buf)[i]);
11026 
11027 	if (len < sizeof (dof_hdr_t)) {
11028 		ddi_prop_free(buf);
11029 		dtrace_dof_error(NULL, "truncated header");
11030 		return (NULL);
11031 	}
11032 
11033 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11034 		ddi_prop_free(buf);
11035 		dtrace_dof_error(NULL, "truncated DOF");
11036 		return (NULL);
11037 	}
11038 
11039 	if (loadsz >= dtrace_dof_maxsize) {
11040 		ddi_prop_free(buf);
11041 		dtrace_dof_error(NULL, "oversized DOF");
11042 		return (NULL);
11043 	}
11044 
11045 	dof = kmem_alloc(loadsz, KM_SLEEP);
11046 	bcopy(buf, dof, loadsz);
11047 	ddi_prop_free(buf);
11048 
11049 	return (dof);
11050 }
11051 
11052 static void
11053 dtrace_dof_destroy(dof_hdr_t *dof)
11054 {
11055 	kmem_free(dof, dof->dofh_loadsz);
11056 }
11057 
11058 /*
11059  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11060  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11061  * a type other than DOF_SECT_NONE is specified, the header is checked against
11062  * this type and NULL is returned if the types do not match.
11063  */
11064 static dof_sec_t *
11065 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11066 {
11067 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11068 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11069 
11070 	if (i >= dof->dofh_secnum) {
11071 		dtrace_dof_error(dof, "referenced section index is invalid");
11072 		return (NULL);
11073 	}
11074 
11075 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11076 		dtrace_dof_error(dof, "referenced section is not loadable");
11077 		return (NULL);
11078 	}
11079 
11080 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11081 		dtrace_dof_error(dof, "referenced section is the wrong type");
11082 		return (NULL);
11083 	}
11084 
11085 	return (sec);
11086 }
11087 
11088 static dtrace_probedesc_t *
11089 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11090 {
11091 	dof_probedesc_t *probe;
11092 	dof_sec_t *strtab;
11093 	uintptr_t daddr = (uintptr_t)dof;
11094 	uintptr_t str;
11095 	size_t size;
11096 
11097 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11098 		dtrace_dof_error(dof, "invalid probe section");
11099 		return (NULL);
11100 	}
11101 
11102 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11103 		dtrace_dof_error(dof, "bad alignment in probe description");
11104 		return (NULL);
11105 	}
11106 
11107 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11108 		dtrace_dof_error(dof, "truncated probe description");
11109 		return (NULL);
11110 	}
11111 
11112 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11113 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11114 
11115 	if (strtab == NULL)
11116 		return (NULL);
11117 
11118 	str = daddr + strtab->dofs_offset;
11119 	size = strtab->dofs_size;
11120 
11121 	if (probe->dofp_provider >= strtab->dofs_size) {
11122 		dtrace_dof_error(dof, "corrupt probe provider");
11123 		return (NULL);
11124 	}
11125 
11126 	(void) strncpy(desc->dtpd_provider,
11127 	    (char *)(str + probe->dofp_provider),
11128 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11129 
11130 	if (probe->dofp_mod >= strtab->dofs_size) {
11131 		dtrace_dof_error(dof, "corrupt probe module");
11132 		return (NULL);
11133 	}
11134 
11135 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11136 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11137 
11138 	if (probe->dofp_func >= strtab->dofs_size) {
11139 		dtrace_dof_error(dof, "corrupt probe function");
11140 		return (NULL);
11141 	}
11142 
11143 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11144 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11145 
11146 	if (probe->dofp_name >= strtab->dofs_size) {
11147 		dtrace_dof_error(dof, "corrupt probe name");
11148 		return (NULL);
11149 	}
11150 
11151 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11152 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11153 
11154 	return (desc);
11155 }
11156 
11157 static dtrace_difo_t *
11158 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11159     cred_t *cr)
11160 {
11161 	dtrace_difo_t *dp;
11162 	size_t ttl = 0;
11163 	dof_difohdr_t *dofd;
11164 	uintptr_t daddr = (uintptr_t)dof;
11165 	size_t max = dtrace_difo_maxsize;
11166 	int i, l, n;
11167 
11168 	static const struct {
11169 		int section;
11170 		int bufoffs;
11171 		int lenoffs;
11172 		int entsize;
11173 		int align;
11174 		const char *msg;
11175 	} difo[] = {
11176 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11177 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11178 		sizeof (dif_instr_t), "multiple DIF sections" },
11179 
11180 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11181 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11182 		sizeof (uint64_t), "multiple integer tables" },
11183 
11184 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11185 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11186 		sizeof (char), "multiple string tables" },
11187 
11188 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11189 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11190 		sizeof (uint_t), "multiple variable tables" },
11191 
11192 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
11193 	};
11194 
11195 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11196 		dtrace_dof_error(dof, "invalid DIFO header section");
11197 		return (NULL);
11198 	}
11199 
11200 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11201 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11202 		return (NULL);
11203 	}
11204 
11205 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11206 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11207 		dtrace_dof_error(dof, "bad size in DIFO header");
11208 		return (NULL);
11209 	}
11210 
11211 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11212 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11213 
11214 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11215 	dp->dtdo_rtype = dofd->dofd_rtype;
11216 
11217 	for (l = 0; l < n; l++) {
11218 		dof_sec_t *subsec;
11219 		void **bufp;
11220 		uint32_t *lenp;
11221 
11222 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11223 		    dofd->dofd_links[l])) == NULL)
11224 			goto err; /* invalid section link */
11225 
11226 		if (ttl + subsec->dofs_size > max) {
11227 			dtrace_dof_error(dof, "exceeds maximum size");
11228 			goto err;
11229 		}
11230 
11231 		ttl += subsec->dofs_size;
11232 
11233 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11234 			if (subsec->dofs_type != difo[i].section)
11235 				continue;
11236 
11237 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11238 				dtrace_dof_error(dof, "section not loaded");
11239 				goto err;
11240 			}
11241 
11242 			if (subsec->dofs_align != difo[i].align) {
11243 				dtrace_dof_error(dof, "bad alignment");
11244 				goto err;
11245 			}
11246 
11247 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11248 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11249 
11250 			if (*bufp != NULL) {
11251 				dtrace_dof_error(dof, difo[i].msg);
11252 				goto err;
11253 			}
11254 
11255 			if (difo[i].entsize != subsec->dofs_entsize) {
11256 				dtrace_dof_error(dof, "entry size mismatch");
11257 				goto err;
11258 			}
11259 
11260 			if (subsec->dofs_entsize != 0 &&
11261 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11262 				dtrace_dof_error(dof, "corrupt entry size");
11263 				goto err;
11264 			}
11265 
11266 			*lenp = subsec->dofs_size;
11267 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11268 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11269 			    *bufp, subsec->dofs_size);
11270 
11271 			if (subsec->dofs_entsize != 0)
11272 				*lenp /= subsec->dofs_entsize;
11273 
11274 			break;
11275 		}
11276 
11277 		/*
11278 		 * If we encounter a loadable DIFO sub-section that is not
11279 		 * known to us, assume this is a broken program and fail.
11280 		 */
11281 		if (difo[i].section == DOF_SECT_NONE &&
11282 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11283 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11284 			goto err;
11285 		}
11286 	}
11287 
11288 	if (dp->dtdo_buf == NULL) {
11289 		/*
11290 		 * We can't have a DIF object without DIF text.
11291 		 */
11292 		dtrace_dof_error(dof, "missing DIF text");
11293 		goto err;
11294 	}
11295 
11296 	/*
11297 	 * Before we validate the DIF object, run through the variable table
11298 	 * looking for the strings -- if any of their size are under, we'll set
11299 	 * their size to be the system-wide default string size.  Note that
11300 	 * this should _not_ happen if the "strsize" option has been set --
11301 	 * in this case, the compiler should have set the size to reflect the
11302 	 * setting of the option.
11303 	 */
11304 	for (i = 0; i < dp->dtdo_varlen; i++) {
11305 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11306 		dtrace_diftype_t *t = &v->dtdv_type;
11307 
11308 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11309 			continue;
11310 
11311 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11312 			t->dtdt_size = dtrace_strsize_default;
11313 	}
11314 
11315 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11316 		goto err;
11317 
11318 	dtrace_difo_init(dp, vstate);
11319 	return (dp);
11320 
11321 err:
11322 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11323 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11324 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11325 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11326 
11327 	kmem_free(dp, sizeof (dtrace_difo_t));
11328 	return (NULL);
11329 }
11330 
11331 static dtrace_predicate_t *
11332 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11333     cred_t *cr)
11334 {
11335 	dtrace_difo_t *dp;
11336 
11337 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11338 		return (NULL);
11339 
11340 	return (dtrace_predicate_create(dp));
11341 }
11342 
11343 static dtrace_actdesc_t *
11344 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11345     cred_t *cr)
11346 {
11347 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11348 	dof_actdesc_t *desc;
11349 	dof_sec_t *difosec;
11350 	size_t offs;
11351 	uintptr_t daddr = (uintptr_t)dof;
11352 	uint64_t arg;
11353 	dtrace_actkind_t kind;
11354 
11355 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
11356 		dtrace_dof_error(dof, "invalid action section");
11357 		return (NULL);
11358 	}
11359 
11360 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11361 		dtrace_dof_error(dof, "truncated action description");
11362 		return (NULL);
11363 	}
11364 
11365 	if (sec->dofs_align != sizeof (uint64_t)) {
11366 		dtrace_dof_error(dof, "bad alignment in action description");
11367 		return (NULL);
11368 	}
11369 
11370 	if (sec->dofs_size < sec->dofs_entsize) {
11371 		dtrace_dof_error(dof, "section entry size exceeds total size");
11372 		return (NULL);
11373 	}
11374 
11375 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11376 		dtrace_dof_error(dof, "bad entry size in action description");
11377 		return (NULL);
11378 	}
11379 
11380 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11381 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11382 		return (NULL);
11383 	}
11384 
11385 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11386 		desc = (dof_actdesc_t *)(daddr +
11387 		    (uintptr_t)sec->dofs_offset + offs);
11388 		kind = (dtrace_actkind_t)desc->dofa_kind;
11389 
11390 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11391 		    (kind != DTRACEACT_PRINTA ||
11392 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11393 			dof_sec_t *strtab;
11394 			char *str, *fmt;
11395 			uint64_t i;
11396 
11397 			/*
11398 			 * printf()-like actions must have a format string.
11399 			 */
11400 			if ((strtab = dtrace_dof_sect(dof,
11401 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11402 				goto err;
11403 
11404 			str = (char *)((uintptr_t)dof +
11405 			    (uintptr_t)strtab->dofs_offset);
11406 
11407 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11408 				if (str[i] == '\0')
11409 					break;
11410 			}
11411 
11412 			if (i >= strtab->dofs_size) {
11413 				dtrace_dof_error(dof, "bogus format string");
11414 				goto err;
11415 			}
11416 
11417 			if (i == desc->dofa_arg) {
11418 				dtrace_dof_error(dof, "empty format string");
11419 				goto err;
11420 			}
11421 
11422 			i -= desc->dofa_arg;
11423 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11424 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11425 			arg = (uint64_t)(uintptr_t)fmt;
11426 		} else {
11427 			if (kind == DTRACEACT_PRINTA) {
11428 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11429 				arg = 0;
11430 			} else {
11431 				arg = desc->dofa_arg;
11432 			}
11433 		}
11434 
11435 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11436 		    desc->dofa_uarg, arg);
11437 
11438 		if (last != NULL) {
11439 			last->dtad_next = act;
11440 		} else {
11441 			first = act;
11442 		}
11443 
11444 		last = act;
11445 
11446 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11447 			continue;
11448 
11449 		if ((difosec = dtrace_dof_sect(dof,
11450 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11451 			goto err;
11452 
11453 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11454 
11455 		if (act->dtad_difo == NULL)
11456 			goto err;
11457 	}
11458 
11459 	ASSERT(first != NULL);
11460 	return (first);
11461 
11462 err:
11463 	for (act = first; act != NULL; act = next) {
11464 		next = act->dtad_next;
11465 		dtrace_actdesc_release(act, vstate);
11466 	}
11467 
11468 	return (NULL);
11469 }
11470 
11471 static dtrace_ecbdesc_t *
11472 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11473     cred_t *cr)
11474 {
11475 	dtrace_ecbdesc_t *ep;
11476 	dof_ecbdesc_t *ecb;
11477 	dtrace_probedesc_t *desc;
11478 	dtrace_predicate_t *pred = NULL;
11479 
11480 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11481 		dtrace_dof_error(dof, "truncated ECB description");
11482 		return (NULL);
11483 	}
11484 
11485 	if (sec->dofs_align != sizeof (uint64_t)) {
11486 		dtrace_dof_error(dof, "bad alignment in ECB description");
11487 		return (NULL);
11488 	}
11489 
11490 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11491 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11492 
11493 	if (sec == NULL)
11494 		return (NULL);
11495 
11496 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11497 	ep->dted_uarg = ecb->dofe_uarg;
11498 	desc = &ep->dted_probe;
11499 
11500 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11501 		goto err;
11502 
11503 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11504 		if ((sec = dtrace_dof_sect(dof,
11505 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11506 			goto err;
11507 
11508 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11509 			goto err;
11510 
11511 		ep->dted_pred.dtpdd_predicate = pred;
11512 	}
11513 
11514 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11515 		if ((sec = dtrace_dof_sect(dof,
11516 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11517 			goto err;
11518 
11519 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11520 
11521 		if (ep->dted_action == NULL)
11522 			goto err;
11523 	}
11524 
11525 	return (ep);
11526 
11527 err:
11528 	if (pred != NULL)
11529 		dtrace_predicate_release(pred, vstate);
11530 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11531 	return (NULL);
11532 }
11533 
11534 /*
11535  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11536  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11537  * site of any user SETX relocations to account for load object base address.
11538  * In the future, if we need other relocations, this function can be extended.
11539  */
11540 static int
11541 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11542 {
11543 	uintptr_t daddr = (uintptr_t)dof;
11544 	dof_relohdr_t *dofr =
11545 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11546 	dof_sec_t *ss, *rs, *ts;
11547 	dof_relodesc_t *r;
11548 	uint_t i, n;
11549 
11550 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11551 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11552 		dtrace_dof_error(dof, "invalid relocation header");
11553 		return (-1);
11554 	}
11555 
11556 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11557 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11558 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11559 
11560 	if (ss == NULL || rs == NULL || ts == NULL)
11561 		return (-1); /* dtrace_dof_error() has been called already */
11562 
11563 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11564 	    rs->dofs_align != sizeof (uint64_t)) {
11565 		dtrace_dof_error(dof, "invalid relocation section");
11566 		return (-1);
11567 	}
11568 
11569 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11570 	n = rs->dofs_size / rs->dofs_entsize;
11571 
11572 	for (i = 0; i < n; i++) {
11573 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11574 
11575 		switch (r->dofr_type) {
11576 		case DOF_RELO_NONE:
11577 			break;
11578 		case DOF_RELO_SETX:
11579 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11580 			    sizeof (uint64_t) > ts->dofs_size) {
11581 				dtrace_dof_error(dof, "bad relocation offset");
11582 				return (-1);
11583 			}
11584 
11585 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11586 				dtrace_dof_error(dof, "misaligned setx relo");
11587 				return (-1);
11588 			}
11589 
11590 			*(uint64_t *)taddr += ubase;
11591 			break;
11592 		default:
11593 			dtrace_dof_error(dof, "invalid relocation type");
11594 			return (-1);
11595 		}
11596 
11597 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11598 	}
11599 
11600 	return (0);
11601 }
11602 
11603 /*
11604  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11605  * header:  it should be at the front of a memory region that is at least
11606  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11607  * size.  It need not be validated in any other way.
11608  */
11609 static int
11610 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11611     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11612 {
11613 	uint64_t len = dof->dofh_loadsz, seclen;
11614 	uintptr_t daddr = (uintptr_t)dof;
11615 	dtrace_ecbdesc_t *ep;
11616 	dtrace_enabling_t *enab;
11617 	uint_t i;
11618 
11619 	ASSERT(MUTEX_HELD(&dtrace_lock));
11620 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11621 
11622 	/*
11623 	 * Check the DOF header identification bytes.  In addition to checking
11624 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11625 	 * we can use them later without fear of regressing existing binaries.
11626 	 */
11627 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11628 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11629 		dtrace_dof_error(dof, "DOF magic string mismatch");
11630 		return (-1);
11631 	}
11632 
11633 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11634 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11635 		dtrace_dof_error(dof, "DOF has invalid data model");
11636 		return (-1);
11637 	}
11638 
11639 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11640 		dtrace_dof_error(dof, "DOF encoding mismatch");
11641 		return (-1);
11642 	}
11643 
11644 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11645 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11646 		dtrace_dof_error(dof, "DOF version mismatch");
11647 		return (-1);
11648 	}
11649 
11650 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11651 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11652 		return (-1);
11653 	}
11654 
11655 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11656 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11657 		return (-1);
11658 	}
11659 
11660 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11661 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11662 		return (-1);
11663 	}
11664 
11665 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11666 		if (dof->dofh_ident[i] != 0) {
11667 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11668 			return (-1);
11669 		}
11670 	}
11671 
11672 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11673 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11674 		return (-1);
11675 	}
11676 
11677 	if (dof->dofh_secsize == 0) {
11678 		dtrace_dof_error(dof, "zero section header size");
11679 		return (-1);
11680 	}
11681 
11682 	/*
11683 	 * Check that the section headers don't exceed the amount of DOF
11684 	 * data.  Note that we cast the section size and number of sections
11685 	 * to uint64_t's to prevent possible overflow in the multiplication.
11686 	 */
11687 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11688 
11689 	if (dof->dofh_secoff > len || seclen > len ||
11690 	    dof->dofh_secoff + seclen > len) {
11691 		dtrace_dof_error(dof, "truncated section headers");
11692 		return (-1);
11693 	}
11694 
11695 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11696 		dtrace_dof_error(dof, "misaligned section headers");
11697 		return (-1);
11698 	}
11699 
11700 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11701 		dtrace_dof_error(dof, "misaligned section size");
11702 		return (-1);
11703 	}
11704 
11705 	/*
11706 	 * Take an initial pass through the section headers to be sure that
11707 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11708 	 * set, do not permit sections relating to providers, probes, or args.
11709 	 */
11710 	for (i = 0; i < dof->dofh_secnum; i++) {
11711 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11712 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11713 
11714 		if (noprobes) {
11715 			switch (sec->dofs_type) {
11716 			case DOF_SECT_PROVIDER:
11717 			case DOF_SECT_PROBES:
11718 			case DOF_SECT_PRARGS:
11719 			case DOF_SECT_PROFFS:
11720 				dtrace_dof_error(dof, "illegal sections "
11721 				    "for enabling");
11722 				return (-1);
11723 			}
11724 		}
11725 
11726 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11727 			continue; /* just ignore non-loadable sections */
11728 
11729 		if (sec->dofs_align & (sec->dofs_align - 1)) {
11730 			dtrace_dof_error(dof, "bad section alignment");
11731 			return (-1);
11732 		}
11733 
11734 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11735 			dtrace_dof_error(dof, "misaligned section");
11736 			return (-1);
11737 		}
11738 
11739 		if (sec->dofs_offset > len || sec->dofs_size > len ||
11740 		    sec->dofs_offset + sec->dofs_size > len) {
11741 			dtrace_dof_error(dof, "corrupt section header");
11742 			return (-1);
11743 		}
11744 
11745 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11746 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11747 			dtrace_dof_error(dof, "non-terminating string table");
11748 			return (-1);
11749 		}
11750 	}
11751 
11752 	/*
11753 	 * Take a second pass through the sections and locate and perform any
11754 	 * relocations that are present.  We do this after the first pass to
11755 	 * be sure that all sections have had their headers validated.
11756 	 */
11757 	for (i = 0; i < dof->dofh_secnum; i++) {
11758 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11759 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11760 
11761 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11762 			continue; /* skip sections that are not loadable */
11763 
11764 		switch (sec->dofs_type) {
11765 		case DOF_SECT_URELHDR:
11766 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11767 				return (-1);
11768 			break;
11769 		}
11770 	}
11771 
11772 	if ((enab = *enabp) == NULL)
11773 		enab = *enabp = dtrace_enabling_create(vstate);
11774 
11775 	for (i = 0; i < dof->dofh_secnum; i++) {
11776 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11777 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11778 
11779 		if (sec->dofs_type != DOF_SECT_ECBDESC)
11780 			continue;
11781 
11782 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11783 			dtrace_enabling_destroy(enab);
11784 			*enabp = NULL;
11785 			return (-1);
11786 		}
11787 
11788 		dtrace_enabling_add(enab, ep);
11789 	}
11790 
11791 	return (0);
11792 }
11793 
11794 /*
11795  * Process DOF for any options.  This routine assumes that the DOF has been
11796  * at least processed by dtrace_dof_slurp().
11797  */
11798 static int
11799 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11800 {
11801 	int i, rval;
11802 	uint32_t entsize;
11803 	size_t offs;
11804 	dof_optdesc_t *desc;
11805 
11806 	for (i = 0; i < dof->dofh_secnum; i++) {
11807 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11808 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11809 
11810 		if (sec->dofs_type != DOF_SECT_OPTDESC)
11811 			continue;
11812 
11813 		if (sec->dofs_align != sizeof (uint64_t)) {
11814 			dtrace_dof_error(dof, "bad alignment in "
11815 			    "option description");
11816 			return (EINVAL);
11817 		}
11818 
11819 		if ((entsize = sec->dofs_entsize) == 0) {
11820 			dtrace_dof_error(dof, "zeroed option entry size");
11821 			return (EINVAL);
11822 		}
11823 
11824 		if (entsize < sizeof (dof_optdesc_t)) {
11825 			dtrace_dof_error(dof, "bad option entry size");
11826 			return (EINVAL);
11827 		}
11828 
11829 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11830 			desc = (dof_optdesc_t *)((uintptr_t)dof +
11831 			    (uintptr_t)sec->dofs_offset + offs);
11832 
11833 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11834 				dtrace_dof_error(dof, "non-zero option string");
11835 				return (EINVAL);
11836 			}
11837 
11838 			if (desc->dofo_value == DTRACEOPT_UNSET) {
11839 				dtrace_dof_error(dof, "unset option");
11840 				return (EINVAL);
11841 			}
11842 
11843 			if ((rval = dtrace_state_option(state,
11844 			    desc->dofo_option, desc->dofo_value)) != 0) {
11845 				dtrace_dof_error(dof, "rejected option");
11846 				return (rval);
11847 			}
11848 		}
11849 	}
11850 
11851 	return (0);
11852 }
11853 
11854 /*
11855  * DTrace Consumer State Functions
11856  */
11857 int
11858 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11859 {
11860 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11861 	void *base;
11862 	uintptr_t limit;
11863 	dtrace_dynvar_t *dvar, *next, *start;
11864 	int i;
11865 
11866 	ASSERT(MUTEX_HELD(&dtrace_lock));
11867 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11868 
11869 	bzero(dstate, sizeof (dtrace_dstate_t));
11870 
11871 	if ((dstate->dtds_chunksize = chunksize) == 0)
11872 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11873 
11874 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11875 		size = min;
11876 
11877 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11878 		return (ENOMEM);
11879 
11880 	dstate->dtds_size = size;
11881 	dstate->dtds_base = base;
11882 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11883 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11884 
11885 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11886 
11887 	if (hashsize != 1 && (hashsize & 1))
11888 		hashsize--;
11889 
11890 	dstate->dtds_hashsize = hashsize;
11891 	dstate->dtds_hash = dstate->dtds_base;
11892 
11893 	/*
11894 	 * Set all of our hash buckets to point to the single sink, and (if
11895 	 * it hasn't already been set), set the sink's hash value to be the
11896 	 * sink sentinel value.  The sink is needed for dynamic variable
11897 	 * lookups to know that they have iterated over an entire, valid hash
11898 	 * chain.
11899 	 */
11900 	for (i = 0; i < hashsize; i++)
11901 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11902 
11903 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11904 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11905 
11906 	/*
11907 	 * Determine number of active CPUs.  Divide free list evenly among
11908 	 * active CPUs.
11909 	 */
11910 	start = (dtrace_dynvar_t *)
11911 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11912 	limit = (uintptr_t)base + size;
11913 
11914 	maxper = (limit - (uintptr_t)start) / NCPU;
11915 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11916 
11917 	for (i = 0; i < NCPU; i++) {
11918 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11919 
11920 		/*
11921 		 * If we don't even have enough chunks to make it once through
11922 		 * NCPUs, we're just going to allocate everything to the first
11923 		 * CPU.  And if we're on the last CPU, we're going to allocate
11924 		 * whatever is left over.  In either case, we set the limit to
11925 		 * be the limit of the dynamic variable space.
11926 		 */
11927 		if (maxper == 0 || i == NCPU - 1) {
11928 			limit = (uintptr_t)base + size;
11929 			start = NULL;
11930 		} else {
11931 			limit = (uintptr_t)start + maxper;
11932 			start = (dtrace_dynvar_t *)limit;
11933 		}
11934 
11935 		ASSERT(limit <= (uintptr_t)base + size);
11936 
11937 		for (;;) {
11938 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11939 			    dstate->dtds_chunksize);
11940 
11941 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11942 				break;
11943 
11944 			dvar->dtdv_next = next;
11945 			dvar = next;
11946 		}
11947 
11948 		if (maxper == 0)
11949 			break;
11950 	}
11951 
11952 	return (0);
11953 }
11954 
11955 void
11956 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11957 {
11958 	ASSERT(MUTEX_HELD(&cpu_lock));
11959 
11960 	if (dstate->dtds_base == NULL)
11961 		return;
11962 
11963 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11964 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11965 }
11966 
11967 static void
11968 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11969 {
11970 	/*
11971 	 * Logical XOR, where are you?
11972 	 */
11973 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11974 
11975 	if (vstate->dtvs_nglobals > 0) {
11976 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11977 		    sizeof (dtrace_statvar_t *));
11978 	}
11979 
11980 	if (vstate->dtvs_ntlocals > 0) {
11981 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11982 		    sizeof (dtrace_difv_t));
11983 	}
11984 
11985 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11986 
11987 	if (vstate->dtvs_nlocals > 0) {
11988 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11989 		    sizeof (dtrace_statvar_t *));
11990 	}
11991 }
11992 
11993 static void
11994 dtrace_state_clean(dtrace_state_t *state)
11995 {
11996 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11997 		return;
11998 
11999 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12000 	dtrace_speculation_clean(state);
12001 }
12002 
12003 static void
12004 dtrace_state_deadman(dtrace_state_t *state)
12005 {
12006 	hrtime_t now;
12007 
12008 	dtrace_sync();
12009 
12010 	now = dtrace_gethrtime();
12011 
12012 	if (state != dtrace_anon.dta_state &&
12013 	    now - state->dts_laststatus >= dtrace_deadman_user)
12014 		return;
12015 
12016 	/*
12017 	 * We must be sure that dts_alive never appears to be less than the
12018 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12019 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12020 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12021 	 * the new value.  This assures that dts_alive never appears to be
12022 	 * less than its true value, regardless of the order in which the
12023 	 * stores to the underlying storage are issued.
12024 	 */
12025 	state->dts_alive = INT64_MAX;
12026 	dtrace_membar_producer();
12027 	state->dts_alive = now;
12028 }
12029 
12030 dtrace_state_t *
12031 dtrace_state_create(dev_t *devp, cred_t *cr)
12032 {
12033 	minor_t minor;
12034 	major_t major;
12035 	char c[30];
12036 	dtrace_state_t *state;
12037 	dtrace_optval_t *opt;
12038 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12039 
12040 	ASSERT(MUTEX_HELD(&dtrace_lock));
12041 	ASSERT(MUTEX_HELD(&cpu_lock));
12042 
12043 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12044 	    VM_BESTFIT | VM_SLEEP);
12045 
12046 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12047 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12048 		return (NULL);
12049 	}
12050 
12051 	state = ddi_get_soft_state(dtrace_softstate, minor);
12052 	state->dts_epid = DTRACE_EPIDNONE + 1;
12053 
12054 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12055 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12056 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12057 
12058 	if (devp != NULL) {
12059 		major = getemajor(*devp);
12060 	} else {
12061 		major = ddi_driver_major(dtrace_devi);
12062 	}
12063 
12064 	state->dts_dev = makedevice(major, minor);
12065 
12066 	if (devp != NULL)
12067 		*devp = state->dts_dev;
12068 
12069 	/*
12070 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12071 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12072 	 * other hand, it saves an additional memory reference in the probe
12073 	 * path.
12074 	 */
12075 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12076 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12077 	state->dts_cleaner = CYCLIC_NONE;
12078 	state->dts_deadman = CYCLIC_NONE;
12079 	state->dts_vstate.dtvs_state = state;
12080 
12081 	for (i = 0; i < DTRACEOPT_MAX; i++)
12082 		state->dts_options[i] = DTRACEOPT_UNSET;
12083 
12084 	/*
12085 	 * Set the default options.
12086 	 */
12087 	opt = state->dts_options;
12088 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12089 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12090 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12091 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12092 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12093 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12094 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12095 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12096 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12097 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12098 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12099 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12100 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12101 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12102 
12103 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12104 
12105 	/*
12106 	 * Depending on the user credentials, we set flag bits which alter probe
12107 	 * visibility or the amount of destructiveness allowed.  In the case of
12108 	 * actual anonymous tracing, or the possession of all privileges, all of
12109 	 * the normal checks are bypassed.
12110 	 */
12111 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12112 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12113 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12114 	} else {
12115 		/*
12116 		 * Set up the credentials for this instantiation.  We take a
12117 		 * hold on the credential to prevent it from disappearing on
12118 		 * us; this in turn prevents the zone_t referenced by this
12119 		 * credential from disappearing.  This means that we can
12120 		 * examine the credential and the zone from probe context.
12121 		 */
12122 		crhold(cr);
12123 		state->dts_cred.dcr_cred = cr;
12124 
12125 		/*
12126 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12127 		 * unlocks the use of variables like pid, zonename, etc.
12128 		 */
12129 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12130 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12131 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12132 		}
12133 
12134 		/*
12135 		 * dtrace_user allows use of syscall and profile providers.
12136 		 * If the user also has proc_owner and/or proc_zone, we
12137 		 * extend the scope to include additional visibility and
12138 		 * destructive power.
12139 		 */
12140 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12141 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12142 				state->dts_cred.dcr_visible |=
12143 				    DTRACE_CRV_ALLPROC;
12144 
12145 				state->dts_cred.dcr_action |=
12146 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12147 			}
12148 
12149 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12150 				state->dts_cred.dcr_visible |=
12151 				    DTRACE_CRV_ALLZONE;
12152 
12153 				state->dts_cred.dcr_action |=
12154 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12155 			}
12156 
12157 			/*
12158 			 * If we have all privs in whatever zone this is,
12159 			 * we can do destructive things to processes which
12160 			 * have altered credentials.
12161 			 */
12162 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12163 			    cr->cr_zone->zone_privset)) {
12164 				state->dts_cred.dcr_action |=
12165 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12166 			}
12167 		}
12168 
12169 		/*
12170 		 * Holding the dtrace_kernel privilege also implies that
12171 		 * the user has the dtrace_user privilege from a visibility
12172 		 * perspective.  But without further privileges, some
12173 		 * destructive actions are not available.
12174 		 */
12175 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12176 			/*
12177 			 * Make all probes in all zones visible.  However,
12178 			 * this doesn't mean that all actions become available
12179 			 * to all zones.
12180 			 */
12181 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12182 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12183 
12184 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12185 			    DTRACE_CRA_PROC;
12186 			/*
12187 			 * Holding proc_owner means that destructive actions
12188 			 * for *this* zone are allowed.
12189 			 */
12190 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12191 				state->dts_cred.dcr_action |=
12192 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12193 
12194 			/*
12195 			 * Holding proc_zone means that destructive actions
12196 			 * for this user/group ID in all zones is allowed.
12197 			 */
12198 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12199 				state->dts_cred.dcr_action |=
12200 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12201 
12202 			/*
12203 			 * If we have all privs in whatever zone this is,
12204 			 * we can do destructive things to processes which
12205 			 * have altered credentials.
12206 			 */
12207 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12208 			    cr->cr_zone->zone_privset)) {
12209 				state->dts_cred.dcr_action |=
12210 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12211 			}
12212 		}
12213 
12214 		/*
12215 		 * Holding the dtrace_proc privilege gives control over fasttrap
12216 		 * and pid providers.  We need to grant wider destructive
12217 		 * privileges in the event that the user has proc_owner and/or
12218 		 * proc_zone.
12219 		 */
12220 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12221 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12222 				state->dts_cred.dcr_action |=
12223 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12224 
12225 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12226 				state->dts_cred.dcr_action |=
12227 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12228 		}
12229 	}
12230 
12231 	return (state);
12232 }
12233 
12234 static int
12235 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12236 {
12237 	dtrace_optval_t *opt = state->dts_options, size;
12238 	processorid_t cpu;
12239 	int flags = 0, rval;
12240 
12241 	ASSERT(MUTEX_HELD(&dtrace_lock));
12242 	ASSERT(MUTEX_HELD(&cpu_lock));
12243 	ASSERT(which < DTRACEOPT_MAX);
12244 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12245 	    (state == dtrace_anon.dta_state &&
12246 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12247 
12248 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12249 		return (0);
12250 
12251 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12252 		cpu = opt[DTRACEOPT_CPU];
12253 
12254 	if (which == DTRACEOPT_SPECSIZE)
12255 		flags |= DTRACEBUF_NOSWITCH;
12256 
12257 	if (which == DTRACEOPT_BUFSIZE) {
12258 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12259 			flags |= DTRACEBUF_RING;
12260 
12261 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12262 			flags |= DTRACEBUF_FILL;
12263 
12264 		if (state != dtrace_anon.dta_state ||
12265 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12266 			flags |= DTRACEBUF_INACTIVE;
12267 	}
12268 
12269 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12270 		/*
12271 		 * The size must be 8-byte aligned.  If the size is not 8-byte
12272 		 * aligned, drop it down by the difference.
12273 		 */
12274 		if (size & (sizeof (uint64_t) - 1))
12275 			size -= size & (sizeof (uint64_t) - 1);
12276 
12277 		if (size < state->dts_reserve) {
12278 			/*
12279 			 * Buffers always must be large enough to accommodate
12280 			 * their prereserved space.  We return E2BIG instead
12281 			 * of ENOMEM in this case to allow for user-level
12282 			 * software to differentiate the cases.
12283 			 */
12284 			return (E2BIG);
12285 		}
12286 
12287 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12288 
12289 		if (rval != ENOMEM) {
12290 			opt[which] = size;
12291 			return (rval);
12292 		}
12293 
12294 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12295 			return (rval);
12296 	}
12297 
12298 	return (ENOMEM);
12299 }
12300 
12301 static int
12302 dtrace_state_buffers(dtrace_state_t *state)
12303 {
12304 	dtrace_speculation_t *spec = state->dts_speculations;
12305 	int rval, i;
12306 
12307 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12308 	    DTRACEOPT_BUFSIZE)) != 0)
12309 		return (rval);
12310 
12311 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12312 	    DTRACEOPT_AGGSIZE)) != 0)
12313 		return (rval);
12314 
12315 	for (i = 0; i < state->dts_nspeculations; i++) {
12316 		if ((rval = dtrace_state_buffer(state,
12317 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12318 			return (rval);
12319 	}
12320 
12321 	return (0);
12322 }
12323 
12324 static void
12325 dtrace_state_prereserve(dtrace_state_t *state)
12326 {
12327 	dtrace_ecb_t *ecb;
12328 	dtrace_probe_t *probe;
12329 
12330 	state->dts_reserve = 0;
12331 
12332 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12333 		return;
12334 
12335 	/*
12336 	 * If our buffer policy is a "fill" buffer policy, we need to set the
12337 	 * prereserved space to be the space required by the END probes.
12338 	 */
12339 	probe = dtrace_probes[dtrace_probeid_end - 1];
12340 	ASSERT(probe != NULL);
12341 
12342 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12343 		if (ecb->dte_state != state)
12344 			continue;
12345 
12346 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12347 	}
12348 }
12349 
12350 static int
12351 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12352 {
12353 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
12354 	dtrace_speculation_t *spec;
12355 	dtrace_buffer_t *buf;
12356 	cyc_handler_t hdlr;
12357 	cyc_time_t when;
12358 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12359 	dtrace_icookie_t cookie;
12360 
12361 	mutex_enter(&cpu_lock);
12362 	mutex_enter(&dtrace_lock);
12363 
12364 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12365 		rval = EBUSY;
12366 		goto out;
12367 	}
12368 
12369 	/*
12370 	 * Before we can perform any checks, we must prime all of the
12371 	 * retained enablings that correspond to this state.
12372 	 */
12373 	dtrace_enabling_prime(state);
12374 
12375 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12376 		rval = EACCES;
12377 		goto out;
12378 	}
12379 
12380 	dtrace_state_prereserve(state);
12381 
12382 	/*
12383 	 * Now we want to do is try to allocate our speculations.
12384 	 * We do not automatically resize the number of speculations; if
12385 	 * this fails, we will fail the operation.
12386 	 */
12387 	nspec = opt[DTRACEOPT_NSPEC];
12388 	ASSERT(nspec != DTRACEOPT_UNSET);
12389 
12390 	if (nspec > INT_MAX) {
12391 		rval = ENOMEM;
12392 		goto out;
12393 	}
12394 
12395 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12396 
12397 	if (spec == NULL) {
12398 		rval = ENOMEM;
12399 		goto out;
12400 	}
12401 
12402 	state->dts_speculations = spec;
12403 	state->dts_nspeculations = (int)nspec;
12404 
12405 	for (i = 0; i < nspec; i++) {
12406 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12407 			rval = ENOMEM;
12408 			goto err;
12409 		}
12410 
12411 		spec[i].dtsp_buffer = buf;
12412 	}
12413 
12414 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12415 		if (dtrace_anon.dta_state == NULL) {
12416 			rval = ENOENT;
12417 			goto out;
12418 		}
12419 
12420 		if (state->dts_necbs != 0) {
12421 			rval = EALREADY;
12422 			goto out;
12423 		}
12424 
12425 		state->dts_anon = dtrace_anon_grab();
12426 		ASSERT(state->dts_anon != NULL);
12427 		state = state->dts_anon;
12428 
12429 		/*
12430 		 * We want "grabanon" to be set in the grabbed state, so we'll
12431 		 * copy that option value from the grabbing state into the
12432 		 * grabbed state.
12433 		 */
12434 		state->dts_options[DTRACEOPT_GRABANON] =
12435 		    opt[DTRACEOPT_GRABANON];
12436 
12437 		*cpu = dtrace_anon.dta_beganon;
12438 
12439 		/*
12440 		 * If the anonymous state is active (as it almost certainly
12441 		 * is if the anonymous enabling ultimately matched anything),
12442 		 * we don't allow any further option processing -- but we
12443 		 * don't return failure.
12444 		 */
12445 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12446 			goto out;
12447 	}
12448 
12449 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12450 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12451 		if (state->dts_aggregations == NULL) {
12452 			/*
12453 			 * We're not going to create an aggregation buffer
12454 			 * because we don't have any ECBs that contain
12455 			 * aggregations -- set this option to 0.
12456 			 */
12457 			opt[DTRACEOPT_AGGSIZE] = 0;
12458 		} else {
12459 			/*
12460 			 * If we have an aggregation buffer, we must also have
12461 			 * a buffer to use as scratch.
12462 			 */
12463 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12464 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12465 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12466 			}
12467 		}
12468 	}
12469 
12470 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12471 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12472 		if (!state->dts_speculates) {
12473 			/*
12474 			 * We're not going to create speculation buffers
12475 			 * because we don't have any ECBs that actually
12476 			 * speculate -- set the speculation size to 0.
12477 			 */
12478 			opt[DTRACEOPT_SPECSIZE] = 0;
12479 		}
12480 	}
12481 
12482 	/*
12483 	 * The bare minimum size for any buffer that we're actually going to
12484 	 * do anything to is sizeof (uint64_t).
12485 	 */
12486 	sz = sizeof (uint64_t);
12487 
12488 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12489 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12490 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12491 		/*
12492 		 * A buffer size has been explicitly set to 0 (or to a size
12493 		 * that will be adjusted to 0) and we need the space -- we
12494 		 * need to return failure.  We return ENOSPC to differentiate
12495 		 * it from failing to allocate a buffer due to failure to meet
12496 		 * the reserve (for which we return E2BIG).
12497 		 */
12498 		rval = ENOSPC;
12499 		goto out;
12500 	}
12501 
12502 	if ((rval = dtrace_state_buffers(state)) != 0)
12503 		goto err;
12504 
12505 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12506 		sz = dtrace_dstate_defsize;
12507 
12508 	do {
12509 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12510 
12511 		if (rval == 0)
12512 			break;
12513 
12514 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12515 			goto err;
12516 	} while (sz >>= 1);
12517 
12518 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12519 
12520 	if (rval != 0)
12521 		goto err;
12522 
12523 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12524 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12525 
12526 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12527 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12528 
12529 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12530 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12531 
12532 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12533 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12534 
12535 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12536 	hdlr.cyh_arg = state;
12537 	hdlr.cyh_level = CY_LOW_LEVEL;
12538 
12539 	when.cyt_when = 0;
12540 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12541 
12542 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12543 
12544 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12545 	hdlr.cyh_arg = state;
12546 	hdlr.cyh_level = CY_LOW_LEVEL;
12547 
12548 	when.cyt_when = 0;
12549 	when.cyt_interval = dtrace_deadman_interval;
12550 
12551 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12552 	state->dts_deadman = cyclic_add(&hdlr, &when);
12553 
12554 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12555 
12556 	/*
12557 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12558 	 * interrupts here both to record the CPU on which we fired the BEGIN
12559 	 * probe (the data from this CPU will be processed first at user
12560 	 * level) and to manually activate the buffer for this CPU.
12561 	 */
12562 	cookie = dtrace_interrupt_disable();
12563 	*cpu = CPU->cpu_id;
12564 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12565 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12566 
12567 	dtrace_probe(dtrace_probeid_begin,
12568 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12569 	dtrace_interrupt_enable(cookie);
12570 	/*
12571 	 * We may have had an exit action from a BEGIN probe; only change our
12572 	 * state to ACTIVE if we're still in WARMUP.
12573 	 */
12574 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12575 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12576 
12577 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12578 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12579 
12580 	/*
12581 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12582 	 * want each CPU to transition its principal buffer out of the
12583 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12584 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12585 	 * atomically transition from processing none of a state's ECBs to
12586 	 * processing all of them.
12587 	 */
12588 	dtrace_xcall(DTRACE_CPUALL,
12589 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12590 	goto out;
12591 
12592 err:
12593 	dtrace_buffer_free(state->dts_buffer);
12594 	dtrace_buffer_free(state->dts_aggbuffer);
12595 
12596 	if ((nspec = state->dts_nspeculations) == 0) {
12597 		ASSERT(state->dts_speculations == NULL);
12598 		goto out;
12599 	}
12600 
12601 	spec = state->dts_speculations;
12602 	ASSERT(spec != NULL);
12603 
12604 	for (i = 0; i < state->dts_nspeculations; i++) {
12605 		if ((buf = spec[i].dtsp_buffer) == NULL)
12606 			break;
12607 
12608 		dtrace_buffer_free(buf);
12609 		kmem_free(buf, bufsize);
12610 	}
12611 
12612 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12613 	state->dts_nspeculations = 0;
12614 	state->dts_speculations = NULL;
12615 
12616 out:
12617 	mutex_exit(&dtrace_lock);
12618 	mutex_exit(&cpu_lock);
12619 
12620 	return (rval);
12621 }
12622 
12623 static int
12624 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12625 {
12626 	dtrace_icookie_t cookie;
12627 
12628 	ASSERT(MUTEX_HELD(&dtrace_lock));
12629 
12630 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12631 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12632 		return (EINVAL);
12633 
12634 	/*
12635 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12636 	 * to be sure that every CPU has seen it.  See below for the details
12637 	 * on why this is done.
12638 	 */
12639 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12640 	dtrace_sync();
12641 
12642 	/*
12643 	 * By this point, it is impossible for any CPU to be still processing
12644 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12645 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12646 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12647 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12648 	 * iff we're in the END probe.
12649 	 */
12650 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12651 	dtrace_sync();
12652 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12653 
12654 	/*
12655 	 * Finally, we can release the reserve and call the END probe.  We
12656 	 * disable interrupts across calling the END probe to allow us to
12657 	 * return the CPU on which we actually called the END probe.  This
12658 	 * allows user-land to be sure that this CPU's principal buffer is
12659 	 * processed last.
12660 	 */
12661 	state->dts_reserve = 0;
12662 
12663 	cookie = dtrace_interrupt_disable();
12664 	*cpu = CPU->cpu_id;
12665 	dtrace_probe(dtrace_probeid_end,
12666 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12667 	dtrace_interrupt_enable(cookie);
12668 
12669 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12670 	dtrace_sync();
12671 
12672 	return (0);
12673 }
12674 
12675 static int
12676 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12677     dtrace_optval_t val)
12678 {
12679 	ASSERT(MUTEX_HELD(&dtrace_lock));
12680 
12681 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12682 		return (EBUSY);
12683 
12684 	if (option >= DTRACEOPT_MAX)
12685 		return (EINVAL);
12686 
12687 	if (option != DTRACEOPT_CPU && val < 0)
12688 		return (EINVAL);
12689 
12690 	switch (option) {
12691 	case DTRACEOPT_DESTRUCTIVE:
12692 		if (dtrace_destructive_disallow)
12693 			return (EACCES);
12694 
12695 		state->dts_cred.dcr_destructive = 1;
12696 		break;
12697 
12698 	case DTRACEOPT_BUFSIZE:
12699 	case DTRACEOPT_DYNVARSIZE:
12700 	case DTRACEOPT_AGGSIZE:
12701 	case DTRACEOPT_SPECSIZE:
12702 	case DTRACEOPT_STRSIZE:
12703 		if (val < 0)
12704 			return (EINVAL);
12705 
12706 		if (val >= LONG_MAX) {
12707 			/*
12708 			 * If this is an otherwise negative value, set it to
12709 			 * the highest multiple of 128m less than LONG_MAX.
12710 			 * Technically, we're adjusting the size without
12711 			 * regard to the buffer resizing policy, but in fact,
12712 			 * this has no effect -- if we set the buffer size to
12713 			 * ~LONG_MAX and the buffer policy is ultimately set to
12714 			 * be "manual", the buffer allocation is guaranteed to
12715 			 * fail, if only because the allocation requires two
12716 			 * buffers.  (We set the the size to the highest
12717 			 * multiple of 128m because it ensures that the size
12718 			 * will remain a multiple of a megabyte when
12719 			 * repeatedly halved -- all the way down to 15m.)
12720 			 */
12721 			val = LONG_MAX - (1 << 27) + 1;
12722 		}
12723 	}
12724 
12725 	state->dts_options[option] = val;
12726 
12727 	return (0);
12728 }
12729 
12730 static void
12731 dtrace_state_destroy(dtrace_state_t *state)
12732 {
12733 	dtrace_ecb_t *ecb;
12734 	dtrace_vstate_t *vstate = &state->dts_vstate;
12735 	minor_t minor = getminor(state->dts_dev);
12736 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12737 	dtrace_speculation_t *spec = state->dts_speculations;
12738 	int nspec = state->dts_nspeculations;
12739 	uint32_t match;
12740 
12741 	ASSERT(MUTEX_HELD(&dtrace_lock));
12742 	ASSERT(MUTEX_HELD(&cpu_lock));
12743 
12744 	/*
12745 	 * First, retract any retained enablings for this state.
12746 	 */
12747 	dtrace_enabling_retract(state);
12748 	ASSERT(state->dts_nretained == 0);
12749 
12750 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12751 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12752 		/*
12753 		 * We have managed to come into dtrace_state_destroy() on a
12754 		 * hot enabling -- almost certainly because of a disorderly
12755 		 * shutdown of a consumer.  (That is, a consumer that is
12756 		 * exiting without having called dtrace_stop().) In this case,
12757 		 * we're going to set our activity to be KILLED, and then
12758 		 * issue a sync to be sure that everyone is out of probe
12759 		 * context before we start blowing away ECBs.
12760 		 */
12761 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12762 		dtrace_sync();
12763 	}
12764 
12765 	/*
12766 	 * Release the credential hold we took in dtrace_state_create().
12767 	 */
12768 	if (state->dts_cred.dcr_cred != NULL)
12769 		crfree(state->dts_cred.dcr_cred);
12770 
12771 	/*
12772 	 * Now we can safely disable and destroy any enabled probes.  Because
12773 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12774 	 * (especially if they're all enabled), we take two passes through the
12775 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12776 	 * in the second we disable whatever is left over.
12777 	 */
12778 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12779 		for (i = 0; i < state->dts_necbs; i++) {
12780 			if ((ecb = state->dts_ecbs[i]) == NULL)
12781 				continue;
12782 
12783 			if (match && ecb->dte_probe != NULL) {
12784 				dtrace_probe_t *probe = ecb->dte_probe;
12785 				dtrace_provider_t *prov = probe->dtpr_provider;
12786 
12787 				if (!(prov->dtpv_priv.dtpp_flags & match))
12788 					continue;
12789 			}
12790 
12791 			dtrace_ecb_disable(ecb);
12792 			dtrace_ecb_destroy(ecb);
12793 		}
12794 
12795 		if (!match)
12796 			break;
12797 	}
12798 
12799 	/*
12800 	 * Before we free the buffers, perform one more sync to assure that
12801 	 * every CPU is out of probe context.
12802 	 */
12803 	dtrace_sync();
12804 
12805 	dtrace_buffer_free(state->dts_buffer);
12806 	dtrace_buffer_free(state->dts_aggbuffer);
12807 
12808 	for (i = 0; i < nspec; i++)
12809 		dtrace_buffer_free(spec[i].dtsp_buffer);
12810 
12811 	if (state->dts_cleaner != CYCLIC_NONE)
12812 		cyclic_remove(state->dts_cleaner);
12813 
12814 	if (state->dts_deadman != CYCLIC_NONE)
12815 		cyclic_remove(state->dts_deadman);
12816 
12817 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12818 	dtrace_vstate_fini(vstate);
12819 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12820 
12821 	if (state->dts_aggregations != NULL) {
12822 #ifdef DEBUG
12823 		for (i = 0; i < state->dts_naggregations; i++)
12824 			ASSERT(state->dts_aggregations[i] == NULL);
12825 #endif
12826 		ASSERT(state->dts_naggregations > 0);
12827 		kmem_free(state->dts_aggregations,
12828 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12829 	}
12830 
12831 	kmem_free(state->dts_buffer, bufsize);
12832 	kmem_free(state->dts_aggbuffer, bufsize);
12833 
12834 	for (i = 0; i < nspec; i++)
12835 		kmem_free(spec[i].dtsp_buffer, bufsize);
12836 
12837 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12838 
12839 	dtrace_format_destroy(state);
12840 
12841 	vmem_destroy(state->dts_aggid_arena);
12842 	ddi_soft_state_free(dtrace_softstate, minor);
12843 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12844 }
12845 
12846 /*
12847  * DTrace Anonymous Enabling Functions
12848  */
12849 static dtrace_state_t *
12850 dtrace_anon_grab(void)
12851 {
12852 	dtrace_state_t *state;
12853 
12854 	ASSERT(MUTEX_HELD(&dtrace_lock));
12855 
12856 	if ((state = dtrace_anon.dta_state) == NULL) {
12857 		ASSERT(dtrace_anon.dta_enabling == NULL);
12858 		return (NULL);
12859 	}
12860 
12861 	ASSERT(dtrace_anon.dta_enabling != NULL);
12862 	ASSERT(dtrace_retained != NULL);
12863 
12864 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12865 	dtrace_anon.dta_enabling = NULL;
12866 	dtrace_anon.dta_state = NULL;
12867 
12868 	return (state);
12869 }
12870 
12871 static void
12872 dtrace_anon_property(void)
12873 {
12874 	int i, rv;
12875 	dtrace_state_t *state;
12876 	dof_hdr_t *dof;
12877 	char c[32];		/* enough for "dof-data-" + digits */
12878 
12879 	ASSERT(MUTEX_HELD(&dtrace_lock));
12880 	ASSERT(MUTEX_HELD(&cpu_lock));
12881 
12882 	for (i = 0; ; i++) {
12883 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12884 
12885 		dtrace_err_verbose = 1;
12886 
12887 		if ((dof = dtrace_dof_property(c)) == NULL) {
12888 			dtrace_err_verbose = 0;
12889 			break;
12890 		}
12891 
12892 		/*
12893 		 * We want to create anonymous state, so we need to transition
12894 		 * the kernel debugger to indicate that DTrace is active.  If
12895 		 * this fails (e.g. because the debugger has modified text in
12896 		 * some way), we won't continue with the processing.
12897 		 */
12898 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12899 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12900 			    "enabling ignored.");
12901 			dtrace_dof_destroy(dof);
12902 			break;
12903 		}
12904 
12905 		/*
12906 		 * If we haven't allocated an anonymous state, we'll do so now.
12907 		 */
12908 		if ((state = dtrace_anon.dta_state) == NULL) {
12909 			state = dtrace_state_create(NULL, NULL);
12910 			dtrace_anon.dta_state = state;
12911 
12912 			if (state == NULL) {
12913 				/*
12914 				 * This basically shouldn't happen:  the only
12915 				 * failure mode from dtrace_state_create() is a
12916 				 * failure of ddi_soft_state_zalloc() that
12917 				 * itself should never happen.  Still, the
12918 				 * interface allows for a failure mode, and
12919 				 * we want to fail as gracefully as possible:
12920 				 * we'll emit an error message and cease
12921 				 * processing anonymous state in this case.
12922 				 */
12923 				cmn_err(CE_WARN, "failed to create "
12924 				    "anonymous state");
12925 				dtrace_dof_destroy(dof);
12926 				break;
12927 			}
12928 		}
12929 
12930 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12931 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12932 
12933 		if (rv == 0)
12934 			rv = dtrace_dof_options(dof, state);
12935 
12936 		dtrace_err_verbose = 0;
12937 		dtrace_dof_destroy(dof);
12938 
12939 		if (rv != 0) {
12940 			/*
12941 			 * This is malformed DOF; chuck any anonymous state
12942 			 * that we created.
12943 			 */
12944 			ASSERT(dtrace_anon.dta_enabling == NULL);
12945 			dtrace_state_destroy(state);
12946 			dtrace_anon.dta_state = NULL;
12947 			break;
12948 		}
12949 
12950 		ASSERT(dtrace_anon.dta_enabling != NULL);
12951 	}
12952 
12953 	if (dtrace_anon.dta_enabling != NULL) {
12954 		int rval;
12955 
12956 		/*
12957 		 * dtrace_enabling_retain() can only fail because we are
12958 		 * trying to retain more enablings than are allowed -- but
12959 		 * we only have one anonymous enabling, and we are guaranteed
12960 		 * to be allowed at least one retained enabling; we assert
12961 		 * that dtrace_enabling_retain() returns success.
12962 		 */
12963 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12964 		ASSERT(rval == 0);
12965 
12966 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12967 	}
12968 }
12969 
12970 /*
12971  * DTrace Helper Functions
12972  */
12973 static void
12974 dtrace_helper_trace(dtrace_helper_action_t *helper,
12975     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12976 {
12977 	uint32_t size, next, nnext, i;
12978 	dtrace_helptrace_t *ent;
12979 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12980 
12981 	if (!dtrace_helptrace_enabled)
12982 		return;
12983 
12984 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12985 
12986 	/*
12987 	 * What would a tracing framework be without its own tracing
12988 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12989 	 */
12990 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12991 	    sizeof (uint64_t) - sizeof (uint64_t);
12992 
12993 	/*
12994 	 * Iterate until we can allocate a slot in the trace buffer.
12995 	 */
12996 	do {
12997 		next = dtrace_helptrace_next;
12998 
12999 		if (next + size < dtrace_helptrace_bufsize) {
13000 			nnext = next + size;
13001 		} else {
13002 			nnext = size;
13003 		}
13004 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13005 
13006 	/*
13007 	 * We have our slot; fill it in.
13008 	 */
13009 	if (nnext == size)
13010 		next = 0;
13011 
13012 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13013 	ent->dtht_helper = helper;
13014 	ent->dtht_where = where;
13015 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13016 
13017 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13018 	    mstate->dtms_fltoffs : -1;
13019 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13020 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13021 
13022 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13023 		dtrace_statvar_t *svar;
13024 
13025 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13026 			continue;
13027 
13028 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13029 		ent->dtht_locals[i] =
13030 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13031 	}
13032 }
13033 
13034 static uint64_t
13035 dtrace_helper(int which, dtrace_mstate_t *mstate,
13036     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13037 {
13038 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13039 	uint64_t sarg0 = mstate->dtms_arg[0];
13040 	uint64_t sarg1 = mstate->dtms_arg[1];
13041 	uint64_t rval;
13042 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13043 	dtrace_helper_action_t *helper;
13044 	dtrace_vstate_t *vstate;
13045 	dtrace_difo_t *pred;
13046 	int i, trace = dtrace_helptrace_enabled;
13047 
13048 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13049 
13050 	if (helpers == NULL)
13051 		return (0);
13052 
13053 	if ((helper = helpers->dthps_actions[which]) == NULL)
13054 		return (0);
13055 
13056 	vstate = &helpers->dthps_vstate;
13057 	mstate->dtms_arg[0] = arg0;
13058 	mstate->dtms_arg[1] = arg1;
13059 
13060 	/*
13061 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13062 	 * we'll call the corresponding actions.  Note that the below calls
13063 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13064 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13065 	 * the stored DIF offset with its own (which is the desired behavior).
13066 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13067 	 * from machine state; this is okay, too.
13068 	 */
13069 	for (; helper != NULL; helper = helper->dtha_next) {
13070 		if ((pred = helper->dtha_predicate) != NULL) {
13071 			if (trace)
13072 				dtrace_helper_trace(helper, mstate, vstate, 0);
13073 
13074 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13075 				goto next;
13076 
13077 			if (*flags & CPU_DTRACE_FAULT)
13078 				goto err;
13079 		}
13080 
13081 		for (i = 0; i < helper->dtha_nactions; i++) {
13082 			if (trace)
13083 				dtrace_helper_trace(helper,
13084 				    mstate, vstate, i + 1);
13085 
13086 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13087 			    mstate, vstate, state);
13088 
13089 			if (*flags & CPU_DTRACE_FAULT)
13090 				goto err;
13091 		}
13092 
13093 next:
13094 		if (trace)
13095 			dtrace_helper_trace(helper, mstate, vstate,
13096 			    DTRACE_HELPTRACE_NEXT);
13097 	}
13098 
13099 	if (trace)
13100 		dtrace_helper_trace(helper, mstate, vstate,
13101 		    DTRACE_HELPTRACE_DONE);
13102 
13103 	/*
13104 	 * Restore the arg0 that we saved upon entry.
13105 	 */
13106 	mstate->dtms_arg[0] = sarg0;
13107 	mstate->dtms_arg[1] = sarg1;
13108 
13109 	return (rval);
13110 
13111 err:
13112 	if (trace)
13113 		dtrace_helper_trace(helper, mstate, vstate,
13114 		    DTRACE_HELPTRACE_ERR);
13115 
13116 	/*
13117 	 * Restore the arg0 that we saved upon entry.
13118 	 */
13119 	mstate->dtms_arg[0] = sarg0;
13120 	mstate->dtms_arg[1] = sarg1;
13121 
13122 	return (NULL);
13123 }
13124 
13125 static void
13126 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13127     dtrace_vstate_t *vstate)
13128 {
13129 	int i;
13130 
13131 	if (helper->dtha_predicate != NULL)
13132 		dtrace_difo_release(helper->dtha_predicate, vstate);
13133 
13134 	for (i = 0; i < helper->dtha_nactions; i++) {
13135 		ASSERT(helper->dtha_actions[i] != NULL);
13136 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13137 	}
13138 
13139 	kmem_free(helper->dtha_actions,
13140 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13141 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13142 }
13143 
13144 static int
13145 dtrace_helper_destroygen(int gen)
13146 {
13147 	proc_t *p = curproc;
13148 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13149 	dtrace_vstate_t *vstate;
13150 	int i;
13151 
13152 	ASSERT(MUTEX_HELD(&dtrace_lock));
13153 
13154 	if (help == NULL || gen > help->dthps_generation)
13155 		return (EINVAL);
13156 
13157 	vstate = &help->dthps_vstate;
13158 
13159 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13160 		dtrace_helper_action_t *last = NULL, *h, *next;
13161 
13162 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13163 			next = h->dtha_next;
13164 
13165 			if (h->dtha_generation == gen) {
13166 				if (last != NULL) {
13167 					last->dtha_next = next;
13168 				} else {
13169 					help->dthps_actions[i] = next;
13170 				}
13171 
13172 				dtrace_helper_action_destroy(h, vstate);
13173 			} else {
13174 				last = h;
13175 			}
13176 		}
13177 	}
13178 
13179 	/*
13180 	 * Interate until we've cleared out all helper providers with the
13181 	 * given generation number.
13182 	 */
13183 	for (;;) {
13184 		dtrace_helper_provider_t *prov;
13185 
13186 		/*
13187 		 * Look for a helper provider with the right generation. We
13188 		 * have to start back at the beginning of the list each time
13189 		 * because we drop dtrace_lock. It's unlikely that we'll make
13190 		 * more than two passes.
13191 		 */
13192 		for (i = 0; i < help->dthps_nprovs; i++) {
13193 			prov = help->dthps_provs[i];
13194 
13195 			if (prov->dthp_generation == gen)
13196 				break;
13197 		}
13198 
13199 		/*
13200 		 * If there were no matches, we're done.
13201 		 */
13202 		if (i == help->dthps_nprovs)
13203 			break;
13204 
13205 		/*
13206 		 * Move the last helper provider into this slot.
13207 		 */
13208 		help->dthps_nprovs--;
13209 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13210 		help->dthps_provs[help->dthps_nprovs] = NULL;
13211 
13212 		mutex_exit(&dtrace_lock);
13213 
13214 		/*
13215 		 * If we have a meta provider, remove this helper provider.
13216 		 */
13217 		mutex_enter(&dtrace_meta_lock);
13218 		if (dtrace_meta_pid != NULL) {
13219 			ASSERT(dtrace_deferred_pid == NULL);
13220 			dtrace_helper_provider_remove(&prov->dthp_prov,
13221 			    p->p_pid);
13222 		}
13223 		mutex_exit(&dtrace_meta_lock);
13224 
13225 		dtrace_helper_provider_destroy(prov);
13226 
13227 		mutex_enter(&dtrace_lock);
13228 	}
13229 
13230 	return (0);
13231 }
13232 
13233 static int
13234 dtrace_helper_validate(dtrace_helper_action_t *helper)
13235 {
13236 	int err = 0, i;
13237 	dtrace_difo_t *dp;
13238 
13239 	if ((dp = helper->dtha_predicate) != NULL)
13240 		err += dtrace_difo_validate_helper(dp);
13241 
13242 	for (i = 0; i < helper->dtha_nactions; i++)
13243 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13244 
13245 	return (err == 0);
13246 }
13247 
13248 static int
13249 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13250 {
13251 	dtrace_helpers_t *help;
13252 	dtrace_helper_action_t *helper, *last;
13253 	dtrace_actdesc_t *act;
13254 	dtrace_vstate_t *vstate;
13255 	dtrace_predicate_t *pred;
13256 	int count = 0, nactions = 0, i;
13257 
13258 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13259 		return (EINVAL);
13260 
13261 	help = curproc->p_dtrace_helpers;
13262 	last = help->dthps_actions[which];
13263 	vstate = &help->dthps_vstate;
13264 
13265 	for (count = 0; last != NULL; last = last->dtha_next) {
13266 		count++;
13267 		if (last->dtha_next == NULL)
13268 			break;
13269 	}
13270 
13271 	/*
13272 	 * If we already have dtrace_helper_actions_max helper actions for this
13273 	 * helper action type, we'll refuse to add a new one.
13274 	 */
13275 	if (count >= dtrace_helper_actions_max)
13276 		return (ENOSPC);
13277 
13278 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13279 	helper->dtha_generation = help->dthps_generation;
13280 
13281 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13282 		ASSERT(pred->dtp_difo != NULL);
13283 		dtrace_difo_hold(pred->dtp_difo);
13284 		helper->dtha_predicate = pred->dtp_difo;
13285 	}
13286 
13287 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13288 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13289 			goto err;
13290 
13291 		if (act->dtad_difo == NULL)
13292 			goto err;
13293 
13294 		nactions++;
13295 	}
13296 
13297 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13298 	    (helper->dtha_nactions = nactions), KM_SLEEP);
13299 
13300 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13301 		dtrace_difo_hold(act->dtad_difo);
13302 		helper->dtha_actions[i++] = act->dtad_difo;
13303 	}
13304 
13305 	if (!dtrace_helper_validate(helper))
13306 		goto err;
13307 
13308 	if (last == NULL) {
13309 		help->dthps_actions[which] = helper;
13310 	} else {
13311 		last->dtha_next = helper;
13312 	}
13313 
13314 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13315 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13316 		dtrace_helptrace_next = 0;
13317 	}
13318 
13319 	return (0);
13320 err:
13321 	dtrace_helper_action_destroy(helper, vstate);
13322 	return (EINVAL);
13323 }
13324 
13325 static void
13326 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13327     dof_helper_t *dofhp)
13328 {
13329 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13330 
13331 	mutex_enter(&dtrace_meta_lock);
13332 	mutex_enter(&dtrace_lock);
13333 
13334 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13335 		/*
13336 		 * If the dtrace module is loaded but not attached, or if
13337 		 * there aren't isn't a meta provider registered to deal with
13338 		 * these provider descriptions, we need to postpone creating
13339 		 * the actual providers until later.
13340 		 */
13341 
13342 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13343 		    dtrace_deferred_pid != help) {
13344 			help->dthps_deferred = 1;
13345 			help->dthps_pid = p->p_pid;
13346 			help->dthps_next = dtrace_deferred_pid;
13347 			help->dthps_prev = NULL;
13348 			if (dtrace_deferred_pid != NULL)
13349 				dtrace_deferred_pid->dthps_prev = help;
13350 			dtrace_deferred_pid = help;
13351 		}
13352 
13353 		mutex_exit(&dtrace_lock);
13354 
13355 	} else if (dofhp != NULL) {
13356 		/*
13357 		 * If the dtrace module is loaded and we have a particular
13358 		 * helper provider description, pass that off to the
13359 		 * meta provider.
13360 		 */
13361 
13362 		mutex_exit(&dtrace_lock);
13363 
13364 		dtrace_helper_provide(dofhp, p->p_pid);
13365 
13366 	} else {
13367 		/*
13368 		 * Otherwise, just pass all the helper provider descriptions
13369 		 * off to the meta provider.
13370 		 */
13371 
13372 		int i;
13373 		mutex_exit(&dtrace_lock);
13374 
13375 		for (i = 0; i < help->dthps_nprovs; i++) {
13376 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13377 			    p->p_pid);
13378 		}
13379 	}
13380 
13381 	mutex_exit(&dtrace_meta_lock);
13382 }
13383 
13384 static int
13385 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13386 {
13387 	dtrace_helpers_t *help;
13388 	dtrace_helper_provider_t *hprov, **tmp_provs;
13389 	uint_t tmp_maxprovs, i;
13390 
13391 	ASSERT(MUTEX_HELD(&dtrace_lock));
13392 
13393 	help = curproc->p_dtrace_helpers;
13394 	ASSERT(help != NULL);
13395 
13396 	/*
13397 	 * If we already have dtrace_helper_providers_max helper providers,
13398 	 * we're refuse to add a new one.
13399 	 */
13400 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13401 		return (ENOSPC);
13402 
13403 	/*
13404 	 * Check to make sure this isn't a duplicate.
13405 	 */
13406 	for (i = 0; i < help->dthps_nprovs; i++) {
13407 		if (dofhp->dofhp_addr ==
13408 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13409 			return (EALREADY);
13410 	}
13411 
13412 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13413 	hprov->dthp_prov = *dofhp;
13414 	hprov->dthp_ref = 1;
13415 	hprov->dthp_generation = gen;
13416 
13417 	/*
13418 	 * Allocate a bigger table for helper providers if it's already full.
13419 	 */
13420 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13421 		tmp_maxprovs = help->dthps_maxprovs;
13422 		tmp_provs = help->dthps_provs;
13423 
13424 		if (help->dthps_maxprovs == 0)
13425 			help->dthps_maxprovs = 2;
13426 		else
13427 			help->dthps_maxprovs *= 2;
13428 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13429 			help->dthps_maxprovs = dtrace_helper_providers_max;
13430 
13431 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13432 
13433 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13434 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13435 
13436 		if (tmp_provs != NULL) {
13437 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13438 			    sizeof (dtrace_helper_provider_t *));
13439 			kmem_free(tmp_provs, tmp_maxprovs *
13440 			    sizeof (dtrace_helper_provider_t *));
13441 		}
13442 	}
13443 
13444 	help->dthps_provs[help->dthps_nprovs] = hprov;
13445 	help->dthps_nprovs++;
13446 
13447 	return (0);
13448 }
13449 
13450 static void
13451 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13452 {
13453 	mutex_enter(&dtrace_lock);
13454 
13455 	if (--hprov->dthp_ref == 0) {
13456 		dof_hdr_t *dof;
13457 		mutex_exit(&dtrace_lock);
13458 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13459 		dtrace_dof_destroy(dof);
13460 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13461 	} else {
13462 		mutex_exit(&dtrace_lock);
13463 	}
13464 }
13465 
13466 static int
13467 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13468 {
13469 	uintptr_t daddr = (uintptr_t)dof;
13470 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13471 	dof_provider_t *provider;
13472 	dof_probe_t *probe;
13473 	uint8_t *arg;
13474 	char *strtab, *typestr;
13475 	dof_stridx_t typeidx;
13476 	size_t typesz;
13477 	uint_t nprobes, j, k;
13478 
13479 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13480 
13481 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13482 		dtrace_dof_error(dof, "misaligned section offset");
13483 		return (-1);
13484 	}
13485 
13486 	/*
13487 	 * The section needs to be large enough to contain the DOF provider
13488 	 * structure appropriate for the given version.
13489 	 */
13490 	if (sec->dofs_size <
13491 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13492 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13493 	    sizeof (dof_provider_t))) {
13494 		dtrace_dof_error(dof, "provider section too small");
13495 		return (-1);
13496 	}
13497 
13498 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13499 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13500 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13501 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13502 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13503 
13504 	if (str_sec == NULL || prb_sec == NULL ||
13505 	    arg_sec == NULL || off_sec == NULL)
13506 		return (-1);
13507 
13508 	enoff_sec = NULL;
13509 
13510 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13511 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13512 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13513 	    provider->dofpv_prenoffs)) == NULL)
13514 		return (-1);
13515 
13516 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13517 
13518 	if (provider->dofpv_name >= str_sec->dofs_size ||
13519 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13520 		dtrace_dof_error(dof, "invalid provider name");
13521 		return (-1);
13522 	}
13523 
13524 	if (prb_sec->dofs_entsize == 0 ||
13525 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13526 		dtrace_dof_error(dof, "invalid entry size");
13527 		return (-1);
13528 	}
13529 
13530 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13531 		dtrace_dof_error(dof, "misaligned entry size");
13532 		return (-1);
13533 	}
13534 
13535 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13536 		dtrace_dof_error(dof, "invalid entry size");
13537 		return (-1);
13538 	}
13539 
13540 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13541 		dtrace_dof_error(dof, "misaligned section offset");
13542 		return (-1);
13543 	}
13544 
13545 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13546 		dtrace_dof_error(dof, "invalid entry size");
13547 		return (-1);
13548 	}
13549 
13550 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13551 
13552 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13553 
13554 	/*
13555 	 * Take a pass through the probes to check for errors.
13556 	 */
13557 	for (j = 0; j < nprobes; j++) {
13558 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13559 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13560 
13561 		if (probe->dofpr_func >= str_sec->dofs_size) {
13562 			dtrace_dof_error(dof, "invalid function name");
13563 			return (-1);
13564 		}
13565 
13566 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13567 			dtrace_dof_error(dof, "function name too long");
13568 			return (-1);
13569 		}
13570 
13571 		if (probe->dofpr_name >= str_sec->dofs_size ||
13572 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13573 			dtrace_dof_error(dof, "invalid probe name");
13574 			return (-1);
13575 		}
13576 
13577 		/*
13578 		 * The offset count must not wrap the index, and the offsets
13579 		 * must also not overflow the section's data.
13580 		 */
13581 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13582 		    probe->dofpr_offidx ||
13583 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13584 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13585 			dtrace_dof_error(dof, "invalid probe offset");
13586 			return (-1);
13587 		}
13588 
13589 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13590 			/*
13591 			 * If there's no is-enabled offset section, make sure
13592 			 * there aren't any is-enabled offsets. Otherwise
13593 			 * perform the same checks as for probe offsets
13594 			 * (immediately above).
13595 			 */
13596 			if (enoff_sec == NULL) {
13597 				if (probe->dofpr_enoffidx != 0 ||
13598 				    probe->dofpr_nenoffs != 0) {
13599 					dtrace_dof_error(dof, "is-enabled "
13600 					    "offsets with null section");
13601 					return (-1);
13602 				}
13603 			} else if (probe->dofpr_enoffidx +
13604 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13605 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13606 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13607 				dtrace_dof_error(dof, "invalid is-enabled "
13608 				    "offset");
13609 				return (-1);
13610 			}
13611 
13612 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13613 				dtrace_dof_error(dof, "zero probe and "
13614 				    "is-enabled offsets");
13615 				return (-1);
13616 			}
13617 		} else if (probe->dofpr_noffs == 0) {
13618 			dtrace_dof_error(dof, "zero probe offsets");
13619 			return (-1);
13620 		}
13621 
13622 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13623 		    probe->dofpr_argidx ||
13624 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13625 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13626 			dtrace_dof_error(dof, "invalid args");
13627 			return (-1);
13628 		}
13629 
13630 		typeidx = probe->dofpr_nargv;
13631 		typestr = strtab + probe->dofpr_nargv;
13632 		for (k = 0; k < probe->dofpr_nargc; k++) {
13633 			if (typeidx >= str_sec->dofs_size) {
13634 				dtrace_dof_error(dof, "bad "
13635 				    "native argument type");
13636 				return (-1);
13637 			}
13638 
13639 			typesz = strlen(typestr) + 1;
13640 			if (typesz > DTRACE_ARGTYPELEN) {
13641 				dtrace_dof_error(dof, "native "
13642 				    "argument type too long");
13643 				return (-1);
13644 			}
13645 			typeidx += typesz;
13646 			typestr += typesz;
13647 		}
13648 
13649 		typeidx = probe->dofpr_xargv;
13650 		typestr = strtab + probe->dofpr_xargv;
13651 		for (k = 0; k < probe->dofpr_xargc; k++) {
13652 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13653 				dtrace_dof_error(dof, "bad "
13654 				    "native argument index");
13655 				return (-1);
13656 			}
13657 
13658 			if (typeidx >= str_sec->dofs_size) {
13659 				dtrace_dof_error(dof, "bad "
13660 				    "translated argument type");
13661 				return (-1);
13662 			}
13663 
13664 			typesz = strlen(typestr) + 1;
13665 			if (typesz > DTRACE_ARGTYPELEN) {
13666 				dtrace_dof_error(dof, "translated argument "
13667 				    "type too long");
13668 				return (-1);
13669 			}
13670 
13671 			typeidx += typesz;
13672 			typestr += typesz;
13673 		}
13674 	}
13675 
13676 	return (0);
13677 }
13678 
13679 static int
13680 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13681 {
13682 	dtrace_helpers_t *help;
13683 	dtrace_vstate_t *vstate;
13684 	dtrace_enabling_t *enab = NULL;
13685 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13686 	uintptr_t daddr = (uintptr_t)dof;
13687 
13688 	ASSERT(MUTEX_HELD(&dtrace_lock));
13689 
13690 	if ((help = curproc->p_dtrace_helpers) == NULL)
13691 		help = dtrace_helpers_create(curproc);
13692 
13693 	vstate = &help->dthps_vstate;
13694 
13695 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13696 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13697 		dtrace_dof_destroy(dof);
13698 		return (rv);
13699 	}
13700 
13701 	/*
13702 	 * Look for helper providers and validate their descriptions.
13703 	 */
13704 	if (dhp != NULL) {
13705 		for (i = 0; i < dof->dofh_secnum; i++) {
13706 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13707 			    dof->dofh_secoff + i * dof->dofh_secsize);
13708 
13709 			if (sec->dofs_type != DOF_SECT_PROVIDER)
13710 				continue;
13711 
13712 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13713 				dtrace_enabling_destroy(enab);
13714 				dtrace_dof_destroy(dof);
13715 				return (-1);
13716 			}
13717 
13718 			nprovs++;
13719 		}
13720 	}
13721 
13722 	/*
13723 	 * Now we need to walk through the ECB descriptions in the enabling.
13724 	 */
13725 	for (i = 0; i < enab->dten_ndesc; i++) {
13726 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13727 		dtrace_probedesc_t *desc = &ep->dted_probe;
13728 
13729 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13730 			continue;
13731 
13732 		if (strcmp(desc->dtpd_mod, "helper") != 0)
13733 			continue;
13734 
13735 		if (strcmp(desc->dtpd_func, "ustack") != 0)
13736 			continue;
13737 
13738 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13739 		    ep)) != 0) {
13740 			/*
13741 			 * Adding this helper action failed -- we are now going
13742 			 * to rip out the entire generation and return failure.
13743 			 */
13744 			(void) dtrace_helper_destroygen(help->dthps_generation);
13745 			dtrace_enabling_destroy(enab);
13746 			dtrace_dof_destroy(dof);
13747 			return (-1);
13748 		}
13749 
13750 		nhelpers++;
13751 	}
13752 
13753 	if (nhelpers < enab->dten_ndesc)
13754 		dtrace_dof_error(dof, "unmatched helpers");
13755 
13756 	gen = help->dthps_generation++;
13757 	dtrace_enabling_destroy(enab);
13758 
13759 	if (dhp != NULL && nprovs > 0) {
13760 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13761 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13762 			mutex_exit(&dtrace_lock);
13763 			dtrace_helper_provider_register(curproc, help, dhp);
13764 			mutex_enter(&dtrace_lock);
13765 
13766 			destroy = 0;
13767 		}
13768 	}
13769 
13770 	if (destroy)
13771 		dtrace_dof_destroy(dof);
13772 
13773 	return (gen);
13774 }
13775 
13776 static dtrace_helpers_t *
13777 dtrace_helpers_create(proc_t *p)
13778 {
13779 	dtrace_helpers_t *help;
13780 
13781 	ASSERT(MUTEX_HELD(&dtrace_lock));
13782 	ASSERT(p->p_dtrace_helpers == NULL);
13783 
13784 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13785 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13786 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13787 
13788 	p->p_dtrace_helpers = help;
13789 	dtrace_helpers++;
13790 
13791 	return (help);
13792 }
13793 
13794 static void
13795 dtrace_helpers_destroy(void)
13796 {
13797 	dtrace_helpers_t *help;
13798 	dtrace_vstate_t *vstate;
13799 	proc_t *p = curproc;
13800 	int i;
13801 
13802 	mutex_enter(&dtrace_lock);
13803 
13804 	ASSERT(p->p_dtrace_helpers != NULL);
13805 	ASSERT(dtrace_helpers > 0);
13806 
13807 	help = p->p_dtrace_helpers;
13808 	vstate = &help->dthps_vstate;
13809 
13810 	/*
13811 	 * We're now going to lose the help from this process.
13812 	 */
13813 	p->p_dtrace_helpers = NULL;
13814 	dtrace_sync();
13815 
13816 	/*
13817 	 * Destory the helper actions.
13818 	 */
13819 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13820 		dtrace_helper_action_t *h, *next;
13821 
13822 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13823 			next = h->dtha_next;
13824 			dtrace_helper_action_destroy(h, vstate);
13825 			h = next;
13826 		}
13827 	}
13828 
13829 	mutex_exit(&dtrace_lock);
13830 
13831 	/*
13832 	 * Destroy the helper providers.
13833 	 */
13834 	if (help->dthps_maxprovs > 0) {
13835 		mutex_enter(&dtrace_meta_lock);
13836 		if (dtrace_meta_pid != NULL) {
13837 			ASSERT(dtrace_deferred_pid == NULL);
13838 
13839 			for (i = 0; i < help->dthps_nprovs; i++) {
13840 				dtrace_helper_provider_remove(
13841 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13842 			}
13843 		} else {
13844 			mutex_enter(&dtrace_lock);
13845 			ASSERT(help->dthps_deferred == 0 ||
13846 			    help->dthps_next != NULL ||
13847 			    help->dthps_prev != NULL ||
13848 			    help == dtrace_deferred_pid);
13849 
13850 			/*
13851 			 * Remove the helper from the deferred list.
13852 			 */
13853 			if (help->dthps_next != NULL)
13854 				help->dthps_next->dthps_prev = help->dthps_prev;
13855 			if (help->dthps_prev != NULL)
13856 				help->dthps_prev->dthps_next = help->dthps_next;
13857 			if (dtrace_deferred_pid == help) {
13858 				dtrace_deferred_pid = help->dthps_next;
13859 				ASSERT(help->dthps_prev == NULL);
13860 			}
13861 
13862 			mutex_exit(&dtrace_lock);
13863 		}
13864 
13865 		mutex_exit(&dtrace_meta_lock);
13866 
13867 		for (i = 0; i < help->dthps_nprovs; i++) {
13868 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13869 		}
13870 
13871 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13872 		    sizeof (dtrace_helper_provider_t *));
13873 	}
13874 
13875 	mutex_enter(&dtrace_lock);
13876 
13877 	dtrace_vstate_fini(&help->dthps_vstate);
13878 	kmem_free(help->dthps_actions,
13879 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13880 	kmem_free(help, sizeof (dtrace_helpers_t));
13881 
13882 	--dtrace_helpers;
13883 	mutex_exit(&dtrace_lock);
13884 }
13885 
13886 static void
13887 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13888 {
13889 	dtrace_helpers_t *help, *newhelp;
13890 	dtrace_helper_action_t *helper, *new, *last;
13891 	dtrace_difo_t *dp;
13892 	dtrace_vstate_t *vstate;
13893 	int i, j, sz, hasprovs = 0;
13894 
13895 	mutex_enter(&dtrace_lock);
13896 	ASSERT(from->p_dtrace_helpers != NULL);
13897 	ASSERT(dtrace_helpers > 0);
13898 
13899 	help = from->p_dtrace_helpers;
13900 	newhelp = dtrace_helpers_create(to);
13901 	ASSERT(to->p_dtrace_helpers != NULL);
13902 
13903 	newhelp->dthps_generation = help->dthps_generation;
13904 	vstate = &newhelp->dthps_vstate;
13905 
13906 	/*
13907 	 * Duplicate the helper actions.
13908 	 */
13909 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13910 		if ((helper = help->dthps_actions[i]) == NULL)
13911 			continue;
13912 
13913 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13914 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13915 			    KM_SLEEP);
13916 			new->dtha_generation = helper->dtha_generation;
13917 
13918 			if ((dp = helper->dtha_predicate) != NULL) {
13919 				dp = dtrace_difo_duplicate(dp, vstate);
13920 				new->dtha_predicate = dp;
13921 			}
13922 
13923 			new->dtha_nactions = helper->dtha_nactions;
13924 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
13925 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
13926 
13927 			for (j = 0; j < new->dtha_nactions; j++) {
13928 				dtrace_difo_t *dp = helper->dtha_actions[j];
13929 
13930 				ASSERT(dp != NULL);
13931 				dp = dtrace_difo_duplicate(dp, vstate);
13932 				new->dtha_actions[j] = dp;
13933 			}
13934 
13935 			if (last != NULL) {
13936 				last->dtha_next = new;
13937 			} else {
13938 				newhelp->dthps_actions[i] = new;
13939 			}
13940 
13941 			last = new;
13942 		}
13943 	}
13944 
13945 	/*
13946 	 * Duplicate the helper providers and register them with the
13947 	 * DTrace framework.
13948 	 */
13949 	if (help->dthps_nprovs > 0) {
13950 		newhelp->dthps_nprovs = help->dthps_nprovs;
13951 		newhelp->dthps_maxprovs = help->dthps_nprovs;
13952 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13953 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13954 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13955 			newhelp->dthps_provs[i] = help->dthps_provs[i];
13956 			newhelp->dthps_provs[i]->dthp_ref++;
13957 		}
13958 
13959 		hasprovs = 1;
13960 	}
13961 
13962 	mutex_exit(&dtrace_lock);
13963 
13964 	if (hasprovs)
13965 		dtrace_helper_provider_register(to, newhelp, NULL);
13966 }
13967 
13968 /*
13969  * DTrace Hook Functions
13970  */
13971 static void
13972 dtrace_module_loaded(struct modctl *ctl)
13973 {
13974 	dtrace_provider_t *prv;
13975 
13976 	mutex_enter(&dtrace_provider_lock);
13977 	mutex_enter(&mod_lock);
13978 
13979 	ASSERT(ctl->mod_busy);
13980 
13981 	/*
13982 	 * We're going to call each providers per-module provide operation
13983 	 * specifying only this module.
13984 	 */
13985 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13986 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13987 
13988 	mutex_exit(&mod_lock);
13989 	mutex_exit(&dtrace_provider_lock);
13990 
13991 	/*
13992 	 * If we have any retained enablings, we need to match against them.
13993 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13994 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13995 	 * module.  (In particular, this happens when loading scheduling
13996 	 * classes.)  So if we have any retained enablings, we need to dispatch
13997 	 * our task queue to do the match for us.
13998 	 */
13999 	mutex_enter(&dtrace_lock);
14000 
14001 	if (dtrace_retained == NULL) {
14002 		mutex_exit(&dtrace_lock);
14003 		return;
14004 	}
14005 
14006 	(void) taskq_dispatch(dtrace_taskq,
14007 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14008 
14009 	mutex_exit(&dtrace_lock);
14010 
14011 	/*
14012 	 * And now, for a little heuristic sleaze:  in general, we want to
14013 	 * match modules as soon as they load.  However, we cannot guarantee
14014 	 * this, because it would lead us to the lock ordering violation
14015 	 * outlined above.  The common case, of course, is that cpu_lock is
14016 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14017 	 * long enough for the task queue to do its work.  If it's not, it's
14018 	 * not a serious problem -- it just means that the module that we
14019 	 * just loaded may not be immediately instrumentable.
14020 	 */
14021 	delay(1);
14022 }
14023 
14024 static void
14025 dtrace_module_unloaded(struct modctl *ctl)
14026 {
14027 	dtrace_probe_t template, *probe, *first, *next;
14028 	dtrace_provider_t *prov;
14029 
14030 	template.dtpr_mod = ctl->mod_modname;
14031 
14032 	mutex_enter(&dtrace_provider_lock);
14033 	mutex_enter(&mod_lock);
14034 	mutex_enter(&dtrace_lock);
14035 
14036 	if (dtrace_bymod == NULL) {
14037 		/*
14038 		 * The DTrace module is loaded (obviously) but not attached;
14039 		 * we don't have any work to do.
14040 		 */
14041 		mutex_exit(&dtrace_provider_lock);
14042 		mutex_exit(&mod_lock);
14043 		mutex_exit(&dtrace_lock);
14044 		return;
14045 	}
14046 
14047 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14048 	    probe != NULL; probe = probe->dtpr_nextmod) {
14049 		if (probe->dtpr_ecb != NULL) {
14050 			mutex_exit(&dtrace_provider_lock);
14051 			mutex_exit(&mod_lock);
14052 			mutex_exit(&dtrace_lock);
14053 
14054 			/*
14055 			 * This shouldn't _actually_ be possible -- we're
14056 			 * unloading a module that has an enabled probe in it.
14057 			 * (It's normally up to the provider to make sure that
14058 			 * this can't happen.)  However, because dtps_enable()
14059 			 * doesn't have a failure mode, there can be an
14060 			 * enable/unload race.  Upshot:  we don't want to
14061 			 * assert, but we're not going to disable the
14062 			 * probe, either.
14063 			 */
14064 			if (dtrace_err_verbose) {
14065 				cmn_err(CE_WARN, "unloaded module '%s' had "
14066 				    "enabled probes", ctl->mod_modname);
14067 			}
14068 
14069 			return;
14070 		}
14071 	}
14072 
14073 	probe = first;
14074 
14075 	for (first = NULL; probe != NULL; probe = next) {
14076 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14077 
14078 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14079 
14080 		next = probe->dtpr_nextmod;
14081 		dtrace_hash_remove(dtrace_bymod, probe);
14082 		dtrace_hash_remove(dtrace_byfunc, probe);
14083 		dtrace_hash_remove(dtrace_byname, probe);
14084 
14085 		if (first == NULL) {
14086 			first = probe;
14087 			probe->dtpr_nextmod = NULL;
14088 		} else {
14089 			probe->dtpr_nextmod = first;
14090 			first = probe;
14091 		}
14092 	}
14093 
14094 	/*
14095 	 * We've removed all of the module's probes from the hash chains and
14096 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14097 	 * everyone has cleared out from any probe array processing.
14098 	 */
14099 	dtrace_sync();
14100 
14101 	for (probe = first; probe != NULL; probe = first) {
14102 		first = probe->dtpr_nextmod;
14103 		prov = probe->dtpr_provider;
14104 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14105 		    probe->dtpr_arg);
14106 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14107 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14108 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14109 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14110 		kmem_free(probe, sizeof (dtrace_probe_t));
14111 	}
14112 
14113 	mutex_exit(&dtrace_lock);
14114 	mutex_exit(&mod_lock);
14115 	mutex_exit(&dtrace_provider_lock);
14116 }
14117 
14118 void
14119 dtrace_suspend(void)
14120 {
14121 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14122 }
14123 
14124 void
14125 dtrace_resume(void)
14126 {
14127 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14128 }
14129 
14130 static int
14131 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14132 {
14133 	ASSERT(MUTEX_HELD(&cpu_lock));
14134 	mutex_enter(&dtrace_lock);
14135 
14136 	switch (what) {
14137 	case CPU_CONFIG: {
14138 		dtrace_state_t *state;
14139 		dtrace_optval_t *opt, rs, c;
14140 
14141 		/*
14142 		 * For now, we only allocate a new buffer for anonymous state.
14143 		 */
14144 		if ((state = dtrace_anon.dta_state) == NULL)
14145 			break;
14146 
14147 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14148 			break;
14149 
14150 		opt = state->dts_options;
14151 		c = opt[DTRACEOPT_CPU];
14152 
14153 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14154 			break;
14155 
14156 		/*
14157 		 * Regardless of what the actual policy is, we're going to
14158 		 * temporarily set our resize policy to be manual.  We're
14159 		 * also going to temporarily set our CPU option to denote
14160 		 * the newly configured CPU.
14161 		 */
14162 		rs = opt[DTRACEOPT_BUFRESIZE];
14163 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14164 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14165 
14166 		(void) dtrace_state_buffers(state);
14167 
14168 		opt[DTRACEOPT_BUFRESIZE] = rs;
14169 		opt[DTRACEOPT_CPU] = c;
14170 
14171 		break;
14172 	}
14173 
14174 	case CPU_UNCONFIG:
14175 		/*
14176 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14177 		 * buffer will be freed when the consumer exits.)
14178 		 */
14179 		break;
14180 
14181 	default:
14182 		break;
14183 	}
14184 
14185 	mutex_exit(&dtrace_lock);
14186 	return (0);
14187 }
14188 
14189 static void
14190 dtrace_cpu_setup_initial(processorid_t cpu)
14191 {
14192 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14193 }
14194 
14195 static void
14196 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14197 {
14198 	if (dtrace_toxranges >= dtrace_toxranges_max) {
14199 		int osize, nsize;
14200 		dtrace_toxrange_t *range;
14201 
14202 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14203 
14204 		if (osize == 0) {
14205 			ASSERT(dtrace_toxrange == NULL);
14206 			ASSERT(dtrace_toxranges_max == 0);
14207 			dtrace_toxranges_max = 1;
14208 		} else {
14209 			dtrace_toxranges_max <<= 1;
14210 		}
14211 
14212 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14213 		range = kmem_zalloc(nsize, KM_SLEEP);
14214 
14215 		if (dtrace_toxrange != NULL) {
14216 			ASSERT(osize != 0);
14217 			bcopy(dtrace_toxrange, range, osize);
14218 			kmem_free(dtrace_toxrange, osize);
14219 		}
14220 
14221 		dtrace_toxrange = range;
14222 	}
14223 
14224 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14225 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14226 
14227 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14228 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14229 	dtrace_toxranges++;
14230 }
14231 
14232 /*
14233  * DTrace Driver Cookbook Functions
14234  */
14235 /*ARGSUSED*/
14236 static int
14237 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14238 {
14239 	dtrace_provider_id_t id;
14240 	dtrace_state_t *state = NULL;
14241 	dtrace_enabling_t *enab;
14242 
14243 	mutex_enter(&cpu_lock);
14244 	mutex_enter(&dtrace_provider_lock);
14245 	mutex_enter(&dtrace_lock);
14246 
14247 	if (ddi_soft_state_init(&dtrace_softstate,
14248 	    sizeof (dtrace_state_t), 0) != 0) {
14249 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14250 		mutex_exit(&cpu_lock);
14251 		mutex_exit(&dtrace_provider_lock);
14252 		mutex_exit(&dtrace_lock);
14253 		return (DDI_FAILURE);
14254 	}
14255 
14256 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14257 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14258 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14259 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14260 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14261 		ddi_remove_minor_node(devi, NULL);
14262 		ddi_soft_state_fini(&dtrace_softstate);
14263 		mutex_exit(&cpu_lock);
14264 		mutex_exit(&dtrace_provider_lock);
14265 		mutex_exit(&dtrace_lock);
14266 		return (DDI_FAILURE);
14267 	}
14268 
14269 	ddi_report_dev(devi);
14270 	dtrace_devi = devi;
14271 
14272 	dtrace_modload = dtrace_module_loaded;
14273 	dtrace_modunload = dtrace_module_unloaded;
14274 	dtrace_cpu_init = dtrace_cpu_setup_initial;
14275 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
14276 	dtrace_helpers_fork = dtrace_helpers_duplicate;
14277 	dtrace_cpustart_init = dtrace_suspend;
14278 	dtrace_cpustart_fini = dtrace_resume;
14279 	dtrace_debugger_init = dtrace_suspend;
14280 	dtrace_debugger_fini = dtrace_resume;
14281 
14282 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14283 
14284 	ASSERT(MUTEX_HELD(&cpu_lock));
14285 
14286 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14287 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14288 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14289 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14290 	    VM_SLEEP | VMC_IDENTIFIER);
14291 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14292 	    1, INT_MAX, 0);
14293 
14294 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14295 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14296 	    NULL, NULL, NULL, NULL, NULL, 0);
14297 
14298 	ASSERT(MUTEX_HELD(&cpu_lock));
14299 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14300 	    offsetof(dtrace_probe_t, dtpr_nextmod),
14301 	    offsetof(dtrace_probe_t, dtpr_prevmod));
14302 
14303 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14304 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
14305 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
14306 
14307 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14308 	    offsetof(dtrace_probe_t, dtpr_nextname),
14309 	    offsetof(dtrace_probe_t, dtpr_prevname));
14310 
14311 	if (dtrace_retain_max < 1) {
14312 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14313 		    "setting to 1", dtrace_retain_max);
14314 		dtrace_retain_max = 1;
14315 	}
14316 
14317 	/*
14318 	 * Now discover our toxic ranges.
14319 	 */
14320 	dtrace_toxic_ranges(dtrace_toxrange_add);
14321 
14322 	/*
14323 	 * Before we register ourselves as a provider to our own framework,
14324 	 * we would like to assert that dtrace_provider is NULL -- but that's
14325 	 * not true if we were loaded as a dependency of a DTrace provider.
14326 	 * Once we've registered, we can assert that dtrace_provider is our
14327 	 * pseudo provider.
14328 	 */
14329 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
14330 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14331 
14332 	ASSERT(dtrace_provider != NULL);
14333 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14334 
14335 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14336 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14337 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14338 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
14339 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14340 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14341 
14342 	dtrace_anon_property();
14343 	mutex_exit(&cpu_lock);
14344 
14345 	/*
14346 	 * If DTrace helper tracing is enabled, we need to allocate the
14347 	 * trace buffer and initialize the values.
14348 	 */
14349 	if (dtrace_helptrace_enabled) {
14350 		ASSERT(dtrace_helptrace_buffer == NULL);
14351 		dtrace_helptrace_buffer =
14352 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14353 		dtrace_helptrace_next = 0;
14354 	}
14355 
14356 	/*
14357 	 * If there are already providers, we must ask them to provide their
14358 	 * probes, and then match any anonymous enabling against them.  Note
14359 	 * that there should be no other retained enablings at this time:
14360 	 * the only retained enablings at this time should be the anonymous
14361 	 * enabling.
14362 	 */
14363 	if (dtrace_anon.dta_enabling != NULL) {
14364 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14365 
14366 		dtrace_enabling_provide(NULL);
14367 		state = dtrace_anon.dta_state;
14368 
14369 		/*
14370 		 * We couldn't hold cpu_lock across the above call to
14371 		 * dtrace_enabling_provide(), but we must hold it to actually
14372 		 * enable the probes.  We have to drop all of our locks, pick
14373 		 * up cpu_lock, and regain our locks before matching the
14374 		 * retained anonymous enabling.
14375 		 */
14376 		mutex_exit(&dtrace_lock);
14377 		mutex_exit(&dtrace_provider_lock);
14378 
14379 		mutex_enter(&cpu_lock);
14380 		mutex_enter(&dtrace_provider_lock);
14381 		mutex_enter(&dtrace_lock);
14382 
14383 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14384 			(void) dtrace_enabling_match(enab, NULL);
14385 
14386 		mutex_exit(&cpu_lock);
14387 	}
14388 
14389 	mutex_exit(&dtrace_lock);
14390 	mutex_exit(&dtrace_provider_lock);
14391 
14392 	if (state != NULL) {
14393 		/*
14394 		 * If we created any anonymous state, set it going now.
14395 		 */
14396 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14397 	}
14398 
14399 	return (DDI_SUCCESS);
14400 }
14401 
14402 /*ARGSUSED*/
14403 static int
14404 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14405 {
14406 	dtrace_state_t *state;
14407 	uint32_t priv;
14408 	uid_t uid;
14409 	zoneid_t zoneid;
14410 
14411 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14412 		return (0);
14413 
14414 	/*
14415 	 * If this wasn't an open with the "helper" minor, then it must be
14416 	 * the "dtrace" minor.
14417 	 */
14418 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
14419 
14420 	/*
14421 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14422 	 * caller lacks sufficient permission to do anything with DTrace.
14423 	 */
14424 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14425 	if (priv == DTRACE_PRIV_NONE)
14426 		return (EACCES);
14427 
14428 	/*
14429 	 * Ask all providers to provide all their probes.
14430 	 */
14431 	mutex_enter(&dtrace_provider_lock);
14432 	dtrace_probe_provide(NULL, NULL);
14433 	mutex_exit(&dtrace_provider_lock);
14434 
14435 	mutex_enter(&cpu_lock);
14436 	mutex_enter(&dtrace_lock);
14437 	dtrace_opens++;
14438 	dtrace_membar_producer();
14439 
14440 	/*
14441 	 * If the kernel debugger is active (that is, if the kernel debugger
14442 	 * modified text in some way), we won't allow the open.
14443 	 */
14444 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14445 		dtrace_opens--;
14446 		mutex_exit(&cpu_lock);
14447 		mutex_exit(&dtrace_lock);
14448 		return (EBUSY);
14449 	}
14450 
14451 	state = dtrace_state_create(devp, cred_p);
14452 	mutex_exit(&cpu_lock);
14453 
14454 	if (state == NULL) {
14455 		if (--dtrace_opens == 0)
14456 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14457 		mutex_exit(&dtrace_lock);
14458 		return (EAGAIN);
14459 	}
14460 
14461 	mutex_exit(&dtrace_lock);
14462 
14463 	return (0);
14464 }
14465 
14466 /*ARGSUSED*/
14467 static int
14468 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14469 {
14470 	minor_t minor = getminor(dev);
14471 	dtrace_state_t *state;
14472 
14473 	if (minor == DTRACEMNRN_HELPER)
14474 		return (0);
14475 
14476 	state = ddi_get_soft_state(dtrace_softstate, minor);
14477 
14478 	mutex_enter(&cpu_lock);
14479 	mutex_enter(&dtrace_lock);
14480 
14481 	if (state->dts_anon) {
14482 		/*
14483 		 * There is anonymous state. Destroy that first.
14484 		 */
14485 		ASSERT(dtrace_anon.dta_state == NULL);
14486 		dtrace_state_destroy(state->dts_anon);
14487 	}
14488 
14489 	dtrace_state_destroy(state);
14490 	ASSERT(dtrace_opens > 0);
14491 	if (--dtrace_opens == 0)
14492 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14493 
14494 	mutex_exit(&dtrace_lock);
14495 	mutex_exit(&cpu_lock);
14496 
14497 	return (0);
14498 }
14499 
14500 /*ARGSUSED*/
14501 static int
14502 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14503 {
14504 	int rval;
14505 	dof_helper_t help, *dhp = NULL;
14506 
14507 	switch (cmd) {
14508 	case DTRACEHIOC_ADDDOF:
14509 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14510 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14511 			return (EFAULT);
14512 		}
14513 
14514 		dhp = &help;
14515 		arg = (intptr_t)help.dofhp_dof;
14516 		/*FALLTHROUGH*/
14517 
14518 	case DTRACEHIOC_ADD: {
14519 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14520 
14521 		if (dof == NULL)
14522 			return (rval);
14523 
14524 		mutex_enter(&dtrace_lock);
14525 
14526 		/*
14527 		 * dtrace_helper_slurp() takes responsibility for the dof --
14528 		 * it may free it now or it may save it and free it later.
14529 		 */
14530 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14531 			*rv = rval;
14532 			rval = 0;
14533 		} else {
14534 			rval = EINVAL;
14535 		}
14536 
14537 		mutex_exit(&dtrace_lock);
14538 		return (rval);
14539 	}
14540 
14541 	case DTRACEHIOC_REMOVE: {
14542 		mutex_enter(&dtrace_lock);
14543 		rval = dtrace_helper_destroygen(arg);
14544 		mutex_exit(&dtrace_lock);
14545 
14546 		return (rval);
14547 	}
14548 
14549 	default:
14550 		break;
14551 	}
14552 
14553 	return (ENOTTY);
14554 }
14555 
14556 /*ARGSUSED*/
14557 static int
14558 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14559 {
14560 	minor_t minor = getminor(dev);
14561 	dtrace_state_t *state;
14562 	int rval;
14563 
14564 	if (minor == DTRACEMNRN_HELPER)
14565 		return (dtrace_ioctl_helper(cmd, arg, rv));
14566 
14567 	state = ddi_get_soft_state(dtrace_softstate, minor);
14568 
14569 	if (state->dts_anon) {
14570 		ASSERT(dtrace_anon.dta_state == NULL);
14571 		state = state->dts_anon;
14572 	}
14573 
14574 	switch (cmd) {
14575 	case DTRACEIOC_PROVIDER: {
14576 		dtrace_providerdesc_t pvd;
14577 		dtrace_provider_t *pvp;
14578 
14579 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14580 			return (EFAULT);
14581 
14582 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14583 		mutex_enter(&dtrace_provider_lock);
14584 
14585 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14586 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14587 				break;
14588 		}
14589 
14590 		mutex_exit(&dtrace_provider_lock);
14591 
14592 		if (pvp == NULL)
14593 			return (ESRCH);
14594 
14595 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14596 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14597 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14598 			return (EFAULT);
14599 
14600 		return (0);
14601 	}
14602 
14603 	case DTRACEIOC_EPROBE: {
14604 		dtrace_eprobedesc_t epdesc;
14605 		dtrace_ecb_t *ecb;
14606 		dtrace_action_t *act;
14607 		void *buf;
14608 		size_t size;
14609 		uintptr_t dest;
14610 		int nrecs;
14611 
14612 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14613 			return (EFAULT);
14614 
14615 		mutex_enter(&dtrace_lock);
14616 
14617 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14618 			mutex_exit(&dtrace_lock);
14619 			return (EINVAL);
14620 		}
14621 
14622 		if (ecb->dte_probe == NULL) {
14623 			mutex_exit(&dtrace_lock);
14624 			return (EINVAL);
14625 		}
14626 
14627 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14628 		epdesc.dtepd_uarg = ecb->dte_uarg;
14629 		epdesc.dtepd_size = ecb->dte_size;
14630 
14631 		nrecs = epdesc.dtepd_nrecs;
14632 		epdesc.dtepd_nrecs = 0;
14633 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14634 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14635 				continue;
14636 
14637 			epdesc.dtepd_nrecs++;
14638 		}
14639 
14640 		/*
14641 		 * Now that we have the size, we need to allocate a temporary
14642 		 * buffer in which to store the complete description.  We need
14643 		 * the temporary buffer to be able to drop dtrace_lock()
14644 		 * across the copyout(), below.
14645 		 */
14646 		size = sizeof (dtrace_eprobedesc_t) +
14647 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14648 
14649 		buf = kmem_alloc(size, KM_SLEEP);
14650 		dest = (uintptr_t)buf;
14651 
14652 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14653 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14654 
14655 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14656 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14657 				continue;
14658 
14659 			if (nrecs-- == 0)
14660 				break;
14661 
14662 			bcopy(&act->dta_rec, (void *)dest,
14663 			    sizeof (dtrace_recdesc_t));
14664 			dest += sizeof (dtrace_recdesc_t);
14665 		}
14666 
14667 		mutex_exit(&dtrace_lock);
14668 
14669 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14670 			kmem_free(buf, size);
14671 			return (EFAULT);
14672 		}
14673 
14674 		kmem_free(buf, size);
14675 		return (0);
14676 	}
14677 
14678 	case DTRACEIOC_AGGDESC: {
14679 		dtrace_aggdesc_t aggdesc;
14680 		dtrace_action_t *act;
14681 		dtrace_aggregation_t *agg;
14682 		int nrecs;
14683 		uint32_t offs;
14684 		dtrace_recdesc_t *lrec;
14685 		void *buf;
14686 		size_t size;
14687 		uintptr_t dest;
14688 
14689 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14690 			return (EFAULT);
14691 
14692 		mutex_enter(&dtrace_lock);
14693 
14694 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14695 			mutex_exit(&dtrace_lock);
14696 			return (EINVAL);
14697 		}
14698 
14699 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14700 
14701 		nrecs = aggdesc.dtagd_nrecs;
14702 		aggdesc.dtagd_nrecs = 0;
14703 
14704 		offs = agg->dtag_base;
14705 		lrec = &agg->dtag_action.dta_rec;
14706 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14707 
14708 		for (act = agg->dtag_first; ; act = act->dta_next) {
14709 			ASSERT(act->dta_intuple ||
14710 			    DTRACEACT_ISAGG(act->dta_kind));
14711 
14712 			/*
14713 			 * If this action has a record size of zero, it
14714 			 * denotes an argument to the aggregating action.
14715 			 * Because the presence of this record doesn't (or
14716 			 * shouldn't) affect the way the data is interpreted,
14717 			 * we don't copy it out to save user-level the
14718 			 * confusion of dealing with a zero-length record.
14719 			 */
14720 			if (act->dta_rec.dtrd_size == 0) {
14721 				ASSERT(agg->dtag_hasarg);
14722 				continue;
14723 			}
14724 
14725 			aggdesc.dtagd_nrecs++;
14726 
14727 			if (act == &agg->dtag_action)
14728 				break;
14729 		}
14730 
14731 		/*
14732 		 * Now that we have the size, we need to allocate a temporary
14733 		 * buffer in which to store the complete description.  We need
14734 		 * the temporary buffer to be able to drop dtrace_lock()
14735 		 * across the copyout(), below.
14736 		 */
14737 		size = sizeof (dtrace_aggdesc_t) +
14738 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14739 
14740 		buf = kmem_alloc(size, KM_SLEEP);
14741 		dest = (uintptr_t)buf;
14742 
14743 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14744 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14745 
14746 		for (act = agg->dtag_first; ; act = act->dta_next) {
14747 			dtrace_recdesc_t rec = act->dta_rec;
14748 
14749 			/*
14750 			 * See the comment in the above loop for why we pass
14751 			 * over zero-length records.
14752 			 */
14753 			if (rec.dtrd_size == 0) {
14754 				ASSERT(agg->dtag_hasarg);
14755 				continue;
14756 			}
14757 
14758 			if (nrecs-- == 0)
14759 				break;
14760 
14761 			rec.dtrd_offset -= offs;
14762 			bcopy(&rec, (void *)dest, sizeof (rec));
14763 			dest += sizeof (dtrace_recdesc_t);
14764 
14765 			if (act == &agg->dtag_action)
14766 				break;
14767 		}
14768 
14769 		mutex_exit(&dtrace_lock);
14770 
14771 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14772 			kmem_free(buf, size);
14773 			return (EFAULT);
14774 		}
14775 
14776 		kmem_free(buf, size);
14777 		return (0);
14778 	}
14779 
14780 	case DTRACEIOC_ENABLE: {
14781 		dof_hdr_t *dof;
14782 		dtrace_enabling_t *enab = NULL;
14783 		dtrace_vstate_t *vstate;
14784 		int err = 0;
14785 
14786 		*rv = 0;
14787 
14788 		/*
14789 		 * If a NULL argument has been passed, we take this as our
14790 		 * cue to reevaluate our enablings.
14791 		 */
14792 		if (arg == NULL) {
14793 			mutex_enter(&cpu_lock);
14794 			mutex_enter(&dtrace_lock);
14795 			err = dtrace_enabling_matchstate(state, rv);
14796 			mutex_exit(&dtrace_lock);
14797 			mutex_exit(&cpu_lock);
14798 
14799 			return (err);
14800 		}
14801 
14802 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14803 			return (rval);
14804 
14805 		mutex_enter(&cpu_lock);
14806 		mutex_enter(&dtrace_lock);
14807 		vstate = &state->dts_vstate;
14808 
14809 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14810 			mutex_exit(&dtrace_lock);
14811 			mutex_exit(&cpu_lock);
14812 			dtrace_dof_destroy(dof);
14813 			return (EBUSY);
14814 		}
14815 
14816 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14817 			mutex_exit(&dtrace_lock);
14818 			mutex_exit(&cpu_lock);
14819 			dtrace_dof_destroy(dof);
14820 			return (EINVAL);
14821 		}
14822 
14823 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14824 			dtrace_enabling_destroy(enab);
14825 			mutex_exit(&dtrace_lock);
14826 			mutex_exit(&cpu_lock);
14827 			dtrace_dof_destroy(dof);
14828 			return (rval);
14829 		}
14830 
14831 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14832 			err = dtrace_enabling_retain(enab);
14833 		} else {
14834 			dtrace_enabling_destroy(enab);
14835 		}
14836 
14837 		mutex_exit(&cpu_lock);
14838 		mutex_exit(&dtrace_lock);
14839 		dtrace_dof_destroy(dof);
14840 
14841 		return (err);
14842 	}
14843 
14844 	case DTRACEIOC_REPLICATE: {
14845 		dtrace_repldesc_t desc;
14846 		dtrace_probedesc_t *match = &desc.dtrpd_match;
14847 		dtrace_probedesc_t *create = &desc.dtrpd_create;
14848 		int err;
14849 
14850 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14851 			return (EFAULT);
14852 
14853 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14854 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14855 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14856 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14857 
14858 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14859 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14860 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14861 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14862 
14863 		mutex_enter(&dtrace_lock);
14864 		err = dtrace_enabling_replicate(state, match, create);
14865 		mutex_exit(&dtrace_lock);
14866 
14867 		return (err);
14868 	}
14869 
14870 	case DTRACEIOC_PROBEMATCH:
14871 	case DTRACEIOC_PROBES: {
14872 		dtrace_probe_t *probe = NULL;
14873 		dtrace_probedesc_t desc;
14874 		dtrace_probekey_t pkey;
14875 		dtrace_id_t i;
14876 		int m = 0;
14877 		uint32_t priv;
14878 		uid_t uid;
14879 		zoneid_t zoneid;
14880 
14881 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14882 			return (EFAULT);
14883 
14884 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14885 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14886 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14887 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14888 
14889 		/*
14890 		 * Before we attempt to match this probe, we want to give
14891 		 * all providers the opportunity to provide it.
14892 		 */
14893 		if (desc.dtpd_id == DTRACE_IDNONE) {
14894 			mutex_enter(&dtrace_provider_lock);
14895 			dtrace_probe_provide(&desc, NULL);
14896 			mutex_exit(&dtrace_provider_lock);
14897 			desc.dtpd_id++;
14898 		}
14899 
14900 		if (cmd == DTRACEIOC_PROBEMATCH)  {
14901 			dtrace_probekey(&desc, &pkey);
14902 			pkey.dtpk_id = DTRACE_IDNONE;
14903 		}
14904 
14905 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14906 
14907 		mutex_enter(&dtrace_lock);
14908 
14909 		if (cmd == DTRACEIOC_PROBEMATCH) {
14910 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14911 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14912 				    (m = dtrace_match_probe(probe, &pkey,
14913 				    priv, uid, zoneid)) != 0)
14914 					break;
14915 			}
14916 
14917 			if (m < 0) {
14918 				mutex_exit(&dtrace_lock);
14919 				return (EINVAL);
14920 			}
14921 
14922 		} else {
14923 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14924 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14925 				    dtrace_match_priv(probe, priv, uid, zoneid))
14926 					break;
14927 			}
14928 		}
14929 
14930 		if (probe == NULL) {
14931 			mutex_exit(&dtrace_lock);
14932 			return (ESRCH);
14933 		}
14934 
14935 		dtrace_probe_description(probe, &desc);
14936 		mutex_exit(&dtrace_lock);
14937 
14938 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14939 			return (EFAULT);
14940 
14941 		return (0);
14942 	}
14943 
14944 	case DTRACEIOC_PROBEARG: {
14945 		dtrace_argdesc_t desc;
14946 		dtrace_probe_t *probe;
14947 		dtrace_provider_t *prov;
14948 
14949 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14950 			return (EFAULT);
14951 
14952 		if (desc.dtargd_id == DTRACE_IDNONE)
14953 			return (EINVAL);
14954 
14955 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14956 			return (EINVAL);
14957 
14958 		mutex_enter(&dtrace_provider_lock);
14959 		mutex_enter(&mod_lock);
14960 		mutex_enter(&dtrace_lock);
14961 
14962 		if (desc.dtargd_id > dtrace_nprobes) {
14963 			mutex_exit(&dtrace_lock);
14964 			mutex_exit(&mod_lock);
14965 			mutex_exit(&dtrace_provider_lock);
14966 			return (EINVAL);
14967 		}
14968 
14969 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14970 			mutex_exit(&dtrace_lock);
14971 			mutex_exit(&mod_lock);
14972 			mutex_exit(&dtrace_provider_lock);
14973 			return (EINVAL);
14974 		}
14975 
14976 		mutex_exit(&dtrace_lock);
14977 
14978 		prov = probe->dtpr_provider;
14979 
14980 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14981 			/*
14982 			 * There isn't any typed information for this probe.
14983 			 * Set the argument number to DTRACE_ARGNONE.
14984 			 */
14985 			desc.dtargd_ndx = DTRACE_ARGNONE;
14986 		} else {
14987 			desc.dtargd_native[0] = '\0';
14988 			desc.dtargd_xlate[0] = '\0';
14989 			desc.dtargd_mapping = desc.dtargd_ndx;
14990 
14991 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14992 			    probe->dtpr_id, probe->dtpr_arg, &desc);
14993 		}
14994 
14995 		mutex_exit(&mod_lock);
14996 		mutex_exit(&dtrace_provider_lock);
14997 
14998 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14999 			return (EFAULT);
15000 
15001 		return (0);
15002 	}
15003 
15004 	case DTRACEIOC_GO: {
15005 		processorid_t cpuid;
15006 		rval = dtrace_state_go(state, &cpuid);
15007 
15008 		if (rval != 0)
15009 			return (rval);
15010 
15011 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15012 			return (EFAULT);
15013 
15014 		return (0);
15015 	}
15016 
15017 	case DTRACEIOC_STOP: {
15018 		processorid_t cpuid;
15019 
15020 		mutex_enter(&dtrace_lock);
15021 		rval = dtrace_state_stop(state, &cpuid);
15022 		mutex_exit(&dtrace_lock);
15023 
15024 		if (rval != 0)
15025 			return (rval);
15026 
15027 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15028 			return (EFAULT);
15029 
15030 		return (0);
15031 	}
15032 
15033 	case DTRACEIOC_DOFGET: {
15034 		dof_hdr_t hdr, *dof;
15035 		uint64_t len;
15036 
15037 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15038 			return (EFAULT);
15039 
15040 		mutex_enter(&dtrace_lock);
15041 		dof = dtrace_dof_create(state);
15042 		mutex_exit(&dtrace_lock);
15043 
15044 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15045 		rval = copyout(dof, (void *)arg, len);
15046 		dtrace_dof_destroy(dof);
15047 
15048 		return (rval == 0 ? 0 : EFAULT);
15049 	}
15050 
15051 	case DTRACEIOC_AGGSNAP:
15052 	case DTRACEIOC_BUFSNAP: {
15053 		dtrace_bufdesc_t desc;
15054 		caddr_t cached;
15055 		dtrace_buffer_t *buf;
15056 
15057 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15058 			return (EFAULT);
15059 
15060 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15061 			return (EINVAL);
15062 
15063 		mutex_enter(&dtrace_lock);
15064 
15065 		if (cmd == DTRACEIOC_BUFSNAP) {
15066 			buf = &state->dts_buffer[desc.dtbd_cpu];
15067 		} else {
15068 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15069 		}
15070 
15071 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15072 			size_t sz = buf->dtb_offset;
15073 
15074 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15075 				mutex_exit(&dtrace_lock);
15076 				return (EBUSY);
15077 			}
15078 
15079 			/*
15080 			 * If this buffer has already been consumed, we're
15081 			 * going to indicate that there's nothing left here
15082 			 * to consume.
15083 			 */
15084 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15085 				mutex_exit(&dtrace_lock);
15086 
15087 				desc.dtbd_size = 0;
15088 				desc.dtbd_drops = 0;
15089 				desc.dtbd_errors = 0;
15090 				desc.dtbd_oldest = 0;
15091 				sz = sizeof (desc);
15092 
15093 				if (copyout(&desc, (void *)arg, sz) != 0)
15094 					return (EFAULT);
15095 
15096 				return (0);
15097 			}
15098 
15099 			/*
15100 			 * If this is a ring buffer that has wrapped, we want
15101 			 * to copy the whole thing out.
15102 			 */
15103 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15104 				dtrace_buffer_polish(buf);
15105 				sz = buf->dtb_size;
15106 			}
15107 
15108 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15109 				mutex_exit(&dtrace_lock);
15110 				return (EFAULT);
15111 			}
15112 
15113 			desc.dtbd_size = sz;
15114 			desc.dtbd_drops = buf->dtb_drops;
15115 			desc.dtbd_errors = buf->dtb_errors;
15116 			desc.dtbd_oldest = buf->dtb_xamot_offset;
15117 
15118 			mutex_exit(&dtrace_lock);
15119 
15120 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15121 				return (EFAULT);
15122 
15123 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15124 
15125 			return (0);
15126 		}
15127 
15128 		if (buf->dtb_tomax == NULL) {
15129 			ASSERT(buf->dtb_xamot == NULL);
15130 			mutex_exit(&dtrace_lock);
15131 			return (ENOENT);
15132 		}
15133 
15134 		cached = buf->dtb_tomax;
15135 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15136 
15137 		dtrace_xcall(desc.dtbd_cpu,
15138 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15139 
15140 		state->dts_errors += buf->dtb_xamot_errors;
15141 
15142 		/*
15143 		 * If the buffers did not actually switch, then the cross call
15144 		 * did not take place -- presumably because the given CPU is
15145 		 * not in the ready set.  If this is the case, we'll return
15146 		 * ENOENT.
15147 		 */
15148 		if (buf->dtb_tomax == cached) {
15149 			ASSERT(buf->dtb_xamot != cached);
15150 			mutex_exit(&dtrace_lock);
15151 			return (ENOENT);
15152 		}
15153 
15154 		ASSERT(cached == buf->dtb_xamot);
15155 
15156 		/*
15157 		 * We have our snapshot; now copy it out.
15158 		 */
15159 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15160 		    buf->dtb_xamot_offset) != 0) {
15161 			mutex_exit(&dtrace_lock);
15162 			return (EFAULT);
15163 		}
15164 
15165 		desc.dtbd_size = buf->dtb_xamot_offset;
15166 		desc.dtbd_drops = buf->dtb_xamot_drops;
15167 		desc.dtbd_errors = buf->dtb_xamot_errors;
15168 		desc.dtbd_oldest = 0;
15169 
15170 		mutex_exit(&dtrace_lock);
15171 
15172 		/*
15173 		 * Finally, copy out the buffer description.
15174 		 */
15175 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15176 			return (EFAULT);
15177 
15178 		return (0);
15179 	}
15180 
15181 	case DTRACEIOC_CONF: {
15182 		dtrace_conf_t conf;
15183 
15184 		bzero(&conf, sizeof (conf));
15185 		conf.dtc_difversion = DIF_VERSION;
15186 		conf.dtc_difintregs = DIF_DIR_NREGS;
15187 		conf.dtc_diftupregs = DIF_DTR_NREGS;
15188 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15189 
15190 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15191 			return (EFAULT);
15192 
15193 		return (0);
15194 	}
15195 
15196 	case DTRACEIOC_STATUS: {
15197 		dtrace_status_t stat;
15198 		dtrace_dstate_t *dstate;
15199 		int i, j;
15200 		uint64_t nerrs;
15201 
15202 		/*
15203 		 * See the comment in dtrace_state_deadman() for the reason
15204 		 * for setting dts_laststatus to INT64_MAX before setting
15205 		 * it to the correct value.
15206 		 */
15207 		state->dts_laststatus = INT64_MAX;
15208 		dtrace_membar_producer();
15209 		state->dts_laststatus = dtrace_gethrtime();
15210 
15211 		bzero(&stat, sizeof (stat));
15212 
15213 		mutex_enter(&dtrace_lock);
15214 
15215 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15216 			mutex_exit(&dtrace_lock);
15217 			return (ENOENT);
15218 		}
15219 
15220 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15221 			stat.dtst_exiting = 1;
15222 
15223 		nerrs = state->dts_errors;
15224 		dstate = &state->dts_vstate.dtvs_dynvars;
15225 
15226 		for (i = 0; i < NCPU; i++) {
15227 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15228 
15229 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
15230 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15231 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15232 
15233 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15234 				stat.dtst_filled++;
15235 
15236 			nerrs += state->dts_buffer[i].dtb_errors;
15237 
15238 			for (j = 0; j < state->dts_nspeculations; j++) {
15239 				dtrace_speculation_t *spec;
15240 				dtrace_buffer_t *buf;
15241 
15242 				spec = &state->dts_speculations[j];
15243 				buf = &spec->dtsp_buffer[i];
15244 				stat.dtst_specdrops += buf->dtb_xamot_drops;
15245 			}
15246 		}
15247 
15248 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
15249 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15250 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15251 		stat.dtst_dblerrors = state->dts_dblerrors;
15252 		stat.dtst_killed =
15253 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15254 		stat.dtst_errors = nerrs;
15255 
15256 		mutex_exit(&dtrace_lock);
15257 
15258 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15259 			return (EFAULT);
15260 
15261 		return (0);
15262 	}
15263 
15264 	case DTRACEIOC_FORMAT: {
15265 		dtrace_fmtdesc_t fmt;
15266 		char *str;
15267 		int len;
15268 
15269 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15270 			return (EFAULT);
15271 
15272 		mutex_enter(&dtrace_lock);
15273 
15274 		if (fmt.dtfd_format == 0 ||
15275 		    fmt.dtfd_format > state->dts_nformats) {
15276 			mutex_exit(&dtrace_lock);
15277 			return (EINVAL);
15278 		}
15279 
15280 		/*
15281 		 * Format strings are allocated contiguously and they are
15282 		 * never freed; if a format index is less than the number
15283 		 * of formats, we can assert that the format map is non-NULL
15284 		 * and that the format for the specified index is non-NULL.
15285 		 */
15286 		ASSERT(state->dts_formats != NULL);
15287 		str = state->dts_formats[fmt.dtfd_format - 1];
15288 		ASSERT(str != NULL);
15289 
15290 		len = strlen(str) + 1;
15291 
15292 		if (len > fmt.dtfd_length) {
15293 			fmt.dtfd_length = len;
15294 
15295 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15296 				mutex_exit(&dtrace_lock);
15297 				return (EINVAL);
15298 			}
15299 		} else {
15300 			if (copyout(str, fmt.dtfd_string, len) != 0) {
15301 				mutex_exit(&dtrace_lock);
15302 				return (EINVAL);
15303 			}
15304 		}
15305 
15306 		mutex_exit(&dtrace_lock);
15307 		return (0);
15308 	}
15309 
15310 	default:
15311 		break;
15312 	}
15313 
15314 	return (ENOTTY);
15315 }
15316 
15317 /*ARGSUSED*/
15318 static int
15319 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15320 {
15321 	dtrace_state_t *state;
15322 
15323 	switch (cmd) {
15324 	case DDI_DETACH:
15325 		break;
15326 
15327 	case DDI_SUSPEND:
15328 		return (DDI_SUCCESS);
15329 
15330 	default:
15331 		return (DDI_FAILURE);
15332 	}
15333 
15334 	mutex_enter(&cpu_lock);
15335 	mutex_enter(&dtrace_provider_lock);
15336 	mutex_enter(&dtrace_lock);
15337 
15338 	ASSERT(dtrace_opens == 0);
15339 
15340 	if (dtrace_helpers > 0) {
15341 		mutex_exit(&dtrace_provider_lock);
15342 		mutex_exit(&dtrace_lock);
15343 		mutex_exit(&cpu_lock);
15344 		return (DDI_FAILURE);
15345 	}
15346 
15347 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15348 		mutex_exit(&dtrace_provider_lock);
15349 		mutex_exit(&dtrace_lock);
15350 		mutex_exit(&cpu_lock);
15351 		return (DDI_FAILURE);
15352 	}
15353 
15354 	dtrace_provider = NULL;
15355 
15356 	if ((state = dtrace_anon_grab()) != NULL) {
15357 		/*
15358 		 * If there were ECBs on this state, the provider should
15359 		 * have not been allowed to detach; assert that there is
15360 		 * none.
15361 		 */
15362 		ASSERT(state->dts_necbs == 0);
15363 		dtrace_state_destroy(state);
15364 
15365 		/*
15366 		 * If we're being detached with anonymous state, we need to
15367 		 * indicate to the kernel debugger that DTrace is now inactive.
15368 		 */
15369 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15370 	}
15371 
15372 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15373 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15374 	dtrace_cpu_init = NULL;
15375 	dtrace_helpers_cleanup = NULL;
15376 	dtrace_helpers_fork = NULL;
15377 	dtrace_cpustart_init = NULL;
15378 	dtrace_cpustart_fini = NULL;
15379 	dtrace_debugger_init = NULL;
15380 	dtrace_debugger_fini = NULL;
15381 	dtrace_modload = NULL;
15382 	dtrace_modunload = NULL;
15383 
15384 	mutex_exit(&cpu_lock);
15385 
15386 	if (dtrace_helptrace_enabled) {
15387 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15388 		dtrace_helptrace_buffer = NULL;
15389 	}
15390 
15391 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15392 	dtrace_probes = NULL;
15393 	dtrace_nprobes = 0;
15394 
15395 	dtrace_hash_destroy(dtrace_bymod);
15396 	dtrace_hash_destroy(dtrace_byfunc);
15397 	dtrace_hash_destroy(dtrace_byname);
15398 	dtrace_bymod = NULL;
15399 	dtrace_byfunc = NULL;
15400 	dtrace_byname = NULL;
15401 
15402 	kmem_cache_destroy(dtrace_state_cache);
15403 	vmem_destroy(dtrace_minor);
15404 	vmem_destroy(dtrace_arena);
15405 
15406 	if (dtrace_toxrange != NULL) {
15407 		kmem_free(dtrace_toxrange,
15408 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15409 		dtrace_toxrange = NULL;
15410 		dtrace_toxranges = 0;
15411 		dtrace_toxranges_max = 0;
15412 	}
15413 
15414 	ddi_remove_minor_node(dtrace_devi, NULL);
15415 	dtrace_devi = NULL;
15416 
15417 	ddi_soft_state_fini(&dtrace_softstate);
15418 
15419 	ASSERT(dtrace_vtime_references == 0);
15420 	ASSERT(dtrace_opens == 0);
15421 	ASSERT(dtrace_retained == NULL);
15422 
15423 	mutex_exit(&dtrace_lock);
15424 	mutex_exit(&dtrace_provider_lock);
15425 
15426 	/*
15427 	 * We don't destroy the task queue until after we have dropped our
15428 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15429 	 * attempting to do work after we have effectively detached but before
15430 	 * the task queue has been destroyed, all tasks dispatched via the
15431 	 * task queue must check that DTrace is still attached before
15432 	 * performing any operation.
15433 	 */
15434 	taskq_destroy(dtrace_taskq);
15435 	dtrace_taskq = NULL;
15436 
15437 	return (DDI_SUCCESS);
15438 }
15439 
15440 /*ARGSUSED*/
15441 static int
15442 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15443 {
15444 	int error;
15445 
15446 	switch (infocmd) {
15447 	case DDI_INFO_DEVT2DEVINFO:
15448 		*result = (void *)dtrace_devi;
15449 		error = DDI_SUCCESS;
15450 		break;
15451 	case DDI_INFO_DEVT2INSTANCE:
15452 		*result = (void *)0;
15453 		error = DDI_SUCCESS;
15454 		break;
15455 	default:
15456 		error = DDI_FAILURE;
15457 	}
15458 	return (error);
15459 }
15460 
15461 static struct cb_ops dtrace_cb_ops = {
15462 	dtrace_open,		/* open */
15463 	dtrace_close,		/* close */
15464 	nulldev,		/* strategy */
15465 	nulldev,		/* print */
15466 	nodev,			/* dump */
15467 	nodev,			/* read */
15468 	nodev,			/* write */
15469 	dtrace_ioctl,		/* ioctl */
15470 	nodev,			/* devmap */
15471 	nodev,			/* mmap */
15472 	nodev,			/* segmap */
15473 	nochpoll,		/* poll */
15474 	ddi_prop_op,		/* cb_prop_op */
15475 	0,			/* streamtab  */
15476 	D_NEW | D_MP		/* Driver compatibility flag */
15477 };
15478 
15479 static struct dev_ops dtrace_ops = {
15480 	DEVO_REV,		/* devo_rev */
15481 	0,			/* refcnt */
15482 	dtrace_info,		/* get_dev_info */
15483 	nulldev,		/* identify */
15484 	nulldev,		/* probe */
15485 	dtrace_attach,		/* attach */
15486 	dtrace_detach,		/* detach */
15487 	nodev,			/* reset */
15488 	&dtrace_cb_ops,		/* driver operations */
15489 	NULL,			/* bus operations */
15490 	nodev			/* dev power */
15491 };
15492 
15493 static struct modldrv modldrv = {
15494 	&mod_driverops,		/* module type (this is a pseudo driver) */
15495 	"Dynamic Tracing",	/* name of module */
15496 	&dtrace_ops,		/* driver ops */
15497 };
15498 
15499 static struct modlinkage modlinkage = {
15500 	MODREV_1,
15501 	(void *)&modldrv,
15502 	NULL
15503 };
15504 
15505 int
15506 _init(void)
15507 {
15508 	return (mod_install(&modlinkage));
15509 }
15510 
15511 int
15512 _info(struct modinfo *modinfop)
15513 {
15514 	return (mod_info(&modlinkage, modinfop));
15515 }
15516 
15517 int
15518 _fini(void)
15519 {
15520 	return (mod_remove(&modlinkage));
15521 }
15522