xref: /titanic_50/usr/src/uts/common/dtrace/dtrace.c (revision b0f673c4626e4cb1db7785287eaeed2731dfefe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 
96 /*
97  * DTrace Tunable Variables
98  *
99  * The following variables may be tuned by adding a line to /etc/system that
100  * includes both the name of the DTrace module ("dtrace") and the name of the
101  * variable.  For example:
102  *
103  *   set dtrace:dtrace_destructive_disallow = 1
104  *
105  * In general, the only variables that one should be tuning this way are those
106  * that affect system-wide DTrace behavior, and for which the default behavior
107  * is undesirable.  Most of these variables are tunable on a per-consumer
108  * basis using DTrace options, and need not be tuned on a system-wide basis.
109  * When tuning these variables, avoid pathological values; while some attempt
110  * is made to verify the integrity of these variables, they are not considered
111  * part of the supported interface to DTrace, and they are therefore not
112  * checked comprehensively.  Further, these variables should not be tuned
113  * dynamically via "mdb -kw" or other means; they should only be tuned via
114  * /etc/system.
115  */
116 int		dtrace_destructive_disallow = 0;
117 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
118 size_t		dtrace_difo_maxsize = (256 * 1024);
119 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
120 size_t		dtrace_global_maxsize = (16 * 1024);
121 size_t		dtrace_actions_max = (16 * 1024);
122 size_t		dtrace_retain_max = 1024;
123 dtrace_optval_t	dtrace_helper_actions_max = 1024;
124 dtrace_optval_t	dtrace_helper_providers_max = 32;
125 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
126 size_t		dtrace_strsize_default = 256;
127 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
128 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
129 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
130 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
133 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
134 dtrace_optval_t	dtrace_nspec_default = 1;
135 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
136 dtrace_optval_t dtrace_stackframes_default = 20;
137 dtrace_optval_t dtrace_ustackframes_default = 20;
138 dtrace_optval_t dtrace_jstackframes_default = 50;
139 dtrace_optval_t dtrace_jstackstrsize_default = 512;
140 int		dtrace_msgdsize_max = 128;
141 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
142 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
143 int		dtrace_devdepth_max = 32;
144 int		dtrace_err_verbose;
145 hrtime_t	dtrace_deadman_interval = NANOSEC;
146 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
147 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
148 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
149 
150 /*
151  * DTrace External Variables
152  *
153  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
154  * available to DTrace consumers via the backtick (`) syntax.  One of these,
155  * dtrace_zero, is made deliberately so:  it is provided as a source of
156  * well-known, zero-filled memory.  While this variable is not documented,
157  * it is used by some translators as an implementation detail.
158  */
159 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
160 
161 /*
162  * DTrace Internal Variables
163  */
164 static dev_info_t	*dtrace_devi;		/* device info */
165 static vmem_t		*dtrace_arena;		/* probe ID arena */
166 static vmem_t		*dtrace_minor;		/* minor number arena */
167 static taskq_t		*dtrace_taskq;		/* task queue */
168 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
169 static int		dtrace_nprobes;		/* number of probes */
170 static dtrace_provider_t *dtrace_provider;	/* provider list */
171 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
172 static int		dtrace_opens;		/* number of opens */
173 static int		dtrace_helpers;		/* number of helpers */
174 static int		dtrace_getf;		/* number of unpriv getf()s */
175 static void		*dtrace_softstate;	/* softstate pointer */
176 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
177 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
178 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
179 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
180 static int		dtrace_toxranges;	/* number of toxic ranges */
181 static int		dtrace_toxranges_max;	/* size of toxic range array */
182 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
183 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
184 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
185 static kthread_t	*dtrace_panicked;	/* panicking thread */
186 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
187 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
188 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
189 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
190 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
191 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
192 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
193 
194 /*
195  * DTrace Locking
196  * DTrace is protected by three (relatively coarse-grained) locks:
197  *
198  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
199  *     including enabling state, probes, ECBs, consumer state, helper state,
200  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
201  *     probe context is lock-free -- synchronization is handled via the
202  *     dtrace_sync() cross call mechanism.
203  *
204  * (2) dtrace_provider_lock is required when manipulating provider state, or
205  *     when provider state must be held constant.
206  *
207  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
208  *     when meta provider state must be held constant.
209  *
210  * The lock ordering between these three locks is dtrace_meta_lock before
211  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
212  * several places where dtrace_provider_lock is held by the framework as it
213  * calls into the providers -- which then call back into the framework,
214  * grabbing dtrace_lock.)
215  *
216  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
217  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
218  * role as a coarse-grained lock; it is acquired before both of these locks.
219  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
220  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
221  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
222  * acquired _between_ dtrace_provider_lock and dtrace_lock.
223  */
224 static kmutex_t		dtrace_lock;		/* probe state lock */
225 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
226 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
227 
228 /*
229  * DTrace Provider Variables
230  *
231  * These are the variables relating to DTrace as a provider (that is, the
232  * provider of the BEGIN, END, and ERROR probes).
233  */
234 static dtrace_pattr_t	dtrace_provider_attr = {
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 };
241 
242 static void
243 dtrace_nullop(void)
244 {}
245 
246 static int
247 dtrace_enable_nullop(void)
248 {
249 	return (0);
250 }
251 
252 static dtrace_pops_t	dtrace_provider_ops = {
253 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
254 	(void (*)(void *, struct modctl *))dtrace_nullop,
255 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
256 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
257 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 	NULL,
260 	NULL,
261 	NULL,
262 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
263 };
264 
265 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
266 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
267 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
268 
269 /*
270  * DTrace Helper Tracing Variables
271  */
272 uint32_t dtrace_helptrace_next = 0;
273 uint32_t dtrace_helptrace_nlocals;
274 char	*dtrace_helptrace_buffer;
275 int	dtrace_helptrace_bufsize = 512 * 1024;
276 
277 #ifdef DEBUG
278 int	dtrace_helptrace_enabled = 1;
279 #else
280 int	dtrace_helptrace_enabled = 0;
281 #endif
282 
283 /*
284  * DTrace Error Hashing
285  *
286  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
287  * table.  This is very useful for checking coverage of tests that are
288  * expected to induce DIF or DOF processing errors, and may be useful for
289  * debugging problems in the DIF code generator or in DOF generation .  The
290  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
291  */
292 #ifdef DEBUG
293 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
294 static const char *dtrace_errlast;
295 static kthread_t *dtrace_errthread;
296 static kmutex_t dtrace_errlock;
297 #endif
298 
299 /*
300  * DTrace Macros and Constants
301  *
302  * These are various macros that are useful in various spots in the
303  * implementation, along with a few random constants that have no meaning
304  * outside of the implementation.  There is no real structure to this cpp
305  * mishmash -- but is there ever?
306  */
307 #define	DTRACE_HASHSTR(hash, probe)	\
308 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
309 
310 #define	DTRACE_HASHNEXT(hash, probe)	\
311 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
312 
313 #define	DTRACE_HASHPREV(hash, probe)	\
314 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
315 
316 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
317 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
318 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
319 
320 #define	DTRACE_AGGHASHSIZE_SLEW		17
321 
322 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
323 
324 /*
325  * The key for a thread-local variable consists of the lower 61 bits of the
326  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
327  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
328  * equal to a variable identifier.  This is necessary (but not sufficient) to
329  * assure that global associative arrays never collide with thread-local
330  * variables.  To guarantee that they cannot collide, we must also define the
331  * order for keying dynamic variables.  That order is:
332  *
333  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
334  *
335  * Because the variable-key and the tls-key are in orthogonal spaces, there is
336  * no way for a global variable key signature to match a thread-local key
337  * signature.
338  */
339 #define	DTRACE_TLS_THRKEY(where) { \
340 	uint_t intr = 0; \
341 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
342 	for (; actv; actv >>= 1) \
343 		intr++; \
344 	ASSERT(intr < (1 << 3)); \
345 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
346 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
347 }
348 
349 #define	DT_BSWAP_8(x)	((x) & 0xff)
350 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
351 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
352 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
353 
354 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
355 
356 #define	DTRACE_STORE(type, tomax, offset, what) \
357 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
358 
359 #ifndef __x86
360 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
361 	if (addr & (size - 1)) {					\
362 		*flags |= CPU_DTRACE_BADALIGN;				\
363 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
364 		return (0);						\
365 	}
366 #else
367 #define	DTRACE_ALIGNCHECK(addr, size, flags)
368 #endif
369 
370 /*
371  * Test whether a range of memory starting at testaddr of size testsz falls
372  * within the range of memory described by addr, sz.  We take care to avoid
373  * problems with overflow and underflow of the unsigned quantities, and
374  * disallow all negative sizes.  Ranges of size 0 are allowed.
375  */
376 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
377 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
378 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
379 	(testaddr) + (testsz) >= (testaddr))
380 
381 /*
382  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
383  * alloc_sz on the righthand side of the comparison in order to avoid overflow
384  * or underflow in the comparison with it.  This is simpler than the INRANGE
385  * check above, because we know that the dtms_scratch_ptr is valid in the
386  * range.  Allocations of size zero are allowed.
387  */
388 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
389 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
390 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
391 
392 #define	DTRACE_LOADFUNC(bits)						\
393 /*CSTYLED*/								\
394 uint##bits##_t								\
395 dtrace_load##bits(uintptr_t addr)					\
396 {									\
397 	size_t size = bits / NBBY;					\
398 	/*CSTYLED*/							\
399 	uint##bits##_t rval;						\
400 	int i;								\
401 	volatile uint16_t *flags = (volatile uint16_t *)		\
402 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
403 									\
404 	DTRACE_ALIGNCHECK(addr, size, flags);				\
405 									\
406 	for (i = 0; i < dtrace_toxranges; i++) {			\
407 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
408 			continue;					\
409 									\
410 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
411 			continue;					\
412 									\
413 		/*							\
414 		 * This address falls within a toxic region; return 0.	\
415 		 */							\
416 		*flags |= CPU_DTRACE_BADADDR;				\
417 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
418 		return (0);						\
419 	}								\
420 									\
421 	*flags |= CPU_DTRACE_NOFAULT;					\
422 	/*CSTYLED*/							\
423 	rval = *((volatile uint##bits##_t *)addr);			\
424 	*flags &= ~CPU_DTRACE_NOFAULT;					\
425 									\
426 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
427 }
428 
429 #ifdef _LP64
430 #define	dtrace_loadptr	dtrace_load64
431 #else
432 #define	dtrace_loadptr	dtrace_load32
433 #endif
434 
435 #define	DTRACE_DYNHASH_FREE	0
436 #define	DTRACE_DYNHASH_SINK	1
437 #define	DTRACE_DYNHASH_VALID	2
438 
439 #define	DTRACE_MATCH_FAIL	-1
440 #define	DTRACE_MATCH_NEXT	0
441 #define	DTRACE_MATCH_DONE	1
442 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
443 #define	DTRACE_STATE_ALIGN	64
444 
445 #define	DTRACE_FLAGS2FLT(flags)						\
446 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
447 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
448 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
449 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
450 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
451 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
452 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
453 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
454 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
455 	DTRACEFLT_UNKNOWN)
456 
457 #define	DTRACEACT_ISSTRING(act)						\
458 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
459 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
460 
461 static size_t dtrace_strlen(const char *, size_t);
462 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
463 static void dtrace_enabling_provide(dtrace_provider_t *);
464 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
465 static void dtrace_enabling_matchall(void);
466 static void dtrace_enabling_reap(void);
467 static dtrace_state_t *dtrace_anon_grab(void);
468 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
469     dtrace_state_t *, uint64_t, uint64_t);
470 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
471 static void dtrace_buffer_drop(dtrace_buffer_t *);
472 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
473 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
474     dtrace_state_t *, dtrace_mstate_t *);
475 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
476     dtrace_optval_t);
477 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
478 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
479 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
480 static void dtrace_getf_barrier(void);
481 
482 /*
483  * DTrace Probe Context Functions
484  *
485  * These functions are called from probe context.  Because probe context is
486  * any context in which C may be called, arbitrarily locks may be held,
487  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
488  * As a result, functions called from probe context may only call other DTrace
489  * support functions -- they may not interact at all with the system at large.
490  * (Note that the ASSERT macro is made probe-context safe by redefining it in
491  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
492  * loads are to be performed from probe context, they _must_ be in terms of
493  * the safe dtrace_load*() variants.
494  *
495  * Some functions in this block are not actually called from probe context;
496  * for these functions, there will be a comment above the function reading
497  * "Note:  not called from probe context."
498  */
499 void
500 dtrace_panic(const char *format, ...)
501 {
502 	va_list alist;
503 
504 	va_start(alist, format);
505 	dtrace_vpanic(format, alist);
506 	va_end(alist);
507 }
508 
509 int
510 dtrace_assfail(const char *a, const char *f, int l)
511 {
512 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
513 
514 	/*
515 	 * We just need something here that even the most clever compiler
516 	 * cannot optimize away.
517 	 */
518 	return (a[(uintptr_t)f]);
519 }
520 
521 /*
522  * Atomically increment a specified error counter from probe context.
523  */
524 static void
525 dtrace_error(uint32_t *counter)
526 {
527 	/*
528 	 * Most counters stored to in probe context are per-CPU counters.
529 	 * However, there are some error conditions that are sufficiently
530 	 * arcane that they don't merit per-CPU storage.  If these counters
531 	 * are incremented concurrently on different CPUs, scalability will be
532 	 * adversely affected -- but we don't expect them to be white-hot in a
533 	 * correctly constructed enabling...
534 	 */
535 	uint32_t oval, nval;
536 
537 	do {
538 		oval = *counter;
539 
540 		if ((nval = oval + 1) == 0) {
541 			/*
542 			 * If the counter would wrap, set it to 1 -- assuring
543 			 * that the counter is never zero when we have seen
544 			 * errors.  (The counter must be 32-bits because we
545 			 * aren't guaranteed a 64-bit compare&swap operation.)
546 			 * To save this code both the infamy of being fingered
547 			 * by a priggish news story and the indignity of being
548 			 * the target of a neo-puritan witch trial, we're
549 			 * carefully avoiding any colorful description of the
550 			 * likelihood of this condition -- but suffice it to
551 			 * say that it is only slightly more likely than the
552 			 * overflow of predicate cache IDs, as discussed in
553 			 * dtrace_predicate_create().
554 			 */
555 			nval = 1;
556 		}
557 	} while (dtrace_cas32(counter, oval, nval) != oval);
558 }
559 
560 /*
561  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
562  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
563  */
564 DTRACE_LOADFUNC(8)
565 DTRACE_LOADFUNC(16)
566 DTRACE_LOADFUNC(32)
567 DTRACE_LOADFUNC(64)
568 
569 static int
570 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
571 {
572 	if (dest < mstate->dtms_scratch_base)
573 		return (0);
574 
575 	if (dest + size < dest)
576 		return (0);
577 
578 	if (dest + size > mstate->dtms_scratch_ptr)
579 		return (0);
580 
581 	return (1);
582 }
583 
584 static int
585 dtrace_canstore_statvar(uint64_t addr, size_t sz,
586     dtrace_statvar_t **svars, int nsvars)
587 {
588 	int i;
589 
590 	for (i = 0; i < nsvars; i++) {
591 		dtrace_statvar_t *svar = svars[i];
592 
593 		if (svar == NULL || svar->dtsv_size == 0)
594 			continue;
595 
596 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
597 			return (1);
598 	}
599 
600 	return (0);
601 }
602 
603 /*
604  * Check to see if the address is within a memory region to which a store may
605  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
606  * region.  The caller of dtrace_canstore() is responsible for performing any
607  * alignment checks that are needed before stores are actually executed.
608  */
609 static int
610 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
611     dtrace_vstate_t *vstate)
612 {
613 	/*
614 	 * First, check to see if the address is in scratch space...
615 	 */
616 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
617 	    mstate->dtms_scratch_size))
618 		return (1);
619 
620 	/*
621 	 * Now check to see if it's a dynamic variable.  This check will pick
622 	 * up both thread-local variables and any global dynamically-allocated
623 	 * variables.
624 	 */
625 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
626 	    vstate->dtvs_dynvars.dtds_size)) {
627 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
628 		uintptr_t base = (uintptr_t)dstate->dtds_base +
629 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
630 		uintptr_t chunkoffs;
631 
632 		/*
633 		 * Before we assume that we can store here, we need to make
634 		 * sure that it isn't in our metadata -- storing to our
635 		 * dynamic variable metadata would corrupt our state.  For
636 		 * the range to not include any dynamic variable metadata,
637 		 * it must:
638 		 *
639 		 *	(1) Start above the hash table that is at the base of
640 		 *	the dynamic variable space
641 		 *
642 		 *	(2) Have a starting chunk offset that is beyond the
643 		 *	dtrace_dynvar_t that is at the base of every chunk
644 		 *
645 		 *	(3) Not span a chunk boundary
646 		 *
647 		 */
648 		if (addr < base)
649 			return (0);
650 
651 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
652 
653 		if (chunkoffs < sizeof (dtrace_dynvar_t))
654 			return (0);
655 
656 		if (chunkoffs + sz > dstate->dtds_chunksize)
657 			return (0);
658 
659 		return (1);
660 	}
661 
662 	/*
663 	 * Finally, check the static local and global variables.  These checks
664 	 * take the longest, so we perform them last.
665 	 */
666 	if (dtrace_canstore_statvar(addr, sz,
667 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
668 		return (1);
669 
670 	if (dtrace_canstore_statvar(addr, sz,
671 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
672 		return (1);
673 
674 	return (0);
675 }
676 
677 
678 /*
679  * Convenience routine to check to see if the address is within a memory
680  * region in which a load may be issued given the user's privilege level;
681  * if not, it sets the appropriate error flags and loads 'addr' into the
682  * illegal value slot.
683  *
684  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
685  * appropriate memory access protection.
686  */
687 static int
688 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
689     dtrace_vstate_t *vstate)
690 {
691 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
692 	file_t *fp;
693 
694 	/*
695 	 * If we hold the privilege to read from kernel memory, then
696 	 * everything is readable.
697 	 */
698 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
699 		return (1);
700 
701 	/*
702 	 * You can obviously read that which you can store.
703 	 */
704 	if (dtrace_canstore(addr, sz, mstate, vstate))
705 		return (1);
706 
707 	/*
708 	 * We're allowed to read from our own string table.
709 	 */
710 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
711 	    mstate->dtms_difo->dtdo_strlen))
712 		return (1);
713 
714 	if (vstate->dtvs_state != NULL &&
715 	    dtrace_priv_proc(vstate->dtvs_state, mstate)) {
716 		proc_t *p;
717 
718 		/*
719 		 * When we have privileges to the current process, there are
720 		 * several context-related kernel structures that are safe to
721 		 * read, even absent the privilege to read from kernel memory.
722 		 * These reads are safe because these structures contain only
723 		 * state that (1) we're permitted to read, (2) is harmless or
724 		 * (3) contains pointers to additional kernel state that we're
725 		 * not permitted to read (and as such, do not present an
726 		 * opportunity for privilege escalation).  Finally (and
727 		 * critically), because of the nature of their relation with
728 		 * the current thread context, the memory associated with these
729 		 * structures cannot change over the duration of probe context,
730 		 * and it is therefore impossible for this memory to be
731 		 * deallocated and reallocated as something else while it's
732 		 * being operated upon.
733 		 */
734 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
735 			return (1);
736 
737 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
738 		    sz, curthread->t_procp, sizeof (proc_t))) {
739 			return (1);
740 		}
741 
742 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
743 		    curthread->t_cred, sizeof (cred_t))) {
744 			return (1);
745 		}
746 
747 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
748 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
749 			return (1);
750 		}
751 
752 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
753 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
754 			return (1);
755 		}
756 	}
757 
758 	if ((fp = mstate->dtms_getf) != NULL) {
759 		uintptr_t psz = sizeof (void *);
760 		vnode_t *vp;
761 		vnodeops_t *op;
762 
763 		/*
764 		 * When getf() returns a file_t, the enabling is implicitly
765 		 * granted the (transient) right to read the returned file_t
766 		 * as well as the v_path and v_op->vnop_name of the underlying
767 		 * vnode.  These accesses are allowed after a successful
768 		 * getf() because the members that they refer to cannot change
769 		 * once set -- and the barrier logic in the kernel's closef()
770 		 * path assures that the file_t and its referenced vode_t
771 		 * cannot themselves be stale (that is, it impossible for
772 		 * either dtms_getf itself or its f_vnode member to reference
773 		 * freed memory).
774 		 */
775 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
776 			return (1);
777 
778 		if ((vp = fp->f_vnode) != NULL) {
779 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
780 				return (1);
781 
782 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
783 			    vp->v_path, strlen(vp->v_path) + 1)) {
784 				return (1);
785 			}
786 
787 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
788 				return (1);
789 
790 			if ((op = vp->v_op) != NULL &&
791 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
792 				return (1);
793 			}
794 
795 			if (op != NULL && op->vnop_name != NULL &&
796 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
797 			    strlen(op->vnop_name) + 1)) {
798 				return (1);
799 			}
800 		}
801 	}
802 
803 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
804 	*illval = addr;
805 	return (0);
806 }
807 
808 /*
809  * Convenience routine to check to see if a given string is within a memory
810  * region in which a load may be issued given the user's privilege level;
811  * this exists so that we don't need to issue unnecessary dtrace_strlen()
812  * calls in the event that the user has all privileges.
813  */
814 static int
815 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
816     dtrace_vstate_t *vstate)
817 {
818 	size_t strsz;
819 
820 	/*
821 	 * If we hold the privilege to read from kernel memory, then
822 	 * everything is readable.
823 	 */
824 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
825 		return (1);
826 
827 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
828 	if (dtrace_canload(addr, strsz, mstate, vstate))
829 		return (1);
830 
831 	return (0);
832 }
833 
834 /*
835  * Convenience routine to check to see if a given variable is within a memory
836  * region in which a load may be issued given the user's privilege level.
837  */
838 static int
839 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
840     dtrace_vstate_t *vstate)
841 {
842 	size_t sz;
843 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
844 
845 	/*
846 	 * If we hold the privilege to read from kernel memory, then
847 	 * everything is readable.
848 	 */
849 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
850 		return (1);
851 
852 	if (type->dtdt_kind == DIF_TYPE_STRING)
853 		sz = dtrace_strlen(src,
854 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
855 	else
856 		sz = type->dtdt_size;
857 
858 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
859 }
860 
861 /*
862  * Compare two strings using safe loads.
863  */
864 static int
865 dtrace_strncmp(char *s1, char *s2, size_t limit)
866 {
867 	uint8_t c1, c2;
868 	volatile uint16_t *flags;
869 
870 	if (s1 == s2 || limit == 0)
871 		return (0);
872 
873 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
874 
875 	do {
876 		if (s1 == NULL) {
877 			c1 = '\0';
878 		} else {
879 			c1 = dtrace_load8((uintptr_t)s1++);
880 		}
881 
882 		if (s2 == NULL) {
883 			c2 = '\0';
884 		} else {
885 			c2 = dtrace_load8((uintptr_t)s2++);
886 		}
887 
888 		if (c1 != c2)
889 			return (c1 - c2);
890 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
891 
892 	return (0);
893 }
894 
895 /*
896  * Compute strlen(s) for a string using safe memory accesses.  The additional
897  * len parameter is used to specify a maximum length to ensure completion.
898  */
899 static size_t
900 dtrace_strlen(const char *s, size_t lim)
901 {
902 	uint_t len;
903 
904 	for (len = 0; len != lim; len++) {
905 		if (dtrace_load8((uintptr_t)s++) == '\0')
906 			break;
907 	}
908 
909 	return (len);
910 }
911 
912 /*
913  * Check if an address falls within a toxic region.
914  */
915 static int
916 dtrace_istoxic(uintptr_t kaddr, size_t size)
917 {
918 	uintptr_t taddr, tsize;
919 	int i;
920 
921 	for (i = 0; i < dtrace_toxranges; i++) {
922 		taddr = dtrace_toxrange[i].dtt_base;
923 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
924 
925 		if (kaddr - taddr < tsize) {
926 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
927 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
928 			return (1);
929 		}
930 
931 		if (taddr - kaddr < size) {
932 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
933 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
934 			return (1);
935 		}
936 	}
937 
938 	return (0);
939 }
940 
941 /*
942  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
943  * memory specified by the DIF program.  The dst is assumed to be safe memory
944  * that we can store to directly because it is managed by DTrace.  As with
945  * standard bcopy, overlapping copies are handled properly.
946  */
947 static void
948 dtrace_bcopy(const void *src, void *dst, size_t len)
949 {
950 	if (len != 0) {
951 		uint8_t *s1 = dst;
952 		const uint8_t *s2 = src;
953 
954 		if (s1 <= s2) {
955 			do {
956 				*s1++ = dtrace_load8((uintptr_t)s2++);
957 			} while (--len != 0);
958 		} else {
959 			s2 += len;
960 			s1 += len;
961 
962 			do {
963 				*--s1 = dtrace_load8((uintptr_t)--s2);
964 			} while (--len != 0);
965 		}
966 	}
967 }
968 
969 /*
970  * Copy src to dst using safe memory accesses, up to either the specified
971  * length, or the point that a nul byte is encountered.  The src is assumed to
972  * be unsafe memory specified by the DIF program.  The dst is assumed to be
973  * safe memory that we can store to directly because it is managed by DTrace.
974  * Unlike dtrace_bcopy(), overlapping regions are not handled.
975  */
976 static void
977 dtrace_strcpy(const void *src, void *dst, size_t len)
978 {
979 	if (len != 0) {
980 		uint8_t *s1 = dst, c;
981 		const uint8_t *s2 = src;
982 
983 		do {
984 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
985 		} while (--len != 0 && c != '\0');
986 	}
987 }
988 
989 /*
990  * Copy src to dst, deriving the size and type from the specified (BYREF)
991  * variable type.  The src is assumed to be unsafe memory specified by the DIF
992  * program.  The dst is assumed to be DTrace variable memory that is of the
993  * specified type; we assume that we can store to directly.
994  */
995 static void
996 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
997 {
998 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
999 
1000 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1001 		dtrace_strcpy(src, dst, type->dtdt_size);
1002 	} else {
1003 		dtrace_bcopy(src, dst, type->dtdt_size);
1004 	}
1005 }
1006 
1007 /*
1008  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1009  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1010  * safe memory that we can access directly because it is managed by DTrace.
1011  */
1012 static int
1013 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1014 {
1015 	volatile uint16_t *flags;
1016 
1017 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1018 
1019 	if (s1 == s2)
1020 		return (0);
1021 
1022 	if (s1 == NULL || s2 == NULL)
1023 		return (1);
1024 
1025 	if (s1 != s2 && len != 0) {
1026 		const uint8_t *ps1 = s1;
1027 		const uint8_t *ps2 = s2;
1028 
1029 		do {
1030 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1031 				return (1);
1032 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1033 	}
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1039  * is for safe DTrace-managed memory only.
1040  */
1041 static void
1042 dtrace_bzero(void *dst, size_t len)
1043 {
1044 	uchar_t *cp;
1045 
1046 	for (cp = dst; len != 0; len--)
1047 		*cp++ = 0;
1048 }
1049 
1050 static void
1051 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1052 {
1053 	uint64_t result[2];
1054 
1055 	result[0] = addend1[0] + addend2[0];
1056 	result[1] = addend1[1] + addend2[1] +
1057 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1058 
1059 	sum[0] = result[0];
1060 	sum[1] = result[1];
1061 }
1062 
1063 /*
1064  * Shift the 128-bit value in a by b. If b is positive, shift left.
1065  * If b is negative, shift right.
1066  */
1067 static void
1068 dtrace_shift_128(uint64_t *a, int b)
1069 {
1070 	uint64_t mask;
1071 
1072 	if (b == 0)
1073 		return;
1074 
1075 	if (b < 0) {
1076 		b = -b;
1077 		if (b >= 64) {
1078 			a[0] = a[1] >> (b - 64);
1079 			a[1] = 0;
1080 		} else {
1081 			a[0] >>= b;
1082 			mask = 1LL << (64 - b);
1083 			mask -= 1;
1084 			a[0] |= ((a[1] & mask) << (64 - b));
1085 			a[1] >>= b;
1086 		}
1087 	} else {
1088 		if (b >= 64) {
1089 			a[1] = a[0] << (b - 64);
1090 			a[0] = 0;
1091 		} else {
1092 			a[1] <<= b;
1093 			mask = a[0] >> (64 - b);
1094 			a[1] |= mask;
1095 			a[0] <<= b;
1096 		}
1097 	}
1098 }
1099 
1100 /*
1101  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1102  * use native multiplication on those, and then re-combine into the
1103  * resulting 128-bit value.
1104  *
1105  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1106  *     hi1 * hi2 << 64 +
1107  *     hi1 * lo2 << 32 +
1108  *     hi2 * lo1 << 32 +
1109  *     lo1 * lo2
1110  */
1111 static void
1112 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1113 {
1114 	uint64_t hi1, hi2, lo1, lo2;
1115 	uint64_t tmp[2];
1116 
1117 	hi1 = factor1 >> 32;
1118 	hi2 = factor2 >> 32;
1119 
1120 	lo1 = factor1 & DT_MASK_LO;
1121 	lo2 = factor2 & DT_MASK_LO;
1122 
1123 	product[0] = lo1 * lo2;
1124 	product[1] = hi1 * hi2;
1125 
1126 	tmp[0] = hi1 * lo2;
1127 	tmp[1] = 0;
1128 	dtrace_shift_128(tmp, 32);
1129 	dtrace_add_128(product, tmp, product);
1130 
1131 	tmp[0] = hi2 * lo1;
1132 	tmp[1] = 0;
1133 	dtrace_shift_128(tmp, 32);
1134 	dtrace_add_128(product, tmp, product);
1135 }
1136 
1137 /*
1138  * This privilege check should be used by actions and subroutines to
1139  * verify that the user credentials of the process that enabled the
1140  * invoking ECB match the target credentials
1141  */
1142 static int
1143 dtrace_priv_proc_common_user(dtrace_state_t *state)
1144 {
1145 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1146 
1147 	/*
1148 	 * We should always have a non-NULL state cred here, since if cred
1149 	 * is null (anonymous tracing), we fast-path bypass this routine.
1150 	 */
1151 	ASSERT(s_cr != NULL);
1152 
1153 	if ((cr = CRED()) != NULL &&
1154 	    s_cr->cr_uid == cr->cr_uid &&
1155 	    s_cr->cr_uid == cr->cr_ruid &&
1156 	    s_cr->cr_uid == cr->cr_suid &&
1157 	    s_cr->cr_gid == cr->cr_gid &&
1158 	    s_cr->cr_gid == cr->cr_rgid &&
1159 	    s_cr->cr_gid == cr->cr_sgid)
1160 		return (1);
1161 
1162 	return (0);
1163 }
1164 
1165 /*
1166  * This privilege check should be used by actions and subroutines to
1167  * verify that the zone of the process that enabled the invoking ECB
1168  * matches the target credentials
1169  */
1170 static int
1171 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1172 {
1173 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1174 
1175 	/*
1176 	 * We should always have a non-NULL state cred here, since if cred
1177 	 * is null (anonymous tracing), we fast-path bypass this routine.
1178 	 */
1179 	ASSERT(s_cr != NULL);
1180 
1181 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1182 		return (1);
1183 
1184 	return (0);
1185 }
1186 
1187 /*
1188  * This privilege check should be used by actions and subroutines to
1189  * verify that the process has not setuid or changed credentials.
1190  */
1191 static int
1192 dtrace_priv_proc_common_nocd()
1193 {
1194 	proc_t *proc;
1195 
1196 	if ((proc = ttoproc(curthread)) != NULL &&
1197 	    !(proc->p_flag & SNOCD))
1198 		return (1);
1199 
1200 	return (0);
1201 }
1202 
1203 static int
1204 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1205 {
1206 	int action = state->dts_cred.dcr_action;
1207 
1208 	if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1209 		goto bad;
1210 
1211 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1212 	    dtrace_priv_proc_common_zone(state) == 0)
1213 		goto bad;
1214 
1215 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1216 	    dtrace_priv_proc_common_user(state) == 0)
1217 		goto bad;
1218 
1219 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1220 	    dtrace_priv_proc_common_nocd() == 0)
1221 		goto bad;
1222 
1223 	return (1);
1224 
1225 bad:
1226 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1227 
1228 	return (0);
1229 }
1230 
1231 static int
1232 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1233 {
1234 	if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1235 		if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1236 			return (1);
1237 
1238 		if (dtrace_priv_proc_common_zone(state) &&
1239 		    dtrace_priv_proc_common_user(state) &&
1240 		    dtrace_priv_proc_common_nocd())
1241 			return (1);
1242 	}
1243 
1244 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1245 
1246 	return (0);
1247 }
1248 
1249 static int
1250 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1251 {
1252 	if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1253 	    (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1254 		return (1);
1255 
1256 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_kernel(dtrace_state_t *state)
1263 {
1264 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265 		return (1);
1266 
1267 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268 
1269 	return (0);
1270 }
1271 
1272 static int
1273 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274 {
1275 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276 		return (1);
1277 
1278 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279 
1280 	return (0);
1281 }
1282 
1283 /*
1284  * Determine if the dte_cond of the specified ECB allows for processing of
1285  * the current probe to continue.  Note that this routine may allow continued
1286  * processing, but with access(es) stripped from the mstate's dtms_access
1287  * field.
1288  */
1289 static int
1290 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1291     dtrace_ecb_t *ecb)
1292 {
1293 	dtrace_probe_t *probe = ecb->dte_probe;
1294 	dtrace_provider_t *prov = probe->dtpr_provider;
1295 	dtrace_pops_t *pops = &prov->dtpv_pops;
1296 	int mode = DTRACE_MODE_NOPRIV_DROP;
1297 
1298 	ASSERT(ecb->dte_cond);
1299 
1300 	if (pops->dtps_mode != NULL) {
1301 		mode = pops->dtps_mode(prov->dtpv_arg,
1302 		    probe->dtpr_id, probe->dtpr_arg);
1303 
1304 		ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1305 		ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1306 		    DTRACE_MODE_NOPRIV_DROP));
1307 	}
1308 
1309 	/*
1310 	 * If the dte_cond bits indicate that this consumer is only allowed to
1311 	 * see user-mode firings of this probe, check that the probe was fired
1312 	 * while in a user context.  If that's not the case, use the policy
1313 	 * specified by the provider to determine if we drop the probe or
1314 	 * merely restrict operation.
1315 	 */
1316 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1317 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1318 
1319 		if (!(mode & DTRACE_MODE_USER)) {
1320 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1321 				return (0);
1322 
1323 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * This is more subtle than it looks. We have to be absolutely certain
1329 	 * that CRED() isn't going to change out from under us so it's only
1330 	 * legit to examine that structure if we're in constrained situations.
1331 	 * Currently, the only times we'll this check is if a non-super-user
1332 	 * has enabled the profile or syscall providers -- providers that
1333 	 * allow visibility of all processes. For the profile case, the check
1334 	 * above will ensure that we're examining a user context.
1335 	 */
1336 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1337 		cred_t *cr;
1338 		cred_t *s_cr = state->dts_cred.dcr_cred;
1339 		proc_t *proc;
1340 
1341 		ASSERT(s_cr != NULL);
1342 
1343 		if ((cr = CRED()) == NULL ||
1344 		    s_cr->cr_uid != cr->cr_uid ||
1345 		    s_cr->cr_uid != cr->cr_ruid ||
1346 		    s_cr->cr_uid != cr->cr_suid ||
1347 		    s_cr->cr_gid != cr->cr_gid ||
1348 		    s_cr->cr_gid != cr->cr_rgid ||
1349 		    s_cr->cr_gid != cr->cr_sgid ||
1350 		    (proc = ttoproc(curthread)) == NULL ||
1351 		    (proc->p_flag & SNOCD)) {
1352 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1353 				return (0);
1354 
1355 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1361 	 * in our zone, check to see if our mode policy is to restrict rather
1362 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1363 	 * and DTRACE_ACCESS_ARGS
1364 	 */
1365 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1366 		cred_t *cr;
1367 		cred_t *s_cr = state->dts_cred.dcr_cred;
1368 
1369 		ASSERT(s_cr != NULL);
1370 
1371 		if ((cr = CRED()) == NULL ||
1372 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1373 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1374 				return (0);
1375 
1376 			mstate->dtms_access &=
1377 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * By merits of being in this code path at all, we have limited
1383 	 * privileges.  If the provider has indicated that limited privileges
1384 	 * are to denote restricted operation, strip off the ability to access
1385 	 * arguments.
1386 	 */
1387 	if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1388 		mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1389 
1390 	return (1);
1391 }
1392 
1393 /*
1394  * Note:  not called from probe context.  This function is called
1395  * asynchronously (and at a regular interval) from outside of probe context to
1396  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1397  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1398  */
1399 void
1400 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1401 {
1402 	dtrace_dynvar_t *dirty;
1403 	dtrace_dstate_percpu_t *dcpu;
1404 	dtrace_dynvar_t **rinsep;
1405 	int i, j, work = 0;
1406 
1407 	for (i = 0; i < NCPU; i++) {
1408 		dcpu = &dstate->dtds_percpu[i];
1409 		rinsep = &dcpu->dtdsc_rinsing;
1410 
1411 		/*
1412 		 * If the dirty list is NULL, there is no dirty work to do.
1413 		 */
1414 		if (dcpu->dtdsc_dirty == NULL)
1415 			continue;
1416 
1417 		if (dcpu->dtdsc_rinsing != NULL) {
1418 			/*
1419 			 * If the rinsing list is non-NULL, then it is because
1420 			 * this CPU was selected to accept another CPU's
1421 			 * dirty list -- and since that time, dirty buffers
1422 			 * have accumulated.  This is a highly unlikely
1423 			 * condition, but we choose to ignore the dirty
1424 			 * buffers -- they'll be picked up a future cleanse.
1425 			 */
1426 			continue;
1427 		}
1428 
1429 		if (dcpu->dtdsc_clean != NULL) {
1430 			/*
1431 			 * If the clean list is non-NULL, then we're in a
1432 			 * situation where a CPU has done deallocations (we
1433 			 * have a non-NULL dirty list) but no allocations (we
1434 			 * also have a non-NULL clean list).  We can't simply
1435 			 * move the dirty list into the clean list on this
1436 			 * CPU, yet we also don't want to allow this condition
1437 			 * to persist, lest a short clean list prevent a
1438 			 * massive dirty list from being cleaned (which in
1439 			 * turn could lead to otherwise avoidable dynamic
1440 			 * drops).  To deal with this, we look for some CPU
1441 			 * with a NULL clean list, NULL dirty list, and NULL
1442 			 * rinsing list -- and then we borrow this CPU to
1443 			 * rinse our dirty list.
1444 			 */
1445 			for (j = 0; j < NCPU; j++) {
1446 				dtrace_dstate_percpu_t *rinser;
1447 
1448 				rinser = &dstate->dtds_percpu[j];
1449 
1450 				if (rinser->dtdsc_rinsing != NULL)
1451 					continue;
1452 
1453 				if (rinser->dtdsc_dirty != NULL)
1454 					continue;
1455 
1456 				if (rinser->dtdsc_clean != NULL)
1457 					continue;
1458 
1459 				rinsep = &rinser->dtdsc_rinsing;
1460 				break;
1461 			}
1462 
1463 			if (j == NCPU) {
1464 				/*
1465 				 * We were unable to find another CPU that
1466 				 * could accept this dirty list -- we are
1467 				 * therefore unable to clean it now.
1468 				 */
1469 				dtrace_dynvar_failclean++;
1470 				continue;
1471 			}
1472 		}
1473 
1474 		work = 1;
1475 
1476 		/*
1477 		 * Atomically move the dirty list aside.
1478 		 */
1479 		do {
1480 			dirty = dcpu->dtdsc_dirty;
1481 
1482 			/*
1483 			 * Before we zap the dirty list, set the rinsing list.
1484 			 * (This allows for a potential assertion in
1485 			 * dtrace_dynvar():  if a free dynamic variable appears
1486 			 * on a hash chain, either the dirty list or the
1487 			 * rinsing list for some CPU must be non-NULL.)
1488 			 */
1489 			*rinsep = dirty;
1490 			dtrace_membar_producer();
1491 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1492 		    dirty, NULL) != dirty);
1493 	}
1494 
1495 	if (!work) {
1496 		/*
1497 		 * We have no work to do; we can simply return.
1498 		 */
1499 		return;
1500 	}
1501 
1502 	dtrace_sync();
1503 
1504 	for (i = 0; i < NCPU; i++) {
1505 		dcpu = &dstate->dtds_percpu[i];
1506 
1507 		if (dcpu->dtdsc_rinsing == NULL)
1508 			continue;
1509 
1510 		/*
1511 		 * We are now guaranteed that no hash chain contains a pointer
1512 		 * into this dirty list; we can make it clean.
1513 		 */
1514 		ASSERT(dcpu->dtdsc_clean == NULL);
1515 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1516 		dcpu->dtdsc_rinsing = NULL;
1517 	}
1518 
1519 	/*
1520 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1521 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1522 	 * This prevents a race whereby a CPU incorrectly decides that
1523 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1524 	 * after dtrace_dynvar_clean() has completed.
1525 	 */
1526 	dtrace_sync();
1527 
1528 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1529 }
1530 
1531 /*
1532  * Depending on the value of the op parameter, this function looks-up,
1533  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1534  * allocation is requested, this function will return a pointer to a
1535  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1536  * variable can be allocated.  If NULL is returned, the appropriate counter
1537  * will be incremented.
1538  */
1539 dtrace_dynvar_t *
1540 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1541     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1542     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1543 {
1544 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1545 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1546 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1547 	processorid_t me = CPU->cpu_id, cpu = me;
1548 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1549 	size_t bucket, ksize;
1550 	size_t chunksize = dstate->dtds_chunksize;
1551 	uintptr_t kdata, lock, nstate;
1552 	uint_t i;
1553 
1554 	ASSERT(nkeys != 0);
1555 
1556 	/*
1557 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1558 	 * algorithm.  For the by-value portions, we perform the algorithm in
1559 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1560 	 * bit, and seems to have only a minute effect on distribution.  For
1561 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1562 	 * over each referenced byte.  It's painful to do this, but it's much
1563 	 * better than pathological hash distribution.  The efficacy of the
1564 	 * hashing algorithm (and a comparison with other algorithms) may be
1565 	 * found by running the ::dtrace_dynstat MDB dcmd.
1566 	 */
1567 	for (i = 0; i < nkeys; i++) {
1568 		if (key[i].dttk_size == 0) {
1569 			uint64_t val = key[i].dttk_value;
1570 
1571 			hashval += (val >> 48) & 0xffff;
1572 			hashval += (hashval << 10);
1573 			hashval ^= (hashval >> 6);
1574 
1575 			hashval += (val >> 32) & 0xffff;
1576 			hashval += (hashval << 10);
1577 			hashval ^= (hashval >> 6);
1578 
1579 			hashval += (val >> 16) & 0xffff;
1580 			hashval += (hashval << 10);
1581 			hashval ^= (hashval >> 6);
1582 
1583 			hashval += val & 0xffff;
1584 			hashval += (hashval << 10);
1585 			hashval ^= (hashval >> 6);
1586 		} else {
1587 			/*
1588 			 * This is incredibly painful, but it beats the hell
1589 			 * out of the alternative.
1590 			 */
1591 			uint64_t j, size = key[i].dttk_size;
1592 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1593 
1594 			if (!dtrace_canload(base, size, mstate, vstate))
1595 				break;
1596 
1597 			for (j = 0; j < size; j++) {
1598 				hashval += dtrace_load8(base + j);
1599 				hashval += (hashval << 10);
1600 				hashval ^= (hashval >> 6);
1601 			}
1602 		}
1603 	}
1604 
1605 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1606 		return (NULL);
1607 
1608 	hashval += (hashval << 3);
1609 	hashval ^= (hashval >> 11);
1610 	hashval += (hashval << 15);
1611 
1612 	/*
1613 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1614 	 * comes out to be one of our two sentinel hash values.  If this
1615 	 * actually happens, we set the hashval to be a value known to be a
1616 	 * non-sentinel value.
1617 	 */
1618 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1619 		hashval = DTRACE_DYNHASH_VALID;
1620 
1621 	/*
1622 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1623 	 * important here, tricks can be pulled to reduce it.  (However, it's
1624 	 * critical that hash collisions be kept to an absolute minimum;
1625 	 * they're much more painful than a divide.)  It's better to have a
1626 	 * solution that generates few collisions and still keeps things
1627 	 * relatively simple.
1628 	 */
1629 	bucket = hashval % dstate->dtds_hashsize;
1630 
1631 	if (op == DTRACE_DYNVAR_DEALLOC) {
1632 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1633 
1634 		for (;;) {
1635 			while ((lock = *lockp) & 1)
1636 				continue;
1637 
1638 			if (dtrace_casptr((void *)lockp,
1639 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1640 				break;
1641 		}
1642 
1643 		dtrace_membar_producer();
1644 	}
1645 
1646 top:
1647 	prev = NULL;
1648 	lock = hash[bucket].dtdh_lock;
1649 
1650 	dtrace_membar_consumer();
1651 
1652 	start = hash[bucket].dtdh_chain;
1653 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1654 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1655 	    op != DTRACE_DYNVAR_DEALLOC));
1656 
1657 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1658 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1659 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1660 
1661 		if (dvar->dtdv_hashval != hashval) {
1662 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1663 				/*
1664 				 * We've reached the sink, and therefore the
1665 				 * end of the hash chain; we can kick out of
1666 				 * the loop knowing that we have seen a valid
1667 				 * snapshot of state.
1668 				 */
1669 				ASSERT(dvar->dtdv_next == NULL);
1670 				ASSERT(dvar == &dtrace_dynhash_sink);
1671 				break;
1672 			}
1673 
1674 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1675 				/*
1676 				 * We've gone off the rails:  somewhere along
1677 				 * the line, one of the members of this hash
1678 				 * chain was deleted.  Note that we could also
1679 				 * detect this by simply letting this loop run
1680 				 * to completion, as we would eventually hit
1681 				 * the end of the dirty list.  However, we
1682 				 * want to avoid running the length of the
1683 				 * dirty list unnecessarily (it might be quite
1684 				 * long), so we catch this as early as
1685 				 * possible by detecting the hash marker.  In
1686 				 * this case, we simply set dvar to NULL and
1687 				 * break; the conditional after the loop will
1688 				 * send us back to top.
1689 				 */
1690 				dvar = NULL;
1691 				break;
1692 			}
1693 
1694 			goto next;
1695 		}
1696 
1697 		if (dtuple->dtt_nkeys != nkeys)
1698 			goto next;
1699 
1700 		for (i = 0; i < nkeys; i++, dkey++) {
1701 			if (dkey->dttk_size != key[i].dttk_size)
1702 				goto next; /* size or type mismatch */
1703 
1704 			if (dkey->dttk_size != 0) {
1705 				if (dtrace_bcmp(
1706 				    (void *)(uintptr_t)key[i].dttk_value,
1707 				    (void *)(uintptr_t)dkey->dttk_value,
1708 				    dkey->dttk_size))
1709 					goto next;
1710 			} else {
1711 				if (dkey->dttk_value != key[i].dttk_value)
1712 					goto next;
1713 			}
1714 		}
1715 
1716 		if (op != DTRACE_DYNVAR_DEALLOC)
1717 			return (dvar);
1718 
1719 		ASSERT(dvar->dtdv_next == NULL ||
1720 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1721 
1722 		if (prev != NULL) {
1723 			ASSERT(hash[bucket].dtdh_chain != dvar);
1724 			ASSERT(start != dvar);
1725 			ASSERT(prev->dtdv_next == dvar);
1726 			prev->dtdv_next = dvar->dtdv_next;
1727 		} else {
1728 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1729 			    start, dvar->dtdv_next) != start) {
1730 				/*
1731 				 * We have failed to atomically swing the
1732 				 * hash table head pointer, presumably because
1733 				 * of a conflicting allocation on another CPU.
1734 				 * We need to reread the hash chain and try
1735 				 * again.
1736 				 */
1737 				goto top;
1738 			}
1739 		}
1740 
1741 		dtrace_membar_producer();
1742 
1743 		/*
1744 		 * Now set the hash value to indicate that it's free.
1745 		 */
1746 		ASSERT(hash[bucket].dtdh_chain != dvar);
1747 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1748 
1749 		dtrace_membar_producer();
1750 
1751 		/*
1752 		 * Set the next pointer to point at the dirty list, and
1753 		 * atomically swing the dirty pointer to the newly freed dvar.
1754 		 */
1755 		do {
1756 			next = dcpu->dtdsc_dirty;
1757 			dvar->dtdv_next = next;
1758 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1759 
1760 		/*
1761 		 * Finally, unlock this hash bucket.
1762 		 */
1763 		ASSERT(hash[bucket].dtdh_lock == lock);
1764 		ASSERT(lock & 1);
1765 		hash[bucket].dtdh_lock++;
1766 
1767 		return (NULL);
1768 next:
1769 		prev = dvar;
1770 		continue;
1771 	}
1772 
1773 	if (dvar == NULL) {
1774 		/*
1775 		 * If dvar is NULL, it is because we went off the rails:
1776 		 * one of the elements that we traversed in the hash chain
1777 		 * was deleted while we were traversing it.  In this case,
1778 		 * we assert that we aren't doing a dealloc (deallocs lock
1779 		 * the hash bucket to prevent themselves from racing with
1780 		 * one another), and retry the hash chain traversal.
1781 		 */
1782 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1783 		goto top;
1784 	}
1785 
1786 	if (op != DTRACE_DYNVAR_ALLOC) {
1787 		/*
1788 		 * If we are not to allocate a new variable, we want to
1789 		 * return NULL now.  Before we return, check that the value
1790 		 * of the lock word hasn't changed.  If it has, we may have
1791 		 * seen an inconsistent snapshot.
1792 		 */
1793 		if (op == DTRACE_DYNVAR_NOALLOC) {
1794 			if (hash[bucket].dtdh_lock != lock)
1795 				goto top;
1796 		} else {
1797 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1798 			ASSERT(hash[bucket].dtdh_lock == lock);
1799 			ASSERT(lock & 1);
1800 			hash[bucket].dtdh_lock++;
1801 		}
1802 
1803 		return (NULL);
1804 	}
1805 
1806 	/*
1807 	 * We need to allocate a new dynamic variable.  The size we need is the
1808 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1809 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1810 	 * the size of any referred-to data (dsize).  We then round the final
1811 	 * size up to the chunksize for allocation.
1812 	 */
1813 	for (ksize = 0, i = 0; i < nkeys; i++)
1814 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1815 
1816 	/*
1817 	 * This should be pretty much impossible, but could happen if, say,
1818 	 * strange DIF specified the tuple.  Ideally, this should be an
1819 	 * assertion and not an error condition -- but that requires that the
1820 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1821 	 * bullet-proof.  (That is, it must not be able to be fooled by
1822 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1823 	 * solving this would presumably not amount to solving the Halting
1824 	 * Problem -- but it still seems awfully hard.
1825 	 */
1826 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1827 	    ksize + dsize > chunksize) {
1828 		dcpu->dtdsc_drops++;
1829 		return (NULL);
1830 	}
1831 
1832 	nstate = DTRACE_DSTATE_EMPTY;
1833 
1834 	do {
1835 retry:
1836 		free = dcpu->dtdsc_free;
1837 
1838 		if (free == NULL) {
1839 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1840 			void *rval;
1841 
1842 			if (clean == NULL) {
1843 				/*
1844 				 * We're out of dynamic variable space on
1845 				 * this CPU.  Unless we have tried all CPUs,
1846 				 * we'll try to allocate from a different
1847 				 * CPU.
1848 				 */
1849 				switch (dstate->dtds_state) {
1850 				case DTRACE_DSTATE_CLEAN: {
1851 					void *sp = &dstate->dtds_state;
1852 
1853 					if (++cpu >= NCPU)
1854 						cpu = 0;
1855 
1856 					if (dcpu->dtdsc_dirty != NULL &&
1857 					    nstate == DTRACE_DSTATE_EMPTY)
1858 						nstate = DTRACE_DSTATE_DIRTY;
1859 
1860 					if (dcpu->dtdsc_rinsing != NULL)
1861 						nstate = DTRACE_DSTATE_RINSING;
1862 
1863 					dcpu = &dstate->dtds_percpu[cpu];
1864 
1865 					if (cpu != me)
1866 						goto retry;
1867 
1868 					(void) dtrace_cas32(sp,
1869 					    DTRACE_DSTATE_CLEAN, nstate);
1870 
1871 					/*
1872 					 * To increment the correct bean
1873 					 * counter, take another lap.
1874 					 */
1875 					goto retry;
1876 				}
1877 
1878 				case DTRACE_DSTATE_DIRTY:
1879 					dcpu->dtdsc_dirty_drops++;
1880 					break;
1881 
1882 				case DTRACE_DSTATE_RINSING:
1883 					dcpu->dtdsc_rinsing_drops++;
1884 					break;
1885 
1886 				case DTRACE_DSTATE_EMPTY:
1887 					dcpu->dtdsc_drops++;
1888 					break;
1889 				}
1890 
1891 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1892 				return (NULL);
1893 			}
1894 
1895 			/*
1896 			 * The clean list appears to be non-empty.  We want to
1897 			 * move the clean list to the free list; we start by
1898 			 * moving the clean pointer aside.
1899 			 */
1900 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1901 			    clean, NULL) != clean) {
1902 				/*
1903 				 * We are in one of two situations:
1904 				 *
1905 				 *  (a)	The clean list was switched to the
1906 				 *	free list by another CPU.
1907 				 *
1908 				 *  (b)	The clean list was added to by the
1909 				 *	cleansing cyclic.
1910 				 *
1911 				 * In either of these situations, we can
1912 				 * just reattempt the free list allocation.
1913 				 */
1914 				goto retry;
1915 			}
1916 
1917 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1918 
1919 			/*
1920 			 * Now we'll move the clean list to our free list.
1921 			 * It's impossible for this to fail:  the only way
1922 			 * the free list can be updated is through this
1923 			 * code path, and only one CPU can own the clean list.
1924 			 * Thus, it would only be possible for this to fail if
1925 			 * this code were racing with dtrace_dynvar_clean().
1926 			 * (That is, if dtrace_dynvar_clean() updated the clean
1927 			 * list, and we ended up racing to update the free
1928 			 * list.)  This race is prevented by the dtrace_sync()
1929 			 * in dtrace_dynvar_clean() -- which flushes the
1930 			 * owners of the clean lists out before resetting
1931 			 * the clean lists.
1932 			 */
1933 			dcpu = &dstate->dtds_percpu[me];
1934 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1935 			ASSERT(rval == NULL);
1936 			goto retry;
1937 		}
1938 
1939 		dvar = free;
1940 		new_free = dvar->dtdv_next;
1941 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1942 
1943 	/*
1944 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1945 	 * tuple array and copy any referenced key data into the data space
1946 	 * following the tuple array.  As we do this, we relocate dttk_value
1947 	 * in the final tuple to point to the key data address in the chunk.
1948 	 */
1949 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1950 	dvar->dtdv_data = (void *)(kdata + ksize);
1951 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1952 
1953 	for (i = 0; i < nkeys; i++) {
1954 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1955 		size_t kesize = key[i].dttk_size;
1956 
1957 		if (kesize != 0) {
1958 			dtrace_bcopy(
1959 			    (const void *)(uintptr_t)key[i].dttk_value,
1960 			    (void *)kdata, kesize);
1961 			dkey->dttk_value = kdata;
1962 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1963 		} else {
1964 			dkey->dttk_value = key[i].dttk_value;
1965 		}
1966 
1967 		dkey->dttk_size = kesize;
1968 	}
1969 
1970 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1971 	dvar->dtdv_hashval = hashval;
1972 	dvar->dtdv_next = start;
1973 
1974 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1975 		return (dvar);
1976 
1977 	/*
1978 	 * The cas has failed.  Either another CPU is adding an element to
1979 	 * this hash chain, or another CPU is deleting an element from this
1980 	 * hash chain.  The simplest way to deal with both of these cases
1981 	 * (though not necessarily the most efficient) is to free our
1982 	 * allocated block and tail-call ourselves.  Note that the free is
1983 	 * to the dirty list and _not_ to the free list.  This is to prevent
1984 	 * races with allocators, above.
1985 	 */
1986 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1987 
1988 	dtrace_membar_producer();
1989 
1990 	do {
1991 		free = dcpu->dtdsc_dirty;
1992 		dvar->dtdv_next = free;
1993 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1994 
1995 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1996 }
1997 
1998 /*ARGSUSED*/
1999 static void
2000 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2001 {
2002 	if ((int64_t)nval < (int64_t)*oval)
2003 		*oval = nval;
2004 }
2005 
2006 /*ARGSUSED*/
2007 static void
2008 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2009 {
2010 	if ((int64_t)nval > (int64_t)*oval)
2011 		*oval = nval;
2012 }
2013 
2014 static void
2015 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2016 {
2017 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2018 	int64_t val = (int64_t)nval;
2019 
2020 	if (val < 0) {
2021 		for (i = 0; i < zero; i++) {
2022 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2023 				quanta[i] += incr;
2024 				return;
2025 			}
2026 		}
2027 	} else {
2028 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2029 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2030 				quanta[i - 1] += incr;
2031 				return;
2032 			}
2033 		}
2034 
2035 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2036 		return;
2037 	}
2038 
2039 	ASSERT(0);
2040 }
2041 
2042 static void
2043 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2044 {
2045 	uint64_t arg = *lquanta++;
2046 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2047 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2048 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2049 	int32_t val = (int32_t)nval, level;
2050 
2051 	ASSERT(step != 0);
2052 	ASSERT(levels != 0);
2053 
2054 	if (val < base) {
2055 		/*
2056 		 * This is an underflow.
2057 		 */
2058 		lquanta[0] += incr;
2059 		return;
2060 	}
2061 
2062 	level = (val - base) / step;
2063 
2064 	if (level < levels) {
2065 		lquanta[level + 1] += incr;
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * This is an overflow.
2071 	 */
2072 	lquanta[levels + 1] += incr;
2073 }
2074 
2075 static int
2076 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2077     uint16_t high, uint16_t nsteps, int64_t value)
2078 {
2079 	int64_t this = 1, last, next;
2080 	int base = 1, order;
2081 
2082 	ASSERT(factor <= nsteps);
2083 	ASSERT(nsteps % factor == 0);
2084 
2085 	for (order = 0; order < low; order++)
2086 		this *= factor;
2087 
2088 	/*
2089 	 * If our value is less than our factor taken to the power of the
2090 	 * low order of magnitude, it goes into the zeroth bucket.
2091 	 */
2092 	if (value < (last = this))
2093 		return (0);
2094 
2095 	for (this *= factor; order <= high; order++) {
2096 		int nbuckets = this > nsteps ? nsteps : this;
2097 
2098 		if ((next = this * factor) < this) {
2099 			/*
2100 			 * We should not generally get log/linear quantizations
2101 			 * with a high magnitude that allows 64-bits to
2102 			 * overflow, but we nonetheless protect against this
2103 			 * by explicitly checking for overflow, and clamping
2104 			 * our value accordingly.
2105 			 */
2106 			value = this - 1;
2107 		}
2108 
2109 		if (value < this) {
2110 			/*
2111 			 * If our value lies within this order of magnitude,
2112 			 * determine its position by taking the offset within
2113 			 * the order of magnitude, dividing by the bucket
2114 			 * width, and adding to our (accumulated) base.
2115 			 */
2116 			return (base + (value - last) / (this / nbuckets));
2117 		}
2118 
2119 		base += nbuckets - (nbuckets / factor);
2120 		last = this;
2121 		this = next;
2122 	}
2123 
2124 	/*
2125 	 * Our value is greater than or equal to our factor taken to the
2126 	 * power of one plus the high magnitude -- return the top bucket.
2127 	 */
2128 	return (base);
2129 }
2130 
2131 static void
2132 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2133 {
2134 	uint64_t arg = *llquanta++;
2135 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2136 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2137 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2138 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2139 
2140 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2141 	    low, high, nsteps, nval)] += incr;
2142 }
2143 
2144 /*ARGSUSED*/
2145 static void
2146 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2147 {
2148 	data[0]++;
2149 	data[1] += nval;
2150 }
2151 
2152 /*ARGSUSED*/
2153 static void
2154 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2155 {
2156 	int64_t snval = (int64_t)nval;
2157 	uint64_t tmp[2];
2158 
2159 	data[0]++;
2160 	data[1] += nval;
2161 
2162 	/*
2163 	 * What we want to say here is:
2164 	 *
2165 	 * data[2] += nval * nval;
2166 	 *
2167 	 * But given that nval is 64-bit, we could easily overflow, so
2168 	 * we do this as 128-bit arithmetic.
2169 	 */
2170 	if (snval < 0)
2171 		snval = -snval;
2172 
2173 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2174 	dtrace_add_128(data + 2, tmp, data + 2);
2175 }
2176 
2177 /*ARGSUSED*/
2178 static void
2179 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2180 {
2181 	*oval = *oval + 1;
2182 }
2183 
2184 /*ARGSUSED*/
2185 static void
2186 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2187 {
2188 	*oval += nval;
2189 }
2190 
2191 /*
2192  * Aggregate given the tuple in the principal data buffer, and the aggregating
2193  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2194  * buffer is specified as the buf parameter.  This routine does not return
2195  * failure; if there is no space in the aggregation buffer, the data will be
2196  * dropped, and a corresponding counter incremented.
2197  */
2198 static void
2199 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2200     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2201 {
2202 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2203 	uint32_t i, ndx, size, fsize;
2204 	uint32_t align = sizeof (uint64_t) - 1;
2205 	dtrace_aggbuffer_t *agb;
2206 	dtrace_aggkey_t *key;
2207 	uint32_t hashval = 0, limit, isstr;
2208 	caddr_t tomax, data, kdata;
2209 	dtrace_actkind_t action;
2210 	dtrace_action_t *act;
2211 	uintptr_t offs;
2212 
2213 	if (buf == NULL)
2214 		return;
2215 
2216 	if (!agg->dtag_hasarg) {
2217 		/*
2218 		 * Currently, only quantize() and lquantize() take additional
2219 		 * arguments, and they have the same semantics:  an increment
2220 		 * value that defaults to 1 when not present.  If additional
2221 		 * aggregating actions take arguments, the setting of the
2222 		 * default argument value will presumably have to become more
2223 		 * sophisticated...
2224 		 */
2225 		arg = 1;
2226 	}
2227 
2228 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2229 	size = rec->dtrd_offset - agg->dtag_base;
2230 	fsize = size + rec->dtrd_size;
2231 
2232 	ASSERT(dbuf->dtb_tomax != NULL);
2233 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2234 
2235 	if ((tomax = buf->dtb_tomax) == NULL) {
2236 		dtrace_buffer_drop(buf);
2237 		return;
2238 	}
2239 
2240 	/*
2241 	 * The metastructure is always at the bottom of the buffer.
2242 	 */
2243 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2244 	    sizeof (dtrace_aggbuffer_t));
2245 
2246 	if (buf->dtb_offset == 0) {
2247 		/*
2248 		 * We just kludge up approximately 1/8th of the size to be
2249 		 * buckets.  If this guess ends up being routinely
2250 		 * off-the-mark, we may need to dynamically readjust this
2251 		 * based on past performance.
2252 		 */
2253 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2254 
2255 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2256 		    (uintptr_t)tomax || hashsize == 0) {
2257 			/*
2258 			 * We've been given a ludicrously small buffer;
2259 			 * increment our drop count and leave.
2260 			 */
2261 			dtrace_buffer_drop(buf);
2262 			return;
2263 		}
2264 
2265 		/*
2266 		 * And now, a pathetic attempt to try to get a an odd (or
2267 		 * perchance, a prime) hash size for better hash distribution.
2268 		 */
2269 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2270 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2271 
2272 		agb->dtagb_hashsize = hashsize;
2273 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2274 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2275 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2276 
2277 		for (i = 0; i < agb->dtagb_hashsize; i++)
2278 			agb->dtagb_hash[i] = NULL;
2279 	}
2280 
2281 	ASSERT(agg->dtag_first != NULL);
2282 	ASSERT(agg->dtag_first->dta_intuple);
2283 
2284 	/*
2285 	 * Calculate the hash value based on the key.  Note that we _don't_
2286 	 * include the aggid in the hashing (but we will store it as part of
2287 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2288 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2289 	 * gets good distribution in practice.  The efficacy of the hashing
2290 	 * algorithm (and a comparison with other algorithms) may be found by
2291 	 * running the ::dtrace_aggstat MDB dcmd.
2292 	 */
2293 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2294 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2295 		limit = i + act->dta_rec.dtrd_size;
2296 		ASSERT(limit <= size);
2297 		isstr = DTRACEACT_ISSTRING(act);
2298 
2299 		for (; i < limit; i++) {
2300 			hashval += data[i];
2301 			hashval += (hashval << 10);
2302 			hashval ^= (hashval >> 6);
2303 
2304 			if (isstr && data[i] == '\0')
2305 				break;
2306 		}
2307 	}
2308 
2309 	hashval += (hashval << 3);
2310 	hashval ^= (hashval >> 11);
2311 	hashval += (hashval << 15);
2312 
2313 	/*
2314 	 * Yes, the divide here is expensive -- but it's generally the least
2315 	 * of the performance issues given the amount of data that we iterate
2316 	 * over to compute hash values, compare data, etc.
2317 	 */
2318 	ndx = hashval % agb->dtagb_hashsize;
2319 
2320 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2321 		ASSERT((caddr_t)key >= tomax);
2322 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2323 
2324 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2325 			continue;
2326 
2327 		kdata = key->dtak_data;
2328 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2329 
2330 		for (act = agg->dtag_first; act->dta_intuple;
2331 		    act = act->dta_next) {
2332 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2333 			limit = i + act->dta_rec.dtrd_size;
2334 			ASSERT(limit <= size);
2335 			isstr = DTRACEACT_ISSTRING(act);
2336 
2337 			for (; i < limit; i++) {
2338 				if (kdata[i] != data[i])
2339 					goto next;
2340 
2341 				if (isstr && data[i] == '\0')
2342 					break;
2343 			}
2344 		}
2345 
2346 		if (action != key->dtak_action) {
2347 			/*
2348 			 * We are aggregating on the same value in the same
2349 			 * aggregation with two different aggregating actions.
2350 			 * (This should have been picked up in the compiler,
2351 			 * so we may be dealing with errant or devious DIF.)
2352 			 * This is an error condition; we indicate as much,
2353 			 * and return.
2354 			 */
2355 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2356 			return;
2357 		}
2358 
2359 		/*
2360 		 * This is a hit:  we need to apply the aggregator to
2361 		 * the value at this key.
2362 		 */
2363 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2364 		return;
2365 next:
2366 		continue;
2367 	}
2368 
2369 	/*
2370 	 * We didn't find it.  We need to allocate some zero-filled space,
2371 	 * link it into the hash table appropriately, and apply the aggregator
2372 	 * to the (zero-filled) value.
2373 	 */
2374 	offs = buf->dtb_offset;
2375 	while (offs & (align - 1))
2376 		offs += sizeof (uint32_t);
2377 
2378 	/*
2379 	 * If we don't have enough room to both allocate a new key _and_
2380 	 * its associated data, increment the drop count and return.
2381 	 */
2382 	if ((uintptr_t)tomax + offs + fsize >
2383 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2384 		dtrace_buffer_drop(buf);
2385 		return;
2386 	}
2387 
2388 	/*CONSTCOND*/
2389 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2390 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2391 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2392 
2393 	key->dtak_data = kdata = tomax + offs;
2394 	buf->dtb_offset = offs + fsize;
2395 
2396 	/*
2397 	 * Now copy the data across.
2398 	 */
2399 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2400 
2401 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2402 		kdata[i] = data[i];
2403 
2404 	/*
2405 	 * Because strings are not zeroed out by default, we need to iterate
2406 	 * looking for actions that store strings, and we need to explicitly
2407 	 * pad these strings out with zeroes.
2408 	 */
2409 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2410 		int nul;
2411 
2412 		if (!DTRACEACT_ISSTRING(act))
2413 			continue;
2414 
2415 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2416 		limit = i + act->dta_rec.dtrd_size;
2417 		ASSERT(limit <= size);
2418 
2419 		for (nul = 0; i < limit; i++) {
2420 			if (nul) {
2421 				kdata[i] = '\0';
2422 				continue;
2423 			}
2424 
2425 			if (data[i] != '\0')
2426 				continue;
2427 
2428 			nul = 1;
2429 		}
2430 	}
2431 
2432 	for (i = size; i < fsize; i++)
2433 		kdata[i] = 0;
2434 
2435 	key->dtak_hashval = hashval;
2436 	key->dtak_size = size;
2437 	key->dtak_action = action;
2438 	key->dtak_next = agb->dtagb_hash[ndx];
2439 	agb->dtagb_hash[ndx] = key;
2440 
2441 	/*
2442 	 * Finally, apply the aggregator.
2443 	 */
2444 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2445 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2446 }
2447 
2448 /*
2449  * Given consumer state, this routine finds a speculation in the INACTIVE
2450  * state and transitions it into the ACTIVE state.  If there is no speculation
2451  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2452  * incremented -- it is up to the caller to take appropriate action.
2453  */
2454 static int
2455 dtrace_speculation(dtrace_state_t *state)
2456 {
2457 	int i = 0;
2458 	dtrace_speculation_state_t current;
2459 	uint32_t *stat = &state->dts_speculations_unavail, count;
2460 
2461 	while (i < state->dts_nspeculations) {
2462 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2463 
2464 		current = spec->dtsp_state;
2465 
2466 		if (current != DTRACESPEC_INACTIVE) {
2467 			if (current == DTRACESPEC_COMMITTINGMANY ||
2468 			    current == DTRACESPEC_COMMITTING ||
2469 			    current == DTRACESPEC_DISCARDING)
2470 				stat = &state->dts_speculations_busy;
2471 			i++;
2472 			continue;
2473 		}
2474 
2475 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2476 		    current, DTRACESPEC_ACTIVE) == current)
2477 			return (i + 1);
2478 	}
2479 
2480 	/*
2481 	 * We couldn't find a speculation.  If we found as much as a single
2482 	 * busy speculation buffer, we'll attribute this failure as "busy"
2483 	 * instead of "unavail".
2484 	 */
2485 	do {
2486 		count = *stat;
2487 	} while (dtrace_cas32(stat, count, count + 1) != count);
2488 
2489 	return (0);
2490 }
2491 
2492 /*
2493  * This routine commits an active speculation.  If the specified speculation
2494  * is not in a valid state to perform a commit(), this routine will silently do
2495  * nothing.  The state of the specified speculation is transitioned according
2496  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2497  */
2498 static void
2499 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2500     dtrace_specid_t which)
2501 {
2502 	dtrace_speculation_t *spec;
2503 	dtrace_buffer_t *src, *dest;
2504 	uintptr_t daddr, saddr, dlimit, slimit;
2505 	dtrace_speculation_state_t current, new;
2506 	intptr_t offs;
2507 	uint64_t timestamp;
2508 
2509 	if (which == 0)
2510 		return;
2511 
2512 	if (which > state->dts_nspeculations) {
2513 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2514 		return;
2515 	}
2516 
2517 	spec = &state->dts_speculations[which - 1];
2518 	src = &spec->dtsp_buffer[cpu];
2519 	dest = &state->dts_buffer[cpu];
2520 
2521 	do {
2522 		current = spec->dtsp_state;
2523 
2524 		if (current == DTRACESPEC_COMMITTINGMANY)
2525 			break;
2526 
2527 		switch (current) {
2528 		case DTRACESPEC_INACTIVE:
2529 		case DTRACESPEC_DISCARDING:
2530 			return;
2531 
2532 		case DTRACESPEC_COMMITTING:
2533 			/*
2534 			 * This is only possible if we are (a) commit()'ing
2535 			 * without having done a prior speculate() on this CPU
2536 			 * and (b) racing with another commit() on a different
2537 			 * CPU.  There's nothing to do -- we just assert that
2538 			 * our offset is 0.
2539 			 */
2540 			ASSERT(src->dtb_offset == 0);
2541 			return;
2542 
2543 		case DTRACESPEC_ACTIVE:
2544 			new = DTRACESPEC_COMMITTING;
2545 			break;
2546 
2547 		case DTRACESPEC_ACTIVEONE:
2548 			/*
2549 			 * This speculation is active on one CPU.  If our
2550 			 * buffer offset is non-zero, we know that the one CPU
2551 			 * must be us.  Otherwise, we are committing on a
2552 			 * different CPU from the speculate(), and we must
2553 			 * rely on being asynchronously cleaned.
2554 			 */
2555 			if (src->dtb_offset != 0) {
2556 				new = DTRACESPEC_COMMITTING;
2557 				break;
2558 			}
2559 			/*FALLTHROUGH*/
2560 
2561 		case DTRACESPEC_ACTIVEMANY:
2562 			new = DTRACESPEC_COMMITTINGMANY;
2563 			break;
2564 
2565 		default:
2566 			ASSERT(0);
2567 		}
2568 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2569 	    current, new) != current);
2570 
2571 	/*
2572 	 * We have set the state to indicate that we are committing this
2573 	 * speculation.  Now reserve the necessary space in the destination
2574 	 * buffer.
2575 	 */
2576 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2577 	    sizeof (uint64_t), state, NULL)) < 0) {
2578 		dtrace_buffer_drop(dest);
2579 		goto out;
2580 	}
2581 
2582 	/*
2583 	 * We have sufficient space to copy the speculative buffer into the
2584 	 * primary buffer.  First, modify the speculative buffer, filling
2585 	 * in the timestamp of all entries with the current time.  The data
2586 	 * must have the commit() time rather than the time it was traced,
2587 	 * so that all entries in the primary buffer are in timestamp order.
2588 	 */
2589 	timestamp = dtrace_gethrtime();
2590 	saddr = (uintptr_t)src->dtb_tomax;
2591 	slimit = saddr + src->dtb_offset;
2592 	while (saddr < slimit) {
2593 		size_t size;
2594 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2595 
2596 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2597 			saddr += sizeof (dtrace_epid_t);
2598 			continue;
2599 		}
2600 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2601 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2602 
2603 		ASSERT3U(saddr + size, <=, slimit);
2604 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2605 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2606 
2607 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2608 
2609 		saddr += size;
2610 	}
2611 
2612 	/*
2613 	 * Copy the buffer across.  (Note that this is a
2614 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2615 	 * a serious performance issue, a high-performance DTrace-specific
2616 	 * bcopy() should obviously be invented.)
2617 	 */
2618 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2619 	dlimit = daddr + src->dtb_offset;
2620 	saddr = (uintptr_t)src->dtb_tomax;
2621 
2622 	/*
2623 	 * First, the aligned portion.
2624 	 */
2625 	while (dlimit - daddr >= sizeof (uint64_t)) {
2626 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2627 
2628 		daddr += sizeof (uint64_t);
2629 		saddr += sizeof (uint64_t);
2630 	}
2631 
2632 	/*
2633 	 * Now any left-over bit...
2634 	 */
2635 	while (dlimit - daddr)
2636 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2637 
2638 	/*
2639 	 * Finally, commit the reserved space in the destination buffer.
2640 	 */
2641 	dest->dtb_offset = offs + src->dtb_offset;
2642 
2643 out:
2644 	/*
2645 	 * If we're lucky enough to be the only active CPU on this speculation
2646 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2647 	 */
2648 	if (current == DTRACESPEC_ACTIVE ||
2649 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2650 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2651 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2652 
2653 		ASSERT(rval == DTRACESPEC_COMMITTING);
2654 	}
2655 
2656 	src->dtb_offset = 0;
2657 	src->dtb_xamot_drops += src->dtb_drops;
2658 	src->dtb_drops = 0;
2659 }
2660 
2661 /*
2662  * This routine discards an active speculation.  If the specified speculation
2663  * is not in a valid state to perform a discard(), this routine will silently
2664  * do nothing.  The state of the specified speculation is transitioned
2665  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2666  */
2667 static void
2668 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2669     dtrace_specid_t which)
2670 {
2671 	dtrace_speculation_t *spec;
2672 	dtrace_speculation_state_t current, new;
2673 	dtrace_buffer_t *buf;
2674 
2675 	if (which == 0)
2676 		return;
2677 
2678 	if (which > state->dts_nspeculations) {
2679 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2680 		return;
2681 	}
2682 
2683 	spec = &state->dts_speculations[which - 1];
2684 	buf = &spec->dtsp_buffer[cpu];
2685 
2686 	do {
2687 		current = spec->dtsp_state;
2688 
2689 		switch (current) {
2690 		case DTRACESPEC_INACTIVE:
2691 		case DTRACESPEC_COMMITTINGMANY:
2692 		case DTRACESPEC_COMMITTING:
2693 		case DTRACESPEC_DISCARDING:
2694 			return;
2695 
2696 		case DTRACESPEC_ACTIVE:
2697 		case DTRACESPEC_ACTIVEMANY:
2698 			new = DTRACESPEC_DISCARDING;
2699 			break;
2700 
2701 		case DTRACESPEC_ACTIVEONE:
2702 			if (buf->dtb_offset != 0) {
2703 				new = DTRACESPEC_INACTIVE;
2704 			} else {
2705 				new = DTRACESPEC_DISCARDING;
2706 			}
2707 			break;
2708 
2709 		default:
2710 			ASSERT(0);
2711 		}
2712 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2713 	    current, new) != current);
2714 
2715 	buf->dtb_offset = 0;
2716 	buf->dtb_drops = 0;
2717 }
2718 
2719 /*
2720  * Note:  not called from probe context.  This function is called
2721  * asynchronously from cross call context to clean any speculations that are
2722  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2723  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2724  * speculation.
2725  */
2726 static void
2727 dtrace_speculation_clean_here(dtrace_state_t *state)
2728 {
2729 	dtrace_icookie_t cookie;
2730 	processorid_t cpu = CPU->cpu_id;
2731 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2732 	dtrace_specid_t i;
2733 
2734 	cookie = dtrace_interrupt_disable();
2735 
2736 	if (dest->dtb_tomax == NULL) {
2737 		dtrace_interrupt_enable(cookie);
2738 		return;
2739 	}
2740 
2741 	for (i = 0; i < state->dts_nspeculations; i++) {
2742 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2743 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2744 
2745 		if (src->dtb_tomax == NULL)
2746 			continue;
2747 
2748 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2749 			src->dtb_offset = 0;
2750 			continue;
2751 		}
2752 
2753 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2754 			continue;
2755 
2756 		if (src->dtb_offset == 0)
2757 			continue;
2758 
2759 		dtrace_speculation_commit(state, cpu, i + 1);
2760 	}
2761 
2762 	dtrace_interrupt_enable(cookie);
2763 }
2764 
2765 /*
2766  * Note:  not called from probe context.  This function is called
2767  * asynchronously (and at a regular interval) to clean any speculations that
2768  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2769  * is work to be done, it cross calls all CPUs to perform that work;
2770  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2771  * INACTIVE state until they have been cleaned by all CPUs.
2772  */
2773 static void
2774 dtrace_speculation_clean(dtrace_state_t *state)
2775 {
2776 	int work = 0, rv;
2777 	dtrace_specid_t i;
2778 
2779 	for (i = 0; i < state->dts_nspeculations; i++) {
2780 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2781 
2782 		ASSERT(!spec->dtsp_cleaning);
2783 
2784 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2785 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2786 			continue;
2787 
2788 		work++;
2789 		spec->dtsp_cleaning = 1;
2790 	}
2791 
2792 	if (!work)
2793 		return;
2794 
2795 	dtrace_xcall(DTRACE_CPUALL,
2796 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2797 
2798 	/*
2799 	 * We now know that all CPUs have committed or discarded their
2800 	 * speculation buffers, as appropriate.  We can now set the state
2801 	 * to inactive.
2802 	 */
2803 	for (i = 0; i < state->dts_nspeculations; i++) {
2804 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2805 		dtrace_speculation_state_t current, new;
2806 
2807 		if (!spec->dtsp_cleaning)
2808 			continue;
2809 
2810 		current = spec->dtsp_state;
2811 		ASSERT(current == DTRACESPEC_DISCARDING ||
2812 		    current == DTRACESPEC_COMMITTINGMANY);
2813 
2814 		new = DTRACESPEC_INACTIVE;
2815 
2816 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2817 		ASSERT(rv == current);
2818 		spec->dtsp_cleaning = 0;
2819 	}
2820 }
2821 
2822 /*
2823  * Called as part of a speculate() to get the speculative buffer associated
2824  * with a given speculation.  Returns NULL if the specified speculation is not
2825  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2826  * the active CPU is not the specified CPU -- the speculation will be
2827  * atomically transitioned into the ACTIVEMANY state.
2828  */
2829 static dtrace_buffer_t *
2830 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2831     dtrace_specid_t which)
2832 {
2833 	dtrace_speculation_t *spec;
2834 	dtrace_speculation_state_t current, new;
2835 	dtrace_buffer_t *buf;
2836 
2837 	if (which == 0)
2838 		return (NULL);
2839 
2840 	if (which > state->dts_nspeculations) {
2841 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2842 		return (NULL);
2843 	}
2844 
2845 	spec = &state->dts_speculations[which - 1];
2846 	buf = &spec->dtsp_buffer[cpuid];
2847 
2848 	do {
2849 		current = spec->dtsp_state;
2850 
2851 		switch (current) {
2852 		case DTRACESPEC_INACTIVE:
2853 		case DTRACESPEC_COMMITTINGMANY:
2854 		case DTRACESPEC_DISCARDING:
2855 			return (NULL);
2856 
2857 		case DTRACESPEC_COMMITTING:
2858 			ASSERT(buf->dtb_offset == 0);
2859 			return (NULL);
2860 
2861 		case DTRACESPEC_ACTIVEONE:
2862 			/*
2863 			 * This speculation is currently active on one CPU.
2864 			 * Check the offset in the buffer; if it's non-zero,
2865 			 * that CPU must be us (and we leave the state alone).
2866 			 * If it's zero, assume that we're starting on a new
2867 			 * CPU -- and change the state to indicate that the
2868 			 * speculation is active on more than one CPU.
2869 			 */
2870 			if (buf->dtb_offset != 0)
2871 				return (buf);
2872 
2873 			new = DTRACESPEC_ACTIVEMANY;
2874 			break;
2875 
2876 		case DTRACESPEC_ACTIVEMANY:
2877 			return (buf);
2878 
2879 		case DTRACESPEC_ACTIVE:
2880 			new = DTRACESPEC_ACTIVEONE;
2881 			break;
2882 
2883 		default:
2884 			ASSERT(0);
2885 		}
2886 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2887 	    current, new) != current);
2888 
2889 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2890 	return (buf);
2891 }
2892 
2893 /*
2894  * Return a string.  In the event that the user lacks the privilege to access
2895  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2896  * don't fail access checking.
2897  *
2898  * dtrace_dif_variable() uses this routine as a helper for various
2899  * builtin values such as 'execname' and 'probefunc.'
2900  */
2901 uintptr_t
2902 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2903     dtrace_mstate_t *mstate)
2904 {
2905 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2906 	uintptr_t ret;
2907 	size_t strsz;
2908 
2909 	/*
2910 	 * The easy case: this probe is allowed to read all of memory, so
2911 	 * we can just return this as a vanilla pointer.
2912 	 */
2913 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2914 		return (addr);
2915 
2916 	/*
2917 	 * This is the tougher case: we copy the string in question from
2918 	 * kernel memory into scratch memory and return it that way: this
2919 	 * ensures that we won't trip up when access checking tests the
2920 	 * BYREF return value.
2921 	 */
2922 	strsz = dtrace_strlen((char *)addr, size) + 1;
2923 
2924 	if (mstate->dtms_scratch_ptr + strsz >
2925 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2926 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2927 		return (NULL);
2928 	}
2929 
2930 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2931 	    strsz);
2932 	ret = mstate->dtms_scratch_ptr;
2933 	mstate->dtms_scratch_ptr += strsz;
2934 	return (ret);
2935 }
2936 
2937 /*
2938  * This function implements the DIF emulator's variable lookups.  The emulator
2939  * passes a reserved variable identifier and optional built-in array index.
2940  */
2941 static uint64_t
2942 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2943     uint64_t ndx)
2944 {
2945 	/*
2946 	 * If we're accessing one of the uncached arguments, we'll turn this
2947 	 * into a reference in the args array.
2948 	 */
2949 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2950 		ndx = v - DIF_VAR_ARG0;
2951 		v = DIF_VAR_ARGS;
2952 	}
2953 
2954 	switch (v) {
2955 	case DIF_VAR_ARGS:
2956 		if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2957 			cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2958 			    CPU_DTRACE_KPRIV;
2959 			return (0);
2960 		}
2961 
2962 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2963 		if (ndx >= sizeof (mstate->dtms_arg) /
2964 		    sizeof (mstate->dtms_arg[0])) {
2965 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2966 			dtrace_provider_t *pv;
2967 			uint64_t val;
2968 
2969 			pv = mstate->dtms_probe->dtpr_provider;
2970 			if (pv->dtpv_pops.dtps_getargval != NULL)
2971 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2972 				    mstate->dtms_probe->dtpr_id,
2973 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2974 			else
2975 				val = dtrace_getarg(ndx, aframes);
2976 
2977 			/*
2978 			 * This is regrettably required to keep the compiler
2979 			 * from tail-optimizing the call to dtrace_getarg().
2980 			 * The condition always evaluates to true, but the
2981 			 * compiler has no way of figuring that out a priori.
2982 			 * (None of this would be necessary if the compiler
2983 			 * could be relied upon to _always_ tail-optimize
2984 			 * the call to dtrace_getarg() -- but it can't.)
2985 			 */
2986 			if (mstate->dtms_probe != NULL)
2987 				return (val);
2988 
2989 			ASSERT(0);
2990 		}
2991 
2992 		return (mstate->dtms_arg[ndx]);
2993 
2994 	case DIF_VAR_UREGS: {
2995 		klwp_t *lwp;
2996 
2997 		if (!dtrace_priv_proc(state, mstate))
2998 			return (0);
2999 
3000 		if ((lwp = curthread->t_lwp) == NULL) {
3001 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3002 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3003 			return (0);
3004 		}
3005 
3006 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3007 	}
3008 
3009 	case DIF_VAR_VMREGS: {
3010 		uint64_t rval;
3011 
3012 		if (!dtrace_priv_kernel(state))
3013 			return (0);
3014 
3015 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3016 
3017 		rval = dtrace_getvmreg(ndx,
3018 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3019 
3020 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3021 
3022 		return (rval);
3023 	}
3024 
3025 	case DIF_VAR_CURTHREAD:
3026 		if (!dtrace_priv_proc(state, mstate))
3027 			return (0);
3028 		return ((uint64_t)(uintptr_t)curthread);
3029 
3030 	case DIF_VAR_TIMESTAMP:
3031 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3032 			mstate->dtms_timestamp = dtrace_gethrtime();
3033 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3034 		}
3035 		return (mstate->dtms_timestamp);
3036 
3037 	case DIF_VAR_VTIMESTAMP:
3038 		ASSERT(dtrace_vtime_references != 0);
3039 		return (curthread->t_dtrace_vtime);
3040 
3041 	case DIF_VAR_WALLTIMESTAMP:
3042 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3043 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3044 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3045 		}
3046 		return (mstate->dtms_walltimestamp);
3047 
3048 	case DIF_VAR_IPL:
3049 		if (!dtrace_priv_kernel(state))
3050 			return (0);
3051 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3052 			mstate->dtms_ipl = dtrace_getipl();
3053 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3054 		}
3055 		return (mstate->dtms_ipl);
3056 
3057 	case DIF_VAR_EPID:
3058 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3059 		return (mstate->dtms_epid);
3060 
3061 	case DIF_VAR_ID:
3062 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3063 		return (mstate->dtms_probe->dtpr_id);
3064 
3065 	case DIF_VAR_STACKDEPTH:
3066 		if (!dtrace_priv_kernel(state))
3067 			return (0);
3068 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3069 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3070 
3071 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3072 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3073 		}
3074 		return (mstate->dtms_stackdepth);
3075 
3076 	case DIF_VAR_USTACKDEPTH:
3077 		if (!dtrace_priv_proc(state, mstate))
3078 			return (0);
3079 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3080 			/*
3081 			 * See comment in DIF_VAR_PID.
3082 			 */
3083 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3084 			    CPU_ON_INTR(CPU)) {
3085 				mstate->dtms_ustackdepth = 0;
3086 			} else {
3087 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3088 				mstate->dtms_ustackdepth =
3089 				    dtrace_getustackdepth();
3090 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3091 			}
3092 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3093 		}
3094 		return (mstate->dtms_ustackdepth);
3095 
3096 	case DIF_VAR_CALLER:
3097 		if (!dtrace_priv_kernel(state))
3098 			return (0);
3099 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3100 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3101 
3102 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3103 				/*
3104 				 * If this is an unanchored probe, we are
3105 				 * required to go through the slow path:
3106 				 * dtrace_caller() only guarantees correct
3107 				 * results for anchored probes.
3108 				 */
3109 				pc_t caller[2];
3110 
3111 				dtrace_getpcstack(caller, 2, aframes,
3112 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3113 				mstate->dtms_caller = caller[1];
3114 			} else if ((mstate->dtms_caller =
3115 			    dtrace_caller(aframes)) == -1) {
3116 				/*
3117 				 * We have failed to do this the quick way;
3118 				 * we must resort to the slower approach of
3119 				 * calling dtrace_getpcstack().
3120 				 */
3121 				pc_t caller;
3122 
3123 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3124 				mstate->dtms_caller = caller;
3125 			}
3126 
3127 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3128 		}
3129 		return (mstate->dtms_caller);
3130 
3131 	case DIF_VAR_UCALLER:
3132 		if (!dtrace_priv_proc(state, mstate))
3133 			return (0);
3134 
3135 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3136 			uint64_t ustack[3];
3137 
3138 			/*
3139 			 * dtrace_getupcstack() fills in the first uint64_t
3140 			 * with the current PID.  The second uint64_t will
3141 			 * be the program counter at user-level.  The third
3142 			 * uint64_t will contain the caller, which is what
3143 			 * we're after.
3144 			 */
3145 			ustack[2] = NULL;
3146 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3147 			dtrace_getupcstack(ustack, 3);
3148 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3149 			mstate->dtms_ucaller = ustack[2];
3150 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3151 		}
3152 
3153 		return (mstate->dtms_ucaller);
3154 
3155 	case DIF_VAR_PROBEPROV:
3156 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3157 		return (dtrace_dif_varstr(
3158 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3159 		    state, mstate));
3160 
3161 	case DIF_VAR_PROBEMOD:
3162 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3163 		return (dtrace_dif_varstr(
3164 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3165 		    state, mstate));
3166 
3167 	case DIF_VAR_PROBEFUNC:
3168 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3169 		return (dtrace_dif_varstr(
3170 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3171 		    state, mstate));
3172 
3173 	case DIF_VAR_PROBENAME:
3174 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3175 		return (dtrace_dif_varstr(
3176 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3177 		    state, mstate));
3178 
3179 	case DIF_VAR_PID:
3180 		if (!dtrace_priv_proc(state, mstate))
3181 			return (0);
3182 
3183 		/*
3184 		 * Note that we are assuming that an unanchored probe is
3185 		 * always due to a high-level interrupt.  (And we're assuming
3186 		 * that there is only a single high level interrupt.)
3187 		 */
3188 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3189 			return (pid0.pid_id);
3190 
3191 		/*
3192 		 * It is always safe to dereference one's own t_procp pointer:
3193 		 * it always points to a valid, allocated proc structure.
3194 		 * Further, it is always safe to dereference the p_pidp member
3195 		 * of one's own proc structure.  (These are truisms becuase
3196 		 * threads and processes don't clean up their own state --
3197 		 * they leave that task to whomever reaps them.)
3198 		 */
3199 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3200 
3201 	case DIF_VAR_PPID:
3202 		if (!dtrace_priv_proc(state, mstate))
3203 			return (0);
3204 
3205 		/*
3206 		 * See comment in DIF_VAR_PID.
3207 		 */
3208 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3209 			return (pid0.pid_id);
3210 
3211 		/*
3212 		 * It is always safe to dereference one's own t_procp pointer:
3213 		 * it always points to a valid, allocated proc structure.
3214 		 * (This is true because threads don't clean up their own
3215 		 * state -- they leave that task to whomever reaps them.)
3216 		 */
3217 		return ((uint64_t)curthread->t_procp->p_ppid);
3218 
3219 	case DIF_VAR_TID:
3220 		/*
3221 		 * See comment in DIF_VAR_PID.
3222 		 */
3223 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3224 			return (0);
3225 
3226 		return ((uint64_t)curthread->t_tid);
3227 
3228 	case DIF_VAR_EXECNAME:
3229 		if (!dtrace_priv_proc(state, mstate))
3230 			return (0);
3231 
3232 		/*
3233 		 * See comment in DIF_VAR_PID.
3234 		 */
3235 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3236 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3237 
3238 		/*
3239 		 * It is always safe to dereference one's own t_procp pointer:
3240 		 * it always points to a valid, allocated proc structure.
3241 		 * (This is true because threads don't clean up their own
3242 		 * state -- they leave that task to whomever reaps them.)
3243 		 */
3244 		return (dtrace_dif_varstr(
3245 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3246 		    state, mstate));
3247 
3248 	case DIF_VAR_ZONENAME:
3249 		if (!dtrace_priv_proc(state, mstate))
3250 			return (0);
3251 
3252 		/*
3253 		 * See comment in DIF_VAR_PID.
3254 		 */
3255 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3256 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3257 
3258 		/*
3259 		 * It is always safe to dereference one's own t_procp pointer:
3260 		 * it always points to a valid, allocated proc structure.
3261 		 * (This is true because threads don't clean up their own
3262 		 * state -- they leave that task to whomever reaps them.)
3263 		 */
3264 		return (dtrace_dif_varstr(
3265 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3266 		    state, mstate));
3267 
3268 	case DIF_VAR_UID:
3269 		if (!dtrace_priv_proc(state, mstate))
3270 			return (0);
3271 
3272 		/*
3273 		 * See comment in DIF_VAR_PID.
3274 		 */
3275 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3276 			return ((uint64_t)p0.p_cred->cr_uid);
3277 
3278 		/*
3279 		 * It is always safe to dereference one's own t_procp pointer:
3280 		 * it always points to a valid, allocated proc structure.
3281 		 * (This is true because threads don't clean up their own
3282 		 * state -- they leave that task to whomever reaps them.)
3283 		 *
3284 		 * Additionally, it is safe to dereference one's own process
3285 		 * credential, since this is never NULL after process birth.
3286 		 */
3287 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3288 
3289 	case DIF_VAR_GID:
3290 		if (!dtrace_priv_proc(state, mstate))
3291 			return (0);
3292 
3293 		/*
3294 		 * See comment in DIF_VAR_PID.
3295 		 */
3296 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3297 			return ((uint64_t)p0.p_cred->cr_gid);
3298 
3299 		/*
3300 		 * It is always safe to dereference one's own t_procp pointer:
3301 		 * it always points to a valid, allocated proc structure.
3302 		 * (This is true because threads don't clean up their own
3303 		 * state -- they leave that task to whomever reaps them.)
3304 		 *
3305 		 * Additionally, it is safe to dereference one's own process
3306 		 * credential, since this is never NULL after process birth.
3307 		 */
3308 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3309 
3310 	case DIF_VAR_ERRNO: {
3311 		klwp_t *lwp;
3312 		if (!dtrace_priv_proc(state, mstate))
3313 			return (0);
3314 
3315 		/*
3316 		 * See comment in DIF_VAR_PID.
3317 		 */
3318 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3319 			return (0);
3320 
3321 		/*
3322 		 * It is always safe to dereference one's own t_lwp pointer in
3323 		 * the event that this pointer is non-NULL.  (This is true
3324 		 * because threads and lwps don't clean up their own state --
3325 		 * they leave that task to whomever reaps them.)
3326 		 */
3327 		if ((lwp = curthread->t_lwp) == NULL)
3328 			return (0);
3329 
3330 		return ((uint64_t)lwp->lwp_errno);
3331 	}
3332 	default:
3333 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3334 		return (0);
3335 	}
3336 }
3337 
3338 /*
3339  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3340  * Notice that we don't bother validating the proper number of arguments or
3341  * their types in the tuple stack.  This isn't needed because all argument
3342  * interpretation is safe because of our load safety -- the worst that can
3343  * happen is that a bogus program can obtain bogus results.
3344  */
3345 static void
3346 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3347     dtrace_key_t *tupregs, int nargs,
3348     dtrace_mstate_t *mstate, dtrace_state_t *state)
3349 {
3350 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3351 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3352 	dtrace_vstate_t *vstate = &state->dts_vstate;
3353 
3354 	union {
3355 		mutex_impl_t mi;
3356 		uint64_t mx;
3357 	} m;
3358 
3359 	union {
3360 		krwlock_t ri;
3361 		uintptr_t rw;
3362 	} r;
3363 
3364 	switch (subr) {
3365 	case DIF_SUBR_RAND:
3366 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3367 		break;
3368 
3369 	case DIF_SUBR_MUTEX_OWNED:
3370 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3371 		    mstate, vstate)) {
3372 			regs[rd] = NULL;
3373 			break;
3374 		}
3375 
3376 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3377 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3378 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3379 		else
3380 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3381 		break;
3382 
3383 	case DIF_SUBR_MUTEX_OWNER:
3384 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3385 		    mstate, vstate)) {
3386 			regs[rd] = NULL;
3387 			break;
3388 		}
3389 
3390 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3391 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3392 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3393 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3394 		else
3395 			regs[rd] = 0;
3396 		break;
3397 
3398 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3399 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3400 		    mstate, vstate)) {
3401 			regs[rd] = NULL;
3402 			break;
3403 		}
3404 
3405 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3406 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3407 		break;
3408 
3409 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3410 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3411 		    mstate, vstate)) {
3412 			regs[rd] = NULL;
3413 			break;
3414 		}
3415 
3416 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3417 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3418 		break;
3419 
3420 	case DIF_SUBR_RW_READ_HELD: {
3421 		uintptr_t tmp;
3422 
3423 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424 		    mstate, vstate)) {
3425 			regs[rd] = NULL;
3426 			break;
3427 		}
3428 
3429 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3430 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3431 		break;
3432 	}
3433 
3434 	case DIF_SUBR_RW_WRITE_HELD:
3435 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3436 		    mstate, vstate)) {
3437 			regs[rd] = NULL;
3438 			break;
3439 		}
3440 
3441 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3442 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3443 		break;
3444 
3445 	case DIF_SUBR_RW_ISWRITER:
3446 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3447 		    mstate, vstate)) {
3448 			regs[rd] = NULL;
3449 			break;
3450 		}
3451 
3452 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3453 		regs[rd] = _RW_ISWRITER(&r.ri);
3454 		break;
3455 
3456 	case DIF_SUBR_BCOPY: {
3457 		/*
3458 		 * We need to be sure that the destination is in the scratch
3459 		 * region -- no other region is allowed.
3460 		 */
3461 		uintptr_t src = tupregs[0].dttk_value;
3462 		uintptr_t dest = tupregs[1].dttk_value;
3463 		size_t size = tupregs[2].dttk_value;
3464 
3465 		if (!dtrace_inscratch(dest, size, mstate)) {
3466 			*flags |= CPU_DTRACE_BADADDR;
3467 			*illval = regs[rd];
3468 			break;
3469 		}
3470 
3471 		if (!dtrace_canload(src, size, mstate, vstate)) {
3472 			regs[rd] = NULL;
3473 			break;
3474 		}
3475 
3476 		dtrace_bcopy((void *)src, (void *)dest, size);
3477 		break;
3478 	}
3479 
3480 	case DIF_SUBR_ALLOCA:
3481 	case DIF_SUBR_COPYIN: {
3482 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3483 		uint64_t size =
3484 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3485 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3486 
3487 		/*
3488 		 * This action doesn't require any credential checks since
3489 		 * probes will not activate in user contexts to which the
3490 		 * enabling user does not have permissions.
3491 		 */
3492 
3493 		/*
3494 		 * Rounding up the user allocation size could have overflowed
3495 		 * a large, bogus allocation (like -1ULL) to 0.
3496 		 */
3497 		if (scratch_size < size ||
3498 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3499 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3500 			regs[rd] = NULL;
3501 			break;
3502 		}
3503 
3504 		if (subr == DIF_SUBR_COPYIN) {
3505 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3506 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3507 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3508 		}
3509 
3510 		mstate->dtms_scratch_ptr += scratch_size;
3511 		regs[rd] = dest;
3512 		break;
3513 	}
3514 
3515 	case DIF_SUBR_COPYINTO: {
3516 		uint64_t size = tupregs[1].dttk_value;
3517 		uintptr_t dest = tupregs[2].dttk_value;
3518 
3519 		/*
3520 		 * This action doesn't require any credential checks since
3521 		 * probes will not activate in user contexts to which the
3522 		 * enabling user does not have permissions.
3523 		 */
3524 		if (!dtrace_inscratch(dest, size, mstate)) {
3525 			*flags |= CPU_DTRACE_BADADDR;
3526 			*illval = regs[rd];
3527 			break;
3528 		}
3529 
3530 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3531 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3532 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3533 		break;
3534 	}
3535 
3536 	case DIF_SUBR_COPYINSTR: {
3537 		uintptr_t dest = mstate->dtms_scratch_ptr;
3538 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3539 
3540 		if (nargs > 1 && tupregs[1].dttk_value < size)
3541 			size = tupregs[1].dttk_value + 1;
3542 
3543 		/*
3544 		 * This action doesn't require any credential checks since
3545 		 * probes will not activate in user contexts to which the
3546 		 * enabling user does not have permissions.
3547 		 */
3548 		if (!DTRACE_INSCRATCH(mstate, size)) {
3549 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3550 			regs[rd] = NULL;
3551 			break;
3552 		}
3553 
3554 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3555 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3556 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3557 
3558 		((char *)dest)[size - 1] = '\0';
3559 		mstate->dtms_scratch_ptr += size;
3560 		regs[rd] = dest;
3561 		break;
3562 	}
3563 
3564 	case DIF_SUBR_MSGSIZE:
3565 	case DIF_SUBR_MSGDSIZE: {
3566 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3567 		uintptr_t wptr, rptr;
3568 		size_t count = 0;
3569 		int cont = 0;
3570 
3571 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3572 
3573 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3574 			    vstate)) {
3575 				regs[rd] = NULL;
3576 				break;
3577 			}
3578 
3579 			wptr = dtrace_loadptr(baddr +
3580 			    offsetof(mblk_t, b_wptr));
3581 
3582 			rptr = dtrace_loadptr(baddr +
3583 			    offsetof(mblk_t, b_rptr));
3584 
3585 			if (wptr < rptr) {
3586 				*flags |= CPU_DTRACE_BADADDR;
3587 				*illval = tupregs[0].dttk_value;
3588 				break;
3589 			}
3590 
3591 			daddr = dtrace_loadptr(baddr +
3592 			    offsetof(mblk_t, b_datap));
3593 
3594 			baddr = dtrace_loadptr(baddr +
3595 			    offsetof(mblk_t, b_cont));
3596 
3597 			/*
3598 			 * We want to prevent against denial-of-service here,
3599 			 * so we're only going to search the list for
3600 			 * dtrace_msgdsize_max mblks.
3601 			 */
3602 			if (cont++ > dtrace_msgdsize_max) {
3603 				*flags |= CPU_DTRACE_ILLOP;
3604 				break;
3605 			}
3606 
3607 			if (subr == DIF_SUBR_MSGDSIZE) {
3608 				if (dtrace_load8(daddr +
3609 				    offsetof(dblk_t, db_type)) != M_DATA)
3610 					continue;
3611 			}
3612 
3613 			count += wptr - rptr;
3614 		}
3615 
3616 		if (!(*flags & CPU_DTRACE_FAULT))
3617 			regs[rd] = count;
3618 
3619 		break;
3620 	}
3621 
3622 	case DIF_SUBR_PROGENYOF: {
3623 		pid_t pid = tupregs[0].dttk_value;
3624 		proc_t *p;
3625 		int rval = 0;
3626 
3627 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3628 
3629 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3630 			if (p->p_pidp->pid_id == pid) {
3631 				rval = 1;
3632 				break;
3633 			}
3634 		}
3635 
3636 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3637 
3638 		regs[rd] = rval;
3639 		break;
3640 	}
3641 
3642 	case DIF_SUBR_SPECULATION:
3643 		regs[rd] = dtrace_speculation(state);
3644 		break;
3645 
3646 	case DIF_SUBR_COPYOUT: {
3647 		uintptr_t kaddr = tupregs[0].dttk_value;
3648 		uintptr_t uaddr = tupregs[1].dttk_value;
3649 		uint64_t size = tupregs[2].dttk_value;
3650 
3651 		if (!dtrace_destructive_disallow &&
3652 		    dtrace_priv_proc_control(state, mstate) &&
3653 		    !dtrace_istoxic(kaddr, size)) {
3654 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3655 			dtrace_copyout(kaddr, uaddr, size, flags);
3656 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3657 		}
3658 		break;
3659 	}
3660 
3661 	case DIF_SUBR_COPYOUTSTR: {
3662 		uintptr_t kaddr = tupregs[0].dttk_value;
3663 		uintptr_t uaddr = tupregs[1].dttk_value;
3664 		uint64_t size = tupregs[2].dttk_value;
3665 
3666 		if (!dtrace_destructive_disallow &&
3667 		    dtrace_priv_proc_control(state, mstate) &&
3668 		    !dtrace_istoxic(kaddr, size)) {
3669 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3670 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3671 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3672 		}
3673 		break;
3674 	}
3675 
3676 	case DIF_SUBR_STRLEN: {
3677 		size_t sz;
3678 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3679 		sz = dtrace_strlen((char *)addr,
3680 		    state->dts_options[DTRACEOPT_STRSIZE]);
3681 
3682 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3683 			regs[rd] = NULL;
3684 			break;
3685 		}
3686 
3687 		regs[rd] = sz;
3688 
3689 		break;
3690 	}
3691 
3692 	case DIF_SUBR_STRCHR:
3693 	case DIF_SUBR_STRRCHR: {
3694 		/*
3695 		 * We're going to iterate over the string looking for the
3696 		 * specified character.  We will iterate until we have reached
3697 		 * the string length or we have found the character.  If this
3698 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3699 		 * of the specified character instead of the first.
3700 		 */
3701 		uintptr_t saddr = tupregs[0].dttk_value;
3702 		uintptr_t addr = tupregs[0].dttk_value;
3703 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3704 		char c, target = (char)tupregs[1].dttk_value;
3705 
3706 		for (regs[rd] = NULL; addr < limit; addr++) {
3707 			if ((c = dtrace_load8(addr)) == target) {
3708 				regs[rd] = addr;
3709 
3710 				if (subr == DIF_SUBR_STRCHR)
3711 					break;
3712 			}
3713 
3714 			if (c == '\0')
3715 				break;
3716 		}
3717 
3718 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3719 			regs[rd] = NULL;
3720 			break;
3721 		}
3722 
3723 		break;
3724 	}
3725 
3726 	case DIF_SUBR_STRSTR:
3727 	case DIF_SUBR_INDEX:
3728 	case DIF_SUBR_RINDEX: {
3729 		/*
3730 		 * We're going to iterate over the string looking for the
3731 		 * specified string.  We will iterate until we have reached
3732 		 * the string length or we have found the string.  (Yes, this
3733 		 * is done in the most naive way possible -- but considering
3734 		 * that the string we're searching for is likely to be
3735 		 * relatively short, the complexity of Rabin-Karp or similar
3736 		 * hardly seems merited.)
3737 		 */
3738 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3739 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3740 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3741 		size_t len = dtrace_strlen(addr, size);
3742 		size_t sublen = dtrace_strlen(substr, size);
3743 		char *limit = addr + len, *orig = addr;
3744 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3745 		int inc = 1;
3746 
3747 		regs[rd] = notfound;
3748 
3749 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3750 			regs[rd] = NULL;
3751 			break;
3752 		}
3753 
3754 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3755 		    vstate)) {
3756 			regs[rd] = NULL;
3757 			break;
3758 		}
3759 
3760 		/*
3761 		 * strstr() and index()/rindex() have similar semantics if
3762 		 * both strings are the empty string: strstr() returns a
3763 		 * pointer to the (empty) string, and index() and rindex()
3764 		 * both return index 0 (regardless of any position argument).
3765 		 */
3766 		if (sublen == 0 && len == 0) {
3767 			if (subr == DIF_SUBR_STRSTR)
3768 				regs[rd] = (uintptr_t)addr;
3769 			else
3770 				regs[rd] = 0;
3771 			break;
3772 		}
3773 
3774 		if (subr != DIF_SUBR_STRSTR) {
3775 			if (subr == DIF_SUBR_RINDEX) {
3776 				limit = orig - 1;
3777 				addr += len;
3778 				inc = -1;
3779 			}
3780 
3781 			/*
3782 			 * Both index() and rindex() take an optional position
3783 			 * argument that denotes the starting position.
3784 			 */
3785 			if (nargs == 3) {
3786 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3787 
3788 				/*
3789 				 * If the position argument to index() is
3790 				 * negative, Perl implicitly clamps it at
3791 				 * zero.  This semantic is a little surprising
3792 				 * given the special meaning of negative
3793 				 * positions to similar Perl functions like
3794 				 * substr(), but it appears to reflect a
3795 				 * notion that index() can start from a
3796 				 * negative index and increment its way up to
3797 				 * the string.  Given this notion, Perl's
3798 				 * rindex() is at least self-consistent in
3799 				 * that it implicitly clamps positions greater
3800 				 * than the string length to be the string
3801 				 * length.  Where Perl completely loses
3802 				 * coherence, however, is when the specified
3803 				 * substring is the empty string ("").  In
3804 				 * this case, even if the position is
3805 				 * negative, rindex() returns 0 -- and even if
3806 				 * the position is greater than the length,
3807 				 * index() returns the string length.  These
3808 				 * semantics violate the notion that index()
3809 				 * should never return a value less than the
3810 				 * specified position and that rindex() should
3811 				 * never return a value greater than the
3812 				 * specified position.  (One assumes that
3813 				 * these semantics are artifacts of Perl's
3814 				 * implementation and not the results of
3815 				 * deliberate design -- it beggars belief that
3816 				 * even Larry Wall could desire such oddness.)
3817 				 * While in the abstract one would wish for
3818 				 * consistent position semantics across
3819 				 * substr(), index() and rindex() -- or at the
3820 				 * very least self-consistent position
3821 				 * semantics for index() and rindex() -- we
3822 				 * instead opt to keep with the extant Perl
3823 				 * semantics, in all their broken glory.  (Do
3824 				 * we have more desire to maintain Perl's
3825 				 * semantics than Perl does?  Probably.)
3826 				 */
3827 				if (subr == DIF_SUBR_RINDEX) {
3828 					if (pos < 0) {
3829 						if (sublen == 0)
3830 							regs[rd] = 0;
3831 						break;
3832 					}
3833 
3834 					if (pos > len)
3835 						pos = len;
3836 				} else {
3837 					if (pos < 0)
3838 						pos = 0;
3839 
3840 					if (pos >= len) {
3841 						if (sublen == 0)
3842 							regs[rd] = len;
3843 						break;
3844 					}
3845 				}
3846 
3847 				addr = orig + pos;
3848 			}
3849 		}
3850 
3851 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3852 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3853 				if (subr != DIF_SUBR_STRSTR) {
3854 					/*
3855 					 * As D index() and rindex() are
3856 					 * modeled on Perl (and not on awk),
3857 					 * we return a zero-based (and not a
3858 					 * one-based) index.  (For you Perl
3859 					 * weenies: no, we're not going to add
3860 					 * $[ -- and shouldn't you be at a con
3861 					 * or something?)
3862 					 */
3863 					regs[rd] = (uintptr_t)(addr - orig);
3864 					break;
3865 				}
3866 
3867 				ASSERT(subr == DIF_SUBR_STRSTR);
3868 				regs[rd] = (uintptr_t)addr;
3869 				break;
3870 			}
3871 		}
3872 
3873 		break;
3874 	}
3875 
3876 	case DIF_SUBR_STRTOK: {
3877 		uintptr_t addr = tupregs[0].dttk_value;
3878 		uintptr_t tokaddr = tupregs[1].dttk_value;
3879 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3880 		uintptr_t limit, toklimit = tokaddr + size;
3881 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3882 		char *dest = (char *)mstate->dtms_scratch_ptr;
3883 		int i;
3884 
3885 		/*
3886 		 * Check both the token buffer and (later) the input buffer,
3887 		 * since both could be non-scratch addresses.
3888 		 */
3889 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3890 			regs[rd] = NULL;
3891 			break;
3892 		}
3893 
3894 		if (!DTRACE_INSCRATCH(mstate, size)) {
3895 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3896 			regs[rd] = NULL;
3897 			break;
3898 		}
3899 
3900 		if (addr == NULL) {
3901 			/*
3902 			 * If the address specified is NULL, we use our saved
3903 			 * strtok pointer from the mstate.  Note that this
3904 			 * means that the saved strtok pointer is _only_
3905 			 * valid within multiple enablings of the same probe --
3906 			 * it behaves like an implicit clause-local variable.
3907 			 */
3908 			addr = mstate->dtms_strtok;
3909 		} else {
3910 			/*
3911 			 * If the user-specified address is non-NULL we must
3912 			 * access check it.  This is the only time we have
3913 			 * a chance to do so, since this address may reside
3914 			 * in the string table of this clause-- future calls
3915 			 * (when we fetch addr from mstate->dtms_strtok)
3916 			 * would fail this access check.
3917 			 */
3918 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3919 				regs[rd] = NULL;
3920 				break;
3921 			}
3922 		}
3923 
3924 		/*
3925 		 * First, zero the token map, and then process the token
3926 		 * string -- setting a bit in the map for every character
3927 		 * found in the token string.
3928 		 */
3929 		for (i = 0; i < sizeof (tokmap); i++)
3930 			tokmap[i] = 0;
3931 
3932 		for (; tokaddr < toklimit; tokaddr++) {
3933 			if ((c = dtrace_load8(tokaddr)) == '\0')
3934 				break;
3935 
3936 			ASSERT((c >> 3) < sizeof (tokmap));
3937 			tokmap[c >> 3] |= (1 << (c & 0x7));
3938 		}
3939 
3940 		for (limit = addr + size; addr < limit; addr++) {
3941 			/*
3942 			 * We're looking for a character that is _not_ contained
3943 			 * in the token string.
3944 			 */
3945 			if ((c = dtrace_load8(addr)) == '\0')
3946 				break;
3947 
3948 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3949 				break;
3950 		}
3951 
3952 		if (c == '\0') {
3953 			/*
3954 			 * We reached the end of the string without finding
3955 			 * any character that was not in the token string.
3956 			 * We return NULL in this case, and we set the saved
3957 			 * address to NULL as well.
3958 			 */
3959 			regs[rd] = NULL;
3960 			mstate->dtms_strtok = NULL;
3961 			break;
3962 		}
3963 
3964 		/*
3965 		 * From here on, we're copying into the destination string.
3966 		 */
3967 		for (i = 0; addr < limit && i < size - 1; addr++) {
3968 			if ((c = dtrace_load8(addr)) == '\0')
3969 				break;
3970 
3971 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3972 				break;
3973 
3974 			ASSERT(i < size);
3975 			dest[i++] = c;
3976 		}
3977 
3978 		ASSERT(i < size);
3979 		dest[i] = '\0';
3980 		regs[rd] = (uintptr_t)dest;
3981 		mstate->dtms_scratch_ptr += size;
3982 		mstate->dtms_strtok = addr;
3983 		break;
3984 	}
3985 
3986 	case DIF_SUBR_SUBSTR: {
3987 		uintptr_t s = tupregs[0].dttk_value;
3988 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3989 		char *d = (char *)mstate->dtms_scratch_ptr;
3990 		int64_t index = (int64_t)tupregs[1].dttk_value;
3991 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3992 		size_t len = dtrace_strlen((char *)s, size);
3993 		int64_t i;
3994 
3995 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3996 			regs[rd] = NULL;
3997 			break;
3998 		}
3999 
4000 		if (!DTRACE_INSCRATCH(mstate, size)) {
4001 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4002 			regs[rd] = NULL;
4003 			break;
4004 		}
4005 
4006 		if (nargs <= 2)
4007 			remaining = (int64_t)size;
4008 
4009 		if (index < 0) {
4010 			index += len;
4011 
4012 			if (index < 0 && index + remaining > 0) {
4013 				remaining += index;
4014 				index = 0;
4015 			}
4016 		}
4017 
4018 		if (index >= len || index < 0) {
4019 			remaining = 0;
4020 		} else if (remaining < 0) {
4021 			remaining += len - index;
4022 		} else if (index + remaining > size) {
4023 			remaining = size - index;
4024 		}
4025 
4026 		for (i = 0; i < remaining; i++) {
4027 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4028 				break;
4029 		}
4030 
4031 		d[i] = '\0';
4032 
4033 		mstate->dtms_scratch_ptr += size;
4034 		regs[rd] = (uintptr_t)d;
4035 		break;
4036 	}
4037 
4038 	case DIF_SUBR_TOUPPER:
4039 	case DIF_SUBR_TOLOWER: {
4040 		uintptr_t s = tupregs[0].dttk_value;
4041 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4042 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4043 		size_t len = dtrace_strlen((char *)s, size);
4044 		char lower, upper, convert;
4045 		int64_t i;
4046 
4047 		if (subr == DIF_SUBR_TOUPPER) {
4048 			lower = 'a';
4049 			upper = 'z';
4050 			convert = 'A';
4051 		} else {
4052 			lower = 'A';
4053 			upper = 'Z';
4054 			convert = 'a';
4055 		}
4056 
4057 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4058 			regs[rd] = NULL;
4059 			break;
4060 		}
4061 
4062 		if (!DTRACE_INSCRATCH(mstate, size)) {
4063 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4064 			regs[rd] = NULL;
4065 			break;
4066 		}
4067 
4068 		for (i = 0; i < size - 1; i++) {
4069 			if ((c = dtrace_load8(s + i)) == '\0')
4070 				break;
4071 
4072 			if (c >= lower && c <= upper)
4073 				c = convert + (c - lower);
4074 
4075 			dest[i] = c;
4076 		}
4077 
4078 		ASSERT(i < size);
4079 		dest[i] = '\0';
4080 		regs[rd] = (uintptr_t)dest;
4081 		mstate->dtms_scratch_ptr += size;
4082 		break;
4083 	}
4084 
4085 case DIF_SUBR_GETMAJOR:
4086 #ifdef _LP64
4087 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4088 #else
4089 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4090 #endif
4091 		break;
4092 
4093 	case DIF_SUBR_GETMINOR:
4094 #ifdef _LP64
4095 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4096 #else
4097 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4098 #endif
4099 		break;
4100 
4101 	case DIF_SUBR_DDI_PATHNAME: {
4102 		/*
4103 		 * This one is a galactic mess.  We are going to roughly
4104 		 * emulate ddi_pathname(), but it's made more complicated
4105 		 * by the fact that we (a) want to include the minor name and
4106 		 * (b) must proceed iteratively instead of recursively.
4107 		 */
4108 		uintptr_t dest = mstate->dtms_scratch_ptr;
4109 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4110 		char *start = (char *)dest, *end = start + size - 1;
4111 		uintptr_t daddr = tupregs[0].dttk_value;
4112 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4113 		char *s;
4114 		int i, len, depth = 0;
4115 
4116 		/*
4117 		 * Due to all the pointer jumping we do and context we must
4118 		 * rely upon, we just mandate that the user must have kernel
4119 		 * read privileges to use this routine.
4120 		 */
4121 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4122 			*flags |= CPU_DTRACE_KPRIV;
4123 			*illval = daddr;
4124 			regs[rd] = NULL;
4125 		}
4126 
4127 		if (!DTRACE_INSCRATCH(mstate, size)) {
4128 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4129 			regs[rd] = NULL;
4130 			break;
4131 		}
4132 
4133 		*end = '\0';
4134 
4135 		/*
4136 		 * We want to have a name for the minor.  In order to do this,
4137 		 * we need to walk the minor list from the devinfo.  We want
4138 		 * to be sure that we don't infinitely walk a circular list,
4139 		 * so we check for circularity by sending a scout pointer
4140 		 * ahead two elements for every element that we iterate over;
4141 		 * if the list is circular, these will ultimately point to the
4142 		 * same element.  You may recognize this little trick as the
4143 		 * answer to a stupid interview question -- one that always
4144 		 * seems to be asked by those who had to have it laboriously
4145 		 * explained to them, and who can't even concisely describe
4146 		 * the conditions under which one would be forced to resort to
4147 		 * this technique.  Needless to say, those conditions are
4148 		 * found here -- and probably only here.  Is this the only use
4149 		 * of this infamous trick in shipping, production code?  If it
4150 		 * isn't, it probably should be...
4151 		 */
4152 		if (minor != -1) {
4153 			uintptr_t maddr = dtrace_loadptr(daddr +
4154 			    offsetof(struct dev_info, devi_minor));
4155 
4156 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4157 			uintptr_t name = offsetof(struct ddi_minor_data,
4158 			    d_minor) + offsetof(struct ddi_minor, name);
4159 			uintptr_t dev = offsetof(struct ddi_minor_data,
4160 			    d_minor) + offsetof(struct ddi_minor, dev);
4161 			uintptr_t scout;
4162 
4163 			if (maddr != NULL)
4164 				scout = dtrace_loadptr(maddr + next);
4165 
4166 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4167 				uint64_t m;
4168 #ifdef _LP64
4169 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4170 #else
4171 				m = dtrace_load32(maddr + dev) & MAXMIN;
4172 #endif
4173 				if (m != minor) {
4174 					maddr = dtrace_loadptr(maddr + next);
4175 
4176 					if (scout == NULL)
4177 						continue;
4178 
4179 					scout = dtrace_loadptr(scout + next);
4180 
4181 					if (scout == NULL)
4182 						continue;
4183 
4184 					scout = dtrace_loadptr(scout + next);
4185 
4186 					if (scout == NULL)
4187 						continue;
4188 
4189 					if (scout == maddr) {
4190 						*flags |= CPU_DTRACE_ILLOP;
4191 						break;
4192 					}
4193 
4194 					continue;
4195 				}
4196 
4197 				/*
4198 				 * We have the minor data.  Now we need to
4199 				 * copy the minor's name into the end of the
4200 				 * pathname.
4201 				 */
4202 				s = (char *)dtrace_loadptr(maddr + name);
4203 				len = dtrace_strlen(s, size);
4204 
4205 				if (*flags & CPU_DTRACE_FAULT)
4206 					break;
4207 
4208 				if (len != 0) {
4209 					if ((end -= (len + 1)) < start)
4210 						break;
4211 
4212 					*end = ':';
4213 				}
4214 
4215 				for (i = 1; i <= len; i++)
4216 					end[i] = dtrace_load8((uintptr_t)s++);
4217 				break;
4218 			}
4219 		}
4220 
4221 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4222 			ddi_node_state_t devi_state;
4223 
4224 			devi_state = dtrace_load32(daddr +
4225 			    offsetof(struct dev_info, devi_node_state));
4226 
4227 			if (*flags & CPU_DTRACE_FAULT)
4228 				break;
4229 
4230 			if (devi_state >= DS_INITIALIZED) {
4231 				s = (char *)dtrace_loadptr(daddr +
4232 				    offsetof(struct dev_info, devi_addr));
4233 				len = dtrace_strlen(s, size);
4234 
4235 				if (*flags & CPU_DTRACE_FAULT)
4236 					break;
4237 
4238 				if (len != 0) {
4239 					if ((end -= (len + 1)) < start)
4240 						break;
4241 
4242 					*end = '@';
4243 				}
4244 
4245 				for (i = 1; i <= len; i++)
4246 					end[i] = dtrace_load8((uintptr_t)s++);
4247 			}
4248 
4249 			/*
4250 			 * Now for the node name...
4251 			 */
4252 			s = (char *)dtrace_loadptr(daddr +
4253 			    offsetof(struct dev_info, devi_node_name));
4254 
4255 			daddr = dtrace_loadptr(daddr +
4256 			    offsetof(struct dev_info, devi_parent));
4257 
4258 			/*
4259 			 * If our parent is NULL (that is, if we're the root
4260 			 * node), we're going to use the special path
4261 			 * "devices".
4262 			 */
4263 			if (daddr == NULL)
4264 				s = "devices";
4265 
4266 			len = dtrace_strlen(s, size);
4267 			if (*flags & CPU_DTRACE_FAULT)
4268 				break;
4269 
4270 			if ((end -= (len + 1)) < start)
4271 				break;
4272 
4273 			for (i = 1; i <= len; i++)
4274 				end[i] = dtrace_load8((uintptr_t)s++);
4275 			*end = '/';
4276 
4277 			if (depth++ > dtrace_devdepth_max) {
4278 				*flags |= CPU_DTRACE_ILLOP;
4279 				break;
4280 			}
4281 		}
4282 
4283 		if (end < start)
4284 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4285 
4286 		if (daddr == NULL) {
4287 			regs[rd] = (uintptr_t)end;
4288 			mstate->dtms_scratch_ptr += size;
4289 		}
4290 
4291 		break;
4292 	}
4293 
4294 	case DIF_SUBR_STRJOIN: {
4295 		char *d = (char *)mstate->dtms_scratch_ptr;
4296 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4297 		uintptr_t s1 = tupregs[0].dttk_value;
4298 		uintptr_t s2 = tupregs[1].dttk_value;
4299 		int i = 0;
4300 
4301 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4302 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4303 			regs[rd] = NULL;
4304 			break;
4305 		}
4306 
4307 		if (!DTRACE_INSCRATCH(mstate, size)) {
4308 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4309 			regs[rd] = NULL;
4310 			break;
4311 		}
4312 
4313 		for (;;) {
4314 			if (i >= size) {
4315 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4316 				regs[rd] = NULL;
4317 				break;
4318 			}
4319 
4320 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4321 				i--;
4322 				break;
4323 			}
4324 		}
4325 
4326 		for (;;) {
4327 			if (i >= size) {
4328 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4329 				regs[rd] = NULL;
4330 				break;
4331 			}
4332 
4333 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4334 				break;
4335 		}
4336 
4337 		if (i < size) {
4338 			mstate->dtms_scratch_ptr += i;
4339 			regs[rd] = (uintptr_t)d;
4340 		}
4341 
4342 		break;
4343 	}
4344 
4345 	case DIF_SUBR_LLTOSTR: {
4346 		int64_t i = (int64_t)tupregs[0].dttk_value;
4347 		uint64_t val, digit;
4348 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4349 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4350 		int base = 10;
4351 
4352 		if (nargs > 1) {
4353 			if ((base = tupregs[1].dttk_value) <= 1 ||
4354 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4355 				*flags |= CPU_DTRACE_ILLOP;
4356 				break;
4357 			}
4358 		}
4359 
4360 		val = (base == 10 && i < 0) ? i * -1 : i;
4361 
4362 		if (!DTRACE_INSCRATCH(mstate, size)) {
4363 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4364 			regs[rd] = NULL;
4365 			break;
4366 		}
4367 
4368 		for (*end-- = '\0'; val; val /= base) {
4369 			if ((digit = val % base) <= '9' - '0') {
4370 				*end-- = '0' + digit;
4371 			} else {
4372 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4373 			}
4374 		}
4375 
4376 		if (i == 0 && base == 16)
4377 			*end-- = '0';
4378 
4379 		if (base == 16)
4380 			*end-- = 'x';
4381 
4382 		if (i == 0 || base == 8 || base == 16)
4383 			*end-- = '0';
4384 
4385 		if (i < 0 && base == 10)
4386 			*end-- = '-';
4387 
4388 		regs[rd] = (uintptr_t)end + 1;
4389 		mstate->dtms_scratch_ptr += size;
4390 		break;
4391 	}
4392 
4393 	case DIF_SUBR_HTONS:
4394 	case DIF_SUBR_NTOHS:
4395 #ifdef _BIG_ENDIAN
4396 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4397 #else
4398 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4399 #endif
4400 		break;
4401 
4402 
4403 	case DIF_SUBR_HTONL:
4404 	case DIF_SUBR_NTOHL:
4405 #ifdef _BIG_ENDIAN
4406 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4407 #else
4408 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4409 #endif
4410 		break;
4411 
4412 
4413 	case DIF_SUBR_HTONLL:
4414 	case DIF_SUBR_NTOHLL:
4415 #ifdef _BIG_ENDIAN
4416 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4417 #else
4418 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4419 #endif
4420 		break;
4421 
4422 
4423 	case DIF_SUBR_DIRNAME:
4424 	case DIF_SUBR_BASENAME: {
4425 		char *dest = (char *)mstate->dtms_scratch_ptr;
4426 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4427 		uintptr_t src = tupregs[0].dttk_value;
4428 		int i, j, len = dtrace_strlen((char *)src, size);
4429 		int lastbase = -1, firstbase = -1, lastdir = -1;
4430 		int start, end;
4431 
4432 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4433 			regs[rd] = NULL;
4434 			break;
4435 		}
4436 
4437 		if (!DTRACE_INSCRATCH(mstate, size)) {
4438 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4439 			regs[rd] = NULL;
4440 			break;
4441 		}
4442 
4443 		/*
4444 		 * The basename and dirname for a zero-length string is
4445 		 * defined to be "."
4446 		 */
4447 		if (len == 0) {
4448 			len = 1;
4449 			src = (uintptr_t)".";
4450 		}
4451 
4452 		/*
4453 		 * Start from the back of the string, moving back toward the
4454 		 * front until we see a character that isn't a slash.  That
4455 		 * character is the last character in the basename.
4456 		 */
4457 		for (i = len - 1; i >= 0; i--) {
4458 			if (dtrace_load8(src + i) != '/')
4459 				break;
4460 		}
4461 
4462 		if (i >= 0)
4463 			lastbase = i;
4464 
4465 		/*
4466 		 * Starting from the last character in the basename, move
4467 		 * towards the front until we find a slash.  The character
4468 		 * that we processed immediately before that is the first
4469 		 * character in the basename.
4470 		 */
4471 		for (; i >= 0; i--) {
4472 			if (dtrace_load8(src + i) == '/')
4473 				break;
4474 		}
4475 
4476 		if (i >= 0)
4477 			firstbase = i + 1;
4478 
4479 		/*
4480 		 * Now keep going until we find a non-slash character.  That
4481 		 * character is the last character in the dirname.
4482 		 */
4483 		for (; i >= 0; i--) {
4484 			if (dtrace_load8(src + i) != '/')
4485 				break;
4486 		}
4487 
4488 		if (i >= 0)
4489 			lastdir = i;
4490 
4491 		ASSERT(!(lastbase == -1 && firstbase != -1));
4492 		ASSERT(!(firstbase == -1 && lastdir != -1));
4493 
4494 		if (lastbase == -1) {
4495 			/*
4496 			 * We didn't find a non-slash character.  We know that
4497 			 * the length is non-zero, so the whole string must be
4498 			 * slashes.  In either the dirname or the basename
4499 			 * case, we return '/'.
4500 			 */
4501 			ASSERT(firstbase == -1);
4502 			firstbase = lastbase = lastdir = 0;
4503 		}
4504 
4505 		if (firstbase == -1) {
4506 			/*
4507 			 * The entire string consists only of a basename
4508 			 * component.  If we're looking for dirname, we need
4509 			 * to change our string to be just "."; if we're
4510 			 * looking for a basename, we'll just set the first
4511 			 * character of the basename to be 0.
4512 			 */
4513 			if (subr == DIF_SUBR_DIRNAME) {
4514 				ASSERT(lastdir == -1);
4515 				src = (uintptr_t)".";
4516 				lastdir = 0;
4517 			} else {
4518 				firstbase = 0;
4519 			}
4520 		}
4521 
4522 		if (subr == DIF_SUBR_DIRNAME) {
4523 			if (lastdir == -1) {
4524 				/*
4525 				 * We know that we have a slash in the name --
4526 				 * or lastdir would be set to 0, above.  And
4527 				 * because lastdir is -1, we know that this
4528 				 * slash must be the first character.  (That
4529 				 * is, the full string must be of the form
4530 				 * "/basename".)  In this case, the last
4531 				 * character of the directory name is 0.
4532 				 */
4533 				lastdir = 0;
4534 			}
4535 
4536 			start = 0;
4537 			end = lastdir;
4538 		} else {
4539 			ASSERT(subr == DIF_SUBR_BASENAME);
4540 			ASSERT(firstbase != -1 && lastbase != -1);
4541 			start = firstbase;
4542 			end = lastbase;
4543 		}
4544 
4545 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4546 			dest[j] = dtrace_load8(src + i);
4547 
4548 		dest[j] = '\0';
4549 		regs[rd] = (uintptr_t)dest;
4550 		mstate->dtms_scratch_ptr += size;
4551 		break;
4552 	}
4553 
4554 	case DIF_SUBR_GETF: {
4555 		uintptr_t fd = tupregs[0].dttk_value;
4556 		uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
4557 		file_t *fp;
4558 
4559 		if (!dtrace_priv_proc(state, mstate)) {
4560 			regs[rd] = NULL;
4561 			break;
4562 		}
4563 
4564 		/*
4565 		 * This is safe because fi_nfiles only increases, and the
4566 		 * fi_list array is not freed when the array size doubles.
4567 		 * (See the comment in flist_grow() for details on the
4568 		 * management of the u_finfo structure.)
4569 		 */
4570 		fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
4571 
4572 		mstate->dtms_getf = fp;
4573 		regs[rd] = (uintptr_t)fp;
4574 		break;
4575 	}
4576 
4577 	case DIF_SUBR_CLEANPATH: {
4578 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4579 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4580 		uintptr_t src = tupregs[0].dttk_value;
4581 		int i = 0, j = 0;
4582 		zone_t *z;
4583 
4584 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4585 			regs[rd] = NULL;
4586 			break;
4587 		}
4588 
4589 		if (!DTRACE_INSCRATCH(mstate, size)) {
4590 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4591 			regs[rd] = NULL;
4592 			break;
4593 		}
4594 
4595 		/*
4596 		 * Move forward, loading each character.
4597 		 */
4598 		do {
4599 			c = dtrace_load8(src + i++);
4600 next:
4601 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4602 				break;
4603 
4604 			if (c != '/') {
4605 				dest[j++] = c;
4606 				continue;
4607 			}
4608 
4609 			c = dtrace_load8(src + i++);
4610 
4611 			if (c == '/') {
4612 				/*
4613 				 * We have two slashes -- we can just advance
4614 				 * to the next character.
4615 				 */
4616 				goto next;
4617 			}
4618 
4619 			if (c != '.') {
4620 				/*
4621 				 * This is not "." and it's not ".." -- we can
4622 				 * just store the "/" and this character and
4623 				 * drive on.
4624 				 */
4625 				dest[j++] = '/';
4626 				dest[j++] = c;
4627 				continue;
4628 			}
4629 
4630 			c = dtrace_load8(src + i++);
4631 
4632 			if (c == '/') {
4633 				/*
4634 				 * This is a "/./" component.  We're not going
4635 				 * to store anything in the destination buffer;
4636 				 * we're just going to go to the next component.
4637 				 */
4638 				goto next;
4639 			}
4640 
4641 			if (c != '.') {
4642 				/*
4643 				 * This is not ".." -- we can just store the
4644 				 * "/." and this character and continue
4645 				 * processing.
4646 				 */
4647 				dest[j++] = '/';
4648 				dest[j++] = '.';
4649 				dest[j++] = c;
4650 				continue;
4651 			}
4652 
4653 			c = dtrace_load8(src + i++);
4654 
4655 			if (c != '/' && c != '\0') {
4656 				/*
4657 				 * This is not ".." -- it's "..[mumble]".
4658 				 * We'll store the "/.." and this character
4659 				 * and continue processing.
4660 				 */
4661 				dest[j++] = '/';
4662 				dest[j++] = '.';
4663 				dest[j++] = '.';
4664 				dest[j++] = c;
4665 				continue;
4666 			}
4667 
4668 			/*
4669 			 * This is "/../" or "/..\0".  We need to back up
4670 			 * our destination pointer until we find a "/".
4671 			 */
4672 			i--;
4673 			while (j != 0 && dest[--j] != '/')
4674 				continue;
4675 
4676 			if (c == '\0')
4677 				dest[++j] = '/';
4678 		} while (c != '\0');
4679 
4680 		dest[j] = '\0';
4681 
4682 		if (mstate->dtms_getf != NULL &&
4683 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
4684 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
4685 			/*
4686 			 * If we've done a getf() as a part of this ECB and we
4687 			 * don't have kernel access (and we're not in the global
4688 			 * zone), check if the path we cleaned up begins with
4689 			 * the zone's root path, and trim it off if so.  Note
4690 			 * that this is an output cleanliness issue, not a
4691 			 * security issue: knowing one's zone root path does
4692 			 * not enable privilege escalation.
4693 			 */
4694 			if (strstr(dest, z->zone_rootpath) == dest)
4695 				dest += strlen(z->zone_rootpath) - 1;
4696 		}
4697 
4698 		regs[rd] = (uintptr_t)dest;
4699 		mstate->dtms_scratch_ptr += size;
4700 		break;
4701 	}
4702 
4703 	case DIF_SUBR_INET_NTOA:
4704 	case DIF_SUBR_INET_NTOA6:
4705 	case DIF_SUBR_INET_NTOP: {
4706 		size_t size;
4707 		int af, argi, i;
4708 		char *base, *end;
4709 
4710 		if (subr == DIF_SUBR_INET_NTOP) {
4711 			af = (int)tupregs[0].dttk_value;
4712 			argi = 1;
4713 		} else {
4714 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4715 			argi = 0;
4716 		}
4717 
4718 		if (af == AF_INET) {
4719 			ipaddr_t ip4;
4720 			uint8_t *ptr8, val;
4721 
4722 			/*
4723 			 * Safely load the IPv4 address.
4724 			 */
4725 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4726 
4727 			/*
4728 			 * Check an IPv4 string will fit in scratch.
4729 			 */
4730 			size = INET_ADDRSTRLEN;
4731 			if (!DTRACE_INSCRATCH(mstate, size)) {
4732 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4733 				regs[rd] = NULL;
4734 				break;
4735 			}
4736 			base = (char *)mstate->dtms_scratch_ptr;
4737 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4738 
4739 			/*
4740 			 * Stringify as a dotted decimal quad.
4741 			 */
4742 			*end-- = '\0';
4743 			ptr8 = (uint8_t *)&ip4;
4744 			for (i = 3; i >= 0; i--) {
4745 				val = ptr8[i];
4746 
4747 				if (val == 0) {
4748 					*end-- = '0';
4749 				} else {
4750 					for (; val; val /= 10) {
4751 						*end-- = '0' + (val % 10);
4752 					}
4753 				}
4754 
4755 				if (i > 0)
4756 					*end-- = '.';
4757 			}
4758 			ASSERT(end + 1 >= base);
4759 
4760 		} else if (af == AF_INET6) {
4761 			struct in6_addr ip6;
4762 			int firstzero, tryzero, numzero, v6end;
4763 			uint16_t val;
4764 			const char digits[] = "0123456789abcdef";
4765 
4766 			/*
4767 			 * Stringify using RFC 1884 convention 2 - 16 bit
4768 			 * hexadecimal values with a zero-run compression.
4769 			 * Lower case hexadecimal digits are used.
4770 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4771 			 * The IPv4 embedded form is returned for inet_ntop,
4772 			 * just the IPv4 string is returned for inet_ntoa6.
4773 			 */
4774 
4775 			/*
4776 			 * Safely load the IPv6 address.
4777 			 */
4778 			dtrace_bcopy(
4779 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4780 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4781 
4782 			/*
4783 			 * Check an IPv6 string will fit in scratch.
4784 			 */
4785 			size = INET6_ADDRSTRLEN;
4786 			if (!DTRACE_INSCRATCH(mstate, size)) {
4787 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4788 				regs[rd] = NULL;
4789 				break;
4790 			}
4791 			base = (char *)mstate->dtms_scratch_ptr;
4792 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4793 			*end-- = '\0';
4794 
4795 			/*
4796 			 * Find the longest run of 16 bit zero values
4797 			 * for the single allowed zero compression - "::".
4798 			 */
4799 			firstzero = -1;
4800 			tryzero = -1;
4801 			numzero = 1;
4802 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4803 				if (ip6._S6_un._S6_u8[i] == 0 &&
4804 				    tryzero == -1 && i % 2 == 0) {
4805 					tryzero = i;
4806 					continue;
4807 				}
4808 
4809 				if (tryzero != -1 &&
4810 				    (ip6._S6_un._S6_u8[i] != 0 ||
4811 				    i == sizeof (struct in6_addr) - 1)) {
4812 
4813 					if (i - tryzero <= numzero) {
4814 						tryzero = -1;
4815 						continue;
4816 					}
4817 
4818 					firstzero = tryzero;
4819 					numzero = i - i % 2 - tryzero;
4820 					tryzero = -1;
4821 
4822 					if (ip6._S6_un._S6_u8[i] == 0 &&
4823 					    i == sizeof (struct in6_addr) - 1)
4824 						numzero += 2;
4825 				}
4826 			}
4827 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4828 
4829 			/*
4830 			 * Check for an IPv4 embedded address.
4831 			 */
4832 			v6end = sizeof (struct in6_addr) - 2;
4833 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4834 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4835 				for (i = sizeof (struct in6_addr) - 1;
4836 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4837 					ASSERT(end >= base);
4838 
4839 					val = ip6._S6_un._S6_u8[i];
4840 
4841 					if (val == 0) {
4842 						*end-- = '0';
4843 					} else {
4844 						for (; val; val /= 10) {
4845 							*end-- = '0' + val % 10;
4846 						}
4847 					}
4848 
4849 					if (i > DTRACE_V4MAPPED_OFFSET)
4850 						*end-- = '.';
4851 				}
4852 
4853 				if (subr == DIF_SUBR_INET_NTOA6)
4854 					goto inetout;
4855 
4856 				/*
4857 				 * Set v6end to skip the IPv4 address that
4858 				 * we have already stringified.
4859 				 */
4860 				v6end = 10;
4861 			}
4862 
4863 			/*
4864 			 * Build the IPv6 string by working through the
4865 			 * address in reverse.
4866 			 */
4867 			for (i = v6end; i >= 0; i -= 2) {
4868 				ASSERT(end >= base);
4869 
4870 				if (i == firstzero + numzero - 2) {
4871 					*end-- = ':';
4872 					*end-- = ':';
4873 					i -= numzero - 2;
4874 					continue;
4875 				}
4876 
4877 				if (i < 14 && i != firstzero - 2)
4878 					*end-- = ':';
4879 
4880 				val = (ip6._S6_un._S6_u8[i] << 8) +
4881 				    ip6._S6_un._S6_u8[i + 1];
4882 
4883 				if (val == 0) {
4884 					*end-- = '0';
4885 				} else {
4886 					for (; val; val /= 16) {
4887 						*end-- = digits[val % 16];
4888 					}
4889 				}
4890 			}
4891 			ASSERT(end + 1 >= base);
4892 
4893 		} else {
4894 			/*
4895 			 * The user didn't use AH_INET or AH_INET6.
4896 			 */
4897 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4898 			regs[rd] = NULL;
4899 			break;
4900 		}
4901 
4902 inetout:	regs[rd] = (uintptr_t)end + 1;
4903 		mstate->dtms_scratch_ptr += size;
4904 		break;
4905 	}
4906 
4907 	}
4908 }
4909 
4910 /*
4911  * Emulate the execution of DTrace IR instructions specified by the given
4912  * DIF object.  This function is deliberately void of assertions as all of
4913  * the necessary checks are handled by a call to dtrace_difo_validate().
4914  */
4915 static uint64_t
4916 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4917     dtrace_vstate_t *vstate, dtrace_state_t *state)
4918 {
4919 	const dif_instr_t *text = difo->dtdo_buf;
4920 	const uint_t textlen = difo->dtdo_len;
4921 	const char *strtab = difo->dtdo_strtab;
4922 	const uint64_t *inttab = difo->dtdo_inttab;
4923 
4924 	uint64_t rval = 0;
4925 	dtrace_statvar_t *svar;
4926 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4927 	dtrace_difv_t *v;
4928 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4929 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4930 
4931 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4932 	uint64_t regs[DIF_DIR_NREGS];
4933 	uint64_t *tmp;
4934 
4935 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4936 	int64_t cc_r;
4937 	uint_t pc = 0, id, opc;
4938 	uint8_t ttop = 0;
4939 	dif_instr_t instr;
4940 	uint_t r1, r2, rd;
4941 
4942 	/*
4943 	 * We stash the current DIF object into the machine state: we need it
4944 	 * for subsequent access checking.
4945 	 */
4946 	mstate->dtms_difo = difo;
4947 
4948 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4949 
4950 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4951 		opc = pc;
4952 
4953 		instr = text[pc++];
4954 		r1 = DIF_INSTR_R1(instr);
4955 		r2 = DIF_INSTR_R2(instr);
4956 		rd = DIF_INSTR_RD(instr);
4957 
4958 		switch (DIF_INSTR_OP(instr)) {
4959 		case DIF_OP_OR:
4960 			regs[rd] = regs[r1] | regs[r2];
4961 			break;
4962 		case DIF_OP_XOR:
4963 			regs[rd] = regs[r1] ^ regs[r2];
4964 			break;
4965 		case DIF_OP_AND:
4966 			regs[rd] = regs[r1] & regs[r2];
4967 			break;
4968 		case DIF_OP_SLL:
4969 			regs[rd] = regs[r1] << regs[r2];
4970 			break;
4971 		case DIF_OP_SRL:
4972 			regs[rd] = regs[r1] >> regs[r2];
4973 			break;
4974 		case DIF_OP_SUB:
4975 			regs[rd] = regs[r1] - regs[r2];
4976 			break;
4977 		case DIF_OP_ADD:
4978 			regs[rd] = regs[r1] + regs[r2];
4979 			break;
4980 		case DIF_OP_MUL:
4981 			regs[rd] = regs[r1] * regs[r2];
4982 			break;
4983 		case DIF_OP_SDIV:
4984 			if (regs[r2] == 0) {
4985 				regs[rd] = 0;
4986 				*flags |= CPU_DTRACE_DIVZERO;
4987 			} else {
4988 				regs[rd] = (int64_t)regs[r1] /
4989 				    (int64_t)regs[r2];
4990 			}
4991 			break;
4992 
4993 		case DIF_OP_UDIV:
4994 			if (regs[r2] == 0) {
4995 				regs[rd] = 0;
4996 				*flags |= CPU_DTRACE_DIVZERO;
4997 			} else {
4998 				regs[rd] = regs[r1] / regs[r2];
4999 			}
5000 			break;
5001 
5002 		case DIF_OP_SREM:
5003 			if (regs[r2] == 0) {
5004 				regs[rd] = 0;
5005 				*flags |= CPU_DTRACE_DIVZERO;
5006 			} else {
5007 				regs[rd] = (int64_t)regs[r1] %
5008 				    (int64_t)regs[r2];
5009 			}
5010 			break;
5011 
5012 		case DIF_OP_UREM:
5013 			if (regs[r2] == 0) {
5014 				regs[rd] = 0;
5015 				*flags |= CPU_DTRACE_DIVZERO;
5016 			} else {
5017 				regs[rd] = regs[r1] % regs[r2];
5018 			}
5019 			break;
5020 
5021 		case DIF_OP_NOT:
5022 			regs[rd] = ~regs[r1];
5023 			break;
5024 		case DIF_OP_MOV:
5025 			regs[rd] = regs[r1];
5026 			break;
5027 		case DIF_OP_CMP:
5028 			cc_r = regs[r1] - regs[r2];
5029 			cc_n = cc_r < 0;
5030 			cc_z = cc_r == 0;
5031 			cc_v = 0;
5032 			cc_c = regs[r1] < regs[r2];
5033 			break;
5034 		case DIF_OP_TST:
5035 			cc_n = cc_v = cc_c = 0;
5036 			cc_z = regs[r1] == 0;
5037 			break;
5038 		case DIF_OP_BA:
5039 			pc = DIF_INSTR_LABEL(instr);
5040 			break;
5041 		case DIF_OP_BE:
5042 			if (cc_z)
5043 				pc = DIF_INSTR_LABEL(instr);
5044 			break;
5045 		case DIF_OP_BNE:
5046 			if (cc_z == 0)
5047 				pc = DIF_INSTR_LABEL(instr);
5048 			break;
5049 		case DIF_OP_BG:
5050 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5051 				pc = DIF_INSTR_LABEL(instr);
5052 			break;
5053 		case DIF_OP_BGU:
5054 			if ((cc_c | cc_z) == 0)
5055 				pc = DIF_INSTR_LABEL(instr);
5056 			break;
5057 		case DIF_OP_BGE:
5058 			if ((cc_n ^ cc_v) == 0)
5059 				pc = DIF_INSTR_LABEL(instr);
5060 			break;
5061 		case DIF_OP_BGEU:
5062 			if (cc_c == 0)
5063 				pc = DIF_INSTR_LABEL(instr);
5064 			break;
5065 		case DIF_OP_BL:
5066 			if (cc_n ^ cc_v)
5067 				pc = DIF_INSTR_LABEL(instr);
5068 			break;
5069 		case DIF_OP_BLU:
5070 			if (cc_c)
5071 				pc = DIF_INSTR_LABEL(instr);
5072 			break;
5073 		case DIF_OP_BLE:
5074 			if (cc_z | (cc_n ^ cc_v))
5075 				pc = DIF_INSTR_LABEL(instr);
5076 			break;
5077 		case DIF_OP_BLEU:
5078 			if (cc_c | cc_z)
5079 				pc = DIF_INSTR_LABEL(instr);
5080 			break;
5081 		case DIF_OP_RLDSB:
5082 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5083 				break;
5084 			/*FALLTHROUGH*/
5085 		case DIF_OP_LDSB:
5086 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5087 			break;
5088 		case DIF_OP_RLDSH:
5089 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5090 				break;
5091 			/*FALLTHROUGH*/
5092 		case DIF_OP_LDSH:
5093 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5094 			break;
5095 		case DIF_OP_RLDSW:
5096 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5097 				break;
5098 			/*FALLTHROUGH*/
5099 		case DIF_OP_LDSW:
5100 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5101 			break;
5102 		case DIF_OP_RLDUB:
5103 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5104 				break;
5105 			/*FALLTHROUGH*/
5106 		case DIF_OP_LDUB:
5107 			regs[rd] = dtrace_load8(regs[r1]);
5108 			break;
5109 		case DIF_OP_RLDUH:
5110 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5111 				break;
5112 			/*FALLTHROUGH*/
5113 		case DIF_OP_LDUH:
5114 			regs[rd] = dtrace_load16(regs[r1]);
5115 			break;
5116 		case DIF_OP_RLDUW:
5117 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5118 				break;
5119 			/*FALLTHROUGH*/
5120 		case DIF_OP_LDUW:
5121 			regs[rd] = dtrace_load32(regs[r1]);
5122 			break;
5123 		case DIF_OP_RLDX:
5124 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5125 				break;
5126 			/*FALLTHROUGH*/
5127 		case DIF_OP_LDX:
5128 			regs[rd] = dtrace_load64(regs[r1]);
5129 			break;
5130 		case DIF_OP_ULDSB:
5131 			regs[rd] = (int8_t)
5132 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5133 			break;
5134 		case DIF_OP_ULDSH:
5135 			regs[rd] = (int16_t)
5136 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5137 			break;
5138 		case DIF_OP_ULDSW:
5139 			regs[rd] = (int32_t)
5140 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5141 			break;
5142 		case DIF_OP_ULDUB:
5143 			regs[rd] =
5144 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5145 			break;
5146 		case DIF_OP_ULDUH:
5147 			regs[rd] =
5148 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5149 			break;
5150 		case DIF_OP_ULDUW:
5151 			regs[rd] =
5152 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5153 			break;
5154 		case DIF_OP_ULDX:
5155 			regs[rd] =
5156 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5157 			break;
5158 		case DIF_OP_RET:
5159 			rval = regs[rd];
5160 			pc = textlen;
5161 			break;
5162 		case DIF_OP_NOP:
5163 			break;
5164 		case DIF_OP_SETX:
5165 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5166 			break;
5167 		case DIF_OP_SETS:
5168 			regs[rd] = (uint64_t)(uintptr_t)
5169 			    (strtab + DIF_INSTR_STRING(instr));
5170 			break;
5171 		case DIF_OP_SCMP: {
5172 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5173 			uintptr_t s1 = regs[r1];
5174 			uintptr_t s2 = regs[r2];
5175 
5176 			if (s1 != NULL &&
5177 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5178 				break;
5179 			if (s2 != NULL &&
5180 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5181 				break;
5182 
5183 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5184 
5185 			cc_n = cc_r < 0;
5186 			cc_z = cc_r == 0;
5187 			cc_v = cc_c = 0;
5188 			break;
5189 		}
5190 		case DIF_OP_LDGA:
5191 			regs[rd] = dtrace_dif_variable(mstate, state,
5192 			    r1, regs[r2]);
5193 			break;
5194 		case DIF_OP_LDGS:
5195 			id = DIF_INSTR_VAR(instr);
5196 
5197 			if (id >= DIF_VAR_OTHER_UBASE) {
5198 				uintptr_t a;
5199 
5200 				id -= DIF_VAR_OTHER_UBASE;
5201 				svar = vstate->dtvs_globals[id];
5202 				ASSERT(svar != NULL);
5203 				v = &svar->dtsv_var;
5204 
5205 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5206 					regs[rd] = svar->dtsv_data;
5207 					break;
5208 				}
5209 
5210 				a = (uintptr_t)svar->dtsv_data;
5211 
5212 				if (*(uint8_t *)a == UINT8_MAX) {
5213 					/*
5214 					 * If the 0th byte is set to UINT8_MAX
5215 					 * then this is to be treated as a
5216 					 * reference to a NULL variable.
5217 					 */
5218 					regs[rd] = NULL;
5219 				} else {
5220 					regs[rd] = a + sizeof (uint64_t);
5221 				}
5222 
5223 				break;
5224 			}
5225 
5226 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5227 			break;
5228 
5229 		case DIF_OP_STGS:
5230 			id = DIF_INSTR_VAR(instr);
5231 
5232 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5233 			id -= DIF_VAR_OTHER_UBASE;
5234 
5235 			svar = vstate->dtvs_globals[id];
5236 			ASSERT(svar != NULL);
5237 			v = &svar->dtsv_var;
5238 
5239 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5240 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5241 
5242 				ASSERT(a != NULL);
5243 				ASSERT(svar->dtsv_size != 0);
5244 
5245 				if (regs[rd] == NULL) {
5246 					*(uint8_t *)a = UINT8_MAX;
5247 					break;
5248 				} else {
5249 					*(uint8_t *)a = 0;
5250 					a += sizeof (uint64_t);
5251 				}
5252 				if (!dtrace_vcanload(
5253 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5254 				    mstate, vstate))
5255 					break;
5256 
5257 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5258 				    (void *)a, &v->dtdv_type);
5259 				break;
5260 			}
5261 
5262 			svar->dtsv_data = regs[rd];
5263 			break;
5264 
5265 		case DIF_OP_LDTA:
5266 			/*
5267 			 * There are no DTrace built-in thread-local arrays at
5268 			 * present.  This opcode is saved for future work.
5269 			 */
5270 			*flags |= CPU_DTRACE_ILLOP;
5271 			regs[rd] = 0;
5272 			break;
5273 
5274 		case DIF_OP_LDLS:
5275 			id = DIF_INSTR_VAR(instr);
5276 
5277 			if (id < DIF_VAR_OTHER_UBASE) {
5278 				/*
5279 				 * For now, this has no meaning.
5280 				 */
5281 				regs[rd] = 0;
5282 				break;
5283 			}
5284 
5285 			id -= DIF_VAR_OTHER_UBASE;
5286 
5287 			ASSERT(id < vstate->dtvs_nlocals);
5288 			ASSERT(vstate->dtvs_locals != NULL);
5289 
5290 			svar = vstate->dtvs_locals[id];
5291 			ASSERT(svar != NULL);
5292 			v = &svar->dtsv_var;
5293 
5294 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5295 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5296 				size_t sz = v->dtdv_type.dtdt_size;
5297 
5298 				sz += sizeof (uint64_t);
5299 				ASSERT(svar->dtsv_size == NCPU * sz);
5300 				a += CPU->cpu_id * sz;
5301 
5302 				if (*(uint8_t *)a == UINT8_MAX) {
5303 					/*
5304 					 * If the 0th byte is set to UINT8_MAX
5305 					 * then this is to be treated as a
5306 					 * reference to a NULL variable.
5307 					 */
5308 					regs[rd] = NULL;
5309 				} else {
5310 					regs[rd] = a + sizeof (uint64_t);
5311 				}
5312 
5313 				break;
5314 			}
5315 
5316 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5317 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5318 			regs[rd] = tmp[CPU->cpu_id];
5319 			break;
5320 
5321 		case DIF_OP_STLS:
5322 			id = DIF_INSTR_VAR(instr);
5323 
5324 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5325 			id -= DIF_VAR_OTHER_UBASE;
5326 			ASSERT(id < vstate->dtvs_nlocals);
5327 
5328 			ASSERT(vstate->dtvs_locals != NULL);
5329 			svar = vstate->dtvs_locals[id];
5330 			ASSERT(svar != NULL);
5331 			v = &svar->dtsv_var;
5332 
5333 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5334 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5335 				size_t sz = v->dtdv_type.dtdt_size;
5336 
5337 				sz += sizeof (uint64_t);
5338 				ASSERT(svar->dtsv_size == NCPU * sz);
5339 				a += CPU->cpu_id * sz;
5340 
5341 				if (regs[rd] == NULL) {
5342 					*(uint8_t *)a = UINT8_MAX;
5343 					break;
5344 				} else {
5345 					*(uint8_t *)a = 0;
5346 					a += sizeof (uint64_t);
5347 				}
5348 
5349 				if (!dtrace_vcanload(
5350 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5351 				    mstate, vstate))
5352 					break;
5353 
5354 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5355 				    (void *)a, &v->dtdv_type);
5356 				break;
5357 			}
5358 
5359 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5360 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5361 			tmp[CPU->cpu_id] = regs[rd];
5362 			break;
5363 
5364 		case DIF_OP_LDTS: {
5365 			dtrace_dynvar_t *dvar;
5366 			dtrace_key_t *key;
5367 
5368 			id = DIF_INSTR_VAR(instr);
5369 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5370 			id -= DIF_VAR_OTHER_UBASE;
5371 			v = &vstate->dtvs_tlocals[id];
5372 
5373 			key = &tupregs[DIF_DTR_NREGS];
5374 			key[0].dttk_value = (uint64_t)id;
5375 			key[0].dttk_size = 0;
5376 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5377 			key[1].dttk_size = 0;
5378 
5379 			dvar = dtrace_dynvar(dstate, 2, key,
5380 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5381 			    mstate, vstate);
5382 
5383 			if (dvar == NULL) {
5384 				regs[rd] = 0;
5385 				break;
5386 			}
5387 
5388 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5389 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5390 			} else {
5391 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5392 			}
5393 
5394 			break;
5395 		}
5396 
5397 		case DIF_OP_STTS: {
5398 			dtrace_dynvar_t *dvar;
5399 			dtrace_key_t *key;
5400 
5401 			id = DIF_INSTR_VAR(instr);
5402 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5403 			id -= DIF_VAR_OTHER_UBASE;
5404 
5405 			key = &tupregs[DIF_DTR_NREGS];
5406 			key[0].dttk_value = (uint64_t)id;
5407 			key[0].dttk_size = 0;
5408 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5409 			key[1].dttk_size = 0;
5410 			v = &vstate->dtvs_tlocals[id];
5411 
5412 			dvar = dtrace_dynvar(dstate, 2, key,
5413 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5414 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5415 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5416 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5417 
5418 			/*
5419 			 * Given that we're storing to thread-local data,
5420 			 * we need to flush our predicate cache.
5421 			 */
5422 			curthread->t_predcache = NULL;
5423 
5424 			if (dvar == NULL)
5425 				break;
5426 
5427 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5428 				if (!dtrace_vcanload(
5429 				    (void *)(uintptr_t)regs[rd],
5430 				    &v->dtdv_type, mstate, vstate))
5431 					break;
5432 
5433 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5434 				    dvar->dtdv_data, &v->dtdv_type);
5435 			} else {
5436 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5437 			}
5438 
5439 			break;
5440 		}
5441 
5442 		case DIF_OP_SRA:
5443 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5444 			break;
5445 
5446 		case DIF_OP_CALL:
5447 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5448 			    regs, tupregs, ttop, mstate, state);
5449 			break;
5450 
5451 		case DIF_OP_PUSHTR:
5452 			if (ttop == DIF_DTR_NREGS) {
5453 				*flags |= CPU_DTRACE_TUPOFLOW;
5454 				break;
5455 			}
5456 
5457 			if (r1 == DIF_TYPE_STRING) {
5458 				/*
5459 				 * If this is a string type and the size is 0,
5460 				 * we'll use the system-wide default string
5461 				 * size.  Note that we are _not_ looking at
5462 				 * the value of the DTRACEOPT_STRSIZE option;
5463 				 * had this been set, we would expect to have
5464 				 * a non-zero size value in the "pushtr".
5465 				 */
5466 				tupregs[ttop].dttk_size =
5467 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5468 				    regs[r2] ? regs[r2] :
5469 				    dtrace_strsize_default) + 1;
5470 			} else {
5471 				tupregs[ttop].dttk_size = regs[r2];
5472 			}
5473 
5474 			tupregs[ttop++].dttk_value = regs[rd];
5475 			break;
5476 
5477 		case DIF_OP_PUSHTV:
5478 			if (ttop == DIF_DTR_NREGS) {
5479 				*flags |= CPU_DTRACE_TUPOFLOW;
5480 				break;
5481 			}
5482 
5483 			tupregs[ttop].dttk_value = regs[rd];
5484 			tupregs[ttop++].dttk_size = 0;
5485 			break;
5486 
5487 		case DIF_OP_POPTS:
5488 			if (ttop != 0)
5489 				ttop--;
5490 			break;
5491 
5492 		case DIF_OP_FLUSHTS:
5493 			ttop = 0;
5494 			break;
5495 
5496 		case DIF_OP_LDGAA:
5497 		case DIF_OP_LDTAA: {
5498 			dtrace_dynvar_t *dvar;
5499 			dtrace_key_t *key = tupregs;
5500 			uint_t nkeys = ttop;
5501 
5502 			id = DIF_INSTR_VAR(instr);
5503 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5504 			id -= DIF_VAR_OTHER_UBASE;
5505 
5506 			key[nkeys].dttk_value = (uint64_t)id;
5507 			key[nkeys++].dttk_size = 0;
5508 
5509 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5510 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5511 				key[nkeys++].dttk_size = 0;
5512 				v = &vstate->dtvs_tlocals[id];
5513 			} else {
5514 				v = &vstate->dtvs_globals[id]->dtsv_var;
5515 			}
5516 
5517 			dvar = dtrace_dynvar(dstate, nkeys, key,
5518 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5519 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5520 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5521 
5522 			if (dvar == NULL) {
5523 				regs[rd] = 0;
5524 				break;
5525 			}
5526 
5527 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5528 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5529 			} else {
5530 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5531 			}
5532 
5533 			break;
5534 		}
5535 
5536 		case DIF_OP_STGAA:
5537 		case DIF_OP_STTAA: {
5538 			dtrace_dynvar_t *dvar;
5539 			dtrace_key_t *key = tupregs;
5540 			uint_t nkeys = ttop;
5541 
5542 			id = DIF_INSTR_VAR(instr);
5543 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5544 			id -= DIF_VAR_OTHER_UBASE;
5545 
5546 			key[nkeys].dttk_value = (uint64_t)id;
5547 			key[nkeys++].dttk_size = 0;
5548 
5549 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5550 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5551 				key[nkeys++].dttk_size = 0;
5552 				v = &vstate->dtvs_tlocals[id];
5553 			} else {
5554 				v = &vstate->dtvs_globals[id]->dtsv_var;
5555 			}
5556 
5557 			dvar = dtrace_dynvar(dstate, nkeys, key,
5558 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5559 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5560 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5561 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5562 
5563 			if (dvar == NULL)
5564 				break;
5565 
5566 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5567 				if (!dtrace_vcanload(
5568 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5569 				    mstate, vstate))
5570 					break;
5571 
5572 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5573 				    dvar->dtdv_data, &v->dtdv_type);
5574 			} else {
5575 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5576 			}
5577 
5578 			break;
5579 		}
5580 
5581 		case DIF_OP_ALLOCS: {
5582 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5583 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5584 
5585 			/*
5586 			 * Rounding up the user allocation size could have
5587 			 * overflowed large, bogus allocations (like -1ULL) to
5588 			 * 0.
5589 			 */
5590 			if (size < regs[r1] ||
5591 			    !DTRACE_INSCRATCH(mstate, size)) {
5592 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5593 				regs[rd] = NULL;
5594 				break;
5595 			}
5596 
5597 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5598 			mstate->dtms_scratch_ptr += size;
5599 			regs[rd] = ptr;
5600 			break;
5601 		}
5602 
5603 		case DIF_OP_COPYS:
5604 			if (!dtrace_canstore(regs[rd], regs[r2],
5605 			    mstate, vstate)) {
5606 				*flags |= CPU_DTRACE_BADADDR;
5607 				*illval = regs[rd];
5608 				break;
5609 			}
5610 
5611 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5612 				break;
5613 
5614 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5615 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5616 			break;
5617 
5618 		case DIF_OP_STB:
5619 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5620 				*flags |= CPU_DTRACE_BADADDR;
5621 				*illval = regs[rd];
5622 				break;
5623 			}
5624 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5625 			break;
5626 
5627 		case DIF_OP_STH:
5628 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5629 				*flags |= CPU_DTRACE_BADADDR;
5630 				*illval = regs[rd];
5631 				break;
5632 			}
5633 			if (regs[rd] & 1) {
5634 				*flags |= CPU_DTRACE_BADALIGN;
5635 				*illval = regs[rd];
5636 				break;
5637 			}
5638 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5639 			break;
5640 
5641 		case DIF_OP_STW:
5642 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5643 				*flags |= CPU_DTRACE_BADADDR;
5644 				*illval = regs[rd];
5645 				break;
5646 			}
5647 			if (regs[rd] & 3) {
5648 				*flags |= CPU_DTRACE_BADALIGN;
5649 				*illval = regs[rd];
5650 				break;
5651 			}
5652 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5653 			break;
5654 
5655 		case DIF_OP_STX:
5656 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5657 				*flags |= CPU_DTRACE_BADADDR;
5658 				*illval = regs[rd];
5659 				break;
5660 			}
5661 			if (regs[rd] & 7) {
5662 				*flags |= CPU_DTRACE_BADALIGN;
5663 				*illval = regs[rd];
5664 				break;
5665 			}
5666 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5667 			break;
5668 		}
5669 	}
5670 
5671 	if (!(*flags & CPU_DTRACE_FAULT))
5672 		return (rval);
5673 
5674 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5675 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5676 
5677 	return (0);
5678 }
5679 
5680 static void
5681 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5682 {
5683 	dtrace_probe_t *probe = ecb->dte_probe;
5684 	dtrace_provider_t *prov = probe->dtpr_provider;
5685 	char c[DTRACE_FULLNAMELEN + 80], *str;
5686 	char *msg = "dtrace: breakpoint action at probe ";
5687 	char *ecbmsg = " (ecb ";
5688 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5689 	uintptr_t val = (uintptr_t)ecb;
5690 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5691 
5692 	if (dtrace_destructive_disallow)
5693 		return;
5694 
5695 	/*
5696 	 * It's impossible to be taking action on the NULL probe.
5697 	 */
5698 	ASSERT(probe != NULL);
5699 
5700 	/*
5701 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5702 	 * print the provider name, module name, function name and name of
5703 	 * the probe, along with the hex address of the ECB with the breakpoint
5704 	 * action -- all of which we must place in the character buffer by
5705 	 * hand.
5706 	 */
5707 	while (*msg != '\0')
5708 		c[i++] = *msg++;
5709 
5710 	for (str = prov->dtpv_name; *str != '\0'; str++)
5711 		c[i++] = *str;
5712 	c[i++] = ':';
5713 
5714 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5715 		c[i++] = *str;
5716 	c[i++] = ':';
5717 
5718 	for (str = probe->dtpr_func; *str != '\0'; str++)
5719 		c[i++] = *str;
5720 	c[i++] = ':';
5721 
5722 	for (str = probe->dtpr_name; *str != '\0'; str++)
5723 		c[i++] = *str;
5724 
5725 	while (*ecbmsg != '\0')
5726 		c[i++] = *ecbmsg++;
5727 
5728 	while (shift >= 0) {
5729 		mask = (uintptr_t)0xf << shift;
5730 
5731 		if (val >= ((uintptr_t)1 << shift))
5732 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5733 		shift -= 4;
5734 	}
5735 
5736 	c[i++] = ')';
5737 	c[i] = '\0';
5738 
5739 	debug_enter(c);
5740 }
5741 
5742 static void
5743 dtrace_action_panic(dtrace_ecb_t *ecb)
5744 {
5745 	dtrace_probe_t *probe = ecb->dte_probe;
5746 
5747 	/*
5748 	 * It's impossible to be taking action on the NULL probe.
5749 	 */
5750 	ASSERT(probe != NULL);
5751 
5752 	if (dtrace_destructive_disallow)
5753 		return;
5754 
5755 	if (dtrace_panicked != NULL)
5756 		return;
5757 
5758 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5759 		return;
5760 
5761 	/*
5762 	 * We won the right to panic.  (We want to be sure that only one
5763 	 * thread calls panic() from dtrace_probe(), and that panic() is
5764 	 * called exactly once.)
5765 	 */
5766 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5767 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5768 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5769 }
5770 
5771 static void
5772 dtrace_action_raise(uint64_t sig)
5773 {
5774 	if (dtrace_destructive_disallow)
5775 		return;
5776 
5777 	if (sig >= NSIG) {
5778 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5779 		return;
5780 	}
5781 
5782 	/*
5783 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5784 	 * invocations of the raise() action.
5785 	 */
5786 	if (curthread->t_dtrace_sig == 0)
5787 		curthread->t_dtrace_sig = (uint8_t)sig;
5788 
5789 	curthread->t_sig_check = 1;
5790 	aston(curthread);
5791 }
5792 
5793 static void
5794 dtrace_action_stop(void)
5795 {
5796 	if (dtrace_destructive_disallow)
5797 		return;
5798 
5799 	if (!curthread->t_dtrace_stop) {
5800 		curthread->t_dtrace_stop = 1;
5801 		curthread->t_sig_check = 1;
5802 		aston(curthread);
5803 	}
5804 }
5805 
5806 static void
5807 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5808 {
5809 	hrtime_t now;
5810 	volatile uint16_t *flags;
5811 	cpu_t *cpu = CPU;
5812 
5813 	if (dtrace_destructive_disallow)
5814 		return;
5815 
5816 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5817 
5818 	now = dtrace_gethrtime();
5819 
5820 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5821 		/*
5822 		 * We need to advance the mark to the current time.
5823 		 */
5824 		cpu->cpu_dtrace_chillmark = now;
5825 		cpu->cpu_dtrace_chilled = 0;
5826 	}
5827 
5828 	/*
5829 	 * Now check to see if the requested chill time would take us over
5830 	 * the maximum amount of time allowed in the chill interval.  (Or
5831 	 * worse, if the calculation itself induces overflow.)
5832 	 */
5833 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5834 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5835 		*flags |= CPU_DTRACE_ILLOP;
5836 		return;
5837 	}
5838 
5839 	while (dtrace_gethrtime() - now < val)
5840 		continue;
5841 
5842 	/*
5843 	 * Normally, we assure that the value of the variable "timestamp" does
5844 	 * not change within an ECB.  The presence of chill() represents an
5845 	 * exception to this rule, however.
5846 	 */
5847 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5848 	cpu->cpu_dtrace_chilled += val;
5849 }
5850 
5851 static void
5852 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5853     uint64_t *buf, uint64_t arg)
5854 {
5855 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5856 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5857 	uint64_t *pcs = &buf[1], *fps;
5858 	char *str = (char *)&pcs[nframes];
5859 	int size, offs = 0, i, j;
5860 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5861 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5862 	char *sym;
5863 
5864 	/*
5865 	 * Should be taking a faster path if string space has not been
5866 	 * allocated.
5867 	 */
5868 	ASSERT(strsize != 0);
5869 
5870 	/*
5871 	 * We will first allocate some temporary space for the frame pointers.
5872 	 */
5873 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5874 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5875 	    (nframes * sizeof (uint64_t));
5876 
5877 	if (!DTRACE_INSCRATCH(mstate, size)) {
5878 		/*
5879 		 * Not enough room for our frame pointers -- need to indicate
5880 		 * that we ran out of scratch space.
5881 		 */
5882 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5883 		return;
5884 	}
5885 
5886 	mstate->dtms_scratch_ptr += size;
5887 	saved = mstate->dtms_scratch_ptr;
5888 
5889 	/*
5890 	 * Now get a stack with both program counters and frame pointers.
5891 	 */
5892 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5893 	dtrace_getufpstack(buf, fps, nframes + 1);
5894 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5895 
5896 	/*
5897 	 * If that faulted, we're cooked.
5898 	 */
5899 	if (*flags & CPU_DTRACE_FAULT)
5900 		goto out;
5901 
5902 	/*
5903 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5904 	 * each iteration, we restore the scratch pointer.
5905 	 */
5906 	for (i = 0; i < nframes; i++) {
5907 		mstate->dtms_scratch_ptr = saved;
5908 
5909 		if (offs >= strsize)
5910 			break;
5911 
5912 		sym = (char *)(uintptr_t)dtrace_helper(
5913 		    DTRACE_HELPER_ACTION_USTACK,
5914 		    mstate, state, pcs[i], fps[i]);
5915 
5916 		/*
5917 		 * If we faulted while running the helper, we're going to
5918 		 * clear the fault and null out the corresponding string.
5919 		 */
5920 		if (*flags & CPU_DTRACE_FAULT) {
5921 			*flags &= ~CPU_DTRACE_FAULT;
5922 			str[offs++] = '\0';
5923 			continue;
5924 		}
5925 
5926 		if (sym == NULL) {
5927 			str[offs++] = '\0';
5928 			continue;
5929 		}
5930 
5931 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5932 
5933 		/*
5934 		 * Now copy in the string that the helper returned to us.
5935 		 */
5936 		for (j = 0; offs + j < strsize; j++) {
5937 			if ((str[offs + j] = sym[j]) == '\0')
5938 				break;
5939 		}
5940 
5941 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5942 
5943 		offs += j + 1;
5944 	}
5945 
5946 	if (offs >= strsize) {
5947 		/*
5948 		 * If we didn't have room for all of the strings, we don't
5949 		 * abort processing -- this needn't be a fatal error -- but we
5950 		 * still want to increment a counter (dts_stkstroverflows) to
5951 		 * allow this condition to be warned about.  (If this is from
5952 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5953 		 */
5954 		dtrace_error(&state->dts_stkstroverflows);
5955 	}
5956 
5957 	while (offs < strsize)
5958 		str[offs++] = '\0';
5959 
5960 out:
5961 	mstate->dtms_scratch_ptr = old;
5962 }
5963 
5964 /*
5965  * If you're looking for the epicenter of DTrace, you just found it.  This
5966  * is the function called by the provider to fire a probe -- from which all
5967  * subsequent probe-context DTrace activity emanates.
5968  */
5969 void
5970 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5971     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5972 {
5973 	processorid_t cpuid;
5974 	dtrace_icookie_t cookie;
5975 	dtrace_probe_t *probe;
5976 	dtrace_mstate_t mstate;
5977 	dtrace_ecb_t *ecb;
5978 	dtrace_action_t *act;
5979 	intptr_t offs;
5980 	size_t size;
5981 	int vtime, onintr;
5982 	volatile uint16_t *flags;
5983 	hrtime_t now, end;
5984 
5985 	/*
5986 	 * Kick out immediately if this CPU is still being born (in which case
5987 	 * curthread will be set to -1) or the current thread can't allow
5988 	 * probes in its current context.
5989 	 */
5990 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5991 		return;
5992 
5993 	cookie = dtrace_interrupt_disable();
5994 	probe = dtrace_probes[id - 1];
5995 	cpuid = CPU->cpu_id;
5996 	onintr = CPU_ON_INTR(CPU);
5997 
5998 	CPU->cpu_dtrace_probes++;
5999 
6000 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6001 	    probe->dtpr_predcache == curthread->t_predcache) {
6002 		/*
6003 		 * We have hit in the predicate cache; we know that
6004 		 * this predicate would evaluate to be false.
6005 		 */
6006 		dtrace_interrupt_enable(cookie);
6007 		return;
6008 	}
6009 
6010 	if (panic_quiesce) {
6011 		/*
6012 		 * We don't trace anything if we're panicking.
6013 		 */
6014 		dtrace_interrupt_enable(cookie);
6015 		return;
6016 	}
6017 
6018 	now = dtrace_gethrtime();
6019 	vtime = dtrace_vtime_references != 0;
6020 
6021 	if (vtime && curthread->t_dtrace_start)
6022 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6023 
6024 	mstate.dtms_difo = NULL;
6025 	mstate.dtms_probe = probe;
6026 	mstate.dtms_strtok = NULL;
6027 	mstate.dtms_arg[0] = arg0;
6028 	mstate.dtms_arg[1] = arg1;
6029 	mstate.dtms_arg[2] = arg2;
6030 	mstate.dtms_arg[3] = arg3;
6031 	mstate.dtms_arg[4] = arg4;
6032 
6033 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6034 
6035 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6036 		dtrace_predicate_t *pred = ecb->dte_predicate;
6037 		dtrace_state_t *state = ecb->dte_state;
6038 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6039 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6040 		dtrace_vstate_t *vstate = &state->dts_vstate;
6041 		dtrace_provider_t *prov = probe->dtpr_provider;
6042 		uint64_t tracememsize = 0;
6043 		int committed = 0;
6044 		caddr_t tomax;
6045 
6046 		/*
6047 		 * A little subtlety with the following (seemingly innocuous)
6048 		 * declaration of the automatic 'val':  by looking at the
6049 		 * code, you might think that it could be declared in the
6050 		 * action processing loop, below.  (That is, it's only used in
6051 		 * the action processing loop.)  However, it must be declared
6052 		 * out of that scope because in the case of DIF expression
6053 		 * arguments to aggregating actions, one iteration of the
6054 		 * action loop will use the last iteration's value.
6055 		 */
6056 #ifdef lint
6057 		uint64_t val = 0;
6058 #else
6059 		uint64_t val;
6060 #endif
6061 
6062 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6063 		mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6064 		mstate.dtms_getf = NULL;
6065 
6066 		*flags &= ~CPU_DTRACE_ERROR;
6067 
6068 		if (prov == dtrace_provider) {
6069 			/*
6070 			 * If dtrace itself is the provider of this probe,
6071 			 * we're only going to continue processing the ECB if
6072 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6073 			 * creating state.  (This prevents disjoint consumers
6074 			 * from seeing one another's metaprobes.)
6075 			 */
6076 			if (arg0 != (uint64_t)(uintptr_t)state)
6077 				continue;
6078 		}
6079 
6080 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6081 			/*
6082 			 * We're not currently active.  If our provider isn't
6083 			 * the dtrace pseudo provider, we're not interested.
6084 			 */
6085 			if (prov != dtrace_provider)
6086 				continue;
6087 
6088 			/*
6089 			 * Now we must further check if we are in the BEGIN
6090 			 * probe.  If we are, we will only continue processing
6091 			 * if we're still in WARMUP -- if one BEGIN enabling
6092 			 * has invoked the exit() action, we don't want to
6093 			 * evaluate subsequent BEGIN enablings.
6094 			 */
6095 			if (probe->dtpr_id == dtrace_probeid_begin &&
6096 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6097 				ASSERT(state->dts_activity ==
6098 				    DTRACE_ACTIVITY_DRAINING);
6099 				continue;
6100 			}
6101 		}
6102 
6103 		if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6104 			continue;
6105 
6106 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6107 			/*
6108 			 * We seem to be dead.  Unless we (a) have kernel
6109 			 * destructive permissions (b) have explicitly enabled
6110 			 * destructive actions and (c) destructive actions have
6111 			 * not been disabled, we're going to transition into
6112 			 * the KILLED state, from which no further processing
6113 			 * on this state will be performed.
6114 			 */
6115 			if (!dtrace_priv_kernel_destructive(state) ||
6116 			    !state->dts_cred.dcr_destructive ||
6117 			    dtrace_destructive_disallow) {
6118 				void *activity = &state->dts_activity;
6119 				dtrace_activity_t current;
6120 
6121 				do {
6122 					current = state->dts_activity;
6123 				} while (dtrace_cas32(activity, current,
6124 				    DTRACE_ACTIVITY_KILLED) != current);
6125 
6126 				continue;
6127 			}
6128 		}
6129 
6130 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6131 		    ecb->dte_alignment, state, &mstate)) < 0)
6132 			continue;
6133 
6134 		tomax = buf->dtb_tomax;
6135 		ASSERT(tomax != NULL);
6136 
6137 		if (ecb->dte_size != 0) {
6138 			dtrace_rechdr_t dtrh;
6139 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6140 				mstate.dtms_timestamp = dtrace_gethrtime();
6141 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6142 			}
6143 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6144 			dtrh.dtrh_epid = ecb->dte_epid;
6145 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6146 			    mstate.dtms_timestamp);
6147 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6148 		}
6149 
6150 		mstate.dtms_epid = ecb->dte_epid;
6151 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6152 
6153 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6154 			mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6155 
6156 		if (pred != NULL) {
6157 			dtrace_difo_t *dp = pred->dtp_difo;
6158 			int rval;
6159 
6160 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6161 
6162 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6163 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6164 
6165 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6166 					/*
6167 					 * Update the predicate cache...
6168 					 */
6169 					ASSERT(cid == pred->dtp_cacheid);
6170 					curthread->t_predcache = cid;
6171 				}
6172 
6173 				continue;
6174 			}
6175 		}
6176 
6177 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6178 		    act != NULL; act = act->dta_next) {
6179 			size_t valoffs;
6180 			dtrace_difo_t *dp;
6181 			dtrace_recdesc_t *rec = &act->dta_rec;
6182 
6183 			size = rec->dtrd_size;
6184 			valoffs = offs + rec->dtrd_offset;
6185 
6186 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6187 				uint64_t v = 0xbad;
6188 				dtrace_aggregation_t *agg;
6189 
6190 				agg = (dtrace_aggregation_t *)act;
6191 
6192 				if ((dp = act->dta_difo) != NULL)
6193 					v = dtrace_dif_emulate(dp,
6194 					    &mstate, vstate, state);
6195 
6196 				if (*flags & CPU_DTRACE_ERROR)
6197 					continue;
6198 
6199 				/*
6200 				 * Note that we always pass the expression
6201 				 * value from the previous iteration of the
6202 				 * action loop.  This value will only be used
6203 				 * if there is an expression argument to the
6204 				 * aggregating action, denoted by the
6205 				 * dtag_hasarg field.
6206 				 */
6207 				dtrace_aggregate(agg, buf,
6208 				    offs, aggbuf, v, val);
6209 				continue;
6210 			}
6211 
6212 			switch (act->dta_kind) {
6213 			case DTRACEACT_STOP:
6214 				if (dtrace_priv_proc_destructive(state,
6215 				    &mstate))
6216 					dtrace_action_stop();
6217 				continue;
6218 
6219 			case DTRACEACT_BREAKPOINT:
6220 				if (dtrace_priv_kernel_destructive(state))
6221 					dtrace_action_breakpoint(ecb);
6222 				continue;
6223 
6224 			case DTRACEACT_PANIC:
6225 				if (dtrace_priv_kernel_destructive(state))
6226 					dtrace_action_panic(ecb);
6227 				continue;
6228 
6229 			case DTRACEACT_STACK:
6230 				if (!dtrace_priv_kernel(state))
6231 					continue;
6232 
6233 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6234 				    size / sizeof (pc_t), probe->dtpr_aframes,
6235 				    DTRACE_ANCHORED(probe) ? NULL :
6236 				    (uint32_t *)arg0);
6237 
6238 				continue;
6239 
6240 			case DTRACEACT_JSTACK:
6241 			case DTRACEACT_USTACK:
6242 				if (!dtrace_priv_proc(state, &mstate))
6243 					continue;
6244 
6245 				/*
6246 				 * See comment in DIF_VAR_PID.
6247 				 */
6248 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6249 				    CPU_ON_INTR(CPU)) {
6250 					int depth = DTRACE_USTACK_NFRAMES(
6251 					    rec->dtrd_arg) + 1;
6252 
6253 					dtrace_bzero((void *)(tomax + valoffs),
6254 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6255 					    + depth * sizeof (uint64_t));
6256 
6257 					continue;
6258 				}
6259 
6260 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6261 				    curproc->p_dtrace_helpers != NULL) {
6262 					/*
6263 					 * This is the slow path -- we have
6264 					 * allocated string space, and we're
6265 					 * getting the stack of a process that
6266 					 * has helpers.  Call into a separate
6267 					 * routine to perform this processing.
6268 					 */
6269 					dtrace_action_ustack(&mstate, state,
6270 					    (uint64_t *)(tomax + valoffs),
6271 					    rec->dtrd_arg);
6272 					continue;
6273 				}
6274 
6275 				/*
6276 				 * Clear the string space, since there's no
6277 				 * helper to do it for us.
6278 				 */
6279 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6280 					int depth = DTRACE_USTACK_NFRAMES(
6281 					    rec->dtrd_arg);
6282 					size_t strsize = DTRACE_USTACK_STRSIZE(
6283 					    rec->dtrd_arg);
6284 					uint64_t *buf = (uint64_t *)(tomax +
6285 					    valoffs);
6286 					void *strspace = &buf[depth + 1];
6287 
6288 					dtrace_bzero(strspace,
6289 					    MIN(depth, strsize));
6290 				}
6291 
6292 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6293 				dtrace_getupcstack((uint64_t *)
6294 				    (tomax + valoffs),
6295 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6296 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6297 				continue;
6298 
6299 			default:
6300 				break;
6301 			}
6302 
6303 			dp = act->dta_difo;
6304 			ASSERT(dp != NULL);
6305 
6306 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6307 
6308 			if (*flags & CPU_DTRACE_ERROR)
6309 				continue;
6310 
6311 			switch (act->dta_kind) {
6312 			case DTRACEACT_SPECULATE: {
6313 				dtrace_rechdr_t *dtrh;
6314 
6315 				ASSERT(buf == &state->dts_buffer[cpuid]);
6316 				buf = dtrace_speculation_buffer(state,
6317 				    cpuid, val);
6318 
6319 				if (buf == NULL) {
6320 					*flags |= CPU_DTRACE_DROP;
6321 					continue;
6322 				}
6323 
6324 				offs = dtrace_buffer_reserve(buf,
6325 				    ecb->dte_needed, ecb->dte_alignment,
6326 				    state, NULL);
6327 
6328 				if (offs < 0) {
6329 					*flags |= CPU_DTRACE_DROP;
6330 					continue;
6331 				}
6332 
6333 				tomax = buf->dtb_tomax;
6334 				ASSERT(tomax != NULL);
6335 
6336 				if (ecb->dte_size == 0)
6337 					continue;
6338 
6339 				ASSERT3U(ecb->dte_size, >=,
6340 				    sizeof (dtrace_rechdr_t));
6341 				dtrh = ((void *)(tomax + offs));
6342 				dtrh->dtrh_epid = ecb->dte_epid;
6343 				/*
6344 				 * When the speculation is committed, all of
6345 				 * the records in the speculative buffer will
6346 				 * have their timestamps set to the commit
6347 				 * time.  Until then, it is set to a sentinel
6348 				 * value, for debugability.
6349 				 */
6350 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6351 				continue;
6352 			}
6353 
6354 			case DTRACEACT_CHILL:
6355 				if (dtrace_priv_kernel_destructive(state))
6356 					dtrace_action_chill(&mstate, val);
6357 				continue;
6358 
6359 			case DTRACEACT_RAISE:
6360 				if (dtrace_priv_proc_destructive(state,
6361 				    &mstate))
6362 					dtrace_action_raise(val);
6363 				continue;
6364 
6365 			case DTRACEACT_COMMIT:
6366 				ASSERT(!committed);
6367 
6368 				/*
6369 				 * We need to commit our buffer state.
6370 				 */
6371 				if (ecb->dte_size)
6372 					buf->dtb_offset = offs + ecb->dte_size;
6373 				buf = &state->dts_buffer[cpuid];
6374 				dtrace_speculation_commit(state, cpuid, val);
6375 				committed = 1;
6376 				continue;
6377 
6378 			case DTRACEACT_DISCARD:
6379 				dtrace_speculation_discard(state, cpuid, val);
6380 				continue;
6381 
6382 			case DTRACEACT_DIFEXPR:
6383 			case DTRACEACT_LIBACT:
6384 			case DTRACEACT_PRINTF:
6385 			case DTRACEACT_PRINTA:
6386 			case DTRACEACT_SYSTEM:
6387 			case DTRACEACT_FREOPEN:
6388 			case DTRACEACT_TRACEMEM:
6389 				break;
6390 
6391 			case DTRACEACT_TRACEMEM_DYNSIZE:
6392 				tracememsize = val;
6393 				break;
6394 
6395 			case DTRACEACT_SYM:
6396 			case DTRACEACT_MOD:
6397 				if (!dtrace_priv_kernel(state))
6398 					continue;
6399 				break;
6400 
6401 			case DTRACEACT_USYM:
6402 			case DTRACEACT_UMOD:
6403 			case DTRACEACT_UADDR: {
6404 				struct pid *pid = curthread->t_procp->p_pidp;
6405 
6406 				if (!dtrace_priv_proc(state, &mstate))
6407 					continue;
6408 
6409 				DTRACE_STORE(uint64_t, tomax,
6410 				    valoffs, (uint64_t)pid->pid_id);
6411 				DTRACE_STORE(uint64_t, tomax,
6412 				    valoffs + sizeof (uint64_t), val);
6413 
6414 				continue;
6415 			}
6416 
6417 			case DTRACEACT_EXIT: {
6418 				/*
6419 				 * For the exit action, we are going to attempt
6420 				 * to atomically set our activity to be
6421 				 * draining.  If this fails (either because
6422 				 * another CPU has beat us to the exit action,
6423 				 * or because our current activity is something
6424 				 * other than ACTIVE or WARMUP), we will
6425 				 * continue.  This assures that the exit action
6426 				 * can be successfully recorded at most once
6427 				 * when we're in the ACTIVE state.  If we're
6428 				 * encountering the exit() action while in
6429 				 * COOLDOWN, however, we want to honor the new
6430 				 * status code.  (We know that we're the only
6431 				 * thread in COOLDOWN, so there is no race.)
6432 				 */
6433 				void *activity = &state->dts_activity;
6434 				dtrace_activity_t current = state->dts_activity;
6435 
6436 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6437 					break;
6438 
6439 				if (current != DTRACE_ACTIVITY_WARMUP)
6440 					current = DTRACE_ACTIVITY_ACTIVE;
6441 
6442 				if (dtrace_cas32(activity, current,
6443 				    DTRACE_ACTIVITY_DRAINING) != current) {
6444 					*flags |= CPU_DTRACE_DROP;
6445 					continue;
6446 				}
6447 
6448 				break;
6449 			}
6450 
6451 			default:
6452 				ASSERT(0);
6453 			}
6454 
6455 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6456 				uintptr_t end = valoffs + size;
6457 
6458 				if (tracememsize != 0 &&
6459 				    valoffs + tracememsize < end) {
6460 					end = valoffs + tracememsize;
6461 					tracememsize = 0;
6462 				}
6463 
6464 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6465 				    &dp->dtdo_rtype, &mstate, vstate))
6466 					continue;
6467 
6468 				/*
6469 				 * If this is a string, we're going to only
6470 				 * load until we find the zero byte -- after
6471 				 * which we'll store zero bytes.
6472 				 */
6473 				if (dp->dtdo_rtype.dtdt_kind ==
6474 				    DIF_TYPE_STRING) {
6475 					char c = '\0' + 1;
6476 					int intuple = act->dta_intuple;
6477 					size_t s;
6478 
6479 					for (s = 0; s < size; s++) {
6480 						if (c != '\0')
6481 							c = dtrace_load8(val++);
6482 
6483 						DTRACE_STORE(uint8_t, tomax,
6484 						    valoffs++, c);
6485 
6486 						if (c == '\0' && intuple)
6487 							break;
6488 					}
6489 
6490 					continue;
6491 				}
6492 
6493 				while (valoffs < end) {
6494 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6495 					    dtrace_load8(val++));
6496 				}
6497 
6498 				continue;
6499 			}
6500 
6501 			switch (size) {
6502 			case 0:
6503 				break;
6504 
6505 			case sizeof (uint8_t):
6506 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6507 				break;
6508 			case sizeof (uint16_t):
6509 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6510 				break;
6511 			case sizeof (uint32_t):
6512 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6513 				break;
6514 			case sizeof (uint64_t):
6515 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6516 				break;
6517 			default:
6518 				/*
6519 				 * Any other size should have been returned by
6520 				 * reference, not by value.
6521 				 */
6522 				ASSERT(0);
6523 				break;
6524 			}
6525 		}
6526 
6527 		if (*flags & CPU_DTRACE_DROP)
6528 			continue;
6529 
6530 		if (*flags & CPU_DTRACE_FAULT) {
6531 			int ndx;
6532 			dtrace_action_t *err;
6533 
6534 			buf->dtb_errors++;
6535 
6536 			if (probe->dtpr_id == dtrace_probeid_error) {
6537 				/*
6538 				 * There's nothing we can do -- we had an
6539 				 * error on the error probe.  We bump an
6540 				 * error counter to at least indicate that
6541 				 * this condition happened.
6542 				 */
6543 				dtrace_error(&state->dts_dblerrors);
6544 				continue;
6545 			}
6546 
6547 			if (vtime) {
6548 				/*
6549 				 * Before recursing on dtrace_probe(), we
6550 				 * need to explicitly clear out our start
6551 				 * time to prevent it from being accumulated
6552 				 * into t_dtrace_vtime.
6553 				 */
6554 				curthread->t_dtrace_start = 0;
6555 			}
6556 
6557 			/*
6558 			 * Iterate over the actions to figure out which action
6559 			 * we were processing when we experienced the error.
6560 			 * Note that act points _past_ the faulting action; if
6561 			 * act is ecb->dte_action, the fault was in the
6562 			 * predicate, if it's ecb->dte_action->dta_next it's
6563 			 * in action #1, and so on.
6564 			 */
6565 			for (err = ecb->dte_action, ndx = 0;
6566 			    err != act; err = err->dta_next, ndx++)
6567 				continue;
6568 
6569 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6570 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6571 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6572 			    cpu_core[cpuid].cpuc_dtrace_illval);
6573 
6574 			continue;
6575 		}
6576 
6577 		if (!committed)
6578 			buf->dtb_offset = offs + ecb->dte_size;
6579 	}
6580 
6581 	end = dtrace_gethrtime();
6582 	if (vtime)
6583 		curthread->t_dtrace_start = end;
6584 
6585 	CPU->cpu_dtrace_nsec += end - now;
6586 
6587 	dtrace_interrupt_enable(cookie);
6588 }
6589 
6590 /*
6591  * DTrace Probe Hashing Functions
6592  *
6593  * The functions in this section (and indeed, the functions in remaining
6594  * sections) are not _called_ from probe context.  (Any exceptions to this are
6595  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6596  * DTrace framework to look-up probes in, add probes to and remove probes from
6597  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6598  * probe tuple -- allowing for fast lookups, regardless of what was
6599  * specified.)
6600  */
6601 static uint_t
6602 dtrace_hash_str(char *p)
6603 {
6604 	unsigned int g;
6605 	uint_t hval = 0;
6606 
6607 	while (*p) {
6608 		hval = (hval << 4) + *p++;
6609 		if ((g = (hval & 0xf0000000)) != 0)
6610 			hval ^= g >> 24;
6611 		hval &= ~g;
6612 	}
6613 	return (hval);
6614 }
6615 
6616 static dtrace_hash_t *
6617 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6618 {
6619 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6620 
6621 	hash->dth_stroffs = stroffs;
6622 	hash->dth_nextoffs = nextoffs;
6623 	hash->dth_prevoffs = prevoffs;
6624 
6625 	hash->dth_size = 1;
6626 	hash->dth_mask = hash->dth_size - 1;
6627 
6628 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6629 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6630 
6631 	return (hash);
6632 }
6633 
6634 static void
6635 dtrace_hash_destroy(dtrace_hash_t *hash)
6636 {
6637 #ifdef DEBUG
6638 	int i;
6639 
6640 	for (i = 0; i < hash->dth_size; i++)
6641 		ASSERT(hash->dth_tab[i] == NULL);
6642 #endif
6643 
6644 	kmem_free(hash->dth_tab,
6645 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6646 	kmem_free(hash, sizeof (dtrace_hash_t));
6647 }
6648 
6649 static void
6650 dtrace_hash_resize(dtrace_hash_t *hash)
6651 {
6652 	int size = hash->dth_size, i, ndx;
6653 	int new_size = hash->dth_size << 1;
6654 	int new_mask = new_size - 1;
6655 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6656 
6657 	ASSERT((new_size & new_mask) == 0);
6658 
6659 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6660 
6661 	for (i = 0; i < size; i++) {
6662 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6663 			dtrace_probe_t *probe = bucket->dthb_chain;
6664 
6665 			ASSERT(probe != NULL);
6666 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6667 
6668 			next = bucket->dthb_next;
6669 			bucket->dthb_next = new_tab[ndx];
6670 			new_tab[ndx] = bucket;
6671 		}
6672 	}
6673 
6674 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6675 	hash->dth_tab = new_tab;
6676 	hash->dth_size = new_size;
6677 	hash->dth_mask = new_mask;
6678 }
6679 
6680 static void
6681 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6682 {
6683 	int hashval = DTRACE_HASHSTR(hash, new);
6684 	int ndx = hashval & hash->dth_mask;
6685 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6686 	dtrace_probe_t **nextp, **prevp;
6687 
6688 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6689 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6690 			goto add;
6691 	}
6692 
6693 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6694 		dtrace_hash_resize(hash);
6695 		dtrace_hash_add(hash, new);
6696 		return;
6697 	}
6698 
6699 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6700 	bucket->dthb_next = hash->dth_tab[ndx];
6701 	hash->dth_tab[ndx] = bucket;
6702 	hash->dth_nbuckets++;
6703 
6704 add:
6705 	nextp = DTRACE_HASHNEXT(hash, new);
6706 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6707 	*nextp = bucket->dthb_chain;
6708 
6709 	if (bucket->dthb_chain != NULL) {
6710 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6711 		ASSERT(*prevp == NULL);
6712 		*prevp = new;
6713 	}
6714 
6715 	bucket->dthb_chain = new;
6716 	bucket->dthb_len++;
6717 }
6718 
6719 static dtrace_probe_t *
6720 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6721 {
6722 	int hashval = DTRACE_HASHSTR(hash, template);
6723 	int ndx = hashval & hash->dth_mask;
6724 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6725 
6726 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6727 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6728 			return (bucket->dthb_chain);
6729 	}
6730 
6731 	return (NULL);
6732 }
6733 
6734 static int
6735 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6736 {
6737 	int hashval = DTRACE_HASHSTR(hash, template);
6738 	int ndx = hashval & hash->dth_mask;
6739 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6740 
6741 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6742 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6743 			return (bucket->dthb_len);
6744 	}
6745 
6746 	return (NULL);
6747 }
6748 
6749 static void
6750 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6751 {
6752 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6753 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6754 
6755 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6756 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6757 
6758 	/*
6759 	 * Find the bucket that we're removing this probe from.
6760 	 */
6761 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6762 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6763 			break;
6764 	}
6765 
6766 	ASSERT(bucket != NULL);
6767 
6768 	if (*prevp == NULL) {
6769 		if (*nextp == NULL) {
6770 			/*
6771 			 * The removed probe was the only probe on this
6772 			 * bucket; we need to remove the bucket.
6773 			 */
6774 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6775 
6776 			ASSERT(bucket->dthb_chain == probe);
6777 			ASSERT(b != NULL);
6778 
6779 			if (b == bucket) {
6780 				hash->dth_tab[ndx] = bucket->dthb_next;
6781 			} else {
6782 				while (b->dthb_next != bucket)
6783 					b = b->dthb_next;
6784 				b->dthb_next = bucket->dthb_next;
6785 			}
6786 
6787 			ASSERT(hash->dth_nbuckets > 0);
6788 			hash->dth_nbuckets--;
6789 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6790 			return;
6791 		}
6792 
6793 		bucket->dthb_chain = *nextp;
6794 	} else {
6795 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6796 	}
6797 
6798 	if (*nextp != NULL)
6799 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6800 }
6801 
6802 /*
6803  * DTrace Utility Functions
6804  *
6805  * These are random utility functions that are _not_ called from probe context.
6806  */
6807 static int
6808 dtrace_badattr(const dtrace_attribute_t *a)
6809 {
6810 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6811 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6812 	    a->dtat_class > DTRACE_CLASS_MAX);
6813 }
6814 
6815 /*
6816  * Return a duplicate copy of a string.  If the specified string is NULL,
6817  * this function returns a zero-length string.
6818  */
6819 static char *
6820 dtrace_strdup(const char *str)
6821 {
6822 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6823 
6824 	if (str != NULL)
6825 		(void) strcpy(new, str);
6826 
6827 	return (new);
6828 }
6829 
6830 #define	DTRACE_ISALPHA(c)	\
6831 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6832 
6833 static int
6834 dtrace_badname(const char *s)
6835 {
6836 	char c;
6837 
6838 	if (s == NULL || (c = *s++) == '\0')
6839 		return (0);
6840 
6841 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6842 		return (1);
6843 
6844 	while ((c = *s++) != '\0') {
6845 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6846 		    c != '-' && c != '_' && c != '.' && c != '`')
6847 			return (1);
6848 	}
6849 
6850 	return (0);
6851 }
6852 
6853 static void
6854 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6855 {
6856 	uint32_t priv;
6857 
6858 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6859 		/*
6860 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6861 		 */
6862 		priv = DTRACE_PRIV_ALL;
6863 	} else {
6864 		*uidp = crgetuid(cr);
6865 		*zoneidp = crgetzoneid(cr);
6866 
6867 		priv = 0;
6868 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6869 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6870 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6871 			priv |= DTRACE_PRIV_USER;
6872 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6873 			priv |= DTRACE_PRIV_PROC;
6874 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6875 			priv |= DTRACE_PRIV_OWNER;
6876 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6877 			priv |= DTRACE_PRIV_ZONEOWNER;
6878 	}
6879 
6880 	*privp = priv;
6881 }
6882 
6883 #ifdef DTRACE_ERRDEBUG
6884 static void
6885 dtrace_errdebug(const char *str)
6886 {
6887 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6888 	int occupied = 0;
6889 
6890 	mutex_enter(&dtrace_errlock);
6891 	dtrace_errlast = str;
6892 	dtrace_errthread = curthread;
6893 
6894 	while (occupied++ < DTRACE_ERRHASHSZ) {
6895 		if (dtrace_errhash[hval].dter_msg == str) {
6896 			dtrace_errhash[hval].dter_count++;
6897 			goto out;
6898 		}
6899 
6900 		if (dtrace_errhash[hval].dter_msg != NULL) {
6901 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6902 			continue;
6903 		}
6904 
6905 		dtrace_errhash[hval].dter_msg = str;
6906 		dtrace_errhash[hval].dter_count = 1;
6907 		goto out;
6908 	}
6909 
6910 	panic("dtrace: undersized error hash");
6911 out:
6912 	mutex_exit(&dtrace_errlock);
6913 }
6914 #endif
6915 
6916 /*
6917  * DTrace Matching Functions
6918  *
6919  * These functions are used to match groups of probes, given some elements of
6920  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6921  */
6922 static int
6923 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6924     zoneid_t zoneid)
6925 {
6926 	if (priv != DTRACE_PRIV_ALL) {
6927 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6928 		uint32_t match = priv & ppriv;
6929 
6930 		/*
6931 		 * No PRIV_DTRACE_* privileges...
6932 		 */
6933 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6934 		    DTRACE_PRIV_KERNEL)) == 0)
6935 			return (0);
6936 
6937 		/*
6938 		 * No matching bits, but there were bits to match...
6939 		 */
6940 		if (match == 0 && ppriv != 0)
6941 			return (0);
6942 
6943 		/*
6944 		 * Need to have permissions to the process, but don't...
6945 		 */
6946 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6947 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6948 			return (0);
6949 		}
6950 
6951 		/*
6952 		 * Need to be in the same zone unless we possess the
6953 		 * privilege to examine all zones.
6954 		 */
6955 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6956 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6957 			return (0);
6958 		}
6959 	}
6960 
6961 	return (1);
6962 }
6963 
6964 /*
6965  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6966  * consists of input pattern strings and an ops-vector to evaluate them.
6967  * This function returns >0 for match, 0 for no match, and <0 for error.
6968  */
6969 static int
6970 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6971     uint32_t priv, uid_t uid, zoneid_t zoneid)
6972 {
6973 	dtrace_provider_t *pvp = prp->dtpr_provider;
6974 	int rv;
6975 
6976 	if (pvp->dtpv_defunct)
6977 		return (0);
6978 
6979 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6980 		return (rv);
6981 
6982 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6983 		return (rv);
6984 
6985 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6986 		return (rv);
6987 
6988 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6989 		return (rv);
6990 
6991 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6992 		return (0);
6993 
6994 	return (rv);
6995 }
6996 
6997 /*
6998  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6999  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7000  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7001  * In addition, all of the recursion cases except for '*' matching have been
7002  * unwound.  For '*', we still implement recursive evaluation, but a depth
7003  * counter is maintained and matching is aborted if we recurse too deep.
7004  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7005  */
7006 static int
7007 dtrace_match_glob(const char *s, const char *p, int depth)
7008 {
7009 	const char *olds;
7010 	char s1, c;
7011 	int gs;
7012 
7013 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7014 		return (-1);
7015 
7016 	if (s == NULL)
7017 		s = ""; /* treat NULL as empty string */
7018 
7019 top:
7020 	olds = s;
7021 	s1 = *s++;
7022 
7023 	if (p == NULL)
7024 		return (0);
7025 
7026 	if ((c = *p++) == '\0')
7027 		return (s1 == '\0');
7028 
7029 	switch (c) {
7030 	case '[': {
7031 		int ok = 0, notflag = 0;
7032 		char lc = '\0';
7033 
7034 		if (s1 == '\0')
7035 			return (0);
7036 
7037 		if (*p == '!') {
7038 			notflag = 1;
7039 			p++;
7040 		}
7041 
7042 		if ((c = *p++) == '\0')
7043 			return (0);
7044 
7045 		do {
7046 			if (c == '-' && lc != '\0' && *p != ']') {
7047 				if ((c = *p++) == '\0')
7048 					return (0);
7049 				if (c == '\\' && (c = *p++) == '\0')
7050 					return (0);
7051 
7052 				if (notflag) {
7053 					if (s1 < lc || s1 > c)
7054 						ok++;
7055 					else
7056 						return (0);
7057 				} else if (lc <= s1 && s1 <= c)
7058 					ok++;
7059 
7060 			} else if (c == '\\' && (c = *p++) == '\0')
7061 				return (0);
7062 
7063 			lc = c; /* save left-hand 'c' for next iteration */
7064 
7065 			if (notflag) {
7066 				if (s1 != c)
7067 					ok++;
7068 				else
7069 					return (0);
7070 			} else if (s1 == c)
7071 				ok++;
7072 
7073 			if ((c = *p++) == '\0')
7074 				return (0);
7075 
7076 		} while (c != ']');
7077 
7078 		if (ok)
7079 			goto top;
7080 
7081 		return (0);
7082 	}
7083 
7084 	case '\\':
7085 		if ((c = *p++) == '\0')
7086 			return (0);
7087 		/*FALLTHRU*/
7088 
7089 	default:
7090 		if (c != s1)
7091 			return (0);
7092 		/*FALLTHRU*/
7093 
7094 	case '?':
7095 		if (s1 != '\0')
7096 			goto top;
7097 		return (0);
7098 
7099 	case '*':
7100 		while (*p == '*')
7101 			p++; /* consecutive *'s are identical to a single one */
7102 
7103 		if (*p == '\0')
7104 			return (1);
7105 
7106 		for (s = olds; *s != '\0'; s++) {
7107 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7108 				return (gs);
7109 		}
7110 
7111 		return (0);
7112 	}
7113 }
7114 
7115 /*ARGSUSED*/
7116 static int
7117 dtrace_match_string(const char *s, const char *p, int depth)
7118 {
7119 	return (s != NULL && strcmp(s, p) == 0);
7120 }
7121 
7122 /*ARGSUSED*/
7123 static int
7124 dtrace_match_nul(const char *s, const char *p, int depth)
7125 {
7126 	return (1); /* always match the empty pattern */
7127 }
7128 
7129 /*ARGSUSED*/
7130 static int
7131 dtrace_match_nonzero(const char *s, const char *p, int depth)
7132 {
7133 	return (s != NULL && s[0] != '\0');
7134 }
7135 
7136 static int
7137 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7138     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7139 {
7140 	dtrace_probe_t template, *probe;
7141 	dtrace_hash_t *hash = NULL;
7142 	int len, rc, best = INT_MAX, nmatched = 0;
7143 	dtrace_id_t i;
7144 
7145 	ASSERT(MUTEX_HELD(&dtrace_lock));
7146 
7147 	/*
7148 	 * If the probe ID is specified in the key, just lookup by ID and
7149 	 * invoke the match callback once if a matching probe is found.
7150 	 */
7151 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7152 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7153 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7154 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7155 				return (DTRACE_MATCH_FAIL);
7156 			nmatched++;
7157 		}
7158 		return (nmatched);
7159 	}
7160 
7161 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7162 	template.dtpr_func = (char *)pkp->dtpk_func;
7163 	template.dtpr_name = (char *)pkp->dtpk_name;
7164 
7165 	/*
7166 	 * We want to find the most distinct of the module name, function
7167 	 * name, and name.  So for each one that is not a glob pattern or
7168 	 * empty string, we perform a lookup in the corresponding hash and
7169 	 * use the hash table with the fewest collisions to do our search.
7170 	 */
7171 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7172 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7173 		best = len;
7174 		hash = dtrace_bymod;
7175 	}
7176 
7177 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7178 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7179 		best = len;
7180 		hash = dtrace_byfunc;
7181 	}
7182 
7183 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7184 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7185 		best = len;
7186 		hash = dtrace_byname;
7187 	}
7188 
7189 	/*
7190 	 * If we did not select a hash table, iterate over every probe and
7191 	 * invoke our callback for each one that matches our input probe key.
7192 	 */
7193 	if (hash == NULL) {
7194 		for (i = 0; i < dtrace_nprobes; i++) {
7195 			if ((probe = dtrace_probes[i]) == NULL ||
7196 			    dtrace_match_probe(probe, pkp, priv, uid,
7197 			    zoneid) <= 0)
7198 				continue;
7199 
7200 			nmatched++;
7201 
7202 			if ((rc = (*matched)(probe, arg)) !=
7203 			    DTRACE_MATCH_NEXT) {
7204 				if (rc == DTRACE_MATCH_FAIL)
7205 					return (DTRACE_MATCH_FAIL);
7206 				break;
7207 			}
7208 		}
7209 
7210 		return (nmatched);
7211 	}
7212 
7213 	/*
7214 	 * If we selected a hash table, iterate over each probe of the same key
7215 	 * name and invoke the callback for every probe that matches the other
7216 	 * attributes of our input probe key.
7217 	 */
7218 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7219 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7220 
7221 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7222 			continue;
7223 
7224 		nmatched++;
7225 
7226 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7227 			if (rc == DTRACE_MATCH_FAIL)
7228 				return (DTRACE_MATCH_FAIL);
7229 			break;
7230 		}
7231 	}
7232 
7233 	return (nmatched);
7234 }
7235 
7236 /*
7237  * Return the function pointer dtrace_probecmp() should use to compare the
7238  * specified pattern with a string.  For NULL or empty patterns, we select
7239  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7240  * For non-empty non-glob strings, we use dtrace_match_string().
7241  */
7242 static dtrace_probekey_f *
7243 dtrace_probekey_func(const char *p)
7244 {
7245 	char c;
7246 
7247 	if (p == NULL || *p == '\0')
7248 		return (&dtrace_match_nul);
7249 
7250 	while ((c = *p++) != '\0') {
7251 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7252 			return (&dtrace_match_glob);
7253 	}
7254 
7255 	return (&dtrace_match_string);
7256 }
7257 
7258 /*
7259  * Build a probe comparison key for use with dtrace_match_probe() from the
7260  * given probe description.  By convention, a null key only matches anchored
7261  * probes: if each field is the empty string, reset dtpk_fmatch to
7262  * dtrace_match_nonzero().
7263  */
7264 static void
7265 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7266 {
7267 	pkp->dtpk_prov = pdp->dtpd_provider;
7268 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7269 
7270 	pkp->dtpk_mod = pdp->dtpd_mod;
7271 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7272 
7273 	pkp->dtpk_func = pdp->dtpd_func;
7274 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7275 
7276 	pkp->dtpk_name = pdp->dtpd_name;
7277 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7278 
7279 	pkp->dtpk_id = pdp->dtpd_id;
7280 
7281 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7282 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7283 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7284 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7285 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7286 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7287 }
7288 
7289 /*
7290  * DTrace Provider-to-Framework API Functions
7291  *
7292  * These functions implement much of the Provider-to-Framework API, as
7293  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7294  * the functions in the API for probe management (found below), and
7295  * dtrace_probe() itself (found above).
7296  */
7297 
7298 /*
7299  * Register the calling provider with the DTrace framework.  This should
7300  * generally be called by DTrace providers in their attach(9E) entry point.
7301  */
7302 int
7303 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7304     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7305 {
7306 	dtrace_provider_t *provider;
7307 
7308 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7309 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7310 		    "arguments", name ? name : "<NULL>");
7311 		return (EINVAL);
7312 	}
7313 
7314 	if (name[0] == '\0' || dtrace_badname(name)) {
7315 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7316 		    "provider name", name);
7317 		return (EINVAL);
7318 	}
7319 
7320 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7321 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7322 	    pops->dtps_destroy == NULL ||
7323 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7324 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7325 		    "provider ops", name);
7326 		return (EINVAL);
7327 	}
7328 
7329 	if (dtrace_badattr(&pap->dtpa_provider) ||
7330 	    dtrace_badattr(&pap->dtpa_mod) ||
7331 	    dtrace_badattr(&pap->dtpa_func) ||
7332 	    dtrace_badattr(&pap->dtpa_name) ||
7333 	    dtrace_badattr(&pap->dtpa_args)) {
7334 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7335 		    "provider attributes", name);
7336 		return (EINVAL);
7337 	}
7338 
7339 	if (priv & ~DTRACE_PRIV_ALL) {
7340 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7341 		    "privilege attributes", name);
7342 		return (EINVAL);
7343 	}
7344 
7345 	if ((priv & DTRACE_PRIV_KERNEL) &&
7346 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7347 	    pops->dtps_mode == NULL) {
7348 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7349 		    "dtps_mode() op for given privilege attributes", name);
7350 		return (EINVAL);
7351 	}
7352 
7353 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7354 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7355 	(void) strcpy(provider->dtpv_name, name);
7356 
7357 	provider->dtpv_attr = *pap;
7358 	provider->dtpv_priv.dtpp_flags = priv;
7359 	if (cr != NULL) {
7360 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7361 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7362 	}
7363 	provider->dtpv_pops = *pops;
7364 
7365 	if (pops->dtps_provide == NULL) {
7366 		ASSERT(pops->dtps_provide_module != NULL);
7367 		provider->dtpv_pops.dtps_provide =
7368 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7369 	}
7370 
7371 	if (pops->dtps_provide_module == NULL) {
7372 		ASSERT(pops->dtps_provide != NULL);
7373 		provider->dtpv_pops.dtps_provide_module =
7374 		    (void (*)(void *, struct modctl *))dtrace_nullop;
7375 	}
7376 
7377 	if (pops->dtps_suspend == NULL) {
7378 		ASSERT(pops->dtps_resume == NULL);
7379 		provider->dtpv_pops.dtps_suspend =
7380 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7381 		provider->dtpv_pops.dtps_resume =
7382 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7383 	}
7384 
7385 	provider->dtpv_arg = arg;
7386 	*idp = (dtrace_provider_id_t)provider;
7387 
7388 	if (pops == &dtrace_provider_ops) {
7389 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7390 		ASSERT(MUTEX_HELD(&dtrace_lock));
7391 		ASSERT(dtrace_anon.dta_enabling == NULL);
7392 
7393 		/*
7394 		 * We make sure that the DTrace provider is at the head of
7395 		 * the provider chain.
7396 		 */
7397 		provider->dtpv_next = dtrace_provider;
7398 		dtrace_provider = provider;
7399 		return (0);
7400 	}
7401 
7402 	mutex_enter(&dtrace_provider_lock);
7403 	mutex_enter(&dtrace_lock);
7404 
7405 	/*
7406 	 * If there is at least one provider registered, we'll add this
7407 	 * provider after the first provider.
7408 	 */
7409 	if (dtrace_provider != NULL) {
7410 		provider->dtpv_next = dtrace_provider->dtpv_next;
7411 		dtrace_provider->dtpv_next = provider;
7412 	} else {
7413 		dtrace_provider = provider;
7414 	}
7415 
7416 	if (dtrace_retained != NULL) {
7417 		dtrace_enabling_provide(provider);
7418 
7419 		/*
7420 		 * Now we need to call dtrace_enabling_matchall() -- which
7421 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7422 		 * to drop all of our locks before calling into it...
7423 		 */
7424 		mutex_exit(&dtrace_lock);
7425 		mutex_exit(&dtrace_provider_lock);
7426 		dtrace_enabling_matchall();
7427 
7428 		return (0);
7429 	}
7430 
7431 	mutex_exit(&dtrace_lock);
7432 	mutex_exit(&dtrace_provider_lock);
7433 
7434 	return (0);
7435 }
7436 
7437 /*
7438  * Unregister the specified provider from the DTrace framework.  This should
7439  * generally be called by DTrace providers in their detach(9E) entry point.
7440  */
7441 int
7442 dtrace_unregister(dtrace_provider_id_t id)
7443 {
7444 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7445 	dtrace_provider_t *prev = NULL;
7446 	int i, self = 0, noreap = 0;
7447 	dtrace_probe_t *probe, *first = NULL;
7448 
7449 	if (old->dtpv_pops.dtps_enable ==
7450 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7451 		/*
7452 		 * If DTrace itself is the provider, we're called with locks
7453 		 * already held.
7454 		 */
7455 		ASSERT(old == dtrace_provider);
7456 		ASSERT(dtrace_devi != NULL);
7457 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7458 		ASSERT(MUTEX_HELD(&dtrace_lock));
7459 		self = 1;
7460 
7461 		if (dtrace_provider->dtpv_next != NULL) {
7462 			/*
7463 			 * There's another provider here; return failure.
7464 			 */
7465 			return (EBUSY);
7466 		}
7467 	} else {
7468 		mutex_enter(&dtrace_provider_lock);
7469 		mutex_enter(&mod_lock);
7470 		mutex_enter(&dtrace_lock);
7471 	}
7472 
7473 	/*
7474 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7475 	 * probes, we refuse to let providers slither away, unless this
7476 	 * provider has already been explicitly invalidated.
7477 	 */
7478 	if (!old->dtpv_defunct &&
7479 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7480 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7481 		if (!self) {
7482 			mutex_exit(&dtrace_lock);
7483 			mutex_exit(&mod_lock);
7484 			mutex_exit(&dtrace_provider_lock);
7485 		}
7486 		return (EBUSY);
7487 	}
7488 
7489 	/*
7490 	 * Attempt to destroy the probes associated with this provider.
7491 	 */
7492 	for (i = 0; i < dtrace_nprobes; i++) {
7493 		if ((probe = dtrace_probes[i]) == NULL)
7494 			continue;
7495 
7496 		if (probe->dtpr_provider != old)
7497 			continue;
7498 
7499 		if (probe->dtpr_ecb == NULL)
7500 			continue;
7501 
7502 		/*
7503 		 * If we are trying to unregister a defunct provider, and the
7504 		 * provider was made defunct within the interval dictated by
7505 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7506 		 * attempt to reap our enablings.  To denote that the provider
7507 		 * should reattempt to unregister itself at some point in the
7508 		 * future, we will return a differentiable error code (EAGAIN
7509 		 * instead of EBUSY) in this case.
7510 		 */
7511 		if (dtrace_gethrtime() - old->dtpv_defunct >
7512 		    dtrace_unregister_defunct_reap)
7513 			noreap = 1;
7514 
7515 		if (!self) {
7516 			mutex_exit(&dtrace_lock);
7517 			mutex_exit(&mod_lock);
7518 			mutex_exit(&dtrace_provider_lock);
7519 		}
7520 
7521 		if (noreap)
7522 			return (EBUSY);
7523 
7524 		(void) taskq_dispatch(dtrace_taskq,
7525 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7526 
7527 		return (EAGAIN);
7528 	}
7529 
7530 	/*
7531 	 * All of the probes for this provider are disabled; we can safely
7532 	 * remove all of them from their hash chains and from the probe array.
7533 	 */
7534 	for (i = 0; i < dtrace_nprobes; i++) {
7535 		if ((probe = dtrace_probes[i]) == NULL)
7536 			continue;
7537 
7538 		if (probe->dtpr_provider != old)
7539 			continue;
7540 
7541 		dtrace_probes[i] = NULL;
7542 
7543 		dtrace_hash_remove(dtrace_bymod, probe);
7544 		dtrace_hash_remove(dtrace_byfunc, probe);
7545 		dtrace_hash_remove(dtrace_byname, probe);
7546 
7547 		if (first == NULL) {
7548 			first = probe;
7549 			probe->dtpr_nextmod = NULL;
7550 		} else {
7551 			probe->dtpr_nextmod = first;
7552 			first = probe;
7553 		}
7554 	}
7555 
7556 	/*
7557 	 * The provider's probes have been removed from the hash chains and
7558 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7559 	 * everyone has cleared out from any probe array processing.
7560 	 */
7561 	dtrace_sync();
7562 
7563 	for (probe = first; probe != NULL; probe = first) {
7564 		first = probe->dtpr_nextmod;
7565 
7566 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7567 		    probe->dtpr_arg);
7568 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7569 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7570 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7571 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7572 		kmem_free(probe, sizeof (dtrace_probe_t));
7573 	}
7574 
7575 	if ((prev = dtrace_provider) == old) {
7576 		ASSERT(self || dtrace_devi == NULL);
7577 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7578 		dtrace_provider = old->dtpv_next;
7579 	} else {
7580 		while (prev != NULL && prev->dtpv_next != old)
7581 			prev = prev->dtpv_next;
7582 
7583 		if (prev == NULL) {
7584 			panic("attempt to unregister non-existent "
7585 			    "dtrace provider %p\n", (void *)id);
7586 		}
7587 
7588 		prev->dtpv_next = old->dtpv_next;
7589 	}
7590 
7591 	if (!self) {
7592 		mutex_exit(&dtrace_lock);
7593 		mutex_exit(&mod_lock);
7594 		mutex_exit(&dtrace_provider_lock);
7595 	}
7596 
7597 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7598 	kmem_free(old, sizeof (dtrace_provider_t));
7599 
7600 	return (0);
7601 }
7602 
7603 /*
7604  * Invalidate the specified provider.  All subsequent probe lookups for the
7605  * specified provider will fail, but its probes will not be removed.
7606  */
7607 void
7608 dtrace_invalidate(dtrace_provider_id_t id)
7609 {
7610 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7611 
7612 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7613 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7614 
7615 	mutex_enter(&dtrace_provider_lock);
7616 	mutex_enter(&dtrace_lock);
7617 
7618 	pvp->dtpv_defunct = dtrace_gethrtime();
7619 
7620 	mutex_exit(&dtrace_lock);
7621 	mutex_exit(&dtrace_provider_lock);
7622 }
7623 
7624 /*
7625  * Indicate whether or not DTrace has attached.
7626  */
7627 int
7628 dtrace_attached(void)
7629 {
7630 	/*
7631 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7632 	 * attached.  (It's non-NULL because DTrace is always itself a
7633 	 * provider.)
7634 	 */
7635 	return (dtrace_provider != NULL);
7636 }
7637 
7638 /*
7639  * Remove all the unenabled probes for the given provider.  This function is
7640  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7641  * -- just as many of its associated probes as it can.
7642  */
7643 int
7644 dtrace_condense(dtrace_provider_id_t id)
7645 {
7646 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7647 	int i;
7648 	dtrace_probe_t *probe;
7649 
7650 	/*
7651 	 * Make sure this isn't the dtrace provider itself.
7652 	 */
7653 	ASSERT(prov->dtpv_pops.dtps_enable !=
7654 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7655 
7656 	mutex_enter(&dtrace_provider_lock);
7657 	mutex_enter(&dtrace_lock);
7658 
7659 	/*
7660 	 * Attempt to destroy the probes associated with this provider.
7661 	 */
7662 	for (i = 0; i < dtrace_nprobes; i++) {
7663 		if ((probe = dtrace_probes[i]) == NULL)
7664 			continue;
7665 
7666 		if (probe->dtpr_provider != prov)
7667 			continue;
7668 
7669 		if (probe->dtpr_ecb != NULL)
7670 			continue;
7671 
7672 		dtrace_probes[i] = NULL;
7673 
7674 		dtrace_hash_remove(dtrace_bymod, probe);
7675 		dtrace_hash_remove(dtrace_byfunc, probe);
7676 		dtrace_hash_remove(dtrace_byname, probe);
7677 
7678 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7679 		    probe->dtpr_arg);
7680 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7681 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7682 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7683 		kmem_free(probe, sizeof (dtrace_probe_t));
7684 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7685 	}
7686 
7687 	mutex_exit(&dtrace_lock);
7688 	mutex_exit(&dtrace_provider_lock);
7689 
7690 	return (0);
7691 }
7692 
7693 /*
7694  * DTrace Probe Management Functions
7695  *
7696  * The functions in this section perform the DTrace probe management,
7697  * including functions to create probes, look-up probes, and call into the
7698  * providers to request that probes be provided.  Some of these functions are
7699  * in the Provider-to-Framework API; these functions can be identified by the
7700  * fact that they are not declared "static".
7701  */
7702 
7703 /*
7704  * Create a probe with the specified module name, function name, and name.
7705  */
7706 dtrace_id_t
7707 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7708     const char *func, const char *name, int aframes, void *arg)
7709 {
7710 	dtrace_probe_t *probe, **probes;
7711 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7712 	dtrace_id_t id;
7713 
7714 	if (provider == dtrace_provider) {
7715 		ASSERT(MUTEX_HELD(&dtrace_lock));
7716 	} else {
7717 		mutex_enter(&dtrace_lock);
7718 	}
7719 
7720 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7721 	    VM_BESTFIT | VM_SLEEP);
7722 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7723 
7724 	probe->dtpr_id = id;
7725 	probe->dtpr_gen = dtrace_probegen++;
7726 	probe->dtpr_mod = dtrace_strdup(mod);
7727 	probe->dtpr_func = dtrace_strdup(func);
7728 	probe->dtpr_name = dtrace_strdup(name);
7729 	probe->dtpr_arg = arg;
7730 	probe->dtpr_aframes = aframes;
7731 	probe->dtpr_provider = provider;
7732 
7733 	dtrace_hash_add(dtrace_bymod, probe);
7734 	dtrace_hash_add(dtrace_byfunc, probe);
7735 	dtrace_hash_add(dtrace_byname, probe);
7736 
7737 	if (id - 1 >= dtrace_nprobes) {
7738 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7739 		size_t nsize = osize << 1;
7740 
7741 		if (nsize == 0) {
7742 			ASSERT(osize == 0);
7743 			ASSERT(dtrace_probes == NULL);
7744 			nsize = sizeof (dtrace_probe_t *);
7745 		}
7746 
7747 		probes = kmem_zalloc(nsize, KM_SLEEP);
7748 
7749 		if (dtrace_probes == NULL) {
7750 			ASSERT(osize == 0);
7751 			dtrace_probes = probes;
7752 			dtrace_nprobes = 1;
7753 		} else {
7754 			dtrace_probe_t **oprobes = dtrace_probes;
7755 
7756 			bcopy(oprobes, probes, osize);
7757 			dtrace_membar_producer();
7758 			dtrace_probes = probes;
7759 
7760 			dtrace_sync();
7761 
7762 			/*
7763 			 * All CPUs are now seeing the new probes array; we can
7764 			 * safely free the old array.
7765 			 */
7766 			kmem_free(oprobes, osize);
7767 			dtrace_nprobes <<= 1;
7768 		}
7769 
7770 		ASSERT(id - 1 < dtrace_nprobes);
7771 	}
7772 
7773 	ASSERT(dtrace_probes[id - 1] == NULL);
7774 	dtrace_probes[id - 1] = probe;
7775 
7776 	if (provider != dtrace_provider)
7777 		mutex_exit(&dtrace_lock);
7778 
7779 	return (id);
7780 }
7781 
7782 static dtrace_probe_t *
7783 dtrace_probe_lookup_id(dtrace_id_t id)
7784 {
7785 	ASSERT(MUTEX_HELD(&dtrace_lock));
7786 
7787 	if (id == 0 || id > dtrace_nprobes)
7788 		return (NULL);
7789 
7790 	return (dtrace_probes[id - 1]);
7791 }
7792 
7793 static int
7794 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7795 {
7796 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7797 
7798 	return (DTRACE_MATCH_DONE);
7799 }
7800 
7801 /*
7802  * Look up a probe based on provider and one or more of module name, function
7803  * name and probe name.
7804  */
7805 dtrace_id_t
7806 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7807     const char *func, const char *name)
7808 {
7809 	dtrace_probekey_t pkey;
7810 	dtrace_id_t id;
7811 	int match;
7812 
7813 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7814 	pkey.dtpk_pmatch = &dtrace_match_string;
7815 	pkey.dtpk_mod = mod;
7816 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7817 	pkey.dtpk_func = func;
7818 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7819 	pkey.dtpk_name = name;
7820 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7821 	pkey.dtpk_id = DTRACE_IDNONE;
7822 
7823 	mutex_enter(&dtrace_lock);
7824 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7825 	    dtrace_probe_lookup_match, &id);
7826 	mutex_exit(&dtrace_lock);
7827 
7828 	ASSERT(match == 1 || match == 0);
7829 	return (match ? id : 0);
7830 }
7831 
7832 /*
7833  * Returns the probe argument associated with the specified probe.
7834  */
7835 void *
7836 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7837 {
7838 	dtrace_probe_t *probe;
7839 	void *rval = NULL;
7840 
7841 	mutex_enter(&dtrace_lock);
7842 
7843 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7844 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7845 		rval = probe->dtpr_arg;
7846 
7847 	mutex_exit(&dtrace_lock);
7848 
7849 	return (rval);
7850 }
7851 
7852 /*
7853  * Copy a probe into a probe description.
7854  */
7855 static void
7856 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7857 {
7858 	bzero(pdp, sizeof (dtrace_probedesc_t));
7859 	pdp->dtpd_id = prp->dtpr_id;
7860 
7861 	(void) strncpy(pdp->dtpd_provider,
7862 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7863 
7864 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7865 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7866 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7867 }
7868 
7869 /*
7870  * Called to indicate that a probe -- or probes -- should be provided by a
7871  * specfied provider.  If the specified description is NULL, the provider will
7872  * be told to provide all of its probes.  (This is done whenever a new
7873  * consumer comes along, or whenever a retained enabling is to be matched.) If
7874  * the specified description is non-NULL, the provider is given the
7875  * opportunity to dynamically provide the specified probe, allowing providers
7876  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7877  * probes.)  If the provider is NULL, the operations will be applied to all
7878  * providers; if the provider is non-NULL the operations will only be applied
7879  * to the specified provider.  The dtrace_provider_lock must be held, and the
7880  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7881  * will need to grab the dtrace_lock when it reenters the framework through
7882  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7883  */
7884 static void
7885 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7886 {
7887 	struct modctl *ctl;
7888 	int all = 0;
7889 
7890 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7891 
7892 	if (prv == NULL) {
7893 		all = 1;
7894 		prv = dtrace_provider;
7895 	}
7896 
7897 	do {
7898 		/*
7899 		 * First, call the blanket provide operation.
7900 		 */
7901 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7902 
7903 		/*
7904 		 * Now call the per-module provide operation.  We will grab
7905 		 * mod_lock to prevent the list from being modified.  Note
7906 		 * that this also prevents the mod_busy bits from changing.
7907 		 * (mod_busy can only be changed with mod_lock held.)
7908 		 */
7909 		mutex_enter(&mod_lock);
7910 
7911 		ctl = &modules;
7912 		do {
7913 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7914 				continue;
7915 
7916 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7917 
7918 		} while ((ctl = ctl->mod_next) != &modules);
7919 
7920 		mutex_exit(&mod_lock);
7921 	} while (all && (prv = prv->dtpv_next) != NULL);
7922 }
7923 
7924 /*
7925  * Iterate over each probe, and call the Framework-to-Provider API function
7926  * denoted by offs.
7927  */
7928 static void
7929 dtrace_probe_foreach(uintptr_t offs)
7930 {
7931 	dtrace_provider_t *prov;
7932 	void (*func)(void *, dtrace_id_t, void *);
7933 	dtrace_probe_t *probe;
7934 	dtrace_icookie_t cookie;
7935 	int i;
7936 
7937 	/*
7938 	 * We disable interrupts to walk through the probe array.  This is
7939 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7940 	 * won't see stale data.
7941 	 */
7942 	cookie = dtrace_interrupt_disable();
7943 
7944 	for (i = 0; i < dtrace_nprobes; i++) {
7945 		if ((probe = dtrace_probes[i]) == NULL)
7946 			continue;
7947 
7948 		if (probe->dtpr_ecb == NULL) {
7949 			/*
7950 			 * This probe isn't enabled -- don't call the function.
7951 			 */
7952 			continue;
7953 		}
7954 
7955 		prov = probe->dtpr_provider;
7956 		func = *((void(**)(void *, dtrace_id_t, void *))
7957 		    ((uintptr_t)&prov->dtpv_pops + offs));
7958 
7959 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7960 	}
7961 
7962 	dtrace_interrupt_enable(cookie);
7963 }
7964 
7965 static int
7966 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7967 {
7968 	dtrace_probekey_t pkey;
7969 	uint32_t priv;
7970 	uid_t uid;
7971 	zoneid_t zoneid;
7972 
7973 	ASSERT(MUTEX_HELD(&dtrace_lock));
7974 	dtrace_ecb_create_cache = NULL;
7975 
7976 	if (desc == NULL) {
7977 		/*
7978 		 * If we're passed a NULL description, we're being asked to
7979 		 * create an ECB with a NULL probe.
7980 		 */
7981 		(void) dtrace_ecb_create_enable(NULL, enab);
7982 		return (0);
7983 	}
7984 
7985 	dtrace_probekey(desc, &pkey);
7986 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7987 	    &priv, &uid, &zoneid);
7988 
7989 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7990 	    enab));
7991 }
7992 
7993 /*
7994  * DTrace Helper Provider Functions
7995  */
7996 static void
7997 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7998 {
7999 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8000 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8001 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8002 }
8003 
8004 static void
8005 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8006     const dof_provider_t *dofprov, char *strtab)
8007 {
8008 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8009 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8010 	    dofprov->dofpv_provattr);
8011 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8012 	    dofprov->dofpv_modattr);
8013 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8014 	    dofprov->dofpv_funcattr);
8015 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8016 	    dofprov->dofpv_nameattr);
8017 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8018 	    dofprov->dofpv_argsattr);
8019 }
8020 
8021 static void
8022 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8023 {
8024 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8025 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8026 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8027 	dof_provider_t *provider;
8028 	dof_probe_t *probe;
8029 	uint32_t *off, *enoff;
8030 	uint8_t *arg;
8031 	char *strtab;
8032 	uint_t i, nprobes;
8033 	dtrace_helper_provdesc_t dhpv;
8034 	dtrace_helper_probedesc_t dhpb;
8035 	dtrace_meta_t *meta = dtrace_meta_pid;
8036 	dtrace_mops_t *mops = &meta->dtm_mops;
8037 	void *parg;
8038 
8039 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8040 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8041 	    provider->dofpv_strtab * dof->dofh_secsize);
8042 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8043 	    provider->dofpv_probes * dof->dofh_secsize);
8044 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8045 	    provider->dofpv_prargs * dof->dofh_secsize);
8046 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8047 	    provider->dofpv_proffs * dof->dofh_secsize);
8048 
8049 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8050 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8051 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8052 	enoff = NULL;
8053 
8054 	/*
8055 	 * See dtrace_helper_provider_validate().
8056 	 */
8057 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8058 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8059 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8060 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8061 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8062 	}
8063 
8064 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8065 
8066 	/*
8067 	 * Create the provider.
8068 	 */
8069 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8070 
8071 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8072 		return;
8073 
8074 	meta->dtm_count++;
8075 
8076 	/*
8077 	 * Create the probes.
8078 	 */
8079 	for (i = 0; i < nprobes; i++) {
8080 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8081 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8082 
8083 		dhpb.dthpb_mod = dhp->dofhp_mod;
8084 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8085 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8086 		dhpb.dthpb_base = probe->dofpr_addr;
8087 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8088 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8089 		if (enoff != NULL) {
8090 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8091 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8092 		} else {
8093 			dhpb.dthpb_enoffs = NULL;
8094 			dhpb.dthpb_nenoffs = 0;
8095 		}
8096 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8097 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8098 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8099 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8100 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8101 
8102 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8103 	}
8104 }
8105 
8106 static void
8107 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8108 {
8109 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8110 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8111 	int i;
8112 
8113 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8114 
8115 	for (i = 0; i < dof->dofh_secnum; i++) {
8116 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8117 		    dof->dofh_secoff + i * dof->dofh_secsize);
8118 
8119 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8120 			continue;
8121 
8122 		dtrace_helper_provide_one(dhp, sec, pid);
8123 	}
8124 
8125 	/*
8126 	 * We may have just created probes, so we must now rematch against
8127 	 * any retained enablings.  Note that this call will acquire both
8128 	 * cpu_lock and dtrace_lock; the fact that we are holding
8129 	 * dtrace_meta_lock now is what defines the ordering with respect to
8130 	 * these three locks.
8131 	 */
8132 	dtrace_enabling_matchall();
8133 }
8134 
8135 static void
8136 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8137 {
8138 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8139 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8140 	dof_sec_t *str_sec;
8141 	dof_provider_t *provider;
8142 	char *strtab;
8143 	dtrace_helper_provdesc_t dhpv;
8144 	dtrace_meta_t *meta = dtrace_meta_pid;
8145 	dtrace_mops_t *mops = &meta->dtm_mops;
8146 
8147 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8148 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8149 	    provider->dofpv_strtab * dof->dofh_secsize);
8150 
8151 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8152 
8153 	/*
8154 	 * Create the provider.
8155 	 */
8156 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8157 
8158 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8159 
8160 	meta->dtm_count--;
8161 }
8162 
8163 static void
8164 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8165 {
8166 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8167 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8168 	int i;
8169 
8170 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8171 
8172 	for (i = 0; i < dof->dofh_secnum; i++) {
8173 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8174 		    dof->dofh_secoff + i * dof->dofh_secsize);
8175 
8176 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8177 			continue;
8178 
8179 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8180 	}
8181 }
8182 
8183 /*
8184  * DTrace Meta Provider-to-Framework API Functions
8185  *
8186  * These functions implement the Meta Provider-to-Framework API, as described
8187  * in <sys/dtrace.h>.
8188  */
8189 int
8190 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8191     dtrace_meta_provider_id_t *idp)
8192 {
8193 	dtrace_meta_t *meta;
8194 	dtrace_helpers_t *help, *next;
8195 	int i;
8196 
8197 	*idp = DTRACE_METAPROVNONE;
8198 
8199 	/*
8200 	 * We strictly don't need the name, but we hold onto it for
8201 	 * debuggability. All hail error queues!
8202 	 */
8203 	if (name == NULL) {
8204 		cmn_err(CE_WARN, "failed to register meta-provider: "
8205 		    "invalid name");
8206 		return (EINVAL);
8207 	}
8208 
8209 	if (mops == NULL ||
8210 	    mops->dtms_create_probe == NULL ||
8211 	    mops->dtms_provide_pid == NULL ||
8212 	    mops->dtms_remove_pid == NULL) {
8213 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8214 		    "invalid ops", name);
8215 		return (EINVAL);
8216 	}
8217 
8218 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8219 	meta->dtm_mops = *mops;
8220 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8221 	(void) strcpy(meta->dtm_name, name);
8222 	meta->dtm_arg = arg;
8223 
8224 	mutex_enter(&dtrace_meta_lock);
8225 	mutex_enter(&dtrace_lock);
8226 
8227 	if (dtrace_meta_pid != NULL) {
8228 		mutex_exit(&dtrace_lock);
8229 		mutex_exit(&dtrace_meta_lock);
8230 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8231 		    "user-land meta-provider exists", name);
8232 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8233 		kmem_free(meta, sizeof (dtrace_meta_t));
8234 		return (EINVAL);
8235 	}
8236 
8237 	dtrace_meta_pid = meta;
8238 	*idp = (dtrace_meta_provider_id_t)meta;
8239 
8240 	/*
8241 	 * If there are providers and probes ready to go, pass them
8242 	 * off to the new meta provider now.
8243 	 */
8244 
8245 	help = dtrace_deferred_pid;
8246 	dtrace_deferred_pid = NULL;
8247 
8248 	mutex_exit(&dtrace_lock);
8249 
8250 	while (help != NULL) {
8251 		for (i = 0; i < help->dthps_nprovs; i++) {
8252 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8253 			    help->dthps_pid);
8254 		}
8255 
8256 		next = help->dthps_next;
8257 		help->dthps_next = NULL;
8258 		help->dthps_prev = NULL;
8259 		help->dthps_deferred = 0;
8260 		help = next;
8261 	}
8262 
8263 	mutex_exit(&dtrace_meta_lock);
8264 
8265 	return (0);
8266 }
8267 
8268 int
8269 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8270 {
8271 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8272 
8273 	mutex_enter(&dtrace_meta_lock);
8274 	mutex_enter(&dtrace_lock);
8275 
8276 	if (old == dtrace_meta_pid) {
8277 		pp = &dtrace_meta_pid;
8278 	} else {
8279 		panic("attempt to unregister non-existent "
8280 		    "dtrace meta-provider %p\n", (void *)old);
8281 	}
8282 
8283 	if (old->dtm_count != 0) {
8284 		mutex_exit(&dtrace_lock);
8285 		mutex_exit(&dtrace_meta_lock);
8286 		return (EBUSY);
8287 	}
8288 
8289 	*pp = NULL;
8290 
8291 	mutex_exit(&dtrace_lock);
8292 	mutex_exit(&dtrace_meta_lock);
8293 
8294 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8295 	kmem_free(old, sizeof (dtrace_meta_t));
8296 
8297 	return (0);
8298 }
8299 
8300 
8301 /*
8302  * DTrace DIF Object Functions
8303  */
8304 static int
8305 dtrace_difo_err(uint_t pc, const char *format, ...)
8306 {
8307 	if (dtrace_err_verbose) {
8308 		va_list alist;
8309 
8310 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8311 		va_start(alist, format);
8312 		(void) vuprintf(format, alist);
8313 		va_end(alist);
8314 	}
8315 
8316 #ifdef DTRACE_ERRDEBUG
8317 	dtrace_errdebug(format);
8318 #endif
8319 	return (1);
8320 }
8321 
8322 /*
8323  * Validate a DTrace DIF object by checking the IR instructions.  The following
8324  * rules are currently enforced by dtrace_difo_validate():
8325  *
8326  * 1. Each instruction must have a valid opcode
8327  * 2. Each register, string, variable, or subroutine reference must be valid
8328  * 3. No instruction can modify register %r0 (must be zero)
8329  * 4. All instruction reserved bits must be set to zero
8330  * 5. The last instruction must be a "ret" instruction
8331  * 6. All branch targets must reference a valid instruction _after_ the branch
8332  */
8333 static int
8334 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8335     cred_t *cr)
8336 {
8337 	int err = 0, i;
8338 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8339 	int kcheckload;
8340 	uint_t pc;
8341 
8342 	kcheckload = cr == NULL ||
8343 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8344 
8345 	dp->dtdo_destructive = 0;
8346 
8347 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8348 		dif_instr_t instr = dp->dtdo_buf[pc];
8349 
8350 		uint_t r1 = DIF_INSTR_R1(instr);
8351 		uint_t r2 = DIF_INSTR_R2(instr);
8352 		uint_t rd = DIF_INSTR_RD(instr);
8353 		uint_t rs = DIF_INSTR_RS(instr);
8354 		uint_t label = DIF_INSTR_LABEL(instr);
8355 		uint_t v = DIF_INSTR_VAR(instr);
8356 		uint_t subr = DIF_INSTR_SUBR(instr);
8357 		uint_t type = DIF_INSTR_TYPE(instr);
8358 		uint_t op = DIF_INSTR_OP(instr);
8359 
8360 		switch (op) {
8361 		case DIF_OP_OR:
8362 		case DIF_OP_XOR:
8363 		case DIF_OP_AND:
8364 		case DIF_OP_SLL:
8365 		case DIF_OP_SRL:
8366 		case DIF_OP_SRA:
8367 		case DIF_OP_SUB:
8368 		case DIF_OP_ADD:
8369 		case DIF_OP_MUL:
8370 		case DIF_OP_SDIV:
8371 		case DIF_OP_UDIV:
8372 		case DIF_OP_SREM:
8373 		case DIF_OP_UREM:
8374 		case DIF_OP_COPYS:
8375 			if (r1 >= nregs)
8376 				err += efunc(pc, "invalid register %u\n", r1);
8377 			if (r2 >= nregs)
8378 				err += efunc(pc, "invalid register %u\n", r2);
8379 			if (rd >= nregs)
8380 				err += efunc(pc, "invalid register %u\n", rd);
8381 			if (rd == 0)
8382 				err += efunc(pc, "cannot write to %r0\n");
8383 			break;
8384 		case DIF_OP_NOT:
8385 		case DIF_OP_MOV:
8386 		case DIF_OP_ALLOCS:
8387 			if (r1 >= nregs)
8388 				err += efunc(pc, "invalid register %u\n", r1);
8389 			if (r2 != 0)
8390 				err += efunc(pc, "non-zero reserved bits\n");
8391 			if (rd >= nregs)
8392 				err += efunc(pc, "invalid register %u\n", rd);
8393 			if (rd == 0)
8394 				err += efunc(pc, "cannot write to %r0\n");
8395 			break;
8396 		case DIF_OP_LDSB:
8397 		case DIF_OP_LDSH:
8398 		case DIF_OP_LDSW:
8399 		case DIF_OP_LDUB:
8400 		case DIF_OP_LDUH:
8401 		case DIF_OP_LDUW:
8402 		case DIF_OP_LDX:
8403 			if (r1 >= nregs)
8404 				err += efunc(pc, "invalid register %u\n", r1);
8405 			if (r2 != 0)
8406 				err += efunc(pc, "non-zero reserved bits\n");
8407 			if (rd >= nregs)
8408 				err += efunc(pc, "invalid register %u\n", rd);
8409 			if (rd == 0)
8410 				err += efunc(pc, "cannot write to %r0\n");
8411 			if (kcheckload)
8412 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8413 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8414 			break;
8415 		case DIF_OP_RLDSB:
8416 		case DIF_OP_RLDSH:
8417 		case DIF_OP_RLDSW:
8418 		case DIF_OP_RLDUB:
8419 		case DIF_OP_RLDUH:
8420 		case DIF_OP_RLDUW:
8421 		case DIF_OP_RLDX:
8422 			if (r1 >= nregs)
8423 				err += efunc(pc, "invalid register %u\n", r1);
8424 			if (r2 != 0)
8425 				err += efunc(pc, "non-zero reserved bits\n");
8426 			if (rd >= nregs)
8427 				err += efunc(pc, "invalid register %u\n", rd);
8428 			if (rd == 0)
8429 				err += efunc(pc, "cannot write to %r0\n");
8430 			break;
8431 		case DIF_OP_ULDSB:
8432 		case DIF_OP_ULDSH:
8433 		case DIF_OP_ULDSW:
8434 		case DIF_OP_ULDUB:
8435 		case DIF_OP_ULDUH:
8436 		case DIF_OP_ULDUW:
8437 		case DIF_OP_ULDX:
8438 			if (r1 >= nregs)
8439 				err += efunc(pc, "invalid register %u\n", r1);
8440 			if (r2 != 0)
8441 				err += efunc(pc, "non-zero reserved bits\n");
8442 			if (rd >= nregs)
8443 				err += efunc(pc, "invalid register %u\n", rd);
8444 			if (rd == 0)
8445 				err += efunc(pc, "cannot write to %r0\n");
8446 			break;
8447 		case DIF_OP_STB:
8448 		case DIF_OP_STH:
8449 		case DIF_OP_STW:
8450 		case DIF_OP_STX:
8451 			if (r1 >= nregs)
8452 				err += efunc(pc, "invalid register %u\n", r1);
8453 			if (r2 != 0)
8454 				err += efunc(pc, "non-zero reserved bits\n");
8455 			if (rd >= nregs)
8456 				err += efunc(pc, "invalid register %u\n", rd);
8457 			if (rd == 0)
8458 				err += efunc(pc, "cannot write to 0 address\n");
8459 			break;
8460 		case DIF_OP_CMP:
8461 		case DIF_OP_SCMP:
8462 			if (r1 >= nregs)
8463 				err += efunc(pc, "invalid register %u\n", r1);
8464 			if (r2 >= nregs)
8465 				err += efunc(pc, "invalid register %u\n", r2);
8466 			if (rd != 0)
8467 				err += efunc(pc, "non-zero reserved bits\n");
8468 			break;
8469 		case DIF_OP_TST:
8470 			if (r1 >= nregs)
8471 				err += efunc(pc, "invalid register %u\n", r1);
8472 			if (r2 != 0 || rd != 0)
8473 				err += efunc(pc, "non-zero reserved bits\n");
8474 			break;
8475 		case DIF_OP_BA:
8476 		case DIF_OP_BE:
8477 		case DIF_OP_BNE:
8478 		case DIF_OP_BG:
8479 		case DIF_OP_BGU:
8480 		case DIF_OP_BGE:
8481 		case DIF_OP_BGEU:
8482 		case DIF_OP_BL:
8483 		case DIF_OP_BLU:
8484 		case DIF_OP_BLE:
8485 		case DIF_OP_BLEU:
8486 			if (label >= dp->dtdo_len) {
8487 				err += efunc(pc, "invalid branch target %u\n",
8488 				    label);
8489 			}
8490 			if (label <= pc) {
8491 				err += efunc(pc, "backward branch to %u\n",
8492 				    label);
8493 			}
8494 			break;
8495 		case DIF_OP_RET:
8496 			if (r1 != 0 || r2 != 0)
8497 				err += efunc(pc, "non-zero reserved bits\n");
8498 			if (rd >= nregs)
8499 				err += efunc(pc, "invalid register %u\n", rd);
8500 			break;
8501 		case DIF_OP_NOP:
8502 		case DIF_OP_POPTS:
8503 		case DIF_OP_FLUSHTS:
8504 			if (r1 != 0 || r2 != 0 || rd != 0)
8505 				err += efunc(pc, "non-zero reserved bits\n");
8506 			break;
8507 		case DIF_OP_SETX:
8508 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8509 				err += efunc(pc, "invalid integer ref %u\n",
8510 				    DIF_INSTR_INTEGER(instr));
8511 			}
8512 			if (rd >= nregs)
8513 				err += efunc(pc, "invalid register %u\n", rd);
8514 			if (rd == 0)
8515 				err += efunc(pc, "cannot write to %r0\n");
8516 			break;
8517 		case DIF_OP_SETS:
8518 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8519 				err += efunc(pc, "invalid string ref %u\n",
8520 				    DIF_INSTR_STRING(instr));
8521 			}
8522 			if (rd >= nregs)
8523 				err += efunc(pc, "invalid register %u\n", rd);
8524 			if (rd == 0)
8525 				err += efunc(pc, "cannot write to %r0\n");
8526 			break;
8527 		case DIF_OP_LDGA:
8528 		case DIF_OP_LDTA:
8529 			if (r1 > DIF_VAR_ARRAY_MAX)
8530 				err += efunc(pc, "invalid array %u\n", r1);
8531 			if (r2 >= nregs)
8532 				err += efunc(pc, "invalid register %u\n", r2);
8533 			if (rd >= nregs)
8534 				err += efunc(pc, "invalid register %u\n", rd);
8535 			if (rd == 0)
8536 				err += efunc(pc, "cannot write to %r0\n");
8537 			break;
8538 		case DIF_OP_LDGS:
8539 		case DIF_OP_LDTS:
8540 		case DIF_OP_LDLS:
8541 		case DIF_OP_LDGAA:
8542 		case DIF_OP_LDTAA:
8543 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8544 				err += efunc(pc, "invalid variable %u\n", v);
8545 			if (rd >= nregs)
8546 				err += efunc(pc, "invalid register %u\n", rd);
8547 			if (rd == 0)
8548 				err += efunc(pc, "cannot write to %r0\n");
8549 			break;
8550 		case DIF_OP_STGS:
8551 		case DIF_OP_STTS:
8552 		case DIF_OP_STLS:
8553 		case DIF_OP_STGAA:
8554 		case DIF_OP_STTAA:
8555 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8556 				err += efunc(pc, "invalid variable %u\n", v);
8557 			if (rs >= nregs)
8558 				err += efunc(pc, "invalid register %u\n", rd);
8559 			break;
8560 		case DIF_OP_CALL:
8561 			if (subr > DIF_SUBR_MAX)
8562 				err += efunc(pc, "invalid subr %u\n", subr);
8563 			if (rd >= nregs)
8564 				err += efunc(pc, "invalid register %u\n", rd);
8565 			if (rd == 0)
8566 				err += efunc(pc, "cannot write to %r0\n");
8567 
8568 			if (subr == DIF_SUBR_COPYOUT ||
8569 			    subr == DIF_SUBR_COPYOUTSTR) {
8570 				dp->dtdo_destructive = 1;
8571 			}
8572 
8573 			if (subr == DIF_SUBR_GETF) {
8574 				/*
8575 				 * If we have a getf() we need to record that
8576 				 * in our state.  Note that our state can be
8577 				 * NULL if this is a helper -- but in that
8578 				 * case, the call to getf() is itself illegal,
8579 				 * and will be caught (slightly later) when
8580 				 * the helper is validated.
8581 				 */
8582 				if (vstate->dtvs_state != NULL)
8583 					vstate->dtvs_state->dts_getf++;
8584 			}
8585 
8586 			break;
8587 		case DIF_OP_PUSHTR:
8588 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8589 				err += efunc(pc, "invalid ref type %u\n", type);
8590 			if (r2 >= nregs)
8591 				err += efunc(pc, "invalid register %u\n", r2);
8592 			if (rs >= nregs)
8593 				err += efunc(pc, "invalid register %u\n", rs);
8594 			break;
8595 		case DIF_OP_PUSHTV:
8596 			if (type != DIF_TYPE_CTF)
8597 				err += efunc(pc, "invalid val type %u\n", type);
8598 			if (r2 >= nregs)
8599 				err += efunc(pc, "invalid register %u\n", r2);
8600 			if (rs >= nregs)
8601 				err += efunc(pc, "invalid register %u\n", rs);
8602 			break;
8603 		default:
8604 			err += efunc(pc, "invalid opcode %u\n",
8605 			    DIF_INSTR_OP(instr));
8606 		}
8607 	}
8608 
8609 	if (dp->dtdo_len != 0 &&
8610 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8611 		err += efunc(dp->dtdo_len - 1,
8612 		    "expected 'ret' as last DIF instruction\n");
8613 	}
8614 
8615 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8616 		/*
8617 		 * If we're not returning by reference, the size must be either
8618 		 * 0 or the size of one of the base types.
8619 		 */
8620 		switch (dp->dtdo_rtype.dtdt_size) {
8621 		case 0:
8622 		case sizeof (uint8_t):
8623 		case sizeof (uint16_t):
8624 		case sizeof (uint32_t):
8625 		case sizeof (uint64_t):
8626 			break;
8627 
8628 		default:
8629 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8630 		}
8631 	}
8632 
8633 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8634 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8635 		dtrace_diftype_t *vt, *et;
8636 		uint_t id, ndx;
8637 
8638 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8639 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8640 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8641 			err += efunc(i, "unrecognized variable scope %d\n",
8642 			    v->dtdv_scope);
8643 			break;
8644 		}
8645 
8646 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8647 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8648 			err += efunc(i, "unrecognized variable type %d\n",
8649 			    v->dtdv_kind);
8650 			break;
8651 		}
8652 
8653 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8654 			err += efunc(i, "%d exceeds variable id limit\n", id);
8655 			break;
8656 		}
8657 
8658 		if (id < DIF_VAR_OTHER_UBASE)
8659 			continue;
8660 
8661 		/*
8662 		 * For user-defined variables, we need to check that this
8663 		 * definition is identical to any previous definition that we
8664 		 * encountered.
8665 		 */
8666 		ndx = id - DIF_VAR_OTHER_UBASE;
8667 
8668 		switch (v->dtdv_scope) {
8669 		case DIFV_SCOPE_GLOBAL:
8670 			if (ndx < vstate->dtvs_nglobals) {
8671 				dtrace_statvar_t *svar;
8672 
8673 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8674 					existing = &svar->dtsv_var;
8675 			}
8676 
8677 			break;
8678 
8679 		case DIFV_SCOPE_THREAD:
8680 			if (ndx < vstate->dtvs_ntlocals)
8681 				existing = &vstate->dtvs_tlocals[ndx];
8682 			break;
8683 
8684 		case DIFV_SCOPE_LOCAL:
8685 			if (ndx < vstate->dtvs_nlocals) {
8686 				dtrace_statvar_t *svar;
8687 
8688 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8689 					existing = &svar->dtsv_var;
8690 			}
8691 
8692 			break;
8693 		}
8694 
8695 		vt = &v->dtdv_type;
8696 
8697 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8698 			if (vt->dtdt_size == 0) {
8699 				err += efunc(i, "zero-sized variable\n");
8700 				break;
8701 			}
8702 
8703 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8704 			    vt->dtdt_size > dtrace_global_maxsize) {
8705 				err += efunc(i, "oversized by-ref global\n");
8706 				break;
8707 			}
8708 		}
8709 
8710 		if (existing == NULL || existing->dtdv_id == 0)
8711 			continue;
8712 
8713 		ASSERT(existing->dtdv_id == v->dtdv_id);
8714 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8715 
8716 		if (existing->dtdv_kind != v->dtdv_kind)
8717 			err += efunc(i, "%d changed variable kind\n", id);
8718 
8719 		et = &existing->dtdv_type;
8720 
8721 		if (vt->dtdt_flags != et->dtdt_flags) {
8722 			err += efunc(i, "%d changed variable type flags\n", id);
8723 			break;
8724 		}
8725 
8726 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8727 			err += efunc(i, "%d changed variable type size\n", id);
8728 			break;
8729 		}
8730 	}
8731 
8732 	return (err);
8733 }
8734 
8735 /*
8736  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8737  * are much more constrained than normal DIFOs.  Specifically, they may
8738  * not:
8739  *
8740  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8741  *    miscellaneous string routines
8742  * 2. Access DTrace variables other than the args[] array, and the
8743  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8744  * 3. Have thread-local variables.
8745  * 4. Have dynamic variables.
8746  */
8747 static int
8748 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8749 {
8750 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8751 	int err = 0;
8752 	uint_t pc;
8753 
8754 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8755 		dif_instr_t instr = dp->dtdo_buf[pc];
8756 
8757 		uint_t v = DIF_INSTR_VAR(instr);
8758 		uint_t subr = DIF_INSTR_SUBR(instr);
8759 		uint_t op = DIF_INSTR_OP(instr);
8760 
8761 		switch (op) {
8762 		case DIF_OP_OR:
8763 		case DIF_OP_XOR:
8764 		case DIF_OP_AND:
8765 		case DIF_OP_SLL:
8766 		case DIF_OP_SRL:
8767 		case DIF_OP_SRA:
8768 		case DIF_OP_SUB:
8769 		case DIF_OP_ADD:
8770 		case DIF_OP_MUL:
8771 		case DIF_OP_SDIV:
8772 		case DIF_OP_UDIV:
8773 		case DIF_OP_SREM:
8774 		case DIF_OP_UREM:
8775 		case DIF_OP_COPYS:
8776 		case DIF_OP_NOT:
8777 		case DIF_OP_MOV:
8778 		case DIF_OP_RLDSB:
8779 		case DIF_OP_RLDSH:
8780 		case DIF_OP_RLDSW:
8781 		case DIF_OP_RLDUB:
8782 		case DIF_OP_RLDUH:
8783 		case DIF_OP_RLDUW:
8784 		case DIF_OP_RLDX:
8785 		case DIF_OP_ULDSB:
8786 		case DIF_OP_ULDSH:
8787 		case DIF_OP_ULDSW:
8788 		case DIF_OP_ULDUB:
8789 		case DIF_OP_ULDUH:
8790 		case DIF_OP_ULDUW:
8791 		case DIF_OP_ULDX:
8792 		case DIF_OP_STB:
8793 		case DIF_OP_STH:
8794 		case DIF_OP_STW:
8795 		case DIF_OP_STX:
8796 		case DIF_OP_ALLOCS:
8797 		case DIF_OP_CMP:
8798 		case DIF_OP_SCMP:
8799 		case DIF_OP_TST:
8800 		case DIF_OP_BA:
8801 		case DIF_OP_BE:
8802 		case DIF_OP_BNE:
8803 		case DIF_OP_BG:
8804 		case DIF_OP_BGU:
8805 		case DIF_OP_BGE:
8806 		case DIF_OP_BGEU:
8807 		case DIF_OP_BL:
8808 		case DIF_OP_BLU:
8809 		case DIF_OP_BLE:
8810 		case DIF_OP_BLEU:
8811 		case DIF_OP_RET:
8812 		case DIF_OP_NOP:
8813 		case DIF_OP_POPTS:
8814 		case DIF_OP_FLUSHTS:
8815 		case DIF_OP_SETX:
8816 		case DIF_OP_SETS:
8817 		case DIF_OP_LDGA:
8818 		case DIF_OP_LDLS:
8819 		case DIF_OP_STGS:
8820 		case DIF_OP_STLS:
8821 		case DIF_OP_PUSHTR:
8822 		case DIF_OP_PUSHTV:
8823 			break;
8824 
8825 		case DIF_OP_LDGS:
8826 			if (v >= DIF_VAR_OTHER_UBASE)
8827 				break;
8828 
8829 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8830 				break;
8831 
8832 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8833 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8834 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8835 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8836 				break;
8837 
8838 			err += efunc(pc, "illegal variable %u\n", v);
8839 			break;
8840 
8841 		case DIF_OP_LDTA:
8842 		case DIF_OP_LDTS:
8843 		case DIF_OP_LDGAA:
8844 		case DIF_OP_LDTAA:
8845 			err += efunc(pc, "illegal dynamic variable load\n");
8846 			break;
8847 
8848 		case DIF_OP_STTS:
8849 		case DIF_OP_STGAA:
8850 		case DIF_OP_STTAA:
8851 			err += efunc(pc, "illegal dynamic variable store\n");
8852 			break;
8853 
8854 		case DIF_OP_CALL:
8855 			if (subr == DIF_SUBR_ALLOCA ||
8856 			    subr == DIF_SUBR_BCOPY ||
8857 			    subr == DIF_SUBR_COPYIN ||
8858 			    subr == DIF_SUBR_COPYINTO ||
8859 			    subr == DIF_SUBR_COPYINSTR ||
8860 			    subr == DIF_SUBR_INDEX ||
8861 			    subr == DIF_SUBR_INET_NTOA ||
8862 			    subr == DIF_SUBR_INET_NTOA6 ||
8863 			    subr == DIF_SUBR_INET_NTOP ||
8864 			    subr == DIF_SUBR_LLTOSTR ||
8865 			    subr == DIF_SUBR_RINDEX ||
8866 			    subr == DIF_SUBR_STRCHR ||
8867 			    subr == DIF_SUBR_STRJOIN ||
8868 			    subr == DIF_SUBR_STRRCHR ||
8869 			    subr == DIF_SUBR_STRSTR ||
8870 			    subr == DIF_SUBR_HTONS ||
8871 			    subr == DIF_SUBR_HTONL ||
8872 			    subr == DIF_SUBR_HTONLL ||
8873 			    subr == DIF_SUBR_NTOHS ||
8874 			    subr == DIF_SUBR_NTOHL ||
8875 			    subr == DIF_SUBR_NTOHLL)
8876 				break;
8877 
8878 			err += efunc(pc, "invalid subr %u\n", subr);
8879 			break;
8880 
8881 		default:
8882 			err += efunc(pc, "invalid opcode %u\n",
8883 			    DIF_INSTR_OP(instr));
8884 		}
8885 	}
8886 
8887 	return (err);
8888 }
8889 
8890 /*
8891  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8892  * basis; 0 if not.
8893  */
8894 static int
8895 dtrace_difo_cacheable(dtrace_difo_t *dp)
8896 {
8897 	int i;
8898 
8899 	if (dp == NULL)
8900 		return (0);
8901 
8902 	for (i = 0; i < dp->dtdo_varlen; i++) {
8903 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8904 
8905 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8906 			continue;
8907 
8908 		switch (v->dtdv_id) {
8909 		case DIF_VAR_CURTHREAD:
8910 		case DIF_VAR_PID:
8911 		case DIF_VAR_TID:
8912 		case DIF_VAR_EXECNAME:
8913 		case DIF_VAR_ZONENAME:
8914 			break;
8915 
8916 		default:
8917 			return (0);
8918 		}
8919 	}
8920 
8921 	/*
8922 	 * This DIF object may be cacheable.  Now we need to look for any
8923 	 * array loading instructions, any memory loading instructions, or
8924 	 * any stores to thread-local variables.
8925 	 */
8926 	for (i = 0; i < dp->dtdo_len; i++) {
8927 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8928 
8929 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8930 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8931 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8932 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8933 			return (0);
8934 	}
8935 
8936 	return (1);
8937 }
8938 
8939 static void
8940 dtrace_difo_hold(dtrace_difo_t *dp)
8941 {
8942 	int i;
8943 
8944 	ASSERT(MUTEX_HELD(&dtrace_lock));
8945 
8946 	dp->dtdo_refcnt++;
8947 	ASSERT(dp->dtdo_refcnt != 0);
8948 
8949 	/*
8950 	 * We need to check this DIF object for references to the variable
8951 	 * DIF_VAR_VTIMESTAMP.
8952 	 */
8953 	for (i = 0; i < dp->dtdo_varlen; i++) {
8954 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8955 
8956 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8957 			continue;
8958 
8959 		if (dtrace_vtime_references++ == 0)
8960 			dtrace_vtime_enable();
8961 	}
8962 }
8963 
8964 /*
8965  * This routine calculates the dynamic variable chunksize for a given DIF
8966  * object.  The calculation is not fool-proof, and can probably be tricked by
8967  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8968  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8969  * if a dynamic variable size exceeds the chunksize.
8970  */
8971 static void
8972 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8973 {
8974 	uint64_t sval;
8975 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8976 	const dif_instr_t *text = dp->dtdo_buf;
8977 	uint_t pc, srd = 0;
8978 	uint_t ttop = 0;
8979 	size_t size, ksize;
8980 	uint_t id, i;
8981 
8982 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8983 		dif_instr_t instr = text[pc];
8984 		uint_t op = DIF_INSTR_OP(instr);
8985 		uint_t rd = DIF_INSTR_RD(instr);
8986 		uint_t r1 = DIF_INSTR_R1(instr);
8987 		uint_t nkeys = 0;
8988 		uchar_t scope;
8989 
8990 		dtrace_key_t *key = tupregs;
8991 
8992 		switch (op) {
8993 		case DIF_OP_SETX:
8994 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8995 			srd = rd;
8996 			continue;
8997 
8998 		case DIF_OP_STTS:
8999 			key = &tupregs[DIF_DTR_NREGS];
9000 			key[0].dttk_size = 0;
9001 			key[1].dttk_size = 0;
9002 			nkeys = 2;
9003 			scope = DIFV_SCOPE_THREAD;
9004 			break;
9005 
9006 		case DIF_OP_STGAA:
9007 		case DIF_OP_STTAA:
9008 			nkeys = ttop;
9009 
9010 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9011 				key[nkeys++].dttk_size = 0;
9012 
9013 			key[nkeys++].dttk_size = 0;
9014 
9015 			if (op == DIF_OP_STTAA) {
9016 				scope = DIFV_SCOPE_THREAD;
9017 			} else {
9018 				scope = DIFV_SCOPE_GLOBAL;
9019 			}
9020 
9021 			break;
9022 
9023 		case DIF_OP_PUSHTR:
9024 			if (ttop == DIF_DTR_NREGS)
9025 				return;
9026 
9027 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9028 				/*
9029 				 * If the register for the size of the "pushtr"
9030 				 * is %r0 (or the value is 0) and the type is
9031 				 * a string, we'll use the system-wide default
9032 				 * string size.
9033 				 */
9034 				tupregs[ttop++].dttk_size =
9035 				    dtrace_strsize_default;
9036 			} else {
9037 				if (srd == 0)
9038 					return;
9039 
9040 				tupregs[ttop++].dttk_size = sval;
9041 			}
9042 
9043 			break;
9044 
9045 		case DIF_OP_PUSHTV:
9046 			if (ttop == DIF_DTR_NREGS)
9047 				return;
9048 
9049 			tupregs[ttop++].dttk_size = 0;
9050 			break;
9051 
9052 		case DIF_OP_FLUSHTS:
9053 			ttop = 0;
9054 			break;
9055 
9056 		case DIF_OP_POPTS:
9057 			if (ttop != 0)
9058 				ttop--;
9059 			break;
9060 		}
9061 
9062 		sval = 0;
9063 		srd = 0;
9064 
9065 		if (nkeys == 0)
9066 			continue;
9067 
9068 		/*
9069 		 * We have a dynamic variable allocation; calculate its size.
9070 		 */
9071 		for (ksize = 0, i = 0; i < nkeys; i++)
9072 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9073 
9074 		size = sizeof (dtrace_dynvar_t);
9075 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9076 		size += ksize;
9077 
9078 		/*
9079 		 * Now we need to determine the size of the stored data.
9080 		 */
9081 		id = DIF_INSTR_VAR(instr);
9082 
9083 		for (i = 0; i < dp->dtdo_varlen; i++) {
9084 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9085 
9086 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9087 				size += v->dtdv_type.dtdt_size;
9088 				break;
9089 			}
9090 		}
9091 
9092 		if (i == dp->dtdo_varlen)
9093 			return;
9094 
9095 		/*
9096 		 * We have the size.  If this is larger than the chunk size
9097 		 * for our dynamic variable state, reset the chunk size.
9098 		 */
9099 		size = P2ROUNDUP(size, sizeof (uint64_t));
9100 
9101 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9102 			vstate->dtvs_dynvars.dtds_chunksize = size;
9103 	}
9104 }
9105 
9106 static void
9107 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9108 {
9109 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9110 	uint_t id;
9111 
9112 	ASSERT(MUTEX_HELD(&dtrace_lock));
9113 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9114 
9115 	for (i = 0; i < dp->dtdo_varlen; i++) {
9116 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9117 		dtrace_statvar_t *svar, ***svarp;
9118 		size_t dsize = 0;
9119 		uint8_t scope = v->dtdv_scope;
9120 		int *np;
9121 
9122 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9123 			continue;
9124 
9125 		id -= DIF_VAR_OTHER_UBASE;
9126 
9127 		switch (scope) {
9128 		case DIFV_SCOPE_THREAD:
9129 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9130 				dtrace_difv_t *tlocals;
9131 
9132 				if ((ntlocals = (otlocals << 1)) == 0)
9133 					ntlocals = 1;
9134 
9135 				osz = otlocals * sizeof (dtrace_difv_t);
9136 				nsz = ntlocals * sizeof (dtrace_difv_t);
9137 
9138 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9139 
9140 				if (osz != 0) {
9141 					bcopy(vstate->dtvs_tlocals,
9142 					    tlocals, osz);
9143 					kmem_free(vstate->dtvs_tlocals, osz);
9144 				}
9145 
9146 				vstate->dtvs_tlocals = tlocals;
9147 				vstate->dtvs_ntlocals = ntlocals;
9148 			}
9149 
9150 			vstate->dtvs_tlocals[id] = *v;
9151 			continue;
9152 
9153 		case DIFV_SCOPE_LOCAL:
9154 			np = &vstate->dtvs_nlocals;
9155 			svarp = &vstate->dtvs_locals;
9156 
9157 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9158 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9159 				    sizeof (uint64_t));
9160 			else
9161 				dsize = NCPU * sizeof (uint64_t);
9162 
9163 			break;
9164 
9165 		case DIFV_SCOPE_GLOBAL:
9166 			np = &vstate->dtvs_nglobals;
9167 			svarp = &vstate->dtvs_globals;
9168 
9169 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9170 				dsize = v->dtdv_type.dtdt_size +
9171 				    sizeof (uint64_t);
9172 
9173 			break;
9174 
9175 		default:
9176 			ASSERT(0);
9177 		}
9178 
9179 		while (id >= (oldsvars = *np)) {
9180 			dtrace_statvar_t **statics;
9181 			int newsvars, oldsize, newsize;
9182 
9183 			if ((newsvars = (oldsvars << 1)) == 0)
9184 				newsvars = 1;
9185 
9186 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9187 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9188 
9189 			statics = kmem_zalloc(newsize, KM_SLEEP);
9190 
9191 			if (oldsize != 0) {
9192 				bcopy(*svarp, statics, oldsize);
9193 				kmem_free(*svarp, oldsize);
9194 			}
9195 
9196 			*svarp = statics;
9197 			*np = newsvars;
9198 		}
9199 
9200 		if ((svar = (*svarp)[id]) == NULL) {
9201 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9202 			svar->dtsv_var = *v;
9203 
9204 			if ((svar->dtsv_size = dsize) != 0) {
9205 				svar->dtsv_data = (uint64_t)(uintptr_t)
9206 				    kmem_zalloc(dsize, KM_SLEEP);
9207 			}
9208 
9209 			(*svarp)[id] = svar;
9210 		}
9211 
9212 		svar->dtsv_refcnt++;
9213 	}
9214 
9215 	dtrace_difo_chunksize(dp, vstate);
9216 	dtrace_difo_hold(dp);
9217 }
9218 
9219 static dtrace_difo_t *
9220 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9221 {
9222 	dtrace_difo_t *new;
9223 	size_t sz;
9224 
9225 	ASSERT(dp->dtdo_buf != NULL);
9226 	ASSERT(dp->dtdo_refcnt != 0);
9227 
9228 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9229 
9230 	ASSERT(dp->dtdo_buf != NULL);
9231 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9232 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9233 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9234 	new->dtdo_len = dp->dtdo_len;
9235 
9236 	if (dp->dtdo_strtab != NULL) {
9237 		ASSERT(dp->dtdo_strlen != 0);
9238 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9239 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9240 		new->dtdo_strlen = dp->dtdo_strlen;
9241 	}
9242 
9243 	if (dp->dtdo_inttab != NULL) {
9244 		ASSERT(dp->dtdo_intlen != 0);
9245 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9246 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9247 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9248 		new->dtdo_intlen = dp->dtdo_intlen;
9249 	}
9250 
9251 	if (dp->dtdo_vartab != NULL) {
9252 		ASSERT(dp->dtdo_varlen != 0);
9253 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9254 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9255 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9256 		new->dtdo_varlen = dp->dtdo_varlen;
9257 	}
9258 
9259 	dtrace_difo_init(new, vstate);
9260 	return (new);
9261 }
9262 
9263 static void
9264 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9265 {
9266 	int i;
9267 
9268 	ASSERT(dp->dtdo_refcnt == 0);
9269 
9270 	for (i = 0; i < dp->dtdo_varlen; i++) {
9271 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9272 		dtrace_statvar_t *svar, **svarp;
9273 		uint_t id;
9274 		uint8_t scope = v->dtdv_scope;
9275 		int *np;
9276 
9277 		switch (scope) {
9278 		case DIFV_SCOPE_THREAD:
9279 			continue;
9280 
9281 		case DIFV_SCOPE_LOCAL:
9282 			np = &vstate->dtvs_nlocals;
9283 			svarp = vstate->dtvs_locals;
9284 			break;
9285 
9286 		case DIFV_SCOPE_GLOBAL:
9287 			np = &vstate->dtvs_nglobals;
9288 			svarp = vstate->dtvs_globals;
9289 			break;
9290 
9291 		default:
9292 			ASSERT(0);
9293 		}
9294 
9295 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9296 			continue;
9297 
9298 		id -= DIF_VAR_OTHER_UBASE;
9299 		ASSERT(id < *np);
9300 
9301 		svar = svarp[id];
9302 		ASSERT(svar != NULL);
9303 		ASSERT(svar->dtsv_refcnt > 0);
9304 
9305 		if (--svar->dtsv_refcnt > 0)
9306 			continue;
9307 
9308 		if (svar->dtsv_size != 0) {
9309 			ASSERT(svar->dtsv_data != NULL);
9310 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9311 			    svar->dtsv_size);
9312 		}
9313 
9314 		kmem_free(svar, sizeof (dtrace_statvar_t));
9315 		svarp[id] = NULL;
9316 	}
9317 
9318 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9319 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9320 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9321 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9322 
9323 	kmem_free(dp, sizeof (dtrace_difo_t));
9324 }
9325 
9326 static void
9327 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9328 {
9329 	int i;
9330 
9331 	ASSERT(MUTEX_HELD(&dtrace_lock));
9332 	ASSERT(dp->dtdo_refcnt != 0);
9333 
9334 	for (i = 0; i < dp->dtdo_varlen; i++) {
9335 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9336 
9337 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9338 			continue;
9339 
9340 		ASSERT(dtrace_vtime_references > 0);
9341 		if (--dtrace_vtime_references == 0)
9342 			dtrace_vtime_disable();
9343 	}
9344 
9345 	if (--dp->dtdo_refcnt == 0)
9346 		dtrace_difo_destroy(dp, vstate);
9347 }
9348 
9349 /*
9350  * DTrace Format Functions
9351  */
9352 static uint16_t
9353 dtrace_format_add(dtrace_state_t *state, char *str)
9354 {
9355 	char *fmt, **new;
9356 	uint16_t ndx, len = strlen(str) + 1;
9357 
9358 	fmt = kmem_zalloc(len, KM_SLEEP);
9359 	bcopy(str, fmt, len);
9360 
9361 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9362 		if (state->dts_formats[ndx] == NULL) {
9363 			state->dts_formats[ndx] = fmt;
9364 			return (ndx + 1);
9365 		}
9366 	}
9367 
9368 	if (state->dts_nformats == USHRT_MAX) {
9369 		/*
9370 		 * This is only likely if a denial-of-service attack is being
9371 		 * attempted.  As such, it's okay to fail silently here.
9372 		 */
9373 		kmem_free(fmt, len);
9374 		return (0);
9375 	}
9376 
9377 	/*
9378 	 * For simplicity, we always resize the formats array to be exactly the
9379 	 * number of formats.
9380 	 */
9381 	ndx = state->dts_nformats++;
9382 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9383 
9384 	if (state->dts_formats != NULL) {
9385 		ASSERT(ndx != 0);
9386 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9387 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9388 	}
9389 
9390 	state->dts_formats = new;
9391 	state->dts_formats[ndx] = fmt;
9392 
9393 	return (ndx + 1);
9394 }
9395 
9396 static void
9397 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9398 {
9399 	char *fmt;
9400 
9401 	ASSERT(state->dts_formats != NULL);
9402 	ASSERT(format <= state->dts_nformats);
9403 	ASSERT(state->dts_formats[format - 1] != NULL);
9404 
9405 	fmt = state->dts_formats[format - 1];
9406 	kmem_free(fmt, strlen(fmt) + 1);
9407 	state->dts_formats[format - 1] = NULL;
9408 }
9409 
9410 static void
9411 dtrace_format_destroy(dtrace_state_t *state)
9412 {
9413 	int i;
9414 
9415 	if (state->dts_nformats == 0) {
9416 		ASSERT(state->dts_formats == NULL);
9417 		return;
9418 	}
9419 
9420 	ASSERT(state->dts_formats != NULL);
9421 
9422 	for (i = 0; i < state->dts_nformats; i++) {
9423 		char *fmt = state->dts_formats[i];
9424 
9425 		if (fmt == NULL)
9426 			continue;
9427 
9428 		kmem_free(fmt, strlen(fmt) + 1);
9429 	}
9430 
9431 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9432 	state->dts_nformats = 0;
9433 	state->dts_formats = NULL;
9434 }
9435 
9436 /*
9437  * DTrace Predicate Functions
9438  */
9439 static dtrace_predicate_t *
9440 dtrace_predicate_create(dtrace_difo_t *dp)
9441 {
9442 	dtrace_predicate_t *pred;
9443 
9444 	ASSERT(MUTEX_HELD(&dtrace_lock));
9445 	ASSERT(dp->dtdo_refcnt != 0);
9446 
9447 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9448 	pred->dtp_difo = dp;
9449 	pred->dtp_refcnt = 1;
9450 
9451 	if (!dtrace_difo_cacheable(dp))
9452 		return (pred);
9453 
9454 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9455 		/*
9456 		 * This is only theoretically possible -- we have had 2^32
9457 		 * cacheable predicates on this machine.  We cannot allow any
9458 		 * more predicates to become cacheable:  as unlikely as it is,
9459 		 * there may be a thread caching a (now stale) predicate cache
9460 		 * ID. (N.B.: the temptation is being successfully resisted to
9461 		 * have this cmn_err() "Holy shit -- we executed this code!")
9462 		 */
9463 		return (pred);
9464 	}
9465 
9466 	pred->dtp_cacheid = dtrace_predcache_id++;
9467 
9468 	return (pred);
9469 }
9470 
9471 static void
9472 dtrace_predicate_hold(dtrace_predicate_t *pred)
9473 {
9474 	ASSERT(MUTEX_HELD(&dtrace_lock));
9475 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9476 	ASSERT(pred->dtp_refcnt > 0);
9477 
9478 	pred->dtp_refcnt++;
9479 }
9480 
9481 static void
9482 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9483 {
9484 	dtrace_difo_t *dp = pred->dtp_difo;
9485 
9486 	ASSERT(MUTEX_HELD(&dtrace_lock));
9487 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9488 	ASSERT(pred->dtp_refcnt > 0);
9489 
9490 	if (--pred->dtp_refcnt == 0) {
9491 		dtrace_difo_release(pred->dtp_difo, vstate);
9492 		kmem_free(pred, sizeof (dtrace_predicate_t));
9493 	}
9494 }
9495 
9496 /*
9497  * DTrace Action Description Functions
9498  */
9499 static dtrace_actdesc_t *
9500 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9501     uint64_t uarg, uint64_t arg)
9502 {
9503 	dtrace_actdesc_t *act;
9504 
9505 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9506 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9507 
9508 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9509 	act->dtad_kind = kind;
9510 	act->dtad_ntuple = ntuple;
9511 	act->dtad_uarg = uarg;
9512 	act->dtad_arg = arg;
9513 	act->dtad_refcnt = 1;
9514 
9515 	return (act);
9516 }
9517 
9518 static void
9519 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9520 {
9521 	ASSERT(act->dtad_refcnt >= 1);
9522 	act->dtad_refcnt++;
9523 }
9524 
9525 static void
9526 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9527 {
9528 	dtrace_actkind_t kind = act->dtad_kind;
9529 	dtrace_difo_t *dp;
9530 
9531 	ASSERT(act->dtad_refcnt >= 1);
9532 
9533 	if (--act->dtad_refcnt != 0)
9534 		return;
9535 
9536 	if ((dp = act->dtad_difo) != NULL)
9537 		dtrace_difo_release(dp, vstate);
9538 
9539 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9540 		char *str = (char *)(uintptr_t)act->dtad_arg;
9541 
9542 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9543 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9544 
9545 		if (str != NULL)
9546 			kmem_free(str, strlen(str) + 1);
9547 	}
9548 
9549 	kmem_free(act, sizeof (dtrace_actdesc_t));
9550 }
9551 
9552 /*
9553  * DTrace ECB Functions
9554  */
9555 static dtrace_ecb_t *
9556 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9557 {
9558 	dtrace_ecb_t *ecb;
9559 	dtrace_epid_t epid;
9560 
9561 	ASSERT(MUTEX_HELD(&dtrace_lock));
9562 
9563 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9564 	ecb->dte_predicate = NULL;
9565 	ecb->dte_probe = probe;
9566 
9567 	/*
9568 	 * The default size is the size of the default action: recording
9569 	 * the header.
9570 	 */
9571 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9572 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9573 
9574 	epid = state->dts_epid++;
9575 
9576 	if (epid - 1 >= state->dts_necbs) {
9577 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9578 		int necbs = state->dts_necbs << 1;
9579 
9580 		ASSERT(epid == state->dts_necbs + 1);
9581 
9582 		if (necbs == 0) {
9583 			ASSERT(oecbs == NULL);
9584 			necbs = 1;
9585 		}
9586 
9587 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9588 
9589 		if (oecbs != NULL)
9590 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9591 
9592 		dtrace_membar_producer();
9593 		state->dts_ecbs = ecbs;
9594 
9595 		if (oecbs != NULL) {
9596 			/*
9597 			 * If this state is active, we must dtrace_sync()
9598 			 * before we can free the old dts_ecbs array:  we're
9599 			 * coming in hot, and there may be active ring
9600 			 * buffer processing (which indexes into the dts_ecbs
9601 			 * array) on another CPU.
9602 			 */
9603 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9604 				dtrace_sync();
9605 
9606 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9607 		}
9608 
9609 		dtrace_membar_producer();
9610 		state->dts_necbs = necbs;
9611 	}
9612 
9613 	ecb->dte_state = state;
9614 
9615 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9616 	dtrace_membar_producer();
9617 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9618 
9619 	return (ecb);
9620 }
9621 
9622 static int
9623 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9624 {
9625 	dtrace_probe_t *probe = ecb->dte_probe;
9626 
9627 	ASSERT(MUTEX_HELD(&cpu_lock));
9628 	ASSERT(MUTEX_HELD(&dtrace_lock));
9629 	ASSERT(ecb->dte_next == NULL);
9630 
9631 	if (probe == NULL) {
9632 		/*
9633 		 * This is the NULL probe -- there's nothing to do.
9634 		 */
9635 		return (0);
9636 	}
9637 
9638 	if (probe->dtpr_ecb == NULL) {
9639 		dtrace_provider_t *prov = probe->dtpr_provider;
9640 
9641 		/*
9642 		 * We're the first ECB on this probe.
9643 		 */
9644 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9645 
9646 		if (ecb->dte_predicate != NULL)
9647 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9648 
9649 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9650 		    probe->dtpr_id, probe->dtpr_arg));
9651 	} else {
9652 		/*
9653 		 * This probe is already active.  Swing the last pointer to
9654 		 * point to the new ECB, and issue a dtrace_sync() to assure
9655 		 * that all CPUs have seen the change.
9656 		 */
9657 		ASSERT(probe->dtpr_ecb_last != NULL);
9658 		probe->dtpr_ecb_last->dte_next = ecb;
9659 		probe->dtpr_ecb_last = ecb;
9660 		probe->dtpr_predcache = 0;
9661 
9662 		dtrace_sync();
9663 		return (0);
9664 	}
9665 }
9666 
9667 static void
9668 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9669 {
9670 	dtrace_action_t *act;
9671 	uint32_t curneeded = UINT32_MAX;
9672 	uint32_t aggbase = UINT32_MAX;
9673 
9674 	/*
9675 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9676 	 * we always record it first.)
9677 	 */
9678 	ecb->dte_size = sizeof (dtrace_rechdr_t);
9679 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9680 
9681 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9682 		dtrace_recdesc_t *rec = &act->dta_rec;
9683 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9684 
9685 		ecb->dte_alignment = MAX(ecb->dte_alignment,
9686 		    rec->dtrd_alignment);
9687 
9688 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9689 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9690 
9691 			ASSERT(rec->dtrd_size != 0);
9692 			ASSERT(agg->dtag_first != NULL);
9693 			ASSERT(act->dta_prev->dta_intuple);
9694 			ASSERT(aggbase != UINT32_MAX);
9695 			ASSERT(curneeded != UINT32_MAX);
9696 
9697 			agg->dtag_base = aggbase;
9698 
9699 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9700 			rec->dtrd_offset = curneeded;
9701 			curneeded += rec->dtrd_size;
9702 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9703 
9704 			aggbase = UINT32_MAX;
9705 			curneeded = UINT32_MAX;
9706 		} else if (act->dta_intuple) {
9707 			if (curneeded == UINT32_MAX) {
9708 				/*
9709 				 * This is the first record in a tuple.  Align
9710 				 * curneeded to be at offset 4 in an 8-byte
9711 				 * aligned block.
9712 				 */
9713 				ASSERT(act->dta_prev == NULL ||
9714 				    !act->dta_prev->dta_intuple);
9715 				ASSERT3U(aggbase, ==, UINT32_MAX);
9716 				curneeded = P2PHASEUP(ecb->dte_size,
9717 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
9718 
9719 				aggbase = curneeded - sizeof (dtrace_aggid_t);
9720 				ASSERT(IS_P2ALIGNED(aggbase,
9721 				    sizeof (uint64_t)));
9722 			}
9723 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9724 			rec->dtrd_offset = curneeded;
9725 			curneeded += rec->dtrd_size;
9726 		} else {
9727 			/* tuples must be followed by an aggregation */
9728 			ASSERT(act->dta_prev == NULL ||
9729 			    !act->dta_prev->dta_intuple);
9730 
9731 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9732 			    rec->dtrd_alignment);
9733 			rec->dtrd_offset = ecb->dte_size;
9734 			ecb->dte_size += rec->dtrd_size;
9735 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9736 		}
9737 	}
9738 
9739 	if ((act = ecb->dte_action) != NULL &&
9740 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9741 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9742 		/*
9743 		 * If the size is still sizeof (dtrace_rechdr_t), then all
9744 		 * actions store no data; set the size to 0.
9745 		 */
9746 		ecb->dte_size = 0;
9747 	}
9748 
9749 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9750 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9751 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9752 	    ecb->dte_needed);
9753 }
9754 
9755 static dtrace_action_t *
9756 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9757 {
9758 	dtrace_aggregation_t *agg;
9759 	size_t size = sizeof (uint64_t);
9760 	int ntuple = desc->dtad_ntuple;
9761 	dtrace_action_t *act;
9762 	dtrace_recdesc_t *frec;
9763 	dtrace_aggid_t aggid;
9764 	dtrace_state_t *state = ecb->dte_state;
9765 
9766 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9767 	agg->dtag_ecb = ecb;
9768 
9769 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9770 
9771 	switch (desc->dtad_kind) {
9772 	case DTRACEAGG_MIN:
9773 		agg->dtag_initial = INT64_MAX;
9774 		agg->dtag_aggregate = dtrace_aggregate_min;
9775 		break;
9776 
9777 	case DTRACEAGG_MAX:
9778 		agg->dtag_initial = INT64_MIN;
9779 		agg->dtag_aggregate = dtrace_aggregate_max;
9780 		break;
9781 
9782 	case DTRACEAGG_COUNT:
9783 		agg->dtag_aggregate = dtrace_aggregate_count;
9784 		break;
9785 
9786 	case DTRACEAGG_QUANTIZE:
9787 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9788 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9789 		    sizeof (uint64_t);
9790 		break;
9791 
9792 	case DTRACEAGG_LQUANTIZE: {
9793 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9794 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9795 
9796 		agg->dtag_initial = desc->dtad_arg;
9797 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9798 
9799 		if (step == 0 || levels == 0)
9800 			goto err;
9801 
9802 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9803 		break;
9804 	}
9805 
9806 	case DTRACEAGG_LLQUANTIZE: {
9807 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9808 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9809 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9810 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9811 		int64_t v;
9812 
9813 		agg->dtag_initial = desc->dtad_arg;
9814 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
9815 
9816 		if (factor < 2 || low >= high || nsteps < factor)
9817 			goto err;
9818 
9819 		/*
9820 		 * Now check that the number of steps evenly divides a power
9821 		 * of the factor.  (This assures both integer bucket size and
9822 		 * linearity within each magnitude.)
9823 		 */
9824 		for (v = factor; v < nsteps; v *= factor)
9825 			continue;
9826 
9827 		if ((v % nsteps) || (nsteps % factor))
9828 			goto err;
9829 
9830 		size = (dtrace_aggregate_llquantize_bucket(factor,
9831 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9832 		break;
9833 	}
9834 
9835 	case DTRACEAGG_AVG:
9836 		agg->dtag_aggregate = dtrace_aggregate_avg;
9837 		size = sizeof (uint64_t) * 2;
9838 		break;
9839 
9840 	case DTRACEAGG_STDDEV:
9841 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9842 		size = sizeof (uint64_t) * 4;
9843 		break;
9844 
9845 	case DTRACEAGG_SUM:
9846 		agg->dtag_aggregate = dtrace_aggregate_sum;
9847 		break;
9848 
9849 	default:
9850 		goto err;
9851 	}
9852 
9853 	agg->dtag_action.dta_rec.dtrd_size = size;
9854 
9855 	if (ntuple == 0)
9856 		goto err;
9857 
9858 	/*
9859 	 * We must make sure that we have enough actions for the n-tuple.
9860 	 */
9861 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9862 		if (DTRACEACT_ISAGG(act->dta_kind))
9863 			break;
9864 
9865 		if (--ntuple == 0) {
9866 			/*
9867 			 * This is the action with which our n-tuple begins.
9868 			 */
9869 			agg->dtag_first = act;
9870 			goto success;
9871 		}
9872 	}
9873 
9874 	/*
9875 	 * This n-tuple is short by ntuple elements.  Return failure.
9876 	 */
9877 	ASSERT(ntuple != 0);
9878 err:
9879 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9880 	return (NULL);
9881 
9882 success:
9883 	/*
9884 	 * If the last action in the tuple has a size of zero, it's actually
9885 	 * an expression argument for the aggregating action.
9886 	 */
9887 	ASSERT(ecb->dte_action_last != NULL);
9888 	act = ecb->dte_action_last;
9889 
9890 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9891 		ASSERT(act->dta_difo != NULL);
9892 
9893 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9894 			agg->dtag_hasarg = 1;
9895 	}
9896 
9897 	/*
9898 	 * We need to allocate an id for this aggregation.
9899 	 */
9900 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9901 	    VM_BESTFIT | VM_SLEEP);
9902 
9903 	if (aggid - 1 >= state->dts_naggregations) {
9904 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9905 		dtrace_aggregation_t **aggs;
9906 		int naggs = state->dts_naggregations << 1;
9907 		int onaggs = state->dts_naggregations;
9908 
9909 		ASSERT(aggid == state->dts_naggregations + 1);
9910 
9911 		if (naggs == 0) {
9912 			ASSERT(oaggs == NULL);
9913 			naggs = 1;
9914 		}
9915 
9916 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9917 
9918 		if (oaggs != NULL) {
9919 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9920 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9921 		}
9922 
9923 		state->dts_aggregations = aggs;
9924 		state->dts_naggregations = naggs;
9925 	}
9926 
9927 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9928 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9929 
9930 	frec = &agg->dtag_first->dta_rec;
9931 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9932 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9933 
9934 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9935 		ASSERT(!act->dta_intuple);
9936 		act->dta_intuple = 1;
9937 	}
9938 
9939 	return (&agg->dtag_action);
9940 }
9941 
9942 static void
9943 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9944 {
9945 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9946 	dtrace_state_t *state = ecb->dte_state;
9947 	dtrace_aggid_t aggid = agg->dtag_id;
9948 
9949 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9950 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9951 
9952 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9953 	state->dts_aggregations[aggid - 1] = NULL;
9954 
9955 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9956 }
9957 
9958 static int
9959 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9960 {
9961 	dtrace_action_t *action, *last;
9962 	dtrace_difo_t *dp = desc->dtad_difo;
9963 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9964 	uint16_t format = 0;
9965 	dtrace_recdesc_t *rec;
9966 	dtrace_state_t *state = ecb->dte_state;
9967 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9968 	uint64_t arg = desc->dtad_arg;
9969 
9970 	ASSERT(MUTEX_HELD(&dtrace_lock));
9971 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9972 
9973 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9974 		/*
9975 		 * If this is an aggregating action, there must be neither
9976 		 * a speculate nor a commit on the action chain.
9977 		 */
9978 		dtrace_action_t *act;
9979 
9980 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9981 			if (act->dta_kind == DTRACEACT_COMMIT)
9982 				return (EINVAL);
9983 
9984 			if (act->dta_kind == DTRACEACT_SPECULATE)
9985 				return (EINVAL);
9986 		}
9987 
9988 		action = dtrace_ecb_aggregation_create(ecb, desc);
9989 
9990 		if (action == NULL)
9991 			return (EINVAL);
9992 	} else {
9993 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9994 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9995 		    dp != NULL && dp->dtdo_destructive)) {
9996 			state->dts_destructive = 1;
9997 		}
9998 
9999 		switch (desc->dtad_kind) {
10000 		case DTRACEACT_PRINTF:
10001 		case DTRACEACT_PRINTA:
10002 		case DTRACEACT_SYSTEM:
10003 		case DTRACEACT_FREOPEN:
10004 		case DTRACEACT_DIFEXPR:
10005 			/*
10006 			 * We know that our arg is a string -- turn it into a
10007 			 * format.
10008 			 */
10009 			if (arg == NULL) {
10010 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10011 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10012 				format = 0;
10013 			} else {
10014 				ASSERT(arg != NULL);
10015 				ASSERT(arg > KERNELBASE);
10016 				format = dtrace_format_add(state,
10017 				    (char *)(uintptr_t)arg);
10018 			}
10019 
10020 			/*FALLTHROUGH*/
10021 		case DTRACEACT_LIBACT:
10022 		case DTRACEACT_TRACEMEM:
10023 		case DTRACEACT_TRACEMEM_DYNSIZE:
10024 			if (dp == NULL)
10025 				return (EINVAL);
10026 
10027 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10028 				break;
10029 
10030 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10031 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10032 					return (EINVAL);
10033 
10034 				size = opt[DTRACEOPT_STRSIZE];
10035 			}
10036 
10037 			break;
10038 
10039 		case DTRACEACT_STACK:
10040 			if ((nframes = arg) == 0) {
10041 				nframes = opt[DTRACEOPT_STACKFRAMES];
10042 				ASSERT(nframes > 0);
10043 				arg = nframes;
10044 			}
10045 
10046 			size = nframes * sizeof (pc_t);
10047 			break;
10048 
10049 		case DTRACEACT_JSTACK:
10050 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10051 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10052 
10053 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10054 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10055 
10056 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10057 
10058 			/*FALLTHROUGH*/
10059 		case DTRACEACT_USTACK:
10060 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10061 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10062 				strsize = DTRACE_USTACK_STRSIZE(arg);
10063 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10064 				ASSERT(nframes > 0);
10065 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10066 			}
10067 
10068 			/*
10069 			 * Save a slot for the pid.
10070 			 */
10071 			size = (nframes + 1) * sizeof (uint64_t);
10072 			size += DTRACE_USTACK_STRSIZE(arg);
10073 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10074 
10075 			break;
10076 
10077 		case DTRACEACT_SYM:
10078 		case DTRACEACT_MOD:
10079 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10080 			    sizeof (uint64_t)) ||
10081 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10082 				return (EINVAL);
10083 			break;
10084 
10085 		case DTRACEACT_USYM:
10086 		case DTRACEACT_UMOD:
10087 		case DTRACEACT_UADDR:
10088 			if (dp == NULL ||
10089 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10090 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10091 				return (EINVAL);
10092 
10093 			/*
10094 			 * We have a slot for the pid, plus a slot for the
10095 			 * argument.  To keep things simple (aligned with
10096 			 * bitness-neutral sizing), we store each as a 64-bit
10097 			 * quantity.
10098 			 */
10099 			size = 2 * sizeof (uint64_t);
10100 			break;
10101 
10102 		case DTRACEACT_STOP:
10103 		case DTRACEACT_BREAKPOINT:
10104 		case DTRACEACT_PANIC:
10105 			break;
10106 
10107 		case DTRACEACT_CHILL:
10108 		case DTRACEACT_DISCARD:
10109 		case DTRACEACT_RAISE:
10110 			if (dp == NULL)
10111 				return (EINVAL);
10112 			break;
10113 
10114 		case DTRACEACT_EXIT:
10115 			if (dp == NULL ||
10116 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10117 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10118 				return (EINVAL);
10119 			break;
10120 
10121 		case DTRACEACT_SPECULATE:
10122 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10123 				return (EINVAL);
10124 
10125 			if (dp == NULL)
10126 				return (EINVAL);
10127 
10128 			state->dts_speculates = 1;
10129 			break;
10130 
10131 		case DTRACEACT_COMMIT: {
10132 			dtrace_action_t *act = ecb->dte_action;
10133 
10134 			for (; act != NULL; act = act->dta_next) {
10135 				if (act->dta_kind == DTRACEACT_COMMIT)
10136 					return (EINVAL);
10137 			}
10138 
10139 			if (dp == NULL)
10140 				return (EINVAL);
10141 			break;
10142 		}
10143 
10144 		default:
10145 			return (EINVAL);
10146 		}
10147 
10148 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10149 			/*
10150 			 * If this is a data-storing action or a speculate,
10151 			 * we must be sure that there isn't a commit on the
10152 			 * action chain.
10153 			 */
10154 			dtrace_action_t *act = ecb->dte_action;
10155 
10156 			for (; act != NULL; act = act->dta_next) {
10157 				if (act->dta_kind == DTRACEACT_COMMIT)
10158 					return (EINVAL);
10159 			}
10160 		}
10161 
10162 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10163 		action->dta_rec.dtrd_size = size;
10164 	}
10165 
10166 	action->dta_refcnt = 1;
10167 	rec = &action->dta_rec;
10168 	size = rec->dtrd_size;
10169 
10170 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10171 		if (!(size & mask)) {
10172 			align = mask + 1;
10173 			break;
10174 		}
10175 	}
10176 
10177 	action->dta_kind = desc->dtad_kind;
10178 
10179 	if ((action->dta_difo = dp) != NULL)
10180 		dtrace_difo_hold(dp);
10181 
10182 	rec->dtrd_action = action->dta_kind;
10183 	rec->dtrd_arg = arg;
10184 	rec->dtrd_uarg = desc->dtad_uarg;
10185 	rec->dtrd_alignment = (uint16_t)align;
10186 	rec->dtrd_format = format;
10187 
10188 	if ((last = ecb->dte_action_last) != NULL) {
10189 		ASSERT(ecb->dte_action != NULL);
10190 		action->dta_prev = last;
10191 		last->dta_next = action;
10192 	} else {
10193 		ASSERT(ecb->dte_action == NULL);
10194 		ecb->dte_action = action;
10195 	}
10196 
10197 	ecb->dte_action_last = action;
10198 
10199 	return (0);
10200 }
10201 
10202 static void
10203 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10204 {
10205 	dtrace_action_t *act = ecb->dte_action, *next;
10206 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10207 	dtrace_difo_t *dp;
10208 	uint16_t format;
10209 
10210 	if (act != NULL && act->dta_refcnt > 1) {
10211 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10212 		act->dta_refcnt--;
10213 	} else {
10214 		for (; act != NULL; act = next) {
10215 			next = act->dta_next;
10216 			ASSERT(next != NULL || act == ecb->dte_action_last);
10217 			ASSERT(act->dta_refcnt == 1);
10218 
10219 			if ((format = act->dta_rec.dtrd_format) != 0)
10220 				dtrace_format_remove(ecb->dte_state, format);
10221 
10222 			if ((dp = act->dta_difo) != NULL)
10223 				dtrace_difo_release(dp, vstate);
10224 
10225 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10226 				dtrace_ecb_aggregation_destroy(ecb, act);
10227 			} else {
10228 				kmem_free(act, sizeof (dtrace_action_t));
10229 			}
10230 		}
10231 	}
10232 
10233 	ecb->dte_action = NULL;
10234 	ecb->dte_action_last = NULL;
10235 	ecb->dte_size = 0;
10236 }
10237 
10238 static void
10239 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10240 {
10241 	/*
10242 	 * We disable the ECB by removing it from its probe.
10243 	 */
10244 	dtrace_ecb_t *pecb, *prev = NULL;
10245 	dtrace_probe_t *probe = ecb->dte_probe;
10246 
10247 	ASSERT(MUTEX_HELD(&dtrace_lock));
10248 
10249 	if (probe == NULL) {
10250 		/*
10251 		 * This is the NULL probe; there is nothing to disable.
10252 		 */
10253 		return;
10254 	}
10255 
10256 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10257 		if (pecb == ecb)
10258 			break;
10259 		prev = pecb;
10260 	}
10261 
10262 	ASSERT(pecb != NULL);
10263 
10264 	if (prev == NULL) {
10265 		probe->dtpr_ecb = ecb->dte_next;
10266 	} else {
10267 		prev->dte_next = ecb->dte_next;
10268 	}
10269 
10270 	if (ecb == probe->dtpr_ecb_last) {
10271 		ASSERT(ecb->dte_next == NULL);
10272 		probe->dtpr_ecb_last = prev;
10273 	}
10274 
10275 	/*
10276 	 * The ECB has been disconnected from the probe; now sync to assure
10277 	 * that all CPUs have seen the change before returning.
10278 	 */
10279 	dtrace_sync();
10280 
10281 	if (probe->dtpr_ecb == NULL) {
10282 		/*
10283 		 * That was the last ECB on the probe; clear the predicate
10284 		 * cache ID for the probe, disable it and sync one more time
10285 		 * to assure that we'll never hit it again.
10286 		 */
10287 		dtrace_provider_t *prov = probe->dtpr_provider;
10288 
10289 		ASSERT(ecb->dte_next == NULL);
10290 		ASSERT(probe->dtpr_ecb_last == NULL);
10291 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10292 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10293 		    probe->dtpr_id, probe->dtpr_arg);
10294 		dtrace_sync();
10295 	} else {
10296 		/*
10297 		 * There is at least one ECB remaining on the probe.  If there
10298 		 * is _exactly_ one, set the probe's predicate cache ID to be
10299 		 * the predicate cache ID of the remaining ECB.
10300 		 */
10301 		ASSERT(probe->dtpr_ecb_last != NULL);
10302 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10303 
10304 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10305 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10306 
10307 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10308 
10309 			if (p != NULL)
10310 				probe->dtpr_predcache = p->dtp_cacheid;
10311 		}
10312 
10313 		ecb->dte_next = NULL;
10314 	}
10315 }
10316 
10317 static void
10318 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10319 {
10320 	dtrace_state_t *state = ecb->dte_state;
10321 	dtrace_vstate_t *vstate = &state->dts_vstate;
10322 	dtrace_predicate_t *pred;
10323 	dtrace_epid_t epid = ecb->dte_epid;
10324 
10325 	ASSERT(MUTEX_HELD(&dtrace_lock));
10326 	ASSERT(ecb->dte_next == NULL);
10327 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10328 
10329 	if ((pred = ecb->dte_predicate) != NULL)
10330 		dtrace_predicate_release(pred, vstate);
10331 
10332 	dtrace_ecb_action_remove(ecb);
10333 
10334 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10335 	state->dts_ecbs[epid - 1] = NULL;
10336 
10337 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10338 }
10339 
10340 static dtrace_ecb_t *
10341 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10342     dtrace_enabling_t *enab)
10343 {
10344 	dtrace_ecb_t *ecb;
10345 	dtrace_predicate_t *pred;
10346 	dtrace_actdesc_t *act;
10347 	dtrace_provider_t *prov;
10348 	dtrace_ecbdesc_t *desc = enab->dten_current;
10349 
10350 	ASSERT(MUTEX_HELD(&dtrace_lock));
10351 	ASSERT(state != NULL);
10352 
10353 	ecb = dtrace_ecb_add(state, probe);
10354 	ecb->dte_uarg = desc->dted_uarg;
10355 
10356 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10357 		dtrace_predicate_hold(pred);
10358 		ecb->dte_predicate = pred;
10359 	}
10360 
10361 	if (probe != NULL) {
10362 		/*
10363 		 * If the provider shows more leg than the consumer is old
10364 		 * enough to see, we need to enable the appropriate implicit
10365 		 * predicate bits to prevent the ecb from activating at
10366 		 * revealing times.
10367 		 *
10368 		 * Providers specifying DTRACE_PRIV_USER at register time
10369 		 * are stating that they need the /proc-style privilege
10370 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10371 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10372 		 */
10373 		prov = probe->dtpr_provider;
10374 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10375 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10376 			ecb->dte_cond |= DTRACE_COND_OWNER;
10377 
10378 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10379 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10380 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10381 
10382 		/*
10383 		 * If the provider shows us kernel innards and the user
10384 		 * is lacking sufficient privilege, enable the
10385 		 * DTRACE_COND_USERMODE implicit predicate.
10386 		 */
10387 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10388 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10389 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10390 	}
10391 
10392 	if (dtrace_ecb_create_cache != NULL) {
10393 		/*
10394 		 * If we have a cached ecb, we'll use its action list instead
10395 		 * of creating our own (saving both time and space).
10396 		 */
10397 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10398 		dtrace_action_t *act = cached->dte_action;
10399 
10400 		if (act != NULL) {
10401 			ASSERT(act->dta_refcnt > 0);
10402 			act->dta_refcnt++;
10403 			ecb->dte_action = act;
10404 			ecb->dte_action_last = cached->dte_action_last;
10405 			ecb->dte_needed = cached->dte_needed;
10406 			ecb->dte_size = cached->dte_size;
10407 			ecb->dte_alignment = cached->dte_alignment;
10408 		}
10409 
10410 		return (ecb);
10411 	}
10412 
10413 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10414 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10415 			dtrace_ecb_destroy(ecb);
10416 			return (NULL);
10417 		}
10418 	}
10419 
10420 	dtrace_ecb_resize(ecb);
10421 
10422 	return (dtrace_ecb_create_cache = ecb);
10423 }
10424 
10425 static int
10426 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10427 {
10428 	dtrace_ecb_t *ecb;
10429 	dtrace_enabling_t *enab = arg;
10430 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10431 
10432 	ASSERT(state != NULL);
10433 
10434 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10435 		/*
10436 		 * This probe was created in a generation for which this
10437 		 * enabling has previously created ECBs; we don't want to
10438 		 * enable it again, so just kick out.
10439 		 */
10440 		return (DTRACE_MATCH_NEXT);
10441 	}
10442 
10443 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10444 		return (DTRACE_MATCH_DONE);
10445 
10446 	if (dtrace_ecb_enable(ecb) < 0)
10447 		return (DTRACE_MATCH_FAIL);
10448 
10449 	return (DTRACE_MATCH_NEXT);
10450 }
10451 
10452 static dtrace_ecb_t *
10453 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10454 {
10455 	dtrace_ecb_t *ecb;
10456 
10457 	ASSERT(MUTEX_HELD(&dtrace_lock));
10458 
10459 	if (id == 0 || id > state->dts_necbs)
10460 		return (NULL);
10461 
10462 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10463 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10464 
10465 	return (state->dts_ecbs[id - 1]);
10466 }
10467 
10468 static dtrace_aggregation_t *
10469 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10470 {
10471 	dtrace_aggregation_t *agg;
10472 
10473 	ASSERT(MUTEX_HELD(&dtrace_lock));
10474 
10475 	if (id == 0 || id > state->dts_naggregations)
10476 		return (NULL);
10477 
10478 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10479 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10480 	    agg->dtag_id == id);
10481 
10482 	return (state->dts_aggregations[id - 1]);
10483 }
10484 
10485 /*
10486  * DTrace Buffer Functions
10487  *
10488  * The following functions manipulate DTrace buffers.  Most of these functions
10489  * are called in the context of establishing or processing consumer state;
10490  * exceptions are explicitly noted.
10491  */
10492 
10493 /*
10494  * Note:  called from cross call context.  This function switches the two
10495  * buffers on a given CPU.  The atomicity of this operation is assured by
10496  * disabling interrupts while the actual switch takes place; the disabling of
10497  * interrupts serializes the execution with any execution of dtrace_probe() on
10498  * the same CPU.
10499  */
10500 static void
10501 dtrace_buffer_switch(dtrace_buffer_t *buf)
10502 {
10503 	caddr_t tomax = buf->dtb_tomax;
10504 	caddr_t xamot = buf->dtb_xamot;
10505 	dtrace_icookie_t cookie;
10506 	hrtime_t now;
10507 
10508 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10509 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10510 
10511 	cookie = dtrace_interrupt_disable();
10512 	now = dtrace_gethrtime();
10513 	buf->dtb_tomax = xamot;
10514 	buf->dtb_xamot = tomax;
10515 	buf->dtb_xamot_drops = buf->dtb_drops;
10516 	buf->dtb_xamot_offset = buf->dtb_offset;
10517 	buf->dtb_xamot_errors = buf->dtb_errors;
10518 	buf->dtb_xamot_flags = buf->dtb_flags;
10519 	buf->dtb_offset = 0;
10520 	buf->dtb_drops = 0;
10521 	buf->dtb_errors = 0;
10522 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10523 	buf->dtb_interval = now - buf->dtb_switched;
10524 	buf->dtb_switched = now;
10525 	dtrace_interrupt_enable(cookie);
10526 }
10527 
10528 /*
10529  * Note:  called from cross call context.  This function activates a buffer
10530  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10531  * is guaranteed by the disabling of interrupts.
10532  */
10533 static void
10534 dtrace_buffer_activate(dtrace_state_t *state)
10535 {
10536 	dtrace_buffer_t *buf;
10537 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10538 
10539 	buf = &state->dts_buffer[CPU->cpu_id];
10540 
10541 	if (buf->dtb_tomax != NULL) {
10542 		/*
10543 		 * We might like to assert that the buffer is marked inactive,
10544 		 * but this isn't necessarily true:  the buffer for the CPU
10545 		 * that processes the BEGIN probe has its buffer activated
10546 		 * manually.  In this case, we take the (harmless) action
10547 		 * re-clearing the bit INACTIVE bit.
10548 		 */
10549 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10550 	}
10551 
10552 	dtrace_interrupt_enable(cookie);
10553 }
10554 
10555 static int
10556 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10557     processorid_t cpu, int *factor)
10558 {
10559 	cpu_t *cp;
10560 	dtrace_buffer_t *buf;
10561 	int allocated = 0, desired = 0;
10562 
10563 	ASSERT(MUTEX_HELD(&cpu_lock));
10564 	ASSERT(MUTEX_HELD(&dtrace_lock));
10565 
10566 	*factor = 1;
10567 
10568 	if (size > dtrace_nonroot_maxsize &&
10569 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10570 		return (EFBIG);
10571 
10572 	cp = cpu_list;
10573 
10574 	do {
10575 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10576 			continue;
10577 
10578 		buf = &bufs[cp->cpu_id];
10579 
10580 		/*
10581 		 * If there is already a buffer allocated for this CPU, it
10582 		 * is only possible that this is a DR event.  In this case,
10583 		 * the buffer size must match our specified size.
10584 		 */
10585 		if (buf->dtb_tomax != NULL) {
10586 			ASSERT(buf->dtb_size == size);
10587 			continue;
10588 		}
10589 
10590 		ASSERT(buf->dtb_xamot == NULL);
10591 
10592 		if ((buf->dtb_tomax = kmem_zalloc(size,
10593 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10594 			goto err;
10595 
10596 		buf->dtb_size = size;
10597 		buf->dtb_flags = flags;
10598 		buf->dtb_offset = 0;
10599 		buf->dtb_drops = 0;
10600 
10601 		if (flags & DTRACEBUF_NOSWITCH)
10602 			continue;
10603 
10604 		if ((buf->dtb_xamot = kmem_zalloc(size,
10605 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10606 			goto err;
10607 	} while ((cp = cp->cpu_next) != cpu_list);
10608 
10609 	return (0);
10610 
10611 err:
10612 	cp = cpu_list;
10613 
10614 	do {
10615 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10616 			continue;
10617 
10618 		buf = &bufs[cp->cpu_id];
10619 		desired += 2;
10620 
10621 		if (buf->dtb_xamot != NULL) {
10622 			ASSERT(buf->dtb_tomax != NULL);
10623 			ASSERT(buf->dtb_size == size);
10624 			kmem_free(buf->dtb_xamot, size);
10625 			allocated++;
10626 		}
10627 
10628 		if (buf->dtb_tomax != NULL) {
10629 			ASSERT(buf->dtb_size == size);
10630 			kmem_free(buf->dtb_tomax, size);
10631 			allocated++;
10632 		}
10633 
10634 		buf->dtb_tomax = NULL;
10635 		buf->dtb_xamot = NULL;
10636 		buf->dtb_size = 0;
10637 	} while ((cp = cp->cpu_next) != cpu_list);
10638 
10639 	*factor = desired / (allocated > 0 ? allocated : 1);
10640 
10641 	return (ENOMEM);
10642 }
10643 
10644 /*
10645  * Note:  called from probe context.  This function just increments the drop
10646  * count on a buffer.  It has been made a function to allow for the
10647  * possibility of understanding the source of mysterious drop counts.  (A
10648  * problem for which one may be particularly disappointed that DTrace cannot
10649  * be used to understand DTrace.)
10650  */
10651 static void
10652 dtrace_buffer_drop(dtrace_buffer_t *buf)
10653 {
10654 	buf->dtb_drops++;
10655 }
10656 
10657 /*
10658  * Note:  called from probe context.  This function is called to reserve space
10659  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10660  * mstate.  Returns the new offset in the buffer, or a negative value if an
10661  * error has occurred.
10662  */
10663 static intptr_t
10664 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10665     dtrace_state_t *state, dtrace_mstate_t *mstate)
10666 {
10667 	intptr_t offs = buf->dtb_offset, soffs;
10668 	intptr_t woffs;
10669 	caddr_t tomax;
10670 	size_t total;
10671 
10672 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10673 		return (-1);
10674 
10675 	if ((tomax = buf->dtb_tomax) == NULL) {
10676 		dtrace_buffer_drop(buf);
10677 		return (-1);
10678 	}
10679 
10680 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10681 		while (offs & (align - 1)) {
10682 			/*
10683 			 * Assert that our alignment is off by a number which
10684 			 * is itself sizeof (uint32_t) aligned.
10685 			 */
10686 			ASSERT(!((align - (offs & (align - 1))) &
10687 			    (sizeof (uint32_t) - 1)));
10688 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10689 			offs += sizeof (uint32_t);
10690 		}
10691 
10692 		if ((soffs = offs + needed) > buf->dtb_size) {
10693 			dtrace_buffer_drop(buf);
10694 			return (-1);
10695 		}
10696 
10697 		if (mstate == NULL)
10698 			return (offs);
10699 
10700 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10701 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10702 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10703 
10704 		return (offs);
10705 	}
10706 
10707 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10708 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10709 		    (buf->dtb_flags & DTRACEBUF_FULL))
10710 			return (-1);
10711 		goto out;
10712 	}
10713 
10714 	total = needed + (offs & (align - 1));
10715 
10716 	/*
10717 	 * For a ring buffer, life is quite a bit more complicated.  Before
10718 	 * we can store any padding, we need to adjust our wrapping offset.
10719 	 * (If we've never before wrapped or we're not about to, no adjustment
10720 	 * is required.)
10721 	 */
10722 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10723 	    offs + total > buf->dtb_size) {
10724 		woffs = buf->dtb_xamot_offset;
10725 
10726 		if (offs + total > buf->dtb_size) {
10727 			/*
10728 			 * We can't fit in the end of the buffer.  First, a
10729 			 * sanity check that we can fit in the buffer at all.
10730 			 */
10731 			if (total > buf->dtb_size) {
10732 				dtrace_buffer_drop(buf);
10733 				return (-1);
10734 			}
10735 
10736 			/*
10737 			 * We're going to be storing at the top of the buffer,
10738 			 * so now we need to deal with the wrapped offset.  We
10739 			 * only reset our wrapped offset to 0 if it is
10740 			 * currently greater than the current offset.  If it
10741 			 * is less than the current offset, it is because a
10742 			 * previous allocation induced a wrap -- but the
10743 			 * allocation didn't subsequently take the space due
10744 			 * to an error or false predicate evaluation.  In this
10745 			 * case, we'll just leave the wrapped offset alone: if
10746 			 * the wrapped offset hasn't been advanced far enough
10747 			 * for this allocation, it will be adjusted in the
10748 			 * lower loop.
10749 			 */
10750 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10751 				if (woffs >= offs)
10752 					woffs = 0;
10753 			} else {
10754 				woffs = 0;
10755 			}
10756 
10757 			/*
10758 			 * Now we know that we're going to be storing to the
10759 			 * top of the buffer and that there is room for us
10760 			 * there.  We need to clear the buffer from the current
10761 			 * offset to the end (there may be old gunk there).
10762 			 */
10763 			while (offs < buf->dtb_size)
10764 				tomax[offs++] = 0;
10765 
10766 			/*
10767 			 * We need to set our offset to zero.  And because we
10768 			 * are wrapping, we need to set the bit indicating as
10769 			 * much.  We can also adjust our needed space back
10770 			 * down to the space required by the ECB -- we know
10771 			 * that the top of the buffer is aligned.
10772 			 */
10773 			offs = 0;
10774 			total = needed;
10775 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10776 		} else {
10777 			/*
10778 			 * There is room for us in the buffer, so we simply
10779 			 * need to check the wrapped offset.
10780 			 */
10781 			if (woffs < offs) {
10782 				/*
10783 				 * The wrapped offset is less than the offset.
10784 				 * This can happen if we allocated buffer space
10785 				 * that induced a wrap, but then we didn't
10786 				 * subsequently take the space due to an error
10787 				 * or false predicate evaluation.  This is
10788 				 * okay; we know that _this_ allocation isn't
10789 				 * going to induce a wrap.  We still can't
10790 				 * reset the wrapped offset to be zero,
10791 				 * however: the space may have been trashed in
10792 				 * the previous failed probe attempt.  But at
10793 				 * least the wrapped offset doesn't need to
10794 				 * be adjusted at all...
10795 				 */
10796 				goto out;
10797 			}
10798 		}
10799 
10800 		while (offs + total > woffs) {
10801 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10802 			size_t size;
10803 
10804 			if (epid == DTRACE_EPIDNONE) {
10805 				size = sizeof (uint32_t);
10806 			} else {
10807 				ASSERT3U(epid, <=, state->dts_necbs);
10808 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10809 
10810 				size = state->dts_ecbs[epid - 1]->dte_size;
10811 			}
10812 
10813 			ASSERT(woffs + size <= buf->dtb_size);
10814 			ASSERT(size != 0);
10815 
10816 			if (woffs + size == buf->dtb_size) {
10817 				/*
10818 				 * We've reached the end of the buffer; we want
10819 				 * to set the wrapped offset to 0 and break
10820 				 * out.  However, if the offs is 0, then we're
10821 				 * in a strange edge-condition:  the amount of
10822 				 * space that we want to reserve plus the size
10823 				 * of the record that we're overwriting is
10824 				 * greater than the size of the buffer.  This
10825 				 * is problematic because if we reserve the
10826 				 * space but subsequently don't consume it (due
10827 				 * to a failed predicate or error) the wrapped
10828 				 * offset will be 0 -- yet the EPID at offset 0
10829 				 * will not be committed.  This situation is
10830 				 * relatively easy to deal with:  if we're in
10831 				 * this case, the buffer is indistinguishable
10832 				 * from one that hasn't wrapped; we need only
10833 				 * finish the job by clearing the wrapped bit,
10834 				 * explicitly setting the offset to be 0, and
10835 				 * zero'ing out the old data in the buffer.
10836 				 */
10837 				if (offs == 0) {
10838 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10839 					buf->dtb_offset = 0;
10840 					woffs = total;
10841 
10842 					while (woffs < buf->dtb_size)
10843 						tomax[woffs++] = 0;
10844 				}
10845 
10846 				woffs = 0;
10847 				break;
10848 			}
10849 
10850 			woffs += size;
10851 		}
10852 
10853 		/*
10854 		 * We have a wrapped offset.  It may be that the wrapped offset
10855 		 * has become zero -- that's okay.
10856 		 */
10857 		buf->dtb_xamot_offset = woffs;
10858 	}
10859 
10860 out:
10861 	/*
10862 	 * Now we can plow the buffer with any necessary padding.
10863 	 */
10864 	while (offs & (align - 1)) {
10865 		/*
10866 		 * Assert that our alignment is off by a number which
10867 		 * is itself sizeof (uint32_t) aligned.
10868 		 */
10869 		ASSERT(!((align - (offs & (align - 1))) &
10870 		    (sizeof (uint32_t) - 1)));
10871 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10872 		offs += sizeof (uint32_t);
10873 	}
10874 
10875 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10876 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10877 			buf->dtb_flags |= DTRACEBUF_FULL;
10878 			return (-1);
10879 		}
10880 	}
10881 
10882 	if (mstate == NULL)
10883 		return (offs);
10884 
10885 	/*
10886 	 * For ring buffers and fill buffers, the scratch space is always
10887 	 * the inactive buffer.
10888 	 */
10889 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10890 	mstate->dtms_scratch_size = buf->dtb_size;
10891 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10892 
10893 	return (offs);
10894 }
10895 
10896 static void
10897 dtrace_buffer_polish(dtrace_buffer_t *buf)
10898 {
10899 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10900 	ASSERT(MUTEX_HELD(&dtrace_lock));
10901 
10902 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10903 		return;
10904 
10905 	/*
10906 	 * We need to polish the ring buffer.  There are three cases:
10907 	 *
10908 	 * - The first (and presumably most common) is that there is no gap
10909 	 *   between the buffer offset and the wrapped offset.  In this case,
10910 	 *   there is nothing in the buffer that isn't valid data; we can
10911 	 *   mark the buffer as polished and return.
10912 	 *
10913 	 * - The second (less common than the first but still more common
10914 	 *   than the third) is that there is a gap between the buffer offset
10915 	 *   and the wrapped offset, and the wrapped offset is larger than the
10916 	 *   buffer offset.  This can happen because of an alignment issue, or
10917 	 *   can happen because of a call to dtrace_buffer_reserve() that
10918 	 *   didn't subsequently consume the buffer space.  In this case,
10919 	 *   we need to zero the data from the buffer offset to the wrapped
10920 	 *   offset.
10921 	 *
10922 	 * - The third (and least common) is that there is a gap between the
10923 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10924 	 *   _less_ than the buffer offset.  This can only happen because a
10925 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10926 	 *   was not subsequently consumed.  In this case, we need to zero the
10927 	 *   space from the offset to the end of the buffer _and_ from the
10928 	 *   top of the buffer to the wrapped offset.
10929 	 */
10930 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10931 		bzero(buf->dtb_tomax + buf->dtb_offset,
10932 		    buf->dtb_xamot_offset - buf->dtb_offset);
10933 	}
10934 
10935 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10936 		bzero(buf->dtb_tomax + buf->dtb_offset,
10937 		    buf->dtb_size - buf->dtb_offset);
10938 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10939 	}
10940 }
10941 
10942 /*
10943  * This routine determines if data generated at the specified time has likely
10944  * been entirely consumed at user-level.  This routine is called to determine
10945  * if an ECB on a defunct probe (but for an active enabling) can be safely
10946  * disabled and destroyed.
10947  */
10948 static int
10949 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10950 {
10951 	int i;
10952 
10953 	for (i = 0; i < NCPU; i++) {
10954 		dtrace_buffer_t *buf = &bufs[i];
10955 
10956 		if (buf->dtb_size == 0)
10957 			continue;
10958 
10959 		if (buf->dtb_flags & DTRACEBUF_RING)
10960 			return (0);
10961 
10962 		if (!buf->dtb_switched && buf->dtb_offset != 0)
10963 			return (0);
10964 
10965 		if (buf->dtb_switched - buf->dtb_interval < when)
10966 			return (0);
10967 	}
10968 
10969 	return (1);
10970 }
10971 
10972 static void
10973 dtrace_buffer_free(dtrace_buffer_t *bufs)
10974 {
10975 	int i;
10976 
10977 	for (i = 0; i < NCPU; i++) {
10978 		dtrace_buffer_t *buf = &bufs[i];
10979 
10980 		if (buf->dtb_tomax == NULL) {
10981 			ASSERT(buf->dtb_xamot == NULL);
10982 			ASSERT(buf->dtb_size == 0);
10983 			continue;
10984 		}
10985 
10986 		if (buf->dtb_xamot != NULL) {
10987 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10988 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10989 		}
10990 
10991 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10992 		buf->dtb_size = 0;
10993 		buf->dtb_tomax = NULL;
10994 		buf->dtb_xamot = NULL;
10995 	}
10996 }
10997 
10998 /*
10999  * DTrace Enabling Functions
11000  */
11001 static dtrace_enabling_t *
11002 dtrace_enabling_create(dtrace_vstate_t *vstate)
11003 {
11004 	dtrace_enabling_t *enab;
11005 
11006 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11007 	enab->dten_vstate = vstate;
11008 
11009 	return (enab);
11010 }
11011 
11012 static void
11013 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11014 {
11015 	dtrace_ecbdesc_t **ndesc;
11016 	size_t osize, nsize;
11017 
11018 	/*
11019 	 * We can't add to enablings after we've enabled them, or after we've
11020 	 * retained them.
11021 	 */
11022 	ASSERT(enab->dten_probegen == 0);
11023 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11024 
11025 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11026 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11027 		return;
11028 	}
11029 
11030 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11031 
11032 	if (enab->dten_maxdesc == 0) {
11033 		enab->dten_maxdesc = 1;
11034 	} else {
11035 		enab->dten_maxdesc <<= 1;
11036 	}
11037 
11038 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11039 
11040 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11041 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11042 	bcopy(enab->dten_desc, ndesc, osize);
11043 	kmem_free(enab->dten_desc, osize);
11044 
11045 	enab->dten_desc = ndesc;
11046 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11047 }
11048 
11049 static void
11050 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11051     dtrace_probedesc_t *pd)
11052 {
11053 	dtrace_ecbdesc_t *new;
11054 	dtrace_predicate_t *pred;
11055 	dtrace_actdesc_t *act;
11056 
11057 	/*
11058 	 * We're going to create a new ECB description that matches the
11059 	 * specified ECB in every way, but has the specified probe description.
11060 	 */
11061 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11062 
11063 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11064 		dtrace_predicate_hold(pred);
11065 
11066 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11067 		dtrace_actdesc_hold(act);
11068 
11069 	new->dted_action = ecb->dted_action;
11070 	new->dted_pred = ecb->dted_pred;
11071 	new->dted_probe = *pd;
11072 	new->dted_uarg = ecb->dted_uarg;
11073 
11074 	dtrace_enabling_add(enab, new);
11075 }
11076 
11077 static void
11078 dtrace_enabling_dump(dtrace_enabling_t *enab)
11079 {
11080 	int i;
11081 
11082 	for (i = 0; i < enab->dten_ndesc; i++) {
11083 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11084 
11085 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11086 		    desc->dtpd_provider, desc->dtpd_mod,
11087 		    desc->dtpd_func, desc->dtpd_name);
11088 	}
11089 }
11090 
11091 static void
11092 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11093 {
11094 	int i;
11095 	dtrace_ecbdesc_t *ep;
11096 	dtrace_vstate_t *vstate = enab->dten_vstate;
11097 
11098 	ASSERT(MUTEX_HELD(&dtrace_lock));
11099 
11100 	for (i = 0; i < enab->dten_ndesc; i++) {
11101 		dtrace_actdesc_t *act, *next;
11102 		dtrace_predicate_t *pred;
11103 
11104 		ep = enab->dten_desc[i];
11105 
11106 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11107 			dtrace_predicate_release(pred, vstate);
11108 
11109 		for (act = ep->dted_action; act != NULL; act = next) {
11110 			next = act->dtad_next;
11111 			dtrace_actdesc_release(act, vstate);
11112 		}
11113 
11114 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11115 	}
11116 
11117 	kmem_free(enab->dten_desc,
11118 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11119 
11120 	/*
11121 	 * If this was a retained enabling, decrement the dts_nretained count
11122 	 * and take it off of the dtrace_retained list.
11123 	 */
11124 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11125 	    dtrace_retained == enab) {
11126 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11127 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11128 		enab->dten_vstate->dtvs_state->dts_nretained--;
11129 		dtrace_retained_gen++;
11130 	}
11131 
11132 	if (enab->dten_prev == NULL) {
11133 		if (dtrace_retained == enab) {
11134 			dtrace_retained = enab->dten_next;
11135 
11136 			if (dtrace_retained != NULL)
11137 				dtrace_retained->dten_prev = NULL;
11138 		}
11139 	} else {
11140 		ASSERT(enab != dtrace_retained);
11141 		ASSERT(dtrace_retained != NULL);
11142 		enab->dten_prev->dten_next = enab->dten_next;
11143 	}
11144 
11145 	if (enab->dten_next != NULL) {
11146 		ASSERT(dtrace_retained != NULL);
11147 		enab->dten_next->dten_prev = enab->dten_prev;
11148 	}
11149 
11150 	kmem_free(enab, sizeof (dtrace_enabling_t));
11151 }
11152 
11153 static int
11154 dtrace_enabling_retain(dtrace_enabling_t *enab)
11155 {
11156 	dtrace_state_t *state;
11157 
11158 	ASSERT(MUTEX_HELD(&dtrace_lock));
11159 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11160 	ASSERT(enab->dten_vstate != NULL);
11161 
11162 	state = enab->dten_vstate->dtvs_state;
11163 	ASSERT(state != NULL);
11164 
11165 	/*
11166 	 * We only allow each state to retain dtrace_retain_max enablings.
11167 	 */
11168 	if (state->dts_nretained >= dtrace_retain_max)
11169 		return (ENOSPC);
11170 
11171 	state->dts_nretained++;
11172 	dtrace_retained_gen++;
11173 
11174 	if (dtrace_retained == NULL) {
11175 		dtrace_retained = enab;
11176 		return (0);
11177 	}
11178 
11179 	enab->dten_next = dtrace_retained;
11180 	dtrace_retained->dten_prev = enab;
11181 	dtrace_retained = enab;
11182 
11183 	return (0);
11184 }
11185 
11186 static int
11187 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11188     dtrace_probedesc_t *create)
11189 {
11190 	dtrace_enabling_t *new, *enab;
11191 	int found = 0, err = ENOENT;
11192 
11193 	ASSERT(MUTEX_HELD(&dtrace_lock));
11194 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11195 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11196 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11197 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11198 
11199 	new = dtrace_enabling_create(&state->dts_vstate);
11200 
11201 	/*
11202 	 * Iterate over all retained enablings, looking for enablings that
11203 	 * match the specified state.
11204 	 */
11205 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11206 		int i;
11207 
11208 		/*
11209 		 * dtvs_state can only be NULL for helper enablings -- and
11210 		 * helper enablings can't be retained.
11211 		 */
11212 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11213 
11214 		if (enab->dten_vstate->dtvs_state != state)
11215 			continue;
11216 
11217 		/*
11218 		 * Now iterate over each probe description; we're looking for
11219 		 * an exact match to the specified probe description.
11220 		 */
11221 		for (i = 0; i < enab->dten_ndesc; i++) {
11222 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11223 			dtrace_probedesc_t *pd = &ep->dted_probe;
11224 
11225 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11226 				continue;
11227 
11228 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11229 				continue;
11230 
11231 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11232 				continue;
11233 
11234 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11235 				continue;
11236 
11237 			/*
11238 			 * We have a winning probe!  Add it to our growing
11239 			 * enabling.
11240 			 */
11241 			found = 1;
11242 			dtrace_enabling_addlike(new, ep, create);
11243 		}
11244 	}
11245 
11246 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11247 		dtrace_enabling_destroy(new);
11248 		return (err);
11249 	}
11250 
11251 	return (0);
11252 }
11253 
11254 static void
11255 dtrace_enabling_retract(dtrace_state_t *state)
11256 {
11257 	dtrace_enabling_t *enab, *next;
11258 
11259 	ASSERT(MUTEX_HELD(&dtrace_lock));
11260 
11261 	/*
11262 	 * Iterate over all retained enablings, destroy the enablings retained
11263 	 * for the specified state.
11264 	 */
11265 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11266 		next = enab->dten_next;
11267 
11268 		/*
11269 		 * dtvs_state can only be NULL for helper enablings -- and
11270 		 * helper enablings can't be retained.
11271 		 */
11272 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11273 
11274 		if (enab->dten_vstate->dtvs_state == state) {
11275 			ASSERT(state->dts_nretained > 0);
11276 			dtrace_enabling_destroy(enab);
11277 		}
11278 	}
11279 
11280 	ASSERT(state->dts_nretained == 0);
11281 }
11282 
11283 static int
11284 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11285 {
11286 	int i = 0;
11287 	int total_matched = 0, matched = 0;
11288 
11289 	ASSERT(MUTEX_HELD(&cpu_lock));
11290 	ASSERT(MUTEX_HELD(&dtrace_lock));
11291 
11292 	for (i = 0; i < enab->dten_ndesc; i++) {
11293 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11294 
11295 		enab->dten_current = ep;
11296 		enab->dten_error = 0;
11297 
11298 		/*
11299 		 * If a provider failed to enable a probe then get out and
11300 		 * let the consumer know we failed.
11301 		 */
11302 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11303 			return (EBUSY);
11304 
11305 		total_matched += matched;
11306 
11307 		if (enab->dten_error != 0) {
11308 			/*
11309 			 * If we get an error half-way through enabling the
11310 			 * probes, we kick out -- perhaps with some number of
11311 			 * them enabled.  Leaving enabled probes enabled may
11312 			 * be slightly confusing for user-level, but we expect
11313 			 * that no one will attempt to actually drive on in
11314 			 * the face of such errors.  If this is an anonymous
11315 			 * enabling (indicated with a NULL nmatched pointer),
11316 			 * we cmn_err() a message.  We aren't expecting to
11317 			 * get such an error -- such as it can exist at all,
11318 			 * it would be a result of corrupted DOF in the driver
11319 			 * properties.
11320 			 */
11321 			if (nmatched == NULL) {
11322 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11323 				    "error on %p: %d", (void *)ep,
11324 				    enab->dten_error);
11325 			}
11326 
11327 			return (enab->dten_error);
11328 		}
11329 	}
11330 
11331 	enab->dten_probegen = dtrace_probegen;
11332 	if (nmatched != NULL)
11333 		*nmatched = total_matched;
11334 
11335 	return (0);
11336 }
11337 
11338 static void
11339 dtrace_enabling_matchall(void)
11340 {
11341 	dtrace_enabling_t *enab;
11342 
11343 	mutex_enter(&cpu_lock);
11344 	mutex_enter(&dtrace_lock);
11345 
11346 	/*
11347 	 * Iterate over all retained enablings to see if any probes match
11348 	 * against them.  We only perform this operation on enablings for which
11349 	 * we have sufficient permissions by virtue of being in the global zone
11350 	 * or in the same zone as the DTrace client.  Because we can be called
11351 	 * after dtrace_detach() has been called, we cannot assert that there
11352 	 * are retained enablings.  We can safely load from dtrace_retained,
11353 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11354 	 * block pending our completion.
11355 	 */
11356 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11357 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11358 		cred_t *cr = dcr->dcr_cred;
11359 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
11360 
11361 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11362 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11363 			(void) dtrace_enabling_match(enab, NULL);
11364 	}
11365 
11366 	mutex_exit(&dtrace_lock);
11367 	mutex_exit(&cpu_lock);
11368 }
11369 
11370 /*
11371  * If an enabling is to be enabled without having matched probes (that is, if
11372  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11373  * enabling must be _primed_ by creating an ECB for every ECB description.
11374  * This must be done to assure that we know the number of speculations, the
11375  * number of aggregations, the minimum buffer size needed, etc. before we
11376  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11377  * enabling any probes, we create ECBs for every ECB decription, but with a
11378  * NULL probe -- which is exactly what this function does.
11379  */
11380 static void
11381 dtrace_enabling_prime(dtrace_state_t *state)
11382 {
11383 	dtrace_enabling_t *enab;
11384 	int i;
11385 
11386 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11387 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11388 
11389 		if (enab->dten_vstate->dtvs_state != state)
11390 			continue;
11391 
11392 		/*
11393 		 * We don't want to prime an enabling more than once, lest
11394 		 * we allow a malicious user to induce resource exhaustion.
11395 		 * (The ECBs that result from priming an enabling aren't
11396 		 * leaked -- but they also aren't deallocated until the
11397 		 * consumer state is destroyed.)
11398 		 */
11399 		if (enab->dten_primed)
11400 			continue;
11401 
11402 		for (i = 0; i < enab->dten_ndesc; i++) {
11403 			enab->dten_current = enab->dten_desc[i];
11404 			(void) dtrace_probe_enable(NULL, enab);
11405 		}
11406 
11407 		enab->dten_primed = 1;
11408 	}
11409 }
11410 
11411 /*
11412  * Called to indicate that probes should be provided due to retained
11413  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11414  * must take an initial lap through the enabling calling the dtps_provide()
11415  * entry point explicitly to allow for autocreated probes.
11416  */
11417 static void
11418 dtrace_enabling_provide(dtrace_provider_t *prv)
11419 {
11420 	int i, all = 0;
11421 	dtrace_probedesc_t desc;
11422 	dtrace_genid_t gen;
11423 
11424 	ASSERT(MUTEX_HELD(&dtrace_lock));
11425 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11426 
11427 	if (prv == NULL) {
11428 		all = 1;
11429 		prv = dtrace_provider;
11430 	}
11431 
11432 	do {
11433 		dtrace_enabling_t *enab;
11434 		void *parg = prv->dtpv_arg;
11435 
11436 retry:
11437 		gen = dtrace_retained_gen;
11438 		for (enab = dtrace_retained; enab != NULL;
11439 		    enab = enab->dten_next) {
11440 			for (i = 0; i < enab->dten_ndesc; i++) {
11441 				desc = enab->dten_desc[i]->dted_probe;
11442 				mutex_exit(&dtrace_lock);
11443 				prv->dtpv_pops.dtps_provide(parg, &desc);
11444 				mutex_enter(&dtrace_lock);
11445 				/*
11446 				 * Process the retained enablings again if
11447 				 * they have changed while we weren't holding
11448 				 * dtrace_lock.
11449 				 */
11450 				if (gen != dtrace_retained_gen)
11451 					goto retry;
11452 			}
11453 		}
11454 	} while (all && (prv = prv->dtpv_next) != NULL);
11455 
11456 	mutex_exit(&dtrace_lock);
11457 	dtrace_probe_provide(NULL, all ? NULL : prv);
11458 	mutex_enter(&dtrace_lock);
11459 }
11460 
11461 /*
11462  * Called to reap ECBs that are attached to probes from defunct providers.
11463  */
11464 static void
11465 dtrace_enabling_reap(void)
11466 {
11467 	dtrace_provider_t *prov;
11468 	dtrace_probe_t *probe;
11469 	dtrace_ecb_t *ecb;
11470 	hrtime_t when;
11471 	int i;
11472 
11473 	mutex_enter(&cpu_lock);
11474 	mutex_enter(&dtrace_lock);
11475 
11476 	for (i = 0; i < dtrace_nprobes; i++) {
11477 		if ((probe = dtrace_probes[i]) == NULL)
11478 			continue;
11479 
11480 		if (probe->dtpr_ecb == NULL)
11481 			continue;
11482 
11483 		prov = probe->dtpr_provider;
11484 
11485 		if ((when = prov->dtpv_defunct) == 0)
11486 			continue;
11487 
11488 		/*
11489 		 * We have ECBs on a defunct provider:  we want to reap these
11490 		 * ECBs to allow the provider to unregister.  The destruction
11491 		 * of these ECBs must be done carefully:  if we destroy the ECB
11492 		 * and the consumer later wishes to consume an EPID that
11493 		 * corresponds to the destroyed ECB (and if the EPID metadata
11494 		 * has not been previously consumed), the consumer will abort
11495 		 * processing on the unknown EPID.  To reduce (but not, sadly,
11496 		 * eliminate) the possibility of this, we will only destroy an
11497 		 * ECB for a defunct provider if, for the state that
11498 		 * corresponds to the ECB:
11499 		 *
11500 		 *  (a)	There is no speculative tracing (which can effectively
11501 		 *	cache an EPID for an arbitrary amount of time).
11502 		 *
11503 		 *  (b)	The principal buffers have been switched twice since the
11504 		 *	provider became defunct.
11505 		 *
11506 		 *  (c)	The aggregation buffers are of zero size or have been
11507 		 *	switched twice since the provider became defunct.
11508 		 *
11509 		 * We use dts_speculates to determine (a) and call a function
11510 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11511 		 * that as soon as we've been unable to destroy one of the ECBs
11512 		 * associated with the probe, we quit trying -- reaping is only
11513 		 * fruitful in as much as we can destroy all ECBs associated
11514 		 * with the defunct provider's probes.
11515 		 */
11516 		while ((ecb = probe->dtpr_ecb) != NULL) {
11517 			dtrace_state_t *state = ecb->dte_state;
11518 			dtrace_buffer_t *buf = state->dts_buffer;
11519 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11520 
11521 			if (state->dts_speculates)
11522 				break;
11523 
11524 			if (!dtrace_buffer_consumed(buf, when))
11525 				break;
11526 
11527 			if (!dtrace_buffer_consumed(aggbuf, when))
11528 				break;
11529 
11530 			dtrace_ecb_disable(ecb);
11531 			ASSERT(probe->dtpr_ecb != ecb);
11532 			dtrace_ecb_destroy(ecb);
11533 		}
11534 	}
11535 
11536 	mutex_exit(&dtrace_lock);
11537 	mutex_exit(&cpu_lock);
11538 }
11539 
11540 /*
11541  * DTrace DOF Functions
11542  */
11543 /*ARGSUSED*/
11544 static void
11545 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11546 {
11547 	if (dtrace_err_verbose)
11548 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11549 
11550 #ifdef DTRACE_ERRDEBUG
11551 	dtrace_errdebug(str);
11552 #endif
11553 }
11554 
11555 /*
11556  * Create DOF out of a currently enabled state.  Right now, we only create
11557  * DOF containing the run-time options -- but this could be expanded to create
11558  * complete DOF representing the enabled state.
11559  */
11560 static dof_hdr_t *
11561 dtrace_dof_create(dtrace_state_t *state)
11562 {
11563 	dof_hdr_t *dof;
11564 	dof_sec_t *sec;
11565 	dof_optdesc_t *opt;
11566 	int i, len = sizeof (dof_hdr_t) +
11567 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11568 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11569 
11570 	ASSERT(MUTEX_HELD(&dtrace_lock));
11571 
11572 	dof = kmem_zalloc(len, KM_SLEEP);
11573 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11574 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11575 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11576 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11577 
11578 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11579 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11580 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11581 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11582 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11583 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11584 
11585 	dof->dofh_flags = 0;
11586 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11587 	dof->dofh_secsize = sizeof (dof_sec_t);
11588 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11589 	dof->dofh_secoff = sizeof (dof_hdr_t);
11590 	dof->dofh_loadsz = len;
11591 	dof->dofh_filesz = len;
11592 	dof->dofh_pad = 0;
11593 
11594 	/*
11595 	 * Fill in the option section header...
11596 	 */
11597 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11598 	sec->dofs_type = DOF_SECT_OPTDESC;
11599 	sec->dofs_align = sizeof (uint64_t);
11600 	sec->dofs_flags = DOF_SECF_LOAD;
11601 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11602 
11603 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11604 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11605 
11606 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11607 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11608 
11609 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11610 		opt[i].dofo_option = i;
11611 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11612 		opt[i].dofo_value = state->dts_options[i];
11613 	}
11614 
11615 	return (dof);
11616 }
11617 
11618 static dof_hdr_t *
11619 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11620 {
11621 	dof_hdr_t hdr, *dof;
11622 
11623 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11624 
11625 	/*
11626 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11627 	 */
11628 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11629 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11630 		*errp = EFAULT;
11631 		return (NULL);
11632 	}
11633 
11634 	/*
11635 	 * Now we'll allocate the entire DOF and copy it in -- provided
11636 	 * that the length isn't outrageous.
11637 	 */
11638 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11639 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11640 		*errp = E2BIG;
11641 		return (NULL);
11642 	}
11643 
11644 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11645 		dtrace_dof_error(&hdr, "invalid load size");
11646 		*errp = EINVAL;
11647 		return (NULL);
11648 	}
11649 
11650 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11651 
11652 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11653 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11654 		kmem_free(dof, hdr.dofh_loadsz);
11655 		*errp = EFAULT;
11656 		return (NULL);
11657 	}
11658 
11659 	return (dof);
11660 }
11661 
11662 static dof_hdr_t *
11663 dtrace_dof_property(const char *name)
11664 {
11665 	uchar_t *buf;
11666 	uint64_t loadsz;
11667 	unsigned int len, i;
11668 	dof_hdr_t *dof;
11669 
11670 	/*
11671 	 * Unfortunately, array of values in .conf files are always (and
11672 	 * only) interpreted to be integer arrays.  We must read our DOF
11673 	 * as an integer array, and then squeeze it into a byte array.
11674 	 */
11675 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11676 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11677 		return (NULL);
11678 
11679 	for (i = 0; i < len; i++)
11680 		buf[i] = (uchar_t)(((int *)buf)[i]);
11681 
11682 	if (len < sizeof (dof_hdr_t)) {
11683 		ddi_prop_free(buf);
11684 		dtrace_dof_error(NULL, "truncated header");
11685 		return (NULL);
11686 	}
11687 
11688 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11689 		ddi_prop_free(buf);
11690 		dtrace_dof_error(NULL, "truncated DOF");
11691 		return (NULL);
11692 	}
11693 
11694 	if (loadsz >= dtrace_dof_maxsize) {
11695 		ddi_prop_free(buf);
11696 		dtrace_dof_error(NULL, "oversized DOF");
11697 		return (NULL);
11698 	}
11699 
11700 	dof = kmem_alloc(loadsz, KM_SLEEP);
11701 	bcopy(buf, dof, loadsz);
11702 	ddi_prop_free(buf);
11703 
11704 	return (dof);
11705 }
11706 
11707 static void
11708 dtrace_dof_destroy(dof_hdr_t *dof)
11709 {
11710 	kmem_free(dof, dof->dofh_loadsz);
11711 }
11712 
11713 /*
11714  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11715  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11716  * a type other than DOF_SECT_NONE is specified, the header is checked against
11717  * this type and NULL is returned if the types do not match.
11718  */
11719 static dof_sec_t *
11720 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11721 {
11722 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11723 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11724 
11725 	if (i >= dof->dofh_secnum) {
11726 		dtrace_dof_error(dof, "referenced section index is invalid");
11727 		return (NULL);
11728 	}
11729 
11730 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11731 		dtrace_dof_error(dof, "referenced section is not loadable");
11732 		return (NULL);
11733 	}
11734 
11735 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11736 		dtrace_dof_error(dof, "referenced section is the wrong type");
11737 		return (NULL);
11738 	}
11739 
11740 	return (sec);
11741 }
11742 
11743 static dtrace_probedesc_t *
11744 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11745 {
11746 	dof_probedesc_t *probe;
11747 	dof_sec_t *strtab;
11748 	uintptr_t daddr = (uintptr_t)dof;
11749 	uintptr_t str;
11750 	size_t size;
11751 
11752 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11753 		dtrace_dof_error(dof, "invalid probe section");
11754 		return (NULL);
11755 	}
11756 
11757 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11758 		dtrace_dof_error(dof, "bad alignment in probe description");
11759 		return (NULL);
11760 	}
11761 
11762 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11763 		dtrace_dof_error(dof, "truncated probe description");
11764 		return (NULL);
11765 	}
11766 
11767 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11768 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11769 
11770 	if (strtab == NULL)
11771 		return (NULL);
11772 
11773 	str = daddr + strtab->dofs_offset;
11774 	size = strtab->dofs_size;
11775 
11776 	if (probe->dofp_provider >= strtab->dofs_size) {
11777 		dtrace_dof_error(dof, "corrupt probe provider");
11778 		return (NULL);
11779 	}
11780 
11781 	(void) strncpy(desc->dtpd_provider,
11782 	    (char *)(str + probe->dofp_provider),
11783 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11784 
11785 	if (probe->dofp_mod >= strtab->dofs_size) {
11786 		dtrace_dof_error(dof, "corrupt probe module");
11787 		return (NULL);
11788 	}
11789 
11790 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11791 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11792 
11793 	if (probe->dofp_func >= strtab->dofs_size) {
11794 		dtrace_dof_error(dof, "corrupt probe function");
11795 		return (NULL);
11796 	}
11797 
11798 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11799 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11800 
11801 	if (probe->dofp_name >= strtab->dofs_size) {
11802 		dtrace_dof_error(dof, "corrupt probe name");
11803 		return (NULL);
11804 	}
11805 
11806 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11807 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11808 
11809 	return (desc);
11810 }
11811 
11812 static dtrace_difo_t *
11813 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11814     cred_t *cr)
11815 {
11816 	dtrace_difo_t *dp;
11817 	size_t ttl = 0;
11818 	dof_difohdr_t *dofd;
11819 	uintptr_t daddr = (uintptr_t)dof;
11820 	size_t max = dtrace_difo_maxsize;
11821 	int i, l, n;
11822 
11823 	static const struct {
11824 		int section;
11825 		int bufoffs;
11826 		int lenoffs;
11827 		int entsize;
11828 		int align;
11829 		const char *msg;
11830 	} difo[] = {
11831 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11832 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11833 		sizeof (dif_instr_t), "multiple DIF sections" },
11834 
11835 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11836 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11837 		sizeof (uint64_t), "multiple integer tables" },
11838 
11839 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11840 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11841 		sizeof (char), "multiple string tables" },
11842 
11843 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11844 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11845 		sizeof (uint_t), "multiple variable tables" },
11846 
11847 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
11848 	};
11849 
11850 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11851 		dtrace_dof_error(dof, "invalid DIFO header section");
11852 		return (NULL);
11853 	}
11854 
11855 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11856 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11857 		return (NULL);
11858 	}
11859 
11860 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11861 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11862 		dtrace_dof_error(dof, "bad size in DIFO header");
11863 		return (NULL);
11864 	}
11865 
11866 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11867 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11868 
11869 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11870 	dp->dtdo_rtype = dofd->dofd_rtype;
11871 
11872 	for (l = 0; l < n; l++) {
11873 		dof_sec_t *subsec;
11874 		void **bufp;
11875 		uint32_t *lenp;
11876 
11877 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11878 		    dofd->dofd_links[l])) == NULL)
11879 			goto err; /* invalid section link */
11880 
11881 		if (ttl + subsec->dofs_size > max) {
11882 			dtrace_dof_error(dof, "exceeds maximum size");
11883 			goto err;
11884 		}
11885 
11886 		ttl += subsec->dofs_size;
11887 
11888 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11889 			if (subsec->dofs_type != difo[i].section)
11890 				continue;
11891 
11892 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11893 				dtrace_dof_error(dof, "section not loaded");
11894 				goto err;
11895 			}
11896 
11897 			if (subsec->dofs_align != difo[i].align) {
11898 				dtrace_dof_error(dof, "bad alignment");
11899 				goto err;
11900 			}
11901 
11902 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11903 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11904 
11905 			if (*bufp != NULL) {
11906 				dtrace_dof_error(dof, difo[i].msg);
11907 				goto err;
11908 			}
11909 
11910 			if (difo[i].entsize != subsec->dofs_entsize) {
11911 				dtrace_dof_error(dof, "entry size mismatch");
11912 				goto err;
11913 			}
11914 
11915 			if (subsec->dofs_entsize != 0 &&
11916 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11917 				dtrace_dof_error(dof, "corrupt entry size");
11918 				goto err;
11919 			}
11920 
11921 			*lenp = subsec->dofs_size;
11922 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11923 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11924 			    *bufp, subsec->dofs_size);
11925 
11926 			if (subsec->dofs_entsize != 0)
11927 				*lenp /= subsec->dofs_entsize;
11928 
11929 			break;
11930 		}
11931 
11932 		/*
11933 		 * If we encounter a loadable DIFO sub-section that is not
11934 		 * known to us, assume this is a broken program and fail.
11935 		 */
11936 		if (difo[i].section == DOF_SECT_NONE &&
11937 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11938 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11939 			goto err;
11940 		}
11941 	}
11942 
11943 	if (dp->dtdo_buf == NULL) {
11944 		/*
11945 		 * We can't have a DIF object without DIF text.
11946 		 */
11947 		dtrace_dof_error(dof, "missing DIF text");
11948 		goto err;
11949 	}
11950 
11951 	/*
11952 	 * Before we validate the DIF object, run through the variable table
11953 	 * looking for the strings -- if any of their size are under, we'll set
11954 	 * their size to be the system-wide default string size.  Note that
11955 	 * this should _not_ happen if the "strsize" option has been set --
11956 	 * in this case, the compiler should have set the size to reflect the
11957 	 * setting of the option.
11958 	 */
11959 	for (i = 0; i < dp->dtdo_varlen; i++) {
11960 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11961 		dtrace_diftype_t *t = &v->dtdv_type;
11962 
11963 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11964 			continue;
11965 
11966 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11967 			t->dtdt_size = dtrace_strsize_default;
11968 	}
11969 
11970 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11971 		goto err;
11972 
11973 	dtrace_difo_init(dp, vstate);
11974 	return (dp);
11975 
11976 err:
11977 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11978 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11979 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11980 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11981 
11982 	kmem_free(dp, sizeof (dtrace_difo_t));
11983 	return (NULL);
11984 }
11985 
11986 static dtrace_predicate_t *
11987 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11988     cred_t *cr)
11989 {
11990 	dtrace_difo_t *dp;
11991 
11992 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11993 		return (NULL);
11994 
11995 	return (dtrace_predicate_create(dp));
11996 }
11997 
11998 static dtrace_actdesc_t *
11999 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12000     cred_t *cr)
12001 {
12002 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12003 	dof_actdesc_t *desc;
12004 	dof_sec_t *difosec;
12005 	size_t offs;
12006 	uintptr_t daddr = (uintptr_t)dof;
12007 	uint64_t arg;
12008 	dtrace_actkind_t kind;
12009 
12010 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12011 		dtrace_dof_error(dof, "invalid action section");
12012 		return (NULL);
12013 	}
12014 
12015 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12016 		dtrace_dof_error(dof, "truncated action description");
12017 		return (NULL);
12018 	}
12019 
12020 	if (sec->dofs_align != sizeof (uint64_t)) {
12021 		dtrace_dof_error(dof, "bad alignment in action description");
12022 		return (NULL);
12023 	}
12024 
12025 	if (sec->dofs_size < sec->dofs_entsize) {
12026 		dtrace_dof_error(dof, "section entry size exceeds total size");
12027 		return (NULL);
12028 	}
12029 
12030 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12031 		dtrace_dof_error(dof, "bad entry size in action description");
12032 		return (NULL);
12033 	}
12034 
12035 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12036 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12037 		return (NULL);
12038 	}
12039 
12040 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12041 		desc = (dof_actdesc_t *)(daddr +
12042 		    (uintptr_t)sec->dofs_offset + offs);
12043 		kind = (dtrace_actkind_t)desc->dofa_kind;
12044 
12045 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12046 		    (kind != DTRACEACT_PRINTA ||
12047 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12048 		    (kind == DTRACEACT_DIFEXPR &&
12049 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12050 			dof_sec_t *strtab;
12051 			char *str, *fmt;
12052 			uint64_t i;
12053 
12054 			/*
12055 			 * The argument to these actions is an index into the
12056 			 * DOF string table.  For printf()-like actions, this
12057 			 * is the format string.  For print(), this is the
12058 			 * CTF type of the expression result.
12059 			 */
12060 			if ((strtab = dtrace_dof_sect(dof,
12061 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12062 				goto err;
12063 
12064 			str = (char *)((uintptr_t)dof +
12065 			    (uintptr_t)strtab->dofs_offset);
12066 
12067 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12068 				if (str[i] == '\0')
12069 					break;
12070 			}
12071 
12072 			if (i >= strtab->dofs_size) {
12073 				dtrace_dof_error(dof, "bogus format string");
12074 				goto err;
12075 			}
12076 
12077 			if (i == desc->dofa_arg) {
12078 				dtrace_dof_error(dof, "empty format string");
12079 				goto err;
12080 			}
12081 
12082 			i -= desc->dofa_arg;
12083 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12084 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12085 			arg = (uint64_t)(uintptr_t)fmt;
12086 		} else {
12087 			if (kind == DTRACEACT_PRINTA) {
12088 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12089 				arg = 0;
12090 			} else {
12091 				arg = desc->dofa_arg;
12092 			}
12093 		}
12094 
12095 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12096 		    desc->dofa_uarg, arg);
12097 
12098 		if (last != NULL) {
12099 			last->dtad_next = act;
12100 		} else {
12101 			first = act;
12102 		}
12103 
12104 		last = act;
12105 
12106 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12107 			continue;
12108 
12109 		if ((difosec = dtrace_dof_sect(dof,
12110 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12111 			goto err;
12112 
12113 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12114 
12115 		if (act->dtad_difo == NULL)
12116 			goto err;
12117 	}
12118 
12119 	ASSERT(first != NULL);
12120 	return (first);
12121 
12122 err:
12123 	for (act = first; act != NULL; act = next) {
12124 		next = act->dtad_next;
12125 		dtrace_actdesc_release(act, vstate);
12126 	}
12127 
12128 	return (NULL);
12129 }
12130 
12131 static dtrace_ecbdesc_t *
12132 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12133     cred_t *cr)
12134 {
12135 	dtrace_ecbdesc_t *ep;
12136 	dof_ecbdesc_t *ecb;
12137 	dtrace_probedesc_t *desc;
12138 	dtrace_predicate_t *pred = NULL;
12139 
12140 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12141 		dtrace_dof_error(dof, "truncated ECB description");
12142 		return (NULL);
12143 	}
12144 
12145 	if (sec->dofs_align != sizeof (uint64_t)) {
12146 		dtrace_dof_error(dof, "bad alignment in ECB description");
12147 		return (NULL);
12148 	}
12149 
12150 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12151 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12152 
12153 	if (sec == NULL)
12154 		return (NULL);
12155 
12156 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12157 	ep->dted_uarg = ecb->dofe_uarg;
12158 	desc = &ep->dted_probe;
12159 
12160 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12161 		goto err;
12162 
12163 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12164 		if ((sec = dtrace_dof_sect(dof,
12165 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12166 			goto err;
12167 
12168 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12169 			goto err;
12170 
12171 		ep->dted_pred.dtpdd_predicate = pred;
12172 	}
12173 
12174 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12175 		if ((sec = dtrace_dof_sect(dof,
12176 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12177 			goto err;
12178 
12179 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12180 
12181 		if (ep->dted_action == NULL)
12182 			goto err;
12183 	}
12184 
12185 	return (ep);
12186 
12187 err:
12188 	if (pred != NULL)
12189 		dtrace_predicate_release(pred, vstate);
12190 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12191 	return (NULL);
12192 }
12193 
12194 /*
12195  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12196  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12197  * site of any user SETX relocations to account for load object base address.
12198  * In the future, if we need other relocations, this function can be extended.
12199  */
12200 static int
12201 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12202 {
12203 	uintptr_t daddr = (uintptr_t)dof;
12204 	dof_relohdr_t *dofr =
12205 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12206 	dof_sec_t *ss, *rs, *ts;
12207 	dof_relodesc_t *r;
12208 	uint_t i, n;
12209 
12210 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12211 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12212 		dtrace_dof_error(dof, "invalid relocation header");
12213 		return (-1);
12214 	}
12215 
12216 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12217 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12218 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12219 
12220 	if (ss == NULL || rs == NULL || ts == NULL)
12221 		return (-1); /* dtrace_dof_error() has been called already */
12222 
12223 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12224 	    rs->dofs_align != sizeof (uint64_t)) {
12225 		dtrace_dof_error(dof, "invalid relocation section");
12226 		return (-1);
12227 	}
12228 
12229 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12230 	n = rs->dofs_size / rs->dofs_entsize;
12231 
12232 	for (i = 0; i < n; i++) {
12233 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12234 
12235 		switch (r->dofr_type) {
12236 		case DOF_RELO_NONE:
12237 			break;
12238 		case DOF_RELO_SETX:
12239 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12240 			    sizeof (uint64_t) > ts->dofs_size) {
12241 				dtrace_dof_error(dof, "bad relocation offset");
12242 				return (-1);
12243 			}
12244 
12245 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12246 				dtrace_dof_error(dof, "misaligned setx relo");
12247 				return (-1);
12248 			}
12249 
12250 			*(uint64_t *)taddr += ubase;
12251 			break;
12252 		default:
12253 			dtrace_dof_error(dof, "invalid relocation type");
12254 			return (-1);
12255 		}
12256 
12257 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12258 	}
12259 
12260 	return (0);
12261 }
12262 
12263 /*
12264  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12265  * header:  it should be at the front of a memory region that is at least
12266  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12267  * size.  It need not be validated in any other way.
12268  */
12269 static int
12270 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12271     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12272 {
12273 	uint64_t len = dof->dofh_loadsz, seclen;
12274 	uintptr_t daddr = (uintptr_t)dof;
12275 	dtrace_ecbdesc_t *ep;
12276 	dtrace_enabling_t *enab;
12277 	uint_t i;
12278 
12279 	ASSERT(MUTEX_HELD(&dtrace_lock));
12280 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12281 
12282 	/*
12283 	 * Check the DOF header identification bytes.  In addition to checking
12284 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12285 	 * we can use them later without fear of regressing existing binaries.
12286 	 */
12287 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12288 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12289 		dtrace_dof_error(dof, "DOF magic string mismatch");
12290 		return (-1);
12291 	}
12292 
12293 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12294 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12295 		dtrace_dof_error(dof, "DOF has invalid data model");
12296 		return (-1);
12297 	}
12298 
12299 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12300 		dtrace_dof_error(dof, "DOF encoding mismatch");
12301 		return (-1);
12302 	}
12303 
12304 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12305 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12306 		dtrace_dof_error(dof, "DOF version mismatch");
12307 		return (-1);
12308 	}
12309 
12310 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12311 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12312 		return (-1);
12313 	}
12314 
12315 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12316 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12317 		return (-1);
12318 	}
12319 
12320 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12321 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12322 		return (-1);
12323 	}
12324 
12325 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12326 		if (dof->dofh_ident[i] != 0) {
12327 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12328 			return (-1);
12329 		}
12330 	}
12331 
12332 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12333 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12334 		return (-1);
12335 	}
12336 
12337 	if (dof->dofh_secsize == 0) {
12338 		dtrace_dof_error(dof, "zero section header size");
12339 		return (-1);
12340 	}
12341 
12342 	/*
12343 	 * Check that the section headers don't exceed the amount of DOF
12344 	 * data.  Note that we cast the section size and number of sections
12345 	 * to uint64_t's to prevent possible overflow in the multiplication.
12346 	 */
12347 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12348 
12349 	if (dof->dofh_secoff > len || seclen > len ||
12350 	    dof->dofh_secoff + seclen > len) {
12351 		dtrace_dof_error(dof, "truncated section headers");
12352 		return (-1);
12353 	}
12354 
12355 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12356 		dtrace_dof_error(dof, "misaligned section headers");
12357 		return (-1);
12358 	}
12359 
12360 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12361 		dtrace_dof_error(dof, "misaligned section size");
12362 		return (-1);
12363 	}
12364 
12365 	/*
12366 	 * Take an initial pass through the section headers to be sure that
12367 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12368 	 * set, do not permit sections relating to providers, probes, or args.
12369 	 */
12370 	for (i = 0; i < dof->dofh_secnum; i++) {
12371 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12372 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12373 
12374 		if (noprobes) {
12375 			switch (sec->dofs_type) {
12376 			case DOF_SECT_PROVIDER:
12377 			case DOF_SECT_PROBES:
12378 			case DOF_SECT_PRARGS:
12379 			case DOF_SECT_PROFFS:
12380 				dtrace_dof_error(dof, "illegal sections "
12381 				    "for enabling");
12382 				return (-1);
12383 			}
12384 		}
12385 
12386 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12387 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12388 			dtrace_dof_error(dof, "loadable section with load "
12389 			    "flag unset");
12390 			return (-1);
12391 		}
12392 
12393 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12394 			continue; /* just ignore non-loadable sections */
12395 
12396 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12397 			dtrace_dof_error(dof, "bad section alignment");
12398 			return (-1);
12399 		}
12400 
12401 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12402 			dtrace_dof_error(dof, "misaligned section");
12403 			return (-1);
12404 		}
12405 
12406 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12407 		    sec->dofs_offset + sec->dofs_size > len) {
12408 			dtrace_dof_error(dof, "corrupt section header");
12409 			return (-1);
12410 		}
12411 
12412 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12413 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12414 			dtrace_dof_error(dof, "non-terminating string table");
12415 			return (-1);
12416 		}
12417 	}
12418 
12419 	/*
12420 	 * Take a second pass through the sections and locate and perform any
12421 	 * relocations that are present.  We do this after the first pass to
12422 	 * be sure that all sections have had their headers validated.
12423 	 */
12424 	for (i = 0; i < dof->dofh_secnum; i++) {
12425 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12426 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12427 
12428 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12429 			continue; /* skip sections that are not loadable */
12430 
12431 		switch (sec->dofs_type) {
12432 		case DOF_SECT_URELHDR:
12433 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12434 				return (-1);
12435 			break;
12436 		}
12437 	}
12438 
12439 	if ((enab = *enabp) == NULL)
12440 		enab = *enabp = dtrace_enabling_create(vstate);
12441 
12442 	for (i = 0; i < dof->dofh_secnum; i++) {
12443 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12444 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12445 
12446 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12447 			continue;
12448 
12449 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12450 			dtrace_enabling_destroy(enab);
12451 			*enabp = NULL;
12452 			return (-1);
12453 		}
12454 
12455 		dtrace_enabling_add(enab, ep);
12456 	}
12457 
12458 	return (0);
12459 }
12460 
12461 /*
12462  * Process DOF for any options.  This routine assumes that the DOF has been
12463  * at least processed by dtrace_dof_slurp().
12464  */
12465 static int
12466 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12467 {
12468 	int i, rval;
12469 	uint32_t entsize;
12470 	size_t offs;
12471 	dof_optdesc_t *desc;
12472 
12473 	for (i = 0; i < dof->dofh_secnum; i++) {
12474 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12475 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12476 
12477 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12478 			continue;
12479 
12480 		if (sec->dofs_align != sizeof (uint64_t)) {
12481 			dtrace_dof_error(dof, "bad alignment in "
12482 			    "option description");
12483 			return (EINVAL);
12484 		}
12485 
12486 		if ((entsize = sec->dofs_entsize) == 0) {
12487 			dtrace_dof_error(dof, "zeroed option entry size");
12488 			return (EINVAL);
12489 		}
12490 
12491 		if (entsize < sizeof (dof_optdesc_t)) {
12492 			dtrace_dof_error(dof, "bad option entry size");
12493 			return (EINVAL);
12494 		}
12495 
12496 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12497 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12498 			    (uintptr_t)sec->dofs_offset + offs);
12499 
12500 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12501 				dtrace_dof_error(dof, "non-zero option string");
12502 				return (EINVAL);
12503 			}
12504 
12505 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12506 				dtrace_dof_error(dof, "unset option");
12507 				return (EINVAL);
12508 			}
12509 
12510 			if ((rval = dtrace_state_option(state,
12511 			    desc->dofo_option, desc->dofo_value)) != 0) {
12512 				dtrace_dof_error(dof, "rejected option");
12513 				return (rval);
12514 			}
12515 		}
12516 	}
12517 
12518 	return (0);
12519 }
12520 
12521 /*
12522  * DTrace Consumer State Functions
12523  */
12524 int
12525 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12526 {
12527 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12528 	void *base;
12529 	uintptr_t limit;
12530 	dtrace_dynvar_t *dvar, *next, *start;
12531 	int i;
12532 
12533 	ASSERT(MUTEX_HELD(&dtrace_lock));
12534 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12535 
12536 	bzero(dstate, sizeof (dtrace_dstate_t));
12537 
12538 	if ((dstate->dtds_chunksize = chunksize) == 0)
12539 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12540 
12541 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12542 		size = min;
12543 
12544 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12545 		return (ENOMEM);
12546 
12547 	dstate->dtds_size = size;
12548 	dstate->dtds_base = base;
12549 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12550 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12551 
12552 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12553 
12554 	if (hashsize != 1 && (hashsize & 1))
12555 		hashsize--;
12556 
12557 	dstate->dtds_hashsize = hashsize;
12558 	dstate->dtds_hash = dstate->dtds_base;
12559 
12560 	/*
12561 	 * Set all of our hash buckets to point to the single sink, and (if
12562 	 * it hasn't already been set), set the sink's hash value to be the
12563 	 * sink sentinel value.  The sink is needed for dynamic variable
12564 	 * lookups to know that they have iterated over an entire, valid hash
12565 	 * chain.
12566 	 */
12567 	for (i = 0; i < hashsize; i++)
12568 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12569 
12570 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12571 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12572 
12573 	/*
12574 	 * Determine number of active CPUs.  Divide free list evenly among
12575 	 * active CPUs.
12576 	 */
12577 	start = (dtrace_dynvar_t *)
12578 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12579 	limit = (uintptr_t)base + size;
12580 
12581 	maxper = (limit - (uintptr_t)start) / NCPU;
12582 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12583 
12584 	for (i = 0; i < NCPU; i++) {
12585 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12586 
12587 		/*
12588 		 * If we don't even have enough chunks to make it once through
12589 		 * NCPUs, we're just going to allocate everything to the first
12590 		 * CPU.  And if we're on the last CPU, we're going to allocate
12591 		 * whatever is left over.  In either case, we set the limit to
12592 		 * be the limit of the dynamic variable space.
12593 		 */
12594 		if (maxper == 0 || i == NCPU - 1) {
12595 			limit = (uintptr_t)base + size;
12596 			start = NULL;
12597 		} else {
12598 			limit = (uintptr_t)start + maxper;
12599 			start = (dtrace_dynvar_t *)limit;
12600 		}
12601 
12602 		ASSERT(limit <= (uintptr_t)base + size);
12603 
12604 		for (;;) {
12605 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12606 			    dstate->dtds_chunksize);
12607 
12608 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12609 				break;
12610 
12611 			dvar->dtdv_next = next;
12612 			dvar = next;
12613 		}
12614 
12615 		if (maxper == 0)
12616 			break;
12617 	}
12618 
12619 	return (0);
12620 }
12621 
12622 void
12623 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12624 {
12625 	ASSERT(MUTEX_HELD(&cpu_lock));
12626 
12627 	if (dstate->dtds_base == NULL)
12628 		return;
12629 
12630 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12631 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12632 }
12633 
12634 static void
12635 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12636 {
12637 	/*
12638 	 * Logical XOR, where are you?
12639 	 */
12640 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12641 
12642 	if (vstate->dtvs_nglobals > 0) {
12643 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12644 		    sizeof (dtrace_statvar_t *));
12645 	}
12646 
12647 	if (vstate->dtvs_ntlocals > 0) {
12648 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12649 		    sizeof (dtrace_difv_t));
12650 	}
12651 
12652 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12653 
12654 	if (vstate->dtvs_nlocals > 0) {
12655 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12656 		    sizeof (dtrace_statvar_t *));
12657 	}
12658 }
12659 
12660 static void
12661 dtrace_state_clean(dtrace_state_t *state)
12662 {
12663 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12664 		return;
12665 
12666 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12667 	dtrace_speculation_clean(state);
12668 }
12669 
12670 static void
12671 dtrace_state_deadman(dtrace_state_t *state)
12672 {
12673 	hrtime_t now;
12674 
12675 	dtrace_sync();
12676 
12677 	now = dtrace_gethrtime();
12678 
12679 	if (state != dtrace_anon.dta_state &&
12680 	    now - state->dts_laststatus >= dtrace_deadman_user)
12681 		return;
12682 
12683 	/*
12684 	 * We must be sure that dts_alive never appears to be less than the
12685 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12686 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12687 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12688 	 * the new value.  This assures that dts_alive never appears to be
12689 	 * less than its true value, regardless of the order in which the
12690 	 * stores to the underlying storage are issued.
12691 	 */
12692 	state->dts_alive = INT64_MAX;
12693 	dtrace_membar_producer();
12694 	state->dts_alive = now;
12695 }
12696 
12697 dtrace_state_t *
12698 dtrace_state_create(dev_t *devp, cred_t *cr)
12699 {
12700 	minor_t minor;
12701 	major_t major;
12702 	char c[30];
12703 	dtrace_state_t *state;
12704 	dtrace_optval_t *opt;
12705 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12706 
12707 	ASSERT(MUTEX_HELD(&dtrace_lock));
12708 	ASSERT(MUTEX_HELD(&cpu_lock));
12709 
12710 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12711 	    VM_BESTFIT | VM_SLEEP);
12712 
12713 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12714 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12715 		return (NULL);
12716 	}
12717 
12718 	state = ddi_get_soft_state(dtrace_softstate, minor);
12719 	state->dts_epid = DTRACE_EPIDNONE + 1;
12720 
12721 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12722 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12723 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12724 
12725 	if (devp != NULL) {
12726 		major = getemajor(*devp);
12727 	} else {
12728 		major = ddi_driver_major(dtrace_devi);
12729 	}
12730 
12731 	state->dts_dev = makedevice(major, minor);
12732 
12733 	if (devp != NULL)
12734 		*devp = state->dts_dev;
12735 
12736 	/*
12737 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12738 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12739 	 * other hand, it saves an additional memory reference in the probe
12740 	 * path.
12741 	 */
12742 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12743 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12744 	state->dts_cleaner = CYCLIC_NONE;
12745 	state->dts_deadman = CYCLIC_NONE;
12746 	state->dts_vstate.dtvs_state = state;
12747 
12748 	for (i = 0; i < DTRACEOPT_MAX; i++)
12749 		state->dts_options[i] = DTRACEOPT_UNSET;
12750 
12751 	/*
12752 	 * Set the default options.
12753 	 */
12754 	opt = state->dts_options;
12755 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12756 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12757 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12758 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12759 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12760 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12761 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12762 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12763 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12764 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12765 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12766 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12767 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12768 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12769 
12770 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12771 
12772 	/*
12773 	 * Depending on the user credentials, we set flag bits which alter probe
12774 	 * visibility or the amount of destructiveness allowed.  In the case of
12775 	 * actual anonymous tracing, or the possession of all privileges, all of
12776 	 * the normal checks are bypassed.
12777 	 */
12778 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12779 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12780 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12781 	} else {
12782 		/*
12783 		 * Set up the credentials for this instantiation.  We take a
12784 		 * hold on the credential to prevent it from disappearing on
12785 		 * us; this in turn prevents the zone_t referenced by this
12786 		 * credential from disappearing.  This means that we can
12787 		 * examine the credential and the zone from probe context.
12788 		 */
12789 		crhold(cr);
12790 		state->dts_cred.dcr_cred = cr;
12791 
12792 		/*
12793 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12794 		 * unlocks the use of variables like pid, zonename, etc.
12795 		 */
12796 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12797 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12798 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12799 		}
12800 
12801 		/*
12802 		 * dtrace_user allows use of syscall and profile providers.
12803 		 * If the user also has proc_owner and/or proc_zone, we
12804 		 * extend the scope to include additional visibility and
12805 		 * destructive power.
12806 		 */
12807 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12808 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12809 				state->dts_cred.dcr_visible |=
12810 				    DTRACE_CRV_ALLPROC;
12811 
12812 				state->dts_cred.dcr_action |=
12813 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12814 			}
12815 
12816 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12817 				state->dts_cred.dcr_visible |=
12818 				    DTRACE_CRV_ALLZONE;
12819 
12820 				state->dts_cred.dcr_action |=
12821 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12822 			}
12823 
12824 			/*
12825 			 * If we have all privs in whatever zone this is,
12826 			 * we can do destructive things to processes which
12827 			 * have altered credentials.
12828 			 */
12829 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12830 			    cr->cr_zone->zone_privset)) {
12831 				state->dts_cred.dcr_action |=
12832 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12833 			}
12834 		}
12835 
12836 		/*
12837 		 * Holding the dtrace_kernel privilege also implies that
12838 		 * the user has the dtrace_user privilege from a visibility
12839 		 * perspective.  But without further privileges, some
12840 		 * destructive actions are not available.
12841 		 */
12842 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12843 			/*
12844 			 * Make all probes in all zones visible.  However,
12845 			 * this doesn't mean that all actions become available
12846 			 * to all zones.
12847 			 */
12848 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12849 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12850 
12851 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12852 			    DTRACE_CRA_PROC;
12853 			/*
12854 			 * Holding proc_owner means that destructive actions
12855 			 * for *this* zone are allowed.
12856 			 */
12857 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12858 				state->dts_cred.dcr_action |=
12859 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12860 
12861 			/*
12862 			 * Holding proc_zone means that destructive actions
12863 			 * for this user/group ID in all zones is allowed.
12864 			 */
12865 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12866 				state->dts_cred.dcr_action |=
12867 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12868 
12869 			/*
12870 			 * If we have all privs in whatever zone this is,
12871 			 * we can do destructive things to processes which
12872 			 * have altered credentials.
12873 			 */
12874 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12875 			    cr->cr_zone->zone_privset)) {
12876 				state->dts_cred.dcr_action |=
12877 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12878 			}
12879 		}
12880 
12881 		/*
12882 		 * Holding the dtrace_proc privilege gives control over fasttrap
12883 		 * and pid providers.  We need to grant wider destructive
12884 		 * privileges in the event that the user has proc_owner and/or
12885 		 * proc_zone.
12886 		 */
12887 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12888 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12889 				state->dts_cred.dcr_action |=
12890 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12891 
12892 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12893 				state->dts_cred.dcr_action |=
12894 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12895 		}
12896 	}
12897 
12898 	return (state);
12899 }
12900 
12901 static int
12902 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12903 {
12904 	dtrace_optval_t *opt = state->dts_options, size;
12905 	processorid_t cpu;
12906 	int flags = 0, rval, factor, divisor = 1;
12907 
12908 	ASSERT(MUTEX_HELD(&dtrace_lock));
12909 	ASSERT(MUTEX_HELD(&cpu_lock));
12910 	ASSERT(which < DTRACEOPT_MAX);
12911 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12912 	    (state == dtrace_anon.dta_state &&
12913 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12914 
12915 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12916 		return (0);
12917 
12918 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12919 		cpu = opt[DTRACEOPT_CPU];
12920 
12921 	if (which == DTRACEOPT_SPECSIZE)
12922 		flags |= DTRACEBUF_NOSWITCH;
12923 
12924 	if (which == DTRACEOPT_BUFSIZE) {
12925 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12926 			flags |= DTRACEBUF_RING;
12927 
12928 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12929 			flags |= DTRACEBUF_FILL;
12930 
12931 		if (state != dtrace_anon.dta_state ||
12932 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12933 			flags |= DTRACEBUF_INACTIVE;
12934 	}
12935 
12936 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12937 		/*
12938 		 * The size must be 8-byte aligned.  If the size is not 8-byte
12939 		 * aligned, drop it down by the difference.
12940 		 */
12941 		if (size & (sizeof (uint64_t) - 1))
12942 			size -= size & (sizeof (uint64_t) - 1);
12943 
12944 		if (size < state->dts_reserve) {
12945 			/*
12946 			 * Buffers always must be large enough to accommodate
12947 			 * their prereserved space.  We return E2BIG instead
12948 			 * of ENOMEM in this case to allow for user-level
12949 			 * software to differentiate the cases.
12950 			 */
12951 			return (E2BIG);
12952 		}
12953 
12954 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
12955 
12956 		if (rval != ENOMEM) {
12957 			opt[which] = size;
12958 			return (rval);
12959 		}
12960 
12961 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12962 			return (rval);
12963 
12964 		for (divisor = 2; divisor < factor; divisor <<= 1)
12965 			continue;
12966 	}
12967 
12968 	return (ENOMEM);
12969 }
12970 
12971 static int
12972 dtrace_state_buffers(dtrace_state_t *state)
12973 {
12974 	dtrace_speculation_t *spec = state->dts_speculations;
12975 	int rval, i;
12976 
12977 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12978 	    DTRACEOPT_BUFSIZE)) != 0)
12979 		return (rval);
12980 
12981 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12982 	    DTRACEOPT_AGGSIZE)) != 0)
12983 		return (rval);
12984 
12985 	for (i = 0; i < state->dts_nspeculations; i++) {
12986 		if ((rval = dtrace_state_buffer(state,
12987 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12988 			return (rval);
12989 	}
12990 
12991 	return (0);
12992 }
12993 
12994 static void
12995 dtrace_state_prereserve(dtrace_state_t *state)
12996 {
12997 	dtrace_ecb_t *ecb;
12998 	dtrace_probe_t *probe;
12999 
13000 	state->dts_reserve = 0;
13001 
13002 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13003 		return;
13004 
13005 	/*
13006 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13007 	 * prereserved space to be the space required by the END probes.
13008 	 */
13009 	probe = dtrace_probes[dtrace_probeid_end - 1];
13010 	ASSERT(probe != NULL);
13011 
13012 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13013 		if (ecb->dte_state != state)
13014 			continue;
13015 
13016 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13017 	}
13018 }
13019 
13020 static int
13021 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13022 {
13023 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13024 	dtrace_speculation_t *spec;
13025 	dtrace_buffer_t *buf;
13026 	cyc_handler_t hdlr;
13027 	cyc_time_t when;
13028 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13029 	dtrace_icookie_t cookie;
13030 
13031 	mutex_enter(&cpu_lock);
13032 	mutex_enter(&dtrace_lock);
13033 
13034 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13035 		rval = EBUSY;
13036 		goto out;
13037 	}
13038 
13039 	/*
13040 	 * Before we can perform any checks, we must prime all of the
13041 	 * retained enablings that correspond to this state.
13042 	 */
13043 	dtrace_enabling_prime(state);
13044 
13045 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13046 		rval = EACCES;
13047 		goto out;
13048 	}
13049 
13050 	dtrace_state_prereserve(state);
13051 
13052 	/*
13053 	 * Now we want to do is try to allocate our speculations.
13054 	 * We do not automatically resize the number of speculations; if
13055 	 * this fails, we will fail the operation.
13056 	 */
13057 	nspec = opt[DTRACEOPT_NSPEC];
13058 	ASSERT(nspec != DTRACEOPT_UNSET);
13059 
13060 	if (nspec > INT_MAX) {
13061 		rval = ENOMEM;
13062 		goto out;
13063 	}
13064 
13065 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13066 	    KM_NOSLEEP | KM_NORMALPRI);
13067 
13068 	if (spec == NULL) {
13069 		rval = ENOMEM;
13070 		goto out;
13071 	}
13072 
13073 	state->dts_speculations = spec;
13074 	state->dts_nspeculations = (int)nspec;
13075 
13076 	for (i = 0; i < nspec; i++) {
13077 		if ((buf = kmem_zalloc(bufsize,
13078 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13079 			rval = ENOMEM;
13080 			goto err;
13081 		}
13082 
13083 		spec[i].dtsp_buffer = buf;
13084 	}
13085 
13086 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13087 		if (dtrace_anon.dta_state == NULL) {
13088 			rval = ENOENT;
13089 			goto out;
13090 		}
13091 
13092 		if (state->dts_necbs != 0) {
13093 			rval = EALREADY;
13094 			goto out;
13095 		}
13096 
13097 		state->dts_anon = dtrace_anon_grab();
13098 		ASSERT(state->dts_anon != NULL);
13099 		state = state->dts_anon;
13100 
13101 		/*
13102 		 * We want "grabanon" to be set in the grabbed state, so we'll
13103 		 * copy that option value from the grabbing state into the
13104 		 * grabbed state.
13105 		 */
13106 		state->dts_options[DTRACEOPT_GRABANON] =
13107 		    opt[DTRACEOPT_GRABANON];
13108 
13109 		*cpu = dtrace_anon.dta_beganon;
13110 
13111 		/*
13112 		 * If the anonymous state is active (as it almost certainly
13113 		 * is if the anonymous enabling ultimately matched anything),
13114 		 * we don't allow any further option processing -- but we
13115 		 * don't return failure.
13116 		 */
13117 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13118 			goto out;
13119 	}
13120 
13121 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13122 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13123 		if (state->dts_aggregations == NULL) {
13124 			/*
13125 			 * We're not going to create an aggregation buffer
13126 			 * because we don't have any ECBs that contain
13127 			 * aggregations -- set this option to 0.
13128 			 */
13129 			opt[DTRACEOPT_AGGSIZE] = 0;
13130 		} else {
13131 			/*
13132 			 * If we have an aggregation buffer, we must also have
13133 			 * a buffer to use as scratch.
13134 			 */
13135 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13136 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13137 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13138 			}
13139 		}
13140 	}
13141 
13142 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13143 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13144 		if (!state->dts_speculates) {
13145 			/*
13146 			 * We're not going to create speculation buffers
13147 			 * because we don't have any ECBs that actually
13148 			 * speculate -- set the speculation size to 0.
13149 			 */
13150 			opt[DTRACEOPT_SPECSIZE] = 0;
13151 		}
13152 	}
13153 
13154 	/*
13155 	 * The bare minimum size for any buffer that we're actually going to
13156 	 * do anything to is sizeof (uint64_t).
13157 	 */
13158 	sz = sizeof (uint64_t);
13159 
13160 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13161 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13162 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13163 		/*
13164 		 * A buffer size has been explicitly set to 0 (or to a size
13165 		 * that will be adjusted to 0) and we need the space -- we
13166 		 * need to return failure.  We return ENOSPC to differentiate
13167 		 * it from failing to allocate a buffer due to failure to meet
13168 		 * the reserve (for which we return E2BIG).
13169 		 */
13170 		rval = ENOSPC;
13171 		goto out;
13172 	}
13173 
13174 	if ((rval = dtrace_state_buffers(state)) != 0)
13175 		goto err;
13176 
13177 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13178 		sz = dtrace_dstate_defsize;
13179 
13180 	do {
13181 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13182 
13183 		if (rval == 0)
13184 			break;
13185 
13186 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13187 			goto err;
13188 	} while (sz >>= 1);
13189 
13190 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13191 
13192 	if (rval != 0)
13193 		goto err;
13194 
13195 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13196 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13197 
13198 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13199 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13200 
13201 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13202 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13203 
13204 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13205 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13206 
13207 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13208 	hdlr.cyh_arg = state;
13209 	hdlr.cyh_level = CY_LOW_LEVEL;
13210 
13211 	when.cyt_when = 0;
13212 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13213 
13214 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13215 
13216 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13217 	hdlr.cyh_arg = state;
13218 	hdlr.cyh_level = CY_LOW_LEVEL;
13219 
13220 	when.cyt_when = 0;
13221 	when.cyt_interval = dtrace_deadman_interval;
13222 
13223 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13224 	state->dts_deadman = cyclic_add(&hdlr, &when);
13225 
13226 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13227 
13228 	if (state->dts_getf != 0 &&
13229 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13230 		/*
13231 		 * We don't have kernel privs but we have at least one call
13232 		 * to getf(); we need to bump our zone's count, and (if
13233 		 * this is the first enabling to have an unprivileged call
13234 		 * to getf()) we need to hook into closef().
13235 		 */
13236 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13237 
13238 		if (dtrace_getf++ == 0) {
13239 			ASSERT(dtrace_closef == NULL);
13240 			dtrace_closef = dtrace_getf_barrier;
13241 		}
13242 	}
13243 
13244 	/*
13245 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13246 	 * interrupts here both to record the CPU on which we fired the BEGIN
13247 	 * probe (the data from this CPU will be processed first at user
13248 	 * level) and to manually activate the buffer for this CPU.
13249 	 */
13250 	cookie = dtrace_interrupt_disable();
13251 	*cpu = CPU->cpu_id;
13252 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13253 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13254 
13255 	dtrace_probe(dtrace_probeid_begin,
13256 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13257 	dtrace_interrupt_enable(cookie);
13258 	/*
13259 	 * We may have had an exit action from a BEGIN probe; only change our
13260 	 * state to ACTIVE if we're still in WARMUP.
13261 	 */
13262 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13263 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13264 
13265 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13266 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13267 
13268 	/*
13269 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13270 	 * want each CPU to transition its principal buffer out of the
13271 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13272 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13273 	 * atomically transition from processing none of a state's ECBs to
13274 	 * processing all of them.
13275 	 */
13276 	dtrace_xcall(DTRACE_CPUALL,
13277 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13278 	goto out;
13279 
13280 err:
13281 	dtrace_buffer_free(state->dts_buffer);
13282 	dtrace_buffer_free(state->dts_aggbuffer);
13283 
13284 	if ((nspec = state->dts_nspeculations) == 0) {
13285 		ASSERT(state->dts_speculations == NULL);
13286 		goto out;
13287 	}
13288 
13289 	spec = state->dts_speculations;
13290 	ASSERT(spec != NULL);
13291 
13292 	for (i = 0; i < state->dts_nspeculations; i++) {
13293 		if ((buf = spec[i].dtsp_buffer) == NULL)
13294 			break;
13295 
13296 		dtrace_buffer_free(buf);
13297 		kmem_free(buf, bufsize);
13298 	}
13299 
13300 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13301 	state->dts_nspeculations = 0;
13302 	state->dts_speculations = NULL;
13303 
13304 out:
13305 	mutex_exit(&dtrace_lock);
13306 	mutex_exit(&cpu_lock);
13307 
13308 	return (rval);
13309 }
13310 
13311 static int
13312 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13313 {
13314 	dtrace_icookie_t cookie;
13315 
13316 	ASSERT(MUTEX_HELD(&dtrace_lock));
13317 
13318 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13319 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13320 		return (EINVAL);
13321 
13322 	/*
13323 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13324 	 * to be sure that every CPU has seen it.  See below for the details
13325 	 * on why this is done.
13326 	 */
13327 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13328 	dtrace_sync();
13329 
13330 	/*
13331 	 * By this point, it is impossible for any CPU to be still processing
13332 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13333 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13334 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13335 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13336 	 * iff we're in the END probe.
13337 	 */
13338 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13339 	dtrace_sync();
13340 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13341 
13342 	/*
13343 	 * Finally, we can release the reserve and call the END probe.  We
13344 	 * disable interrupts across calling the END probe to allow us to
13345 	 * return the CPU on which we actually called the END probe.  This
13346 	 * allows user-land to be sure that this CPU's principal buffer is
13347 	 * processed last.
13348 	 */
13349 	state->dts_reserve = 0;
13350 
13351 	cookie = dtrace_interrupt_disable();
13352 	*cpu = CPU->cpu_id;
13353 	dtrace_probe(dtrace_probeid_end,
13354 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13355 	dtrace_interrupt_enable(cookie);
13356 
13357 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13358 	dtrace_sync();
13359 
13360 	if (state->dts_getf != 0 &&
13361 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13362 		/*
13363 		 * We don't have kernel privs but we have at least one call
13364 		 * to getf(); we need to lower our zone's count, and (if
13365 		 * this is the last enabling to have an unprivileged call
13366 		 * to getf()) we need to clear the closef() hook.
13367 		 */
13368 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
13369 		ASSERT(dtrace_closef == dtrace_getf_barrier);
13370 		ASSERT(dtrace_getf > 0);
13371 
13372 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
13373 
13374 		if (--dtrace_getf == 0)
13375 			dtrace_closef = NULL;
13376 	}
13377 
13378 	return (0);
13379 }
13380 
13381 static int
13382 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13383     dtrace_optval_t val)
13384 {
13385 	ASSERT(MUTEX_HELD(&dtrace_lock));
13386 
13387 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13388 		return (EBUSY);
13389 
13390 	if (option >= DTRACEOPT_MAX)
13391 		return (EINVAL);
13392 
13393 	if (option != DTRACEOPT_CPU && val < 0)
13394 		return (EINVAL);
13395 
13396 	switch (option) {
13397 	case DTRACEOPT_DESTRUCTIVE:
13398 		if (dtrace_destructive_disallow)
13399 			return (EACCES);
13400 
13401 		state->dts_cred.dcr_destructive = 1;
13402 		break;
13403 
13404 	case DTRACEOPT_BUFSIZE:
13405 	case DTRACEOPT_DYNVARSIZE:
13406 	case DTRACEOPT_AGGSIZE:
13407 	case DTRACEOPT_SPECSIZE:
13408 	case DTRACEOPT_STRSIZE:
13409 		if (val < 0)
13410 			return (EINVAL);
13411 
13412 		if (val >= LONG_MAX) {
13413 			/*
13414 			 * If this is an otherwise negative value, set it to
13415 			 * the highest multiple of 128m less than LONG_MAX.
13416 			 * Technically, we're adjusting the size without
13417 			 * regard to the buffer resizing policy, but in fact,
13418 			 * this has no effect -- if we set the buffer size to
13419 			 * ~LONG_MAX and the buffer policy is ultimately set to
13420 			 * be "manual", the buffer allocation is guaranteed to
13421 			 * fail, if only because the allocation requires two
13422 			 * buffers.  (We set the the size to the highest
13423 			 * multiple of 128m because it ensures that the size
13424 			 * will remain a multiple of a megabyte when
13425 			 * repeatedly halved -- all the way down to 15m.)
13426 			 */
13427 			val = LONG_MAX - (1 << 27) + 1;
13428 		}
13429 	}
13430 
13431 	state->dts_options[option] = val;
13432 
13433 	return (0);
13434 }
13435 
13436 static void
13437 dtrace_state_destroy(dtrace_state_t *state)
13438 {
13439 	dtrace_ecb_t *ecb;
13440 	dtrace_vstate_t *vstate = &state->dts_vstate;
13441 	minor_t minor = getminor(state->dts_dev);
13442 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13443 	dtrace_speculation_t *spec = state->dts_speculations;
13444 	int nspec = state->dts_nspeculations;
13445 	uint32_t match;
13446 
13447 	ASSERT(MUTEX_HELD(&dtrace_lock));
13448 	ASSERT(MUTEX_HELD(&cpu_lock));
13449 
13450 	/*
13451 	 * First, retract any retained enablings for this state.
13452 	 */
13453 	dtrace_enabling_retract(state);
13454 	ASSERT(state->dts_nretained == 0);
13455 
13456 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13457 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13458 		/*
13459 		 * We have managed to come into dtrace_state_destroy() on a
13460 		 * hot enabling -- almost certainly because of a disorderly
13461 		 * shutdown of a consumer.  (That is, a consumer that is
13462 		 * exiting without having called dtrace_stop().) In this case,
13463 		 * we're going to set our activity to be KILLED, and then
13464 		 * issue a sync to be sure that everyone is out of probe
13465 		 * context before we start blowing away ECBs.
13466 		 */
13467 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13468 		dtrace_sync();
13469 	}
13470 
13471 	/*
13472 	 * Release the credential hold we took in dtrace_state_create().
13473 	 */
13474 	if (state->dts_cred.dcr_cred != NULL)
13475 		crfree(state->dts_cred.dcr_cred);
13476 
13477 	/*
13478 	 * Now we can safely disable and destroy any enabled probes.  Because
13479 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13480 	 * (especially if they're all enabled), we take two passes through the
13481 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13482 	 * in the second we disable whatever is left over.
13483 	 */
13484 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13485 		for (i = 0; i < state->dts_necbs; i++) {
13486 			if ((ecb = state->dts_ecbs[i]) == NULL)
13487 				continue;
13488 
13489 			if (match && ecb->dte_probe != NULL) {
13490 				dtrace_probe_t *probe = ecb->dte_probe;
13491 				dtrace_provider_t *prov = probe->dtpr_provider;
13492 
13493 				if (!(prov->dtpv_priv.dtpp_flags & match))
13494 					continue;
13495 			}
13496 
13497 			dtrace_ecb_disable(ecb);
13498 			dtrace_ecb_destroy(ecb);
13499 		}
13500 
13501 		if (!match)
13502 			break;
13503 	}
13504 
13505 	/*
13506 	 * Before we free the buffers, perform one more sync to assure that
13507 	 * every CPU is out of probe context.
13508 	 */
13509 	dtrace_sync();
13510 
13511 	dtrace_buffer_free(state->dts_buffer);
13512 	dtrace_buffer_free(state->dts_aggbuffer);
13513 
13514 	for (i = 0; i < nspec; i++)
13515 		dtrace_buffer_free(spec[i].dtsp_buffer);
13516 
13517 	if (state->dts_cleaner != CYCLIC_NONE)
13518 		cyclic_remove(state->dts_cleaner);
13519 
13520 	if (state->dts_deadman != CYCLIC_NONE)
13521 		cyclic_remove(state->dts_deadman);
13522 
13523 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13524 	dtrace_vstate_fini(vstate);
13525 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13526 
13527 	if (state->dts_aggregations != NULL) {
13528 #ifdef DEBUG
13529 		for (i = 0; i < state->dts_naggregations; i++)
13530 			ASSERT(state->dts_aggregations[i] == NULL);
13531 #endif
13532 		ASSERT(state->dts_naggregations > 0);
13533 		kmem_free(state->dts_aggregations,
13534 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13535 	}
13536 
13537 	kmem_free(state->dts_buffer, bufsize);
13538 	kmem_free(state->dts_aggbuffer, bufsize);
13539 
13540 	for (i = 0; i < nspec; i++)
13541 		kmem_free(spec[i].dtsp_buffer, bufsize);
13542 
13543 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13544 
13545 	dtrace_format_destroy(state);
13546 
13547 	vmem_destroy(state->dts_aggid_arena);
13548 	ddi_soft_state_free(dtrace_softstate, minor);
13549 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13550 }
13551 
13552 /*
13553  * DTrace Anonymous Enabling Functions
13554  */
13555 static dtrace_state_t *
13556 dtrace_anon_grab(void)
13557 {
13558 	dtrace_state_t *state;
13559 
13560 	ASSERT(MUTEX_HELD(&dtrace_lock));
13561 
13562 	if ((state = dtrace_anon.dta_state) == NULL) {
13563 		ASSERT(dtrace_anon.dta_enabling == NULL);
13564 		return (NULL);
13565 	}
13566 
13567 	ASSERT(dtrace_anon.dta_enabling != NULL);
13568 	ASSERT(dtrace_retained != NULL);
13569 
13570 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13571 	dtrace_anon.dta_enabling = NULL;
13572 	dtrace_anon.dta_state = NULL;
13573 
13574 	return (state);
13575 }
13576 
13577 static void
13578 dtrace_anon_property(void)
13579 {
13580 	int i, rv;
13581 	dtrace_state_t *state;
13582 	dof_hdr_t *dof;
13583 	char c[32];		/* enough for "dof-data-" + digits */
13584 
13585 	ASSERT(MUTEX_HELD(&dtrace_lock));
13586 	ASSERT(MUTEX_HELD(&cpu_lock));
13587 
13588 	for (i = 0; ; i++) {
13589 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13590 
13591 		dtrace_err_verbose = 1;
13592 
13593 		if ((dof = dtrace_dof_property(c)) == NULL) {
13594 			dtrace_err_verbose = 0;
13595 			break;
13596 		}
13597 
13598 		/*
13599 		 * We want to create anonymous state, so we need to transition
13600 		 * the kernel debugger to indicate that DTrace is active.  If
13601 		 * this fails (e.g. because the debugger has modified text in
13602 		 * some way), we won't continue with the processing.
13603 		 */
13604 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13605 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13606 			    "enabling ignored.");
13607 			dtrace_dof_destroy(dof);
13608 			break;
13609 		}
13610 
13611 		/*
13612 		 * If we haven't allocated an anonymous state, we'll do so now.
13613 		 */
13614 		if ((state = dtrace_anon.dta_state) == NULL) {
13615 			state = dtrace_state_create(NULL, NULL);
13616 			dtrace_anon.dta_state = state;
13617 
13618 			if (state == NULL) {
13619 				/*
13620 				 * This basically shouldn't happen:  the only
13621 				 * failure mode from dtrace_state_create() is a
13622 				 * failure of ddi_soft_state_zalloc() that
13623 				 * itself should never happen.  Still, the
13624 				 * interface allows for a failure mode, and
13625 				 * we want to fail as gracefully as possible:
13626 				 * we'll emit an error message and cease
13627 				 * processing anonymous state in this case.
13628 				 */
13629 				cmn_err(CE_WARN, "failed to create "
13630 				    "anonymous state");
13631 				dtrace_dof_destroy(dof);
13632 				break;
13633 			}
13634 		}
13635 
13636 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13637 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13638 
13639 		if (rv == 0)
13640 			rv = dtrace_dof_options(dof, state);
13641 
13642 		dtrace_err_verbose = 0;
13643 		dtrace_dof_destroy(dof);
13644 
13645 		if (rv != 0) {
13646 			/*
13647 			 * This is malformed DOF; chuck any anonymous state
13648 			 * that we created.
13649 			 */
13650 			ASSERT(dtrace_anon.dta_enabling == NULL);
13651 			dtrace_state_destroy(state);
13652 			dtrace_anon.dta_state = NULL;
13653 			break;
13654 		}
13655 
13656 		ASSERT(dtrace_anon.dta_enabling != NULL);
13657 	}
13658 
13659 	if (dtrace_anon.dta_enabling != NULL) {
13660 		int rval;
13661 
13662 		/*
13663 		 * dtrace_enabling_retain() can only fail because we are
13664 		 * trying to retain more enablings than are allowed -- but
13665 		 * we only have one anonymous enabling, and we are guaranteed
13666 		 * to be allowed at least one retained enabling; we assert
13667 		 * that dtrace_enabling_retain() returns success.
13668 		 */
13669 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13670 		ASSERT(rval == 0);
13671 
13672 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13673 	}
13674 }
13675 
13676 /*
13677  * DTrace Helper Functions
13678  */
13679 static void
13680 dtrace_helper_trace(dtrace_helper_action_t *helper,
13681     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13682 {
13683 	uint32_t size, next, nnext, i;
13684 	dtrace_helptrace_t *ent;
13685 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13686 
13687 	if (!dtrace_helptrace_enabled)
13688 		return;
13689 
13690 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13691 
13692 	/*
13693 	 * What would a tracing framework be without its own tracing
13694 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13695 	 */
13696 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13697 	    sizeof (uint64_t) - sizeof (uint64_t);
13698 
13699 	/*
13700 	 * Iterate until we can allocate a slot in the trace buffer.
13701 	 */
13702 	do {
13703 		next = dtrace_helptrace_next;
13704 
13705 		if (next + size < dtrace_helptrace_bufsize) {
13706 			nnext = next + size;
13707 		} else {
13708 			nnext = size;
13709 		}
13710 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13711 
13712 	/*
13713 	 * We have our slot; fill it in.
13714 	 */
13715 	if (nnext == size)
13716 		next = 0;
13717 
13718 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13719 	ent->dtht_helper = helper;
13720 	ent->dtht_where = where;
13721 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13722 
13723 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13724 	    mstate->dtms_fltoffs : -1;
13725 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13726 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13727 
13728 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13729 		dtrace_statvar_t *svar;
13730 
13731 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13732 			continue;
13733 
13734 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13735 		ent->dtht_locals[i] =
13736 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13737 	}
13738 }
13739 
13740 static uint64_t
13741 dtrace_helper(int which, dtrace_mstate_t *mstate,
13742     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13743 {
13744 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13745 	uint64_t sarg0 = mstate->dtms_arg[0];
13746 	uint64_t sarg1 = mstate->dtms_arg[1];
13747 	uint64_t rval;
13748 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13749 	dtrace_helper_action_t *helper;
13750 	dtrace_vstate_t *vstate;
13751 	dtrace_difo_t *pred;
13752 	int i, trace = dtrace_helptrace_enabled;
13753 
13754 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13755 
13756 	if (helpers == NULL)
13757 		return (0);
13758 
13759 	if ((helper = helpers->dthps_actions[which]) == NULL)
13760 		return (0);
13761 
13762 	vstate = &helpers->dthps_vstate;
13763 	mstate->dtms_arg[0] = arg0;
13764 	mstate->dtms_arg[1] = arg1;
13765 
13766 	/*
13767 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13768 	 * we'll call the corresponding actions.  Note that the below calls
13769 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13770 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13771 	 * the stored DIF offset with its own (which is the desired behavior).
13772 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13773 	 * from machine state; this is okay, too.
13774 	 */
13775 	for (; helper != NULL; helper = helper->dtha_next) {
13776 		if ((pred = helper->dtha_predicate) != NULL) {
13777 			if (trace)
13778 				dtrace_helper_trace(helper, mstate, vstate, 0);
13779 
13780 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13781 				goto next;
13782 
13783 			if (*flags & CPU_DTRACE_FAULT)
13784 				goto err;
13785 		}
13786 
13787 		for (i = 0; i < helper->dtha_nactions; i++) {
13788 			if (trace)
13789 				dtrace_helper_trace(helper,
13790 				    mstate, vstate, i + 1);
13791 
13792 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13793 			    mstate, vstate, state);
13794 
13795 			if (*flags & CPU_DTRACE_FAULT)
13796 				goto err;
13797 		}
13798 
13799 next:
13800 		if (trace)
13801 			dtrace_helper_trace(helper, mstate, vstate,
13802 			    DTRACE_HELPTRACE_NEXT);
13803 	}
13804 
13805 	if (trace)
13806 		dtrace_helper_trace(helper, mstate, vstate,
13807 		    DTRACE_HELPTRACE_DONE);
13808 
13809 	/*
13810 	 * Restore the arg0 that we saved upon entry.
13811 	 */
13812 	mstate->dtms_arg[0] = sarg0;
13813 	mstate->dtms_arg[1] = sarg1;
13814 
13815 	return (rval);
13816 
13817 err:
13818 	if (trace)
13819 		dtrace_helper_trace(helper, mstate, vstate,
13820 		    DTRACE_HELPTRACE_ERR);
13821 
13822 	/*
13823 	 * Restore the arg0 that we saved upon entry.
13824 	 */
13825 	mstate->dtms_arg[0] = sarg0;
13826 	mstate->dtms_arg[1] = sarg1;
13827 
13828 	return (NULL);
13829 }
13830 
13831 static void
13832 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13833     dtrace_vstate_t *vstate)
13834 {
13835 	int i;
13836 
13837 	if (helper->dtha_predicate != NULL)
13838 		dtrace_difo_release(helper->dtha_predicate, vstate);
13839 
13840 	for (i = 0; i < helper->dtha_nactions; i++) {
13841 		ASSERT(helper->dtha_actions[i] != NULL);
13842 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13843 	}
13844 
13845 	kmem_free(helper->dtha_actions,
13846 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13847 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13848 }
13849 
13850 static int
13851 dtrace_helper_destroygen(int gen)
13852 {
13853 	proc_t *p = curproc;
13854 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13855 	dtrace_vstate_t *vstate;
13856 	int i;
13857 
13858 	ASSERT(MUTEX_HELD(&dtrace_lock));
13859 
13860 	if (help == NULL || gen > help->dthps_generation)
13861 		return (EINVAL);
13862 
13863 	vstate = &help->dthps_vstate;
13864 
13865 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13866 		dtrace_helper_action_t *last = NULL, *h, *next;
13867 
13868 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13869 			next = h->dtha_next;
13870 
13871 			if (h->dtha_generation == gen) {
13872 				if (last != NULL) {
13873 					last->dtha_next = next;
13874 				} else {
13875 					help->dthps_actions[i] = next;
13876 				}
13877 
13878 				dtrace_helper_action_destroy(h, vstate);
13879 			} else {
13880 				last = h;
13881 			}
13882 		}
13883 	}
13884 
13885 	/*
13886 	 * Interate until we've cleared out all helper providers with the
13887 	 * given generation number.
13888 	 */
13889 	for (;;) {
13890 		dtrace_helper_provider_t *prov;
13891 
13892 		/*
13893 		 * Look for a helper provider with the right generation. We
13894 		 * have to start back at the beginning of the list each time
13895 		 * because we drop dtrace_lock. It's unlikely that we'll make
13896 		 * more than two passes.
13897 		 */
13898 		for (i = 0; i < help->dthps_nprovs; i++) {
13899 			prov = help->dthps_provs[i];
13900 
13901 			if (prov->dthp_generation == gen)
13902 				break;
13903 		}
13904 
13905 		/*
13906 		 * If there were no matches, we're done.
13907 		 */
13908 		if (i == help->dthps_nprovs)
13909 			break;
13910 
13911 		/*
13912 		 * Move the last helper provider into this slot.
13913 		 */
13914 		help->dthps_nprovs--;
13915 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13916 		help->dthps_provs[help->dthps_nprovs] = NULL;
13917 
13918 		mutex_exit(&dtrace_lock);
13919 
13920 		/*
13921 		 * If we have a meta provider, remove this helper provider.
13922 		 */
13923 		mutex_enter(&dtrace_meta_lock);
13924 		if (dtrace_meta_pid != NULL) {
13925 			ASSERT(dtrace_deferred_pid == NULL);
13926 			dtrace_helper_provider_remove(&prov->dthp_prov,
13927 			    p->p_pid);
13928 		}
13929 		mutex_exit(&dtrace_meta_lock);
13930 
13931 		dtrace_helper_provider_destroy(prov);
13932 
13933 		mutex_enter(&dtrace_lock);
13934 	}
13935 
13936 	return (0);
13937 }
13938 
13939 static int
13940 dtrace_helper_validate(dtrace_helper_action_t *helper)
13941 {
13942 	int err = 0, i;
13943 	dtrace_difo_t *dp;
13944 
13945 	if ((dp = helper->dtha_predicate) != NULL)
13946 		err += dtrace_difo_validate_helper(dp);
13947 
13948 	for (i = 0; i < helper->dtha_nactions; i++)
13949 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13950 
13951 	return (err == 0);
13952 }
13953 
13954 static int
13955 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13956 {
13957 	dtrace_helpers_t *help;
13958 	dtrace_helper_action_t *helper, *last;
13959 	dtrace_actdesc_t *act;
13960 	dtrace_vstate_t *vstate;
13961 	dtrace_predicate_t *pred;
13962 	int count = 0, nactions = 0, i;
13963 
13964 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13965 		return (EINVAL);
13966 
13967 	help = curproc->p_dtrace_helpers;
13968 	last = help->dthps_actions[which];
13969 	vstate = &help->dthps_vstate;
13970 
13971 	for (count = 0; last != NULL; last = last->dtha_next) {
13972 		count++;
13973 		if (last->dtha_next == NULL)
13974 			break;
13975 	}
13976 
13977 	/*
13978 	 * If we already have dtrace_helper_actions_max helper actions for this
13979 	 * helper action type, we'll refuse to add a new one.
13980 	 */
13981 	if (count >= dtrace_helper_actions_max)
13982 		return (ENOSPC);
13983 
13984 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13985 	helper->dtha_generation = help->dthps_generation;
13986 
13987 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13988 		ASSERT(pred->dtp_difo != NULL);
13989 		dtrace_difo_hold(pred->dtp_difo);
13990 		helper->dtha_predicate = pred->dtp_difo;
13991 	}
13992 
13993 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13994 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13995 			goto err;
13996 
13997 		if (act->dtad_difo == NULL)
13998 			goto err;
13999 
14000 		nactions++;
14001 	}
14002 
14003 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14004 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14005 
14006 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14007 		dtrace_difo_hold(act->dtad_difo);
14008 		helper->dtha_actions[i++] = act->dtad_difo;
14009 	}
14010 
14011 	if (!dtrace_helper_validate(helper))
14012 		goto err;
14013 
14014 	if (last == NULL) {
14015 		help->dthps_actions[which] = helper;
14016 	} else {
14017 		last->dtha_next = helper;
14018 	}
14019 
14020 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14021 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14022 		dtrace_helptrace_next = 0;
14023 	}
14024 
14025 	return (0);
14026 err:
14027 	dtrace_helper_action_destroy(helper, vstate);
14028 	return (EINVAL);
14029 }
14030 
14031 static void
14032 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14033     dof_helper_t *dofhp)
14034 {
14035 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14036 
14037 	mutex_enter(&dtrace_meta_lock);
14038 	mutex_enter(&dtrace_lock);
14039 
14040 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14041 		/*
14042 		 * If the dtrace module is loaded but not attached, or if
14043 		 * there aren't isn't a meta provider registered to deal with
14044 		 * these provider descriptions, we need to postpone creating
14045 		 * the actual providers until later.
14046 		 */
14047 
14048 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14049 		    dtrace_deferred_pid != help) {
14050 			help->dthps_deferred = 1;
14051 			help->dthps_pid = p->p_pid;
14052 			help->dthps_next = dtrace_deferred_pid;
14053 			help->dthps_prev = NULL;
14054 			if (dtrace_deferred_pid != NULL)
14055 				dtrace_deferred_pid->dthps_prev = help;
14056 			dtrace_deferred_pid = help;
14057 		}
14058 
14059 		mutex_exit(&dtrace_lock);
14060 
14061 	} else if (dofhp != NULL) {
14062 		/*
14063 		 * If the dtrace module is loaded and we have a particular
14064 		 * helper provider description, pass that off to the
14065 		 * meta provider.
14066 		 */
14067 
14068 		mutex_exit(&dtrace_lock);
14069 
14070 		dtrace_helper_provide(dofhp, p->p_pid);
14071 
14072 	} else {
14073 		/*
14074 		 * Otherwise, just pass all the helper provider descriptions
14075 		 * off to the meta provider.
14076 		 */
14077 
14078 		int i;
14079 		mutex_exit(&dtrace_lock);
14080 
14081 		for (i = 0; i < help->dthps_nprovs; i++) {
14082 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14083 			    p->p_pid);
14084 		}
14085 	}
14086 
14087 	mutex_exit(&dtrace_meta_lock);
14088 }
14089 
14090 static int
14091 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14092 {
14093 	dtrace_helpers_t *help;
14094 	dtrace_helper_provider_t *hprov, **tmp_provs;
14095 	uint_t tmp_maxprovs, i;
14096 
14097 	ASSERT(MUTEX_HELD(&dtrace_lock));
14098 
14099 	help = curproc->p_dtrace_helpers;
14100 	ASSERT(help != NULL);
14101 
14102 	/*
14103 	 * If we already have dtrace_helper_providers_max helper providers,
14104 	 * we're refuse to add a new one.
14105 	 */
14106 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14107 		return (ENOSPC);
14108 
14109 	/*
14110 	 * Check to make sure this isn't a duplicate.
14111 	 */
14112 	for (i = 0; i < help->dthps_nprovs; i++) {
14113 		if (dofhp->dofhp_dof ==
14114 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14115 			return (EALREADY);
14116 	}
14117 
14118 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14119 	hprov->dthp_prov = *dofhp;
14120 	hprov->dthp_ref = 1;
14121 	hprov->dthp_generation = gen;
14122 
14123 	/*
14124 	 * Allocate a bigger table for helper providers if it's already full.
14125 	 */
14126 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14127 		tmp_maxprovs = help->dthps_maxprovs;
14128 		tmp_provs = help->dthps_provs;
14129 
14130 		if (help->dthps_maxprovs == 0)
14131 			help->dthps_maxprovs = 2;
14132 		else
14133 			help->dthps_maxprovs *= 2;
14134 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14135 			help->dthps_maxprovs = dtrace_helper_providers_max;
14136 
14137 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14138 
14139 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14140 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14141 
14142 		if (tmp_provs != NULL) {
14143 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14144 			    sizeof (dtrace_helper_provider_t *));
14145 			kmem_free(tmp_provs, tmp_maxprovs *
14146 			    sizeof (dtrace_helper_provider_t *));
14147 		}
14148 	}
14149 
14150 	help->dthps_provs[help->dthps_nprovs] = hprov;
14151 	help->dthps_nprovs++;
14152 
14153 	return (0);
14154 }
14155 
14156 static void
14157 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14158 {
14159 	mutex_enter(&dtrace_lock);
14160 
14161 	if (--hprov->dthp_ref == 0) {
14162 		dof_hdr_t *dof;
14163 		mutex_exit(&dtrace_lock);
14164 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14165 		dtrace_dof_destroy(dof);
14166 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14167 	} else {
14168 		mutex_exit(&dtrace_lock);
14169 	}
14170 }
14171 
14172 static int
14173 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14174 {
14175 	uintptr_t daddr = (uintptr_t)dof;
14176 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14177 	dof_provider_t *provider;
14178 	dof_probe_t *probe;
14179 	uint8_t *arg;
14180 	char *strtab, *typestr;
14181 	dof_stridx_t typeidx;
14182 	size_t typesz;
14183 	uint_t nprobes, j, k;
14184 
14185 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14186 
14187 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14188 		dtrace_dof_error(dof, "misaligned section offset");
14189 		return (-1);
14190 	}
14191 
14192 	/*
14193 	 * The section needs to be large enough to contain the DOF provider
14194 	 * structure appropriate for the given version.
14195 	 */
14196 	if (sec->dofs_size <
14197 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14198 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14199 	    sizeof (dof_provider_t))) {
14200 		dtrace_dof_error(dof, "provider section too small");
14201 		return (-1);
14202 	}
14203 
14204 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14205 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14206 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14207 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14208 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14209 
14210 	if (str_sec == NULL || prb_sec == NULL ||
14211 	    arg_sec == NULL || off_sec == NULL)
14212 		return (-1);
14213 
14214 	enoff_sec = NULL;
14215 
14216 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14217 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14218 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14219 	    provider->dofpv_prenoffs)) == NULL)
14220 		return (-1);
14221 
14222 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14223 
14224 	if (provider->dofpv_name >= str_sec->dofs_size ||
14225 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14226 		dtrace_dof_error(dof, "invalid provider name");
14227 		return (-1);
14228 	}
14229 
14230 	if (prb_sec->dofs_entsize == 0 ||
14231 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14232 		dtrace_dof_error(dof, "invalid entry size");
14233 		return (-1);
14234 	}
14235 
14236 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14237 		dtrace_dof_error(dof, "misaligned entry size");
14238 		return (-1);
14239 	}
14240 
14241 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14242 		dtrace_dof_error(dof, "invalid entry size");
14243 		return (-1);
14244 	}
14245 
14246 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14247 		dtrace_dof_error(dof, "misaligned section offset");
14248 		return (-1);
14249 	}
14250 
14251 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14252 		dtrace_dof_error(dof, "invalid entry size");
14253 		return (-1);
14254 	}
14255 
14256 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14257 
14258 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14259 
14260 	/*
14261 	 * Take a pass through the probes to check for errors.
14262 	 */
14263 	for (j = 0; j < nprobes; j++) {
14264 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14265 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14266 
14267 		if (probe->dofpr_func >= str_sec->dofs_size) {
14268 			dtrace_dof_error(dof, "invalid function name");
14269 			return (-1);
14270 		}
14271 
14272 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14273 			dtrace_dof_error(dof, "function name too long");
14274 			return (-1);
14275 		}
14276 
14277 		if (probe->dofpr_name >= str_sec->dofs_size ||
14278 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14279 			dtrace_dof_error(dof, "invalid probe name");
14280 			return (-1);
14281 		}
14282 
14283 		/*
14284 		 * The offset count must not wrap the index, and the offsets
14285 		 * must also not overflow the section's data.
14286 		 */
14287 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14288 		    probe->dofpr_offidx ||
14289 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14290 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14291 			dtrace_dof_error(dof, "invalid probe offset");
14292 			return (-1);
14293 		}
14294 
14295 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14296 			/*
14297 			 * If there's no is-enabled offset section, make sure
14298 			 * there aren't any is-enabled offsets. Otherwise
14299 			 * perform the same checks as for probe offsets
14300 			 * (immediately above).
14301 			 */
14302 			if (enoff_sec == NULL) {
14303 				if (probe->dofpr_enoffidx != 0 ||
14304 				    probe->dofpr_nenoffs != 0) {
14305 					dtrace_dof_error(dof, "is-enabled "
14306 					    "offsets with null section");
14307 					return (-1);
14308 				}
14309 			} else if (probe->dofpr_enoffidx +
14310 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14311 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14312 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14313 				dtrace_dof_error(dof, "invalid is-enabled "
14314 				    "offset");
14315 				return (-1);
14316 			}
14317 
14318 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14319 				dtrace_dof_error(dof, "zero probe and "
14320 				    "is-enabled offsets");
14321 				return (-1);
14322 			}
14323 		} else if (probe->dofpr_noffs == 0) {
14324 			dtrace_dof_error(dof, "zero probe offsets");
14325 			return (-1);
14326 		}
14327 
14328 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14329 		    probe->dofpr_argidx ||
14330 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14331 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14332 			dtrace_dof_error(dof, "invalid args");
14333 			return (-1);
14334 		}
14335 
14336 		typeidx = probe->dofpr_nargv;
14337 		typestr = strtab + probe->dofpr_nargv;
14338 		for (k = 0; k < probe->dofpr_nargc; k++) {
14339 			if (typeidx >= str_sec->dofs_size) {
14340 				dtrace_dof_error(dof, "bad "
14341 				    "native argument type");
14342 				return (-1);
14343 			}
14344 
14345 			typesz = strlen(typestr) + 1;
14346 			if (typesz > DTRACE_ARGTYPELEN) {
14347 				dtrace_dof_error(dof, "native "
14348 				    "argument type too long");
14349 				return (-1);
14350 			}
14351 			typeidx += typesz;
14352 			typestr += typesz;
14353 		}
14354 
14355 		typeidx = probe->dofpr_xargv;
14356 		typestr = strtab + probe->dofpr_xargv;
14357 		for (k = 0; k < probe->dofpr_xargc; k++) {
14358 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14359 				dtrace_dof_error(dof, "bad "
14360 				    "native argument index");
14361 				return (-1);
14362 			}
14363 
14364 			if (typeidx >= str_sec->dofs_size) {
14365 				dtrace_dof_error(dof, "bad "
14366 				    "translated argument type");
14367 				return (-1);
14368 			}
14369 
14370 			typesz = strlen(typestr) + 1;
14371 			if (typesz > DTRACE_ARGTYPELEN) {
14372 				dtrace_dof_error(dof, "translated argument "
14373 				    "type too long");
14374 				return (-1);
14375 			}
14376 
14377 			typeidx += typesz;
14378 			typestr += typesz;
14379 		}
14380 	}
14381 
14382 	return (0);
14383 }
14384 
14385 static int
14386 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14387 {
14388 	dtrace_helpers_t *help;
14389 	dtrace_vstate_t *vstate;
14390 	dtrace_enabling_t *enab = NULL;
14391 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14392 	uintptr_t daddr = (uintptr_t)dof;
14393 
14394 	ASSERT(MUTEX_HELD(&dtrace_lock));
14395 
14396 	if ((help = curproc->p_dtrace_helpers) == NULL)
14397 		help = dtrace_helpers_create(curproc);
14398 
14399 	vstate = &help->dthps_vstate;
14400 
14401 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14402 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14403 		dtrace_dof_destroy(dof);
14404 		return (rv);
14405 	}
14406 
14407 	/*
14408 	 * Look for helper providers and validate their descriptions.
14409 	 */
14410 	if (dhp != NULL) {
14411 		for (i = 0; i < dof->dofh_secnum; i++) {
14412 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14413 			    dof->dofh_secoff + i * dof->dofh_secsize);
14414 
14415 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14416 				continue;
14417 
14418 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14419 				dtrace_enabling_destroy(enab);
14420 				dtrace_dof_destroy(dof);
14421 				return (-1);
14422 			}
14423 
14424 			nprovs++;
14425 		}
14426 	}
14427 
14428 	/*
14429 	 * Now we need to walk through the ECB descriptions in the enabling.
14430 	 */
14431 	for (i = 0; i < enab->dten_ndesc; i++) {
14432 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14433 		dtrace_probedesc_t *desc = &ep->dted_probe;
14434 
14435 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14436 			continue;
14437 
14438 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14439 			continue;
14440 
14441 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14442 			continue;
14443 
14444 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14445 		    ep)) != 0) {
14446 			/*
14447 			 * Adding this helper action failed -- we are now going
14448 			 * to rip out the entire generation and return failure.
14449 			 */
14450 			(void) dtrace_helper_destroygen(help->dthps_generation);
14451 			dtrace_enabling_destroy(enab);
14452 			dtrace_dof_destroy(dof);
14453 			return (-1);
14454 		}
14455 
14456 		nhelpers++;
14457 	}
14458 
14459 	if (nhelpers < enab->dten_ndesc)
14460 		dtrace_dof_error(dof, "unmatched helpers");
14461 
14462 	gen = help->dthps_generation++;
14463 	dtrace_enabling_destroy(enab);
14464 
14465 	if (dhp != NULL && nprovs > 0) {
14466 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14467 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14468 			mutex_exit(&dtrace_lock);
14469 			dtrace_helper_provider_register(curproc, help, dhp);
14470 			mutex_enter(&dtrace_lock);
14471 
14472 			destroy = 0;
14473 		}
14474 	}
14475 
14476 	if (destroy)
14477 		dtrace_dof_destroy(dof);
14478 
14479 	return (gen);
14480 }
14481 
14482 static dtrace_helpers_t *
14483 dtrace_helpers_create(proc_t *p)
14484 {
14485 	dtrace_helpers_t *help;
14486 
14487 	ASSERT(MUTEX_HELD(&dtrace_lock));
14488 	ASSERT(p->p_dtrace_helpers == NULL);
14489 
14490 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14491 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14492 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14493 
14494 	p->p_dtrace_helpers = help;
14495 	dtrace_helpers++;
14496 
14497 	return (help);
14498 }
14499 
14500 static void
14501 dtrace_helpers_destroy(void)
14502 {
14503 	dtrace_helpers_t *help;
14504 	dtrace_vstate_t *vstate;
14505 	proc_t *p = curproc;
14506 	int i;
14507 
14508 	mutex_enter(&dtrace_lock);
14509 
14510 	ASSERT(p->p_dtrace_helpers != NULL);
14511 	ASSERT(dtrace_helpers > 0);
14512 
14513 	help = p->p_dtrace_helpers;
14514 	vstate = &help->dthps_vstate;
14515 
14516 	/*
14517 	 * We're now going to lose the help from this process.
14518 	 */
14519 	p->p_dtrace_helpers = NULL;
14520 	dtrace_sync();
14521 
14522 	/*
14523 	 * Destory the helper actions.
14524 	 */
14525 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14526 		dtrace_helper_action_t *h, *next;
14527 
14528 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14529 			next = h->dtha_next;
14530 			dtrace_helper_action_destroy(h, vstate);
14531 			h = next;
14532 		}
14533 	}
14534 
14535 	mutex_exit(&dtrace_lock);
14536 
14537 	/*
14538 	 * Destroy the helper providers.
14539 	 */
14540 	if (help->dthps_maxprovs > 0) {
14541 		mutex_enter(&dtrace_meta_lock);
14542 		if (dtrace_meta_pid != NULL) {
14543 			ASSERT(dtrace_deferred_pid == NULL);
14544 
14545 			for (i = 0; i < help->dthps_nprovs; i++) {
14546 				dtrace_helper_provider_remove(
14547 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14548 			}
14549 		} else {
14550 			mutex_enter(&dtrace_lock);
14551 			ASSERT(help->dthps_deferred == 0 ||
14552 			    help->dthps_next != NULL ||
14553 			    help->dthps_prev != NULL ||
14554 			    help == dtrace_deferred_pid);
14555 
14556 			/*
14557 			 * Remove the helper from the deferred list.
14558 			 */
14559 			if (help->dthps_next != NULL)
14560 				help->dthps_next->dthps_prev = help->dthps_prev;
14561 			if (help->dthps_prev != NULL)
14562 				help->dthps_prev->dthps_next = help->dthps_next;
14563 			if (dtrace_deferred_pid == help) {
14564 				dtrace_deferred_pid = help->dthps_next;
14565 				ASSERT(help->dthps_prev == NULL);
14566 			}
14567 
14568 			mutex_exit(&dtrace_lock);
14569 		}
14570 
14571 		mutex_exit(&dtrace_meta_lock);
14572 
14573 		for (i = 0; i < help->dthps_nprovs; i++) {
14574 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14575 		}
14576 
14577 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14578 		    sizeof (dtrace_helper_provider_t *));
14579 	}
14580 
14581 	mutex_enter(&dtrace_lock);
14582 
14583 	dtrace_vstate_fini(&help->dthps_vstate);
14584 	kmem_free(help->dthps_actions,
14585 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14586 	kmem_free(help, sizeof (dtrace_helpers_t));
14587 
14588 	--dtrace_helpers;
14589 	mutex_exit(&dtrace_lock);
14590 }
14591 
14592 static void
14593 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14594 {
14595 	dtrace_helpers_t *help, *newhelp;
14596 	dtrace_helper_action_t *helper, *new, *last;
14597 	dtrace_difo_t *dp;
14598 	dtrace_vstate_t *vstate;
14599 	int i, j, sz, hasprovs = 0;
14600 
14601 	mutex_enter(&dtrace_lock);
14602 	ASSERT(from->p_dtrace_helpers != NULL);
14603 	ASSERT(dtrace_helpers > 0);
14604 
14605 	help = from->p_dtrace_helpers;
14606 	newhelp = dtrace_helpers_create(to);
14607 	ASSERT(to->p_dtrace_helpers != NULL);
14608 
14609 	newhelp->dthps_generation = help->dthps_generation;
14610 	vstate = &newhelp->dthps_vstate;
14611 
14612 	/*
14613 	 * Duplicate the helper actions.
14614 	 */
14615 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14616 		if ((helper = help->dthps_actions[i]) == NULL)
14617 			continue;
14618 
14619 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14620 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14621 			    KM_SLEEP);
14622 			new->dtha_generation = helper->dtha_generation;
14623 
14624 			if ((dp = helper->dtha_predicate) != NULL) {
14625 				dp = dtrace_difo_duplicate(dp, vstate);
14626 				new->dtha_predicate = dp;
14627 			}
14628 
14629 			new->dtha_nactions = helper->dtha_nactions;
14630 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14631 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14632 
14633 			for (j = 0; j < new->dtha_nactions; j++) {
14634 				dtrace_difo_t *dp = helper->dtha_actions[j];
14635 
14636 				ASSERT(dp != NULL);
14637 				dp = dtrace_difo_duplicate(dp, vstate);
14638 				new->dtha_actions[j] = dp;
14639 			}
14640 
14641 			if (last != NULL) {
14642 				last->dtha_next = new;
14643 			} else {
14644 				newhelp->dthps_actions[i] = new;
14645 			}
14646 
14647 			last = new;
14648 		}
14649 	}
14650 
14651 	/*
14652 	 * Duplicate the helper providers and register them with the
14653 	 * DTrace framework.
14654 	 */
14655 	if (help->dthps_nprovs > 0) {
14656 		newhelp->dthps_nprovs = help->dthps_nprovs;
14657 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14658 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14659 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14660 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14661 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14662 			newhelp->dthps_provs[i]->dthp_ref++;
14663 		}
14664 
14665 		hasprovs = 1;
14666 	}
14667 
14668 	mutex_exit(&dtrace_lock);
14669 
14670 	if (hasprovs)
14671 		dtrace_helper_provider_register(to, newhelp, NULL);
14672 }
14673 
14674 /*
14675  * DTrace Hook Functions
14676  */
14677 static void
14678 dtrace_module_loaded(struct modctl *ctl)
14679 {
14680 	dtrace_provider_t *prv;
14681 
14682 	mutex_enter(&dtrace_provider_lock);
14683 	mutex_enter(&mod_lock);
14684 
14685 	ASSERT(ctl->mod_busy);
14686 
14687 	/*
14688 	 * We're going to call each providers per-module provide operation
14689 	 * specifying only this module.
14690 	 */
14691 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14692 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14693 
14694 	mutex_exit(&mod_lock);
14695 	mutex_exit(&dtrace_provider_lock);
14696 
14697 	/*
14698 	 * If we have any retained enablings, we need to match against them.
14699 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14700 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14701 	 * module.  (In particular, this happens when loading scheduling
14702 	 * classes.)  So if we have any retained enablings, we need to dispatch
14703 	 * our task queue to do the match for us.
14704 	 */
14705 	mutex_enter(&dtrace_lock);
14706 
14707 	if (dtrace_retained == NULL) {
14708 		mutex_exit(&dtrace_lock);
14709 		return;
14710 	}
14711 
14712 	(void) taskq_dispatch(dtrace_taskq,
14713 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14714 
14715 	mutex_exit(&dtrace_lock);
14716 
14717 	/*
14718 	 * And now, for a little heuristic sleaze:  in general, we want to
14719 	 * match modules as soon as they load.  However, we cannot guarantee
14720 	 * this, because it would lead us to the lock ordering violation
14721 	 * outlined above.  The common case, of course, is that cpu_lock is
14722 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14723 	 * long enough for the task queue to do its work.  If it's not, it's
14724 	 * not a serious problem -- it just means that the module that we
14725 	 * just loaded may not be immediately instrumentable.
14726 	 */
14727 	delay(1);
14728 }
14729 
14730 static void
14731 dtrace_module_unloaded(struct modctl *ctl)
14732 {
14733 	dtrace_probe_t template, *probe, *first, *next;
14734 	dtrace_provider_t *prov;
14735 
14736 	template.dtpr_mod = ctl->mod_modname;
14737 
14738 	mutex_enter(&dtrace_provider_lock);
14739 	mutex_enter(&mod_lock);
14740 	mutex_enter(&dtrace_lock);
14741 
14742 	if (dtrace_bymod == NULL) {
14743 		/*
14744 		 * The DTrace module is loaded (obviously) but not attached;
14745 		 * we don't have any work to do.
14746 		 */
14747 		mutex_exit(&dtrace_provider_lock);
14748 		mutex_exit(&mod_lock);
14749 		mutex_exit(&dtrace_lock);
14750 		return;
14751 	}
14752 
14753 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14754 	    probe != NULL; probe = probe->dtpr_nextmod) {
14755 		if (probe->dtpr_ecb != NULL) {
14756 			mutex_exit(&dtrace_provider_lock);
14757 			mutex_exit(&mod_lock);
14758 			mutex_exit(&dtrace_lock);
14759 
14760 			/*
14761 			 * This shouldn't _actually_ be possible -- we're
14762 			 * unloading a module that has an enabled probe in it.
14763 			 * (It's normally up to the provider to make sure that
14764 			 * this can't happen.)  However, because dtps_enable()
14765 			 * doesn't have a failure mode, there can be an
14766 			 * enable/unload race.  Upshot:  we don't want to
14767 			 * assert, but we're not going to disable the
14768 			 * probe, either.
14769 			 */
14770 			if (dtrace_err_verbose) {
14771 				cmn_err(CE_WARN, "unloaded module '%s' had "
14772 				    "enabled probes", ctl->mod_modname);
14773 			}
14774 
14775 			return;
14776 		}
14777 	}
14778 
14779 	probe = first;
14780 
14781 	for (first = NULL; probe != NULL; probe = next) {
14782 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14783 
14784 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14785 
14786 		next = probe->dtpr_nextmod;
14787 		dtrace_hash_remove(dtrace_bymod, probe);
14788 		dtrace_hash_remove(dtrace_byfunc, probe);
14789 		dtrace_hash_remove(dtrace_byname, probe);
14790 
14791 		if (first == NULL) {
14792 			first = probe;
14793 			probe->dtpr_nextmod = NULL;
14794 		} else {
14795 			probe->dtpr_nextmod = first;
14796 			first = probe;
14797 		}
14798 	}
14799 
14800 	/*
14801 	 * We've removed all of the module's probes from the hash chains and
14802 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14803 	 * everyone has cleared out from any probe array processing.
14804 	 */
14805 	dtrace_sync();
14806 
14807 	for (probe = first; probe != NULL; probe = first) {
14808 		first = probe->dtpr_nextmod;
14809 		prov = probe->dtpr_provider;
14810 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14811 		    probe->dtpr_arg);
14812 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14813 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14814 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14815 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14816 		kmem_free(probe, sizeof (dtrace_probe_t));
14817 	}
14818 
14819 	mutex_exit(&dtrace_lock);
14820 	mutex_exit(&mod_lock);
14821 	mutex_exit(&dtrace_provider_lock);
14822 }
14823 
14824 void
14825 dtrace_suspend(void)
14826 {
14827 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14828 }
14829 
14830 void
14831 dtrace_resume(void)
14832 {
14833 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14834 }
14835 
14836 static int
14837 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14838 {
14839 	ASSERT(MUTEX_HELD(&cpu_lock));
14840 	mutex_enter(&dtrace_lock);
14841 
14842 	switch (what) {
14843 	case CPU_CONFIG: {
14844 		dtrace_state_t *state;
14845 		dtrace_optval_t *opt, rs, c;
14846 
14847 		/*
14848 		 * For now, we only allocate a new buffer for anonymous state.
14849 		 */
14850 		if ((state = dtrace_anon.dta_state) == NULL)
14851 			break;
14852 
14853 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14854 			break;
14855 
14856 		opt = state->dts_options;
14857 		c = opt[DTRACEOPT_CPU];
14858 
14859 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14860 			break;
14861 
14862 		/*
14863 		 * Regardless of what the actual policy is, we're going to
14864 		 * temporarily set our resize policy to be manual.  We're
14865 		 * also going to temporarily set our CPU option to denote
14866 		 * the newly configured CPU.
14867 		 */
14868 		rs = opt[DTRACEOPT_BUFRESIZE];
14869 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14870 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14871 
14872 		(void) dtrace_state_buffers(state);
14873 
14874 		opt[DTRACEOPT_BUFRESIZE] = rs;
14875 		opt[DTRACEOPT_CPU] = c;
14876 
14877 		break;
14878 	}
14879 
14880 	case CPU_UNCONFIG:
14881 		/*
14882 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14883 		 * buffer will be freed when the consumer exits.)
14884 		 */
14885 		break;
14886 
14887 	default:
14888 		break;
14889 	}
14890 
14891 	mutex_exit(&dtrace_lock);
14892 	return (0);
14893 }
14894 
14895 static void
14896 dtrace_cpu_setup_initial(processorid_t cpu)
14897 {
14898 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14899 }
14900 
14901 static void
14902 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14903 {
14904 	if (dtrace_toxranges >= dtrace_toxranges_max) {
14905 		int osize, nsize;
14906 		dtrace_toxrange_t *range;
14907 
14908 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14909 
14910 		if (osize == 0) {
14911 			ASSERT(dtrace_toxrange == NULL);
14912 			ASSERT(dtrace_toxranges_max == 0);
14913 			dtrace_toxranges_max = 1;
14914 		} else {
14915 			dtrace_toxranges_max <<= 1;
14916 		}
14917 
14918 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14919 		range = kmem_zalloc(nsize, KM_SLEEP);
14920 
14921 		if (dtrace_toxrange != NULL) {
14922 			ASSERT(osize != 0);
14923 			bcopy(dtrace_toxrange, range, osize);
14924 			kmem_free(dtrace_toxrange, osize);
14925 		}
14926 
14927 		dtrace_toxrange = range;
14928 	}
14929 
14930 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14931 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14932 
14933 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14934 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14935 	dtrace_toxranges++;
14936 }
14937 
14938 static void
14939 dtrace_getf_barrier()
14940 {
14941 	/*
14942 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
14943 	 * that contain calls to getf(), this routine will be called on every
14944 	 * closef() before either the underlying vnode is released or the
14945 	 * file_t itself is freed.  By the time we are here, it is essential
14946 	 * that the file_t can no longer be accessed from a call to getf()
14947 	 * in probe context -- that assures that a dtrace_sync() can be used
14948 	 * to clear out any enablings referring to the old structures.
14949 	 */
14950 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
14951 	    kcred->cr_zone->zone_dtrace_getf != 0)
14952 		dtrace_sync();
14953 }
14954 
14955 /*
14956  * DTrace Driver Cookbook Functions
14957  */
14958 /*ARGSUSED*/
14959 static int
14960 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14961 {
14962 	dtrace_provider_id_t id;
14963 	dtrace_state_t *state = NULL;
14964 	dtrace_enabling_t *enab;
14965 
14966 	mutex_enter(&cpu_lock);
14967 	mutex_enter(&dtrace_provider_lock);
14968 	mutex_enter(&dtrace_lock);
14969 
14970 	if (ddi_soft_state_init(&dtrace_softstate,
14971 	    sizeof (dtrace_state_t), 0) != 0) {
14972 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14973 		mutex_exit(&cpu_lock);
14974 		mutex_exit(&dtrace_provider_lock);
14975 		mutex_exit(&dtrace_lock);
14976 		return (DDI_FAILURE);
14977 	}
14978 
14979 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14980 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14981 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14982 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14983 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14984 		ddi_remove_minor_node(devi, NULL);
14985 		ddi_soft_state_fini(&dtrace_softstate);
14986 		mutex_exit(&cpu_lock);
14987 		mutex_exit(&dtrace_provider_lock);
14988 		mutex_exit(&dtrace_lock);
14989 		return (DDI_FAILURE);
14990 	}
14991 
14992 	ddi_report_dev(devi);
14993 	dtrace_devi = devi;
14994 
14995 	dtrace_modload = dtrace_module_loaded;
14996 	dtrace_modunload = dtrace_module_unloaded;
14997 	dtrace_cpu_init = dtrace_cpu_setup_initial;
14998 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
14999 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15000 	dtrace_cpustart_init = dtrace_suspend;
15001 	dtrace_cpustart_fini = dtrace_resume;
15002 	dtrace_debugger_init = dtrace_suspend;
15003 	dtrace_debugger_fini = dtrace_resume;
15004 
15005 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15006 
15007 	ASSERT(MUTEX_HELD(&cpu_lock));
15008 
15009 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15010 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15011 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15012 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15013 	    VM_SLEEP | VMC_IDENTIFIER);
15014 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15015 	    1, INT_MAX, 0);
15016 
15017 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15018 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15019 	    NULL, NULL, NULL, NULL, NULL, 0);
15020 
15021 	ASSERT(MUTEX_HELD(&cpu_lock));
15022 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15023 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15024 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15025 
15026 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15027 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15028 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15029 
15030 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15031 	    offsetof(dtrace_probe_t, dtpr_nextname),
15032 	    offsetof(dtrace_probe_t, dtpr_prevname));
15033 
15034 	if (dtrace_retain_max < 1) {
15035 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15036 		    "setting to 1", dtrace_retain_max);
15037 		dtrace_retain_max = 1;
15038 	}
15039 
15040 	/*
15041 	 * Now discover our toxic ranges.
15042 	 */
15043 	dtrace_toxic_ranges(dtrace_toxrange_add);
15044 
15045 	/*
15046 	 * Before we register ourselves as a provider to our own framework,
15047 	 * we would like to assert that dtrace_provider is NULL -- but that's
15048 	 * not true if we were loaded as a dependency of a DTrace provider.
15049 	 * Once we've registered, we can assert that dtrace_provider is our
15050 	 * pseudo provider.
15051 	 */
15052 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15053 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15054 
15055 	ASSERT(dtrace_provider != NULL);
15056 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15057 
15058 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15059 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15060 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15061 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15062 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15063 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15064 
15065 	dtrace_anon_property();
15066 	mutex_exit(&cpu_lock);
15067 
15068 	/*
15069 	 * If DTrace helper tracing is enabled, we need to allocate the
15070 	 * trace buffer and initialize the values.
15071 	 */
15072 	if (dtrace_helptrace_enabled) {
15073 		ASSERT(dtrace_helptrace_buffer == NULL);
15074 		dtrace_helptrace_buffer =
15075 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15076 		dtrace_helptrace_next = 0;
15077 	}
15078 
15079 	/*
15080 	 * If there are already providers, we must ask them to provide their
15081 	 * probes, and then match any anonymous enabling against them.  Note
15082 	 * that there should be no other retained enablings at this time:
15083 	 * the only retained enablings at this time should be the anonymous
15084 	 * enabling.
15085 	 */
15086 	if (dtrace_anon.dta_enabling != NULL) {
15087 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15088 
15089 		dtrace_enabling_provide(NULL);
15090 		state = dtrace_anon.dta_state;
15091 
15092 		/*
15093 		 * We couldn't hold cpu_lock across the above call to
15094 		 * dtrace_enabling_provide(), but we must hold it to actually
15095 		 * enable the probes.  We have to drop all of our locks, pick
15096 		 * up cpu_lock, and regain our locks before matching the
15097 		 * retained anonymous enabling.
15098 		 */
15099 		mutex_exit(&dtrace_lock);
15100 		mutex_exit(&dtrace_provider_lock);
15101 
15102 		mutex_enter(&cpu_lock);
15103 		mutex_enter(&dtrace_provider_lock);
15104 		mutex_enter(&dtrace_lock);
15105 
15106 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15107 			(void) dtrace_enabling_match(enab, NULL);
15108 
15109 		mutex_exit(&cpu_lock);
15110 	}
15111 
15112 	mutex_exit(&dtrace_lock);
15113 	mutex_exit(&dtrace_provider_lock);
15114 
15115 	if (state != NULL) {
15116 		/*
15117 		 * If we created any anonymous state, set it going now.
15118 		 */
15119 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15120 	}
15121 
15122 	return (DDI_SUCCESS);
15123 }
15124 
15125 /*ARGSUSED*/
15126 static int
15127 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15128 {
15129 	dtrace_state_t *state;
15130 	uint32_t priv;
15131 	uid_t uid;
15132 	zoneid_t zoneid;
15133 
15134 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15135 		return (0);
15136 
15137 	/*
15138 	 * If this wasn't an open with the "helper" minor, then it must be
15139 	 * the "dtrace" minor.
15140 	 */
15141 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
15142 		return (ENXIO);
15143 
15144 	/*
15145 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15146 	 * caller lacks sufficient permission to do anything with DTrace.
15147 	 */
15148 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15149 	if (priv == DTRACE_PRIV_NONE)
15150 		return (EACCES);
15151 
15152 	/*
15153 	 * Ask all providers to provide all their probes.
15154 	 */
15155 	mutex_enter(&dtrace_provider_lock);
15156 	dtrace_probe_provide(NULL, NULL);
15157 	mutex_exit(&dtrace_provider_lock);
15158 
15159 	mutex_enter(&cpu_lock);
15160 	mutex_enter(&dtrace_lock);
15161 	dtrace_opens++;
15162 	dtrace_membar_producer();
15163 
15164 	/*
15165 	 * If the kernel debugger is active (that is, if the kernel debugger
15166 	 * modified text in some way), we won't allow the open.
15167 	 */
15168 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15169 		dtrace_opens--;
15170 		mutex_exit(&cpu_lock);
15171 		mutex_exit(&dtrace_lock);
15172 		return (EBUSY);
15173 	}
15174 
15175 	state = dtrace_state_create(devp, cred_p);
15176 	mutex_exit(&cpu_lock);
15177 
15178 	if (state == NULL) {
15179 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15180 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15181 		mutex_exit(&dtrace_lock);
15182 		return (EAGAIN);
15183 	}
15184 
15185 	mutex_exit(&dtrace_lock);
15186 
15187 	return (0);
15188 }
15189 
15190 /*ARGSUSED*/
15191 static int
15192 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15193 {
15194 	minor_t minor = getminor(dev);
15195 	dtrace_state_t *state;
15196 
15197 	if (minor == DTRACEMNRN_HELPER)
15198 		return (0);
15199 
15200 	state = ddi_get_soft_state(dtrace_softstate, minor);
15201 
15202 	mutex_enter(&cpu_lock);
15203 	mutex_enter(&dtrace_lock);
15204 
15205 	if (state->dts_anon) {
15206 		/*
15207 		 * There is anonymous state. Destroy that first.
15208 		 */
15209 		ASSERT(dtrace_anon.dta_state == NULL);
15210 		dtrace_state_destroy(state->dts_anon);
15211 	}
15212 
15213 	dtrace_state_destroy(state);
15214 	ASSERT(dtrace_opens > 0);
15215 
15216 	/*
15217 	 * Only relinquish control of the kernel debugger interface when there
15218 	 * are no consumers and no anonymous enablings.
15219 	 */
15220 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15221 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15222 
15223 	mutex_exit(&dtrace_lock);
15224 	mutex_exit(&cpu_lock);
15225 
15226 	return (0);
15227 }
15228 
15229 /*ARGSUSED*/
15230 static int
15231 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15232 {
15233 	int rval;
15234 	dof_helper_t help, *dhp = NULL;
15235 
15236 	switch (cmd) {
15237 	case DTRACEHIOC_ADDDOF:
15238 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15239 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15240 			return (EFAULT);
15241 		}
15242 
15243 		dhp = &help;
15244 		arg = (intptr_t)help.dofhp_dof;
15245 		/*FALLTHROUGH*/
15246 
15247 	case DTRACEHIOC_ADD: {
15248 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15249 
15250 		if (dof == NULL)
15251 			return (rval);
15252 
15253 		mutex_enter(&dtrace_lock);
15254 
15255 		/*
15256 		 * dtrace_helper_slurp() takes responsibility for the dof --
15257 		 * it may free it now or it may save it and free it later.
15258 		 */
15259 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15260 			*rv = rval;
15261 			rval = 0;
15262 		} else {
15263 			rval = EINVAL;
15264 		}
15265 
15266 		mutex_exit(&dtrace_lock);
15267 		return (rval);
15268 	}
15269 
15270 	case DTRACEHIOC_REMOVE: {
15271 		mutex_enter(&dtrace_lock);
15272 		rval = dtrace_helper_destroygen(arg);
15273 		mutex_exit(&dtrace_lock);
15274 
15275 		return (rval);
15276 	}
15277 
15278 	default:
15279 		break;
15280 	}
15281 
15282 	return (ENOTTY);
15283 }
15284 
15285 /*ARGSUSED*/
15286 static int
15287 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15288 {
15289 	minor_t minor = getminor(dev);
15290 	dtrace_state_t *state;
15291 	int rval;
15292 
15293 	if (minor == DTRACEMNRN_HELPER)
15294 		return (dtrace_ioctl_helper(cmd, arg, rv));
15295 
15296 	state = ddi_get_soft_state(dtrace_softstate, minor);
15297 
15298 	if (state->dts_anon) {
15299 		ASSERT(dtrace_anon.dta_state == NULL);
15300 		state = state->dts_anon;
15301 	}
15302 
15303 	switch (cmd) {
15304 	case DTRACEIOC_PROVIDER: {
15305 		dtrace_providerdesc_t pvd;
15306 		dtrace_provider_t *pvp;
15307 
15308 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15309 			return (EFAULT);
15310 
15311 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15312 		mutex_enter(&dtrace_provider_lock);
15313 
15314 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15315 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15316 				break;
15317 		}
15318 
15319 		mutex_exit(&dtrace_provider_lock);
15320 
15321 		if (pvp == NULL)
15322 			return (ESRCH);
15323 
15324 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15325 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15326 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15327 			return (EFAULT);
15328 
15329 		return (0);
15330 	}
15331 
15332 	case DTRACEIOC_EPROBE: {
15333 		dtrace_eprobedesc_t epdesc;
15334 		dtrace_ecb_t *ecb;
15335 		dtrace_action_t *act;
15336 		void *buf;
15337 		size_t size;
15338 		uintptr_t dest;
15339 		int nrecs;
15340 
15341 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15342 			return (EFAULT);
15343 
15344 		mutex_enter(&dtrace_lock);
15345 
15346 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15347 			mutex_exit(&dtrace_lock);
15348 			return (EINVAL);
15349 		}
15350 
15351 		if (ecb->dte_probe == NULL) {
15352 			mutex_exit(&dtrace_lock);
15353 			return (EINVAL);
15354 		}
15355 
15356 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15357 		epdesc.dtepd_uarg = ecb->dte_uarg;
15358 		epdesc.dtepd_size = ecb->dte_size;
15359 
15360 		nrecs = epdesc.dtepd_nrecs;
15361 		epdesc.dtepd_nrecs = 0;
15362 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15363 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15364 				continue;
15365 
15366 			epdesc.dtepd_nrecs++;
15367 		}
15368 
15369 		/*
15370 		 * Now that we have the size, we need to allocate a temporary
15371 		 * buffer in which to store the complete description.  We need
15372 		 * the temporary buffer to be able to drop dtrace_lock()
15373 		 * across the copyout(), below.
15374 		 */
15375 		size = sizeof (dtrace_eprobedesc_t) +
15376 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15377 
15378 		buf = kmem_alloc(size, KM_SLEEP);
15379 		dest = (uintptr_t)buf;
15380 
15381 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15382 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15383 
15384 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15385 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15386 				continue;
15387 
15388 			if (nrecs-- == 0)
15389 				break;
15390 
15391 			bcopy(&act->dta_rec, (void *)dest,
15392 			    sizeof (dtrace_recdesc_t));
15393 			dest += sizeof (dtrace_recdesc_t);
15394 		}
15395 
15396 		mutex_exit(&dtrace_lock);
15397 
15398 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15399 			kmem_free(buf, size);
15400 			return (EFAULT);
15401 		}
15402 
15403 		kmem_free(buf, size);
15404 		return (0);
15405 	}
15406 
15407 	case DTRACEIOC_AGGDESC: {
15408 		dtrace_aggdesc_t aggdesc;
15409 		dtrace_action_t *act;
15410 		dtrace_aggregation_t *agg;
15411 		int nrecs;
15412 		uint32_t offs;
15413 		dtrace_recdesc_t *lrec;
15414 		void *buf;
15415 		size_t size;
15416 		uintptr_t dest;
15417 
15418 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15419 			return (EFAULT);
15420 
15421 		mutex_enter(&dtrace_lock);
15422 
15423 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15424 			mutex_exit(&dtrace_lock);
15425 			return (EINVAL);
15426 		}
15427 
15428 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15429 
15430 		nrecs = aggdesc.dtagd_nrecs;
15431 		aggdesc.dtagd_nrecs = 0;
15432 
15433 		offs = agg->dtag_base;
15434 		lrec = &agg->dtag_action.dta_rec;
15435 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15436 
15437 		for (act = agg->dtag_first; ; act = act->dta_next) {
15438 			ASSERT(act->dta_intuple ||
15439 			    DTRACEACT_ISAGG(act->dta_kind));
15440 
15441 			/*
15442 			 * If this action has a record size of zero, it
15443 			 * denotes an argument to the aggregating action.
15444 			 * Because the presence of this record doesn't (or
15445 			 * shouldn't) affect the way the data is interpreted,
15446 			 * we don't copy it out to save user-level the
15447 			 * confusion of dealing with a zero-length record.
15448 			 */
15449 			if (act->dta_rec.dtrd_size == 0) {
15450 				ASSERT(agg->dtag_hasarg);
15451 				continue;
15452 			}
15453 
15454 			aggdesc.dtagd_nrecs++;
15455 
15456 			if (act == &agg->dtag_action)
15457 				break;
15458 		}
15459 
15460 		/*
15461 		 * Now that we have the size, we need to allocate a temporary
15462 		 * buffer in which to store the complete description.  We need
15463 		 * the temporary buffer to be able to drop dtrace_lock()
15464 		 * across the copyout(), below.
15465 		 */
15466 		size = sizeof (dtrace_aggdesc_t) +
15467 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15468 
15469 		buf = kmem_alloc(size, KM_SLEEP);
15470 		dest = (uintptr_t)buf;
15471 
15472 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15473 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15474 
15475 		for (act = agg->dtag_first; ; act = act->dta_next) {
15476 			dtrace_recdesc_t rec = act->dta_rec;
15477 
15478 			/*
15479 			 * See the comment in the above loop for why we pass
15480 			 * over zero-length records.
15481 			 */
15482 			if (rec.dtrd_size == 0) {
15483 				ASSERT(agg->dtag_hasarg);
15484 				continue;
15485 			}
15486 
15487 			if (nrecs-- == 0)
15488 				break;
15489 
15490 			rec.dtrd_offset -= offs;
15491 			bcopy(&rec, (void *)dest, sizeof (rec));
15492 			dest += sizeof (dtrace_recdesc_t);
15493 
15494 			if (act == &agg->dtag_action)
15495 				break;
15496 		}
15497 
15498 		mutex_exit(&dtrace_lock);
15499 
15500 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15501 			kmem_free(buf, size);
15502 			return (EFAULT);
15503 		}
15504 
15505 		kmem_free(buf, size);
15506 		return (0);
15507 	}
15508 
15509 	case DTRACEIOC_ENABLE: {
15510 		dof_hdr_t *dof;
15511 		dtrace_enabling_t *enab = NULL;
15512 		dtrace_vstate_t *vstate;
15513 		int err = 0;
15514 
15515 		*rv = 0;
15516 
15517 		/*
15518 		 * If a NULL argument has been passed, we take this as our
15519 		 * cue to reevaluate our enablings.
15520 		 */
15521 		if (arg == NULL) {
15522 			dtrace_enabling_matchall();
15523 
15524 			return (0);
15525 		}
15526 
15527 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15528 			return (rval);
15529 
15530 		mutex_enter(&cpu_lock);
15531 		mutex_enter(&dtrace_lock);
15532 		vstate = &state->dts_vstate;
15533 
15534 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15535 			mutex_exit(&dtrace_lock);
15536 			mutex_exit(&cpu_lock);
15537 			dtrace_dof_destroy(dof);
15538 			return (EBUSY);
15539 		}
15540 
15541 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15542 			mutex_exit(&dtrace_lock);
15543 			mutex_exit(&cpu_lock);
15544 			dtrace_dof_destroy(dof);
15545 			return (EINVAL);
15546 		}
15547 
15548 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15549 			dtrace_enabling_destroy(enab);
15550 			mutex_exit(&dtrace_lock);
15551 			mutex_exit(&cpu_lock);
15552 			dtrace_dof_destroy(dof);
15553 			return (rval);
15554 		}
15555 
15556 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15557 			err = dtrace_enabling_retain(enab);
15558 		} else {
15559 			dtrace_enabling_destroy(enab);
15560 		}
15561 
15562 		mutex_exit(&cpu_lock);
15563 		mutex_exit(&dtrace_lock);
15564 		dtrace_dof_destroy(dof);
15565 
15566 		return (err);
15567 	}
15568 
15569 	case DTRACEIOC_REPLICATE: {
15570 		dtrace_repldesc_t desc;
15571 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15572 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15573 		int err;
15574 
15575 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15576 			return (EFAULT);
15577 
15578 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15579 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15580 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15581 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15582 
15583 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15584 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15585 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15586 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15587 
15588 		mutex_enter(&dtrace_lock);
15589 		err = dtrace_enabling_replicate(state, match, create);
15590 		mutex_exit(&dtrace_lock);
15591 
15592 		return (err);
15593 	}
15594 
15595 	case DTRACEIOC_PROBEMATCH:
15596 	case DTRACEIOC_PROBES: {
15597 		dtrace_probe_t *probe = NULL;
15598 		dtrace_probedesc_t desc;
15599 		dtrace_probekey_t pkey;
15600 		dtrace_id_t i;
15601 		int m = 0;
15602 		uint32_t priv;
15603 		uid_t uid;
15604 		zoneid_t zoneid;
15605 
15606 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15607 			return (EFAULT);
15608 
15609 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15610 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15611 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15612 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15613 
15614 		/*
15615 		 * Before we attempt to match this probe, we want to give
15616 		 * all providers the opportunity to provide it.
15617 		 */
15618 		if (desc.dtpd_id == DTRACE_IDNONE) {
15619 			mutex_enter(&dtrace_provider_lock);
15620 			dtrace_probe_provide(&desc, NULL);
15621 			mutex_exit(&dtrace_provider_lock);
15622 			desc.dtpd_id++;
15623 		}
15624 
15625 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15626 			dtrace_probekey(&desc, &pkey);
15627 			pkey.dtpk_id = DTRACE_IDNONE;
15628 		}
15629 
15630 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15631 
15632 		mutex_enter(&dtrace_lock);
15633 
15634 		if (cmd == DTRACEIOC_PROBEMATCH) {
15635 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15636 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15637 				    (m = dtrace_match_probe(probe, &pkey,
15638 				    priv, uid, zoneid)) != 0)
15639 					break;
15640 			}
15641 
15642 			if (m < 0) {
15643 				mutex_exit(&dtrace_lock);
15644 				return (EINVAL);
15645 			}
15646 
15647 		} else {
15648 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15649 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15650 				    dtrace_match_priv(probe, priv, uid, zoneid))
15651 					break;
15652 			}
15653 		}
15654 
15655 		if (probe == NULL) {
15656 			mutex_exit(&dtrace_lock);
15657 			return (ESRCH);
15658 		}
15659 
15660 		dtrace_probe_description(probe, &desc);
15661 		mutex_exit(&dtrace_lock);
15662 
15663 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15664 			return (EFAULT);
15665 
15666 		return (0);
15667 	}
15668 
15669 	case DTRACEIOC_PROBEARG: {
15670 		dtrace_argdesc_t desc;
15671 		dtrace_probe_t *probe;
15672 		dtrace_provider_t *prov;
15673 
15674 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15675 			return (EFAULT);
15676 
15677 		if (desc.dtargd_id == DTRACE_IDNONE)
15678 			return (EINVAL);
15679 
15680 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15681 			return (EINVAL);
15682 
15683 		mutex_enter(&dtrace_provider_lock);
15684 		mutex_enter(&mod_lock);
15685 		mutex_enter(&dtrace_lock);
15686 
15687 		if (desc.dtargd_id > dtrace_nprobes) {
15688 			mutex_exit(&dtrace_lock);
15689 			mutex_exit(&mod_lock);
15690 			mutex_exit(&dtrace_provider_lock);
15691 			return (EINVAL);
15692 		}
15693 
15694 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15695 			mutex_exit(&dtrace_lock);
15696 			mutex_exit(&mod_lock);
15697 			mutex_exit(&dtrace_provider_lock);
15698 			return (EINVAL);
15699 		}
15700 
15701 		mutex_exit(&dtrace_lock);
15702 
15703 		prov = probe->dtpr_provider;
15704 
15705 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15706 			/*
15707 			 * There isn't any typed information for this probe.
15708 			 * Set the argument number to DTRACE_ARGNONE.
15709 			 */
15710 			desc.dtargd_ndx = DTRACE_ARGNONE;
15711 		} else {
15712 			desc.dtargd_native[0] = '\0';
15713 			desc.dtargd_xlate[0] = '\0';
15714 			desc.dtargd_mapping = desc.dtargd_ndx;
15715 
15716 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15717 			    probe->dtpr_id, probe->dtpr_arg, &desc);
15718 		}
15719 
15720 		mutex_exit(&mod_lock);
15721 		mutex_exit(&dtrace_provider_lock);
15722 
15723 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15724 			return (EFAULT);
15725 
15726 		return (0);
15727 	}
15728 
15729 	case DTRACEIOC_GO: {
15730 		processorid_t cpuid;
15731 		rval = dtrace_state_go(state, &cpuid);
15732 
15733 		if (rval != 0)
15734 			return (rval);
15735 
15736 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15737 			return (EFAULT);
15738 
15739 		return (0);
15740 	}
15741 
15742 	case DTRACEIOC_STOP: {
15743 		processorid_t cpuid;
15744 
15745 		mutex_enter(&dtrace_lock);
15746 		rval = dtrace_state_stop(state, &cpuid);
15747 		mutex_exit(&dtrace_lock);
15748 
15749 		if (rval != 0)
15750 			return (rval);
15751 
15752 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15753 			return (EFAULT);
15754 
15755 		return (0);
15756 	}
15757 
15758 	case DTRACEIOC_DOFGET: {
15759 		dof_hdr_t hdr, *dof;
15760 		uint64_t len;
15761 
15762 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15763 			return (EFAULT);
15764 
15765 		mutex_enter(&dtrace_lock);
15766 		dof = dtrace_dof_create(state);
15767 		mutex_exit(&dtrace_lock);
15768 
15769 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15770 		rval = copyout(dof, (void *)arg, len);
15771 		dtrace_dof_destroy(dof);
15772 
15773 		return (rval == 0 ? 0 : EFAULT);
15774 	}
15775 
15776 	case DTRACEIOC_AGGSNAP:
15777 	case DTRACEIOC_BUFSNAP: {
15778 		dtrace_bufdesc_t desc;
15779 		caddr_t cached;
15780 		dtrace_buffer_t *buf;
15781 
15782 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15783 			return (EFAULT);
15784 
15785 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15786 			return (EINVAL);
15787 
15788 		mutex_enter(&dtrace_lock);
15789 
15790 		if (cmd == DTRACEIOC_BUFSNAP) {
15791 			buf = &state->dts_buffer[desc.dtbd_cpu];
15792 		} else {
15793 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15794 		}
15795 
15796 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15797 			size_t sz = buf->dtb_offset;
15798 
15799 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15800 				mutex_exit(&dtrace_lock);
15801 				return (EBUSY);
15802 			}
15803 
15804 			/*
15805 			 * If this buffer has already been consumed, we're
15806 			 * going to indicate that there's nothing left here
15807 			 * to consume.
15808 			 */
15809 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15810 				mutex_exit(&dtrace_lock);
15811 
15812 				desc.dtbd_size = 0;
15813 				desc.dtbd_drops = 0;
15814 				desc.dtbd_errors = 0;
15815 				desc.dtbd_oldest = 0;
15816 				sz = sizeof (desc);
15817 
15818 				if (copyout(&desc, (void *)arg, sz) != 0)
15819 					return (EFAULT);
15820 
15821 				return (0);
15822 			}
15823 
15824 			/*
15825 			 * If this is a ring buffer that has wrapped, we want
15826 			 * to copy the whole thing out.
15827 			 */
15828 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15829 				dtrace_buffer_polish(buf);
15830 				sz = buf->dtb_size;
15831 			}
15832 
15833 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15834 				mutex_exit(&dtrace_lock);
15835 				return (EFAULT);
15836 			}
15837 
15838 			desc.dtbd_size = sz;
15839 			desc.dtbd_drops = buf->dtb_drops;
15840 			desc.dtbd_errors = buf->dtb_errors;
15841 			desc.dtbd_oldest = buf->dtb_xamot_offset;
15842 			desc.dtbd_timestamp = dtrace_gethrtime();
15843 
15844 			mutex_exit(&dtrace_lock);
15845 
15846 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15847 				return (EFAULT);
15848 
15849 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15850 
15851 			return (0);
15852 		}
15853 
15854 		if (buf->dtb_tomax == NULL) {
15855 			ASSERT(buf->dtb_xamot == NULL);
15856 			mutex_exit(&dtrace_lock);
15857 			return (ENOENT);
15858 		}
15859 
15860 		cached = buf->dtb_tomax;
15861 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15862 
15863 		dtrace_xcall(desc.dtbd_cpu,
15864 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15865 
15866 		state->dts_errors += buf->dtb_xamot_errors;
15867 
15868 		/*
15869 		 * If the buffers did not actually switch, then the cross call
15870 		 * did not take place -- presumably because the given CPU is
15871 		 * not in the ready set.  If this is the case, we'll return
15872 		 * ENOENT.
15873 		 */
15874 		if (buf->dtb_tomax == cached) {
15875 			ASSERT(buf->dtb_xamot != cached);
15876 			mutex_exit(&dtrace_lock);
15877 			return (ENOENT);
15878 		}
15879 
15880 		ASSERT(cached == buf->dtb_xamot);
15881 
15882 		/*
15883 		 * We have our snapshot; now copy it out.
15884 		 */
15885 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15886 		    buf->dtb_xamot_offset) != 0) {
15887 			mutex_exit(&dtrace_lock);
15888 			return (EFAULT);
15889 		}
15890 
15891 		desc.dtbd_size = buf->dtb_xamot_offset;
15892 		desc.dtbd_drops = buf->dtb_xamot_drops;
15893 		desc.dtbd_errors = buf->dtb_xamot_errors;
15894 		desc.dtbd_oldest = 0;
15895 		desc.dtbd_timestamp = buf->dtb_switched;
15896 
15897 		mutex_exit(&dtrace_lock);
15898 
15899 		/*
15900 		 * Finally, copy out the buffer description.
15901 		 */
15902 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15903 			return (EFAULT);
15904 
15905 		return (0);
15906 	}
15907 
15908 	case DTRACEIOC_CONF: {
15909 		dtrace_conf_t conf;
15910 
15911 		bzero(&conf, sizeof (conf));
15912 		conf.dtc_difversion = DIF_VERSION;
15913 		conf.dtc_difintregs = DIF_DIR_NREGS;
15914 		conf.dtc_diftupregs = DIF_DTR_NREGS;
15915 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15916 
15917 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15918 			return (EFAULT);
15919 
15920 		return (0);
15921 	}
15922 
15923 	case DTRACEIOC_STATUS: {
15924 		dtrace_status_t stat;
15925 		dtrace_dstate_t *dstate;
15926 		int i, j;
15927 		uint64_t nerrs;
15928 
15929 		/*
15930 		 * See the comment in dtrace_state_deadman() for the reason
15931 		 * for setting dts_laststatus to INT64_MAX before setting
15932 		 * it to the correct value.
15933 		 */
15934 		state->dts_laststatus = INT64_MAX;
15935 		dtrace_membar_producer();
15936 		state->dts_laststatus = dtrace_gethrtime();
15937 
15938 		bzero(&stat, sizeof (stat));
15939 
15940 		mutex_enter(&dtrace_lock);
15941 
15942 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15943 			mutex_exit(&dtrace_lock);
15944 			return (ENOENT);
15945 		}
15946 
15947 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15948 			stat.dtst_exiting = 1;
15949 
15950 		nerrs = state->dts_errors;
15951 		dstate = &state->dts_vstate.dtvs_dynvars;
15952 
15953 		for (i = 0; i < NCPU; i++) {
15954 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15955 
15956 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
15957 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15958 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15959 
15960 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15961 				stat.dtst_filled++;
15962 
15963 			nerrs += state->dts_buffer[i].dtb_errors;
15964 
15965 			for (j = 0; j < state->dts_nspeculations; j++) {
15966 				dtrace_speculation_t *spec;
15967 				dtrace_buffer_t *buf;
15968 
15969 				spec = &state->dts_speculations[j];
15970 				buf = &spec->dtsp_buffer[i];
15971 				stat.dtst_specdrops += buf->dtb_xamot_drops;
15972 			}
15973 		}
15974 
15975 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
15976 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15977 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15978 		stat.dtst_dblerrors = state->dts_dblerrors;
15979 		stat.dtst_killed =
15980 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15981 		stat.dtst_errors = nerrs;
15982 
15983 		mutex_exit(&dtrace_lock);
15984 
15985 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15986 			return (EFAULT);
15987 
15988 		return (0);
15989 	}
15990 
15991 	case DTRACEIOC_FORMAT: {
15992 		dtrace_fmtdesc_t fmt;
15993 		char *str;
15994 		int len;
15995 
15996 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15997 			return (EFAULT);
15998 
15999 		mutex_enter(&dtrace_lock);
16000 
16001 		if (fmt.dtfd_format == 0 ||
16002 		    fmt.dtfd_format > state->dts_nformats) {
16003 			mutex_exit(&dtrace_lock);
16004 			return (EINVAL);
16005 		}
16006 
16007 		/*
16008 		 * Format strings are allocated contiguously and they are
16009 		 * never freed; if a format index is less than the number
16010 		 * of formats, we can assert that the format map is non-NULL
16011 		 * and that the format for the specified index is non-NULL.
16012 		 */
16013 		ASSERT(state->dts_formats != NULL);
16014 		str = state->dts_formats[fmt.dtfd_format - 1];
16015 		ASSERT(str != NULL);
16016 
16017 		len = strlen(str) + 1;
16018 
16019 		if (len > fmt.dtfd_length) {
16020 			fmt.dtfd_length = len;
16021 
16022 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16023 				mutex_exit(&dtrace_lock);
16024 				return (EINVAL);
16025 			}
16026 		} else {
16027 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16028 				mutex_exit(&dtrace_lock);
16029 				return (EINVAL);
16030 			}
16031 		}
16032 
16033 		mutex_exit(&dtrace_lock);
16034 		return (0);
16035 	}
16036 
16037 	default:
16038 		break;
16039 	}
16040 
16041 	return (ENOTTY);
16042 }
16043 
16044 /*ARGSUSED*/
16045 static int
16046 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16047 {
16048 	dtrace_state_t *state;
16049 
16050 	switch (cmd) {
16051 	case DDI_DETACH:
16052 		break;
16053 
16054 	case DDI_SUSPEND:
16055 		return (DDI_SUCCESS);
16056 
16057 	default:
16058 		return (DDI_FAILURE);
16059 	}
16060 
16061 	mutex_enter(&cpu_lock);
16062 	mutex_enter(&dtrace_provider_lock);
16063 	mutex_enter(&dtrace_lock);
16064 
16065 	ASSERT(dtrace_opens == 0);
16066 
16067 	if (dtrace_helpers > 0) {
16068 		mutex_exit(&dtrace_provider_lock);
16069 		mutex_exit(&dtrace_lock);
16070 		mutex_exit(&cpu_lock);
16071 		return (DDI_FAILURE);
16072 	}
16073 
16074 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16075 		mutex_exit(&dtrace_provider_lock);
16076 		mutex_exit(&dtrace_lock);
16077 		mutex_exit(&cpu_lock);
16078 		return (DDI_FAILURE);
16079 	}
16080 
16081 	dtrace_provider = NULL;
16082 
16083 	if ((state = dtrace_anon_grab()) != NULL) {
16084 		/*
16085 		 * If there were ECBs on this state, the provider should
16086 		 * have not been allowed to detach; assert that there is
16087 		 * none.
16088 		 */
16089 		ASSERT(state->dts_necbs == 0);
16090 		dtrace_state_destroy(state);
16091 
16092 		/*
16093 		 * If we're being detached with anonymous state, we need to
16094 		 * indicate to the kernel debugger that DTrace is now inactive.
16095 		 */
16096 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16097 	}
16098 
16099 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16100 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16101 	dtrace_cpu_init = NULL;
16102 	dtrace_helpers_cleanup = NULL;
16103 	dtrace_helpers_fork = NULL;
16104 	dtrace_cpustart_init = NULL;
16105 	dtrace_cpustart_fini = NULL;
16106 	dtrace_debugger_init = NULL;
16107 	dtrace_debugger_fini = NULL;
16108 	dtrace_modload = NULL;
16109 	dtrace_modunload = NULL;
16110 
16111 	ASSERT(dtrace_getf == 0);
16112 	ASSERT(dtrace_closef == NULL);
16113 
16114 	mutex_exit(&cpu_lock);
16115 
16116 	if (dtrace_helptrace_enabled) {
16117 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16118 		dtrace_helptrace_buffer = NULL;
16119 	}
16120 
16121 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16122 	dtrace_probes = NULL;
16123 	dtrace_nprobes = 0;
16124 
16125 	dtrace_hash_destroy(dtrace_bymod);
16126 	dtrace_hash_destroy(dtrace_byfunc);
16127 	dtrace_hash_destroy(dtrace_byname);
16128 	dtrace_bymod = NULL;
16129 	dtrace_byfunc = NULL;
16130 	dtrace_byname = NULL;
16131 
16132 	kmem_cache_destroy(dtrace_state_cache);
16133 	vmem_destroy(dtrace_minor);
16134 	vmem_destroy(dtrace_arena);
16135 
16136 	if (dtrace_toxrange != NULL) {
16137 		kmem_free(dtrace_toxrange,
16138 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16139 		dtrace_toxrange = NULL;
16140 		dtrace_toxranges = 0;
16141 		dtrace_toxranges_max = 0;
16142 	}
16143 
16144 	ddi_remove_minor_node(dtrace_devi, NULL);
16145 	dtrace_devi = NULL;
16146 
16147 	ddi_soft_state_fini(&dtrace_softstate);
16148 
16149 	ASSERT(dtrace_vtime_references == 0);
16150 	ASSERT(dtrace_opens == 0);
16151 	ASSERT(dtrace_retained == NULL);
16152 
16153 	mutex_exit(&dtrace_lock);
16154 	mutex_exit(&dtrace_provider_lock);
16155 
16156 	/*
16157 	 * We don't destroy the task queue until after we have dropped our
16158 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16159 	 * attempting to do work after we have effectively detached but before
16160 	 * the task queue has been destroyed, all tasks dispatched via the
16161 	 * task queue must check that DTrace is still attached before
16162 	 * performing any operation.
16163 	 */
16164 	taskq_destroy(dtrace_taskq);
16165 	dtrace_taskq = NULL;
16166 
16167 	return (DDI_SUCCESS);
16168 }
16169 
16170 /*ARGSUSED*/
16171 static int
16172 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16173 {
16174 	int error;
16175 
16176 	switch (infocmd) {
16177 	case DDI_INFO_DEVT2DEVINFO:
16178 		*result = (void *)dtrace_devi;
16179 		error = DDI_SUCCESS;
16180 		break;
16181 	case DDI_INFO_DEVT2INSTANCE:
16182 		*result = (void *)0;
16183 		error = DDI_SUCCESS;
16184 		break;
16185 	default:
16186 		error = DDI_FAILURE;
16187 	}
16188 	return (error);
16189 }
16190 
16191 static struct cb_ops dtrace_cb_ops = {
16192 	dtrace_open,		/* open */
16193 	dtrace_close,		/* close */
16194 	nulldev,		/* strategy */
16195 	nulldev,		/* print */
16196 	nodev,			/* dump */
16197 	nodev,			/* read */
16198 	nodev,			/* write */
16199 	dtrace_ioctl,		/* ioctl */
16200 	nodev,			/* devmap */
16201 	nodev,			/* mmap */
16202 	nodev,			/* segmap */
16203 	nochpoll,		/* poll */
16204 	ddi_prop_op,		/* cb_prop_op */
16205 	0,			/* streamtab  */
16206 	D_NEW | D_MP		/* Driver compatibility flag */
16207 };
16208 
16209 static struct dev_ops dtrace_ops = {
16210 	DEVO_REV,		/* devo_rev */
16211 	0,			/* refcnt */
16212 	dtrace_info,		/* get_dev_info */
16213 	nulldev,		/* identify */
16214 	nulldev,		/* probe */
16215 	dtrace_attach,		/* attach */
16216 	dtrace_detach,		/* detach */
16217 	nodev,			/* reset */
16218 	&dtrace_cb_ops,		/* driver operations */
16219 	NULL,			/* bus operations */
16220 	nodev,			/* dev power */
16221 	ddi_quiesce_not_needed,		/* quiesce */
16222 };
16223 
16224 static struct modldrv modldrv = {
16225 	&mod_driverops,		/* module type (this is a pseudo driver) */
16226 	"Dynamic Tracing",	/* name of module */
16227 	&dtrace_ops,		/* driver ops */
16228 };
16229 
16230 static struct modlinkage modlinkage = {
16231 	MODREV_1,
16232 	(void *)&modldrv,
16233 	NULL
16234 };
16235 
16236 int
16237 _init(void)
16238 {
16239 	return (mod_install(&modlinkage));
16240 }
16241 
16242 int
16243 _info(struct modinfo *modinfop)
16244 {
16245 	return (mod_info(&modlinkage, modinfop));
16246 }
16247 
16248 int
16249 _fini(void)
16250 {
16251 	return (mod_remove(&modlinkage));
16252 }
16253