xref: /titanic_50/usr/src/uts/common/dtrace/dtrace.c (revision ac9418faa9bc5d2e2b8fdb33f434b05183528026)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_state_t	*dtrace_state;		/* temporary variable */
188 static int		dtrace_err;		/* temporary variable */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
213  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
214  * role as a coarse-grained lock; it is acquired before both of these locks.
215  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
216  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
217  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
218  * acquired _between_ dtrace_provider_lock and dtrace_lock.
219  */
220 static kmutex_t		dtrace_lock;		/* probe state lock */
221 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
222 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
223 
224 /*
225  * DTrace Provider Variables
226  *
227  * These are the variables relating to DTrace as a provider (that is, the
228  * provider of the BEGIN, END, and ERROR probes).
229  */
230 static dtrace_pattr_t	dtrace_provider_attr = {
231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 };
237 
238 static void
239 dtrace_nullop(void)
240 {}
241 
242 static dtrace_pops_t	dtrace_provider_ops = {
243 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
244 	(void (*)(void *, struct modctl *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
249 	NULL,
250 	NULL,
251 	NULL,
252 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
253 };
254 
255 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
256 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
257 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
258 
259 /*
260  * DTrace Helper Tracing Variables
261  */
262 uint32_t dtrace_helptrace_next = 0;
263 uint32_t dtrace_helptrace_nlocals;
264 char	*dtrace_helptrace_buffer;
265 int	dtrace_helptrace_bufsize = 512 * 1024;
266 
267 #ifdef DEBUG
268 int	dtrace_helptrace_enabled = 1;
269 #else
270 int	dtrace_helptrace_enabled = 0;
271 #endif
272 
273 /*
274  * DTrace Error Hashing
275  *
276  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
277  * table.  This is very useful for checking coverage of tests that are
278  * expected to induce DIF or DOF processing errors, and may be useful for
279  * debugging problems in the DIF code generator or in DOF generation .  The
280  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
281  */
282 #ifdef DEBUG
283 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
284 static const char *dtrace_errlast;
285 static kthread_t *dtrace_errthread;
286 static kmutex_t dtrace_errlock;
287 #endif
288 
289 /*
290  * DTrace Macros and Constants
291  *
292  * These are various macros that are useful in various spots in the
293  * implementation, along with a few random constants that have no meaning
294  * outside of the implementation.  There is no real structure to this cpp
295  * mishmash -- but is there ever?
296  */
297 #define	DTRACE_HASHSTR(hash, probe)	\
298 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
299 
300 #define	DTRACE_HASHNEXT(hash, probe)	\
301 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
302 
303 #define	DTRACE_HASHPREV(hash, probe)	\
304 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
305 
306 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
307 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
308 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
309 
310 #define	DTRACE_AGGHASHSIZE_SLEW		17
311 
312 /*
313  * The key for a thread-local variable consists of the lower 61 bits of the
314  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
315  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
316  * equal to a variable identifier.  This is necessary (but not sufficient) to
317  * assure that global associative arrays never collide with thread-local
318  * variables.  To guarantee that they cannot collide, we must also define the
319  * order for keying dynamic variables.  That order is:
320  *
321  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
322  *
323  * Because the variable-key and the tls-key are in orthogonal spaces, there is
324  * no way for a global variable key signature to match a thread-local key
325  * signature.
326  */
327 #define	DTRACE_TLS_THRKEY(where) { \
328 	uint_t intr = 0; \
329 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
330 	for (; actv; actv >>= 1) \
331 		intr++; \
332 	ASSERT(intr < (1 << 3)); \
333 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
334 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
335 }
336 
337 #define	DTRACE_STORE(type, tomax, offset, what) \
338 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
339 
340 #ifndef __i386
341 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
342 	if (addr & (size - 1)) {					\
343 		*flags |= CPU_DTRACE_BADALIGN;				\
344 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
345 		return (0);						\
346 	}
347 #else
348 #define	DTRACE_ALIGNCHECK(addr, size, flags)
349 #endif
350 
351 #define	DTRACE_LOADFUNC(bits)						\
352 /*CSTYLED*/								\
353 uint##bits##_t								\
354 dtrace_load##bits(uintptr_t addr)					\
355 {									\
356 	size_t size = bits / NBBY;					\
357 	/*CSTYLED*/							\
358 	uint##bits##_t rval;						\
359 	int i;								\
360 	volatile uint16_t *flags = (volatile uint16_t *)		\
361 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
362 									\
363 	DTRACE_ALIGNCHECK(addr, size, flags);				\
364 									\
365 	for (i = 0; i < dtrace_toxranges; i++) {			\
366 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
367 			continue;					\
368 									\
369 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
370 			continue;					\
371 									\
372 		/*							\
373 		 * This address falls within a toxic region; return 0.	\
374 		 */							\
375 		*flags |= CPU_DTRACE_BADADDR;				\
376 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
377 		return (0);						\
378 	}								\
379 									\
380 	*flags |= CPU_DTRACE_NOFAULT;					\
381 	/*CSTYLED*/							\
382 	rval = *((volatile uint##bits##_t *)addr);			\
383 	*flags &= ~CPU_DTRACE_NOFAULT;					\
384 									\
385 	return (rval);							\
386 }
387 
388 #ifdef _LP64
389 #define	dtrace_loadptr	dtrace_load64
390 #else
391 #define	dtrace_loadptr	dtrace_load32
392 #endif
393 
394 #define	DTRACE_MATCH_NEXT	0
395 #define	DTRACE_MATCH_DONE	1
396 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
397 #define	DTRACE_STATE_ALIGN	64
398 
399 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
400 static void dtrace_enabling_provide(dtrace_provider_t *);
401 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
402 static void dtrace_enabling_matchall(void);
403 static dtrace_state_t *dtrace_anon_grab(void);
404 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
405     dtrace_state_t *, uint64_t, uint64_t);
406 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
407 static void dtrace_buffer_drop(dtrace_buffer_t *);
408 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
409     dtrace_state_t *, dtrace_mstate_t *);
410 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
411     dtrace_optval_t);
412 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
413 
414 /*
415  * DTrace Probe Context Functions
416  *
417  * These functions are called from probe context.  Because probe context is
418  * any context in which C may be called, arbitrarily locks may be held,
419  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
420  * As a result, functions called from probe context may only call other DTrace
421  * support functions -- they may not interact at all with the system at large.
422  * (Note that the ASSERT macro is made probe-context safe by redefining it in
423  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
424  * loads are to be performed from probe context, they _must_ be in terms of
425  * the safe dtrace_load*() variants.
426  *
427  * Some functions in this block are not actually called from probe context;
428  * for these functions, there will be a comment above the function reading
429  * "Note:  not called from probe context."
430  */
431 void
432 dtrace_panic(const char *format, ...)
433 {
434 	va_list alist;
435 
436 	va_start(alist, format);
437 	dtrace_vpanic(format, alist);
438 	va_end(alist);
439 }
440 
441 int
442 dtrace_assfail(const char *a, const char *f, int l)
443 {
444 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
445 
446 	/*
447 	 * We just need something here that even the most clever compiler
448 	 * cannot optimize away.
449 	 */
450 	return (a[(uintptr_t)f]);
451 }
452 
453 /*
454  * Atomically increment a specified error counter from probe context.
455  */
456 static void
457 dtrace_error(uint32_t *counter)
458 {
459 	/*
460 	 * Most counters stored to in probe context are per-CPU counters.
461 	 * However, there are some error conditions that are sufficiently
462 	 * arcane that they don't merit per-CPU storage.  If these counters
463 	 * are incremented concurrently on different CPUs, scalability will be
464 	 * adversely affected -- but we don't expect them to be white-hot in a
465 	 * correctly constructed enabling...
466 	 */
467 	uint32_t oval, nval;
468 
469 	do {
470 		oval = *counter;
471 
472 		if ((nval = oval + 1) == 0) {
473 			/*
474 			 * If the counter would wrap, set it to 1 -- assuring
475 			 * that the counter is never zero when we have seen
476 			 * errors.  (The counter must be 32-bits because we
477 			 * aren't guaranteed a 64-bit compare&swap operation.)
478 			 * To save this code both the infamy of being fingered
479 			 * by a priggish news story and the indignity of being
480 			 * the target of a neo-puritan witch trial, we're
481 			 * carefully avoiding any colorful description of the
482 			 * likelihood of this condition -- but suffice it to
483 			 * say that it is only slightly more likely than the
484 			 * overflow of predicate cache IDs, as discussed in
485 			 * dtrace_predicate_create().
486 			 */
487 			nval = 1;
488 		}
489 	} while (dtrace_cas32(counter, oval, nval) != oval);
490 }
491 
492 /*
493  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
494  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
495  */
496 DTRACE_LOADFUNC(8)
497 DTRACE_LOADFUNC(16)
498 DTRACE_LOADFUNC(32)
499 DTRACE_LOADFUNC(64)
500 
501 static int
502 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
503 {
504 	if (dest < mstate->dtms_scratch_base)
505 		return (0);
506 
507 	if (dest + size < dest)
508 		return (0);
509 
510 	if (dest + size > mstate->dtms_scratch_ptr)
511 		return (0);
512 
513 	return (1);
514 }
515 
516 static int
517 dtrace_canstore_statvar(uint64_t addr, size_t sz,
518     dtrace_statvar_t **svars, int nsvars)
519 {
520 	int i;
521 
522 	for (i = 0; i < nsvars; i++) {
523 		dtrace_statvar_t *svar = svars[i];
524 
525 		if (svar == NULL || svar->dtsv_size == 0)
526 			continue;
527 
528 		if (addr - svar->dtsv_data < svar->dtsv_size &&
529 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
530 			return (1);
531 	}
532 
533 	return (0);
534 }
535 
536 /*
537  * Check to see if the address is within a memory region to which a store may
538  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
539  * region.  The caller of dtrace_canstore() is responsible for performing any
540  * alignment checks that are needed before stores are actually executed.
541  */
542 static int
543 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
544     dtrace_vstate_t *vstate)
545 {
546 	uintptr_t a;
547 	size_t s;
548 
549 	/*
550 	 * First, check to see if the address is in scratch space...
551 	 */
552 	a = mstate->dtms_scratch_base;
553 	s = mstate->dtms_scratch_size;
554 
555 	if (addr - a < s && addr + sz <= a + s)
556 		return (1);
557 
558 	/*
559 	 * Now check to see if it's a dynamic variable.  This check will pick
560 	 * up both thread-local variables and any global dynamically-allocated
561 	 * variables.
562 	 */
563 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
564 	s = vstate->dtvs_dynvars.dtds_size;
565 	if (addr - a < s && addr + sz <= a + s)
566 		return (1);
567 
568 	/*
569 	 * Finally, check the static local and global variables.  These checks
570 	 * take the longest, so we perform them last.
571 	 */
572 	if (dtrace_canstore_statvar(addr, sz,
573 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
574 		return (1);
575 
576 	if (dtrace_canstore_statvar(addr, sz,
577 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
578 		return (1);
579 
580 	return (0);
581 }
582 
583 /*
584  * Compare two strings using safe loads.
585  */
586 static int
587 dtrace_strncmp(char *s1, char *s2, size_t limit)
588 {
589 	uint8_t c1, c2;
590 	volatile uint16_t *flags;
591 
592 	if (s1 == s2 || limit == 0)
593 		return (0);
594 
595 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
596 
597 	do {
598 		if (s1 == NULL) {
599 			c1 = '\0';
600 		} else {
601 			c1 = dtrace_load8((uintptr_t)s1++);
602 		}
603 
604 		if (s2 == NULL) {
605 			c2 = '\0';
606 		} else {
607 			c2 = dtrace_load8((uintptr_t)s2++);
608 		}
609 
610 		if (c1 != c2)
611 			return (c1 - c2);
612 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
613 
614 	return (0);
615 }
616 
617 /*
618  * Compute strlen(s) for a string using safe memory accesses.  The additional
619  * len parameter is used to specify a maximum length to ensure completion.
620  */
621 static size_t
622 dtrace_strlen(const char *s, size_t lim)
623 {
624 	uint_t len;
625 
626 	for (len = 0; len != lim; len++) {
627 		if (dtrace_load8((uintptr_t)s++) == '\0')
628 			break;
629 	}
630 
631 	return (len);
632 }
633 
634 /*
635  * Check if an address falls within a toxic region.
636  */
637 static int
638 dtrace_istoxic(uintptr_t kaddr, size_t size)
639 {
640 	uintptr_t taddr, tsize;
641 	int i;
642 
643 	for (i = 0; i < dtrace_toxranges; i++) {
644 		taddr = dtrace_toxrange[i].dtt_base;
645 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
646 
647 		if (kaddr - taddr < tsize) {
648 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
649 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
650 			return (1);
651 		}
652 
653 		if (taddr - kaddr < size) {
654 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
655 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
656 			return (1);
657 		}
658 	}
659 
660 	return (0);
661 }
662 
663 /*
664  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
665  * memory specified by the DIF program.  The dst is assumed to be safe memory
666  * that we can store to directly because it is managed by DTrace.  As with
667  * standard bcopy, overlapping copies are handled properly.
668  */
669 static void
670 dtrace_bcopy(const void *src, void *dst, size_t len)
671 {
672 	if (len != 0) {
673 		uint8_t *s1 = dst;
674 		const uint8_t *s2 = src;
675 
676 		if (s1 <= s2) {
677 			do {
678 				*s1++ = dtrace_load8((uintptr_t)s2++);
679 			} while (--len != 0);
680 		} else {
681 			s2 += len;
682 			s1 += len;
683 
684 			do {
685 				*--s1 = dtrace_load8((uintptr_t)--s2);
686 			} while (--len != 0);
687 		}
688 	}
689 }
690 
691 /*
692  * Copy src to dst using safe memory accesses, up to either the specified
693  * length, or the point that a nul byte is encountered.  The src is assumed to
694  * be unsafe memory specified by the DIF program.  The dst is assumed to be
695  * safe memory that we can store to directly because it is managed by DTrace.
696  * Unlike dtrace_bcopy(), overlapping regions are not handled.
697  */
698 static void
699 dtrace_strcpy(const void *src, void *dst, size_t len)
700 {
701 	if (len != 0) {
702 		uint8_t *s1 = dst, c;
703 		const uint8_t *s2 = src;
704 
705 		do {
706 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
707 		} while (--len != 0 && c != '\0');
708 	}
709 }
710 
711 /*
712  * Copy src to dst, deriving the size and type from the specified (BYREF)
713  * variable type.  The src is assumed to be unsafe memory specified by the DIF
714  * program.  The dst is assumed to be DTrace variable memory that is of the
715  * specified type; we assume that we can store to directly.
716  */
717 static void
718 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
719 {
720 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
721 
722 	if (type->dtdt_kind == DIF_TYPE_STRING) {
723 		dtrace_strcpy(src, dst, type->dtdt_size);
724 	} else {
725 		dtrace_bcopy(src, dst, type->dtdt_size);
726 	}
727 }
728 
729 /*
730  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
731  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
732  * safe memory that we can access directly because it is managed by DTrace.
733  */
734 static int
735 dtrace_bcmp(const void *s1, const void *s2, size_t len)
736 {
737 	volatile uint16_t *flags;
738 
739 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
740 
741 	if (s1 == s2)
742 		return (0);
743 
744 	if (s1 == NULL || s2 == NULL)
745 		return (1);
746 
747 	if (s1 != s2 && len != 0) {
748 		const uint8_t *ps1 = s1;
749 		const uint8_t *ps2 = s2;
750 
751 		do {
752 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
753 				return (1);
754 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
755 	}
756 	return (0);
757 }
758 
759 /*
760  * Zero the specified region using a simple byte-by-byte loop.  Note that this
761  * is for safe DTrace-managed memory only.
762  */
763 static void
764 dtrace_bzero(void *dst, size_t len)
765 {
766 	uchar_t *cp;
767 
768 	for (cp = dst; len != 0; len--)
769 		*cp++ = 0;
770 }
771 
772 /*
773  * This privilege checks should be used by actions and subroutines to
774  * verify the credentials of the process that enabled the invoking ECB.
775  */
776 static int
777 dtrace_priv_proc_common(dtrace_state_t *state)
778 {
779 	uid_t uid = state->dts_cred.dcr_uid;
780 	gid_t gid = state->dts_cred.dcr_gid;
781 	cred_t *cr;
782 	proc_t *proc;
783 
784 	if ((cr = CRED()) != NULL &&
785 	    uid == cr->cr_uid &&
786 	    uid == cr->cr_ruid &&
787 	    uid == cr->cr_suid &&
788 	    gid == cr->cr_gid &&
789 	    gid == cr->cr_rgid &&
790 	    gid == cr->cr_sgid &&
791 	    (proc = ttoproc(curthread)) != NULL &&
792 	    !(proc->p_flag & SNOCD))
793 		return (1);
794 
795 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
796 
797 	return (0);
798 }
799 
800 static int
801 dtrace_priv_proc_destructive(dtrace_state_t *state)
802 {
803 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_DESTRUCTIVE)
804 		return (1);
805 
806 	return (dtrace_priv_proc_common(state));
807 }
808 
809 static int
810 dtrace_priv_proc_control(dtrace_state_t *state)
811 {
812 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
813 		return (1);
814 
815 	return (dtrace_priv_proc_common(state));
816 }
817 
818 static int
819 dtrace_priv_proc(dtrace_state_t *state)
820 {
821 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
822 		return (1);
823 
824 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
825 
826 	return (0);
827 }
828 
829 static int
830 dtrace_priv_kernel(dtrace_state_t *state)
831 {
832 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
833 		return (1);
834 
835 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
836 
837 	return (0);
838 }
839 
840 static int
841 dtrace_priv_kernel_destructive(dtrace_state_t *state)
842 {
843 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
844 		return (1);
845 
846 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
847 
848 	return (0);
849 }
850 
851 /*
852  * Note:  not called from probe context.  This function is called
853  * asynchronously (and at a regular interval) from outside of probe context to
854  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
855  * cleaning is explained in detail in <sys/dtrace_impl.h>.
856  */
857 void
858 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
859 {
860 	dtrace_dynvar_t *dirty;
861 	dtrace_dstate_percpu_t *dcpu;
862 	int i, work = 0;
863 
864 	for (i = 0; i < NCPU; i++) {
865 		dcpu = &dstate->dtds_percpu[i];
866 
867 		ASSERT(dcpu->dtdsc_rinsing == NULL);
868 
869 		/*
870 		 * If the dirty list is NULL, there is no dirty work to do.
871 		 */
872 		if (dcpu->dtdsc_dirty == NULL)
873 			continue;
874 
875 		/*
876 		 * If the clean list is non-NULL, then we're not going to do
877 		 * any work for this CPU -- it means that there has not been
878 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
879 		 * since the last time we cleaned house.
880 		 */
881 		if (dcpu->dtdsc_clean != NULL)
882 			continue;
883 
884 		work = 1;
885 
886 		/*
887 		 * Atomically move the dirty list aside.
888 		 */
889 		do {
890 			dirty = dcpu->dtdsc_dirty;
891 
892 			/*
893 			 * Before we zap the dirty list, set the rinsing list.
894 			 * (This allows for a potential assertion in
895 			 * dtrace_dynvar():  if a free dynamic variable appears
896 			 * on a hash chain, either the dirty list or the
897 			 * rinsing list for some CPU must be non-NULL.)
898 			 */
899 			dcpu->dtdsc_rinsing = dirty;
900 			dtrace_membar_producer();
901 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
902 		    dirty, NULL) != dirty);
903 	}
904 
905 	if (!work) {
906 		/*
907 		 * We have no work to do; we can simply return.
908 		 */
909 		return;
910 	}
911 
912 	dtrace_sync();
913 
914 	for (i = 0; i < NCPU; i++) {
915 		dcpu = &dstate->dtds_percpu[i];
916 
917 		if (dcpu->dtdsc_rinsing == NULL)
918 			continue;
919 
920 		/*
921 		 * We are now guaranteed that no hash chain contains a pointer
922 		 * into this dirty list; we can make it clean.
923 		 */
924 		ASSERT(dcpu->dtdsc_clean == NULL);
925 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
926 		dcpu->dtdsc_rinsing = NULL;
927 	}
928 
929 	/*
930 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
931 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
932 	 * This prevents a race whereby a CPU incorrectly decides that
933 	 * the state should be something other than DTRACE_DSTATE_CLEAN
934 	 * after dtrace_dynvar_clean() has completed.
935 	 */
936 	dtrace_sync();
937 
938 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
939 }
940 
941 /*
942  * Depending on the value of the op parameter, this function looks-up,
943  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
944  * allocation is requested, this function will return a pointer to a
945  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
946  * variable can be allocated.  If NULL is returned, the appropriate counter
947  * will be incremented.
948  */
949 dtrace_dynvar_t *
950 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
951     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
952 {
953 	uint64_t hashval = 1;
954 	dtrace_dynhash_t *hash = dstate->dtds_hash;
955 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
956 	processorid_t me = CPU->cpu_id, cpu = me;
957 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
958 	size_t bucket, ksize;
959 	size_t chunksize = dstate->dtds_chunksize;
960 	uintptr_t kdata, lock, nstate;
961 	uint_t i;
962 
963 	ASSERT(nkeys != 0);
964 
965 	/*
966 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
967 	 * algorithm.  For the by-value portions, we perform the algorithm in
968 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
969 	 * bit, and seems to have only a minute effect on distribution.  For
970 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
971 	 * over each referenced byte.  It's painful to do this, but it's much
972 	 * better than pathological hash distribution.  The efficacy of the
973 	 * hashing algorithm (and a comparison with other algorithms) may be
974 	 * found by running the ::dtrace_dynstat MDB dcmd.
975 	 */
976 	for (i = 0; i < nkeys; i++) {
977 		if (key[i].dttk_size == 0) {
978 			uint64_t val = key[i].dttk_value;
979 
980 			hashval += (val >> 48) & 0xffff;
981 			hashval += (hashval << 10);
982 			hashval ^= (hashval >> 6);
983 
984 			hashval += (val >> 32) & 0xffff;
985 			hashval += (hashval << 10);
986 			hashval ^= (hashval >> 6);
987 
988 			hashval += (val >> 16) & 0xffff;
989 			hashval += (hashval << 10);
990 			hashval ^= (hashval >> 6);
991 
992 			hashval += val & 0xffff;
993 			hashval += (hashval << 10);
994 			hashval ^= (hashval >> 6);
995 		} else {
996 			/*
997 			 * This is incredibly painful, but it beats the hell
998 			 * out of the alternative.
999 			 */
1000 			uint64_t j, size = key[i].dttk_size;
1001 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1002 
1003 			for (j = 0; j < size; j++) {
1004 				hashval += dtrace_load8(base + j);
1005 				hashval += (hashval << 10);
1006 				hashval ^= (hashval >> 6);
1007 			}
1008 		}
1009 	}
1010 
1011 	hashval += (hashval << 3);
1012 	hashval ^= (hashval >> 11);
1013 	hashval += (hashval << 15);
1014 
1015 	/*
1016 	 * There is a remote chance (ideally, 1 in 2^32) that our hashval
1017 	 * comes out to be 0.  We rely on a zero hashval denoting a free
1018 	 * element; if this actually happens, we set the hashval to 1.
1019 	 */
1020 	if (hashval == 0)
1021 		hashval = 1;
1022 
1023 	/*
1024 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1025 	 * important here, tricks can be pulled to reduce it.  (However, it's
1026 	 * critical that hash collisions be kept to an absolute minimum;
1027 	 * they're much more painful than a divide.)  It's better to have a
1028 	 * solution that generates few collisions and still keeps things
1029 	 * relatively simple.
1030 	 */
1031 	bucket = hashval % dstate->dtds_hashsize;
1032 
1033 	if (op == DTRACE_DYNVAR_DEALLOC) {
1034 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1035 
1036 		for (;;) {
1037 			while ((lock = *lockp) & 1)
1038 				continue;
1039 
1040 			if (dtrace_casptr((void *)lockp,
1041 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1042 				break;
1043 		}
1044 
1045 		dtrace_membar_producer();
1046 	}
1047 
1048 top:
1049 	prev = NULL;
1050 	lock = hash[bucket].dtdh_lock;
1051 
1052 	dtrace_membar_consumer();
1053 
1054 	start = hash[bucket].dtdh_chain;
1055 	ASSERT(start == NULL || start->dtdv_hashval != 0 ||
1056 	    op != DTRACE_DYNVAR_DEALLOC);
1057 
1058 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1059 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1060 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1061 
1062 		if (dvar->dtdv_hashval != hashval) {
1063 			if (dvar->dtdv_hashval == 0) {
1064 				/*
1065 				 * We've gone off the rails.  Somewhere
1066 				 * along the line, one of the members of this
1067 				 * hash chain was deleted.  We could assert
1068 				 * that either the dirty list or the rinsing
1069 				 * list is non-NULL.  (The dtrace_sync() in
1070 				 * dtrace_dynvar_clean() would validate this
1071 				 * assertion.)
1072 				 */
1073 				ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1074 				goto top;
1075 			}
1076 
1077 			goto next;
1078 		}
1079 
1080 		if (dtuple->dtt_nkeys != nkeys)
1081 			goto next;
1082 
1083 		for (i = 0; i < nkeys; i++, dkey++) {
1084 			if (dkey->dttk_size != key[i].dttk_size)
1085 				goto next; /* size or type mismatch */
1086 
1087 			if (dkey->dttk_size != 0) {
1088 				if (dtrace_bcmp(
1089 				    (void *)(uintptr_t)key[i].dttk_value,
1090 				    (void *)(uintptr_t)dkey->dttk_value,
1091 				    dkey->dttk_size))
1092 					goto next;
1093 			} else {
1094 				if (dkey->dttk_value != key[i].dttk_value)
1095 					goto next;
1096 			}
1097 		}
1098 
1099 		if (op != DTRACE_DYNVAR_DEALLOC)
1100 			return (dvar);
1101 
1102 		ASSERT(dvar->dtdv_next == NULL ||
1103 		    dvar->dtdv_next->dtdv_hashval != 0);
1104 
1105 		if (prev != NULL) {
1106 			ASSERT(hash[bucket].dtdh_chain != dvar);
1107 			ASSERT(start != dvar);
1108 			ASSERT(prev->dtdv_next == dvar);
1109 			prev->dtdv_next = dvar->dtdv_next;
1110 		} else {
1111 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1112 			    start, dvar->dtdv_next) != start) {
1113 				/*
1114 				 * We have failed to atomically swing the
1115 				 * hash table head pointer, presumably because
1116 				 * of a conflicting allocation on another CPU.
1117 				 * We need to reread the hash chain and try
1118 				 * again.
1119 				 */
1120 				goto top;
1121 			}
1122 		}
1123 
1124 		dtrace_membar_producer();
1125 
1126 		/*
1127 		 * Now clear the hash value to indicate that it's free.
1128 		 */
1129 		ASSERT(hash[bucket].dtdh_chain != dvar);
1130 		dvar->dtdv_hashval = 0;
1131 
1132 		dtrace_membar_producer();
1133 
1134 		/*
1135 		 * Set the next pointer to point at the dirty list, and
1136 		 * atomically swing the dirty pointer to the newly freed dvar.
1137 		 */
1138 		do {
1139 			next = dcpu->dtdsc_dirty;
1140 			dvar->dtdv_next = next;
1141 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1142 
1143 		/*
1144 		 * Finally, unlock this hash bucket.
1145 		 */
1146 		ASSERT(hash[bucket].dtdh_lock == lock);
1147 		ASSERT(lock & 1);
1148 		hash[bucket].dtdh_lock++;
1149 
1150 		return (NULL);
1151 next:
1152 		prev = dvar;
1153 		continue;
1154 	}
1155 
1156 	if (op != DTRACE_DYNVAR_ALLOC) {
1157 		/*
1158 		 * If we are not to allocate a new variable, we want to
1159 		 * return NULL now.  Before we return, check that the value
1160 		 * of the lock word hasn't changed.  If it has, we may have
1161 		 * seen an inconsistent snapshot.
1162 		 */
1163 		if (op == DTRACE_DYNVAR_NOALLOC) {
1164 			if (hash[bucket].dtdh_lock != lock)
1165 				goto top;
1166 		} else {
1167 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1168 			ASSERT(hash[bucket].dtdh_lock == lock);
1169 			ASSERT(lock & 1);
1170 			hash[bucket].dtdh_lock++;
1171 		}
1172 
1173 		return (NULL);
1174 	}
1175 
1176 	/*
1177 	 * We need to allocate a new dynamic variable.  The size we need is the
1178 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1179 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1180 	 * the size of any referred-to data (dsize).  We then round the final
1181 	 * size up to the chunksize for allocation.
1182 	 */
1183 	for (ksize = 0, i = 0; i < nkeys; i++)
1184 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1185 
1186 	/*
1187 	 * This should be pretty much impossible, but could happen if, say,
1188 	 * strange DIF specified the tuple.  Ideally, this should be an
1189 	 * assertion and not an error condition -- but that requires that the
1190 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1191 	 * bullet-proof.  (That is, it must not be able to be fooled by
1192 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1193 	 * solving this would presumably not amount to solving the Halting
1194 	 * Problem -- but it still seems awfully hard.
1195 	 */
1196 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1197 	    ksize + dsize > chunksize) {
1198 		dcpu->dtdsc_drops++;
1199 		return (NULL);
1200 	}
1201 
1202 	nstate = DTRACE_DSTATE_EMPTY;
1203 
1204 	do {
1205 retry:
1206 		free = dcpu->dtdsc_free;
1207 
1208 		if (free == NULL) {
1209 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1210 			void *rval;
1211 
1212 			if (clean == NULL) {
1213 				/*
1214 				 * We're out of dynamic variable space on
1215 				 * this CPU.  Unless we have tried all CPUs,
1216 				 * we'll try to allocate from a different
1217 				 * CPU.
1218 				 */
1219 				switch (dstate->dtds_state) {
1220 				case DTRACE_DSTATE_CLEAN: {
1221 					void *sp = &dstate->dtds_state;
1222 
1223 					if (++cpu >= NCPU)
1224 						cpu = 0;
1225 
1226 					if (dcpu->dtdsc_dirty != NULL &&
1227 					    nstate == DTRACE_DSTATE_EMPTY)
1228 						nstate = DTRACE_DSTATE_DIRTY;
1229 
1230 					if (dcpu->dtdsc_rinsing != NULL)
1231 						nstate = DTRACE_DSTATE_RINSING;
1232 
1233 					dcpu = &dstate->dtds_percpu[cpu];
1234 
1235 					if (cpu != me)
1236 						goto retry;
1237 
1238 					(void) dtrace_cas32(sp,
1239 					    DTRACE_DSTATE_CLEAN, nstate);
1240 
1241 					/*
1242 					 * To increment the correct bean
1243 					 * counter, take another lap.
1244 					 */
1245 					goto retry;
1246 				}
1247 
1248 				case DTRACE_DSTATE_DIRTY:
1249 					dcpu->dtdsc_dirty_drops++;
1250 					break;
1251 
1252 				case DTRACE_DSTATE_RINSING:
1253 					dcpu->dtdsc_rinsing_drops++;
1254 					break;
1255 
1256 				case DTRACE_DSTATE_EMPTY:
1257 					dcpu->dtdsc_drops++;
1258 					break;
1259 				}
1260 
1261 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1262 				return (NULL);
1263 			}
1264 
1265 			/*
1266 			 * The clean list appears to be non-empty.  We want to
1267 			 * move the clean list to the free list; we start by
1268 			 * moving the clean pointer aside.
1269 			 */
1270 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1271 			    clean, NULL) != clean) {
1272 				/*
1273 				 * We are in one of two situations:
1274 				 *
1275 				 *  (a)	The clean list was switched to the
1276 				 *	free list by another CPU.
1277 				 *
1278 				 *  (b)	The clean list was added to by the
1279 				 *	cleansing cyclic.
1280 				 *
1281 				 * In either of these situations, we can
1282 				 * just reattempt the free list allocation.
1283 				 */
1284 				goto retry;
1285 			}
1286 
1287 			ASSERT(clean->dtdv_hashval == 0);
1288 
1289 			/*
1290 			 * Now we'll move the clean list to the free list.
1291 			 * It's impossible for this to fail:  the only way
1292 			 * the free list can be updated is through this
1293 			 * code path, and only one CPU can own the clean list.
1294 			 * Thus, it would only be possible for this to fail if
1295 			 * this code were racing with dtrace_dynvar_clean().
1296 			 * (That is, if dtrace_dynvar_clean() updated the clean
1297 			 * list, and we ended up racing to update the free
1298 			 * list.)  This race is prevented by the dtrace_sync()
1299 			 * in dtrace_dynvar_clean() -- which flushes the
1300 			 * owners of the clean lists out before resetting
1301 			 * the clean lists.
1302 			 */
1303 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1304 			ASSERT(rval == NULL);
1305 			goto retry;
1306 		}
1307 
1308 		dvar = free;
1309 		new_free = dvar->dtdv_next;
1310 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1311 
1312 	/*
1313 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1314 	 * tuple array and copy any referenced key data into the data space
1315 	 * following the tuple array.  As we do this, we relocate dttk_value
1316 	 * in the final tuple to point to the key data address in the chunk.
1317 	 */
1318 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1319 	dvar->dtdv_data = (void *)(kdata + ksize);
1320 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1321 
1322 	for (i = 0; i < nkeys; i++) {
1323 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1324 		size_t kesize = key[i].dttk_size;
1325 
1326 		if (kesize != 0) {
1327 			dtrace_bcopy(
1328 			    (const void *)(uintptr_t)key[i].dttk_value,
1329 			    (void *)kdata, kesize);
1330 			dkey->dttk_value = kdata;
1331 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1332 		} else {
1333 			dkey->dttk_value = key[i].dttk_value;
1334 		}
1335 
1336 		dkey->dttk_size = kesize;
1337 	}
1338 
1339 	ASSERT(dvar->dtdv_hashval == 0);
1340 	dvar->dtdv_hashval = hashval;
1341 	dvar->dtdv_next = start;
1342 
1343 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1344 		return (dvar);
1345 
1346 	/*
1347 	 * The cas has failed.  Either another CPU is adding an element to
1348 	 * this hash chain, or another CPU is deleting an element from this
1349 	 * hash chain.  The simplest way to deal with both of these cases
1350 	 * (though not necessarily the most efficient) is to free our
1351 	 * allocated block and tail-call ourselves.  Note that the free is
1352 	 * to the dirty list and _not_ to the free list.  This is to prevent
1353 	 * races with allocators, above.
1354 	 */
1355 	dvar->dtdv_hashval = 0;
1356 
1357 	dtrace_membar_producer();
1358 
1359 	do {
1360 		free = dcpu->dtdsc_dirty;
1361 		dvar->dtdv_next = free;
1362 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1363 
1364 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1365 }
1366 
1367 /*ARGSUSED*/
1368 static void
1369 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1370 {
1371 	if (nval < *oval)
1372 		*oval = nval;
1373 }
1374 
1375 /*ARGSUSED*/
1376 static void
1377 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1378 {
1379 	if (nval > *oval)
1380 		*oval = nval;
1381 }
1382 
1383 static void
1384 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1385 {
1386 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1387 	int64_t val = (int64_t)nval;
1388 
1389 	if (val < 0) {
1390 		for (i = 0; i < zero; i++) {
1391 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1392 				quanta[i] += incr;
1393 				return;
1394 			}
1395 		}
1396 	} else {
1397 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1398 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1399 				quanta[i - 1] += incr;
1400 				return;
1401 			}
1402 		}
1403 
1404 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1405 		return;
1406 	}
1407 
1408 	ASSERT(0);
1409 }
1410 
1411 static void
1412 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1413 {
1414 	uint64_t arg = *lquanta++;
1415 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1416 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1417 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1418 	int32_t val = (int32_t)nval, level;
1419 
1420 	ASSERT(step != 0);
1421 	ASSERT(levels != 0);
1422 
1423 	if (val < base) {
1424 		/*
1425 		 * This is an underflow.
1426 		 */
1427 		lquanta[0] += incr;
1428 		return;
1429 	}
1430 
1431 	level = (val - base) / step;
1432 
1433 	if (level < levels) {
1434 		lquanta[level + 1] += incr;
1435 		return;
1436 	}
1437 
1438 	/*
1439 	 * This is an overflow.
1440 	 */
1441 	lquanta[levels + 1] += incr;
1442 }
1443 
1444 /*ARGSUSED*/
1445 static void
1446 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1447 {
1448 	data[0]++;
1449 	data[1] += nval;
1450 }
1451 
1452 /*ARGSUSED*/
1453 static void
1454 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1455 {
1456 	*oval = *oval + 1;
1457 }
1458 
1459 /*ARGSUSED*/
1460 static void
1461 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1462 {
1463 	*oval += nval;
1464 }
1465 
1466 /*
1467  * Aggregate given the tuple in the principal data buffer, and the aggregating
1468  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1469  * buffer is specified as the buf parameter.  This routine does not return
1470  * failure; if there is no space in the aggregation buffer, the data will be
1471  * dropped, and a corresponding counter incremented.
1472  */
1473 static void
1474 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1475     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1476 {
1477 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1478 	uint32_t i, ndx, size, fsize;
1479 	uint32_t align = sizeof (uint64_t) - 1;
1480 	dtrace_aggbuffer_t *agb;
1481 	dtrace_aggkey_t *key;
1482 	uint32_t hashval = 0;
1483 	caddr_t tomax, data, kdata;
1484 	dtrace_actkind_t action;
1485 	uintptr_t offs;
1486 
1487 	if (buf == NULL)
1488 		return;
1489 
1490 	if (!agg->dtag_hasarg) {
1491 		/*
1492 		 * Currently, only quantize() and lquantize() take additional
1493 		 * arguments, and they have the same semantics:  an increment
1494 		 * value that defaults to 1 when not present.  If additional
1495 		 * aggregating actions take arguments, the setting of the
1496 		 * default argument value will presumably have to become more
1497 		 * sophisticated...
1498 		 */
1499 		arg = 1;
1500 	}
1501 
1502 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1503 	size = rec->dtrd_offset - agg->dtag_base;
1504 	fsize = size + rec->dtrd_size;
1505 
1506 	ASSERT(dbuf->dtb_tomax != NULL);
1507 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1508 
1509 	if ((tomax = buf->dtb_tomax) == NULL) {
1510 		dtrace_buffer_drop(buf);
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * The metastructure is always at the bottom of the buffer.
1516 	 */
1517 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1518 	    sizeof (dtrace_aggbuffer_t));
1519 
1520 	if (buf->dtb_offset == 0) {
1521 		/*
1522 		 * We just kludge up approximately 1/8th of the size to be
1523 		 * buckets.  If this guess ends up being routinely
1524 		 * off-the-mark, we may need to dynamically readjust this
1525 		 * based on past performance.
1526 		 */
1527 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1528 
1529 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1530 		    (uintptr_t)tomax || hashsize == 0) {
1531 			/*
1532 			 * We've been given a ludicrously small buffer;
1533 			 * increment our drop count and leave.
1534 			 */
1535 			dtrace_buffer_drop(buf);
1536 			return;
1537 		}
1538 
1539 		/*
1540 		 * And now, a pathetic attempt to try to get a an odd (or
1541 		 * perchance, a prime) hash size for better hash distribution.
1542 		 */
1543 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1544 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1545 
1546 		agb->dtagb_hashsize = hashsize;
1547 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1548 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1549 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1550 
1551 		for (i = 0; i < agb->dtagb_hashsize; i++)
1552 			agb->dtagb_hash[i] = NULL;
1553 	}
1554 
1555 	/*
1556 	 * Calculate the hash value based on the key.  Note that we _don't_
1557 	 * include the aggid in the hashing (but we will store it as part of
1558 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1559 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1560 	 * gets good distribution in practice.  The efficacy of the hashing
1561 	 * algorithm (and a comparison with other algorithms) may be found by
1562 	 * running the ::dtrace_aggstat MDB dcmd.
1563 	 */
1564 	for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1565 		hashval += data[i];
1566 		hashval += (hashval << 10);
1567 		hashval ^= (hashval >> 6);
1568 	}
1569 
1570 	hashval += (hashval << 3);
1571 	hashval ^= (hashval >> 11);
1572 	hashval += (hashval << 15);
1573 
1574 	/*
1575 	 * Yes, the divide here is expensive.  If the cycle count here becomes
1576 	 * prohibitive, we can do tricks to eliminate it.
1577 	 */
1578 	ndx = hashval % agb->dtagb_hashsize;
1579 
1580 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1581 		ASSERT((caddr_t)key >= tomax);
1582 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1583 
1584 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1585 			continue;
1586 
1587 		kdata = key->dtak_data;
1588 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1589 
1590 		for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1591 			if (kdata[i] != data[i])
1592 				goto next;
1593 		}
1594 
1595 		if (action != key->dtak_action) {
1596 			/*
1597 			 * We are aggregating on the same value in the same
1598 			 * aggregation with two different aggregating actions.
1599 			 * (This should have been picked up in the compiler,
1600 			 * so we may be dealing with errant or devious DIF.)
1601 			 * This is an error condition; we indicate as much,
1602 			 * and return.
1603 			 */
1604 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1605 			return;
1606 		}
1607 
1608 		/*
1609 		 * This is a hit:  we need to apply the aggregator to
1610 		 * the value at this key.
1611 		 */
1612 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1613 		return;
1614 next:
1615 		continue;
1616 	}
1617 
1618 	/*
1619 	 * We didn't find it.  We need to allocate some zero-filled space,
1620 	 * link it into the hash table appropriately, and apply the aggregator
1621 	 * to the (zero-filled) value.
1622 	 */
1623 	offs = buf->dtb_offset;
1624 	while (offs & (align - 1))
1625 		offs += sizeof (uint32_t);
1626 
1627 	/*
1628 	 * If we don't have enough room to both allocate a new key _and_
1629 	 * its associated data, increment the drop count and return.
1630 	 */
1631 	if ((uintptr_t)tomax + offs + fsize >
1632 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1633 		dtrace_buffer_drop(buf);
1634 		return;
1635 	}
1636 
1637 	/*CONSTCOND*/
1638 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1639 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1640 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1641 
1642 	key->dtak_data = kdata = tomax + offs;
1643 	buf->dtb_offset = offs + fsize;
1644 
1645 	/*
1646 	 * Now copy the data across.
1647 	 */
1648 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1649 
1650 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1651 		kdata[i] = data[i];
1652 
1653 	for (i = size; i < fsize; i++)
1654 		kdata[i] = 0;
1655 
1656 	key->dtak_hashval = hashval;
1657 	key->dtak_size = size;
1658 	key->dtak_action = action;
1659 	key->dtak_next = agb->dtagb_hash[ndx];
1660 	agb->dtagb_hash[ndx] = key;
1661 
1662 	/*
1663 	 * Finally, apply the aggregator.
1664 	 */
1665 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1666 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1667 }
1668 
1669 /*
1670  * Given consumer state, this routine finds a speculation in the INACTIVE
1671  * state and transitions it into the ACTIVE state.  If there is no speculation
1672  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1673  * incremented -- it is up to the caller to take appropriate action.
1674  */
1675 static int
1676 dtrace_speculation(dtrace_state_t *state)
1677 {
1678 	int i = 0;
1679 	dtrace_speculation_state_t current;
1680 	uint32_t *stat = &state->dts_speculations_unavail, count;
1681 
1682 	while (i < state->dts_nspeculations) {
1683 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1684 
1685 		current = spec->dtsp_state;
1686 
1687 		if (current != DTRACESPEC_INACTIVE) {
1688 			if (current == DTRACESPEC_COMMITTINGMANY ||
1689 			    current == DTRACESPEC_COMMITTING ||
1690 			    current == DTRACESPEC_DISCARDING)
1691 				stat = &state->dts_speculations_busy;
1692 			i++;
1693 			continue;
1694 		}
1695 
1696 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1697 		    current, DTRACESPEC_ACTIVE) == current)
1698 			return (i + 1);
1699 	}
1700 
1701 	/*
1702 	 * We couldn't find a speculation.  If we found as much as a single
1703 	 * busy speculation buffer, we'll attribute this failure as "busy"
1704 	 * instead of "unavail".
1705 	 */
1706 	do {
1707 		count = *stat;
1708 	} while (dtrace_cas32(stat, count, count + 1) != count);
1709 
1710 	return (0);
1711 }
1712 
1713 /*
1714  * This routine commits an active speculation.  If the specified speculation
1715  * is not in a valid state to perform a commit(), this routine will silently do
1716  * nothing.  The state of the specified speculation is transitioned according
1717  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1718  */
1719 static void
1720 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1721     dtrace_specid_t which)
1722 {
1723 	dtrace_speculation_t *spec;
1724 	dtrace_buffer_t *src, *dest;
1725 	uintptr_t daddr, saddr, dlimit;
1726 	dtrace_speculation_state_t current, new;
1727 	intptr_t offs;
1728 
1729 	if (which == 0)
1730 		return;
1731 
1732 	if (which > state->dts_nspeculations) {
1733 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1734 		return;
1735 	}
1736 
1737 	spec = &state->dts_speculations[which - 1];
1738 	src = &spec->dtsp_buffer[cpu];
1739 	dest = &state->dts_buffer[cpu];
1740 
1741 	do {
1742 		current = spec->dtsp_state;
1743 
1744 		if (current == DTRACESPEC_COMMITTINGMANY)
1745 			break;
1746 
1747 		switch (current) {
1748 		case DTRACESPEC_INACTIVE:
1749 		case DTRACESPEC_DISCARDING:
1750 			return;
1751 
1752 		case DTRACESPEC_COMMITTING:
1753 			/*
1754 			 * This is only possible if we are (a) commit()'ing
1755 			 * without having done a prior speculate() on this CPU
1756 			 * and (b) racing with another commit() on a different
1757 			 * CPU.  There's nothing to do -- we just assert that
1758 			 * our offset is 0.
1759 			 */
1760 			ASSERT(src->dtb_offset == 0);
1761 			return;
1762 
1763 		case DTRACESPEC_ACTIVE:
1764 			new = DTRACESPEC_COMMITTING;
1765 			break;
1766 
1767 		case DTRACESPEC_ACTIVEONE:
1768 			/*
1769 			 * This speculation is active on one CPU.  If our
1770 			 * buffer offset is non-zero, we know that the one CPU
1771 			 * must be us.  Otherwise, we are committing on a
1772 			 * different CPU from the speculate(), and we must
1773 			 * rely on being asynchronously cleaned.
1774 			 */
1775 			if (src->dtb_offset != 0) {
1776 				new = DTRACESPEC_COMMITTING;
1777 				break;
1778 			}
1779 			/*FALLTHROUGH*/
1780 
1781 		case DTRACESPEC_ACTIVEMANY:
1782 			new = DTRACESPEC_COMMITTINGMANY;
1783 			break;
1784 
1785 		default:
1786 			ASSERT(0);
1787 		}
1788 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1789 	    current, new) != current);
1790 
1791 	/*
1792 	 * We have set the state to indicate that we are committing this
1793 	 * speculation.  Now reserve the necessary space in the destination
1794 	 * buffer.
1795 	 */
1796 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1797 	    sizeof (uint64_t), state, NULL)) < 0) {
1798 		dtrace_buffer_drop(dest);
1799 		goto out;
1800 	}
1801 
1802 	/*
1803 	 * We have the space; copy the buffer across.  (Note that this is a
1804 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1805 	 * a serious performance issue, a high-performance DTrace-specific
1806 	 * bcopy() should obviously be invented.)
1807 	 */
1808 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1809 	dlimit = daddr + src->dtb_offset;
1810 	saddr = (uintptr_t)src->dtb_tomax;
1811 
1812 	/*
1813 	 * First, the aligned portion.
1814 	 */
1815 	while (dlimit - daddr >= sizeof (uint64_t)) {
1816 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1817 
1818 		daddr += sizeof (uint64_t);
1819 		saddr += sizeof (uint64_t);
1820 	}
1821 
1822 	/*
1823 	 * Now any left-over bit...
1824 	 */
1825 	while (dlimit - daddr)
1826 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1827 
1828 	/*
1829 	 * Finally, commit the reserved space in the destination buffer.
1830 	 */
1831 	dest->dtb_offset = offs + src->dtb_offset;
1832 
1833 out:
1834 	/*
1835 	 * If we're lucky enough to be the only active CPU on this speculation
1836 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
1837 	 */
1838 	if (current == DTRACESPEC_ACTIVE ||
1839 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
1840 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
1841 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
1842 
1843 		ASSERT(rval == DTRACESPEC_COMMITTING);
1844 	}
1845 
1846 	src->dtb_offset = 0;
1847 	src->dtb_xamot_drops += src->dtb_drops;
1848 	src->dtb_drops = 0;
1849 }
1850 
1851 /*
1852  * This routine discards an active speculation.  If the specified speculation
1853  * is not in a valid state to perform a discard(), this routine will silently
1854  * do nothing.  The state of the specified speculation is transitioned
1855  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
1856  */
1857 static void
1858 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
1859     dtrace_specid_t which)
1860 {
1861 	dtrace_speculation_t *spec;
1862 	dtrace_speculation_state_t current, new;
1863 	dtrace_buffer_t *buf;
1864 
1865 	if (which == 0)
1866 		return;
1867 
1868 	if (which > state->dts_nspeculations) {
1869 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1870 		return;
1871 	}
1872 
1873 	spec = &state->dts_speculations[which - 1];
1874 	buf = &spec->dtsp_buffer[cpu];
1875 
1876 	do {
1877 		current = spec->dtsp_state;
1878 
1879 		switch (current) {
1880 		case DTRACESPEC_INACTIVE:
1881 		case DTRACESPEC_COMMITTINGMANY:
1882 		case DTRACESPEC_COMMITTING:
1883 		case DTRACESPEC_DISCARDING:
1884 			return;
1885 
1886 		case DTRACESPEC_ACTIVE:
1887 		case DTRACESPEC_ACTIVEMANY:
1888 			new = DTRACESPEC_DISCARDING;
1889 			break;
1890 
1891 		case DTRACESPEC_ACTIVEONE:
1892 			if (buf->dtb_offset != 0) {
1893 				new = DTRACESPEC_INACTIVE;
1894 			} else {
1895 				new = DTRACESPEC_DISCARDING;
1896 			}
1897 			break;
1898 
1899 		default:
1900 			ASSERT(0);
1901 		}
1902 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1903 	    current, new) != current);
1904 
1905 	buf->dtb_offset = 0;
1906 	buf->dtb_drops = 0;
1907 }
1908 
1909 /*
1910  * Note:  not called from probe context.  This function is called
1911  * asynchronously from cross call context to clean any speculations that are
1912  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
1913  * transitioned back to the INACTIVE state until all CPUs have cleaned the
1914  * speculation.
1915  */
1916 static void
1917 dtrace_speculation_clean_here(dtrace_state_t *state)
1918 {
1919 	dtrace_icookie_t cookie;
1920 	processorid_t cpu = CPU->cpu_id;
1921 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
1922 	dtrace_specid_t i;
1923 
1924 	cookie = dtrace_interrupt_disable();
1925 
1926 	if (dest->dtb_tomax == NULL) {
1927 		dtrace_interrupt_enable(cookie);
1928 		return;
1929 	}
1930 
1931 	for (i = 0; i < state->dts_nspeculations; i++) {
1932 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1933 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
1934 
1935 		if (src->dtb_tomax == NULL)
1936 			continue;
1937 
1938 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
1939 			src->dtb_offset = 0;
1940 			continue;
1941 		}
1942 
1943 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1944 			continue;
1945 
1946 		if (src->dtb_offset == 0)
1947 			continue;
1948 
1949 		dtrace_speculation_commit(state, cpu, i + 1);
1950 	}
1951 
1952 	dtrace_interrupt_enable(cookie);
1953 }
1954 
1955 /*
1956  * Note:  not called from probe context.  This function is called
1957  * asynchronously (and at a regular interval) to clean any speculations that
1958  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
1959  * is work to be done, it cross calls all CPUs to perform that work;
1960  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
1961  * INACTIVE state until they have been cleaned by all CPUs.
1962  */
1963 static void
1964 dtrace_speculation_clean(dtrace_state_t *state)
1965 {
1966 	int work = 0, rv;
1967 	dtrace_specid_t i;
1968 
1969 	for (i = 0; i < state->dts_nspeculations; i++) {
1970 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1971 
1972 		ASSERT(!spec->dtsp_cleaning);
1973 
1974 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
1975 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1976 			continue;
1977 
1978 		work++;
1979 		spec->dtsp_cleaning = 1;
1980 	}
1981 
1982 	if (!work)
1983 		return;
1984 
1985 	dtrace_xcall(DTRACE_CPUALL,
1986 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
1987 
1988 	/*
1989 	 * We now know that all CPUs have committed or discarded their
1990 	 * speculation buffers, as appropriate.  We can now set the state
1991 	 * to inactive.
1992 	 */
1993 	for (i = 0; i < state->dts_nspeculations; i++) {
1994 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1995 		dtrace_speculation_state_t current, new;
1996 
1997 		if (!spec->dtsp_cleaning)
1998 			continue;
1999 
2000 		current = spec->dtsp_state;
2001 		ASSERT(current == DTRACESPEC_DISCARDING ||
2002 		    current == DTRACESPEC_COMMITTINGMANY);
2003 
2004 		new = DTRACESPEC_INACTIVE;
2005 
2006 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2007 		ASSERT(rv == current);
2008 		spec->dtsp_cleaning = 0;
2009 	}
2010 }
2011 
2012 /*
2013  * Called as part of a speculate() to get the speculative buffer associated
2014  * with a given speculation.  Returns NULL if the specified speculation is not
2015  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2016  * the active CPU is not the specified CPU -- the speculation will be
2017  * atomically transitioned into the ACTIVEMANY state.
2018  */
2019 static dtrace_buffer_t *
2020 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2021     dtrace_specid_t which)
2022 {
2023 	dtrace_speculation_t *spec;
2024 	dtrace_speculation_state_t current, new;
2025 	dtrace_buffer_t *buf;
2026 
2027 	if (which == 0)
2028 		return (NULL);
2029 
2030 	if (which > state->dts_nspeculations) {
2031 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2032 		return (NULL);
2033 	}
2034 
2035 	spec = &state->dts_speculations[which - 1];
2036 	buf = &spec->dtsp_buffer[cpuid];
2037 
2038 	do {
2039 		current = spec->dtsp_state;
2040 
2041 		switch (current) {
2042 		case DTRACESPEC_INACTIVE:
2043 		case DTRACESPEC_COMMITTINGMANY:
2044 		case DTRACESPEC_DISCARDING:
2045 			return (NULL);
2046 
2047 		case DTRACESPEC_COMMITTING:
2048 			ASSERT(buf->dtb_offset == 0);
2049 			return (NULL);
2050 
2051 		case DTRACESPEC_ACTIVEONE:
2052 			/*
2053 			 * This speculation is currently active on one CPU.
2054 			 * Check the offset in the buffer; if it's non-zero,
2055 			 * that CPU must be us (and we leave the state alone).
2056 			 * If it's zero, assume that we're starting on a new
2057 			 * CPU -- and change the state to indicate that the
2058 			 * speculation is active on more than one CPU.
2059 			 */
2060 			if (buf->dtb_offset != 0)
2061 				return (buf);
2062 
2063 			new = DTRACESPEC_ACTIVEMANY;
2064 			break;
2065 
2066 		case DTRACESPEC_ACTIVEMANY:
2067 			return (buf);
2068 
2069 		case DTRACESPEC_ACTIVE:
2070 			new = DTRACESPEC_ACTIVEONE;
2071 			break;
2072 
2073 		default:
2074 			ASSERT(0);
2075 		}
2076 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2077 	    current, new) != current);
2078 
2079 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2080 	return (buf);
2081 }
2082 
2083 /*
2084  * This function implements the DIF emulator's variable lookups.  The emulator
2085  * passes a reserved variable identifier and optional built-in array index.
2086  */
2087 static uint64_t
2088 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2089     uint64_t ndx)
2090 {
2091 	/*
2092 	 * If we're accessing one of the uncached arguments, we'll turn this
2093 	 * into a reference in the args array.
2094 	 */
2095 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2096 		ndx = v - DIF_VAR_ARG0;
2097 		v = DIF_VAR_ARGS;
2098 	}
2099 
2100 	switch (v) {
2101 	case DIF_VAR_ARGS:
2102 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2103 		if (ndx >= sizeof (mstate->dtms_arg) /
2104 		    sizeof (mstate->dtms_arg[0])) {
2105 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2106 			dtrace_provider_t *pv;
2107 			uint64_t val;
2108 
2109 			pv = mstate->dtms_probe->dtpr_provider;
2110 			if (pv->dtpv_pops.dtps_getargval != NULL)
2111 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2112 				    mstate->dtms_probe->dtpr_id,
2113 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2114 			else
2115 				val = dtrace_getarg(ndx, aframes);
2116 
2117 			/*
2118 			 * This is regrettably required to keep the compiler
2119 			 * from tail-optimizing the call to dtrace_getarg().
2120 			 * The condition always evaluates to true, but the
2121 			 * compiler has no way of figuring that out a priori.
2122 			 * (None of this would be necessary if the compiler
2123 			 * could be relied upon to _always_ tail-optimize
2124 			 * the call to dtrace_getarg() -- but it can't.)
2125 			 */
2126 			if (mstate->dtms_probe != NULL)
2127 				return (val);
2128 
2129 			ASSERT(0);
2130 		}
2131 
2132 		return (mstate->dtms_arg[ndx]);
2133 
2134 	case DIF_VAR_UREGS: {
2135 		klwp_t *lwp;
2136 
2137 		if (!dtrace_priv_proc(state))
2138 			return (0);
2139 
2140 		if ((lwp = curthread->t_lwp) == NULL) {
2141 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2142 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2143 			return (0);
2144 		}
2145 
2146 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2147 	}
2148 
2149 	case DIF_VAR_CURTHREAD:
2150 		if (!dtrace_priv_kernel(state))
2151 			return (0);
2152 		return ((uint64_t)(uintptr_t)curthread);
2153 
2154 	case DIF_VAR_TIMESTAMP:
2155 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2156 			mstate->dtms_timestamp = dtrace_gethrtime();
2157 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2158 		}
2159 		return (mstate->dtms_timestamp);
2160 
2161 	case DIF_VAR_VTIMESTAMP:
2162 		ASSERT(dtrace_vtime_references != 0);
2163 		return (curthread->t_dtrace_vtime);
2164 
2165 	case DIF_VAR_WALLTIMESTAMP:
2166 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2167 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2168 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2169 		}
2170 		return (mstate->dtms_walltimestamp);
2171 
2172 	case DIF_VAR_IPL:
2173 		if (!dtrace_priv_kernel(state))
2174 			return (0);
2175 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2176 			mstate->dtms_ipl = dtrace_getipl();
2177 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2178 		}
2179 		return (mstate->dtms_ipl);
2180 
2181 	case DIF_VAR_EPID:
2182 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2183 		return (mstate->dtms_epid);
2184 
2185 	case DIF_VAR_ID:
2186 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2187 		return (mstate->dtms_probe->dtpr_id);
2188 
2189 	case DIF_VAR_STACKDEPTH:
2190 		if (!dtrace_priv_kernel(state))
2191 			return (0);
2192 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2193 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2194 
2195 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2196 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2197 		}
2198 		return (mstate->dtms_stackdepth);
2199 
2200 	case DIF_VAR_USTACKDEPTH:
2201 		if (!dtrace_priv_proc(state))
2202 			return (0);
2203 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2204 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2205 			mstate->dtms_ustackdepth = dtrace_getustackdepth();
2206 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2207 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2208 		}
2209 		return (mstate->dtms_ustackdepth);
2210 
2211 	case DIF_VAR_CALLER:
2212 		if (!dtrace_priv_kernel(state))
2213 			return (0);
2214 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2215 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2216 
2217 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2218 				/*
2219 				 * If this is an unanchored probe, we are
2220 				 * required to go through the slow path:
2221 				 * dtrace_caller() only guarantees correct
2222 				 * results for anchored probes.
2223 				 */
2224 				pc_t caller[2];
2225 
2226 				dtrace_getpcstack(caller, 2, aframes,
2227 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2228 				mstate->dtms_caller = caller[1];
2229 			} else if ((mstate->dtms_caller =
2230 			    dtrace_caller(aframes)) == -1) {
2231 				/*
2232 				 * We have failed to do this the quick way;
2233 				 * we must resort to the slower approach of
2234 				 * calling dtrace_getpcstack().
2235 				 */
2236 				pc_t caller;
2237 
2238 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2239 				mstate->dtms_caller = caller;
2240 			}
2241 
2242 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2243 		}
2244 		return (mstate->dtms_caller);
2245 
2246 	case DIF_VAR_UCALLER:
2247 		if (!dtrace_priv_proc(state))
2248 			return (0);
2249 
2250 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2251 			uint64_t ustack[3];
2252 
2253 			/*
2254 			 * dtrace_getupcstack() fills in the first uint64_t
2255 			 * with the current PID.  The second uint64_t will
2256 			 * be the program counter at user-level.  The third
2257 			 * uint64_t will contain the caller, which is what
2258 			 * we're after.
2259 			 */
2260 			ustack[2] = NULL;
2261 			dtrace_getupcstack(ustack, 3);
2262 			mstate->dtms_ucaller = ustack[2];
2263 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2264 		}
2265 
2266 		return (mstate->dtms_ucaller);
2267 
2268 	case DIF_VAR_PROBEPROV:
2269 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2270 		return ((uint64_t)(uintptr_t)
2271 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2272 
2273 	case DIF_VAR_PROBEMOD:
2274 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2275 		return ((uint64_t)(uintptr_t)
2276 		    mstate->dtms_probe->dtpr_mod);
2277 
2278 	case DIF_VAR_PROBEFUNC:
2279 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2280 		return ((uint64_t)(uintptr_t)
2281 		    mstate->dtms_probe->dtpr_func);
2282 
2283 	case DIF_VAR_PROBENAME:
2284 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2285 		return ((uint64_t)(uintptr_t)
2286 		    mstate->dtms_probe->dtpr_name);
2287 
2288 	case DIF_VAR_PID:
2289 		if (!dtrace_priv_proc(state))
2290 			return (0);
2291 
2292 		/*
2293 		 * Note that we are assuming that an unanchored probe is
2294 		 * always due to a high-level interrupt.  (And we're assuming
2295 		 * that there is only a single high level interrupt.)
2296 		 */
2297 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2298 			return (pid0.pid_id);
2299 
2300 		/*
2301 		 * It is always safe to dereference one's own t_procp pointer:
2302 		 * it always points to a valid, allocated proc structure.
2303 		 * Further, it is always safe to dereference the p_pidp member
2304 		 * of one's own proc structure.  (These are truisms becuase
2305 		 * threads and processes don't clean up their own state --
2306 		 * they leave that task to whomever reaps them.)
2307 		 */
2308 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2309 
2310 	case DIF_VAR_TID:
2311 		/*
2312 		 * See comment in DIF_VAR_PID.
2313 		 */
2314 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2315 			return (0);
2316 
2317 		return ((uint64_t)curthread->t_tid);
2318 
2319 	case DIF_VAR_EXECNAME:
2320 		if (!dtrace_priv_proc(state))
2321 			return (0);
2322 
2323 		/*
2324 		 * See comment in DIF_VAR_PID.
2325 		 */
2326 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2327 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2328 
2329 		/*
2330 		 * It is always safe to dereference one's own t_procp pointer:
2331 		 * it always points to a valid, allocated proc structure.
2332 		 * (This is true because threads don't clean up their own
2333 		 * state -- they leave that task to whomever reaps them.)
2334 		 */
2335 		return ((uint64_t)(uintptr_t)
2336 		    curthread->t_procp->p_user.u_comm);
2337 
2338 	case DIF_VAR_ZONENAME:
2339 		if (!dtrace_priv_proc(state))
2340 			return (0);
2341 
2342 		/*
2343 		 * See comment in DIF_VAR_PID.
2344 		 */
2345 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2346 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2347 
2348 		/*
2349 		 * It is always safe to dereference one's own t_procp pointer:
2350 		 * it always points to a valid, allocated proc structure.
2351 		 * (This is true because threads don't clean up their own
2352 		 * state -- they leave that task to whomever reaps them.)
2353 		 */
2354 		return ((uint64_t)(uintptr_t)
2355 		    curthread->t_procp->p_zone->zone_name);
2356 
2357 	default:
2358 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2359 		return (0);
2360 	}
2361 }
2362 
2363 /*
2364  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2365  * Notice that we don't bother validating the proper number of arguments or
2366  * their types in the tuple stack.  This isn't needed because all argument
2367  * interpretation is safe because of our load safety -- the worst that can
2368  * happen is that a bogus program can obtain bogus results.
2369  */
2370 static void
2371 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2372     dtrace_key_t *tupregs, int nargs,
2373     dtrace_mstate_t *mstate, dtrace_state_t *state)
2374 {
2375 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2376 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2377 
2378 	union {
2379 		mutex_impl_t mi;
2380 		uint64_t mx;
2381 	} m;
2382 
2383 	union {
2384 		krwlock_t ri;
2385 		uintptr_t rw;
2386 	} r;
2387 
2388 	switch (subr) {
2389 	case DIF_SUBR_RAND:
2390 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2391 		break;
2392 
2393 	case DIF_SUBR_MUTEX_OWNED:
2394 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2395 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2396 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2397 		else
2398 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2399 		break;
2400 
2401 	case DIF_SUBR_MUTEX_OWNER:
2402 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2403 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2404 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2405 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2406 		else
2407 			regs[rd] = 0;
2408 		break;
2409 
2410 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2411 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2412 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2413 		break;
2414 
2415 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2416 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2417 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2418 		break;
2419 
2420 	case DIF_SUBR_RW_READ_HELD: {
2421 		uintptr_t tmp;
2422 
2423 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2424 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2425 		break;
2426 	}
2427 
2428 	case DIF_SUBR_RW_WRITE_HELD:
2429 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2430 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2431 		break;
2432 
2433 	case DIF_SUBR_RW_ISWRITER:
2434 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2435 		regs[rd] = _RW_ISWRITER(&r.ri);
2436 		break;
2437 
2438 	case DIF_SUBR_BCOPY: {
2439 		/*
2440 		 * We need to be sure that the destination is in the scratch
2441 		 * region -- no other region is allowed.
2442 		 */
2443 		uintptr_t src = tupregs[0].dttk_value;
2444 		uintptr_t dest = tupregs[1].dttk_value;
2445 		size_t size = tupregs[2].dttk_value;
2446 
2447 		if (!dtrace_inscratch(dest, size, mstate)) {
2448 			*flags |= CPU_DTRACE_BADADDR;
2449 			*illval = regs[rd];
2450 			break;
2451 		}
2452 
2453 		dtrace_bcopy((void *)src, (void *)dest, size);
2454 		break;
2455 	}
2456 
2457 	case DIF_SUBR_ALLOCA:
2458 	case DIF_SUBR_COPYIN: {
2459 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2460 		uint64_t size =
2461 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2462 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2463 
2464 		/*
2465 		 * This action doesn't require any credential checks since
2466 		 * probes will not activate in user contexts to which the
2467 		 * enabling user does not have permissions.
2468 		 */
2469 		if (mstate->dtms_scratch_ptr + scratch_size >
2470 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2471 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2472 			regs[rd] = NULL;
2473 			break;
2474 		}
2475 
2476 		if (subr == DIF_SUBR_COPYIN) {
2477 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2478 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2479 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2480 		}
2481 
2482 		mstate->dtms_scratch_ptr += scratch_size;
2483 		regs[rd] = dest;
2484 		break;
2485 	}
2486 
2487 	case DIF_SUBR_COPYINTO: {
2488 		uint64_t size = tupregs[1].dttk_value;
2489 		uintptr_t dest = tupregs[2].dttk_value;
2490 
2491 		/*
2492 		 * This action doesn't require any credential checks since
2493 		 * probes will not activate in user contexts to which the
2494 		 * enabling user does not have permissions.
2495 		 */
2496 		if (!dtrace_inscratch(dest, size, mstate)) {
2497 			*flags |= CPU_DTRACE_BADADDR;
2498 			*illval = regs[rd];
2499 			break;
2500 		}
2501 
2502 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2503 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2504 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2505 		break;
2506 	}
2507 
2508 	case DIF_SUBR_COPYINSTR: {
2509 		uintptr_t dest = mstate->dtms_scratch_ptr;
2510 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2511 
2512 		if (nargs > 1 && tupregs[1].dttk_value < size)
2513 			size = tupregs[1].dttk_value + 1;
2514 
2515 		/*
2516 		 * This action doesn't require any credential checks since
2517 		 * probes will not activate in user contexts to which the
2518 		 * enabling user does not have permissions.
2519 		 */
2520 		if (mstate->dtms_scratch_ptr + size >
2521 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2522 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2523 			regs[rd] = NULL;
2524 			break;
2525 		}
2526 
2527 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2528 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2529 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2530 
2531 		((char *)dest)[size - 1] = '\0';
2532 		mstate->dtms_scratch_ptr += size;
2533 		regs[rd] = dest;
2534 		break;
2535 	}
2536 
2537 	case DIF_SUBR_MSGSIZE:
2538 	case DIF_SUBR_MSGDSIZE: {
2539 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2540 		uintptr_t wptr, rptr;
2541 		size_t count = 0;
2542 		int cont = 0;
2543 
2544 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2545 			wptr = dtrace_loadptr(baddr +
2546 			    offsetof(mblk_t, b_wptr));
2547 
2548 			rptr = dtrace_loadptr(baddr +
2549 			    offsetof(mblk_t, b_rptr));
2550 
2551 			if (wptr < rptr) {
2552 				*flags |= CPU_DTRACE_BADADDR;
2553 				*illval = tupregs[0].dttk_value;
2554 				break;
2555 			}
2556 
2557 			daddr = dtrace_loadptr(baddr +
2558 			    offsetof(mblk_t, b_datap));
2559 
2560 			baddr = dtrace_loadptr(baddr +
2561 			    offsetof(mblk_t, b_cont));
2562 
2563 			/*
2564 			 * We want to prevent against denial-of-service here,
2565 			 * so we're only going to search the list for
2566 			 * dtrace_msgdsize_max mblks.
2567 			 */
2568 			if (cont++ > dtrace_msgdsize_max) {
2569 				*flags |= CPU_DTRACE_ILLOP;
2570 				break;
2571 			}
2572 
2573 			if (subr == DIF_SUBR_MSGDSIZE) {
2574 				if (dtrace_load8(daddr +
2575 				    offsetof(dblk_t, db_type)) != M_DATA)
2576 					continue;
2577 			}
2578 
2579 			count += wptr - rptr;
2580 		}
2581 
2582 		if (!(*flags & CPU_DTRACE_FAULT))
2583 			regs[rd] = count;
2584 
2585 		break;
2586 	}
2587 
2588 	case DIF_SUBR_PROGENYOF: {
2589 		pid_t pid = tupregs[0].dttk_value;
2590 		proc_t *p;
2591 		int rval = 0;
2592 
2593 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2594 
2595 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2596 			if (p->p_pidp->pid_id == pid) {
2597 				rval = 1;
2598 				break;
2599 			}
2600 		}
2601 
2602 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2603 
2604 		regs[rd] = rval;
2605 		break;
2606 	}
2607 
2608 	case DIF_SUBR_SPECULATION:
2609 		regs[rd] = dtrace_speculation(state);
2610 		break;
2611 
2612 	case DIF_SUBR_COPYOUT: {
2613 		uintptr_t kaddr = tupregs[0].dttk_value;
2614 		uintptr_t uaddr = tupregs[1].dttk_value;
2615 		uint64_t size = tupregs[2].dttk_value;
2616 
2617 		if (!dtrace_destructive_disallow &&
2618 		    dtrace_priv_proc_control(state) &&
2619 		    !dtrace_istoxic(kaddr, size)) {
2620 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2621 			dtrace_copyout(kaddr, uaddr, size);
2622 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2623 		}
2624 		break;
2625 	}
2626 
2627 	case DIF_SUBR_COPYOUTSTR: {
2628 		uintptr_t kaddr = tupregs[0].dttk_value;
2629 		uintptr_t uaddr = tupregs[1].dttk_value;
2630 		uint64_t size = tupregs[2].dttk_value;
2631 
2632 		if (!dtrace_destructive_disallow &&
2633 		    dtrace_priv_proc_control(state) &&
2634 		    !dtrace_istoxic(kaddr, size)) {
2635 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2636 			dtrace_copyoutstr(kaddr, uaddr, size);
2637 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2638 		}
2639 		break;
2640 	}
2641 
2642 	case DIF_SUBR_STRLEN:
2643 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2644 		    tupregs[0].dttk_value,
2645 		    state->dts_options[DTRACEOPT_STRSIZE]);
2646 		break;
2647 
2648 	case DIF_SUBR_STRCHR:
2649 	case DIF_SUBR_STRRCHR: {
2650 		/*
2651 		 * We're going to iterate over the string looking for the
2652 		 * specified character.  We will iterate until we have reached
2653 		 * the string length or we have found the character.  If this
2654 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2655 		 * of the specified character instead of the first.
2656 		 */
2657 		uintptr_t addr = tupregs[0].dttk_value;
2658 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2659 		char c, target = (char)tupregs[1].dttk_value;
2660 
2661 		for (regs[rd] = NULL; addr < limit; addr++) {
2662 			if ((c = dtrace_load8(addr)) == target) {
2663 				regs[rd] = addr;
2664 
2665 				if (subr == DIF_SUBR_STRCHR)
2666 					break;
2667 			}
2668 
2669 			if (c == '\0')
2670 				break;
2671 		}
2672 
2673 		break;
2674 	}
2675 
2676 	case DIF_SUBR_STRSTR:
2677 	case DIF_SUBR_INDEX:
2678 	case DIF_SUBR_RINDEX: {
2679 		/*
2680 		 * We're going to iterate over the string looking for the
2681 		 * specified string.  We will iterate until we have reached
2682 		 * the string length or we have found the string.  (Yes, this
2683 		 * is done in the most naive way possible -- but considering
2684 		 * that the string we're searching for is likely to be
2685 		 * relatively short, the complexity of Rabin-Karp or similar
2686 		 * hardly seems merited.)
2687 		 */
2688 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
2689 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
2690 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2691 		size_t len = dtrace_strlen(addr, size);
2692 		size_t sublen = dtrace_strlen(substr, size);
2693 		char *limit = addr + len, *orig = addr;
2694 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2695 		int inc = 1;
2696 
2697 		regs[rd] = notfound;
2698 
2699 		/*
2700 		 * strstr() and index()/rindex() have similar semantics if
2701 		 * both strings are the empty string: strstr() returns a
2702 		 * pointer to the (empty) string, and index() and rindex()
2703 		 * both return index 0 (regardless of any position argument).
2704 		 */
2705 		if (sublen == 0 && len == 0) {
2706 			if (subr == DIF_SUBR_STRSTR)
2707 				regs[rd] = (uintptr_t)addr;
2708 			else
2709 				regs[rd] = 0;
2710 			break;
2711 		}
2712 
2713 		if (subr != DIF_SUBR_STRSTR) {
2714 			if (subr == DIF_SUBR_RINDEX) {
2715 				limit = orig - 1;
2716 				addr += len;
2717 				inc = -1;
2718 			}
2719 
2720 			/*
2721 			 * Both index() and rindex() take an optional position
2722 			 * argument that denotes the starting position.
2723 			 */
2724 			if (nargs == 3) {
2725 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2726 
2727 				/*
2728 				 * If the position argument to index() is
2729 				 * negative, Perl implicitly clamps it at
2730 				 * zero.  This semantic is a little surprising
2731 				 * given the special meaning of negative
2732 				 * positions to similar Perl functions like
2733 				 * substr(), but it appears to reflect a
2734 				 * notion that index() can start from a
2735 				 * negative index and increment its way up to
2736 				 * the string.  Given this notion, Perl's
2737 				 * rindex() is at least self-consistent in
2738 				 * that it implicitly clamps positions greater
2739 				 * than the string length to be the string
2740 				 * length.  Where Perl completely loses
2741 				 * coherence, however, is when the specified
2742 				 * substring is the empty string ("").  In
2743 				 * this case, even if the position is
2744 				 * negative, rindex() returns 0 -- and even if
2745 				 * the position is greater than the length,
2746 				 * index() returns the string length.  These
2747 				 * semantics violate the notion that index()
2748 				 * should never return a value less than the
2749 				 * specified position and that rindex() should
2750 				 * never return a value greater than the
2751 				 * specified position.  (One assumes that
2752 				 * these semantics are artifacts of Perl's
2753 				 * implementation and not the results of
2754 				 * deliberate design -- it beggars belief that
2755 				 * even Larry Wall could desire such oddness.)
2756 				 * While in the abstract one would wish for
2757 				 * consistent position semantics across
2758 				 * substr(), index() and rindex() -- or at the
2759 				 * very least self-consistent position
2760 				 * semantics for index() and rindex() -- we
2761 				 * instead opt to keep with the extant Perl
2762 				 * semantics, in all their broken glory.  (Do
2763 				 * we have more desire to maintain Perl's
2764 				 * semantics than Perl does?  Probably.)
2765 				 */
2766 				if (subr == DIF_SUBR_RINDEX) {
2767 					if (pos < 0) {
2768 						if (sublen == 0)
2769 							regs[rd] = 0;
2770 						break;
2771 					}
2772 
2773 					if (pos > len)
2774 						pos = len;
2775 				} else {
2776 					if (pos < 0)
2777 						pos = 0;
2778 
2779 					if (pos >= len) {
2780 						if (sublen == 0)
2781 							regs[rd] = len;
2782 						break;
2783 					}
2784 				}
2785 
2786 				addr = orig + pos;
2787 			}
2788 		}
2789 
2790 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2791 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2792 				if (subr != DIF_SUBR_STRSTR) {
2793 					/*
2794 					 * As D index() and rindex() are
2795 					 * modeled on Perl (and not on awk),
2796 					 * we return a zero-based (and not a
2797 					 * one-based) index.  (For you Perl
2798 					 * weenies: no, we're not going to add
2799 					 * $[ -- and shouldn't you be at a con
2800 					 * or something?)
2801 					 */
2802 					regs[rd] = (uintptr_t)(addr - orig);
2803 					break;
2804 				}
2805 
2806 				ASSERT(subr == DIF_SUBR_STRSTR);
2807 				regs[rd] = (uintptr_t)addr;
2808 				break;
2809 			}
2810 		}
2811 
2812 		break;
2813 	}
2814 
2815 	case DIF_SUBR_STRTOK: {
2816 		uintptr_t addr = tupregs[0].dttk_value;
2817 		uintptr_t tokaddr = tupregs[1].dttk_value;
2818 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2819 		uintptr_t limit, toklimit = tokaddr + size;
2820 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2821 		char *dest = (char *)mstate->dtms_scratch_ptr;
2822 		int i;
2823 
2824 		if (mstate->dtms_scratch_ptr + size >
2825 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2826 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2827 			regs[rd] = NULL;
2828 			break;
2829 		}
2830 
2831 		if (addr == NULL) {
2832 			/*
2833 			 * If the address specified is NULL, we use our saved
2834 			 * strtok pointer from the mstate.  Note that this
2835 			 * means that the saved strtok pointer is _only_
2836 			 * valid within multiple enablings of the same probe --
2837 			 * it behaves like an implicit clause-local variable.
2838 			 */
2839 			addr = mstate->dtms_strtok;
2840 		}
2841 
2842 		/*
2843 		 * First, zero the token map, and then process the token
2844 		 * string -- setting a bit in the map for every character
2845 		 * found in the token string.
2846 		 */
2847 		for (i = 0; i < sizeof (tokmap); i++)
2848 			tokmap[i] = 0;
2849 
2850 		for (; tokaddr < toklimit; tokaddr++) {
2851 			if ((c = dtrace_load8(tokaddr)) == '\0')
2852 				break;
2853 
2854 			ASSERT((c >> 3) < sizeof (tokmap));
2855 			tokmap[c >> 3] |= (1 << (c & 0x7));
2856 		}
2857 
2858 		for (limit = addr + size; addr < limit; addr++) {
2859 			/*
2860 			 * We're looking for a character that is _not_ contained
2861 			 * in the token string.
2862 			 */
2863 			if ((c = dtrace_load8(addr)) == '\0')
2864 				break;
2865 
2866 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
2867 				break;
2868 		}
2869 
2870 		if (c == '\0') {
2871 			/*
2872 			 * We reached the end of the string without finding
2873 			 * any character that was not in the token string.
2874 			 * We return NULL in this case, and we set the saved
2875 			 * address to NULL as well.
2876 			 */
2877 			regs[rd] = NULL;
2878 			mstate->dtms_strtok = NULL;
2879 			break;
2880 		}
2881 
2882 		/*
2883 		 * From here on, we're copying into the destination string.
2884 		 */
2885 		for (i = 0; addr < limit && i < size - 1; addr++) {
2886 			if ((c = dtrace_load8(addr)) == '\0')
2887 				break;
2888 
2889 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
2890 				break;
2891 
2892 			ASSERT(i < size);
2893 			dest[i++] = c;
2894 		}
2895 
2896 		ASSERT(i < size);
2897 		dest[i] = '\0';
2898 		regs[rd] = (uintptr_t)dest;
2899 		mstate->dtms_scratch_ptr += size;
2900 		mstate->dtms_strtok = addr;
2901 		break;
2902 	}
2903 
2904 	case DIF_SUBR_SUBSTR: {
2905 		uintptr_t s = tupregs[0].dttk_value;
2906 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2907 		char *d = (char *)mstate->dtms_scratch_ptr;
2908 		int64_t index = (int64_t)tupregs[1].dttk_value;
2909 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
2910 		size_t len = dtrace_strlen((char *)s, size);
2911 		int64_t i = 0;
2912 
2913 		if (nargs <= 2)
2914 			remaining = (int64_t)size;
2915 
2916 		if (mstate->dtms_scratch_ptr + size >
2917 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2918 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2919 			regs[rd] = NULL;
2920 			break;
2921 		}
2922 
2923 		if (index < 0) {
2924 			index += len;
2925 
2926 			if (index < 0 && index + remaining > 0) {
2927 				remaining += index;
2928 				index = 0;
2929 			}
2930 		}
2931 
2932 		if (index >= len || index < 0)
2933 			index = len;
2934 
2935 		for (d[0] = '\0'; remaining > 0; remaining--) {
2936 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
2937 				break;
2938 
2939 			if (i == size) {
2940 				d[i - 1] = '\0';
2941 				break;
2942 			}
2943 		}
2944 
2945 		mstate->dtms_scratch_ptr += size;
2946 		regs[rd] = (uintptr_t)d;
2947 		break;
2948 	}
2949 
2950 	case DIF_SUBR_GETMAJOR:
2951 #ifdef _LP64
2952 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
2953 #else
2954 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
2955 #endif
2956 		break;
2957 
2958 	case DIF_SUBR_GETMINOR:
2959 #ifdef _LP64
2960 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
2961 #else
2962 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
2963 #endif
2964 		break;
2965 
2966 	case DIF_SUBR_DDI_PATHNAME: {
2967 		/*
2968 		 * This one is a galactic mess.  We are going to roughly
2969 		 * emulate ddi_pathname(), but it's made more complicated
2970 		 * by the fact that we (a) want to include the minor name and
2971 		 * (b) must proceed iteratively instead of recursively.
2972 		 */
2973 		uintptr_t dest = mstate->dtms_scratch_ptr;
2974 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2975 		char *start = (char *)dest, *end = start + size - 1;
2976 		uintptr_t daddr = tupregs[0].dttk_value;
2977 		int64_t minor = (int64_t)tupregs[1].dttk_value;
2978 		char *s;
2979 		int i, len, depth = 0;
2980 
2981 		if (size == 0 || mstate->dtms_scratch_ptr + size >
2982 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2983 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2984 			regs[rd] = NULL;
2985 			break;
2986 		}
2987 
2988 		*end = '\0';
2989 
2990 		/*
2991 		 * We want to have a name for the minor.  In order to do this,
2992 		 * we need to walk the minor list from the devinfo.  We want
2993 		 * to be sure that we don't infinitely walk a circular list,
2994 		 * so we check for circularity by sending a scout pointer
2995 		 * ahead two elements for every element that we iterate over;
2996 		 * if the list is circular, these will ultimately point to the
2997 		 * same element.  You may recognize this little trick as the
2998 		 * answer to a stupid interview question -- one that always
2999 		 * seems to be asked by those who had to have it laboriously
3000 		 * explained to them, and who can't even concisely describe
3001 		 * the conditions under which one would be forced to resort to
3002 		 * this technique.  Needless to say, those conditions are
3003 		 * found here -- and probably only here.  Is this is the only
3004 		 * use of this infamous trick in shipping, production code?
3005 		 * If it isn't, it probably should be...
3006 		 */
3007 		if (minor != -1) {
3008 			uintptr_t maddr = dtrace_loadptr(daddr +
3009 			    offsetof(struct dev_info, devi_minor));
3010 
3011 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3012 			uintptr_t name = offsetof(struct ddi_minor_data,
3013 			    d_minor) + offsetof(struct ddi_minor, name);
3014 			uintptr_t dev = offsetof(struct ddi_minor_data,
3015 			    d_minor) + offsetof(struct ddi_minor, dev);
3016 			uintptr_t scout;
3017 
3018 			if (maddr != NULL)
3019 				scout = dtrace_loadptr(maddr + next);
3020 
3021 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3022 				uint64_t m;
3023 #ifdef _LP64
3024 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3025 #else
3026 				m = dtrace_load32(maddr + dev) & MAXMIN;
3027 #endif
3028 				if (m != minor) {
3029 					maddr = dtrace_loadptr(maddr + next);
3030 
3031 					if (scout == NULL)
3032 						continue;
3033 
3034 					scout = dtrace_loadptr(scout + next);
3035 
3036 					if (scout == NULL)
3037 						continue;
3038 
3039 					scout = dtrace_loadptr(scout + next);
3040 
3041 					if (scout == NULL)
3042 						continue;
3043 
3044 					if (scout == maddr) {
3045 						*flags |= CPU_DTRACE_ILLOP;
3046 						break;
3047 					}
3048 
3049 					continue;
3050 				}
3051 
3052 				/*
3053 				 * We have the minor data.  Now we need to
3054 				 * copy the minor's name into the end of the
3055 				 * pathname.
3056 				 */
3057 				s = (char *)dtrace_loadptr(maddr + name);
3058 				len = dtrace_strlen(s, size);
3059 
3060 				if (*flags & CPU_DTRACE_FAULT)
3061 					break;
3062 
3063 				if (len != 0) {
3064 					if ((end -= (len + 1)) < start)
3065 						break;
3066 
3067 					*end = ':';
3068 				}
3069 
3070 				for (i = 1; i <= len; i++)
3071 					end[i] = dtrace_load8((uintptr_t)s++);
3072 				break;
3073 			}
3074 		}
3075 
3076 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3077 			ddi_node_state_t devi_state;
3078 
3079 			devi_state = dtrace_load32(daddr +
3080 			    offsetof(struct dev_info, devi_node_state));
3081 
3082 			if (*flags & CPU_DTRACE_FAULT)
3083 				break;
3084 
3085 			if (devi_state >= DS_INITIALIZED) {
3086 				s = (char *)dtrace_loadptr(daddr +
3087 				    offsetof(struct dev_info, devi_addr));
3088 				len = dtrace_strlen(s, size);
3089 
3090 				if (*flags & CPU_DTRACE_FAULT)
3091 					break;
3092 
3093 				if (len != 0) {
3094 					if ((end -= (len + 1)) < start)
3095 						break;
3096 
3097 					*end = '@';
3098 				}
3099 
3100 				for (i = 1; i <= len; i++)
3101 					end[i] = dtrace_load8((uintptr_t)s++);
3102 			}
3103 
3104 			/*
3105 			 * Now for the node name...
3106 			 */
3107 			s = (char *)dtrace_loadptr(daddr +
3108 			    offsetof(struct dev_info, devi_node_name));
3109 
3110 			daddr = dtrace_loadptr(daddr +
3111 			    offsetof(struct dev_info, devi_parent));
3112 
3113 			/*
3114 			 * If our parent is NULL (that is, if we're the root
3115 			 * node), we're going to use the special path
3116 			 * "devices".
3117 			 */
3118 			if (daddr == NULL)
3119 				s = "devices";
3120 
3121 			len = dtrace_strlen(s, size);
3122 			if (*flags & CPU_DTRACE_FAULT)
3123 				break;
3124 
3125 			if ((end -= (len + 1)) < start)
3126 				break;
3127 
3128 			for (i = 1; i <= len; i++)
3129 				end[i] = dtrace_load8((uintptr_t)s++);
3130 			*end = '/';
3131 
3132 			if (depth++ > dtrace_devdepth_max) {
3133 				*flags |= CPU_DTRACE_ILLOP;
3134 				break;
3135 			}
3136 		}
3137 
3138 		if (end < start)
3139 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3140 
3141 		if (daddr == NULL) {
3142 			regs[rd] = (uintptr_t)end;
3143 			mstate->dtms_scratch_ptr += size;
3144 		}
3145 
3146 		break;
3147 	}
3148 
3149 	case DIF_SUBR_STRJOIN: {
3150 		char *d = (char *)mstate->dtms_scratch_ptr;
3151 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3152 		uintptr_t s1 = tupregs[0].dttk_value;
3153 		uintptr_t s2 = tupregs[1].dttk_value;
3154 		int i = 0;
3155 
3156 		if (mstate->dtms_scratch_ptr + size >
3157 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3158 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3159 			regs[rd] = NULL;
3160 			break;
3161 		}
3162 
3163 		for (;;) {
3164 			if (i >= size) {
3165 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3166 				regs[rd] = NULL;
3167 				break;
3168 			}
3169 
3170 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3171 				i--;
3172 				break;
3173 			}
3174 		}
3175 
3176 		for (;;) {
3177 			if (i >= size) {
3178 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3179 				regs[rd] = NULL;
3180 				break;
3181 			}
3182 
3183 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3184 				break;
3185 		}
3186 
3187 		if (i < size) {
3188 			mstate->dtms_scratch_ptr += i;
3189 			regs[rd] = (uintptr_t)d;
3190 		}
3191 
3192 		break;
3193 	}
3194 
3195 	case DIF_SUBR_LLTOSTR: {
3196 		int64_t i = (int64_t)tupregs[0].dttk_value;
3197 		int64_t val = i < 0 ? i * -1 : i;
3198 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3199 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3200 
3201 		if (mstate->dtms_scratch_ptr + size >
3202 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3203 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3204 			regs[rd] = NULL;
3205 			break;
3206 		}
3207 
3208 		for (*end-- = '\0'; val; val /= 10)
3209 			*end-- = '0' + (val % 10);
3210 
3211 		if (i == 0)
3212 			*end-- = '0';
3213 
3214 		if (i < 0)
3215 			*end-- = '-';
3216 
3217 		regs[rd] = (uintptr_t)end + 1;
3218 		mstate->dtms_scratch_ptr += size;
3219 		break;
3220 	}
3221 
3222 	case DIF_SUBR_DIRNAME:
3223 	case DIF_SUBR_BASENAME: {
3224 		char *dest = (char *)mstate->dtms_scratch_ptr;
3225 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3226 		uintptr_t src = tupregs[0].dttk_value;
3227 		int i, j, len = dtrace_strlen((char *)src, size);
3228 		int lastbase = -1, firstbase = -1, lastdir = -1;
3229 		int start, end;
3230 
3231 		if (mstate->dtms_scratch_ptr + size >
3232 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3233 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3234 			regs[rd] = NULL;
3235 			break;
3236 		}
3237 
3238 		/*
3239 		 * The basename and dirname for a zero-length string is
3240 		 * defined to be "."
3241 		 */
3242 		if (len == 0) {
3243 			len = 1;
3244 			src = (uintptr_t)".";
3245 		}
3246 
3247 		/*
3248 		 * Start from the back of the string, moving back toward the
3249 		 * front until we see a character that isn't a slash.  That
3250 		 * character is the last character in the basename.
3251 		 */
3252 		for (i = len - 1; i >= 0; i--) {
3253 			if (dtrace_load8(src + i) != '/')
3254 				break;
3255 		}
3256 
3257 		if (i >= 0)
3258 			lastbase = i;
3259 
3260 		/*
3261 		 * Starting from the last character in the basename, move
3262 		 * towards the front until we find a slash.  The character
3263 		 * that we processed immediately before that is the first
3264 		 * character in the basename.
3265 		 */
3266 		for (; i >= 0; i--) {
3267 			if (dtrace_load8(src + i) == '/')
3268 				break;
3269 		}
3270 
3271 		if (i >= 0)
3272 			firstbase = i + 1;
3273 
3274 		/*
3275 		 * Now keep going until we find a non-slash character.  That
3276 		 * character is the last character in the dirname.
3277 		 */
3278 		for (; i >= 0; i--) {
3279 			if (dtrace_load8(src + i) != '/')
3280 				break;
3281 		}
3282 
3283 		if (i >= 0)
3284 			lastdir = i;
3285 
3286 		ASSERT(!(lastbase == -1 && firstbase != -1));
3287 		ASSERT(!(firstbase == -1 && lastdir != -1));
3288 
3289 		if (lastbase == -1) {
3290 			/*
3291 			 * We didn't find a non-slash character.  We know that
3292 			 * the length is non-zero, so the whole string must be
3293 			 * slashes.  In either the dirname or the basename
3294 			 * case, we return '/'.
3295 			 */
3296 			ASSERT(firstbase == -1);
3297 			firstbase = lastbase = lastdir = 0;
3298 		}
3299 
3300 		if (firstbase == -1) {
3301 			/*
3302 			 * The entire string consists only of a basename
3303 			 * component.  If we're looking for dirname, we need
3304 			 * to change our string to be just "."; if we're
3305 			 * looking for a basename, we'll just set the first
3306 			 * character of the basename to be 0.
3307 			 */
3308 			if (subr == DIF_SUBR_DIRNAME) {
3309 				ASSERT(lastdir == -1);
3310 				src = (uintptr_t)".";
3311 				lastdir = 0;
3312 			} else {
3313 				firstbase = 0;
3314 			}
3315 		}
3316 
3317 		if (subr == DIF_SUBR_DIRNAME) {
3318 			if (lastdir == -1) {
3319 				/*
3320 				 * We know that we have a slash in the name --
3321 				 * or lastdir would be set to 0, above.  And
3322 				 * because lastdir is -1, we know that this
3323 				 * slash must be the first character.  (That
3324 				 * is, the full string must be of the form
3325 				 * "/basename".)  In this case, the last
3326 				 * character of the directory name is 0.
3327 				 */
3328 				lastdir = 0;
3329 			}
3330 
3331 			start = 0;
3332 			end = lastdir;
3333 		} else {
3334 			ASSERT(subr == DIF_SUBR_BASENAME);
3335 			ASSERT(firstbase != -1 && lastbase != -1);
3336 			start = firstbase;
3337 			end = lastbase;
3338 		}
3339 
3340 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3341 			dest[j] = dtrace_load8(src + i);
3342 
3343 		dest[j] = '\0';
3344 		regs[rd] = (uintptr_t)dest;
3345 		mstate->dtms_scratch_ptr += size;
3346 		break;
3347 	}
3348 
3349 	case DIF_SUBR_CLEANPATH: {
3350 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3351 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3352 		uintptr_t src = tupregs[0].dttk_value;
3353 		int i = 0, j = 0;
3354 
3355 		if (mstate->dtms_scratch_ptr + size >
3356 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3357 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3358 			regs[rd] = NULL;
3359 			break;
3360 		}
3361 
3362 		/*
3363 		 * Move forward, loading each character.
3364 		 */
3365 		do {
3366 			c = dtrace_load8(src + i++);
3367 next:
3368 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3369 				break;
3370 
3371 			if (c != '/') {
3372 				dest[j++] = c;
3373 				continue;
3374 			}
3375 
3376 			c = dtrace_load8(src + i++);
3377 
3378 			if (c == '/') {
3379 				/*
3380 				 * We have two slashes -- we can just advance
3381 				 * to the next character.
3382 				 */
3383 				goto next;
3384 			}
3385 
3386 			if (c != '.') {
3387 				/*
3388 				 * This is not "." and it's not ".." -- we can
3389 				 * just store the "/" and this character and
3390 				 * drive on.
3391 				 */
3392 				dest[j++] = '/';
3393 				dest[j++] = c;
3394 				continue;
3395 			}
3396 
3397 			c = dtrace_load8(src + i++);
3398 
3399 			if (c == '/') {
3400 				/*
3401 				 * This is a "/./" component.  We're not going
3402 				 * to store anything in the destination buffer;
3403 				 * we're just going to go to the next component.
3404 				 */
3405 				goto next;
3406 			}
3407 
3408 			if (c != '.') {
3409 				/*
3410 				 * This is not ".." -- we can just store the
3411 				 * "/." and this character and continue
3412 				 * processing.
3413 				 */
3414 				dest[j++] = '/';
3415 				dest[j++] = '.';
3416 				dest[j++] = c;
3417 				continue;
3418 			}
3419 
3420 			c = dtrace_load8(src + i++);
3421 
3422 			if (c != '/' && c != '\0') {
3423 				/*
3424 				 * This is not ".." -- it's "..[mumble]".
3425 				 * We'll store the "/.." and this character
3426 				 * and continue processing.
3427 				 */
3428 				dest[j++] = '/';
3429 				dest[j++] = '.';
3430 				dest[j++] = '.';
3431 				dest[j++] = c;
3432 				continue;
3433 			}
3434 
3435 			/*
3436 			 * This is "/../" or "/..\0".  We need to back up
3437 			 * our destination pointer until we find a "/".
3438 			 */
3439 			i--;
3440 			while (j != 0 && dest[--j] != '/')
3441 				continue;
3442 
3443 			if (c == '\0')
3444 				dest[++j] = '/';
3445 		} while (c != '\0');
3446 
3447 		dest[j] = '\0';
3448 		regs[rd] = (uintptr_t)dest;
3449 		mstate->dtms_scratch_ptr += size;
3450 		break;
3451 	}
3452 	}
3453 }
3454 
3455 /*
3456  * Emulate the execution of DTrace IR instructions specified by the given
3457  * DIF object.  This function is deliberately void of assertions as all of
3458  * the necessary checks are handled by a call to dtrace_difo_validate().
3459  */
3460 static uint64_t
3461 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3462     dtrace_vstate_t *vstate, dtrace_state_t *state)
3463 {
3464 	const dif_instr_t *text = difo->dtdo_buf;
3465 	const uint_t textlen = difo->dtdo_len;
3466 	const char *strtab = difo->dtdo_strtab;
3467 	const uint64_t *inttab = difo->dtdo_inttab;
3468 
3469 	uint64_t rval = 0;
3470 	dtrace_statvar_t *svar;
3471 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3472 	dtrace_difv_t *v;
3473 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3474 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3475 
3476 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3477 	uint64_t regs[DIF_DIR_NREGS];
3478 	uint64_t *tmp;
3479 
3480 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3481 	int64_t cc_r;
3482 	uint_t pc = 0, id, opc;
3483 	uint8_t ttop = 0;
3484 	dif_instr_t instr;
3485 	uint_t r1, r2, rd;
3486 
3487 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3488 
3489 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3490 		opc = pc;
3491 
3492 		instr = text[pc++];
3493 		r1 = DIF_INSTR_R1(instr);
3494 		r2 = DIF_INSTR_R2(instr);
3495 		rd = DIF_INSTR_RD(instr);
3496 
3497 		switch (DIF_INSTR_OP(instr)) {
3498 		case DIF_OP_OR:
3499 			regs[rd] = regs[r1] | regs[r2];
3500 			break;
3501 		case DIF_OP_XOR:
3502 			regs[rd] = regs[r1] ^ regs[r2];
3503 			break;
3504 		case DIF_OP_AND:
3505 			regs[rd] = regs[r1] & regs[r2];
3506 			break;
3507 		case DIF_OP_SLL:
3508 			regs[rd] = regs[r1] << regs[r2];
3509 			break;
3510 		case DIF_OP_SRL:
3511 			regs[rd] = regs[r1] >> regs[r2];
3512 			break;
3513 		case DIF_OP_SUB:
3514 			regs[rd] = regs[r1] - regs[r2];
3515 			break;
3516 		case DIF_OP_ADD:
3517 			regs[rd] = regs[r1] + regs[r2];
3518 			break;
3519 		case DIF_OP_MUL:
3520 			regs[rd] = regs[r1] * regs[r2];
3521 			break;
3522 		case DIF_OP_SDIV:
3523 			if (regs[r2] == 0) {
3524 				regs[rd] = 0;
3525 				*flags |= CPU_DTRACE_DIVZERO;
3526 			} else {
3527 				regs[rd] = (int64_t)regs[r1] /
3528 				    (int64_t)regs[r2];
3529 			}
3530 			break;
3531 
3532 		case DIF_OP_UDIV:
3533 			if (regs[r2] == 0) {
3534 				regs[rd] = 0;
3535 				*flags |= CPU_DTRACE_DIVZERO;
3536 			} else {
3537 				regs[rd] = regs[r1] / regs[r2];
3538 			}
3539 			break;
3540 
3541 		case DIF_OP_SREM:
3542 			if (regs[r2] == 0) {
3543 				regs[rd] = 0;
3544 				*flags |= CPU_DTRACE_DIVZERO;
3545 			} else {
3546 				regs[rd] = (int64_t)regs[r1] %
3547 				    (int64_t)regs[r2];
3548 			}
3549 			break;
3550 
3551 		case DIF_OP_UREM:
3552 			if (regs[r2] == 0) {
3553 				regs[rd] = 0;
3554 				*flags |= CPU_DTRACE_DIVZERO;
3555 			} else {
3556 				regs[rd] = regs[r1] % regs[r2];
3557 			}
3558 			break;
3559 
3560 		case DIF_OP_NOT:
3561 			regs[rd] = ~regs[r1];
3562 			break;
3563 		case DIF_OP_MOV:
3564 			regs[rd] = regs[r1];
3565 			break;
3566 		case DIF_OP_CMP:
3567 			cc_r = regs[r1] - regs[r2];
3568 			cc_n = cc_r < 0;
3569 			cc_z = cc_r == 0;
3570 			cc_v = 0;
3571 			cc_c = regs[r1] < regs[r2];
3572 			break;
3573 		case DIF_OP_TST:
3574 			cc_n = cc_v = cc_c = 0;
3575 			cc_z = regs[r1] == 0;
3576 			break;
3577 		case DIF_OP_BA:
3578 			pc = DIF_INSTR_LABEL(instr);
3579 			break;
3580 		case DIF_OP_BE:
3581 			if (cc_z)
3582 				pc = DIF_INSTR_LABEL(instr);
3583 			break;
3584 		case DIF_OP_BNE:
3585 			if (cc_z == 0)
3586 				pc = DIF_INSTR_LABEL(instr);
3587 			break;
3588 		case DIF_OP_BG:
3589 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3590 				pc = DIF_INSTR_LABEL(instr);
3591 			break;
3592 		case DIF_OP_BGU:
3593 			if ((cc_c | cc_z) == 0)
3594 				pc = DIF_INSTR_LABEL(instr);
3595 			break;
3596 		case DIF_OP_BGE:
3597 			if ((cc_n ^ cc_v) == 0)
3598 				pc = DIF_INSTR_LABEL(instr);
3599 			break;
3600 		case DIF_OP_BGEU:
3601 			if (cc_c == 0)
3602 				pc = DIF_INSTR_LABEL(instr);
3603 			break;
3604 		case DIF_OP_BL:
3605 			if (cc_n ^ cc_v)
3606 				pc = DIF_INSTR_LABEL(instr);
3607 			break;
3608 		case DIF_OP_BLU:
3609 			if (cc_c)
3610 				pc = DIF_INSTR_LABEL(instr);
3611 			break;
3612 		case DIF_OP_BLE:
3613 			if (cc_z | (cc_n ^ cc_v))
3614 				pc = DIF_INSTR_LABEL(instr);
3615 			break;
3616 		case DIF_OP_BLEU:
3617 			if (cc_c | cc_z)
3618 				pc = DIF_INSTR_LABEL(instr);
3619 			break;
3620 		case DIF_OP_RLDSB:
3621 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3622 				*flags |= CPU_DTRACE_KPRIV;
3623 				*illval = regs[r1];
3624 				break;
3625 			}
3626 			/*FALLTHROUGH*/
3627 		case DIF_OP_LDSB:
3628 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3629 			break;
3630 		case DIF_OP_RLDSH:
3631 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3632 				*flags |= CPU_DTRACE_KPRIV;
3633 				*illval = regs[r1];
3634 				break;
3635 			}
3636 			/*FALLTHROUGH*/
3637 		case DIF_OP_LDSH:
3638 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3639 			break;
3640 		case DIF_OP_RLDSW:
3641 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3642 				*flags |= CPU_DTRACE_KPRIV;
3643 				*illval = regs[r1];
3644 				break;
3645 			}
3646 			/*FALLTHROUGH*/
3647 		case DIF_OP_LDSW:
3648 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3649 			break;
3650 		case DIF_OP_RLDUB:
3651 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3652 				*flags |= CPU_DTRACE_KPRIV;
3653 				*illval = regs[r1];
3654 				break;
3655 			}
3656 			/*FALLTHROUGH*/
3657 		case DIF_OP_LDUB:
3658 			regs[rd] = dtrace_load8(regs[r1]);
3659 			break;
3660 		case DIF_OP_RLDUH:
3661 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3662 				*flags |= CPU_DTRACE_KPRIV;
3663 				*illval = regs[r1];
3664 				break;
3665 			}
3666 			/*FALLTHROUGH*/
3667 		case DIF_OP_LDUH:
3668 			regs[rd] = dtrace_load16(regs[r1]);
3669 			break;
3670 		case DIF_OP_RLDUW:
3671 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3672 				*flags |= CPU_DTRACE_KPRIV;
3673 				*illval = regs[r1];
3674 				break;
3675 			}
3676 			/*FALLTHROUGH*/
3677 		case DIF_OP_LDUW:
3678 			regs[rd] = dtrace_load32(regs[r1]);
3679 			break;
3680 		case DIF_OP_RLDX:
3681 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3682 				*flags |= CPU_DTRACE_KPRIV;
3683 				*illval = regs[r1];
3684 				break;
3685 			}
3686 			/*FALLTHROUGH*/
3687 		case DIF_OP_LDX:
3688 			regs[rd] = dtrace_load64(regs[r1]);
3689 			break;
3690 		case DIF_OP_ULDSB:
3691 			regs[rd] = (int8_t)
3692 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3693 			break;
3694 		case DIF_OP_ULDSH:
3695 			regs[rd] = (int16_t)
3696 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3697 			break;
3698 		case DIF_OP_ULDSW:
3699 			regs[rd] = (int32_t)
3700 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3701 			break;
3702 		case DIF_OP_ULDUB:
3703 			regs[rd] =
3704 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3705 			break;
3706 		case DIF_OP_ULDUH:
3707 			regs[rd] =
3708 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3709 			break;
3710 		case DIF_OP_ULDUW:
3711 			regs[rd] =
3712 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3713 			break;
3714 		case DIF_OP_ULDX:
3715 			regs[rd] =
3716 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3717 			break;
3718 		case DIF_OP_RET:
3719 			rval = regs[rd];
3720 			break;
3721 		case DIF_OP_NOP:
3722 			break;
3723 		case DIF_OP_SETX:
3724 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3725 			break;
3726 		case DIF_OP_SETS:
3727 			regs[rd] = (uint64_t)(uintptr_t)
3728 			    (strtab + DIF_INSTR_STRING(instr));
3729 			break;
3730 		case DIF_OP_SCMP:
3731 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3732 			    (char *)(uintptr_t)regs[r2],
3733 			    state->dts_options[DTRACEOPT_STRSIZE]);
3734 
3735 			cc_n = cc_r < 0;
3736 			cc_z = cc_r == 0;
3737 			cc_v = cc_c = 0;
3738 			break;
3739 		case DIF_OP_LDGA:
3740 			regs[rd] = dtrace_dif_variable(mstate, state,
3741 			    r1, regs[r2]);
3742 			break;
3743 		case DIF_OP_LDGS:
3744 			id = DIF_INSTR_VAR(instr);
3745 
3746 			if (id >= DIF_VAR_OTHER_UBASE) {
3747 				uintptr_t a;
3748 
3749 				id -= DIF_VAR_OTHER_UBASE;
3750 				svar = vstate->dtvs_globals[id];
3751 				ASSERT(svar != NULL);
3752 				v = &svar->dtsv_var;
3753 
3754 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3755 					regs[rd] = svar->dtsv_data;
3756 					break;
3757 				}
3758 
3759 				a = (uintptr_t)svar->dtsv_data;
3760 
3761 				if (*(uint8_t *)a == UINT8_MAX) {
3762 					/*
3763 					 * If the 0th byte is set to UINT8_MAX
3764 					 * then this is to be treated as a
3765 					 * reference to a NULL variable.
3766 					 */
3767 					regs[rd] = NULL;
3768 				} else {
3769 					regs[rd] = a + sizeof (uint64_t);
3770 				}
3771 
3772 				break;
3773 			}
3774 
3775 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3776 			break;
3777 
3778 		case DIF_OP_STGS:
3779 			id = DIF_INSTR_VAR(instr);
3780 
3781 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3782 			id -= DIF_VAR_OTHER_UBASE;
3783 
3784 			svar = vstate->dtvs_globals[id];
3785 			ASSERT(svar != NULL);
3786 			v = &svar->dtsv_var;
3787 
3788 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3789 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3790 
3791 				ASSERT(a != NULL);
3792 				ASSERT(svar->dtsv_size != 0);
3793 
3794 				if (regs[rd] == NULL) {
3795 					*(uint8_t *)a = UINT8_MAX;
3796 					break;
3797 				} else {
3798 					*(uint8_t *)a = 0;
3799 					a += sizeof (uint64_t);
3800 				}
3801 
3802 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3803 				    (void *)a, &v->dtdv_type);
3804 				break;
3805 			}
3806 
3807 			svar->dtsv_data = regs[rd];
3808 			break;
3809 
3810 		case DIF_OP_LDTA:
3811 			/*
3812 			 * There are no DTrace built-in thread-local arrays at
3813 			 * present.  This opcode is saved for future work.
3814 			 */
3815 			*flags |= CPU_DTRACE_ILLOP;
3816 			regs[rd] = 0;
3817 			break;
3818 
3819 		case DIF_OP_LDLS:
3820 			id = DIF_INSTR_VAR(instr);
3821 
3822 			if (id < DIF_VAR_OTHER_UBASE) {
3823 				/*
3824 				 * For now, this has no meaning.
3825 				 */
3826 				regs[rd] = 0;
3827 				break;
3828 			}
3829 
3830 			id -= DIF_VAR_OTHER_UBASE;
3831 
3832 			ASSERT(id < vstate->dtvs_nlocals);
3833 			ASSERT(vstate->dtvs_locals != NULL);
3834 
3835 			svar = vstate->dtvs_locals[id];
3836 			ASSERT(svar != NULL);
3837 			v = &svar->dtsv_var;
3838 
3839 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3840 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3841 				size_t sz = v->dtdv_type.dtdt_size;
3842 
3843 				sz += sizeof (uint64_t);
3844 				ASSERT(svar->dtsv_size == NCPU * sz);
3845 				a += CPU->cpu_id * sz;
3846 
3847 				if (*(uint8_t *)a == UINT8_MAX) {
3848 					/*
3849 					 * If the 0th byte is set to UINT8_MAX
3850 					 * then this is to be treated as a
3851 					 * reference to a NULL variable.
3852 					 */
3853 					regs[rd] = NULL;
3854 				} else {
3855 					regs[rd] = a + sizeof (uint64_t);
3856 				}
3857 
3858 				break;
3859 			}
3860 
3861 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3862 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3863 			regs[rd] = tmp[CPU->cpu_id];
3864 			break;
3865 
3866 		case DIF_OP_STLS:
3867 			id = DIF_INSTR_VAR(instr);
3868 
3869 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3870 			id -= DIF_VAR_OTHER_UBASE;
3871 			ASSERT(id < vstate->dtvs_nlocals);
3872 
3873 			ASSERT(vstate->dtvs_locals != NULL);
3874 			svar = vstate->dtvs_locals[id];
3875 			ASSERT(svar != NULL);
3876 			v = &svar->dtsv_var;
3877 
3878 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3879 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3880 				size_t sz = v->dtdv_type.dtdt_size;
3881 
3882 				sz += sizeof (uint64_t);
3883 				ASSERT(svar->dtsv_size == NCPU * sz);
3884 				a += CPU->cpu_id * sz;
3885 
3886 				if (regs[rd] == NULL) {
3887 					*(uint8_t *)a = UINT8_MAX;
3888 					break;
3889 				} else {
3890 					*(uint8_t *)a = 0;
3891 					a += sizeof (uint64_t);
3892 				}
3893 
3894 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3895 				    (void *)a, &v->dtdv_type);
3896 				break;
3897 			}
3898 
3899 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3900 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3901 			tmp[CPU->cpu_id] = regs[rd];
3902 			break;
3903 
3904 		case DIF_OP_LDTS: {
3905 			dtrace_dynvar_t *dvar;
3906 			dtrace_key_t *key;
3907 
3908 			id = DIF_INSTR_VAR(instr);
3909 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3910 			id -= DIF_VAR_OTHER_UBASE;
3911 			v = &vstate->dtvs_tlocals[id];
3912 
3913 			key = &tupregs[DIF_DTR_NREGS];
3914 			key[0].dttk_value = (uint64_t)id;
3915 			key[0].dttk_size = 0;
3916 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3917 			key[1].dttk_size = 0;
3918 
3919 			dvar = dtrace_dynvar(dstate, 2, key,
3920 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
3921 
3922 			if (dvar == NULL) {
3923 				regs[rd] = 0;
3924 				break;
3925 			}
3926 
3927 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3928 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3929 			} else {
3930 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3931 			}
3932 
3933 			break;
3934 		}
3935 
3936 		case DIF_OP_STTS: {
3937 			dtrace_dynvar_t *dvar;
3938 			dtrace_key_t *key;
3939 
3940 			id = DIF_INSTR_VAR(instr);
3941 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3942 			id -= DIF_VAR_OTHER_UBASE;
3943 
3944 			key = &tupregs[DIF_DTR_NREGS];
3945 			key[0].dttk_value = (uint64_t)id;
3946 			key[0].dttk_size = 0;
3947 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3948 			key[1].dttk_size = 0;
3949 			v = &vstate->dtvs_tlocals[id];
3950 
3951 			dvar = dtrace_dynvar(dstate, 2, key,
3952 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3953 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3954 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
3955 			    DTRACE_DYNVAR_DEALLOC);
3956 
3957 			/*
3958 			 * Given that we're storing to thread-local data,
3959 			 * we need to flush our predicate cache.
3960 			 */
3961 			curthread->t_predcache = NULL;
3962 
3963 			if (dvar == NULL)
3964 				break;
3965 
3966 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3967 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3968 				    dvar->dtdv_data, &v->dtdv_type);
3969 			} else {
3970 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
3971 			}
3972 
3973 			break;
3974 		}
3975 
3976 		case DIF_OP_SRA:
3977 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
3978 			break;
3979 
3980 		case DIF_OP_CALL:
3981 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
3982 			    regs, tupregs, ttop, mstate, state);
3983 			break;
3984 
3985 		case DIF_OP_PUSHTR:
3986 			if (ttop == DIF_DTR_NREGS) {
3987 				*flags |= CPU_DTRACE_TUPOFLOW;
3988 				break;
3989 			}
3990 
3991 			if (r1 == DIF_TYPE_STRING) {
3992 				/*
3993 				 * If this is a string type and the size is 0,
3994 				 * we'll use the system-wide default string
3995 				 * size.  Note that we are _not_ looking at
3996 				 * the value of the DTRACEOPT_STRSIZE option;
3997 				 * had this been set, we would expect to have
3998 				 * a non-zero size value in the "pushtr".
3999 				 */
4000 				tupregs[ttop].dttk_size =
4001 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4002 				    regs[r2] ? regs[r2] :
4003 				    dtrace_strsize_default) + 1;
4004 			} else {
4005 				tupregs[ttop].dttk_size = regs[r2];
4006 			}
4007 
4008 			tupregs[ttop++].dttk_value = regs[rd];
4009 			break;
4010 
4011 		case DIF_OP_PUSHTV:
4012 			if (ttop == DIF_DTR_NREGS) {
4013 				*flags |= CPU_DTRACE_TUPOFLOW;
4014 				break;
4015 			}
4016 
4017 			tupregs[ttop].dttk_value = regs[rd];
4018 			tupregs[ttop++].dttk_size = 0;
4019 			break;
4020 
4021 		case DIF_OP_POPTS:
4022 			if (ttop != 0)
4023 				ttop--;
4024 			break;
4025 
4026 		case DIF_OP_FLUSHTS:
4027 			ttop = 0;
4028 			break;
4029 
4030 		case DIF_OP_LDGAA:
4031 		case DIF_OP_LDTAA: {
4032 			dtrace_dynvar_t *dvar;
4033 			dtrace_key_t *key = tupregs;
4034 			uint_t nkeys = ttop;
4035 
4036 			id = DIF_INSTR_VAR(instr);
4037 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4038 			id -= DIF_VAR_OTHER_UBASE;
4039 
4040 			key[nkeys].dttk_value = (uint64_t)id;
4041 			key[nkeys++].dttk_size = 0;
4042 
4043 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4044 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4045 				key[nkeys++].dttk_size = 0;
4046 				v = &vstate->dtvs_tlocals[id];
4047 			} else {
4048 				v = &vstate->dtvs_globals[id]->dtsv_var;
4049 			}
4050 
4051 			dvar = dtrace_dynvar(dstate, nkeys, key,
4052 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4053 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4054 			    DTRACE_DYNVAR_NOALLOC);
4055 
4056 			if (dvar == NULL) {
4057 				regs[rd] = 0;
4058 				break;
4059 			}
4060 
4061 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4062 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4063 			} else {
4064 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4065 			}
4066 
4067 			break;
4068 		}
4069 
4070 		case DIF_OP_STGAA:
4071 		case DIF_OP_STTAA: {
4072 			dtrace_dynvar_t *dvar;
4073 			dtrace_key_t *key = tupregs;
4074 			uint_t nkeys = ttop;
4075 
4076 			id = DIF_INSTR_VAR(instr);
4077 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4078 			id -= DIF_VAR_OTHER_UBASE;
4079 
4080 			key[nkeys].dttk_value = (uint64_t)id;
4081 			key[nkeys++].dttk_size = 0;
4082 
4083 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4084 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4085 				key[nkeys++].dttk_size = 0;
4086 				v = &vstate->dtvs_tlocals[id];
4087 			} else {
4088 				v = &vstate->dtvs_globals[id]->dtsv_var;
4089 			}
4090 
4091 			dvar = dtrace_dynvar(dstate, nkeys, key,
4092 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4093 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4094 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4095 			    DTRACE_DYNVAR_DEALLOC);
4096 
4097 			if (dvar == NULL)
4098 				break;
4099 
4100 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4101 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4102 				    dvar->dtdv_data, &v->dtdv_type);
4103 			} else {
4104 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4105 			}
4106 
4107 			break;
4108 		}
4109 
4110 		case DIF_OP_ALLOCS: {
4111 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4112 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4113 
4114 			if (mstate->dtms_scratch_ptr + size >
4115 			    mstate->dtms_scratch_base +
4116 			    mstate->dtms_scratch_size) {
4117 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4118 				regs[rd] = NULL;
4119 			} else {
4120 				dtrace_bzero((void *)
4121 				    mstate->dtms_scratch_ptr, size);
4122 				mstate->dtms_scratch_ptr += size;
4123 				regs[rd] = ptr;
4124 			}
4125 			break;
4126 		}
4127 
4128 		case DIF_OP_COPYS:
4129 			if (!dtrace_canstore(regs[rd], regs[r2],
4130 			    mstate, vstate)) {
4131 				*flags |= CPU_DTRACE_BADADDR;
4132 				*illval = regs[rd];
4133 				break;
4134 			}
4135 
4136 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4137 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4138 			break;
4139 
4140 		case DIF_OP_STB:
4141 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4142 				*flags |= CPU_DTRACE_BADADDR;
4143 				*illval = regs[rd];
4144 				break;
4145 			}
4146 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4147 			break;
4148 
4149 		case DIF_OP_STH:
4150 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4151 				*flags |= CPU_DTRACE_BADADDR;
4152 				*illval = regs[rd];
4153 				break;
4154 			}
4155 			if (regs[rd] & 1) {
4156 				*flags |= CPU_DTRACE_BADALIGN;
4157 				*illval = regs[rd];
4158 				break;
4159 			}
4160 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4161 			break;
4162 
4163 		case DIF_OP_STW:
4164 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4165 				*flags |= CPU_DTRACE_BADADDR;
4166 				*illval = regs[rd];
4167 				break;
4168 			}
4169 			if (regs[rd] & 3) {
4170 				*flags |= CPU_DTRACE_BADALIGN;
4171 				*illval = regs[rd];
4172 				break;
4173 			}
4174 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4175 			break;
4176 
4177 		case DIF_OP_STX:
4178 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4179 				*flags |= CPU_DTRACE_BADADDR;
4180 				*illval = regs[rd];
4181 				break;
4182 			}
4183 			if (regs[rd] & 7) {
4184 				*flags |= CPU_DTRACE_BADALIGN;
4185 				*illval = regs[rd];
4186 				break;
4187 			}
4188 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4189 			break;
4190 		}
4191 	}
4192 
4193 	if (!(*flags & CPU_DTRACE_FAULT))
4194 		return (rval);
4195 
4196 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4197 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4198 
4199 	return (0);
4200 }
4201 
4202 static void
4203 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4204 {
4205 	dtrace_probe_t *probe = ecb->dte_probe;
4206 	dtrace_provider_t *prov = probe->dtpr_provider;
4207 	char c[DTRACE_FULLNAMELEN + 80], *str;
4208 	char *msg = "dtrace: breakpoint action at probe ";
4209 	char *ecbmsg = " (ecb ";
4210 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4211 	uintptr_t val = (uintptr_t)ecb;
4212 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4213 
4214 	if (dtrace_destructive_disallow)
4215 		return;
4216 
4217 	/*
4218 	 * It's impossible to be taking action on the NULL probe.
4219 	 */
4220 	ASSERT(probe != NULL);
4221 
4222 	/*
4223 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4224 	 * print the provider name, module name, function name and name of
4225 	 * the probe, along with the hex address of the ECB with the breakpoint
4226 	 * action -- all of which we must place in the character buffer by
4227 	 * hand.
4228 	 */
4229 	while (*msg != '\0')
4230 		c[i++] = *msg++;
4231 
4232 	for (str = prov->dtpv_name; *str != '\0'; str++)
4233 		c[i++] = *str;
4234 	c[i++] = ':';
4235 
4236 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4237 		c[i++] = *str;
4238 	c[i++] = ':';
4239 
4240 	for (str = probe->dtpr_func; *str != '\0'; str++)
4241 		c[i++] = *str;
4242 	c[i++] = ':';
4243 
4244 	for (str = probe->dtpr_name; *str != '\0'; str++)
4245 		c[i++] = *str;
4246 
4247 	while (*ecbmsg != '\0')
4248 		c[i++] = *ecbmsg++;
4249 
4250 	while (shift >= 0) {
4251 		mask = (uintptr_t)0xf << shift;
4252 
4253 		if (val >= ((uintptr_t)1 << shift))
4254 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4255 		shift -= 4;
4256 	}
4257 
4258 	c[i++] = ')';
4259 	c[i] = '\0';
4260 
4261 	debug_enter(c);
4262 }
4263 
4264 static void
4265 dtrace_action_panic(dtrace_ecb_t *ecb)
4266 {
4267 	dtrace_probe_t *probe = ecb->dte_probe;
4268 
4269 	/*
4270 	 * It's impossible to be taking action on the NULL probe.
4271 	 */
4272 	ASSERT(probe != NULL);
4273 
4274 	if (dtrace_destructive_disallow)
4275 		return;
4276 
4277 	if (dtrace_panicked != NULL)
4278 		return;
4279 
4280 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4281 		return;
4282 
4283 	/*
4284 	 * We won the right to panic.  (We want to be sure that only one
4285 	 * thread calls panic() from dtrace_probe(), and that panic() is
4286 	 * called exactly once.)
4287 	 */
4288 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4289 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4290 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4291 }
4292 
4293 static void
4294 dtrace_action_raise(uint64_t sig)
4295 {
4296 	if (dtrace_destructive_disallow)
4297 		return;
4298 
4299 	if (sig >= NSIG) {
4300 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4301 		return;
4302 	}
4303 
4304 	/*
4305 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4306 	 * invocations of the raise() action.
4307 	 */
4308 	if (curthread->t_dtrace_sig == 0)
4309 		curthread->t_dtrace_sig = (uint8_t)sig;
4310 
4311 	curthread->t_sig_check = 1;
4312 	aston(curthread);
4313 }
4314 
4315 static void
4316 dtrace_action_stop(void)
4317 {
4318 	if (dtrace_destructive_disallow)
4319 		return;
4320 
4321 	if (!curthread->t_dtrace_stop) {
4322 		curthread->t_dtrace_stop = 1;
4323 		curthread->t_sig_check = 1;
4324 		aston(curthread);
4325 	}
4326 }
4327 
4328 static void
4329 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4330 {
4331 	hrtime_t now;
4332 	volatile uint16_t *flags;
4333 	cpu_t *cpu = CPU;
4334 
4335 	if (dtrace_destructive_disallow)
4336 		return;
4337 
4338 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4339 
4340 	now = dtrace_gethrtime();
4341 
4342 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4343 		/*
4344 		 * We need to advance the mark to the current time.
4345 		 */
4346 		cpu->cpu_dtrace_chillmark = now;
4347 		cpu->cpu_dtrace_chilled = 0;
4348 	}
4349 
4350 	/*
4351 	 * Now check to see if the requested chill time would take us over
4352 	 * the maximum amount of time allowed in the chill interval.  (Or
4353 	 * worse, if the calculation itself induces overflow.)
4354 	 */
4355 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4356 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4357 		*flags |= CPU_DTRACE_ILLOP;
4358 		return;
4359 	}
4360 
4361 	while (dtrace_gethrtime() - now < val)
4362 		continue;
4363 
4364 	/*
4365 	 * Normally, we assure that the value of the variable "timestamp" does
4366 	 * not change within an ECB.  The presence of chill() represents an
4367 	 * exception to this rule, however.
4368 	 */
4369 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4370 	cpu->cpu_dtrace_chilled += val;
4371 }
4372 
4373 static void
4374 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4375     uint64_t *buf, uint64_t arg)
4376 {
4377 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4378 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4379 	uint64_t *pcs = &buf[1], *fps;
4380 	char *str = (char *)&pcs[nframes];
4381 	int size, offs = 0, i, j;
4382 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4383 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4384 	char *sym;
4385 
4386 	/*
4387 	 * Should be taking a faster path if string space has not been
4388 	 * allocated.
4389 	 */
4390 	ASSERT(strsize != 0);
4391 
4392 	/*
4393 	 * We will first allocate some temporary space for the frame pointers.
4394 	 */
4395 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4396 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4397 	    (nframes * sizeof (uint64_t));
4398 
4399 	if (mstate->dtms_scratch_ptr + size >
4400 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4401 		/*
4402 		 * Not enough room for our frame pointers -- need to indicate
4403 		 * that we ran out of scratch space.
4404 		 */
4405 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4406 		return;
4407 	}
4408 
4409 	mstate->dtms_scratch_ptr += size;
4410 	saved = mstate->dtms_scratch_ptr;
4411 
4412 	/*
4413 	 * Now get a stack with both program counters and frame pointers.
4414 	 */
4415 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4416 	dtrace_getufpstack(buf, fps, nframes + 1);
4417 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4418 
4419 	/*
4420 	 * If that faulted, we're cooked.
4421 	 */
4422 	if (*flags & CPU_DTRACE_FAULT)
4423 		goto out;
4424 
4425 	/*
4426 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4427 	 * each iteration, we restore the scratch pointer.
4428 	 */
4429 	for (i = 0; i < nframes; i++) {
4430 		mstate->dtms_scratch_ptr = saved;
4431 
4432 		if (offs >= strsize)
4433 			break;
4434 
4435 		sym = (char *)(uintptr_t)dtrace_helper(
4436 		    DTRACE_HELPER_ACTION_USTACK,
4437 		    mstate, state, pcs[i], fps[i]);
4438 
4439 		/*
4440 		 * If we faulted while running the helper, we're going to
4441 		 * clear the fault and null out the corresponding string.
4442 		 */
4443 		if (*flags & CPU_DTRACE_FAULT) {
4444 			*flags &= ~CPU_DTRACE_FAULT;
4445 			str[offs++] = '\0';
4446 			continue;
4447 		}
4448 
4449 		if (sym == NULL) {
4450 			str[offs++] = '\0';
4451 			continue;
4452 		}
4453 
4454 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4455 
4456 		/*
4457 		 * Now copy in the string that the helper returned to us.
4458 		 */
4459 		for (j = 0; offs + j < strsize; j++) {
4460 			if ((str[offs + j] = sym[j]) == '\0')
4461 				break;
4462 		}
4463 
4464 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4465 
4466 		offs += j + 1;
4467 	}
4468 
4469 	if (offs >= strsize) {
4470 		/*
4471 		 * If we didn't have room for all of the strings, we don't
4472 		 * abort processing -- this needn't be a fatal error -- but we
4473 		 * still want to increment a counter (dts_stkstroverflows) to
4474 		 * allow this condition to be warned about.  (If this is from
4475 		 * a jstack() action, it is easily tuned via jstackstrsize.)
4476 		 */
4477 		dtrace_error(&state->dts_stkstroverflows);
4478 	}
4479 
4480 	while (offs < strsize)
4481 		str[offs++] = '\0';
4482 
4483 out:
4484 	mstate->dtms_scratch_ptr = old;
4485 }
4486 
4487 /*
4488  * If you're looking for the epicenter of DTrace, you just found it.  This
4489  * is the function called by the provider to fire a probe -- from which all
4490  * subsequent probe-context DTrace activity emanates.
4491  */
4492 void
4493 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4494     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4495 {
4496 	processorid_t cpuid;
4497 	dtrace_icookie_t cookie;
4498 	dtrace_probe_t *probe;
4499 	dtrace_mstate_t mstate;
4500 	dtrace_ecb_t *ecb;
4501 	dtrace_action_t *act;
4502 	intptr_t offs;
4503 	size_t size;
4504 	int vtime, onintr;
4505 	volatile uint16_t *flags;
4506 	hrtime_t now;
4507 
4508 	/*
4509 	 * Kick out immediately if this CPU is still being born (in which case
4510 	 * curthread will be set to -1)
4511 	 */
4512 	if ((uintptr_t)curthread & 1)
4513 		return;
4514 
4515 	cookie = dtrace_interrupt_disable();
4516 	probe = dtrace_probes[id - 1];
4517 	cpuid = CPU->cpu_id;
4518 	onintr = CPU_ON_INTR(CPU);
4519 
4520 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4521 	    probe->dtpr_predcache == curthread->t_predcache) {
4522 		/*
4523 		 * We have hit in the predicate cache; we know that
4524 		 * this predicate would evaluate to be false.
4525 		 */
4526 		dtrace_interrupt_enable(cookie);
4527 		return;
4528 	}
4529 
4530 	if (panic_quiesce) {
4531 		/*
4532 		 * We don't trace anything if we're panicking.
4533 		 */
4534 		dtrace_interrupt_enable(cookie);
4535 		return;
4536 	}
4537 
4538 	now = dtrace_gethrtime();
4539 	vtime = dtrace_vtime_references != 0;
4540 
4541 	if (vtime && curthread->t_dtrace_start)
4542 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4543 
4544 	mstate.dtms_probe = probe;
4545 	mstate.dtms_arg[0] = arg0;
4546 	mstate.dtms_arg[1] = arg1;
4547 	mstate.dtms_arg[2] = arg2;
4548 	mstate.dtms_arg[3] = arg3;
4549 	mstate.dtms_arg[4] = arg4;
4550 
4551 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4552 
4553 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4554 		dtrace_predicate_t *pred = ecb->dte_predicate;
4555 		dtrace_state_t *state = ecb->dte_state;
4556 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4557 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4558 		dtrace_vstate_t *vstate = &state->dts_vstate;
4559 		dtrace_provider_t *prov = probe->dtpr_provider;
4560 		int committed = 0;
4561 		caddr_t tomax;
4562 
4563 		/*
4564 		 * A little subtlety with the following (seemingly innocuous)
4565 		 * declaration of the automatic 'val':  by looking at the
4566 		 * code, you might think that it could be declared in the
4567 		 * action processing loop, below.  (That is, it's only used in
4568 		 * the action processing loop.)  However, it must be declared
4569 		 * out of that scope because in the case of DIF expression
4570 		 * arguments to aggregating actions, one iteration of the
4571 		 * action loop will use the last iteration's value.
4572 		 */
4573 #ifdef lint
4574 		uint64_t val = 0;
4575 #else
4576 		uint64_t val;
4577 #endif
4578 
4579 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4580 		*flags &= ~CPU_DTRACE_ERROR;
4581 
4582 		if (prov == dtrace_provider) {
4583 			/*
4584 			 * If dtrace itself is the provider of this probe,
4585 			 * we're only going to continue processing the ECB if
4586 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4587 			 * creating state.  (This prevents disjoint consumers
4588 			 * from seeing one another's metaprobes.)
4589 			 */
4590 			if (arg0 != (uint64_t)(uintptr_t)state)
4591 				continue;
4592 		}
4593 
4594 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4595 			/*
4596 			 * We're not currently active.  If our provider isn't
4597 			 * the dtrace pseudo provider, we're not interested.
4598 			 */
4599 			if (prov != dtrace_provider)
4600 				continue;
4601 
4602 			/*
4603 			 * Now we must further check if we are in the BEGIN
4604 			 * probe.  If we are, we will only continue processing
4605 			 * if we're still in WARMUP -- if one BEGIN enabling
4606 			 * has invoked the exit() action, we don't want to
4607 			 * evaluate subsequent BEGIN enablings.
4608 			 */
4609 			if (probe->dtpr_id == dtrace_probeid_begin &&
4610 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4611 				ASSERT(state->dts_activity ==
4612 				    DTRACE_ACTIVITY_DRAINING);
4613 				continue;
4614 			}
4615 		}
4616 
4617 		if (ecb->dte_cond) {
4618 			/*
4619 			 * If the dte_cond bits indicate that this
4620 			 * consumer is only allowed to see user-mode firings
4621 			 * of this probe, call the provider's dtps_usermode()
4622 			 * entry point to check that the probe was fired
4623 			 * while in a user context. Skip this ECB if that's
4624 			 * not the case.
4625 			 */
4626 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4627 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4628 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4629 				continue;
4630 
4631 			/*
4632 			 * This is more subtle than it looks. We have to be
4633 			 * absolutely certain that CRED() isn't going to
4634 			 * change out from under us so it's only legit to
4635 			 * examine that structure if we're in constrained
4636 			 * situations. Currently, the only times we'll this
4637 			 * check is if a non-super-user has enabled the
4638 			 * profile or syscall providers -- providers that
4639 			 * allow visibility of all processes. For the
4640 			 * profile case, the check above will ensure that
4641 			 * we're examining a user context.
4642 			 */
4643 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4644 				uid_t uid = ecb->dte_state->dts_cred.dcr_uid;
4645 				gid_t gid = ecb->dte_state->dts_cred.dcr_gid;
4646 				cred_t *cr;
4647 				proc_t *proc;
4648 
4649 				if ((cr = CRED()) == NULL ||
4650 				    uid != cr->cr_uid ||
4651 				    uid != cr->cr_ruid ||
4652 				    uid != cr->cr_suid ||
4653 				    gid != cr->cr_gid ||
4654 				    gid != cr->cr_rgid ||
4655 				    gid != cr->cr_sgid ||
4656 				    (proc = ttoproc(curthread)) == NULL ||
4657 				    (proc->p_flag & SNOCD))
4658 					continue;
4659 
4660 			}
4661 		}
4662 
4663 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4664 			/*
4665 			 * We seem to be dead.  Unless we (a) have kernel
4666 			 * destructive permissions (b) have expicitly enabled
4667 			 * destructive actions and (c) destructive actions have
4668 			 * not been disabled, we're going to transition into
4669 			 * the KILLED state, from which no further processing
4670 			 * on this state will be performed.
4671 			 */
4672 			if (!dtrace_priv_kernel_destructive(state) ||
4673 			    !state->dts_cred.dcr_destructive ||
4674 			    dtrace_destructive_disallow) {
4675 				void *activity = &state->dts_activity;
4676 				dtrace_activity_t current;
4677 
4678 				do {
4679 					current = state->dts_activity;
4680 				} while (dtrace_cas32(activity, current,
4681 				    DTRACE_ACTIVITY_KILLED) != current);
4682 
4683 				continue;
4684 			}
4685 		}
4686 
4687 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4688 		    ecb->dte_alignment, state, &mstate)) < 0)
4689 			continue;
4690 
4691 		tomax = buf->dtb_tomax;
4692 		ASSERT(tomax != NULL);
4693 
4694 		if (ecb->dte_size != 0)
4695 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4696 
4697 		mstate.dtms_epid = ecb->dte_epid;
4698 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4699 
4700 		if (pred != NULL) {
4701 			dtrace_difo_t *dp = pred->dtp_difo;
4702 			int rval;
4703 
4704 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4705 
4706 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4707 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4708 
4709 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4710 					/*
4711 					 * Update the predicate cache...
4712 					 */
4713 					ASSERT(cid == pred->dtp_cacheid);
4714 					curthread->t_predcache = cid;
4715 				}
4716 
4717 				continue;
4718 			}
4719 		}
4720 
4721 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4722 		    act != NULL; act = act->dta_next) {
4723 			size_t valoffs;
4724 			dtrace_difo_t *dp;
4725 			dtrace_recdesc_t *rec = &act->dta_rec;
4726 
4727 			size = rec->dtrd_size;
4728 			valoffs = offs + rec->dtrd_offset;
4729 
4730 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4731 				uint64_t v = 0xbad;
4732 				dtrace_aggregation_t *agg;
4733 
4734 				agg = (dtrace_aggregation_t *)act;
4735 
4736 				if ((dp = act->dta_difo) != NULL)
4737 					v = dtrace_dif_emulate(dp,
4738 					    &mstate, vstate, state);
4739 
4740 				if (*flags & CPU_DTRACE_ERROR)
4741 					continue;
4742 
4743 				/*
4744 				 * Note that we always pass the expression
4745 				 * value from the previous iteration of the
4746 				 * action loop.  This value will only be used
4747 				 * if there is an expression argument to the
4748 				 * aggregating action, denoted by the
4749 				 * dtag_hasarg field.
4750 				 */
4751 				dtrace_aggregate(agg, buf,
4752 				    offs, aggbuf, v, val);
4753 				continue;
4754 			}
4755 
4756 			switch (act->dta_kind) {
4757 			case DTRACEACT_STOP:
4758 				if (dtrace_priv_proc_destructive(state))
4759 					dtrace_action_stop();
4760 				continue;
4761 
4762 			case DTRACEACT_BREAKPOINT:
4763 				if (dtrace_priv_kernel_destructive(state))
4764 					dtrace_action_breakpoint(ecb);
4765 				continue;
4766 
4767 			case DTRACEACT_PANIC:
4768 				if (dtrace_priv_kernel_destructive(state))
4769 					dtrace_action_panic(ecb);
4770 				continue;
4771 
4772 			case DTRACEACT_STACK:
4773 				if (!dtrace_priv_kernel(state))
4774 					continue;
4775 
4776 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4777 				    size / sizeof (pc_t), probe->dtpr_aframes,
4778 				    DTRACE_ANCHORED(probe) ? NULL :
4779 				    (uint32_t *)arg0);
4780 
4781 				continue;
4782 
4783 			case DTRACEACT_JSTACK:
4784 			case DTRACEACT_USTACK:
4785 				if (!dtrace_priv_proc(state))
4786 					continue;
4787 
4788 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4789 				    curproc->p_dtrace_helpers != NULL) {
4790 					/*
4791 					 * This is the slow path -- we have
4792 					 * allocated string space, and we're
4793 					 * getting the stack of a process that
4794 					 * has helpers.  Call into a separate
4795 					 * routine to perform this processing.
4796 					 */
4797 					dtrace_action_ustack(&mstate, state,
4798 					    (uint64_t *)(tomax + valoffs),
4799 					    rec->dtrd_arg);
4800 					continue;
4801 				}
4802 
4803 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4804 				dtrace_getupcstack((uint64_t *)
4805 				    (tomax + valoffs),
4806 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
4807 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4808 				continue;
4809 
4810 			default:
4811 				break;
4812 			}
4813 
4814 			dp = act->dta_difo;
4815 			ASSERT(dp != NULL);
4816 
4817 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
4818 
4819 			if (*flags & CPU_DTRACE_ERROR)
4820 				continue;
4821 
4822 			switch (act->dta_kind) {
4823 			case DTRACEACT_SPECULATE:
4824 				ASSERT(buf == &state->dts_buffer[cpuid]);
4825 				buf = dtrace_speculation_buffer(state,
4826 				    cpuid, val);
4827 
4828 				if (buf == NULL) {
4829 					*flags |= CPU_DTRACE_DROP;
4830 					continue;
4831 				}
4832 
4833 				offs = dtrace_buffer_reserve(buf,
4834 				    ecb->dte_needed, ecb->dte_alignment,
4835 				    state, NULL);
4836 
4837 				if (offs < 0) {
4838 					*flags |= CPU_DTRACE_DROP;
4839 					continue;
4840 				}
4841 
4842 				tomax = buf->dtb_tomax;
4843 				ASSERT(tomax != NULL);
4844 
4845 				if (ecb->dte_size != 0)
4846 					DTRACE_STORE(uint32_t, tomax, offs,
4847 					    ecb->dte_epid);
4848 				continue;
4849 
4850 			case DTRACEACT_CHILL:
4851 				if (dtrace_priv_kernel_destructive(state))
4852 					dtrace_action_chill(&mstate, val);
4853 				continue;
4854 
4855 			case DTRACEACT_RAISE:
4856 				if (dtrace_priv_proc_destructive(state))
4857 					dtrace_action_raise(val);
4858 				continue;
4859 
4860 			case DTRACEACT_COMMIT:
4861 				ASSERT(!committed);
4862 
4863 				/*
4864 				 * We need to commit our buffer state.
4865 				 */
4866 				if (ecb->dte_size)
4867 					buf->dtb_offset = offs + ecb->dte_size;
4868 				buf = &state->dts_buffer[cpuid];
4869 				dtrace_speculation_commit(state, cpuid, val);
4870 				committed = 1;
4871 				continue;
4872 
4873 			case DTRACEACT_DISCARD:
4874 				dtrace_speculation_discard(state, cpuid, val);
4875 				continue;
4876 
4877 			case DTRACEACT_DIFEXPR:
4878 			case DTRACEACT_LIBACT:
4879 			case DTRACEACT_PRINTF:
4880 			case DTRACEACT_PRINTA:
4881 			case DTRACEACT_SYSTEM:
4882 			case DTRACEACT_FREOPEN:
4883 				break;
4884 
4885 			case DTRACEACT_SYM:
4886 			case DTRACEACT_MOD:
4887 				if (!dtrace_priv_kernel(state))
4888 					continue;
4889 				break;
4890 
4891 			case DTRACEACT_USYM:
4892 			case DTRACEACT_UMOD:
4893 			case DTRACEACT_UADDR: {
4894 				struct pid *pid = curthread->t_procp->p_pidp;
4895 
4896 				if (!dtrace_priv_proc(state))
4897 					continue;
4898 
4899 				DTRACE_STORE(uint64_t, tomax,
4900 				    valoffs, (uint64_t)pid->pid_id);
4901 				DTRACE_STORE(uint64_t, tomax,
4902 				    valoffs + sizeof (uint64_t), val);
4903 
4904 				continue;
4905 			}
4906 
4907 			case DTRACEACT_EXIT: {
4908 				/*
4909 				 * For the exit action, we are going to attempt
4910 				 * to atomically set our activity to be
4911 				 * draining.  If this fails (either because
4912 				 * another CPU has beat us to the exit action,
4913 				 * or because our current activity is something
4914 				 * other than ACTIVE or WARMUP), we will
4915 				 * continue.  This assures that the exit action
4916 				 * can be successfully recorded at most once
4917 				 * when we're in the ACTIVE state.  If we're
4918 				 * encountering the exit() action while in
4919 				 * COOLDOWN, however, we want to honor the new
4920 				 * status code.  (We know that we're the only
4921 				 * thread in COOLDOWN, so there is no race.)
4922 				 */
4923 				void *activity = &state->dts_activity;
4924 				dtrace_activity_t current = state->dts_activity;
4925 
4926 				if (current == DTRACE_ACTIVITY_COOLDOWN)
4927 					break;
4928 
4929 				if (current != DTRACE_ACTIVITY_WARMUP)
4930 					current = DTRACE_ACTIVITY_ACTIVE;
4931 
4932 				if (dtrace_cas32(activity, current,
4933 				    DTRACE_ACTIVITY_DRAINING) != current) {
4934 					*flags |= CPU_DTRACE_DROP;
4935 					continue;
4936 				}
4937 
4938 				break;
4939 			}
4940 
4941 			default:
4942 				ASSERT(0);
4943 			}
4944 
4945 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
4946 				uintptr_t end = valoffs + size;
4947 
4948 				/*
4949 				 * If this is a string, we're going to only
4950 				 * load until we find the zero byte -- after
4951 				 * which we'll store zero bytes.
4952 				 */
4953 				if (dp->dtdo_rtype.dtdt_kind ==
4954 				    DIF_TYPE_STRING) {
4955 					char c = '\0' + 1;
4956 					size_t s;
4957 
4958 					for (s = 0; s < size; s++) {
4959 						if (c != '\0')
4960 							c = dtrace_load8(val++);
4961 
4962 						DTRACE_STORE(uint8_t, tomax,
4963 						    valoffs++, c);
4964 					}
4965 
4966 					continue;
4967 				}
4968 
4969 				while (valoffs < end) {
4970 					DTRACE_STORE(uint8_t, tomax, valoffs++,
4971 					    dtrace_load8(val++));
4972 				}
4973 
4974 				continue;
4975 			}
4976 
4977 			switch (size) {
4978 			case 0:
4979 				break;
4980 
4981 			case sizeof (uint8_t):
4982 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
4983 				break;
4984 			case sizeof (uint16_t):
4985 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
4986 				break;
4987 			case sizeof (uint32_t):
4988 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
4989 				break;
4990 			case sizeof (uint64_t):
4991 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
4992 				break;
4993 			default:
4994 				/*
4995 				 * Any other size should have been returned by
4996 				 * reference, not by value.
4997 				 */
4998 				ASSERT(0);
4999 				break;
5000 			}
5001 		}
5002 
5003 		if (*flags & CPU_DTRACE_DROP)
5004 			continue;
5005 
5006 		if (*flags & CPU_DTRACE_FAULT) {
5007 			int ndx;
5008 			dtrace_action_t *err;
5009 
5010 			buf->dtb_errors++;
5011 
5012 			if (probe->dtpr_id == dtrace_probeid_error) {
5013 				/*
5014 				 * There's nothing we can do -- we had an
5015 				 * error on the error probe.  We bump an
5016 				 * error counter to at least indicate that
5017 				 * this condition happened.
5018 				 */
5019 				dtrace_error(&state->dts_dblerrors);
5020 				continue;
5021 			}
5022 
5023 			if (vtime) {
5024 				/*
5025 				 * Before recursing on dtrace_probe(), we
5026 				 * need to explicitly clear out our start
5027 				 * time to prevent it from being accumulated
5028 				 * into t_dtrace_vtime.
5029 				 */
5030 				curthread->t_dtrace_start = 0;
5031 			}
5032 
5033 			/*
5034 			 * Iterate over the actions to figure out which action
5035 			 * we were processing when we experienced the error.
5036 			 * Note that act points _past_ the faulting action; if
5037 			 * act is ecb->dte_action, the fault was in the
5038 			 * predicate, if it's ecb->dte_action->dta_next it's
5039 			 * in action #1, and so on.
5040 			 */
5041 			for (err = ecb->dte_action, ndx = 0;
5042 			    err != act; err = err->dta_next, ndx++)
5043 				continue;
5044 
5045 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5046 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5047 			    mstate.dtms_fltoffs : -1,
5048 			    (*flags & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :
5049 			    (*flags & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :
5050 			    (*flags & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :
5051 			    (*flags & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :
5052 			    (*flags & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :
5053 			    (*flags & CPU_DTRACE_TUPOFLOW) ?
5054 			    DTRACEFLT_TUPOFLOW :
5055 			    (*flags & CPU_DTRACE_BADALIGN) ?
5056 			    DTRACEFLT_BADALIGN :
5057 			    (*flags & CPU_DTRACE_NOSCRATCH) ?
5058 			    DTRACEFLT_NOSCRATCH : DTRACEFLT_UNKNOWN,
5059 			    cpu_core[cpuid].cpuc_dtrace_illval);
5060 
5061 			continue;
5062 		}
5063 
5064 		if (!committed)
5065 			buf->dtb_offset = offs + ecb->dte_size;
5066 	}
5067 
5068 	if (vtime)
5069 		curthread->t_dtrace_start = dtrace_gethrtime();
5070 
5071 	dtrace_interrupt_enable(cookie);
5072 }
5073 
5074 /*
5075  * DTrace Probe Hashing Functions
5076  *
5077  * The functions in this section (and indeed, the functions in remaining
5078  * sections) are not _called_ from probe context.  (Any exceptions to this are
5079  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5080  * DTrace framework to look-up probes in, add probes to and remove probes from
5081  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5082  * probe tuple -- allowing for fast lookups, regardless of what was
5083  * specified.)
5084  */
5085 static uint_t
5086 dtrace_hash_str(char *p)
5087 {
5088 	unsigned int g;
5089 	uint_t hval = 0;
5090 
5091 	while (*p) {
5092 		hval = (hval << 4) + *p++;
5093 		if ((g = (hval & 0xf0000000)) != 0)
5094 			hval ^= g >> 24;
5095 		hval &= ~g;
5096 	}
5097 	return (hval);
5098 }
5099 
5100 static dtrace_hash_t *
5101 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5102 {
5103 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5104 
5105 	hash->dth_stroffs = stroffs;
5106 	hash->dth_nextoffs = nextoffs;
5107 	hash->dth_prevoffs = prevoffs;
5108 
5109 	hash->dth_size = 1;
5110 	hash->dth_mask = hash->dth_size - 1;
5111 
5112 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5113 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5114 
5115 	return (hash);
5116 }
5117 
5118 static void
5119 dtrace_hash_destroy(dtrace_hash_t *hash)
5120 {
5121 #ifdef DEBUG
5122 	int i;
5123 
5124 	for (i = 0; i < hash->dth_size; i++)
5125 		ASSERT(hash->dth_tab[i] == NULL);
5126 #endif
5127 
5128 	kmem_free(hash->dth_tab,
5129 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5130 	kmem_free(hash, sizeof (dtrace_hash_t));
5131 }
5132 
5133 static void
5134 dtrace_hash_resize(dtrace_hash_t *hash)
5135 {
5136 	int size = hash->dth_size, i, ndx;
5137 	int new_size = hash->dth_size << 1;
5138 	int new_mask = new_size - 1;
5139 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5140 
5141 	ASSERT((new_size & new_mask) == 0);
5142 
5143 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5144 
5145 	for (i = 0; i < size; i++) {
5146 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5147 			dtrace_probe_t *probe = bucket->dthb_chain;
5148 
5149 			ASSERT(probe != NULL);
5150 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5151 
5152 			next = bucket->dthb_next;
5153 			bucket->dthb_next = new_tab[ndx];
5154 			new_tab[ndx] = bucket;
5155 		}
5156 	}
5157 
5158 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5159 	hash->dth_tab = new_tab;
5160 	hash->dth_size = new_size;
5161 	hash->dth_mask = new_mask;
5162 }
5163 
5164 static void
5165 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5166 {
5167 	int hashval = DTRACE_HASHSTR(hash, new);
5168 	int ndx = hashval & hash->dth_mask;
5169 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5170 	dtrace_probe_t **nextp, **prevp;
5171 
5172 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5173 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5174 			goto add;
5175 	}
5176 
5177 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5178 		dtrace_hash_resize(hash);
5179 		dtrace_hash_add(hash, new);
5180 		return;
5181 	}
5182 
5183 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5184 	bucket->dthb_next = hash->dth_tab[ndx];
5185 	hash->dth_tab[ndx] = bucket;
5186 	hash->dth_nbuckets++;
5187 
5188 add:
5189 	nextp = DTRACE_HASHNEXT(hash, new);
5190 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5191 	*nextp = bucket->dthb_chain;
5192 
5193 	if (bucket->dthb_chain != NULL) {
5194 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5195 		ASSERT(*prevp == NULL);
5196 		*prevp = new;
5197 	}
5198 
5199 	bucket->dthb_chain = new;
5200 	bucket->dthb_len++;
5201 }
5202 
5203 static dtrace_probe_t *
5204 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5205 {
5206 	int hashval = DTRACE_HASHSTR(hash, template);
5207 	int ndx = hashval & hash->dth_mask;
5208 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5209 
5210 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5211 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5212 			return (bucket->dthb_chain);
5213 	}
5214 
5215 	return (NULL);
5216 }
5217 
5218 static int
5219 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5220 {
5221 	int hashval = DTRACE_HASHSTR(hash, template);
5222 	int ndx = hashval & hash->dth_mask;
5223 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5224 
5225 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5226 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5227 			return (bucket->dthb_len);
5228 	}
5229 
5230 	return (NULL);
5231 }
5232 
5233 static void
5234 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5235 {
5236 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5237 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5238 
5239 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5240 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5241 
5242 	/*
5243 	 * Find the bucket that we're removing this probe from.
5244 	 */
5245 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5246 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5247 			break;
5248 	}
5249 
5250 	ASSERT(bucket != NULL);
5251 
5252 	if (*prevp == NULL) {
5253 		if (*nextp == NULL) {
5254 			/*
5255 			 * The removed probe was the only probe on this
5256 			 * bucket; we need to remove the bucket.
5257 			 */
5258 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5259 
5260 			ASSERT(bucket->dthb_chain == probe);
5261 			ASSERT(b != NULL);
5262 
5263 			if (b == bucket) {
5264 				hash->dth_tab[ndx] = bucket->dthb_next;
5265 			} else {
5266 				while (b->dthb_next != bucket)
5267 					b = b->dthb_next;
5268 				b->dthb_next = bucket->dthb_next;
5269 			}
5270 
5271 			ASSERT(hash->dth_nbuckets > 0);
5272 			hash->dth_nbuckets--;
5273 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5274 			return;
5275 		}
5276 
5277 		bucket->dthb_chain = *nextp;
5278 	} else {
5279 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5280 	}
5281 
5282 	if (*nextp != NULL)
5283 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5284 }
5285 
5286 /*
5287  * DTrace Utility Functions
5288  *
5289  * These are random utility functions that are _not_ called from probe context.
5290  */
5291 static int
5292 dtrace_badattr(const dtrace_attribute_t *a)
5293 {
5294 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5295 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5296 	    a->dtat_class > DTRACE_CLASS_MAX);
5297 }
5298 
5299 /*
5300  * Return a duplicate copy of a string.  If the specified string is NULL,
5301  * this function returns a zero-length string.
5302  */
5303 static char *
5304 dtrace_strdup(const char *str)
5305 {
5306 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5307 
5308 	if (str != NULL)
5309 		(void) strcpy(new, str);
5310 
5311 	return (new);
5312 }
5313 
5314 #define	DTRACE_ISALPHA(c)	\
5315 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5316 
5317 static int
5318 dtrace_badname(const char *s)
5319 {
5320 	char c;
5321 
5322 	if (s == NULL || (c = *s++) == '\0')
5323 		return (0);
5324 
5325 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5326 		return (1);
5327 
5328 	while ((c = *s++) != '\0') {
5329 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5330 		    c != '-' && c != '_' && c != '.' && c != '`')
5331 			return (1);
5332 	}
5333 
5334 	return (0);
5335 }
5336 
5337 static void
5338 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp)
5339 {
5340 	uint32_t priv;
5341 
5342 	*uidp = crgetuid(cr);
5343 	if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5344 		priv = DTRACE_PRIV_ALL;
5345 	} else {
5346 		priv = 0;
5347 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5348 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5349 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5350 			priv |= DTRACE_PRIV_USER;
5351 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5352 			priv |= DTRACE_PRIV_PROC;
5353 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5354 			priv |= DTRACE_PRIV_OWNER;
5355 	}
5356 
5357 	*privp = priv;
5358 }
5359 
5360 #ifdef DTRACE_ERRDEBUG
5361 static void
5362 dtrace_errdebug(const char *str)
5363 {
5364 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5365 	int occupied = 0;
5366 
5367 	mutex_enter(&dtrace_errlock);
5368 	dtrace_errlast = str;
5369 	dtrace_errthread = curthread;
5370 
5371 	while (occupied++ < DTRACE_ERRHASHSZ) {
5372 		if (dtrace_errhash[hval].dter_msg == str) {
5373 			dtrace_errhash[hval].dter_count++;
5374 			goto out;
5375 		}
5376 
5377 		if (dtrace_errhash[hval].dter_msg != NULL) {
5378 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5379 			continue;
5380 		}
5381 
5382 		dtrace_errhash[hval].dter_msg = str;
5383 		dtrace_errhash[hval].dter_count = 1;
5384 		goto out;
5385 	}
5386 
5387 	panic("dtrace: undersized error hash");
5388 out:
5389 	mutex_exit(&dtrace_errlock);
5390 }
5391 #endif
5392 
5393 /*
5394  * DTrace Matching Functions
5395  *
5396  * These functions are used to match groups of probes, given some elements of
5397  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5398  */
5399 static int
5400 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid)
5401 {
5402 	if (priv != DTRACE_PRIV_ALL) {
5403 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5404 		uint32_t match = priv & ppriv;
5405 
5406 		/*
5407 		 * No PRIV_DTRACE_* privileges...
5408 		 */
5409 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5410 		    DTRACE_PRIV_KERNEL)) == 0)
5411 			return (0);
5412 
5413 		/*
5414 		 * No matching bits, but there were bits to match...
5415 		 */
5416 		if (match == 0 && ppriv != 0)
5417 			return (0);
5418 
5419 		/*
5420 		 * Need to have permissions to the process, but don't...
5421 		 */
5422 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5423 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid)
5424 			return (0);
5425 	}
5426 
5427 	return (1);
5428 }
5429 
5430 /*
5431  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5432  * consists of input pattern strings and an ops-vector to evaluate them.
5433  * This function returns >0 for match, 0 for no match, and <0 for error.
5434  */
5435 static int
5436 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5437     uint32_t priv, uid_t uid)
5438 {
5439 	dtrace_provider_t *pvp = prp->dtpr_provider;
5440 	int rv;
5441 
5442 	if (pvp->dtpv_defunct)
5443 		return (0);
5444 
5445 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5446 		return (rv);
5447 
5448 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5449 		return (rv);
5450 
5451 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5452 		return (rv);
5453 
5454 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5455 		return (rv);
5456 
5457 	if (dtrace_match_priv(prp, priv, uid) == 0)
5458 		return (0);
5459 
5460 	return (rv);
5461 }
5462 
5463 /*
5464  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5465  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5466  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5467  * In addition, all of the recursion cases except for '*' matching have been
5468  * unwound.  For '*', we still implement recursive evaluation, but a depth
5469  * counter is maintained and matching is aborted if we recurse too deep.
5470  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5471  */
5472 static int
5473 dtrace_match_glob(const char *s, const char *p, int depth)
5474 {
5475 	const char *olds;
5476 	char s1, c;
5477 	int gs;
5478 
5479 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5480 		return (-1);
5481 
5482 	if (s == NULL)
5483 		s = ""; /* treat NULL as empty string */
5484 
5485 top:
5486 	olds = s;
5487 	s1 = *s++;
5488 
5489 	if (p == NULL)
5490 		return (0);
5491 
5492 	if ((c = *p++) == '\0')
5493 		return (s1 == '\0');
5494 
5495 	switch (c) {
5496 	case '[': {
5497 		int ok = 0, notflag = 0;
5498 		char lc = '\0';
5499 
5500 		if (s1 == '\0')
5501 			return (0);
5502 
5503 		if (*p == '!') {
5504 			notflag = 1;
5505 			p++;
5506 		}
5507 
5508 		if ((c = *p++) == '\0')
5509 			return (0);
5510 
5511 		do {
5512 			if (c == '-' && lc != '\0' && *p != ']') {
5513 				if ((c = *p++) == '\0')
5514 					return (0);
5515 				if (c == '\\' && (c = *p++) == '\0')
5516 					return (0);
5517 
5518 				if (notflag) {
5519 					if (s1 < lc || s1 > c)
5520 						ok++;
5521 					else
5522 						return (0);
5523 				} else if (lc <= s1 && s1 <= c)
5524 					ok++;
5525 
5526 			} else if (c == '\\' && (c = *p++) == '\0')
5527 				return (0);
5528 
5529 			lc = c; /* save left-hand 'c' for next iteration */
5530 
5531 			if (notflag) {
5532 				if (s1 != c)
5533 					ok++;
5534 				else
5535 					return (0);
5536 			} else if (s1 == c)
5537 				ok++;
5538 
5539 			if ((c = *p++) == '\0')
5540 				return (0);
5541 
5542 		} while (c != ']');
5543 
5544 		if (ok)
5545 			goto top;
5546 
5547 		return (0);
5548 	}
5549 
5550 	case '\\':
5551 		if ((c = *p++) == '\0')
5552 			return (0);
5553 		/*FALLTHRU*/
5554 
5555 	default:
5556 		if (c != s1)
5557 			return (0);
5558 		/*FALLTHRU*/
5559 
5560 	case '?':
5561 		if (s1 != '\0')
5562 			goto top;
5563 		return (0);
5564 
5565 	case '*':
5566 		while (*p == '*')
5567 			p++; /* consecutive *'s are identical to a single one */
5568 
5569 		if (*p == '\0')
5570 			return (1);
5571 
5572 		for (s = olds; *s != '\0'; s++) {
5573 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5574 				return (gs);
5575 		}
5576 
5577 		return (0);
5578 	}
5579 }
5580 
5581 /*ARGSUSED*/
5582 static int
5583 dtrace_match_string(const char *s, const char *p, int depth)
5584 {
5585 	return (s != NULL && strcmp(s, p) == 0);
5586 }
5587 
5588 /*ARGSUSED*/
5589 static int
5590 dtrace_match_nul(const char *s, const char *p, int depth)
5591 {
5592 	return (1); /* always match the empty pattern */
5593 }
5594 
5595 /*ARGSUSED*/
5596 static int
5597 dtrace_match_nonzero(const char *s, const char *p, int depth)
5598 {
5599 	return (s != NULL && s[0] != '\0');
5600 }
5601 
5602 static int
5603 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5604     int (*matched)(dtrace_probe_t *, void *), void *arg)
5605 {
5606 	dtrace_probe_t template, *probe;
5607 	dtrace_hash_t *hash = NULL;
5608 	int len, best = INT_MAX, nmatched = 0;
5609 	dtrace_id_t i;
5610 
5611 	ASSERT(MUTEX_HELD(&dtrace_lock));
5612 
5613 	/*
5614 	 * If the probe ID is specified in the key, just lookup by ID and
5615 	 * invoke the match callback once if a matching probe is found.
5616 	 */
5617 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5618 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5619 		    dtrace_match_probe(probe, pkp, priv, uid) > 0) {
5620 			(void) (*matched)(probe, arg);
5621 			nmatched++;
5622 		}
5623 		return (nmatched);
5624 	}
5625 
5626 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5627 	template.dtpr_func = (char *)pkp->dtpk_func;
5628 	template.dtpr_name = (char *)pkp->dtpk_name;
5629 
5630 	/*
5631 	 * We want to find the most distinct of the module name, function
5632 	 * name, and name.  So for each one that is not a glob pattern or
5633 	 * empty string, we perform a lookup in the corresponding hash and
5634 	 * use the hash table with the fewest collisions to do our search.
5635 	 */
5636 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5637 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5638 		best = len;
5639 		hash = dtrace_bymod;
5640 	}
5641 
5642 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5643 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5644 		best = len;
5645 		hash = dtrace_byfunc;
5646 	}
5647 
5648 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5649 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5650 		best = len;
5651 		hash = dtrace_byname;
5652 	}
5653 
5654 	/*
5655 	 * If we did not select a hash table, iterate over every probe and
5656 	 * invoke our callback for each one that matches our input probe key.
5657 	 */
5658 	if (hash == NULL) {
5659 		for (i = 0; i < dtrace_nprobes; i++) {
5660 			if ((probe = dtrace_probes[i]) == NULL ||
5661 			    dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5662 				continue;
5663 
5664 			nmatched++;
5665 
5666 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5667 				break;
5668 		}
5669 
5670 		return (nmatched);
5671 	}
5672 
5673 	/*
5674 	 * If we selected a hash table, iterate over each probe of the same key
5675 	 * name and invoke the callback for every probe that matches the other
5676 	 * attributes of our input probe key.
5677 	 */
5678 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5679 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5680 
5681 		if (dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5682 			continue;
5683 
5684 		nmatched++;
5685 
5686 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5687 			break;
5688 	}
5689 
5690 	return (nmatched);
5691 }
5692 
5693 /*
5694  * Return the function pointer dtrace_probecmp() should use to compare the
5695  * specified pattern with a string.  For NULL or empty patterns, we select
5696  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5697  * For non-empty non-glob strings, we use dtrace_match_string().
5698  */
5699 static dtrace_probekey_f *
5700 dtrace_probekey_func(const char *p)
5701 {
5702 	char c;
5703 
5704 	if (p == NULL || *p == '\0')
5705 		return (&dtrace_match_nul);
5706 
5707 	while ((c = *p++) != '\0') {
5708 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5709 			return (&dtrace_match_glob);
5710 	}
5711 
5712 	return (&dtrace_match_string);
5713 }
5714 
5715 /*
5716  * Build a probe comparison key for use with dtrace_match_probe() from the
5717  * given probe description.  By convention, a null key only matches anchored
5718  * probes: if each field is the empty string, reset dtpk_fmatch to
5719  * dtrace_match_nonzero().
5720  */
5721 static void
5722 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5723 {
5724 	pkp->dtpk_prov = pdp->dtpd_provider;
5725 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5726 
5727 	pkp->dtpk_mod = pdp->dtpd_mod;
5728 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5729 
5730 	pkp->dtpk_func = pdp->dtpd_func;
5731 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5732 
5733 	pkp->dtpk_name = pdp->dtpd_name;
5734 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5735 
5736 	pkp->dtpk_id = pdp->dtpd_id;
5737 
5738 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5739 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5740 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5741 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5742 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5743 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5744 }
5745 
5746 /*
5747  * DTrace Provider-to-Framework API Functions
5748  *
5749  * These functions implement much of the Provider-to-Framework API, as
5750  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5751  * the functions in the API for probe management (found below), and
5752  * dtrace_probe() itself (found above).
5753  */
5754 
5755 /*
5756  * Register the calling provider with the DTrace framework.  This should
5757  * generally be called by DTrace providers in their attach(9E) entry point.
5758  */
5759 int
5760 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5761     uid_t uid, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5762 {
5763 	dtrace_provider_t *provider;
5764 
5765 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5766 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5767 		    "arguments", name ? name : "<NULL>");
5768 		return (EINVAL);
5769 	}
5770 
5771 	if (name[0] == '\0' || dtrace_badname(name)) {
5772 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5773 		    "provider name", name);
5774 		return (EINVAL);
5775 	}
5776 
5777 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5778 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5779 	    pops->dtps_destroy == NULL ||
5780 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5781 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5782 		    "provider ops", name);
5783 		return (EINVAL);
5784 	}
5785 
5786 	if (dtrace_badattr(&pap->dtpa_provider) ||
5787 	    dtrace_badattr(&pap->dtpa_mod) ||
5788 	    dtrace_badattr(&pap->dtpa_func) ||
5789 	    dtrace_badattr(&pap->dtpa_name) ||
5790 	    dtrace_badattr(&pap->dtpa_args)) {
5791 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5792 		    "provider attributes", name);
5793 		return (EINVAL);
5794 	}
5795 
5796 	if (priv & ~DTRACE_PRIV_ALL) {
5797 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5798 		    "privilege attributes", name);
5799 		return (EINVAL);
5800 	}
5801 
5802 	if ((priv & DTRACE_PRIV_KERNEL) &&
5803 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
5804 	    pops->dtps_usermode == NULL) {
5805 		cmn_err(CE_WARN, "failed to register provider '%s': need "
5806 		    "dtps_usermode() op for given privilege attributes", name);
5807 		return (EINVAL);
5808 	}
5809 
5810 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
5811 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
5812 	(void) strcpy(provider->dtpv_name, name);
5813 
5814 	provider->dtpv_attr = *pap;
5815 	provider->dtpv_priv.dtpp_flags = priv;
5816 	provider->dtpv_priv.dtpp_uid = uid;
5817 	provider->dtpv_pops = *pops;
5818 
5819 	if (pops->dtps_provide == NULL) {
5820 		ASSERT(pops->dtps_provide_module != NULL);
5821 		provider->dtpv_pops.dtps_provide =
5822 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
5823 	}
5824 
5825 	if (pops->dtps_provide_module == NULL) {
5826 		ASSERT(pops->dtps_provide != NULL);
5827 		provider->dtpv_pops.dtps_provide_module =
5828 		    (void (*)(void *, struct modctl *))dtrace_nullop;
5829 	}
5830 
5831 	if (pops->dtps_suspend == NULL) {
5832 		ASSERT(pops->dtps_resume == NULL);
5833 		provider->dtpv_pops.dtps_suspend =
5834 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5835 		provider->dtpv_pops.dtps_resume =
5836 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5837 	}
5838 
5839 	provider->dtpv_arg = arg;
5840 	*idp = (dtrace_provider_id_t)provider;
5841 
5842 	if (pops == &dtrace_provider_ops) {
5843 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5844 		ASSERT(MUTEX_HELD(&dtrace_lock));
5845 		ASSERT(dtrace_anon.dta_enabling == NULL);
5846 
5847 		/*
5848 		 * We make sure that the DTrace provider is at the head of
5849 		 * the provider chain.
5850 		 */
5851 		provider->dtpv_next = dtrace_provider;
5852 		dtrace_provider = provider;
5853 		return (0);
5854 	}
5855 
5856 	mutex_enter(&dtrace_provider_lock);
5857 	mutex_enter(&dtrace_lock);
5858 
5859 	/*
5860 	 * If there is at least one provider registered, we'll add this
5861 	 * provider after the first provider.
5862 	 */
5863 	if (dtrace_provider != NULL) {
5864 		provider->dtpv_next = dtrace_provider->dtpv_next;
5865 		dtrace_provider->dtpv_next = provider;
5866 	} else {
5867 		dtrace_provider = provider;
5868 	}
5869 
5870 	if (dtrace_retained != NULL) {
5871 		dtrace_enabling_provide(provider);
5872 
5873 		/*
5874 		 * Now we need to call dtrace_enabling_matchall() -- which
5875 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
5876 		 * to drop all of our locks before calling into it...
5877 		 */
5878 		mutex_exit(&dtrace_lock);
5879 		mutex_exit(&dtrace_provider_lock);
5880 		dtrace_enabling_matchall();
5881 
5882 		return (0);
5883 	}
5884 
5885 	mutex_exit(&dtrace_lock);
5886 	mutex_exit(&dtrace_provider_lock);
5887 
5888 	return (0);
5889 }
5890 
5891 /*
5892  * Unregister the specified provider from the DTrace framework.  This should
5893  * generally be called by DTrace providers in their detach(9E) entry point.
5894  */
5895 int
5896 dtrace_unregister(dtrace_provider_id_t id)
5897 {
5898 	dtrace_provider_t *old = (dtrace_provider_t *)id;
5899 	dtrace_provider_t *prev = NULL;
5900 	int i, self = 0;
5901 	dtrace_probe_t *probe, *first = NULL;
5902 
5903 	if (old->dtpv_pops.dtps_enable ==
5904 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
5905 		/*
5906 		 * If DTrace itself is the provider, we're called with locks
5907 		 * already held.
5908 		 */
5909 		ASSERT(old == dtrace_provider);
5910 		ASSERT(dtrace_devi != NULL);
5911 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5912 		ASSERT(MUTEX_HELD(&dtrace_lock));
5913 		self = 1;
5914 
5915 		if (dtrace_provider->dtpv_next != NULL) {
5916 			/*
5917 			 * There's another provider here; return failure.
5918 			 */
5919 			return (EBUSY);
5920 		}
5921 	} else {
5922 		mutex_enter(&dtrace_provider_lock);
5923 		mutex_enter(&mod_lock);
5924 		mutex_enter(&dtrace_lock);
5925 	}
5926 
5927 	/*
5928 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
5929 	 * probes, we refuse to let providers slither away, unless this
5930 	 * provider has already been explicitly invalidated.
5931 	 */
5932 	if (!old->dtpv_defunct &&
5933 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
5934 	    dtrace_anon.dta_state->dts_necbs > 0))) {
5935 		if (!self) {
5936 			mutex_exit(&dtrace_lock);
5937 			mutex_exit(&mod_lock);
5938 			mutex_exit(&dtrace_provider_lock);
5939 		}
5940 		return (EBUSY);
5941 	}
5942 
5943 	/*
5944 	 * Attempt to destroy the probes associated with this provider.
5945 	 */
5946 	for (i = 0; i < dtrace_nprobes; i++) {
5947 		if ((probe = dtrace_probes[i]) == NULL)
5948 			continue;
5949 
5950 		if (probe->dtpr_provider != old)
5951 			continue;
5952 
5953 		if (probe->dtpr_ecb == NULL)
5954 			continue;
5955 
5956 		/*
5957 		 * We have at least one ECB; we can't remove this provider.
5958 		 */
5959 		if (!self) {
5960 			mutex_exit(&dtrace_lock);
5961 			mutex_exit(&mod_lock);
5962 			mutex_exit(&dtrace_provider_lock);
5963 		}
5964 		return (EBUSY);
5965 	}
5966 
5967 	/*
5968 	 * All of the probes for this provider are disabled; we can safely
5969 	 * remove all of them from their hash chains and from the probe array.
5970 	 */
5971 	for (i = 0; i < dtrace_nprobes; i++) {
5972 		if ((probe = dtrace_probes[i]) == NULL)
5973 			continue;
5974 
5975 		if (probe->dtpr_provider != old)
5976 			continue;
5977 
5978 		dtrace_probes[i] = NULL;
5979 
5980 		dtrace_hash_remove(dtrace_bymod, probe);
5981 		dtrace_hash_remove(dtrace_byfunc, probe);
5982 		dtrace_hash_remove(dtrace_byname, probe);
5983 
5984 		if (first == NULL) {
5985 			first = probe;
5986 			probe->dtpr_nextmod = NULL;
5987 		} else {
5988 			probe->dtpr_nextmod = first;
5989 			first = probe;
5990 		}
5991 	}
5992 
5993 	/*
5994 	 * The provider's probes have been removed from the hash chains and
5995 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
5996 	 * everyone has cleared out from any probe array processing.
5997 	 */
5998 	dtrace_sync();
5999 
6000 	for (probe = first; probe != NULL; probe = first) {
6001 		first = probe->dtpr_nextmod;
6002 
6003 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6004 		    probe->dtpr_arg);
6005 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6006 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6007 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6008 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6009 		kmem_free(probe, sizeof (dtrace_probe_t));
6010 	}
6011 
6012 	if ((prev = dtrace_provider) == old) {
6013 		ASSERT(self || dtrace_devi == NULL);
6014 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6015 		dtrace_provider = old->dtpv_next;
6016 	} else {
6017 		while (prev != NULL && prev->dtpv_next != old)
6018 			prev = prev->dtpv_next;
6019 
6020 		if (prev == NULL) {
6021 			panic("attempt to unregister non-existent "
6022 			    "dtrace provider %p\n", (void *)id);
6023 		}
6024 
6025 		prev->dtpv_next = old->dtpv_next;
6026 	}
6027 
6028 	if (!self) {
6029 		mutex_exit(&dtrace_lock);
6030 		mutex_exit(&mod_lock);
6031 		mutex_exit(&dtrace_provider_lock);
6032 	}
6033 
6034 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6035 	kmem_free(old, sizeof (dtrace_provider_t));
6036 
6037 	return (0);
6038 }
6039 
6040 /*
6041  * Invalidate the specified provider.  All subsequent probe lookups for the
6042  * specified provider will fail, but its probes will not be removed.
6043  */
6044 void
6045 dtrace_invalidate(dtrace_provider_id_t id)
6046 {
6047 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6048 
6049 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6050 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6051 
6052 	mutex_enter(&dtrace_provider_lock);
6053 	mutex_enter(&dtrace_lock);
6054 
6055 	pvp->dtpv_defunct = 1;
6056 
6057 	mutex_exit(&dtrace_lock);
6058 	mutex_exit(&dtrace_provider_lock);
6059 }
6060 
6061 /*
6062  * Indicate whether or not DTrace has attached.
6063  */
6064 int
6065 dtrace_attached(void)
6066 {
6067 	/*
6068 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6069 	 * attached.  (It's non-NULL because DTrace is always itself a
6070 	 * provider.)
6071 	 */
6072 	return (dtrace_provider != NULL);
6073 }
6074 
6075 /*
6076  * Remove all the unenabled probes for the given provider.  This function is
6077  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6078  * -- just as many of its associated probes as it can.
6079  */
6080 int
6081 dtrace_condense(dtrace_provider_id_t id)
6082 {
6083 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6084 	int i;
6085 	dtrace_probe_t *probe;
6086 
6087 	/*
6088 	 * Make sure this isn't the dtrace provider itself.
6089 	 */
6090 	ASSERT(prov->dtpv_pops.dtps_enable !=
6091 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6092 
6093 	mutex_enter(&dtrace_provider_lock);
6094 	mutex_enter(&dtrace_lock);
6095 
6096 	/*
6097 	 * Attempt to destroy the probes associated with this provider.
6098 	 */
6099 	for (i = 0; i < dtrace_nprobes; i++) {
6100 		if ((probe = dtrace_probes[i]) == NULL)
6101 			continue;
6102 
6103 		if (probe->dtpr_provider != prov)
6104 			continue;
6105 
6106 		if (probe->dtpr_ecb != NULL)
6107 			continue;
6108 
6109 		dtrace_probes[i] = NULL;
6110 
6111 		dtrace_hash_remove(dtrace_bymod, probe);
6112 		dtrace_hash_remove(dtrace_byfunc, probe);
6113 		dtrace_hash_remove(dtrace_byname, probe);
6114 
6115 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6116 		    probe->dtpr_arg);
6117 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6118 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6119 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6120 		kmem_free(probe, sizeof (dtrace_probe_t));
6121 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6122 	}
6123 
6124 	mutex_exit(&dtrace_lock);
6125 	mutex_exit(&dtrace_provider_lock);
6126 
6127 	return (0);
6128 }
6129 
6130 /*
6131  * DTrace Probe Management Functions
6132  *
6133  * The functions in this section perform the DTrace probe management,
6134  * including functions to create probes, look-up probes, and call into the
6135  * providers to request that probes be provided.  Some of these functions are
6136  * in the Provider-to-Framework API; these functions can be identified by the
6137  * fact that they are not declared "static".
6138  */
6139 
6140 /*
6141  * Create a probe with the specified module name, function name, and name.
6142  */
6143 dtrace_id_t
6144 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6145     const char *func, const char *name, int aframes, void *arg)
6146 {
6147 	dtrace_probe_t *probe, **probes;
6148 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6149 	dtrace_id_t id;
6150 
6151 	if (provider == dtrace_provider) {
6152 		ASSERT(MUTEX_HELD(&dtrace_lock));
6153 	} else {
6154 		mutex_enter(&dtrace_lock);
6155 	}
6156 
6157 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6158 	    VM_BESTFIT | VM_SLEEP);
6159 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6160 
6161 	probe->dtpr_id = id;
6162 	probe->dtpr_gen = dtrace_probegen++;
6163 	probe->dtpr_mod = dtrace_strdup(mod);
6164 	probe->dtpr_func = dtrace_strdup(func);
6165 	probe->dtpr_name = dtrace_strdup(name);
6166 	probe->dtpr_arg = arg;
6167 	probe->dtpr_aframes = aframes;
6168 	probe->dtpr_provider = provider;
6169 
6170 	dtrace_hash_add(dtrace_bymod, probe);
6171 	dtrace_hash_add(dtrace_byfunc, probe);
6172 	dtrace_hash_add(dtrace_byname, probe);
6173 
6174 	if (id - 1 >= dtrace_nprobes) {
6175 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6176 		size_t nsize = osize << 1;
6177 
6178 		if (nsize == 0) {
6179 			ASSERT(osize == 0);
6180 			ASSERT(dtrace_probes == NULL);
6181 			nsize = sizeof (dtrace_probe_t *);
6182 		}
6183 
6184 		probes = kmem_zalloc(nsize, KM_SLEEP);
6185 
6186 		if (dtrace_probes == NULL) {
6187 			ASSERT(osize == 0);
6188 			dtrace_probes = probes;
6189 			dtrace_nprobes = 1;
6190 		} else {
6191 			dtrace_probe_t **oprobes = dtrace_probes;
6192 
6193 			bcopy(oprobes, probes, osize);
6194 			dtrace_membar_producer();
6195 			dtrace_probes = probes;
6196 
6197 			dtrace_sync();
6198 
6199 			/*
6200 			 * All CPUs are now seeing the new probes array; we can
6201 			 * safely free the old array.
6202 			 */
6203 			kmem_free(oprobes, osize);
6204 			dtrace_nprobes <<= 1;
6205 		}
6206 
6207 		ASSERT(id - 1 < dtrace_nprobes);
6208 	}
6209 
6210 	ASSERT(dtrace_probes[id - 1] == NULL);
6211 	dtrace_probes[id - 1] = probe;
6212 
6213 	if (provider != dtrace_provider)
6214 		mutex_exit(&dtrace_lock);
6215 
6216 	return (id);
6217 }
6218 
6219 static dtrace_probe_t *
6220 dtrace_probe_lookup_id(dtrace_id_t id)
6221 {
6222 	ASSERT(MUTEX_HELD(&dtrace_lock));
6223 
6224 	if (id == 0 || id > dtrace_nprobes)
6225 		return (NULL);
6226 
6227 	return (dtrace_probes[id - 1]);
6228 }
6229 
6230 static int
6231 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6232 {
6233 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6234 
6235 	return (DTRACE_MATCH_DONE);
6236 }
6237 
6238 /*
6239  * Look up a probe based on provider and one or more of module name, function
6240  * name and probe name.
6241  */
6242 dtrace_id_t
6243 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6244     const char *func, const char *name)
6245 {
6246 	dtrace_probekey_t pkey;
6247 	dtrace_id_t id;
6248 	int match;
6249 
6250 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6251 	pkey.dtpk_pmatch = &dtrace_match_string;
6252 	pkey.dtpk_mod = mod;
6253 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6254 	pkey.dtpk_func = func;
6255 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6256 	pkey.dtpk_name = name;
6257 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6258 	pkey.dtpk_id = DTRACE_IDNONE;
6259 
6260 	mutex_enter(&dtrace_lock);
6261 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0,
6262 	    dtrace_probe_lookup_match, &id);
6263 	mutex_exit(&dtrace_lock);
6264 
6265 	ASSERT(match == 1 || match == 0);
6266 	return (match ? id : 0);
6267 }
6268 
6269 /*
6270  * Returns the probe argument associated with the specified probe.
6271  */
6272 void *
6273 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6274 {
6275 	dtrace_probe_t *probe;
6276 	void *rval = NULL;
6277 
6278 	mutex_enter(&dtrace_lock);
6279 
6280 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6281 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6282 		rval = probe->dtpr_arg;
6283 
6284 	mutex_exit(&dtrace_lock);
6285 
6286 	return (rval);
6287 }
6288 
6289 /*
6290  * Copy a probe into a probe description.
6291  */
6292 static void
6293 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6294 {
6295 	bzero(pdp, sizeof (dtrace_probedesc_t));
6296 	pdp->dtpd_id = prp->dtpr_id;
6297 
6298 	(void) strncpy(pdp->dtpd_provider,
6299 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6300 
6301 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6302 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6303 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6304 }
6305 
6306 /*
6307  * Called to indicate that a probe -- or probes -- should be provided by a
6308  * specfied provider.  If the specified description is NULL, the provider will
6309  * be told to provide all of its probes.  (This is done whenever a new
6310  * consumer comes along, or whenever a retained enabling is to be matched.) If
6311  * the specified description is non-NULL, the provider is given the
6312  * opportunity to dynamically provide the specified probe, allowing providers
6313  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6314  * probes.)  If the provider is NULL, the operations will be applied to all
6315  * providers; if the provider is non-NULL the operations will only be applied
6316  * to the specified provider.  The dtrace_provider_lock must be held, and the
6317  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6318  * will need to grab the dtrace_lock when it reenters the framework through
6319  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6320  */
6321 static void
6322 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6323 {
6324 	struct modctl *ctl;
6325 	int all = 0;
6326 
6327 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6328 
6329 	if (prv == NULL) {
6330 		all = 1;
6331 		prv = dtrace_provider;
6332 	}
6333 
6334 	do {
6335 		/*
6336 		 * First, call the blanket provide operation.
6337 		 */
6338 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6339 
6340 		/*
6341 		 * Now call the per-module provide operation.  We will grab
6342 		 * mod_lock to prevent the list from being modified.  Note
6343 		 * that this also prevents the mod_busy bits from changing.
6344 		 * (mod_busy can only be changed with mod_lock held.)
6345 		 */
6346 		mutex_enter(&mod_lock);
6347 
6348 		ctl = &modules;
6349 		do {
6350 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6351 				continue;
6352 
6353 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6354 
6355 		} while ((ctl = ctl->mod_next) != &modules);
6356 
6357 		mutex_exit(&mod_lock);
6358 	} while (all && (prv = prv->dtpv_next) != NULL);
6359 }
6360 
6361 /*
6362  * Iterate over each probe, and call the Framework-to-Provider API function
6363  * denoted by offs.
6364  */
6365 static void
6366 dtrace_probe_foreach(uintptr_t offs)
6367 {
6368 	dtrace_provider_t *prov;
6369 	void (*func)(void *, dtrace_id_t, void *);
6370 	dtrace_probe_t *probe;
6371 	dtrace_icookie_t cookie;
6372 	int i;
6373 
6374 	/*
6375 	 * We disable interrupts to walk through the probe array.  This is
6376 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6377 	 * won't see stale data.
6378 	 */
6379 	cookie = dtrace_interrupt_disable();
6380 
6381 	for (i = 0; i < dtrace_nprobes; i++) {
6382 		if ((probe = dtrace_probes[i]) == NULL)
6383 			continue;
6384 
6385 		if (probe->dtpr_ecb == NULL) {
6386 			/*
6387 			 * This probe isn't enabled -- don't call the function.
6388 			 */
6389 			continue;
6390 		}
6391 
6392 		prov = probe->dtpr_provider;
6393 		func = *((void(**)(void *, dtrace_id_t, void *))
6394 		    ((uintptr_t)&prov->dtpv_pops + offs));
6395 
6396 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6397 	}
6398 
6399 	dtrace_interrupt_enable(cookie);
6400 }
6401 
6402 static int
6403 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6404 {
6405 	dtrace_probekey_t pkey;
6406 	uint32_t priv;
6407 	uid_t uid;
6408 
6409 	ASSERT(MUTEX_HELD(&dtrace_lock));
6410 	dtrace_ecb_create_cache = NULL;
6411 
6412 	if (desc == NULL) {
6413 		/*
6414 		 * If we're passed a NULL description, we're being asked to
6415 		 * create an ECB with a NULL probe.
6416 		 */
6417 		(void) dtrace_ecb_create_enable(NULL, enab);
6418 		return (0);
6419 	}
6420 
6421 	dtrace_probekey(desc, &pkey);
6422 	dtrace_cred2priv(CRED(), &priv, &uid);
6423 
6424 	return (dtrace_match(&pkey, priv, uid, dtrace_ecb_create_enable, enab));
6425 }
6426 
6427 /*
6428  * DTrace Helper Provider Functions
6429  */
6430 static void
6431 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6432 {
6433 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6434 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6435 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6436 }
6437 
6438 static void
6439 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6440     const dof_provider_t *dofprov, char *strtab)
6441 {
6442 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6443 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6444 	    dofprov->dofpv_provattr);
6445 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6446 	    dofprov->dofpv_modattr);
6447 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6448 	    dofprov->dofpv_funcattr);
6449 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6450 	    dofprov->dofpv_nameattr);
6451 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6452 	    dofprov->dofpv_argsattr);
6453 }
6454 
6455 static void
6456 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6457 {
6458 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6459 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6460 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
6461 	dof_provider_t *provider;
6462 	dof_probe_t *probe;
6463 	uint32_t *off;
6464 	uint8_t *arg;
6465 	char *strtab;
6466 	uint_t i, nprobes;
6467 	dtrace_helper_provdesc_t dhpv;
6468 	dtrace_helper_probedesc_t dhpb;
6469 	dtrace_meta_t *meta = dtrace_meta_pid;
6470 	dtrace_mops_t *mops = &meta->dtm_mops;
6471 	void *parg;
6472 
6473 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6474 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6475 	    provider->dofpv_strtab * dof->dofh_secsize);
6476 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6477 	    provider->dofpv_probes * dof->dofh_secsize);
6478 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6479 	    provider->dofpv_prargs * dof->dofh_secsize);
6480 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6481 	    provider->dofpv_proffs * dof->dofh_secsize);
6482 
6483 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6484 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
6485 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
6486 
6487 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6488 
6489 	/*
6490 	 * Create the provider.
6491 	 */
6492 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6493 
6494 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6495 		return;
6496 
6497 	meta->dtm_count++;
6498 
6499 	/*
6500 	 * Create the probes.
6501 	 */
6502 	for (i = 0; i < nprobes; i++) {
6503 		probe = (dof_probe_t *)(uintptr_t)(daddr +
6504 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
6505 
6506 		dhpb.dthpb_mod = dhp->dofhp_mod;
6507 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6508 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6509 		dhpb.dthpb_base = probe->dofpr_addr;
6510 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6511 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6512 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6513 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6514 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6515 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6516 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6517 
6518 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6519 	}
6520 }
6521 
6522 static void
6523 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6524 {
6525 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6526 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6527 	int i;
6528 
6529 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6530 
6531 	for (i = 0; i < dof->dofh_secnum; i++) {
6532 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6533 		    dof->dofh_secoff + i * dof->dofh_secsize);
6534 
6535 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6536 			continue;
6537 
6538 		dtrace_helper_provide_one(dhp, sec, pid);
6539 	}
6540 
6541 	/*
6542 	 * We may have just created probes, so we must now rematch against
6543 	 * any retained enablings.  Note that this call will acquire both
6544 	 * cpu_lock and dtrace_lock; the fact that we are holding
6545 	 * dtrace_meta_lock now is what defines the ordering with respect to
6546 	 * these three locks.
6547 	 */
6548 	dtrace_enabling_matchall();
6549 }
6550 
6551 static void
6552 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6553 {
6554 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6555 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6556 	dof_sec_t *str_sec;
6557 	dof_provider_t *provider;
6558 	char *strtab;
6559 	dtrace_helper_provdesc_t dhpv;
6560 	dtrace_meta_t *meta = dtrace_meta_pid;
6561 	dtrace_mops_t *mops = &meta->dtm_mops;
6562 
6563 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6564 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6565 	    provider->dofpv_strtab * dof->dofh_secsize);
6566 
6567 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6568 
6569 	/*
6570 	 * Create the provider.
6571 	 */
6572 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6573 
6574 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6575 
6576 	meta->dtm_count--;
6577 }
6578 
6579 static void
6580 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6581 {
6582 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6583 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6584 	int i;
6585 
6586 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6587 
6588 	for (i = 0; i < dof->dofh_secnum; i++) {
6589 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6590 		    dof->dofh_secoff + i * dof->dofh_secsize);
6591 
6592 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6593 			continue;
6594 
6595 		dtrace_helper_remove_one(dhp, sec, pid);
6596 	}
6597 }
6598 
6599 /*
6600  * DTrace Meta Provider-to-Framework API Functions
6601  *
6602  * These functions implement the Meta Provider-to-Framework API, as described
6603  * in <sys/dtrace.h>.
6604  */
6605 int
6606 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6607     dtrace_meta_provider_id_t *idp)
6608 {
6609 	dtrace_meta_t *meta;
6610 	dtrace_helpers_t *help, *next;
6611 	int i;
6612 
6613 	*idp = DTRACE_METAPROVNONE;
6614 
6615 	/*
6616 	 * We strictly don't need the name, but we hold onto it for
6617 	 * debuggability. All hail error queues!
6618 	 */
6619 	if (name == NULL) {
6620 		cmn_err(CE_WARN, "failed to register meta-provider: "
6621 		    "invalid name");
6622 		return (EINVAL);
6623 	}
6624 
6625 	if (mops == NULL ||
6626 	    mops->dtms_create_probe == NULL ||
6627 	    mops->dtms_provide_pid == NULL ||
6628 	    mops->dtms_remove_pid == NULL) {
6629 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6630 		    "invalid ops", name);
6631 		return (EINVAL);
6632 	}
6633 
6634 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6635 	meta->dtm_mops = *mops;
6636 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6637 	(void) strcpy(meta->dtm_name, name);
6638 	meta->dtm_arg = arg;
6639 
6640 	mutex_enter(&dtrace_meta_lock);
6641 	mutex_enter(&dtrace_lock);
6642 
6643 	if (dtrace_meta_pid != NULL) {
6644 		mutex_exit(&dtrace_lock);
6645 		mutex_exit(&dtrace_meta_lock);
6646 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6647 		    "user-land meta-provider exists", name);
6648 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6649 		kmem_free(meta, sizeof (dtrace_meta_t));
6650 		return (EINVAL);
6651 	}
6652 
6653 	dtrace_meta_pid = meta;
6654 	*idp = (dtrace_meta_provider_id_t)meta;
6655 
6656 	/*
6657 	 * If there are providers and probes ready to go, pass them
6658 	 * off to the new meta provider now.
6659 	 */
6660 
6661 	help = dtrace_deferred_pid;
6662 	dtrace_deferred_pid = NULL;
6663 
6664 	mutex_exit(&dtrace_lock);
6665 
6666 	while (help != NULL) {
6667 		for (i = 0; i < help->dthps_nprovs; i++) {
6668 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6669 			    help->dthps_pid);
6670 		}
6671 
6672 		next = help->dthps_next;
6673 		help->dthps_next = NULL;
6674 		help->dthps_prev = NULL;
6675 		help = next;
6676 	}
6677 
6678 	mutex_exit(&dtrace_meta_lock);
6679 
6680 	return (0);
6681 }
6682 
6683 int
6684 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6685 {
6686 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6687 
6688 	mutex_enter(&dtrace_meta_lock);
6689 	mutex_enter(&dtrace_lock);
6690 
6691 	if (old == dtrace_meta_pid) {
6692 		pp = &dtrace_meta_pid;
6693 	} else {
6694 		panic("attempt to unregister non-existent "
6695 		    "dtrace meta-provider %p\n", (void *)old);
6696 	}
6697 
6698 	if (old->dtm_count != 0) {
6699 		mutex_exit(&dtrace_lock);
6700 		mutex_exit(&dtrace_meta_lock);
6701 		return (EBUSY);
6702 	}
6703 
6704 	*pp = NULL;
6705 
6706 	mutex_exit(&dtrace_lock);
6707 	mutex_exit(&dtrace_meta_lock);
6708 
6709 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6710 	kmem_free(old, sizeof (dtrace_meta_t));
6711 
6712 	return (0);
6713 }
6714 
6715 
6716 /*
6717  * DTrace DIF Object Functions
6718  */
6719 static int
6720 dtrace_difo_err(uint_t pc, const char *format, ...)
6721 {
6722 	if (dtrace_err_verbose) {
6723 		va_list alist;
6724 
6725 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6726 		va_start(alist, format);
6727 		(void) vuprintf(format, alist);
6728 		va_end(alist);
6729 	}
6730 
6731 #ifdef DTRACE_ERRDEBUG
6732 	dtrace_errdebug(format);
6733 #endif
6734 	return (1);
6735 }
6736 
6737 /*
6738  * Validate a DTrace DIF object by checking the IR instructions.  The following
6739  * rules are currently enforced by dtrace_difo_validate():
6740  *
6741  * 1. Each instruction must have a valid opcode
6742  * 2. Each register, string, variable, or subroutine reference must be valid
6743  * 3. No instruction can modify register %r0 (must be zero)
6744  * 4. All instruction reserved bits must be set to zero
6745  * 5. The last instruction must be a "ret" instruction
6746  * 6. All branch targets must reference a valid instruction _after_ the branch
6747  */
6748 static int
6749 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6750     cred_t *cr)
6751 {
6752 	int err = 0, i;
6753 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6754 	int kcheck;
6755 	uint_t pc;
6756 
6757 	kcheck = cr == NULL ||
6758 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
6759 
6760 	dp->dtdo_destructive = 0;
6761 
6762 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
6763 		dif_instr_t instr = dp->dtdo_buf[pc];
6764 
6765 		uint_t r1 = DIF_INSTR_R1(instr);
6766 		uint_t r2 = DIF_INSTR_R2(instr);
6767 		uint_t rd = DIF_INSTR_RD(instr);
6768 		uint_t rs = DIF_INSTR_RS(instr);
6769 		uint_t label = DIF_INSTR_LABEL(instr);
6770 		uint_t v = DIF_INSTR_VAR(instr);
6771 		uint_t subr = DIF_INSTR_SUBR(instr);
6772 		uint_t type = DIF_INSTR_TYPE(instr);
6773 		uint_t op = DIF_INSTR_OP(instr);
6774 
6775 		switch (op) {
6776 		case DIF_OP_OR:
6777 		case DIF_OP_XOR:
6778 		case DIF_OP_AND:
6779 		case DIF_OP_SLL:
6780 		case DIF_OP_SRL:
6781 		case DIF_OP_SRA:
6782 		case DIF_OP_SUB:
6783 		case DIF_OP_ADD:
6784 		case DIF_OP_MUL:
6785 		case DIF_OP_SDIV:
6786 		case DIF_OP_UDIV:
6787 		case DIF_OP_SREM:
6788 		case DIF_OP_UREM:
6789 		case DIF_OP_COPYS:
6790 			if (r1 >= nregs)
6791 				err += efunc(pc, "invalid register %u\n", r1);
6792 			if (r2 >= nregs)
6793 				err += efunc(pc, "invalid register %u\n", r2);
6794 			if (rd >= nregs)
6795 				err += efunc(pc, "invalid register %u\n", rd);
6796 			if (rd == 0)
6797 				err += efunc(pc, "cannot write to %r0\n");
6798 			break;
6799 		case DIF_OP_NOT:
6800 		case DIF_OP_MOV:
6801 		case DIF_OP_ALLOCS:
6802 			if (r1 >= nregs)
6803 				err += efunc(pc, "invalid register %u\n", r1);
6804 			if (r2 != 0)
6805 				err += efunc(pc, "non-zero reserved bits\n");
6806 			if (rd >= nregs)
6807 				err += efunc(pc, "invalid register %u\n", rd);
6808 			if (rd == 0)
6809 				err += efunc(pc, "cannot write to %r0\n");
6810 			break;
6811 		case DIF_OP_LDSB:
6812 		case DIF_OP_LDSH:
6813 		case DIF_OP_LDSW:
6814 		case DIF_OP_LDUB:
6815 		case DIF_OP_LDUH:
6816 		case DIF_OP_LDUW:
6817 		case DIF_OP_LDX:
6818 			if (r1 >= nregs)
6819 				err += efunc(pc, "invalid register %u\n", r1);
6820 			if (r2 != 0)
6821 				err += efunc(pc, "non-zero reserved bits\n");
6822 			if (rd >= nregs)
6823 				err += efunc(pc, "invalid register %u\n", rd);
6824 			if (rd == 0)
6825 				err += efunc(pc, "cannot write to %r0\n");
6826 			if (kcheck)
6827 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
6828 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
6829 			break;
6830 		case DIF_OP_RLDSB:
6831 		case DIF_OP_RLDSH:
6832 		case DIF_OP_RLDSW:
6833 		case DIF_OP_RLDUB:
6834 		case DIF_OP_RLDUH:
6835 		case DIF_OP_RLDUW:
6836 		case DIF_OP_RLDX:
6837 			if (r1 >= nregs)
6838 				err += efunc(pc, "invalid register %u\n", r1);
6839 			if (r2 != 0)
6840 				err += efunc(pc, "non-zero reserved bits\n");
6841 			if (rd >= nregs)
6842 				err += efunc(pc, "invalid register %u\n", rd);
6843 			if (rd == 0)
6844 				err += efunc(pc, "cannot write to %r0\n");
6845 			break;
6846 		case DIF_OP_ULDSB:
6847 		case DIF_OP_ULDSH:
6848 		case DIF_OP_ULDSW:
6849 		case DIF_OP_ULDUB:
6850 		case DIF_OP_ULDUH:
6851 		case DIF_OP_ULDUW:
6852 		case DIF_OP_ULDX:
6853 			if (r1 >= nregs)
6854 				err += efunc(pc, "invalid register %u\n", r1);
6855 			if (r2 != 0)
6856 				err += efunc(pc, "non-zero reserved bits\n");
6857 			if (rd >= nregs)
6858 				err += efunc(pc, "invalid register %u\n", rd);
6859 			if (rd == 0)
6860 				err += efunc(pc, "cannot write to %r0\n");
6861 			break;
6862 		case DIF_OP_STB:
6863 		case DIF_OP_STH:
6864 		case DIF_OP_STW:
6865 		case DIF_OP_STX:
6866 			if (r1 >= nregs)
6867 				err += efunc(pc, "invalid register %u\n", r1);
6868 			if (r2 != 0)
6869 				err += efunc(pc, "non-zero reserved bits\n");
6870 			if (rd >= nregs)
6871 				err += efunc(pc, "invalid register %u\n", rd);
6872 			if (rd == 0)
6873 				err += efunc(pc, "cannot write to 0 address\n");
6874 			break;
6875 		case DIF_OP_CMP:
6876 		case DIF_OP_SCMP:
6877 			if (r1 >= nregs)
6878 				err += efunc(pc, "invalid register %u\n", r1);
6879 			if (r2 >= nregs)
6880 				err += efunc(pc, "invalid register %u\n", r2);
6881 			if (rd != 0)
6882 				err += efunc(pc, "non-zero reserved bits\n");
6883 			break;
6884 		case DIF_OP_TST:
6885 			if (r1 >= nregs)
6886 				err += efunc(pc, "invalid register %u\n", r1);
6887 			if (r2 != 0 || rd != 0)
6888 				err += efunc(pc, "non-zero reserved bits\n");
6889 			break;
6890 		case DIF_OP_BA:
6891 		case DIF_OP_BE:
6892 		case DIF_OP_BNE:
6893 		case DIF_OP_BG:
6894 		case DIF_OP_BGU:
6895 		case DIF_OP_BGE:
6896 		case DIF_OP_BGEU:
6897 		case DIF_OP_BL:
6898 		case DIF_OP_BLU:
6899 		case DIF_OP_BLE:
6900 		case DIF_OP_BLEU:
6901 			if (label >= dp->dtdo_len) {
6902 				err += efunc(pc, "invalid branch target %u\n",
6903 				    label);
6904 			}
6905 			if (label <= pc) {
6906 				err += efunc(pc, "backward branch to %u\n",
6907 				    label);
6908 			}
6909 			break;
6910 		case DIF_OP_RET:
6911 			if (r1 != 0 || r2 != 0)
6912 				err += efunc(pc, "non-zero reserved bits\n");
6913 			if (rd >= nregs)
6914 				err += efunc(pc, "invalid register %u\n", rd);
6915 			break;
6916 		case DIF_OP_NOP:
6917 		case DIF_OP_POPTS:
6918 		case DIF_OP_FLUSHTS:
6919 			if (r1 != 0 || r2 != 0 || rd != 0)
6920 				err += efunc(pc, "non-zero reserved bits\n");
6921 			break;
6922 		case DIF_OP_SETX:
6923 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
6924 				err += efunc(pc, "invalid integer ref %u\n",
6925 				    DIF_INSTR_INTEGER(instr));
6926 			}
6927 			if (rd >= nregs)
6928 				err += efunc(pc, "invalid register %u\n", rd);
6929 			if (rd == 0)
6930 				err += efunc(pc, "cannot write to %r0\n");
6931 			break;
6932 		case DIF_OP_SETS:
6933 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
6934 				err += efunc(pc, "invalid string ref %u\n",
6935 				    DIF_INSTR_STRING(instr));
6936 			}
6937 			if (rd >= nregs)
6938 				err += efunc(pc, "invalid register %u\n", rd);
6939 			if (rd == 0)
6940 				err += efunc(pc, "cannot write to %r0\n");
6941 			break;
6942 		case DIF_OP_LDGA:
6943 		case DIF_OP_LDTA:
6944 			if (r1 > DIF_VAR_ARRAY_MAX)
6945 				err += efunc(pc, "invalid array %u\n", r1);
6946 			if (r2 >= nregs)
6947 				err += efunc(pc, "invalid register %u\n", r2);
6948 			if (rd >= nregs)
6949 				err += efunc(pc, "invalid register %u\n", rd);
6950 			if (rd == 0)
6951 				err += efunc(pc, "cannot write to %r0\n");
6952 			break;
6953 		case DIF_OP_LDGS:
6954 		case DIF_OP_LDTS:
6955 		case DIF_OP_LDLS:
6956 		case DIF_OP_LDGAA:
6957 		case DIF_OP_LDTAA:
6958 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
6959 				err += efunc(pc, "invalid variable %u\n", v);
6960 			if (rd >= nregs)
6961 				err += efunc(pc, "invalid register %u\n", rd);
6962 			if (rd == 0)
6963 				err += efunc(pc, "cannot write to %r0\n");
6964 			break;
6965 		case DIF_OP_STGS:
6966 		case DIF_OP_STTS:
6967 		case DIF_OP_STLS:
6968 		case DIF_OP_STGAA:
6969 		case DIF_OP_STTAA:
6970 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
6971 				err += efunc(pc, "invalid variable %u\n", v);
6972 			if (rs >= nregs)
6973 				err += efunc(pc, "invalid register %u\n", rd);
6974 			break;
6975 		case DIF_OP_CALL:
6976 			if (subr > DIF_SUBR_MAX)
6977 				err += efunc(pc, "invalid subr %u\n", subr);
6978 			if (rd >= nregs)
6979 				err += efunc(pc, "invalid register %u\n", rd);
6980 			if (rd == 0)
6981 				err += efunc(pc, "cannot write to %r0\n");
6982 
6983 			if (subr == DIF_SUBR_COPYOUT ||
6984 			    subr == DIF_SUBR_COPYOUTSTR) {
6985 				dp->dtdo_destructive = 1;
6986 			}
6987 			break;
6988 		case DIF_OP_PUSHTR:
6989 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
6990 				err += efunc(pc, "invalid ref type %u\n", type);
6991 			if (r2 >= nregs)
6992 				err += efunc(pc, "invalid register %u\n", r2);
6993 			if (rs >= nregs)
6994 				err += efunc(pc, "invalid register %u\n", rs);
6995 			break;
6996 		case DIF_OP_PUSHTV:
6997 			if (type != DIF_TYPE_CTF)
6998 				err += efunc(pc, "invalid val type %u\n", type);
6999 			if (r2 >= nregs)
7000 				err += efunc(pc, "invalid register %u\n", r2);
7001 			if (rs >= nregs)
7002 				err += efunc(pc, "invalid register %u\n", rs);
7003 			break;
7004 		default:
7005 			err += efunc(pc, "invalid opcode %u\n",
7006 			    DIF_INSTR_OP(instr));
7007 		}
7008 	}
7009 
7010 	if (dp->dtdo_len != 0 &&
7011 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7012 		err += efunc(dp->dtdo_len - 1,
7013 		    "expected 'ret' as last DIF instruction\n");
7014 	}
7015 
7016 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7017 		/*
7018 		 * If we're not returning by reference, the size must be either
7019 		 * 0 or the size of one of the base types.
7020 		 */
7021 		switch (dp->dtdo_rtype.dtdt_size) {
7022 		case 0:
7023 		case sizeof (uint8_t):
7024 		case sizeof (uint16_t):
7025 		case sizeof (uint32_t):
7026 		case sizeof (uint64_t):
7027 			break;
7028 
7029 		default:
7030 			err += efunc(dp->dtdo_len - 1, "bad return size");
7031 		}
7032 	}
7033 
7034 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7035 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7036 		dtrace_diftype_t *vt, *et;
7037 		uint_t id, ndx;
7038 
7039 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7040 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7041 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7042 			err += efunc(i, "unrecognized variable scope %d\n",
7043 			    v->dtdv_scope);
7044 			break;
7045 		}
7046 
7047 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7048 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7049 			err += efunc(i, "unrecognized variable type %d\n",
7050 			    v->dtdv_kind);
7051 			break;
7052 		}
7053 
7054 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7055 			err += efunc(i, "%d exceeds variable id limit\n", id);
7056 			break;
7057 		}
7058 
7059 		if (id < DIF_VAR_OTHER_UBASE)
7060 			continue;
7061 
7062 		/*
7063 		 * For user-defined variables, we need to check that this
7064 		 * definition is identical to any previous definition that we
7065 		 * encountered.
7066 		 */
7067 		ndx = id - DIF_VAR_OTHER_UBASE;
7068 
7069 		switch (v->dtdv_scope) {
7070 		case DIFV_SCOPE_GLOBAL:
7071 			if (ndx < vstate->dtvs_nglobals) {
7072 				dtrace_statvar_t *svar;
7073 
7074 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7075 					existing = &svar->dtsv_var;
7076 			}
7077 
7078 			break;
7079 
7080 		case DIFV_SCOPE_THREAD:
7081 			if (ndx < vstate->dtvs_ntlocals)
7082 				existing = &vstate->dtvs_tlocals[ndx];
7083 			break;
7084 
7085 		case DIFV_SCOPE_LOCAL:
7086 			if (ndx < vstate->dtvs_nlocals) {
7087 				dtrace_statvar_t *svar;
7088 
7089 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7090 					existing = &svar->dtsv_var;
7091 			}
7092 
7093 			break;
7094 		}
7095 
7096 		vt = &v->dtdv_type;
7097 
7098 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7099 			if (vt->dtdt_size == 0) {
7100 				err += efunc(i, "zero-sized variable\n");
7101 				break;
7102 			}
7103 
7104 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7105 			    vt->dtdt_size > dtrace_global_maxsize) {
7106 				err += efunc(i, "oversized by-ref global\n");
7107 				break;
7108 			}
7109 		}
7110 
7111 		if (existing == NULL || existing->dtdv_id == 0)
7112 			continue;
7113 
7114 		ASSERT(existing->dtdv_id == v->dtdv_id);
7115 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7116 
7117 		if (existing->dtdv_kind != v->dtdv_kind)
7118 			err += efunc(i, "%d changed variable kind\n", id);
7119 
7120 		et = &existing->dtdv_type;
7121 
7122 		if (vt->dtdt_flags != et->dtdt_flags) {
7123 			err += efunc(i, "%d changed variable type flags\n", id);
7124 			break;
7125 		}
7126 
7127 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7128 			err += efunc(i, "%d changed variable type size\n", id);
7129 			break;
7130 		}
7131 	}
7132 
7133 	return (err);
7134 }
7135 
7136 /*
7137  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7138  * are much more constrained than normal DIFOs.  Specifically, they may
7139  * not:
7140  *
7141  * 1. Make calls to subroutines other than copyin() or copyinstr().
7142  * 2. Access DTrace variables other than the args[] array, and the
7143  *    curthread, pid, tid and execname variables.
7144  * 3. Have thread-local variables.
7145  * 4. Have dynamic variables.
7146  */
7147 static int
7148 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7149 {
7150 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7151 	int err = 0;
7152 	uint_t pc;
7153 
7154 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7155 		dif_instr_t instr = dp->dtdo_buf[pc];
7156 
7157 		uint_t v = DIF_INSTR_VAR(instr);
7158 		uint_t subr = DIF_INSTR_SUBR(instr);
7159 		uint_t op = DIF_INSTR_OP(instr);
7160 
7161 		switch (op) {
7162 		case DIF_OP_OR:
7163 		case DIF_OP_XOR:
7164 		case DIF_OP_AND:
7165 		case DIF_OP_SLL:
7166 		case DIF_OP_SRL:
7167 		case DIF_OP_SRA:
7168 		case DIF_OP_SUB:
7169 		case DIF_OP_ADD:
7170 		case DIF_OP_MUL:
7171 		case DIF_OP_SDIV:
7172 		case DIF_OP_UDIV:
7173 		case DIF_OP_SREM:
7174 		case DIF_OP_UREM:
7175 		case DIF_OP_COPYS:
7176 		case DIF_OP_NOT:
7177 		case DIF_OP_MOV:
7178 		case DIF_OP_RLDSB:
7179 		case DIF_OP_RLDSH:
7180 		case DIF_OP_RLDSW:
7181 		case DIF_OP_RLDUB:
7182 		case DIF_OP_RLDUH:
7183 		case DIF_OP_RLDUW:
7184 		case DIF_OP_RLDX:
7185 		case DIF_OP_ULDSB:
7186 		case DIF_OP_ULDSH:
7187 		case DIF_OP_ULDSW:
7188 		case DIF_OP_ULDUB:
7189 		case DIF_OP_ULDUH:
7190 		case DIF_OP_ULDUW:
7191 		case DIF_OP_ULDX:
7192 		case DIF_OP_STB:
7193 		case DIF_OP_STH:
7194 		case DIF_OP_STW:
7195 		case DIF_OP_STX:
7196 		case DIF_OP_ALLOCS:
7197 		case DIF_OP_CMP:
7198 		case DIF_OP_SCMP:
7199 		case DIF_OP_TST:
7200 		case DIF_OP_BA:
7201 		case DIF_OP_BE:
7202 		case DIF_OP_BNE:
7203 		case DIF_OP_BG:
7204 		case DIF_OP_BGU:
7205 		case DIF_OP_BGE:
7206 		case DIF_OP_BGEU:
7207 		case DIF_OP_BL:
7208 		case DIF_OP_BLU:
7209 		case DIF_OP_BLE:
7210 		case DIF_OP_BLEU:
7211 		case DIF_OP_RET:
7212 		case DIF_OP_NOP:
7213 		case DIF_OP_POPTS:
7214 		case DIF_OP_FLUSHTS:
7215 		case DIF_OP_SETX:
7216 		case DIF_OP_SETS:
7217 		case DIF_OP_LDGA:
7218 		case DIF_OP_LDLS:
7219 		case DIF_OP_STGS:
7220 		case DIF_OP_STLS:
7221 		case DIF_OP_PUSHTR:
7222 		case DIF_OP_PUSHTV:
7223 			break;
7224 
7225 		case DIF_OP_LDGS:
7226 			if (v >= DIF_VAR_OTHER_UBASE)
7227 				break;
7228 
7229 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7230 				break;
7231 
7232 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7233 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7234 			    v == DIF_VAR_ZONENAME)
7235 				break;
7236 
7237 			err += efunc(pc, "illegal variable %u\n", v);
7238 			break;
7239 
7240 		case DIF_OP_LDTA:
7241 		case DIF_OP_LDTS:
7242 		case DIF_OP_LDGAA:
7243 		case DIF_OP_LDTAA:
7244 			err += efunc(pc, "illegal dynamic variable load\n");
7245 			break;
7246 
7247 		case DIF_OP_STTS:
7248 		case DIF_OP_STGAA:
7249 		case DIF_OP_STTAA:
7250 			err += efunc(pc, "illegal dynamic variable store\n");
7251 			break;
7252 
7253 		case DIF_OP_CALL:
7254 			if (subr == DIF_SUBR_ALLOCA ||
7255 			    subr == DIF_SUBR_BCOPY ||
7256 			    subr == DIF_SUBR_COPYIN ||
7257 			    subr == DIF_SUBR_COPYINTO ||
7258 			    subr == DIF_SUBR_COPYINSTR)
7259 				break;
7260 
7261 			err += efunc(pc, "invalid subr %u\n", subr);
7262 			break;
7263 
7264 		default:
7265 			err += efunc(pc, "invalid opcode %u\n",
7266 			    DIF_INSTR_OP(instr));
7267 		}
7268 	}
7269 
7270 	return (err);
7271 }
7272 
7273 /*
7274  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7275  * basis; 0 if not.
7276  */
7277 static int
7278 dtrace_difo_cacheable(dtrace_difo_t *dp)
7279 {
7280 	int i;
7281 
7282 	if (dp == NULL)
7283 		return (0);
7284 
7285 	for (i = 0; i < dp->dtdo_varlen; i++) {
7286 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7287 
7288 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7289 			continue;
7290 
7291 		switch (v->dtdv_id) {
7292 		case DIF_VAR_CURTHREAD:
7293 		case DIF_VAR_PID:
7294 		case DIF_VAR_TID:
7295 		case DIF_VAR_EXECNAME:
7296 		case DIF_VAR_ZONENAME:
7297 			break;
7298 
7299 		default:
7300 			return (0);
7301 		}
7302 	}
7303 
7304 	/*
7305 	 * This DIF object may be cacheable.  Now we need to look for any
7306 	 * array loading instructions, any memory loading instructions, or
7307 	 * any stores to thread-local variables.
7308 	 */
7309 	for (i = 0; i < dp->dtdo_len; i++) {
7310 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7311 
7312 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7313 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7314 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7315 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
7316 			return (0);
7317 	}
7318 
7319 	return (1);
7320 }
7321 
7322 static void
7323 dtrace_difo_hold(dtrace_difo_t *dp)
7324 {
7325 	int i;
7326 
7327 	ASSERT(MUTEX_HELD(&dtrace_lock));
7328 
7329 	dp->dtdo_refcnt++;
7330 	ASSERT(dp->dtdo_refcnt != 0);
7331 
7332 	/*
7333 	 * We need to check this DIF object for references to the variable
7334 	 * DIF_VAR_VTIMESTAMP.
7335 	 */
7336 	for (i = 0; i < dp->dtdo_varlen; i++) {
7337 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7338 
7339 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7340 			continue;
7341 
7342 		if (dtrace_vtime_references++ == 0)
7343 			dtrace_vtime_enable();
7344 	}
7345 }
7346 
7347 /*
7348  * This routine calculates the dynamic variable chunksize for a given DIF
7349  * object.  The calculation is not fool-proof, and can probably be tricked by
7350  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7351  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7352  * if a dynamic variable size exceeds the chunksize.
7353  */
7354 static void
7355 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7356 {
7357 	uint64_t sval;
7358 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7359 	const dif_instr_t *text = dp->dtdo_buf;
7360 	uint_t pc, srd = 0;
7361 	uint_t ttop = 0;
7362 	size_t size, ksize;
7363 	uint_t id, i;
7364 
7365 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7366 		dif_instr_t instr = text[pc];
7367 		uint_t op = DIF_INSTR_OP(instr);
7368 		uint_t rd = DIF_INSTR_RD(instr);
7369 		uint_t r1 = DIF_INSTR_R1(instr);
7370 		uint_t nkeys = 0;
7371 		uchar_t scope;
7372 
7373 		dtrace_key_t *key = tupregs;
7374 
7375 		switch (op) {
7376 		case DIF_OP_SETX:
7377 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7378 			srd = rd;
7379 			continue;
7380 
7381 		case DIF_OP_STTS:
7382 			key = &tupregs[DIF_DTR_NREGS];
7383 			key[0].dttk_size = 0;
7384 			key[1].dttk_size = 0;
7385 			nkeys = 2;
7386 			scope = DIFV_SCOPE_THREAD;
7387 			break;
7388 
7389 		case DIF_OP_STGAA:
7390 		case DIF_OP_STTAA:
7391 			nkeys = ttop;
7392 
7393 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7394 				key[nkeys++].dttk_size = 0;
7395 
7396 			key[nkeys++].dttk_size = 0;
7397 
7398 			if (op == DIF_OP_STTAA) {
7399 				scope = DIFV_SCOPE_THREAD;
7400 			} else {
7401 				scope = DIFV_SCOPE_GLOBAL;
7402 			}
7403 
7404 			break;
7405 
7406 		case DIF_OP_PUSHTR:
7407 			if (ttop == DIF_DTR_NREGS)
7408 				return;
7409 
7410 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7411 				/*
7412 				 * If the register for the size of the "pushtr"
7413 				 * is %r0 (or the value is 0) and the type is
7414 				 * a string, we'll use the system-wide default
7415 				 * string size.
7416 				 */
7417 				tupregs[ttop++].dttk_size =
7418 				    dtrace_strsize_default;
7419 			} else {
7420 				if (srd == 0)
7421 					return;
7422 
7423 				tupregs[ttop++].dttk_size = sval;
7424 			}
7425 
7426 			break;
7427 
7428 		case DIF_OP_PUSHTV:
7429 			if (ttop == DIF_DTR_NREGS)
7430 				return;
7431 
7432 			tupregs[ttop++].dttk_size = 0;
7433 			break;
7434 
7435 		case DIF_OP_FLUSHTS:
7436 			ttop = 0;
7437 			break;
7438 
7439 		case DIF_OP_POPTS:
7440 			if (ttop != 0)
7441 				ttop--;
7442 			break;
7443 		}
7444 
7445 		sval = 0;
7446 		srd = 0;
7447 
7448 		if (nkeys == 0)
7449 			continue;
7450 
7451 		/*
7452 		 * We have a dynamic variable allocation; calculate its size.
7453 		 */
7454 		for (ksize = 0, i = 0; i < nkeys; i++)
7455 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7456 
7457 		size = sizeof (dtrace_dynvar_t);
7458 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7459 		size += ksize;
7460 
7461 		/*
7462 		 * Now we need to determine the size of the stored data.
7463 		 */
7464 		id = DIF_INSTR_VAR(instr);
7465 
7466 		for (i = 0; i < dp->dtdo_varlen; i++) {
7467 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7468 
7469 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7470 				size += v->dtdv_type.dtdt_size;
7471 				break;
7472 			}
7473 		}
7474 
7475 		if (i == dp->dtdo_varlen)
7476 			return;
7477 
7478 		/*
7479 		 * We have the size.  If this is larger than the chunk size
7480 		 * for our dynamic variable state, reset the chunk size.
7481 		 */
7482 		size = P2ROUNDUP(size, sizeof (uint64_t));
7483 
7484 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7485 			vstate->dtvs_dynvars.dtds_chunksize = size;
7486 	}
7487 }
7488 
7489 static void
7490 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7491 {
7492 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7493 	uint_t id;
7494 
7495 	ASSERT(MUTEX_HELD(&dtrace_lock));
7496 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7497 
7498 	for (i = 0; i < dp->dtdo_varlen; i++) {
7499 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7500 		dtrace_statvar_t *svar, ***svarp;
7501 		size_t dsize = 0;
7502 		uint8_t scope = v->dtdv_scope;
7503 		int *np;
7504 
7505 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7506 			continue;
7507 
7508 		id -= DIF_VAR_OTHER_UBASE;
7509 
7510 		switch (scope) {
7511 		case DIFV_SCOPE_THREAD:
7512 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7513 				dtrace_difv_t *tlocals;
7514 
7515 				if ((ntlocals = (otlocals << 1)) == 0)
7516 					ntlocals = 1;
7517 
7518 				osz = otlocals * sizeof (dtrace_difv_t);
7519 				nsz = ntlocals * sizeof (dtrace_difv_t);
7520 
7521 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7522 
7523 				if (osz != 0) {
7524 					bcopy(vstate->dtvs_tlocals,
7525 					    tlocals, osz);
7526 					kmem_free(vstate->dtvs_tlocals, osz);
7527 				}
7528 
7529 				vstate->dtvs_tlocals = tlocals;
7530 				vstate->dtvs_ntlocals = ntlocals;
7531 			}
7532 
7533 			vstate->dtvs_tlocals[id] = *v;
7534 			continue;
7535 
7536 		case DIFV_SCOPE_LOCAL:
7537 			np = &vstate->dtvs_nlocals;
7538 			svarp = &vstate->dtvs_locals;
7539 
7540 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7541 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7542 				    sizeof (uint64_t));
7543 			else
7544 				dsize = NCPU * sizeof (uint64_t);
7545 
7546 			break;
7547 
7548 		case DIFV_SCOPE_GLOBAL:
7549 			np = &vstate->dtvs_nglobals;
7550 			svarp = &vstate->dtvs_globals;
7551 
7552 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7553 				dsize = v->dtdv_type.dtdt_size +
7554 				    sizeof (uint64_t);
7555 
7556 			break;
7557 
7558 		default:
7559 			ASSERT(0);
7560 		}
7561 
7562 		while (id >= (oldsvars = *np)) {
7563 			dtrace_statvar_t **statics;
7564 			int newsvars, oldsize, newsize;
7565 
7566 			if ((newsvars = (oldsvars << 1)) == 0)
7567 				newsvars = 1;
7568 
7569 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7570 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7571 
7572 			statics = kmem_zalloc(newsize, KM_SLEEP);
7573 
7574 			if (oldsize != 0) {
7575 				bcopy(*svarp, statics, oldsize);
7576 				kmem_free(*svarp, oldsize);
7577 			}
7578 
7579 			*svarp = statics;
7580 			*np = newsvars;
7581 		}
7582 
7583 		if ((svar = (*svarp)[id]) == NULL) {
7584 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7585 			svar->dtsv_var = *v;
7586 
7587 			if ((svar->dtsv_size = dsize) != 0) {
7588 				svar->dtsv_data = (uint64_t)(uintptr_t)
7589 				    kmem_zalloc(dsize, KM_SLEEP);
7590 			}
7591 
7592 			(*svarp)[id] = svar;
7593 		}
7594 
7595 		svar->dtsv_refcnt++;
7596 	}
7597 
7598 	dtrace_difo_chunksize(dp, vstate);
7599 	dtrace_difo_hold(dp);
7600 }
7601 
7602 static dtrace_difo_t *
7603 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7604 {
7605 	dtrace_difo_t *new;
7606 	size_t sz;
7607 
7608 	ASSERT(dp->dtdo_buf != NULL);
7609 	ASSERT(dp->dtdo_refcnt != 0);
7610 
7611 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7612 
7613 	ASSERT(dp->dtdo_buf != NULL);
7614 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7615 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7616 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7617 	new->dtdo_len = dp->dtdo_len;
7618 
7619 	if (dp->dtdo_strtab != NULL) {
7620 		ASSERT(dp->dtdo_strlen != 0);
7621 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7622 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7623 		new->dtdo_strlen = dp->dtdo_strlen;
7624 	}
7625 
7626 	if (dp->dtdo_inttab != NULL) {
7627 		ASSERT(dp->dtdo_intlen != 0);
7628 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7629 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7630 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7631 		new->dtdo_intlen = dp->dtdo_intlen;
7632 	}
7633 
7634 	if (dp->dtdo_vartab != NULL) {
7635 		ASSERT(dp->dtdo_varlen != 0);
7636 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7637 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7638 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7639 		new->dtdo_varlen = dp->dtdo_varlen;
7640 	}
7641 
7642 	dtrace_difo_init(new, vstate);
7643 	return (new);
7644 }
7645 
7646 static void
7647 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7648 {
7649 	int i;
7650 
7651 	ASSERT(dp->dtdo_refcnt == 0);
7652 
7653 	for (i = 0; i < dp->dtdo_varlen; i++) {
7654 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7655 		dtrace_statvar_t *svar, **svarp;
7656 		uint_t id;
7657 		uint8_t scope = v->dtdv_scope;
7658 		int *np;
7659 
7660 		switch (scope) {
7661 		case DIFV_SCOPE_THREAD:
7662 			continue;
7663 
7664 		case DIFV_SCOPE_LOCAL:
7665 			np = &vstate->dtvs_nlocals;
7666 			svarp = vstate->dtvs_locals;
7667 			break;
7668 
7669 		case DIFV_SCOPE_GLOBAL:
7670 			np = &vstate->dtvs_nglobals;
7671 			svarp = vstate->dtvs_globals;
7672 			break;
7673 
7674 		default:
7675 			ASSERT(0);
7676 		}
7677 
7678 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7679 			continue;
7680 
7681 		id -= DIF_VAR_OTHER_UBASE;
7682 		ASSERT(id < *np);
7683 
7684 		svar = svarp[id];
7685 		ASSERT(svar != NULL);
7686 		ASSERT(svar->dtsv_refcnt > 0);
7687 
7688 		if (--svar->dtsv_refcnt > 0)
7689 			continue;
7690 
7691 		if (svar->dtsv_size != 0) {
7692 			ASSERT(svar->dtsv_data != NULL);
7693 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7694 			    svar->dtsv_size);
7695 		}
7696 
7697 		kmem_free(svar, sizeof (dtrace_statvar_t));
7698 		svarp[id] = NULL;
7699 	}
7700 
7701 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7702 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7703 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7704 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7705 
7706 	kmem_free(dp, sizeof (dtrace_difo_t));
7707 }
7708 
7709 static void
7710 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7711 {
7712 	int i;
7713 
7714 	ASSERT(MUTEX_HELD(&dtrace_lock));
7715 	ASSERT(dp->dtdo_refcnt != 0);
7716 
7717 	for (i = 0; i < dp->dtdo_varlen; i++) {
7718 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7719 
7720 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7721 			continue;
7722 
7723 		ASSERT(dtrace_vtime_references > 0);
7724 		if (--dtrace_vtime_references == 0)
7725 			dtrace_vtime_disable();
7726 	}
7727 
7728 	if (--dp->dtdo_refcnt == 0)
7729 		dtrace_difo_destroy(dp, vstate);
7730 }
7731 
7732 /*
7733  * DTrace Format Functions
7734  */
7735 static uint16_t
7736 dtrace_format_add(dtrace_state_t *state, char *str)
7737 {
7738 	char *fmt, **new;
7739 	uint16_t ndx, len = strlen(str) + 1;
7740 
7741 	fmt = kmem_zalloc(len, KM_SLEEP);
7742 	bcopy(str, fmt, len);
7743 
7744 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7745 		if (state->dts_formats[ndx] == NULL) {
7746 			state->dts_formats[ndx] = fmt;
7747 			return (ndx + 1);
7748 		}
7749 	}
7750 
7751 	if (state->dts_nformats == USHRT_MAX) {
7752 		/*
7753 		 * This is only likely if a denial-of-service attack is being
7754 		 * attempted.  As such, it's okay to fail silently here.
7755 		 */
7756 		kmem_free(fmt, len);
7757 		return (0);
7758 	}
7759 
7760 	/*
7761 	 * For simplicity, we always resize the formats array to be exactly the
7762 	 * number of formats.
7763 	 */
7764 	ndx = state->dts_nformats++;
7765 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
7766 
7767 	if (state->dts_formats != NULL) {
7768 		ASSERT(ndx != 0);
7769 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
7770 		kmem_free(state->dts_formats, ndx * sizeof (char *));
7771 	}
7772 
7773 	state->dts_formats = new;
7774 	state->dts_formats[ndx] = fmt;
7775 
7776 	return (ndx + 1);
7777 }
7778 
7779 static void
7780 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
7781 {
7782 	char *fmt;
7783 
7784 	ASSERT(state->dts_formats != NULL);
7785 	ASSERT(format <= state->dts_nformats);
7786 	ASSERT(state->dts_formats[format - 1] != NULL);
7787 
7788 	fmt = state->dts_formats[format - 1];
7789 	kmem_free(fmt, strlen(fmt) + 1);
7790 	state->dts_formats[format - 1] = NULL;
7791 }
7792 
7793 static void
7794 dtrace_format_destroy(dtrace_state_t *state)
7795 {
7796 	int i;
7797 
7798 	if (state->dts_nformats == 0) {
7799 		ASSERT(state->dts_formats == NULL);
7800 		return;
7801 	}
7802 
7803 	ASSERT(state->dts_formats != NULL);
7804 
7805 	for (i = 0; i < state->dts_nformats; i++) {
7806 		char *fmt = state->dts_formats[i];
7807 
7808 		if (fmt == NULL)
7809 			continue;
7810 
7811 		kmem_free(fmt, strlen(fmt) + 1);
7812 	}
7813 
7814 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
7815 	state->dts_nformats = 0;
7816 	state->dts_formats = NULL;
7817 }
7818 
7819 /*
7820  * DTrace Predicate Functions
7821  */
7822 static dtrace_predicate_t *
7823 dtrace_predicate_create(dtrace_difo_t *dp)
7824 {
7825 	dtrace_predicate_t *pred;
7826 
7827 	ASSERT(MUTEX_HELD(&dtrace_lock));
7828 	ASSERT(dp->dtdo_refcnt != 0);
7829 
7830 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
7831 	pred->dtp_difo = dp;
7832 	pred->dtp_refcnt = 1;
7833 
7834 	if (!dtrace_difo_cacheable(dp))
7835 		return (pred);
7836 
7837 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
7838 		/*
7839 		 * This is only theoretically possible -- we have had 2^32
7840 		 * cacheable predicates on this machine.  We cannot allow any
7841 		 * more predicates to become cacheable:  as unlikely as it is,
7842 		 * there may be a thread caching a (now stale) predicate cache
7843 		 * ID. (N.B.: the temptation is being successfully resisted to
7844 		 * have this cmn_err() "Holy shit -- we executed this code!")
7845 		 */
7846 		return (pred);
7847 	}
7848 
7849 	pred->dtp_cacheid = dtrace_predcache_id++;
7850 
7851 	return (pred);
7852 }
7853 
7854 static void
7855 dtrace_predicate_hold(dtrace_predicate_t *pred)
7856 {
7857 	ASSERT(MUTEX_HELD(&dtrace_lock));
7858 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
7859 	ASSERT(pred->dtp_refcnt > 0);
7860 
7861 	pred->dtp_refcnt++;
7862 }
7863 
7864 static void
7865 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
7866 {
7867 	dtrace_difo_t *dp = pred->dtp_difo;
7868 
7869 	ASSERT(MUTEX_HELD(&dtrace_lock));
7870 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
7871 	ASSERT(pred->dtp_refcnt > 0);
7872 
7873 	if (--pred->dtp_refcnt == 0) {
7874 		dtrace_difo_release(pred->dtp_difo, vstate);
7875 		kmem_free(pred, sizeof (dtrace_predicate_t));
7876 	}
7877 }
7878 
7879 /*
7880  * DTrace Action Description Functions
7881  */
7882 static dtrace_actdesc_t *
7883 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
7884     uint64_t uarg, uint64_t arg)
7885 {
7886 	dtrace_actdesc_t *act;
7887 
7888 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
7889 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
7890 
7891 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
7892 	act->dtad_kind = kind;
7893 	act->dtad_ntuple = ntuple;
7894 	act->dtad_uarg = uarg;
7895 	act->dtad_arg = arg;
7896 	act->dtad_refcnt = 1;
7897 
7898 	return (act);
7899 }
7900 
7901 static void
7902 dtrace_actdesc_hold(dtrace_actdesc_t *act)
7903 {
7904 	ASSERT(act->dtad_refcnt >= 1);
7905 	act->dtad_refcnt++;
7906 }
7907 
7908 static void
7909 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
7910 {
7911 	dtrace_actkind_t kind = act->dtad_kind;
7912 	dtrace_difo_t *dp;
7913 
7914 	ASSERT(act->dtad_refcnt >= 1);
7915 
7916 	if (--act->dtad_refcnt != 0)
7917 		return;
7918 
7919 	if ((dp = act->dtad_difo) != NULL)
7920 		dtrace_difo_release(dp, vstate);
7921 
7922 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
7923 		char *str = (char *)(uintptr_t)act->dtad_arg;
7924 
7925 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
7926 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
7927 
7928 		if (str != NULL)
7929 			kmem_free(str, strlen(str) + 1);
7930 	}
7931 
7932 	kmem_free(act, sizeof (dtrace_actdesc_t));
7933 }
7934 
7935 /*
7936  * DTrace ECB Functions
7937  */
7938 static dtrace_ecb_t *
7939 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
7940 {
7941 	dtrace_ecb_t *ecb;
7942 	dtrace_epid_t epid;
7943 
7944 	ASSERT(MUTEX_HELD(&dtrace_lock));
7945 
7946 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
7947 	ecb->dte_predicate = NULL;
7948 	ecb->dte_probe = probe;
7949 
7950 	/*
7951 	 * The default size is the size of the default action: recording
7952 	 * the epid.
7953 	 */
7954 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7955 	ecb->dte_alignment = sizeof (dtrace_epid_t);
7956 
7957 	epid = state->dts_epid++;
7958 
7959 	if (epid - 1 >= state->dts_necbs) {
7960 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
7961 		int necbs = state->dts_necbs << 1;
7962 
7963 		ASSERT(epid == state->dts_necbs + 1);
7964 
7965 		if (necbs == 0) {
7966 			ASSERT(oecbs == NULL);
7967 			necbs = 1;
7968 		}
7969 
7970 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
7971 
7972 		if (oecbs != NULL)
7973 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
7974 
7975 		dtrace_membar_producer();
7976 		state->dts_ecbs = ecbs;
7977 
7978 		if (oecbs != NULL) {
7979 			/*
7980 			 * If this state is active, we must dtrace_sync()
7981 			 * before we can free the old dts_ecbs array:  we're
7982 			 * coming in hot, and there may be active ring
7983 			 * buffer processing (which indexes into the dts_ecbs
7984 			 * array) on another CPU.
7985 			 */
7986 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
7987 				dtrace_sync();
7988 
7989 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
7990 		}
7991 
7992 		dtrace_membar_producer();
7993 		state->dts_necbs = necbs;
7994 	}
7995 
7996 	ecb->dte_state = state;
7997 
7998 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
7999 	dtrace_membar_producer();
8000 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8001 
8002 	return (ecb);
8003 }
8004 
8005 static void
8006 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8007 {
8008 	dtrace_probe_t *probe = ecb->dte_probe;
8009 
8010 	ASSERT(MUTEX_HELD(&cpu_lock));
8011 	ASSERT(MUTEX_HELD(&dtrace_lock));
8012 	ASSERT(ecb->dte_next == NULL);
8013 
8014 	if (probe == NULL) {
8015 		/*
8016 		 * This is the NULL probe -- there's nothing to do.
8017 		 */
8018 		return;
8019 	}
8020 
8021 	if (probe->dtpr_ecb == NULL) {
8022 		dtrace_provider_t *prov = probe->dtpr_provider;
8023 
8024 		/*
8025 		 * We're the first ECB on this probe.
8026 		 */
8027 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8028 
8029 		if (ecb->dte_predicate != NULL)
8030 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8031 
8032 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8033 		    probe->dtpr_id, probe->dtpr_arg);
8034 	} else {
8035 		/*
8036 		 * This probe is already active.  Swing the last pointer to
8037 		 * point to the new ECB, and issue a dtrace_sync() to assure
8038 		 * that all CPUs have seen the change.
8039 		 */
8040 		ASSERT(probe->dtpr_ecb_last != NULL);
8041 		probe->dtpr_ecb_last->dte_next = ecb;
8042 		probe->dtpr_ecb_last = ecb;
8043 		probe->dtpr_predcache = 0;
8044 
8045 		dtrace_sync();
8046 	}
8047 }
8048 
8049 static void
8050 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8051 {
8052 	uint32_t maxalign = sizeof (dtrace_epid_t);
8053 	uint32_t align = sizeof (uint8_t), offs, diff;
8054 	dtrace_action_t *act;
8055 	int wastuple = 0;
8056 	uint32_t aggbase = UINT32_MAX;
8057 	dtrace_state_t *state = ecb->dte_state;
8058 
8059 	/*
8060 	 * If we record anything, we always record the epid.  (And we always
8061 	 * record it first.)
8062 	 */
8063 	offs = sizeof (dtrace_epid_t);
8064 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8065 
8066 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8067 		dtrace_recdesc_t *rec = &act->dta_rec;
8068 
8069 		if ((align = rec->dtrd_alignment) > maxalign)
8070 			maxalign = align;
8071 
8072 		if (!wastuple && act->dta_intuple) {
8073 			/*
8074 			 * This is the first record in a tuple.  Align the
8075 			 * offset to be at offset 4 in an 8-byte aligned
8076 			 * block.
8077 			 */
8078 			diff = offs + sizeof (dtrace_aggid_t);
8079 
8080 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8081 				offs += sizeof (uint64_t) - diff;
8082 
8083 			aggbase = offs - sizeof (dtrace_aggid_t);
8084 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8085 		}
8086 
8087 		/*LINTED*/
8088 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8089 			/*
8090 			 * The current offset is not properly aligned; align it.
8091 			 */
8092 			offs += align - diff;
8093 		}
8094 
8095 		rec->dtrd_offset = offs;
8096 
8097 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8098 			ecb->dte_needed = offs + rec->dtrd_size;
8099 
8100 			if (ecb->dte_needed > state->dts_needed)
8101 				state->dts_needed = ecb->dte_needed;
8102 		}
8103 
8104 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8105 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8106 			dtrace_action_t *first = agg->dtag_first, *prev;
8107 
8108 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8109 			ASSERT(wastuple);
8110 			ASSERT(aggbase != UINT32_MAX);
8111 
8112 			agg->dtag_base = aggbase;
8113 
8114 			while ((prev = first->dta_prev) != NULL &&
8115 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8116 				agg = (dtrace_aggregation_t *)prev;
8117 				first = agg->dtag_first;
8118 			}
8119 
8120 			if (prev != NULL) {
8121 				offs = prev->dta_rec.dtrd_offset +
8122 				    prev->dta_rec.dtrd_size;
8123 			} else {
8124 				offs = sizeof (dtrace_epid_t);
8125 			}
8126 			wastuple = 0;
8127 		} else {
8128 			if (!act->dta_intuple)
8129 				ecb->dte_size = offs + rec->dtrd_size;
8130 
8131 			offs += rec->dtrd_size;
8132 		}
8133 
8134 		wastuple = act->dta_intuple;
8135 	}
8136 
8137 	if ((act = ecb->dte_action) != NULL &&
8138 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8139 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8140 		/*
8141 		 * If the size is still sizeof (dtrace_epid_t), then all
8142 		 * actions store no data; set the size to 0.
8143 		 */
8144 		ecb->dte_alignment = maxalign;
8145 		ecb->dte_size = 0;
8146 
8147 		/*
8148 		 * If the needed space is still sizeof (dtrace_epid_t), then
8149 		 * all actions need no additional space; set the needed
8150 		 * size to 0.
8151 		 */
8152 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8153 			ecb->dte_needed = 0;
8154 
8155 		return;
8156 	}
8157 
8158 	/*
8159 	 * Set our alignment, and make sure that the dte_size and dte_needed
8160 	 * are aligned to the size of an EPID.
8161 	 */
8162 	ecb->dte_alignment = maxalign;
8163 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8164 	    ~(sizeof (dtrace_epid_t) - 1);
8165 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8166 	    ~(sizeof (dtrace_epid_t) - 1);
8167 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8168 }
8169 
8170 static dtrace_action_t *
8171 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8172 {
8173 	dtrace_aggregation_t *agg;
8174 	size_t size = sizeof (uint64_t);
8175 	int ntuple = desc->dtad_ntuple;
8176 	dtrace_action_t *act;
8177 	dtrace_recdesc_t *frec;
8178 	dtrace_aggid_t aggid;
8179 	dtrace_state_t *state = ecb->dte_state;
8180 
8181 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8182 	agg->dtag_ecb = ecb;
8183 
8184 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8185 
8186 	switch (desc->dtad_kind) {
8187 	case DTRACEAGG_MIN:
8188 		agg->dtag_initial = UINT64_MAX;
8189 		agg->dtag_aggregate = dtrace_aggregate_min;
8190 		break;
8191 
8192 	case DTRACEAGG_MAX:
8193 		agg->dtag_aggregate = dtrace_aggregate_max;
8194 		break;
8195 
8196 	case DTRACEAGG_COUNT:
8197 		agg->dtag_aggregate = dtrace_aggregate_count;
8198 		break;
8199 
8200 	case DTRACEAGG_QUANTIZE:
8201 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8202 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8203 		    sizeof (uint64_t);
8204 		break;
8205 
8206 	case DTRACEAGG_LQUANTIZE: {
8207 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8208 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8209 
8210 		agg->dtag_initial = desc->dtad_arg;
8211 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8212 
8213 		if (step == 0 || levels == 0)
8214 			goto err;
8215 
8216 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8217 		break;
8218 	}
8219 
8220 	case DTRACEAGG_AVG:
8221 		agg->dtag_aggregate = dtrace_aggregate_avg;
8222 		size = sizeof (uint64_t) * 2;
8223 		break;
8224 
8225 	case DTRACEAGG_SUM:
8226 		agg->dtag_aggregate = dtrace_aggregate_sum;
8227 		break;
8228 
8229 	default:
8230 		goto err;
8231 	}
8232 
8233 	agg->dtag_action.dta_rec.dtrd_size = size;
8234 
8235 	if (ntuple == 0)
8236 		goto err;
8237 
8238 	/*
8239 	 * We must make sure that we have enough actions for the n-tuple.
8240 	 */
8241 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8242 		if (DTRACEACT_ISAGG(act->dta_kind))
8243 			break;
8244 
8245 		if (--ntuple == 0) {
8246 			/*
8247 			 * This is the action with which our n-tuple begins.
8248 			 */
8249 			agg->dtag_first = act;
8250 			goto success;
8251 		}
8252 	}
8253 
8254 	/*
8255 	 * This n-tuple is short by ntuple elements.  Return failure.
8256 	 */
8257 	ASSERT(ntuple != 0);
8258 err:
8259 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8260 	return (NULL);
8261 
8262 success:
8263 	/*
8264 	 * If the last action in the tuple has a size of zero, it's actually
8265 	 * an expression argument for the aggregating action.
8266 	 */
8267 	ASSERT(ecb->dte_action_last != NULL);
8268 	act = ecb->dte_action_last;
8269 
8270 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8271 		ASSERT(act->dta_difo != NULL);
8272 
8273 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8274 			agg->dtag_hasarg = 1;
8275 	}
8276 
8277 	/*
8278 	 * We need to allocate an id for this aggregation.
8279 	 */
8280 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8281 	    VM_BESTFIT | VM_SLEEP);
8282 
8283 	if (aggid - 1 >= state->dts_naggregations) {
8284 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8285 		dtrace_aggregation_t **aggs;
8286 		int naggs = state->dts_naggregations << 1;
8287 		int onaggs = state->dts_naggregations;
8288 
8289 		ASSERT(aggid == state->dts_naggregations + 1);
8290 
8291 		if (naggs == 0) {
8292 			ASSERT(oaggs == NULL);
8293 			naggs = 1;
8294 		}
8295 
8296 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8297 
8298 		if (oaggs != NULL) {
8299 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8300 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8301 		}
8302 
8303 		state->dts_aggregations = aggs;
8304 		state->dts_naggregations = naggs;
8305 	}
8306 
8307 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8308 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8309 
8310 	frec = &agg->dtag_first->dta_rec;
8311 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8312 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8313 
8314 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8315 		ASSERT(!act->dta_intuple);
8316 		act->dta_intuple = 1;
8317 	}
8318 
8319 	return (&agg->dtag_action);
8320 }
8321 
8322 static void
8323 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8324 {
8325 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8326 	dtrace_state_t *state = ecb->dte_state;
8327 	dtrace_aggid_t aggid = agg->dtag_id;
8328 
8329 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8330 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8331 
8332 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8333 	state->dts_aggregations[aggid - 1] = NULL;
8334 
8335 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8336 }
8337 
8338 static int
8339 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8340 {
8341 	dtrace_action_t *action, *last;
8342 	dtrace_difo_t *dp = desc->dtad_difo;
8343 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8344 	uint16_t format = 0;
8345 	dtrace_recdesc_t *rec;
8346 	dtrace_state_t *state = ecb->dte_state;
8347 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8348 	uint64_t arg = desc->dtad_arg;
8349 
8350 	ASSERT(MUTEX_HELD(&dtrace_lock));
8351 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8352 
8353 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8354 		/*
8355 		 * If this is an aggregating action, there must be neither
8356 		 * a speculate nor a commit on the action chain.
8357 		 */
8358 		dtrace_action_t *act;
8359 
8360 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8361 			if (act->dta_kind == DTRACEACT_COMMIT)
8362 				return (EINVAL);
8363 
8364 			if (act->dta_kind == DTRACEACT_SPECULATE)
8365 				return (EINVAL);
8366 		}
8367 
8368 		action = dtrace_ecb_aggregation_create(ecb, desc);
8369 
8370 		if (action == NULL)
8371 			return (EINVAL);
8372 	} else {
8373 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8374 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8375 		    dp != NULL && dp->dtdo_destructive)) {
8376 			state->dts_destructive = 1;
8377 		}
8378 
8379 		switch (desc->dtad_kind) {
8380 		case DTRACEACT_PRINTF:
8381 		case DTRACEACT_PRINTA:
8382 		case DTRACEACT_SYSTEM:
8383 		case DTRACEACT_FREOPEN:
8384 			/*
8385 			 * We know that our arg is a string -- turn it into a
8386 			 * format.
8387 			 */
8388 			if (arg == NULL) {
8389 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8390 				format = 0;
8391 			} else {
8392 				ASSERT(arg != NULL);
8393 				ASSERT(arg > KERNELBASE);
8394 				format = dtrace_format_add(state,
8395 				    (char *)(uintptr_t)arg);
8396 			}
8397 
8398 			/*FALLTHROUGH*/
8399 		case DTRACEACT_LIBACT:
8400 		case DTRACEACT_DIFEXPR:
8401 			if (dp == NULL)
8402 				return (EINVAL);
8403 
8404 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8405 				break;
8406 
8407 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8408 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8409 					return (EINVAL);
8410 
8411 				size = opt[DTRACEOPT_STRSIZE];
8412 			}
8413 
8414 			break;
8415 
8416 		case DTRACEACT_STACK:
8417 			if ((nframes = arg) == 0) {
8418 				nframes = opt[DTRACEOPT_STACKFRAMES];
8419 				ASSERT(nframes > 0);
8420 				arg = nframes;
8421 			}
8422 
8423 			size = nframes * sizeof (pc_t);
8424 			break;
8425 
8426 		case DTRACEACT_JSTACK:
8427 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8428 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8429 
8430 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8431 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8432 
8433 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8434 
8435 			/*FALLTHROUGH*/
8436 		case DTRACEACT_USTACK:
8437 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8438 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8439 				strsize = DTRACE_USTACK_STRSIZE(arg);
8440 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8441 				ASSERT(nframes > 0);
8442 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8443 			}
8444 
8445 			/*
8446 			 * Save a slot for the pid.
8447 			 */
8448 			size = (nframes + 1) * sizeof (uint64_t);
8449 			size += DTRACE_USTACK_STRSIZE(arg);
8450 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8451 
8452 			break;
8453 
8454 		case DTRACEACT_SYM:
8455 		case DTRACEACT_MOD:
8456 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
8457 			    sizeof (uint64_t)) ||
8458 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8459 				return (EINVAL);
8460 			break;
8461 
8462 		case DTRACEACT_USYM:
8463 		case DTRACEACT_UMOD:
8464 		case DTRACEACT_UADDR:
8465 			if (dp == NULL ||
8466 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
8467 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8468 				return (EINVAL);
8469 
8470 			/*
8471 			 * We have a slot for the pid, plus a slot for the
8472 			 * argument.  To keep things simple (aligned with
8473 			 * bitness-neutral sizing), we store each as a 64-bit
8474 			 * quantity.
8475 			 */
8476 			size = 2 * sizeof (uint64_t);
8477 			break;
8478 
8479 		case DTRACEACT_STOP:
8480 		case DTRACEACT_BREAKPOINT:
8481 		case DTRACEACT_PANIC:
8482 			break;
8483 
8484 		case DTRACEACT_CHILL:
8485 		case DTRACEACT_DISCARD:
8486 		case DTRACEACT_RAISE:
8487 			if (dp == NULL)
8488 				return (EINVAL);
8489 			break;
8490 
8491 		case DTRACEACT_EXIT:
8492 			if (dp == NULL ||
8493 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8494 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8495 				return (EINVAL);
8496 			break;
8497 
8498 		case DTRACEACT_SPECULATE:
8499 			if (ecb->dte_size > sizeof (dtrace_epid_t))
8500 				return (EINVAL);
8501 
8502 			if (dp == NULL)
8503 				return (EINVAL);
8504 
8505 			state->dts_speculates = 1;
8506 			break;
8507 
8508 		case DTRACEACT_COMMIT: {
8509 			dtrace_action_t *act = ecb->dte_action;
8510 
8511 			for (; act != NULL; act = act->dta_next) {
8512 				if (act->dta_kind == DTRACEACT_COMMIT)
8513 					return (EINVAL);
8514 			}
8515 
8516 			if (dp == NULL)
8517 				return (EINVAL);
8518 			break;
8519 		}
8520 
8521 		default:
8522 			return (EINVAL);
8523 		}
8524 
8525 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8526 			/*
8527 			 * If this is a data-storing action or a speculate,
8528 			 * we must be sure that there isn't a commit on the
8529 			 * action chain.
8530 			 */
8531 			dtrace_action_t *act = ecb->dte_action;
8532 
8533 			for (; act != NULL; act = act->dta_next) {
8534 				if (act->dta_kind == DTRACEACT_COMMIT)
8535 					return (EINVAL);
8536 			}
8537 		}
8538 
8539 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8540 		action->dta_rec.dtrd_size = size;
8541 	}
8542 
8543 	action->dta_refcnt = 1;
8544 	rec = &action->dta_rec;
8545 	size = rec->dtrd_size;
8546 
8547 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8548 		if (!(size & mask)) {
8549 			align = mask + 1;
8550 			break;
8551 		}
8552 	}
8553 
8554 	action->dta_kind = desc->dtad_kind;
8555 
8556 	if ((action->dta_difo = dp) != NULL)
8557 		dtrace_difo_hold(dp);
8558 
8559 	rec->dtrd_action = action->dta_kind;
8560 	rec->dtrd_arg = arg;
8561 
8562 	if (ecb->dte_state == dtrace_anon.dta_state) {
8563 		/*
8564 		 * If this is an anonymous enabling, explicitly clear the uarg.
8565 		 */
8566 		rec->dtrd_uarg = 0;
8567 	} else {
8568 		rec->dtrd_uarg = desc->dtad_uarg;
8569 	}
8570 
8571 	rec->dtrd_alignment = (uint16_t)align;
8572 	rec->dtrd_format = format;
8573 
8574 	if ((last = ecb->dte_action_last) != NULL) {
8575 		ASSERT(ecb->dte_action != NULL);
8576 		action->dta_prev = last;
8577 		last->dta_next = action;
8578 	} else {
8579 		ASSERT(ecb->dte_action == NULL);
8580 		ecb->dte_action = action;
8581 	}
8582 
8583 	ecb->dte_action_last = action;
8584 
8585 	return (0);
8586 }
8587 
8588 static void
8589 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8590 {
8591 	dtrace_action_t *act = ecb->dte_action, *next;
8592 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8593 	dtrace_difo_t *dp;
8594 	uint16_t format;
8595 
8596 	if (act != NULL && act->dta_refcnt > 1) {
8597 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8598 		act->dta_refcnt--;
8599 	} else {
8600 		for (; act != NULL; act = next) {
8601 			next = act->dta_next;
8602 			ASSERT(next != NULL || act == ecb->dte_action_last);
8603 			ASSERT(act->dta_refcnt == 1);
8604 
8605 			if ((format = act->dta_rec.dtrd_format) != 0)
8606 				dtrace_format_remove(ecb->dte_state, format);
8607 
8608 			if ((dp = act->dta_difo) != NULL)
8609 				dtrace_difo_release(dp, vstate);
8610 
8611 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8612 				dtrace_ecb_aggregation_destroy(ecb, act);
8613 			} else {
8614 				kmem_free(act, sizeof (dtrace_action_t));
8615 			}
8616 		}
8617 	}
8618 
8619 	ecb->dte_action = NULL;
8620 	ecb->dte_action_last = NULL;
8621 	ecb->dte_size = sizeof (dtrace_epid_t);
8622 }
8623 
8624 static void
8625 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8626 {
8627 	/*
8628 	 * We disable the ECB by removing it from its probe.
8629 	 */
8630 	dtrace_ecb_t *pecb, *prev = NULL;
8631 	dtrace_probe_t *probe = ecb->dte_probe;
8632 
8633 	ASSERT(MUTEX_HELD(&dtrace_lock));
8634 
8635 	if (probe == NULL) {
8636 		/*
8637 		 * This is the NULL probe; there is nothing to disable.
8638 		 */
8639 		return;
8640 	}
8641 
8642 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8643 		if (pecb == ecb)
8644 			break;
8645 		prev = pecb;
8646 	}
8647 
8648 	ASSERT(pecb != NULL);
8649 
8650 	if (prev == NULL) {
8651 		probe->dtpr_ecb = ecb->dte_next;
8652 	} else {
8653 		prev->dte_next = ecb->dte_next;
8654 	}
8655 
8656 	if (ecb == probe->dtpr_ecb_last) {
8657 		ASSERT(ecb->dte_next == NULL);
8658 		probe->dtpr_ecb_last = prev;
8659 	}
8660 
8661 	/*
8662 	 * The ECB has been disconnected from the probe; now sync to assure
8663 	 * that all CPUs have seen the change before returning.
8664 	 */
8665 	dtrace_sync();
8666 
8667 	if (probe->dtpr_ecb == NULL) {
8668 		/*
8669 		 * That was the last ECB on the probe; clear the predicate
8670 		 * cache ID for the probe, disable it and sync one more time
8671 		 * to assure that we'll never hit it again.
8672 		 */
8673 		dtrace_provider_t *prov = probe->dtpr_provider;
8674 
8675 		ASSERT(ecb->dte_next == NULL);
8676 		ASSERT(probe->dtpr_ecb_last == NULL);
8677 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8678 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8679 		    probe->dtpr_id, probe->dtpr_arg);
8680 		dtrace_sync();
8681 	} else {
8682 		/*
8683 		 * There is at least one ECB remaining on the probe.  If there
8684 		 * is _exactly_ one, set the probe's predicate cache ID to be
8685 		 * the predicate cache ID of the remaining ECB.
8686 		 */
8687 		ASSERT(probe->dtpr_ecb_last != NULL);
8688 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8689 
8690 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8691 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8692 
8693 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8694 
8695 			if (p != NULL)
8696 				probe->dtpr_predcache = p->dtp_cacheid;
8697 		}
8698 
8699 		ecb->dte_next = NULL;
8700 	}
8701 }
8702 
8703 static void
8704 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8705 {
8706 	dtrace_state_t *state = ecb->dte_state;
8707 	dtrace_vstate_t *vstate = &state->dts_vstate;
8708 	dtrace_predicate_t *pred;
8709 	dtrace_epid_t epid = ecb->dte_epid;
8710 
8711 	ASSERT(MUTEX_HELD(&dtrace_lock));
8712 	ASSERT(ecb->dte_next == NULL);
8713 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8714 
8715 	if ((pred = ecb->dte_predicate) != NULL)
8716 		dtrace_predicate_release(pred, vstate);
8717 
8718 	dtrace_ecb_action_remove(ecb);
8719 
8720 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8721 	state->dts_ecbs[epid - 1] = NULL;
8722 
8723 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8724 }
8725 
8726 static dtrace_ecb_t *
8727 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8728     dtrace_enabling_t *enab)
8729 {
8730 	dtrace_ecb_t *ecb;
8731 	dtrace_predicate_t *pred;
8732 	dtrace_actdesc_t *act;
8733 	dtrace_provider_t *prov;
8734 	dtrace_ecbdesc_t *desc = enab->dten_current;
8735 
8736 	ASSERT(MUTEX_HELD(&dtrace_lock));
8737 	ASSERT(state != NULL);
8738 
8739 	ecb = dtrace_ecb_add(state, probe);
8740 	ecb->dte_uarg = desc->dted_uarg;
8741 
8742 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8743 		dtrace_predicate_hold(pred);
8744 		ecb->dte_predicate = pred;
8745 	}
8746 
8747 	if (probe != NULL) {
8748 		/*
8749 		 * If the provider shows more leg than the consumer is old
8750 		 * enough to see, we need to enable the appropriate implicit
8751 		 * predicate bits to prevent the ecb from activating at
8752 		 * revealing times.
8753 		 */
8754 		prov = probe->dtpr_provider;
8755 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
8756 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8757 			ecb->dte_cond |= DTRACE_COND_OWNER;
8758 
8759 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
8760 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
8761 			ecb->dte_cond |= DTRACE_COND_USERMODE;
8762 	}
8763 
8764 	if (dtrace_ecb_create_cache != NULL) {
8765 		/*
8766 		 * If we have a cached ecb, we'll use its action list instead
8767 		 * of creating our own (saving both time and space).
8768 		 */
8769 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
8770 		dtrace_action_t *act = cached->dte_action;
8771 
8772 		if (act != NULL) {
8773 			ASSERT(act->dta_refcnt > 0);
8774 			act->dta_refcnt++;
8775 			ecb->dte_action = act;
8776 			ecb->dte_action_last = cached->dte_action_last;
8777 			ecb->dte_needed = cached->dte_needed;
8778 			ecb->dte_size = cached->dte_size;
8779 			ecb->dte_alignment = cached->dte_alignment;
8780 		}
8781 
8782 		return (ecb);
8783 	}
8784 
8785 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
8786 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
8787 			dtrace_ecb_destroy(ecb);
8788 			return (NULL);
8789 		}
8790 	}
8791 
8792 	dtrace_ecb_resize(ecb);
8793 
8794 	return (dtrace_ecb_create_cache = ecb);
8795 }
8796 
8797 static int
8798 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
8799 {
8800 	dtrace_ecb_t *ecb;
8801 	dtrace_enabling_t *enab = arg;
8802 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8803 
8804 	ASSERT(state != NULL);
8805 
8806 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
8807 		/*
8808 		 * This probe was created in a generation for which this
8809 		 * enabling has previously created ECBs; we don't want to
8810 		 * enable it again, so just kick out.
8811 		 */
8812 		return (DTRACE_MATCH_NEXT);
8813 	}
8814 
8815 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
8816 		return (DTRACE_MATCH_DONE);
8817 
8818 	dtrace_ecb_enable(ecb);
8819 	return (DTRACE_MATCH_NEXT);
8820 }
8821 
8822 static dtrace_ecb_t *
8823 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
8824 {
8825 	dtrace_ecb_t *ecb;
8826 
8827 	ASSERT(MUTEX_HELD(&dtrace_lock));
8828 
8829 	if (id == 0 || id > state->dts_necbs)
8830 		return (NULL);
8831 
8832 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
8833 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
8834 
8835 	return (state->dts_ecbs[id - 1]);
8836 }
8837 
8838 static dtrace_aggregation_t *
8839 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
8840 {
8841 	dtrace_aggregation_t *agg;
8842 
8843 	ASSERT(MUTEX_HELD(&dtrace_lock));
8844 
8845 	if (id == 0 || id > state->dts_naggregations)
8846 		return (NULL);
8847 
8848 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
8849 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
8850 	    agg->dtag_id == id);
8851 
8852 	return (state->dts_aggregations[id - 1]);
8853 }
8854 
8855 /*
8856  * DTrace Buffer Functions
8857  *
8858  * The following functions manipulate DTrace buffers.  Most of these functions
8859  * are called in the context of establishing or processing consumer state;
8860  * exceptions are explicitly noted.
8861  */
8862 
8863 /*
8864  * Note:  called from cross call context.  This function switches the two
8865  * buffers on a given CPU.  The atomicity of this operation is assured by
8866  * disabling interrupts while the actual switch takes place; the disabling of
8867  * interrupts serializes the execution with any execution of dtrace_probe() on
8868  * the same CPU.
8869  */
8870 static void
8871 dtrace_buffer_switch(dtrace_buffer_t *buf)
8872 {
8873 	caddr_t tomax = buf->dtb_tomax;
8874 	caddr_t xamot = buf->dtb_xamot;
8875 	dtrace_icookie_t cookie;
8876 
8877 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
8878 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
8879 
8880 	cookie = dtrace_interrupt_disable();
8881 	buf->dtb_tomax = xamot;
8882 	buf->dtb_xamot = tomax;
8883 	buf->dtb_xamot_drops = buf->dtb_drops;
8884 	buf->dtb_xamot_offset = buf->dtb_offset;
8885 	buf->dtb_xamot_errors = buf->dtb_errors;
8886 	buf->dtb_xamot_flags = buf->dtb_flags;
8887 	buf->dtb_offset = 0;
8888 	buf->dtb_drops = 0;
8889 	buf->dtb_errors = 0;
8890 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
8891 	dtrace_interrupt_enable(cookie);
8892 }
8893 
8894 /*
8895  * Note:  called from cross call context.  This function activates a buffer
8896  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
8897  * is guaranteed by the disabling of interrupts.
8898  */
8899 static void
8900 dtrace_buffer_activate(dtrace_state_t *state)
8901 {
8902 	dtrace_buffer_t *buf;
8903 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
8904 
8905 	buf = &state->dts_buffer[CPU->cpu_id];
8906 
8907 	if (buf->dtb_tomax != NULL) {
8908 		/*
8909 		 * We might like to assert that the buffer is marked inactive,
8910 		 * but this isn't necessarily true:  the buffer for the CPU
8911 		 * that processes the BEGIN probe has its buffer activated
8912 		 * manually.  In this case, we take the (harmless) action
8913 		 * re-clearing the bit INACTIVE bit.
8914 		 */
8915 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
8916 	}
8917 
8918 	dtrace_interrupt_enable(cookie);
8919 }
8920 
8921 static int
8922 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
8923     processorid_t cpu)
8924 {
8925 	cpu_t *cp;
8926 	dtrace_buffer_t *buf;
8927 
8928 	ASSERT(MUTEX_HELD(&cpu_lock));
8929 	ASSERT(MUTEX_HELD(&dtrace_lock));
8930 
8931 	if (crgetuid(CRED()) != 0 && size > dtrace_nonroot_maxsize)
8932 		return (EFBIG);
8933 
8934 	cp = cpu_list;
8935 
8936 	do {
8937 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8938 			continue;
8939 
8940 		buf = &bufs[cp->cpu_id];
8941 
8942 		/*
8943 		 * If there is already a buffer allocated for this CPU, it
8944 		 * is only possible that this is a DR event.  In this case,
8945 		 * the buffer size must match our specified size.
8946 		 */
8947 		if (buf->dtb_tomax != NULL) {
8948 			ASSERT(buf->dtb_size == size);
8949 			continue;
8950 		}
8951 
8952 		ASSERT(buf->dtb_xamot == NULL);
8953 
8954 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8955 			goto err;
8956 
8957 		buf->dtb_size = size;
8958 		buf->dtb_flags = flags;
8959 		buf->dtb_offset = 0;
8960 		buf->dtb_drops = 0;
8961 
8962 		if (flags & DTRACEBUF_NOSWITCH)
8963 			continue;
8964 
8965 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8966 			goto err;
8967 	} while ((cp = cp->cpu_next) != cpu_list);
8968 
8969 	return (0);
8970 
8971 err:
8972 	cp = cpu_list;
8973 
8974 	do {
8975 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8976 			continue;
8977 
8978 		buf = &bufs[cp->cpu_id];
8979 
8980 		if (buf->dtb_xamot != NULL) {
8981 			ASSERT(buf->dtb_tomax != NULL);
8982 			ASSERT(buf->dtb_size == size);
8983 			kmem_free(buf->dtb_xamot, size);
8984 		}
8985 
8986 		if (buf->dtb_tomax != NULL) {
8987 			ASSERT(buf->dtb_size == size);
8988 			kmem_free(buf->dtb_tomax, size);
8989 		}
8990 
8991 		buf->dtb_tomax = NULL;
8992 		buf->dtb_xamot = NULL;
8993 		buf->dtb_size = 0;
8994 	} while ((cp = cp->cpu_next) != cpu_list);
8995 
8996 	return (ENOMEM);
8997 }
8998 
8999 /*
9000  * Note:  called from probe context.  This function just increments the drop
9001  * count on a buffer.  It has been made a function to allow for the
9002  * possibility of understanding the source of mysterious drop counts.  (A
9003  * problem for which one may be particularly disappointed that DTrace cannot
9004  * be used to understand DTrace.)
9005  */
9006 static void
9007 dtrace_buffer_drop(dtrace_buffer_t *buf)
9008 {
9009 	buf->dtb_drops++;
9010 }
9011 
9012 /*
9013  * Note:  called from probe context.  This function is called to reserve space
9014  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9015  * mstate.  Returns the new offset in the buffer, or a negative value if an
9016  * error has occurred.
9017  */
9018 static intptr_t
9019 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9020     dtrace_state_t *state, dtrace_mstate_t *mstate)
9021 {
9022 	intptr_t offs = buf->dtb_offset, soffs;
9023 	intptr_t woffs;
9024 	caddr_t tomax;
9025 	size_t total;
9026 
9027 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9028 		return (-1);
9029 
9030 	if ((tomax = buf->dtb_tomax) == NULL) {
9031 		dtrace_buffer_drop(buf);
9032 		return (-1);
9033 	}
9034 
9035 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9036 		while (offs & (align - 1)) {
9037 			/*
9038 			 * Assert that our alignment is off by a number which
9039 			 * is itself sizeof (uint32_t) aligned.
9040 			 */
9041 			ASSERT(!((align - (offs & (align - 1))) &
9042 			    (sizeof (uint32_t) - 1)));
9043 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9044 			offs += sizeof (uint32_t);
9045 		}
9046 
9047 		if ((soffs = offs + needed) > buf->dtb_size) {
9048 			dtrace_buffer_drop(buf);
9049 			return (-1);
9050 		}
9051 
9052 		if (mstate == NULL)
9053 			return (offs);
9054 
9055 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9056 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9057 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9058 
9059 		return (offs);
9060 	}
9061 
9062 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9063 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9064 		    (buf->dtb_flags & DTRACEBUF_FULL))
9065 			return (-1);
9066 		goto out;
9067 	}
9068 
9069 	total = needed + (offs & (align - 1));
9070 
9071 	/*
9072 	 * For a ring buffer, life is quite a bit more complicated.  Before
9073 	 * we can store any padding, we need to adjust our wrapping offset.
9074 	 * (If we've never before wrapped or we're not about to, no adjustment
9075 	 * is required.)
9076 	 */
9077 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9078 	    offs + total > buf->dtb_size) {
9079 		woffs = buf->dtb_xamot_offset;
9080 
9081 		if (offs + total > buf->dtb_size) {
9082 			/*
9083 			 * We can't fit in the end of the buffer.  First, a
9084 			 * sanity check that we can fit in the buffer at all.
9085 			 */
9086 			if (total > buf->dtb_size) {
9087 				dtrace_buffer_drop(buf);
9088 				return (-1);
9089 			}
9090 
9091 			/*
9092 			 * We're going to be storing at the top of the buffer,
9093 			 * so now we need to deal with the wrapped offset.  We
9094 			 * only reset our wrapped offset to 0 if it is
9095 			 * currently greater than the current offset.  If it
9096 			 * is less than the current offset, it is because a
9097 			 * previous allocation induced a wrap -- but the
9098 			 * allocation didn't subsequently take the space due
9099 			 * to an error or false predicate evaluation.  In this
9100 			 * case, we'll just leave the wrapped offset alone: if
9101 			 * the wrapped offset hasn't been advanced far enough
9102 			 * for this allocation, it will be adjusted in the
9103 			 * lower loop.
9104 			 */
9105 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9106 				if (woffs >= offs)
9107 					woffs = 0;
9108 			} else {
9109 				woffs = 0;
9110 			}
9111 
9112 			/*
9113 			 * Now we know that we're going to be storing to the
9114 			 * top of the buffer and that there is room for us
9115 			 * there.  We need to clear the buffer from the current
9116 			 * offset to the end (there may be old gunk there).
9117 			 */
9118 			while (offs < buf->dtb_size)
9119 				tomax[offs++] = 0;
9120 
9121 			/*
9122 			 * We need to set our offset to zero.  And because we
9123 			 * are wrapping, we need to set the bit indicating as
9124 			 * much.  We can also adjust our needed space back
9125 			 * down to the space required by the ECB -- we know
9126 			 * that the top of the buffer is aligned.
9127 			 */
9128 			offs = 0;
9129 			total = needed;
9130 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9131 		} else {
9132 			/*
9133 			 * There is room for us in the buffer, so we simply
9134 			 * need to check the wrapped offset.
9135 			 */
9136 			if (woffs < offs) {
9137 				/*
9138 				 * The wrapped offset is less than the offset.
9139 				 * This can happen if we allocated buffer space
9140 				 * that induced a wrap, but then we didn't
9141 				 * subsequently take the space due to an error
9142 				 * or false predicate evaluation.  This is
9143 				 * okay; we know that _this_ allocation isn't
9144 				 * going to induce a wrap.  We still can't
9145 				 * reset the wrapped offset to be zero,
9146 				 * however: the space may have been trashed in
9147 				 * the previous failed probe attempt.  But at
9148 				 * least the wrapped offset doesn't need to
9149 				 * be adjusted at all...
9150 				 */
9151 				goto out;
9152 			}
9153 		}
9154 
9155 		while (offs + total > woffs) {
9156 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9157 			size_t size;
9158 
9159 			if (epid == DTRACE_EPIDNONE) {
9160 				size = sizeof (uint32_t);
9161 			} else {
9162 				ASSERT(epid <= state->dts_necbs);
9163 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9164 
9165 				size = state->dts_ecbs[epid - 1]->dte_size;
9166 			}
9167 
9168 			ASSERT(woffs + size <= buf->dtb_size);
9169 			ASSERT(size != 0);
9170 
9171 			if (woffs + size == buf->dtb_size) {
9172 				/*
9173 				 * We've reached the end of the buffer; we want
9174 				 * to set the wrapped offset to 0 and break
9175 				 * out.  However, if the offs is 0, then we're
9176 				 * in a strange edge-condition:  the amount of
9177 				 * space that we want to reserve plus the size
9178 				 * of the record that we're overwriting is
9179 				 * greater than the size of the buffer.  This
9180 				 * is problematic because if we reserve the
9181 				 * space but subsequently don't consume it (due
9182 				 * to a failed predicate or error) the wrapped
9183 				 * offset will be 0 -- yet the EPID at offset 0
9184 				 * will not be committed.  This situation is
9185 				 * relatively easy to deal with:  if we're in
9186 				 * this case, the buffer is indistinguishable
9187 				 * from one that hasn't wrapped; we need only
9188 				 * finish the job by clearing the wrapped bit,
9189 				 * explicitly setting the offset to be 0, and
9190 				 * zero'ing out the old data in the buffer.
9191 				 */
9192 				if (offs == 0) {
9193 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9194 					buf->dtb_offset = 0;
9195 					woffs = total;
9196 
9197 					while (woffs < buf->dtb_size)
9198 						tomax[woffs++] = 0;
9199 				}
9200 
9201 				woffs = 0;
9202 				break;
9203 			}
9204 
9205 			woffs += size;
9206 		}
9207 
9208 		/*
9209 		 * We have a wrapped offset.  It may be that the wrapped offset
9210 		 * has become zero -- that's okay.
9211 		 */
9212 		buf->dtb_xamot_offset = woffs;
9213 	}
9214 
9215 out:
9216 	/*
9217 	 * Now we can plow the buffer with any necessary padding.
9218 	 */
9219 	while (offs & (align - 1)) {
9220 		/*
9221 		 * Assert that our alignment is off by a number which
9222 		 * is itself sizeof (uint32_t) aligned.
9223 		 */
9224 		ASSERT(!((align - (offs & (align - 1))) &
9225 		    (sizeof (uint32_t) - 1)));
9226 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9227 		offs += sizeof (uint32_t);
9228 	}
9229 
9230 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9231 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9232 			buf->dtb_flags |= DTRACEBUF_FULL;
9233 			return (-1);
9234 		}
9235 	}
9236 
9237 	if (mstate == NULL)
9238 		return (offs);
9239 
9240 	/*
9241 	 * For ring buffers and fill buffers, the scratch space is always
9242 	 * the inactive buffer.
9243 	 */
9244 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9245 	mstate->dtms_scratch_size = buf->dtb_size;
9246 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9247 
9248 	return (offs);
9249 }
9250 
9251 static void
9252 dtrace_buffer_polish(dtrace_buffer_t *buf)
9253 {
9254 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9255 	ASSERT(MUTEX_HELD(&dtrace_lock));
9256 
9257 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9258 		return;
9259 
9260 	/*
9261 	 * We need to polish the ring buffer.  There are three cases:
9262 	 *
9263 	 * - The first (and presumably most common) is that there is no gap
9264 	 *   between the buffer offset and the wrapped offset.  In this case,
9265 	 *   there is nothing in the buffer that isn't valid data; we can
9266 	 *   mark the buffer as polished and return.
9267 	 *
9268 	 * - The second (less common than the first but still more common
9269 	 *   than the third) is that there is a gap between the buffer offset
9270 	 *   and the wrapped offset, and the wrapped offset is larger than the
9271 	 *   buffer offset.  This can happen because of an alignment issue, or
9272 	 *   can happen because of a call to dtrace_buffer_reserve() that
9273 	 *   didn't subsequently consume the buffer space.  In this case,
9274 	 *   we need to zero the data from the buffer offset to the wrapped
9275 	 *   offset.
9276 	 *
9277 	 * - The third (and least common) is that there is a gap between the
9278 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9279 	 *   _less_ than the buffer offset.  This can only happen because a
9280 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9281 	 *   was not subsequently consumed.  In this case, we need to zero the
9282 	 *   space from the offset to the end of the buffer _and_ from the
9283 	 *   top of the buffer to the wrapped offset.
9284 	 */
9285 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9286 		bzero(buf->dtb_tomax + buf->dtb_offset,
9287 		    buf->dtb_xamot_offset - buf->dtb_offset);
9288 	}
9289 
9290 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9291 		bzero(buf->dtb_tomax + buf->dtb_offset,
9292 		    buf->dtb_size - buf->dtb_offset);
9293 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9294 	}
9295 }
9296 
9297 static void
9298 dtrace_buffer_free(dtrace_buffer_t *bufs)
9299 {
9300 	int i;
9301 
9302 	for (i = 0; i < NCPU; i++) {
9303 		dtrace_buffer_t *buf = &bufs[i];
9304 
9305 		if (buf->dtb_tomax == NULL) {
9306 			ASSERT(buf->dtb_xamot == NULL);
9307 			ASSERT(buf->dtb_size == 0);
9308 			continue;
9309 		}
9310 
9311 		if (buf->dtb_xamot != NULL) {
9312 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9313 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9314 		}
9315 
9316 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9317 		buf->dtb_size = 0;
9318 		buf->dtb_tomax = NULL;
9319 		buf->dtb_xamot = NULL;
9320 	}
9321 }
9322 
9323 /*
9324  * DTrace Enabling Functions
9325  */
9326 static dtrace_enabling_t *
9327 dtrace_enabling_create(dtrace_vstate_t *vstate)
9328 {
9329 	dtrace_enabling_t *enab;
9330 
9331 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9332 	enab->dten_vstate = vstate;
9333 
9334 	return (enab);
9335 }
9336 
9337 static void
9338 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9339 {
9340 	dtrace_ecbdesc_t **ndesc;
9341 	size_t osize, nsize;
9342 
9343 	/*
9344 	 * We can't add to enablings after we've enabled them, or after we've
9345 	 * retained them.
9346 	 */
9347 	ASSERT(enab->dten_probegen == 0);
9348 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9349 
9350 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9351 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9352 		return;
9353 	}
9354 
9355 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9356 
9357 	if (enab->dten_maxdesc == 0) {
9358 		enab->dten_maxdesc = 1;
9359 	} else {
9360 		enab->dten_maxdesc <<= 1;
9361 	}
9362 
9363 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9364 
9365 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9366 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9367 	bcopy(enab->dten_desc, ndesc, osize);
9368 	kmem_free(enab->dten_desc, osize);
9369 
9370 	enab->dten_desc = ndesc;
9371 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9372 }
9373 
9374 static void
9375 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9376     dtrace_probedesc_t *pd)
9377 {
9378 	dtrace_ecbdesc_t *new;
9379 	dtrace_predicate_t *pred;
9380 	dtrace_actdesc_t *act;
9381 
9382 	/*
9383 	 * We're going to create a new ECB description that matches the
9384 	 * specified ECB in every way, but has the specified probe description.
9385 	 */
9386 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9387 
9388 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9389 		dtrace_predicate_hold(pred);
9390 
9391 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9392 		dtrace_actdesc_hold(act);
9393 
9394 	new->dted_action = ecb->dted_action;
9395 	new->dted_pred = ecb->dted_pred;
9396 	new->dted_probe = *pd;
9397 	new->dted_uarg = ecb->dted_uarg;
9398 
9399 	dtrace_enabling_add(enab, new);
9400 }
9401 
9402 static void
9403 dtrace_enabling_dump(dtrace_enabling_t *enab)
9404 {
9405 	int i;
9406 
9407 	for (i = 0; i < enab->dten_ndesc; i++) {
9408 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9409 
9410 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9411 		    desc->dtpd_provider, desc->dtpd_mod,
9412 		    desc->dtpd_func, desc->dtpd_name);
9413 	}
9414 }
9415 
9416 static void
9417 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9418 {
9419 	int i;
9420 	dtrace_ecbdesc_t *ep;
9421 	dtrace_vstate_t *vstate = enab->dten_vstate;
9422 
9423 	ASSERT(MUTEX_HELD(&dtrace_lock));
9424 
9425 	for (i = 0; i < enab->dten_ndesc; i++) {
9426 		dtrace_actdesc_t *act, *next;
9427 		dtrace_predicate_t *pred;
9428 
9429 		ep = enab->dten_desc[i];
9430 
9431 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9432 			dtrace_predicate_release(pred, vstate);
9433 
9434 		for (act = ep->dted_action; act != NULL; act = next) {
9435 			next = act->dtad_next;
9436 			dtrace_actdesc_release(act, vstate);
9437 		}
9438 
9439 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9440 	}
9441 
9442 	kmem_free(enab->dten_desc,
9443 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9444 
9445 	/*
9446 	 * If this was a retained enabling, decrement the dts_nretained count
9447 	 * and take it off of the dtrace_retained list.
9448 	 */
9449 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9450 	    dtrace_retained == enab) {
9451 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9452 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9453 		enab->dten_vstate->dtvs_state->dts_nretained--;
9454 	}
9455 
9456 	if (enab->dten_prev == NULL) {
9457 		if (dtrace_retained == enab) {
9458 			dtrace_retained = enab->dten_next;
9459 
9460 			if (dtrace_retained != NULL)
9461 				dtrace_retained->dten_prev = NULL;
9462 		}
9463 	} else {
9464 		ASSERT(enab != dtrace_retained);
9465 		ASSERT(dtrace_retained != NULL);
9466 		enab->dten_prev->dten_next = enab->dten_next;
9467 	}
9468 
9469 	if (enab->dten_next != NULL) {
9470 		ASSERT(dtrace_retained != NULL);
9471 		enab->dten_next->dten_prev = enab->dten_prev;
9472 	}
9473 
9474 	kmem_free(enab, sizeof (dtrace_enabling_t));
9475 }
9476 
9477 static int
9478 dtrace_enabling_retain(dtrace_enabling_t *enab)
9479 {
9480 	dtrace_state_t *state;
9481 
9482 	ASSERT(MUTEX_HELD(&dtrace_lock));
9483 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9484 	ASSERT(enab->dten_vstate != NULL);
9485 
9486 	state = enab->dten_vstate->dtvs_state;
9487 	ASSERT(state != NULL);
9488 
9489 	/*
9490 	 * We only allow each state to retain dtrace_retain_max enablings.
9491 	 */
9492 	if (state->dts_nretained >= dtrace_retain_max)
9493 		return (ENOSPC);
9494 
9495 	state->dts_nretained++;
9496 
9497 	if (dtrace_retained == NULL) {
9498 		dtrace_retained = enab;
9499 		return (0);
9500 	}
9501 
9502 	enab->dten_next = dtrace_retained;
9503 	dtrace_retained->dten_prev = enab;
9504 	dtrace_retained = enab;
9505 
9506 	return (0);
9507 }
9508 
9509 static int
9510 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9511     dtrace_probedesc_t *create)
9512 {
9513 	dtrace_enabling_t *new, *enab;
9514 	int found = 0, err = ENOENT;
9515 
9516 	ASSERT(MUTEX_HELD(&dtrace_lock));
9517 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9518 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9519 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9520 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9521 
9522 	new = dtrace_enabling_create(&state->dts_vstate);
9523 
9524 	/*
9525 	 * Iterate over all retained enablings, looking for enablings that
9526 	 * match the specified state.
9527 	 */
9528 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9529 		int i;
9530 
9531 		/*
9532 		 * dtvs_state can only be NULL for helper enablings -- and
9533 		 * helper enablings can't be retained.
9534 		 */
9535 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9536 
9537 		if (enab->dten_vstate->dtvs_state != state)
9538 			continue;
9539 
9540 		/*
9541 		 * Now iterate over each probe description; we're looking for
9542 		 * an exact match to the specified probe description.
9543 		 */
9544 		for (i = 0; i < enab->dten_ndesc; i++) {
9545 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9546 			dtrace_probedesc_t *pd = &ep->dted_probe;
9547 
9548 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9549 				continue;
9550 
9551 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9552 				continue;
9553 
9554 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9555 				continue;
9556 
9557 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9558 				continue;
9559 
9560 			/*
9561 			 * We have a winning probe!  Add it to our growing
9562 			 * enabling.
9563 			 */
9564 			found = 1;
9565 			dtrace_enabling_addlike(new, ep, create);
9566 		}
9567 	}
9568 
9569 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9570 		dtrace_enabling_destroy(new);
9571 		return (err);
9572 	}
9573 
9574 	return (0);
9575 }
9576 
9577 static void
9578 dtrace_enabling_retract(dtrace_state_t *state)
9579 {
9580 	dtrace_enabling_t *enab, *next;
9581 
9582 	ASSERT(MUTEX_HELD(&dtrace_lock));
9583 
9584 	/*
9585 	 * Iterate over all retained enablings, destroy the enablings retained
9586 	 * for the specified state.
9587 	 */
9588 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9589 		next = enab->dten_next;
9590 
9591 		/*
9592 		 * dtvs_state can only be NULL for helper enablings -- and
9593 		 * helper enablings can't be retained.
9594 		 */
9595 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9596 
9597 		if (enab->dten_vstate->dtvs_state == state) {
9598 			ASSERT(state->dts_nretained > 0);
9599 			dtrace_enabling_destroy(enab);
9600 		}
9601 	}
9602 
9603 	ASSERT(state->dts_nretained == 0);
9604 }
9605 
9606 static int
9607 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9608 {
9609 	int i = 0;
9610 	int matched = 0;
9611 
9612 	ASSERT(MUTEX_HELD(&cpu_lock));
9613 	ASSERT(MUTEX_HELD(&dtrace_lock));
9614 
9615 	for (i = 0; i < enab->dten_ndesc; i++) {
9616 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9617 
9618 		enab->dten_current = ep;
9619 		enab->dten_error = 0;
9620 
9621 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9622 
9623 		if (enab->dten_error != 0) {
9624 			/*
9625 			 * If we get an error half-way through enabling the
9626 			 * probes, we kick out -- perhaps with some number of
9627 			 * them enabled.  Leaving enabled probes enabled may
9628 			 * be slightly confusing for user-level, but we expect
9629 			 * that no one will attempt to actually drive on in
9630 			 * the face of such errors.  If this is an anonymous
9631 			 * enabling (indicated with a NULL nmatched pointer),
9632 			 * we cmn_err() a message.  We aren't expecting to
9633 			 * get such an error -- such as it can exist at all,
9634 			 * it would be a result of corrupted DOF in the driver
9635 			 * properties.
9636 			 */
9637 			if (nmatched == NULL) {
9638 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9639 				    "error on %p: %d", (void *)ep,
9640 				    enab->dten_error);
9641 			}
9642 
9643 			return (enab->dten_error);
9644 		}
9645 	}
9646 
9647 	enab->dten_probegen = dtrace_probegen;
9648 	if (nmatched != NULL)
9649 		*nmatched = matched;
9650 
9651 	return (0);
9652 }
9653 
9654 static void
9655 dtrace_enabling_matchall(void)
9656 {
9657 	dtrace_enabling_t *enab;
9658 
9659 	mutex_enter(&cpu_lock);
9660 	mutex_enter(&dtrace_lock);
9661 
9662 	/*
9663 	 * Because we can be called after dtrace_detach() has been called, we
9664 	 * cannot assert that there are retained enablings.  We can safely
9665 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9666 	 * end of dtrace_detach() will block pending our completion.
9667 	 */
9668 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9669 		(void) dtrace_enabling_match(enab, NULL);
9670 
9671 	mutex_exit(&dtrace_lock);
9672 	mutex_exit(&cpu_lock);
9673 }
9674 
9675 static int
9676 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9677 {
9678 	dtrace_enabling_t *enab;
9679 	int matched, total = 0, err;
9680 
9681 	ASSERT(MUTEX_HELD(&cpu_lock));
9682 	ASSERT(MUTEX_HELD(&dtrace_lock));
9683 
9684 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9685 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9686 
9687 		if (enab->dten_vstate->dtvs_state != state)
9688 			continue;
9689 
9690 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9691 			return (err);
9692 
9693 		total += matched;
9694 	}
9695 
9696 	if (nmatched != NULL)
9697 		*nmatched = total;
9698 
9699 	return (0);
9700 }
9701 
9702 /*
9703  * If an enabling is to be enabled without having matched probes (that is, if
9704  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9705  * enabling must be _primed_ by creating an ECB for every ECB description.
9706  * This must be done to assure that we know the number of speculations, the
9707  * number of aggregations, the minimum buffer size needed, etc. before we
9708  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9709  * enabling any probes, we create ECBs for every ECB decription, but with a
9710  * NULL probe -- which is exactly what this function does.
9711  */
9712 static void
9713 dtrace_enabling_prime(dtrace_state_t *state)
9714 {
9715 	dtrace_enabling_t *enab;
9716 	int i;
9717 
9718 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9719 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9720 
9721 		if (enab->dten_vstate->dtvs_state != state)
9722 			continue;
9723 
9724 		/*
9725 		 * We don't want to prime an enabling more than once, lest
9726 		 * we allow a malicious user to induce resource exhaustion.
9727 		 * (The ECBs that result from priming an enabling aren't
9728 		 * leaked -- but they also aren't deallocated until the
9729 		 * consumer state is destroyed.)
9730 		 */
9731 		if (enab->dten_primed)
9732 			continue;
9733 
9734 		for (i = 0; i < enab->dten_ndesc; i++) {
9735 			enab->dten_current = enab->dten_desc[i];
9736 			(void) dtrace_probe_enable(NULL, enab);
9737 		}
9738 
9739 		enab->dten_primed = 1;
9740 	}
9741 }
9742 
9743 /*
9744  * Called to indicate that probes should be provided due to retained
9745  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
9746  * must take an initial lap through the enabling calling the dtps_provide()
9747  * entry point explicitly to allow for autocreated probes.
9748  */
9749 static void
9750 dtrace_enabling_provide(dtrace_provider_t *prv)
9751 {
9752 	int i, all = 0;
9753 	dtrace_probedesc_t desc;
9754 
9755 	ASSERT(MUTEX_HELD(&dtrace_lock));
9756 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9757 
9758 	if (prv == NULL) {
9759 		all = 1;
9760 		prv = dtrace_provider;
9761 	}
9762 
9763 	do {
9764 		dtrace_enabling_t *enab = dtrace_retained;
9765 		void *parg = prv->dtpv_arg;
9766 
9767 		for (; enab != NULL; enab = enab->dten_next) {
9768 			for (i = 0; i < enab->dten_ndesc; i++) {
9769 				desc = enab->dten_desc[i]->dted_probe;
9770 				mutex_exit(&dtrace_lock);
9771 				prv->dtpv_pops.dtps_provide(parg, &desc);
9772 				mutex_enter(&dtrace_lock);
9773 			}
9774 		}
9775 	} while (all && (prv = prv->dtpv_next) != NULL);
9776 
9777 	mutex_exit(&dtrace_lock);
9778 	dtrace_probe_provide(NULL, all ? NULL : prv);
9779 	mutex_enter(&dtrace_lock);
9780 }
9781 
9782 /*
9783  * DTrace DOF Functions
9784  */
9785 /*ARGSUSED*/
9786 static void
9787 dtrace_dof_error(dof_hdr_t *dof, const char *str)
9788 {
9789 	if (dtrace_err_verbose)
9790 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
9791 
9792 #ifdef DTRACE_ERRDEBUG
9793 	dtrace_errdebug(str);
9794 #endif
9795 }
9796 
9797 /*
9798  * Create DOF out of a currently enabled state.  Right now, we only create
9799  * DOF containing the run-time options -- but this could be expanded to create
9800  * complete DOF representing the enabled state.
9801  */
9802 static dof_hdr_t *
9803 dtrace_dof_create(dtrace_state_t *state)
9804 {
9805 	dof_hdr_t *dof;
9806 	dof_sec_t *sec;
9807 	dof_optdesc_t *opt;
9808 	int i, len = sizeof (dof_hdr_t) +
9809 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
9810 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9811 
9812 	ASSERT(MUTEX_HELD(&dtrace_lock));
9813 
9814 	dof = kmem_zalloc(len, KM_SLEEP);
9815 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
9816 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
9817 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
9818 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
9819 
9820 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
9821 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
9822 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION_1;
9823 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
9824 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
9825 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
9826 
9827 	dof->dofh_flags = 0;
9828 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
9829 	dof->dofh_secsize = sizeof (dof_sec_t);
9830 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
9831 	dof->dofh_secoff = sizeof (dof_hdr_t);
9832 	dof->dofh_loadsz = len;
9833 	dof->dofh_filesz = len;
9834 	dof->dofh_pad = 0;
9835 
9836 	/*
9837 	 * Fill in the option section header...
9838 	 */
9839 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
9840 	sec->dofs_type = DOF_SECT_OPTDESC;
9841 	sec->dofs_align = sizeof (uint64_t);
9842 	sec->dofs_flags = DOF_SECF_LOAD;
9843 	sec->dofs_entsize = sizeof (dof_optdesc_t);
9844 
9845 	opt = (dof_optdesc_t *)((uintptr_t)sec +
9846 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
9847 
9848 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
9849 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9850 
9851 	for (i = 0; i < DTRACEOPT_MAX; i++) {
9852 		opt[i].dofo_option = i;
9853 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
9854 		opt[i].dofo_value = state->dts_options[i];
9855 	}
9856 
9857 	return (dof);
9858 }
9859 
9860 static dof_hdr_t *
9861 dtrace_dof_copyin(uintptr_t uarg, int *errp)
9862 {
9863 	dof_hdr_t hdr, *dof;
9864 
9865 	ASSERT(!MUTEX_HELD(&dtrace_lock));
9866 
9867 	/*
9868 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
9869 	 */
9870 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
9871 		dtrace_dof_error(NULL, "failed to copyin DOF header");
9872 		*errp = EFAULT;
9873 		return (NULL);
9874 	}
9875 
9876 	/*
9877 	 * Now we'll allocate the entire DOF and copy it in -- provided
9878 	 * that the length isn't outrageous.
9879 	 */
9880 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
9881 		dtrace_dof_error(&hdr, "load size exceeds maximum");
9882 		*errp = E2BIG;
9883 		return (NULL);
9884 	}
9885 
9886 	if (hdr.dofh_loadsz < sizeof (hdr)) {
9887 		dtrace_dof_error(&hdr, "invalid load size");
9888 		*errp = EINVAL;
9889 		return (NULL);
9890 	}
9891 
9892 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
9893 
9894 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
9895 		kmem_free(dof, hdr.dofh_loadsz);
9896 		*errp = EFAULT;
9897 		return (NULL);
9898 	}
9899 
9900 	return (dof);
9901 }
9902 
9903 static dof_hdr_t *
9904 dtrace_dof_property(const char *name)
9905 {
9906 	uchar_t *buf;
9907 	uint64_t loadsz;
9908 	unsigned int len, i;
9909 	dof_hdr_t *dof;
9910 
9911 	/*
9912 	 * Unfortunately, array of values in .conf files are always (and
9913 	 * only) interpreted to be integer arrays.  We must read our DOF
9914 	 * as an integer array, and then squeeze it into a byte array.
9915 	 */
9916 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
9917 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
9918 		return (NULL);
9919 
9920 	for (i = 0; i < len; i++)
9921 		buf[i] = (uchar_t)(((int *)buf)[i]);
9922 
9923 	if (len < sizeof (dof_hdr_t)) {
9924 		ddi_prop_free(buf);
9925 		dtrace_dof_error(NULL, "truncated header");
9926 		return (NULL);
9927 	}
9928 
9929 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
9930 		ddi_prop_free(buf);
9931 		dtrace_dof_error(NULL, "truncated DOF");
9932 		return (NULL);
9933 	}
9934 
9935 	if (loadsz >= dtrace_dof_maxsize) {
9936 		ddi_prop_free(buf);
9937 		dtrace_dof_error(NULL, "oversized DOF");
9938 		return (NULL);
9939 	}
9940 
9941 	dof = kmem_alloc(loadsz, KM_SLEEP);
9942 	bcopy(buf, dof, loadsz);
9943 	ddi_prop_free(buf);
9944 
9945 	return (dof);
9946 }
9947 
9948 static void
9949 dtrace_dof_destroy(dof_hdr_t *dof)
9950 {
9951 	kmem_free(dof, dof->dofh_loadsz);
9952 }
9953 
9954 /*
9955  * Return the dof_sec_t pointer corresponding to a given section index.  If the
9956  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
9957  * a type other than DOF_SECT_NONE is specified, the header is checked against
9958  * this type and NULL is returned if the types do not match.
9959  */
9960 static dof_sec_t *
9961 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
9962 {
9963 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
9964 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
9965 
9966 	if (i >= dof->dofh_secnum) {
9967 		dtrace_dof_error(dof, "referenced section index is invalid");
9968 		return (NULL);
9969 	}
9970 
9971 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
9972 		dtrace_dof_error(dof, "referenced section is not loadable");
9973 		return (NULL);
9974 	}
9975 
9976 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
9977 		dtrace_dof_error(dof, "referenced section is the wrong type");
9978 		return (NULL);
9979 	}
9980 
9981 	return (sec);
9982 }
9983 
9984 static dtrace_probedesc_t *
9985 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
9986 {
9987 	dof_probedesc_t *probe;
9988 	dof_sec_t *strtab;
9989 	uintptr_t daddr = (uintptr_t)dof;
9990 	uintptr_t str;
9991 	size_t size;
9992 
9993 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
9994 		dtrace_dof_error(dof, "invalid probe section");
9995 		return (NULL);
9996 	}
9997 
9998 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
9999 		dtrace_dof_error(dof, "bad alignment in probe description");
10000 		return (NULL);
10001 	}
10002 
10003 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10004 		dtrace_dof_error(dof, "truncated probe description");
10005 		return (NULL);
10006 	}
10007 
10008 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10009 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10010 
10011 	if (strtab == NULL)
10012 		return (NULL);
10013 
10014 	str = daddr + strtab->dofs_offset;
10015 	size = strtab->dofs_size;
10016 
10017 	if (probe->dofp_provider >= strtab->dofs_size) {
10018 		dtrace_dof_error(dof, "corrupt probe provider");
10019 		return (NULL);
10020 	}
10021 
10022 	(void) strncpy(desc->dtpd_provider,
10023 	    (char *)(str + probe->dofp_provider),
10024 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10025 
10026 	if (probe->dofp_mod >= strtab->dofs_size) {
10027 		dtrace_dof_error(dof, "corrupt probe module");
10028 		return (NULL);
10029 	}
10030 
10031 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10032 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10033 
10034 	if (probe->dofp_func >= strtab->dofs_size) {
10035 		dtrace_dof_error(dof, "corrupt probe function");
10036 		return (NULL);
10037 	}
10038 
10039 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10040 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10041 
10042 	if (probe->dofp_name >= strtab->dofs_size) {
10043 		dtrace_dof_error(dof, "corrupt probe name");
10044 		return (NULL);
10045 	}
10046 
10047 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10048 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10049 
10050 	return (desc);
10051 }
10052 
10053 static dtrace_difo_t *
10054 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10055     cred_t *cr)
10056 {
10057 	dtrace_difo_t *dp;
10058 	size_t ttl = 0;
10059 	dof_difohdr_t *dofd;
10060 	uintptr_t daddr = (uintptr_t)dof;
10061 	size_t max = dtrace_difo_maxsize;
10062 	int i, l, n;
10063 
10064 	static const struct {
10065 		int section;
10066 		int bufoffs;
10067 		int lenoffs;
10068 		int entsize;
10069 		int align;
10070 		const char *msg;
10071 	} difo[] = {
10072 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10073 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10074 		sizeof (dif_instr_t), "multiple DIF sections" },
10075 
10076 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10077 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10078 		sizeof (uint64_t), "multiple integer tables" },
10079 
10080 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10081 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10082 		sizeof (char), "multiple string tables" },
10083 
10084 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10085 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10086 		sizeof (uint_t), "multiple variable tables" },
10087 
10088 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10089 	};
10090 
10091 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10092 		dtrace_dof_error(dof, "invalid DIFO header section");
10093 		return (NULL);
10094 	}
10095 
10096 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10097 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10098 		return (NULL);
10099 	}
10100 
10101 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10102 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10103 		dtrace_dof_error(dof, "bad size in DIFO header");
10104 		return (NULL);
10105 	}
10106 
10107 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10108 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10109 
10110 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10111 	dp->dtdo_rtype = dofd->dofd_rtype;
10112 
10113 	for (l = 0; l < n; l++) {
10114 		dof_sec_t *subsec;
10115 		void **bufp;
10116 		uint32_t *lenp;
10117 
10118 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10119 		    dofd->dofd_links[l])) == NULL)
10120 			goto err; /* invalid section link */
10121 
10122 		if (ttl + subsec->dofs_size > max) {
10123 			dtrace_dof_error(dof, "exceeds maximum size");
10124 			goto err;
10125 		}
10126 
10127 		ttl += subsec->dofs_size;
10128 
10129 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10130 			if (subsec->dofs_type != difo[i].section)
10131 				continue;
10132 
10133 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10134 				dtrace_dof_error(dof, "section not loaded");
10135 				goto err;
10136 			}
10137 
10138 			if (subsec->dofs_align != difo[i].align) {
10139 				dtrace_dof_error(dof, "bad alignment");
10140 				goto err;
10141 			}
10142 
10143 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10144 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10145 
10146 			if (*bufp != NULL) {
10147 				dtrace_dof_error(dof, difo[i].msg);
10148 				goto err;
10149 			}
10150 
10151 			if (difo[i].entsize != subsec->dofs_entsize) {
10152 				dtrace_dof_error(dof, "entry size mismatch");
10153 				goto err;
10154 			}
10155 
10156 			if (subsec->dofs_entsize != 0 &&
10157 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10158 				dtrace_dof_error(dof, "corrupt entry size");
10159 				goto err;
10160 			}
10161 
10162 			*lenp = subsec->dofs_size;
10163 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10164 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10165 			    *bufp, subsec->dofs_size);
10166 
10167 			if (subsec->dofs_entsize != 0)
10168 				*lenp /= subsec->dofs_entsize;
10169 
10170 			break;
10171 		}
10172 
10173 		/*
10174 		 * If we encounter a loadable DIFO sub-section that is not
10175 		 * known to us, assume this is a broken program and fail.
10176 		 */
10177 		if (difo[i].section == DOF_SECT_NONE &&
10178 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10179 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10180 			goto err;
10181 		}
10182 	}
10183 
10184 	if (dp->dtdo_buf == NULL) {
10185 		/*
10186 		 * We can't have a DIF object without DIF text.
10187 		 */
10188 		dtrace_dof_error(dof, "missing DIF text");
10189 		goto err;
10190 	}
10191 
10192 	/*
10193 	 * Before we validate the DIF object, run through the variable table
10194 	 * looking for the strings -- if any of their size are under, we'll set
10195 	 * their size to be the system-wide default string size.  Note that
10196 	 * this should _not_ happen if the "strsize" option has been set --
10197 	 * in this case, the compiler should have set the size to reflect the
10198 	 * setting of the option.
10199 	 */
10200 	for (i = 0; i < dp->dtdo_varlen; i++) {
10201 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10202 		dtrace_diftype_t *t = &v->dtdv_type;
10203 
10204 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10205 			continue;
10206 
10207 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10208 			t->dtdt_size = dtrace_strsize_default;
10209 	}
10210 
10211 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10212 		goto err;
10213 
10214 	dtrace_difo_init(dp, vstate);
10215 	return (dp);
10216 
10217 err:
10218 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10219 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10220 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10221 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10222 
10223 	kmem_free(dp, sizeof (dtrace_difo_t));
10224 	return (NULL);
10225 }
10226 
10227 static dtrace_predicate_t *
10228 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10229     cred_t *cr)
10230 {
10231 	dtrace_difo_t *dp;
10232 
10233 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10234 		return (NULL);
10235 
10236 	return (dtrace_predicate_create(dp));
10237 }
10238 
10239 static dtrace_actdesc_t *
10240 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10241     cred_t *cr)
10242 {
10243 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10244 	dof_actdesc_t *desc;
10245 	dof_sec_t *difosec;
10246 	size_t offs;
10247 	uintptr_t daddr = (uintptr_t)dof;
10248 	uint64_t arg;
10249 	dtrace_actkind_t kind;
10250 
10251 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10252 		dtrace_dof_error(dof, "invalid action section");
10253 		return (NULL);
10254 	}
10255 
10256 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10257 		dtrace_dof_error(dof, "truncated action description");
10258 		return (NULL);
10259 	}
10260 
10261 	if (sec->dofs_align != sizeof (uint64_t)) {
10262 		dtrace_dof_error(dof, "bad alignment in action description");
10263 		return (NULL);
10264 	}
10265 
10266 	if (sec->dofs_size < sec->dofs_entsize) {
10267 		dtrace_dof_error(dof, "section entry size exceeds total size");
10268 		return (NULL);
10269 	}
10270 
10271 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10272 		dtrace_dof_error(dof, "bad entry size in action description");
10273 		return (NULL);
10274 	}
10275 
10276 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10277 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10278 		return (NULL);
10279 	}
10280 
10281 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10282 		desc = (dof_actdesc_t *)(daddr +
10283 		    (uintptr_t)sec->dofs_offset + offs);
10284 		kind = (dtrace_actkind_t)desc->dofa_kind;
10285 
10286 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10287 		    (kind != DTRACEACT_PRINTA ||
10288 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10289 			dof_sec_t *strtab;
10290 			char *str, *fmt;
10291 			uint64_t i;
10292 
10293 			/*
10294 			 * printf()-like actions must have a format string.
10295 			 */
10296 			if ((strtab = dtrace_dof_sect(dof,
10297 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10298 				goto err;
10299 
10300 			str = (char *)((uintptr_t)dof +
10301 			    (uintptr_t)strtab->dofs_offset);
10302 
10303 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10304 				if (str[i] == '\0')
10305 					break;
10306 			}
10307 
10308 			if (i >= strtab->dofs_size) {
10309 				dtrace_dof_error(dof, "bogus format string");
10310 				goto err;
10311 			}
10312 
10313 			if (i == desc->dofa_arg) {
10314 				dtrace_dof_error(dof, "empty format string");
10315 				goto err;
10316 			}
10317 
10318 			i -= desc->dofa_arg;
10319 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10320 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10321 			arg = (uint64_t)(uintptr_t)fmt;
10322 		} else {
10323 			if (kind == DTRACEACT_PRINTA) {
10324 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10325 				arg = 0;
10326 			} else {
10327 				arg = desc->dofa_arg;
10328 			}
10329 		}
10330 
10331 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10332 		    desc->dofa_uarg, arg);
10333 
10334 		if (last != NULL) {
10335 			last->dtad_next = act;
10336 		} else {
10337 			first = act;
10338 		}
10339 
10340 		last = act;
10341 
10342 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10343 			continue;
10344 
10345 		if ((difosec = dtrace_dof_sect(dof,
10346 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10347 			goto err;
10348 
10349 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10350 
10351 		if (act->dtad_difo == NULL)
10352 			goto err;
10353 	}
10354 
10355 	ASSERT(first != NULL);
10356 	return (first);
10357 
10358 err:
10359 	for (act = first; act != NULL; act = next) {
10360 		next = act->dtad_next;
10361 		dtrace_actdesc_release(act, vstate);
10362 	}
10363 
10364 	return (NULL);
10365 }
10366 
10367 static dtrace_ecbdesc_t *
10368 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10369     cred_t *cr)
10370 {
10371 	dtrace_ecbdesc_t *ep;
10372 	dof_ecbdesc_t *ecb;
10373 	dtrace_probedesc_t *desc;
10374 	dtrace_predicate_t *pred = NULL;
10375 
10376 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10377 		dtrace_dof_error(dof, "truncated ECB description");
10378 		return (NULL);
10379 	}
10380 
10381 	if (sec->dofs_align != sizeof (uint64_t)) {
10382 		dtrace_dof_error(dof, "bad alignment in ECB description");
10383 		return (NULL);
10384 	}
10385 
10386 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10387 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10388 
10389 	if (sec == NULL)
10390 		return (NULL);
10391 
10392 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10393 	ep->dted_uarg = ecb->dofe_uarg;
10394 	desc = &ep->dted_probe;
10395 
10396 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10397 		goto err;
10398 
10399 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10400 		if ((sec = dtrace_dof_sect(dof,
10401 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10402 			goto err;
10403 
10404 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10405 			goto err;
10406 
10407 		ep->dted_pred.dtpdd_predicate = pred;
10408 	}
10409 
10410 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10411 		if ((sec = dtrace_dof_sect(dof,
10412 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10413 			goto err;
10414 
10415 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10416 
10417 		if (ep->dted_action == NULL)
10418 			goto err;
10419 	}
10420 
10421 	return (ep);
10422 
10423 err:
10424 	if (pred != NULL)
10425 		dtrace_predicate_release(pred, vstate);
10426 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10427 	return (NULL);
10428 }
10429 
10430 /*
10431  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10432  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10433  * site of any user SETX relocations to account for load object base address.
10434  * In the future, if we need other relocations, this function can be extended.
10435  */
10436 static int
10437 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10438 {
10439 	uintptr_t daddr = (uintptr_t)dof;
10440 	dof_relohdr_t *dofr =
10441 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10442 	dof_sec_t *ss, *rs, *ts;
10443 	dof_relodesc_t *r;
10444 	uint_t i, n;
10445 
10446 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10447 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10448 		dtrace_dof_error(dof, "invalid relocation header");
10449 		return (-1);
10450 	}
10451 
10452 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10453 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10454 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10455 
10456 	if (ss == NULL || rs == NULL || ts == NULL)
10457 		return (-1); /* dtrace_dof_error() has been called already */
10458 
10459 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10460 	    rs->dofs_align != sizeof (uint64_t)) {
10461 		dtrace_dof_error(dof, "invalid relocation section");
10462 		return (-1);
10463 	}
10464 
10465 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
10466 	n = rs->dofs_size / rs->dofs_entsize;
10467 
10468 	for (i = 0; i < n; i++) {
10469 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10470 
10471 		switch (r->dofr_type) {
10472 		case DOF_RELO_NONE:
10473 			break;
10474 		case DOF_RELO_SETX:
10475 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10476 			    sizeof (uint64_t) > ts->dofs_size) {
10477 				dtrace_dof_error(dof, "bad relocation offset");
10478 				return (-1);
10479 			}
10480 
10481 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10482 				dtrace_dof_error(dof, "misaligned setx relo");
10483 				return (-1);
10484 			}
10485 
10486 			*(uint64_t *)taddr += ubase;
10487 			break;
10488 		default:
10489 			dtrace_dof_error(dof, "invalid relocation type");
10490 			return (-1);
10491 		}
10492 
10493 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10494 	}
10495 
10496 	return (0);
10497 }
10498 
10499 /*
10500  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10501  * header:  it should be at the front of a memory region that is at least
10502  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10503  * size.  It need not be validated in any other way.
10504  */
10505 static int
10506 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10507     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10508 {
10509 	uint64_t len = dof->dofh_loadsz, seclen;
10510 	uintptr_t daddr = (uintptr_t)dof;
10511 	dtrace_ecbdesc_t *ep;
10512 	dtrace_enabling_t *enab;
10513 	uint_t i;
10514 
10515 	ASSERT(MUTEX_HELD(&dtrace_lock));
10516 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10517 
10518 	/*
10519 	 * Check the DOF header identification bytes.  In addition to checking
10520 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10521 	 * we can use them later without fear of regressing existing binaries.
10522 	 */
10523 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10524 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10525 		dtrace_dof_error(dof, "DOF magic string mismatch");
10526 		return (-1);
10527 	}
10528 
10529 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10530 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10531 		dtrace_dof_error(dof, "DOF has invalid data model");
10532 		return (-1);
10533 	}
10534 
10535 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10536 		dtrace_dof_error(dof, "DOF encoding mismatch");
10537 		return (-1);
10538 	}
10539 
10540 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
10541 		dtrace_dof_error(dof, "DOF version mismatch");
10542 		return (-1);
10543 	}
10544 
10545 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10546 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10547 		return (-1);
10548 	}
10549 
10550 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10551 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10552 		return (-1);
10553 	}
10554 
10555 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10556 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10557 		return (-1);
10558 	}
10559 
10560 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10561 		if (dof->dofh_ident[i] != 0) {
10562 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10563 			return (-1);
10564 		}
10565 	}
10566 
10567 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10568 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10569 		return (-1);
10570 	}
10571 
10572 	if (dof->dofh_secsize == 0) {
10573 		dtrace_dof_error(dof, "zero section header size");
10574 		return (-1);
10575 	}
10576 
10577 	/*
10578 	 * Check that the section headers don't exceed the amount of DOF
10579 	 * data.  Note that we cast the section size and number of sections
10580 	 * to uint64_t's to prevent possible overflow in the multiplication.
10581 	 */
10582 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10583 
10584 	if (dof->dofh_secoff > len || seclen > len ||
10585 	    dof->dofh_secoff + seclen > len) {
10586 		dtrace_dof_error(dof, "truncated section headers");
10587 		return (-1);
10588 	}
10589 
10590 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10591 		dtrace_dof_error(dof, "misaligned section headers");
10592 		return (-1);
10593 	}
10594 
10595 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10596 		dtrace_dof_error(dof, "misaligned section size");
10597 		return (-1);
10598 	}
10599 
10600 	/*
10601 	 * Take an initial pass through the section headers to be sure that
10602 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10603 	 * set, do not permit sections relating to providers, probes, or args.
10604 	 */
10605 	for (i = 0; i < dof->dofh_secnum; i++) {
10606 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10607 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10608 
10609 		if (noprobes) {
10610 			switch (sec->dofs_type) {
10611 			case DOF_SECT_PROVIDER:
10612 			case DOF_SECT_PROBES:
10613 			case DOF_SECT_PRARGS:
10614 			case DOF_SECT_PROFFS:
10615 				dtrace_dof_error(dof, "illegal sections "
10616 				    "for enabling");
10617 				return (-1);
10618 			}
10619 		}
10620 
10621 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10622 			continue; /* just ignore non-loadable sections */
10623 
10624 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10625 			dtrace_dof_error(dof, "bad section alignment");
10626 			return (-1);
10627 		}
10628 
10629 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10630 			dtrace_dof_error(dof, "misaligned section");
10631 			return (-1);
10632 		}
10633 
10634 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10635 		    sec->dofs_offset + sec->dofs_size > len) {
10636 			dtrace_dof_error(dof, "corrupt section header");
10637 			return (-1);
10638 		}
10639 
10640 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10641 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10642 			dtrace_dof_error(dof, "non-terminating string table");
10643 			return (-1);
10644 		}
10645 	}
10646 
10647 	/*
10648 	 * Take a second pass through the sections and locate and perform any
10649 	 * relocations that are present.  We do this after the first pass to
10650 	 * be sure that all sections have had their headers validated.
10651 	 */
10652 	for (i = 0; i < dof->dofh_secnum; i++) {
10653 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10654 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10655 
10656 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10657 			continue; /* skip sections that are not loadable */
10658 
10659 		switch (sec->dofs_type) {
10660 		case DOF_SECT_URELHDR:
10661 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10662 				return (-1);
10663 			break;
10664 		}
10665 	}
10666 
10667 	if ((enab = *enabp) == NULL)
10668 		enab = *enabp = dtrace_enabling_create(vstate);
10669 
10670 	for (i = 0; i < dof->dofh_secnum; i++) {
10671 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10672 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10673 
10674 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10675 			continue;
10676 
10677 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10678 			dtrace_enabling_destroy(enab);
10679 			*enabp = NULL;
10680 			return (-1);
10681 		}
10682 
10683 		dtrace_enabling_add(enab, ep);
10684 	}
10685 
10686 	return (0);
10687 }
10688 
10689 /*
10690  * Process DOF for any options.  This routine assumes that the DOF has been
10691  * at least processed by dtrace_dof_slurp().
10692  */
10693 static int
10694 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10695 {
10696 	int i, rval;
10697 	uint32_t entsize;
10698 	size_t offs;
10699 	dof_optdesc_t *desc;
10700 
10701 	for (i = 0; i < dof->dofh_secnum; i++) {
10702 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10703 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10704 
10705 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10706 			continue;
10707 
10708 		if (sec->dofs_align != sizeof (uint64_t)) {
10709 			dtrace_dof_error(dof, "bad alignment in "
10710 			    "option description");
10711 			return (EINVAL);
10712 		}
10713 
10714 		if ((entsize = sec->dofs_entsize) == 0) {
10715 			dtrace_dof_error(dof, "zeroed option entry size");
10716 			return (EINVAL);
10717 		}
10718 
10719 		if (entsize < sizeof (dof_optdesc_t)) {
10720 			dtrace_dof_error(dof, "bad option entry size");
10721 			return (EINVAL);
10722 		}
10723 
10724 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10725 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10726 			    (uintptr_t)sec->dofs_offset + offs);
10727 
10728 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10729 				dtrace_dof_error(dof, "non-zero option string");
10730 				return (EINVAL);
10731 			}
10732 
10733 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10734 				dtrace_dof_error(dof, "unset option");
10735 				return (EINVAL);
10736 			}
10737 
10738 			if ((rval = dtrace_state_option(state,
10739 			    desc->dofo_option, desc->dofo_value)) != 0) {
10740 				dtrace_dof_error(dof, "rejected option");
10741 				return (rval);
10742 			}
10743 		}
10744 	}
10745 
10746 	return (0);
10747 }
10748 
10749 /*
10750  * DTrace Consumer State Functions
10751  */
10752 int
10753 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
10754 {
10755 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
10756 	void *base;
10757 	uintptr_t limit;
10758 	dtrace_dynvar_t *dvar, *next, *start;
10759 	int i;
10760 
10761 	ASSERT(MUTEX_HELD(&dtrace_lock));
10762 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
10763 
10764 	bzero(dstate, sizeof (dtrace_dstate_t));
10765 
10766 	if ((dstate->dtds_chunksize = chunksize) == 0)
10767 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
10768 
10769 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
10770 		size = min;
10771 
10772 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10773 		return (ENOMEM);
10774 
10775 	dstate->dtds_size = size;
10776 	dstate->dtds_base = base;
10777 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
10778 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
10779 
10780 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
10781 
10782 	if (hashsize != 1 && (hashsize & 1))
10783 		hashsize--;
10784 
10785 	dstate->dtds_hashsize = hashsize;
10786 	dstate->dtds_hash = dstate->dtds_base;
10787 
10788 	/*
10789 	 * Determine number of active CPUs.  Divide free list evenly among
10790 	 * active CPUs.
10791 	 */
10792 	start = (dtrace_dynvar_t *)
10793 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
10794 	limit = (uintptr_t)base + size;
10795 
10796 	maxper = (limit - (uintptr_t)start) / NCPU;
10797 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
10798 
10799 	for (i = 0; i < NCPU; i++) {
10800 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
10801 
10802 		/*
10803 		 * If we don't even have enough chunks to make it once through
10804 		 * NCPUs, we're just going to allocate everything to the first
10805 		 * CPU.  And if we're on the last CPU, we're going to allocate
10806 		 * whatever is left over.  In either case, we set the limit to
10807 		 * be the limit of the dynamic variable space.
10808 		 */
10809 		if (maxper == 0 || i == NCPU - 1) {
10810 			limit = (uintptr_t)base + size;
10811 			start = NULL;
10812 		} else {
10813 			limit = (uintptr_t)start + maxper;
10814 			start = (dtrace_dynvar_t *)limit;
10815 		}
10816 
10817 		ASSERT(limit <= (uintptr_t)base + size);
10818 
10819 		for (;;) {
10820 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
10821 			    dstate->dtds_chunksize);
10822 
10823 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
10824 				break;
10825 
10826 			dvar->dtdv_next = next;
10827 			dvar = next;
10828 		}
10829 
10830 		if (maxper == 0)
10831 			break;
10832 	}
10833 
10834 	return (0);
10835 }
10836 
10837 void
10838 dtrace_dstate_fini(dtrace_dstate_t *dstate)
10839 {
10840 	ASSERT(MUTEX_HELD(&cpu_lock));
10841 
10842 	if (dstate->dtds_base == NULL)
10843 		return;
10844 
10845 	kmem_free(dstate->dtds_base, dstate->dtds_size);
10846 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
10847 }
10848 
10849 static void
10850 dtrace_vstate_fini(dtrace_vstate_t *vstate)
10851 {
10852 	/*
10853 	 * Logical XOR, where are you?
10854 	 */
10855 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
10856 
10857 	if (vstate->dtvs_nglobals > 0) {
10858 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
10859 		    sizeof (dtrace_statvar_t *));
10860 	}
10861 
10862 	if (vstate->dtvs_ntlocals > 0) {
10863 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
10864 		    sizeof (dtrace_difv_t));
10865 	}
10866 
10867 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
10868 
10869 	if (vstate->dtvs_nlocals > 0) {
10870 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
10871 		    sizeof (dtrace_statvar_t *));
10872 	}
10873 }
10874 
10875 static void
10876 dtrace_state_clean(dtrace_state_t *state)
10877 {
10878 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
10879 		return;
10880 
10881 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
10882 	dtrace_speculation_clean(state);
10883 }
10884 
10885 static void
10886 dtrace_state_deadman(dtrace_state_t *state)
10887 {
10888 	hrtime_t now;
10889 
10890 	dtrace_sync();
10891 
10892 	now = dtrace_gethrtime();
10893 
10894 	if (state != dtrace_anon.dta_state &&
10895 	    now - state->dts_laststatus >= dtrace_deadman_user)
10896 		return;
10897 
10898 	/*
10899 	 * We must be sure that dts_alive never appears to be less than the
10900 	 * value upon entry to dtrace_state_deadman(), and because we lack a
10901 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
10902 	 * store INT64_MAX to it, followed by a memory barrier, followed by
10903 	 * the new value.  This assures that dts_alive never appears to be
10904 	 * less than its true value, regardless of the order in which the
10905 	 * stores to the underlying storage are issued.
10906 	 */
10907 	state->dts_alive = INT64_MAX;
10908 	dtrace_membar_producer();
10909 	state->dts_alive = now;
10910 }
10911 
10912 dtrace_state_t *
10913 dtrace_state_create(dev_t *devp, cred_t *cr)
10914 {
10915 	minor_t minor;
10916 	major_t major;
10917 	char c[30];
10918 	dtrace_state_t *state;
10919 	dtrace_optval_t *opt;
10920 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
10921 
10922 	ASSERT(MUTEX_HELD(&dtrace_lock));
10923 	ASSERT(MUTEX_HELD(&cpu_lock));
10924 
10925 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
10926 	    VM_BESTFIT | VM_SLEEP);
10927 
10928 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
10929 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
10930 		return (NULL);
10931 	}
10932 
10933 	state = ddi_get_soft_state(dtrace_softstate, minor);
10934 	state->dts_epid = DTRACE_EPIDNONE + 1;
10935 
10936 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
10937 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
10938 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
10939 
10940 	if (devp != NULL) {
10941 		major = getemajor(*devp);
10942 	} else {
10943 		major = ddi_driver_major(dtrace_devi);
10944 	}
10945 
10946 	state->dts_dev = makedevice(major, minor);
10947 
10948 	if (devp != NULL)
10949 		*devp = state->dts_dev;
10950 
10951 	/*
10952 	 * We allocate NCPU buffers.  On the one hand, this can be quite
10953 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
10954 	 * other hand, it saves an additional memory reference in the probe
10955 	 * path.
10956 	 */
10957 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
10958 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
10959 	state->dts_cleaner = CYCLIC_NONE;
10960 	state->dts_deadman = CYCLIC_NONE;
10961 	state->dts_vstate.dtvs_state = state;
10962 
10963 	for (i = 0; i < DTRACEOPT_MAX; i++)
10964 		state->dts_options[i] = DTRACEOPT_UNSET;
10965 
10966 	/*
10967 	 * Set the default options.
10968 	 */
10969 	opt = state->dts_options;
10970 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
10971 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
10972 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
10973 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
10974 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
10975 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
10976 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
10977 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
10978 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
10979 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
10980 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
10981 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
10982 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
10983 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
10984 
10985 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
10986 
10987 	/*
10988 	 * Set up the credentials for this instantiation.
10989 	 */
10990 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
10991 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
10992 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
10993 	} else {
10994 		state->dts_cred.dcr_uid = crgetuid(cr);
10995 		state->dts_cred.dcr_gid = crgetgid(cr);
10996 
10997 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
10998 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
10999 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11000 		}
11001 
11002 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) &&
11003 		    PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11004 			state->dts_cred.dcr_visible |= DTRACE_CRV_ALLPROC;
11005 			state->dts_cred.dcr_action |=
11006 			    DTRACE_CRA_PROC_DESTRUCTIVE;
11007 		}
11008 
11009 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11010 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11011 			    DTRACE_CRV_ALLPROC;
11012 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11013 			    DTRACE_CRA_PROC;
11014 
11015 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11016 				state->dts_cred.dcr_action |=
11017 				    DTRACE_CRA_PROC_DESTRUCTIVE;
11018 		}
11019 	}
11020 
11021 	return (state);
11022 }
11023 
11024 static int
11025 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11026 {
11027 	dtrace_optval_t *opt = state->dts_options, size;
11028 	processorid_t cpu;
11029 	int flags = 0, rval;
11030 
11031 	ASSERT(MUTEX_HELD(&dtrace_lock));
11032 	ASSERT(MUTEX_HELD(&cpu_lock));
11033 	ASSERT(which < DTRACEOPT_MAX);
11034 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11035 	    (state == dtrace_anon.dta_state &&
11036 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11037 
11038 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11039 		return (0);
11040 
11041 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11042 		cpu = opt[DTRACEOPT_CPU];
11043 
11044 	if (which == DTRACEOPT_SPECSIZE)
11045 		flags |= DTRACEBUF_NOSWITCH;
11046 
11047 	if (which == DTRACEOPT_BUFSIZE) {
11048 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11049 			flags |= DTRACEBUF_RING;
11050 
11051 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11052 			flags |= DTRACEBUF_FILL;
11053 
11054 		flags |= DTRACEBUF_INACTIVE;
11055 	}
11056 
11057 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11058 		/*
11059 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11060 		 * aligned, drop it down by the difference.
11061 		 */
11062 		if (size & (sizeof (uint64_t) - 1))
11063 			size -= size & (sizeof (uint64_t) - 1);
11064 
11065 		if (size < state->dts_reserve) {
11066 			/*
11067 			 * Buffers always must be large enough to accommodate
11068 			 * their prereserved space.  We return E2BIG instead
11069 			 * of ENOMEM in this case to allow for user-level
11070 			 * software to differentiate the cases.
11071 			 */
11072 			return (E2BIG);
11073 		}
11074 
11075 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11076 
11077 		if (rval != ENOMEM) {
11078 			opt[which] = size;
11079 			return (rval);
11080 		}
11081 
11082 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11083 			return (rval);
11084 	}
11085 
11086 	return (ENOMEM);
11087 }
11088 
11089 static int
11090 dtrace_state_buffers(dtrace_state_t *state)
11091 {
11092 	dtrace_speculation_t *spec = state->dts_speculations;
11093 	int rval, i;
11094 
11095 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11096 	    DTRACEOPT_BUFSIZE)) != 0)
11097 		return (rval);
11098 
11099 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11100 	    DTRACEOPT_AGGSIZE)) != 0)
11101 		return (rval);
11102 
11103 	for (i = 0; i < state->dts_nspeculations; i++) {
11104 		if ((rval = dtrace_state_buffer(state,
11105 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11106 			return (rval);
11107 	}
11108 
11109 	return (0);
11110 }
11111 
11112 static void
11113 dtrace_state_prereserve(dtrace_state_t *state)
11114 {
11115 	dtrace_ecb_t *ecb;
11116 	dtrace_probe_t *probe;
11117 
11118 	state->dts_reserve = 0;
11119 
11120 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11121 		return;
11122 
11123 	/*
11124 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11125 	 * prereserved space to be the space required by the END probes.
11126 	 */
11127 	probe = dtrace_probes[dtrace_probeid_end - 1];
11128 	ASSERT(probe != NULL);
11129 
11130 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11131 		if (ecb->dte_state != state)
11132 			continue;
11133 
11134 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11135 	}
11136 }
11137 
11138 static int
11139 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11140 {
11141 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11142 	dtrace_speculation_t *spec;
11143 	dtrace_buffer_t *buf;
11144 	cyc_handler_t hdlr;
11145 	cyc_time_t when;
11146 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11147 	dtrace_icookie_t cookie;
11148 
11149 	mutex_enter(&cpu_lock);
11150 	mutex_enter(&dtrace_lock);
11151 
11152 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11153 		rval = EBUSY;
11154 		goto out;
11155 	}
11156 
11157 	/*
11158 	 * Before we can perform any checks, we must prime all of the
11159 	 * retained enablings that correspond to this state.
11160 	 */
11161 	dtrace_enabling_prime(state);
11162 
11163 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11164 		rval = EACCES;
11165 		goto out;
11166 	}
11167 
11168 	dtrace_state_prereserve(state);
11169 
11170 	/*
11171 	 * Now we want to do is try to allocate our speculations.
11172 	 * We do not automatically resize the number of speculations; if
11173 	 * this fails, we will fail the operation.
11174 	 */
11175 	nspec = opt[DTRACEOPT_NSPEC];
11176 	ASSERT(nspec != DTRACEOPT_UNSET);
11177 
11178 	if (nspec > INT_MAX) {
11179 		rval = ENOMEM;
11180 		goto out;
11181 	}
11182 
11183 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
11184 
11185 	if (spec == NULL) {
11186 		rval = ENOMEM;
11187 		goto out;
11188 	}
11189 
11190 	state->dts_speculations = spec;
11191 	state->dts_nspeculations = (int)nspec;
11192 
11193 	for (i = 0; i < nspec; i++) {
11194 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11195 			rval = ENOMEM;
11196 			goto err;
11197 		}
11198 
11199 		spec[i].dtsp_buffer = buf;
11200 	}
11201 
11202 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11203 		if (dtrace_anon.dta_state == NULL) {
11204 			rval = ENOENT;
11205 			goto out;
11206 		}
11207 
11208 		if (state->dts_necbs != 0) {
11209 			rval = EALREADY;
11210 			goto out;
11211 		}
11212 
11213 		state->dts_anon = dtrace_anon_grab();
11214 		ASSERT(state->dts_anon != NULL);
11215 
11216 		*cpu = dtrace_anon.dta_beganon;
11217 
11218 		/*
11219 		 * If the anonymous state is active (as it almost certainly
11220 		 * is if the anonymous enabling ultimately matched anything),
11221 		 * we don't allow any further option processing -- but we
11222 		 * don't return failure.
11223 		 */
11224 		state = state->dts_anon;
11225 
11226 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11227 			goto out;
11228 	}
11229 
11230 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11231 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11232 		if (state->dts_aggregations == NULL) {
11233 			/*
11234 			 * We're not going to create an aggregation buffer
11235 			 * because we don't have any ECBs that contain
11236 			 * aggregations -- set this option to 0.
11237 			 */
11238 			opt[DTRACEOPT_AGGSIZE] = 0;
11239 		} else {
11240 			/*
11241 			 * If we have an aggregation buffer, we must also have
11242 			 * a buffer to use as scratch.
11243 			 */
11244 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11245 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11246 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11247 			}
11248 		}
11249 	}
11250 
11251 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11252 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11253 		if (!state->dts_speculates) {
11254 			/*
11255 			 * We're not going to create speculation buffers
11256 			 * because we don't have any ECBs that actually
11257 			 * speculate -- set the speculation size to 0.
11258 			 */
11259 			opt[DTRACEOPT_SPECSIZE] = 0;
11260 		}
11261 	}
11262 
11263 	/*
11264 	 * The bare minimum size for any buffer that we're actually going to
11265 	 * do anything to is sizeof (uint64_t).
11266 	 */
11267 	sz = sizeof (uint64_t);
11268 
11269 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11270 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11271 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11272 		/*
11273 		 * A buffer size has been explicitly set to 0 (or to a size
11274 		 * that will be adjusted to 0) and we need the space -- we
11275 		 * need to return failure.  We return ENOSPC to differentiate
11276 		 * it from failing to allocate a buffer due to failure to meet
11277 		 * the reserve (for which we return E2BIG).
11278 		 */
11279 		rval = ENOSPC;
11280 		goto out;
11281 	}
11282 
11283 	if ((rval = dtrace_state_buffers(state)) != 0)
11284 		goto err;
11285 
11286 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11287 		sz = dtrace_dstate_defsize;
11288 
11289 	do {
11290 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11291 
11292 		if (rval == 0)
11293 			break;
11294 
11295 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11296 			goto err;
11297 	} while (sz >>= 1);
11298 
11299 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11300 
11301 	if (rval != 0)
11302 		goto err;
11303 
11304 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11305 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11306 
11307 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11308 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11309 
11310 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11311 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11312 
11313 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11314 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11315 
11316 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11317 	hdlr.cyh_arg = state;
11318 	hdlr.cyh_level = CY_LOW_LEVEL;
11319 
11320 	when.cyt_when = 0;
11321 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11322 
11323 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11324 
11325 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11326 	hdlr.cyh_arg = state;
11327 	hdlr.cyh_level = CY_LOW_LEVEL;
11328 
11329 	when.cyt_when = 0;
11330 	when.cyt_interval = dtrace_deadman_interval;
11331 
11332 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11333 	state->dts_deadman = cyclic_add(&hdlr, &when);
11334 
11335 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11336 
11337 	/*
11338 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11339 	 * interrupts here both to record the CPU on which we fired the BEGIN
11340 	 * probe (the data from this CPU will be processed first at user
11341 	 * level) and to manually activate the buffer for this CPU.
11342 	 */
11343 	cookie = dtrace_interrupt_disable();
11344 	*cpu = CPU->cpu_id;
11345 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11346 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11347 
11348 	dtrace_probe(dtrace_probeid_begin,
11349 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11350 	dtrace_interrupt_enable(cookie);
11351 	/*
11352 	 * We may have had an exit action from a BEGIN probe; only change our
11353 	 * state to ACTIVE if we're still in WARMUP.
11354 	 */
11355 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11356 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11357 
11358 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11359 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11360 
11361 	/*
11362 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11363 	 * want each CPU to transition its principal buffer out of the
11364 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11365 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11366 	 * atomically transition from processing none of a state's ECBs to
11367 	 * processing all of them.
11368 	 */
11369 	dtrace_xcall(DTRACE_CPUALL,
11370 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11371 	goto out;
11372 
11373 err:
11374 	dtrace_buffer_free(state->dts_buffer);
11375 	dtrace_buffer_free(state->dts_aggbuffer);
11376 
11377 	if ((nspec = state->dts_nspeculations) == 0) {
11378 		ASSERT(state->dts_speculations == NULL);
11379 		goto out;
11380 	}
11381 
11382 	spec = state->dts_speculations;
11383 	ASSERT(spec != NULL);
11384 
11385 	for (i = 0; i < state->dts_nspeculations; i++) {
11386 		if ((buf = spec[i].dtsp_buffer) == NULL)
11387 			break;
11388 
11389 		dtrace_buffer_free(buf);
11390 		kmem_free(buf, bufsize);
11391 	}
11392 
11393 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11394 	state->dts_nspeculations = 0;
11395 	state->dts_speculations = NULL;
11396 
11397 out:
11398 	mutex_exit(&dtrace_lock);
11399 	mutex_exit(&cpu_lock);
11400 
11401 	return (rval);
11402 }
11403 
11404 static int
11405 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11406 {
11407 	dtrace_icookie_t cookie;
11408 
11409 	ASSERT(MUTEX_HELD(&dtrace_lock));
11410 
11411 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11412 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11413 		return (EINVAL);
11414 
11415 	/*
11416 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11417 	 * to be sure that every CPU has seen it.  See below for the details
11418 	 * on why this is done.
11419 	 */
11420 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11421 	dtrace_sync();
11422 
11423 	/*
11424 	 * By this point, it is impossible for any CPU to be still processing
11425 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11426 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11427 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11428 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11429 	 * iff we're in the END probe.
11430 	 */
11431 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11432 	dtrace_sync();
11433 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11434 
11435 	/*
11436 	 * Finally, we can release the reserve and call the END probe.  We
11437 	 * disable interrupts across calling the END probe to allow us to
11438 	 * return the CPU on which we actually called the END probe.  This
11439 	 * allows user-land to be sure that this CPU's principal buffer is
11440 	 * processed last.
11441 	 */
11442 	state->dts_reserve = 0;
11443 
11444 	cookie = dtrace_interrupt_disable();
11445 	*cpu = CPU->cpu_id;
11446 	dtrace_probe(dtrace_probeid_end,
11447 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11448 	dtrace_interrupt_enable(cookie);
11449 
11450 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11451 	dtrace_sync();
11452 
11453 	return (0);
11454 }
11455 
11456 static int
11457 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11458     dtrace_optval_t val)
11459 {
11460 	ASSERT(MUTEX_HELD(&dtrace_lock));
11461 
11462 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11463 		return (EBUSY);
11464 
11465 	if (option >= DTRACEOPT_MAX)
11466 		return (EINVAL);
11467 
11468 	if (option != DTRACEOPT_CPU && val < 0)
11469 		return (EINVAL);
11470 
11471 	switch (option) {
11472 	case DTRACEOPT_DESTRUCTIVE:
11473 		if (dtrace_destructive_disallow)
11474 			return (EACCES);
11475 
11476 		state->dts_cred.dcr_destructive = 1;
11477 		break;
11478 
11479 	case DTRACEOPT_BUFSIZE:
11480 	case DTRACEOPT_DYNVARSIZE:
11481 	case DTRACEOPT_AGGSIZE:
11482 	case DTRACEOPT_SPECSIZE:
11483 	case DTRACEOPT_STRSIZE:
11484 		if (val < 0)
11485 			return (EINVAL);
11486 
11487 		if (val >= LONG_MAX) {
11488 			/*
11489 			 * If this is an otherwise negative value, set it to
11490 			 * the highest multiple of 128m less than LONG_MAX.
11491 			 * Technically, we're adjusting the size without
11492 			 * regard to the buffer resizing policy, but in fact,
11493 			 * this has no effect -- if we set the buffer size to
11494 			 * ~LONG_MAX and the buffer policy is ultimately set to
11495 			 * be "manual", the buffer allocation is guaranteed to
11496 			 * fail, if only because the allocation requires two
11497 			 * buffers.  (We set the the size to the highest
11498 			 * multiple of 128m because it ensures that the size
11499 			 * will remain a multiple of a megabyte when
11500 			 * repeatedly halved -- all the way down to 15m.)
11501 			 */
11502 			val = LONG_MAX - (1 << 27) + 1;
11503 		}
11504 	}
11505 
11506 	state->dts_options[option] = val;
11507 
11508 	return (0);
11509 }
11510 
11511 static void
11512 dtrace_state_destroy(dtrace_state_t *state)
11513 {
11514 	dtrace_ecb_t *ecb;
11515 	dtrace_vstate_t *vstate = &state->dts_vstate;
11516 	minor_t minor = getminor(state->dts_dev);
11517 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11518 	dtrace_speculation_t *spec = state->dts_speculations;
11519 	int nspec = state->dts_nspeculations;
11520 	uint32_t match;
11521 
11522 	ASSERT(MUTEX_HELD(&dtrace_lock));
11523 	ASSERT(MUTEX_HELD(&cpu_lock));
11524 
11525 	/*
11526 	 * First, retract any retained enablings for this state.
11527 	 */
11528 	dtrace_enabling_retract(state);
11529 	ASSERT(state->dts_nretained == 0);
11530 
11531 	/*
11532 	 * Now we need to disable and destroy any enabled probes.  Because any
11533 	 * DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11534 	 * (especially if they're all enabled), we take two passes through
11535 	 * the ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes,
11536 	 * and in the second we disable whatever is left over.
11537 	 */
11538 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11539 		for (i = 0; i < state->dts_necbs; i++) {
11540 			if ((ecb = state->dts_ecbs[i]) == NULL)
11541 				continue;
11542 
11543 			if (match && ecb->dte_probe != NULL) {
11544 				dtrace_probe_t *probe = ecb->dte_probe;
11545 				dtrace_provider_t *prov = probe->dtpr_provider;
11546 
11547 				if (!(prov->dtpv_priv.dtpp_flags & match))
11548 					continue;
11549 			}
11550 
11551 			dtrace_ecb_disable(ecb);
11552 			dtrace_ecb_destroy(ecb);
11553 		}
11554 
11555 		if (!match)
11556 			break;
11557 	}
11558 
11559 	/*
11560 	 * Before we free the buffers, perform one more sync to assure that
11561 	 * every CPU is out of probe context.
11562 	 */
11563 	dtrace_sync();
11564 
11565 	dtrace_buffer_free(state->dts_buffer);
11566 	dtrace_buffer_free(state->dts_aggbuffer);
11567 
11568 	for (i = 0; i < nspec; i++)
11569 		dtrace_buffer_free(spec[i].dtsp_buffer);
11570 
11571 	if (state->dts_cleaner != CYCLIC_NONE)
11572 		cyclic_remove(state->dts_cleaner);
11573 
11574 	if (state->dts_deadman != CYCLIC_NONE)
11575 		cyclic_remove(state->dts_deadman);
11576 
11577 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11578 	dtrace_vstate_fini(vstate);
11579 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11580 
11581 	if (state->dts_aggregations != NULL) {
11582 #ifdef DEBUG
11583 		for (i = 0; i < state->dts_naggregations; i++)
11584 			ASSERT(state->dts_aggregations[i] == NULL);
11585 #endif
11586 		ASSERT(state->dts_naggregations > 0);
11587 		kmem_free(state->dts_aggregations,
11588 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11589 	}
11590 
11591 	kmem_free(state->dts_buffer, bufsize);
11592 	kmem_free(state->dts_aggbuffer, bufsize);
11593 
11594 	for (i = 0; i < nspec; i++)
11595 		kmem_free(spec[i].dtsp_buffer, bufsize);
11596 
11597 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11598 
11599 	dtrace_format_destroy(state);
11600 
11601 	vmem_destroy(state->dts_aggid_arena);
11602 	ddi_soft_state_free(dtrace_softstate, minor);
11603 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11604 }
11605 
11606 /*
11607  * DTrace Anonymous Enabling Functions
11608  */
11609 static dtrace_state_t *
11610 dtrace_anon_grab(void)
11611 {
11612 	dtrace_state_t *state;
11613 
11614 	ASSERT(MUTEX_HELD(&dtrace_lock));
11615 
11616 	if ((state = dtrace_anon.dta_state) == NULL) {
11617 		ASSERT(dtrace_anon.dta_enabling == NULL);
11618 		return (NULL);
11619 	}
11620 
11621 	ASSERT(dtrace_anon.dta_enabling != NULL);
11622 	ASSERT(dtrace_retained != NULL);
11623 
11624 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
11625 	dtrace_anon.dta_enabling = NULL;
11626 	dtrace_anon.dta_state = NULL;
11627 
11628 	return (state);
11629 }
11630 
11631 static void
11632 dtrace_anon_property(void)
11633 {
11634 	int i, rv;
11635 	dtrace_state_t *state;
11636 	dof_hdr_t *dof;
11637 	char c[32];		/* enough for "dof-data-" + digits */
11638 
11639 	ASSERT(MUTEX_HELD(&dtrace_lock));
11640 	ASSERT(MUTEX_HELD(&cpu_lock));
11641 
11642 	for (i = 0; ; i++) {
11643 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
11644 
11645 		dtrace_err_verbose = 1;
11646 
11647 		if ((dof = dtrace_dof_property(c)) == NULL) {
11648 			dtrace_err_verbose = 0;
11649 			break;
11650 		}
11651 
11652 		/*
11653 		 * We want to create anonymous state, so we need to transition
11654 		 * the kernel debugger to indicate that DTrace is active.  If
11655 		 * this fails (e.g. because the debugger has modified text in
11656 		 * some way), we won't continue with the processing.
11657 		 */
11658 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
11659 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
11660 			    "enabling ignored.");
11661 			dtrace_dof_destroy(dof);
11662 			break;
11663 		}
11664 
11665 		/*
11666 		 * If we haven't allocated an anonymous state, we'll do so now.
11667 		 */
11668 		if ((state = dtrace_anon.dta_state) == NULL) {
11669 			state = dtrace_state_create(NULL, NULL);
11670 			dtrace_anon.dta_state = state;
11671 
11672 			if (state == NULL) {
11673 				/*
11674 				 * This basically shouldn't happen:  the only
11675 				 * failure mode from dtrace_state_create() is a
11676 				 * failure of ddi_soft_state_zalloc() that
11677 				 * itself should never happen.  Still, the
11678 				 * interface allows for a failure mode, and
11679 				 * we want to fail as gracefully as possible:
11680 				 * we'll emit an error message and cease
11681 				 * processing anonymous state in this case.
11682 				 */
11683 				cmn_err(CE_WARN, "failed to create "
11684 				    "anonymous state");
11685 				dtrace_dof_destroy(dof);
11686 				break;
11687 			}
11688 		}
11689 
11690 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
11691 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
11692 
11693 		if (rv == 0)
11694 			rv = dtrace_dof_options(dof, state);
11695 
11696 		dtrace_err_verbose = 0;
11697 		dtrace_dof_destroy(dof);
11698 
11699 		if (rv != 0) {
11700 			/*
11701 			 * This is malformed DOF; chuck any anonymous state
11702 			 * that we created.
11703 			 */
11704 			ASSERT(dtrace_anon.dta_enabling == NULL);
11705 			dtrace_state_destroy(state);
11706 			dtrace_anon.dta_state = NULL;
11707 			break;
11708 		}
11709 
11710 		ASSERT(dtrace_anon.dta_enabling != NULL);
11711 	}
11712 
11713 	if (dtrace_anon.dta_enabling != NULL) {
11714 		int rval;
11715 
11716 		/*
11717 		 * dtrace_enabling_retain() can only fail because we are
11718 		 * trying to retain more enablings than are allowed -- but
11719 		 * we only have one anonymous enabling, and we are guaranteed
11720 		 * to be allowed at least one retained enabling; we assert
11721 		 * that dtrace_enabling_retain() returns success.
11722 		 */
11723 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
11724 		ASSERT(rval == 0);
11725 
11726 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
11727 	}
11728 }
11729 
11730 /*
11731  * DTrace Helper Functions
11732  */
11733 static void
11734 dtrace_helper_trace(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate,
11735     int where)
11736 {
11737 	uint32_t size, next, nnext, i;
11738 	dtrace_helptrace_t *ent;
11739 
11740 	if (!dtrace_helptrace_enabled)
11741 		return;
11742 
11743 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
11744 
11745 	/*
11746 	 * What would a tracing framework be without its own tracing
11747 	 * framework?  (Well, a hell of a lot simpler, for starters...)
11748 	 */
11749 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
11750 	    sizeof (uint64_t) - sizeof (uint64_t);
11751 
11752 	/*
11753 	 * Iterate until we can allocate a slot in the trace buffer.
11754 	 */
11755 	do {
11756 		next = dtrace_helptrace_next;
11757 
11758 		if (next + size < dtrace_helptrace_bufsize) {
11759 			nnext = next + size;
11760 		} else {
11761 			nnext = size;
11762 		}
11763 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
11764 
11765 	/*
11766 	 * We have our slot; fill it in.
11767 	 */
11768 	if (nnext == size)
11769 		next = 0;
11770 
11771 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
11772 	ent->dtht_helper = helper;
11773 	ent->dtht_where = where;
11774 	ent->dtht_nlocals = vstate->dtvs_nlocals;
11775 
11776 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
11777 		dtrace_statvar_t *svar;
11778 
11779 		if ((svar = vstate->dtvs_locals[i]) == NULL)
11780 			continue;
11781 
11782 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
11783 		ent->dtht_locals[i] =
11784 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
11785 	}
11786 }
11787 
11788 static uint64_t
11789 dtrace_helper(int which, dtrace_mstate_t *mstate,
11790     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
11791 {
11792 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
11793 	uint64_t sarg0 = mstate->dtms_arg[0];
11794 	uint64_t sarg1 = mstate->dtms_arg[1];
11795 	uint64_t rval;
11796 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
11797 	dtrace_helper_action_t *helper;
11798 	dtrace_vstate_t *vstate;
11799 	dtrace_difo_t *pred;
11800 	int i, trace = dtrace_helptrace_enabled;
11801 
11802 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
11803 
11804 	if (helpers == NULL)
11805 		return (0);
11806 
11807 	if ((helper = helpers->dthps_actions[which]) == NULL)
11808 		return (0);
11809 
11810 	vstate = &helpers->dthps_vstate;
11811 	mstate->dtms_arg[0] = arg0;
11812 	mstate->dtms_arg[1] = arg1;
11813 
11814 	/*
11815 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
11816 	 * we'll call the corresponding actions.  Note that the below calls
11817 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
11818 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
11819 	 * the stored DIF offset with its own (which is the desired behavior).
11820 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
11821 	 * from machine state; this is okay, too.
11822 	 */
11823 	for (; helper != NULL; helper = helper->dthp_next) {
11824 		if ((pred = helper->dthp_predicate) != NULL) {
11825 			if (trace)
11826 				dtrace_helper_trace(helper, vstate, 0);
11827 
11828 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
11829 				goto next;
11830 
11831 			if (*flags & CPU_DTRACE_FAULT)
11832 				goto err;
11833 		}
11834 
11835 		for (i = 0; i < helper->dthp_nactions; i++) {
11836 			if (trace)
11837 				dtrace_helper_trace(helper, vstate, i + 1);
11838 
11839 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
11840 			    mstate, vstate, state);
11841 
11842 			if (*flags & CPU_DTRACE_FAULT)
11843 				goto err;
11844 		}
11845 
11846 next:
11847 		if (trace)
11848 			dtrace_helper_trace(helper, vstate,
11849 			    DTRACE_HELPTRACE_NEXT);
11850 	}
11851 
11852 	if (trace)
11853 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_DONE);
11854 
11855 	/*
11856 	 * Restore the arg0 that we saved upon entry.
11857 	 */
11858 	mstate->dtms_arg[0] = sarg0;
11859 	mstate->dtms_arg[1] = sarg1;
11860 
11861 	return (rval);
11862 
11863 err:
11864 	if (trace)
11865 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_ERR);
11866 
11867 	/*
11868 	 * Restore the arg0 that we saved upon entry.
11869 	 */
11870 	mstate->dtms_arg[0] = sarg0;
11871 	mstate->dtms_arg[1] = sarg1;
11872 
11873 	return (NULL);
11874 }
11875 
11876 static void
11877 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
11878 {
11879 	int i;
11880 
11881 	if (helper->dthp_predicate != NULL)
11882 		dtrace_difo_release(helper->dthp_predicate, vstate);
11883 
11884 	for (i = 0; i < helper->dthp_nactions; i++) {
11885 		ASSERT(helper->dthp_actions[i] != NULL);
11886 		dtrace_difo_release(helper->dthp_actions[i], vstate);
11887 	}
11888 
11889 	kmem_free(helper->dthp_actions,
11890 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
11891 	kmem_free(helper, sizeof (dtrace_helper_action_t));
11892 }
11893 
11894 static int
11895 dtrace_helper_destroygen(int gen)
11896 {
11897 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
11898 	dtrace_vstate_t *vstate;
11899 	int i;
11900 
11901 	ASSERT(MUTEX_HELD(&dtrace_lock));
11902 
11903 	if (help == NULL || gen > help->dthps_generation)
11904 		return (EINVAL);
11905 
11906 	vstate = &help->dthps_vstate;
11907 
11908 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
11909 		dtrace_helper_action_t *last = NULL, *h, *next;
11910 
11911 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
11912 			next = h->dthp_next;
11913 
11914 			if (h->dthp_generation == gen) {
11915 				if (last != NULL) {
11916 					last->dthp_next = next;
11917 				} else {
11918 					help->dthps_actions[i] = next;
11919 				}
11920 
11921 				dtrace_helper_destroy(h, vstate);
11922 			} else {
11923 				last = h;
11924 			}
11925 		}
11926 	}
11927 
11928 	return (0);
11929 }
11930 
11931 static int
11932 dtrace_helper_validate(dtrace_helper_action_t *helper)
11933 {
11934 	int err = 0, i;
11935 	dtrace_difo_t *dp;
11936 
11937 	if ((dp = helper->dthp_predicate) != NULL)
11938 		err += dtrace_difo_validate_helper(dp);
11939 
11940 	for (i = 0; i < helper->dthp_nactions; i++)
11941 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
11942 
11943 	return (err == 0);
11944 }
11945 
11946 static int
11947 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
11948 {
11949 	dtrace_helpers_t *help;
11950 	dtrace_helper_action_t *helper, *last;
11951 	dtrace_actdesc_t *act;
11952 	dtrace_vstate_t *vstate;
11953 	dtrace_predicate_t *pred;
11954 	int count = 0, nactions = 0, i;
11955 
11956 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
11957 		return (EINVAL);
11958 
11959 	help = curproc->p_dtrace_helpers;
11960 	last = help->dthps_actions[which];
11961 	vstate = &help->dthps_vstate;
11962 
11963 	for (count = 0; last != NULL; last = last->dthp_next) {
11964 		count++;
11965 		if (last->dthp_next == NULL)
11966 			break;
11967 	}
11968 
11969 	/*
11970 	 * If we already have dtrace_helper_actions_max helper actions for this
11971 	 * helper action type, we'll refuse to add a new one.
11972 	 */
11973 	if (count >= dtrace_helper_actions_max)
11974 		return (ENOSPC);
11975 
11976 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
11977 	helper->dthp_generation = help->dthps_generation;
11978 
11979 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
11980 		ASSERT(pred->dtp_difo != NULL);
11981 		dtrace_difo_hold(pred->dtp_difo);
11982 		helper->dthp_predicate = pred->dtp_difo;
11983 	}
11984 
11985 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
11986 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
11987 			goto err;
11988 
11989 		if (act->dtad_difo == NULL)
11990 			goto err;
11991 
11992 		nactions++;
11993 	}
11994 
11995 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
11996 	    (helper->dthp_nactions = nactions), KM_SLEEP);
11997 
11998 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
11999 		dtrace_difo_hold(act->dtad_difo);
12000 		helper->dthp_actions[i++] = act->dtad_difo;
12001 	}
12002 
12003 	if (!dtrace_helper_validate(helper))
12004 		goto err;
12005 
12006 	if (last == NULL) {
12007 		help->dthps_actions[which] = helper;
12008 	} else {
12009 		last->dthp_next = helper;
12010 	}
12011 
12012 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12013 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12014 		dtrace_helptrace_next = 0;
12015 	}
12016 
12017 	return (0);
12018 err:
12019 	dtrace_helper_destroy(helper, vstate);
12020 	return (EINVAL);
12021 }
12022 
12023 static void
12024 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12025     dof_helper_t *dofhp)
12026 {
12027 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12028 
12029 	mutex_enter(&dtrace_meta_lock);
12030 	mutex_enter(&dtrace_lock);
12031 
12032 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12033 		/*
12034 		 * If the dtrace module is loaded but not attached, or if
12035 		 * there aren't isn't a meta provider registered to deal with
12036 		 * these provider descriptions, we need to postpone creating
12037 		 * the actual providers until later.
12038 		 */
12039 
12040 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12041 		    dtrace_deferred_pid != help) {
12042 			help->dthps_pid = p->p_pid;
12043 			help->dthps_next = dtrace_deferred_pid;
12044 			help->dthps_prev = NULL;
12045 			if (dtrace_deferred_pid != NULL)
12046 				dtrace_deferred_pid->dthps_prev = help;
12047 			dtrace_deferred_pid = help;
12048 		}
12049 
12050 		mutex_exit(&dtrace_lock);
12051 
12052 	} else if (dofhp != NULL) {
12053 		/*
12054 		 * If the dtrace module is loaded and we have a particular
12055 		 * helper provider description, pass that off to the
12056 		 * meta provider.
12057 		 */
12058 
12059 		mutex_exit(&dtrace_lock);
12060 
12061 		dtrace_helper_provide(dofhp, p->p_pid);
12062 
12063 	} else {
12064 		/*
12065 		 * Otherwise, just pass all the helper provider descriptions
12066 		 * off to the meta provider.
12067 		 */
12068 
12069 		int i;
12070 		mutex_exit(&dtrace_lock);
12071 
12072 		for (i = 0; i < help->dthps_nprovs; i++) {
12073 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12074 			    p->p_pid);
12075 		}
12076 	}
12077 
12078 	mutex_exit(&dtrace_meta_lock);
12079 }
12080 
12081 static int
12082 dtrace_helper_provider_add(dof_helper_t *dofhp)
12083 {
12084 	dtrace_helpers_t *help;
12085 	dtrace_helper_provider_t *hprov, **tmp_provs;
12086 	uint_t tmp_nprovs, i;
12087 
12088 	help = curproc->p_dtrace_helpers;
12089 	ASSERT(help != NULL);
12090 
12091 	/*
12092 	 * If we already have dtrace_helper_providers_max helper providers,
12093 	 * we're refuse to add a new one.
12094 	 */
12095 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
12096 		return (ENOSPC);
12097 
12098 	/*
12099 	 * Check to make sure this isn't a duplicate.
12100 	 */
12101 	for (i = 0; i < help->dthps_nprovs; i++) {
12102 		if (dofhp->dofhp_addr ==
12103 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
12104 			return (EALREADY);
12105 	}
12106 
12107 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
12108 	hprov->dthp_prov = *dofhp;
12109 	hprov->dthp_ref = 1;
12110 
12111 	tmp_nprovs = help->dthps_nprovs;
12112 	tmp_provs = help->dthps_provs;
12113 	help->dthps_nprovs++;
12114 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
12115 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12116 
12117 	help->dthps_provs[tmp_nprovs] = hprov;
12118 	if (tmp_provs != NULL) {
12119 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
12120 		    sizeof (dtrace_helper_provider_t *));
12121 		kmem_free(tmp_provs, tmp_nprovs *
12122 		    sizeof (dtrace_helper_provider_t *));
12123 	}
12124 
12125 	return (0);
12126 }
12127 
12128 static void
12129 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
12130 {
12131 	mutex_enter(&dtrace_lock);
12132 
12133 	if (--hprov->dthp_ref == 0) {
12134 		dof_hdr_t *dof;
12135 		mutex_exit(&dtrace_lock);
12136 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
12137 		dtrace_dof_destroy(dof);
12138 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
12139 	} else {
12140 		mutex_exit(&dtrace_lock);
12141 	}
12142 }
12143 
12144 static int
12145 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
12146 {
12147 	uintptr_t daddr = (uintptr_t)dof;
12148 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
12149 	dof_provider_t *provider;
12150 	dof_probe_t *probe;
12151 	uint8_t *arg;
12152 	char *strtab, *typestr;
12153 	dof_stridx_t typeidx;
12154 	size_t typesz;
12155 	uint_t nprobes, j, k;
12156 
12157 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
12158 
12159 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
12160 		dtrace_dof_error(dof, "misaligned section offset");
12161 		return (-1);
12162 	}
12163 
12164 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
12165 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
12166 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
12167 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
12168 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
12169 
12170 	if (str_sec == NULL || prb_sec == NULL ||
12171 	    arg_sec == NULL || off_sec == NULL)
12172 		return (-1);
12173 
12174 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
12175 
12176 	if (provider->dofpv_name >= str_sec->dofs_size ||
12177 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
12178 		dtrace_dof_error(dof, "invalid provider name");
12179 		return (-1);
12180 	}
12181 
12182 	if (prb_sec->dofs_entsize == 0 ||
12183 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
12184 		dtrace_dof_error(dof, "invalid entry size");
12185 		return (-1);
12186 	}
12187 
12188 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
12189 		dtrace_dof_error(dof, "misaligned entry size");
12190 		return (-1);
12191 	}
12192 
12193 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12194 		dtrace_dof_error(dof, "invalid entry size");
12195 		return (-1);
12196 	}
12197 
12198 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12199 		dtrace_dof_error(dof, "misaligned section offset");
12200 		return (-1);
12201 	}
12202 
12203 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12204 		dtrace_dof_error(dof, "invalid entry size");
12205 		return (-1);
12206 	}
12207 
12208 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
12209 
12210 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12211 
12212 	/*
12213 	 * Take a pass through the probes to check for errors.
12214 	 */
12215 	for (j = 0; j < nprobes; j++) {
12216 		probe = (dof_probe_t *)(uintptr_t)(daddr +
12217 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
12218 
12219 		if (probe->dofpr_func >= str_sec->dofs_size) {
12220 			dtrace_dof_error(dof, "invalid function name");
12221 			return (-1);
12222 		}
12223 
12224 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12225 			dtrace_dof_error(dof, "function name too long");
12226 			return (-1);
12227 		}
12228 
12229 		if (probe->dofpr_name >= str_sec->dofs_size ||
12230 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12231 			dtrace_dof_error(dof, "invalid probe name");
12232 			return (-1);
12233 		}
12234 
12235 
12236 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12237 		    probe->dofpr_offidx ||
12238 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12239 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12240 			dtrace_dof_error(dof, "invalid probe offset");
12241 			return (-1);
12242 		}
12243 
12244 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12245 		    probe->dofpr_argidx ||
12246 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12247 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12248 			dtrace_dof_error(dof, "invalid args");
12249 			return (-1);
12250 		}
12251 
12252 		typeidx = probe->dofpr_nargv;
12253 		typestr = strtab + probe->dofpr_nargv;
12254 		for (k = 0; k < probe->dofpr_nargc; k++) {
12255 			if (typeidx >= str_sec->dofs_size) {
12256 				dtrace_dof_error(dof, "bad "
12257 				    "native argument type");
12258 				return (-1);
12259 			}
12260 
12261 			typesz = strlen(typestr) + 1;
12262 			if (typesz > DTRACE_ARGTYPELEN) {
12263 				dtrace_dof_error(dof, "native "
12264 				    "argument type too long");
12265 				return (-1);
12266 			}
12267 			typeidx += typesz;
12268 			typestr += typesz;
12269 		}
12270 
12271 		typeidx = probe->dofpr_xargv;
12272 		typestr = strtab + probe->dofpr_xargv;
12273 		for (k = 0; k < probe->dofpr_xargc; k++) {
12274 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12275 				dtrace_dof_error(dof, "bad "
12276 				    "native argument index");
12277 				return (-1);
12278 			}
12279 
12280 			if (typeidx >= str_sec->dofs_size) {
12281 				dtrace_dof_error(dof, "bad "
12282 				    "translated argument type");
12283 				return (-1);
12284 			}
12285 
12286 			typesz = strlen(typestr) + 1;
12287 			if (typesz > DTRACE_ARGTYPELEN) {
12288 				dtrace_dof_error(dof, "translated argument "
12289 				    "type too long");
12290 				return (-1);
12291 			}
12292 
12293 			typeidx += typesz;
12294 			typestr += typesz;
12295 		}
12296 	}
12297 
12298 	return (0);
12299 }
12300 
12301 static int
12302 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12303 {
12304 	dtrace_helpers_t *help;
12305 	dtrace_vstate_t *vstate;
12306 	dtrace_enabling_t *enab = NULL;
12307 	int i, gen, rv, nhelpers = 0, destroy = 1;
12308 
12309 	ASSERT(MUTEX_HELD(&dtrace_lock));
12310 
12311 	if ((help = curproc->p_dtrace_helpers) == NULL)
12312 		help = dtrace_helpers_create(curproc);
12313 
12314 	vstate = &help->dthps_vstate;
12315 
12316 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12317 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12318 		dtrace_dof_destroy(dof);
12319 		return (rv);
12320 	}
12321 
12322 	/*
12323 	 * Now we need to walk through the ECB descriptions in the enabling.
12324 	 */
12325 	for (i = 0; i < enab->dten_ndesc; i++) {
12326 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12327 		dtrace_probedesc_t *desc = &ep->dted_probe;
12328 
12329 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12330 			continue;
12331 
12332 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12333 			continue;
12334 
12335 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12336 			continue;
12337 
12338 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12339 		    ep)) != 0) {
12340 			/*
12341 			 * Adding this helper action failed -- we are now going
12342 			 * to rip out the entire generation and return failure.
12343 			 */
12344 			(void) dtrace_helper_destroygen(help->dthps_generation);
12345 			dtrace_enabling_destroy(enab);
12346 			dtrace_dof_destroy(dof);
12347 			dtrace_err = rv;
12348 			return (-1);
12349 		}
12350 
12351 		nhelpers++;
12352 	}
12353 
12354 	if (nhelpers < enab->dten_ndesc)
12355 		dtrace_dof_error(dof, "unmatched helpers");
12356 
12357 	if (dhp != NULL) {
12358 		uintptr_t daddr = (uintptr_t)dof;
12359 		int err = 0;
12360 
12361 		/*
12362 		 * Look for helper probes.
12363 		 */
12364 		for (i = 0; i < dof->dofh_secnum; i++) {
12365 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
12366 			    dof->dofh_secoff + i * dof->dofh_secsize);
12367 
12368 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12369 				continue;
12370 
12371 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12372 				err = 1;
12373 				break;
12374 			}
12375 		}
12376 
12377 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
12378 		if (err == 0 && dtrace_helper_provider_add(dhp) == 0)
12379 			destroy = 0;
12380 		else
12381 			dhp = NULL;
12382 	}
12383 
12384 	gen = help->dthps_generation++;
12385 	dtrace_enabling_destroy(enab);
12386 
12387 	if (dhp != NULL) {
12388 		mutex_exit(&dtrace_lock);
12389 		dtrace_helper_provider_register(curproc, help, dhp);
12390 		mutex_enter(&dtrace_lock);
12391 	}
12392 
12393 	if (destroy)
12394 		dtrace_dof_destroy(dof);
12395 
12396 	return (gen);
12397 }
12398 
12399 static dtrace_helpers_t *
12400 dtrace_helpers_create(proc_t *p)
12401 {
12402 	dtrace_helpers_t *help;
12403 
12404 	ASSERT(MUTEX_HELD(&dtrace_lock));
12405 	ASSERT(p->p_dtrace_helpers == NULL);
12406 
12407 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12408 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12409 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12410 
12411 	p->p_dtrace_helpers = help;
12412 	dtrace_helpers++;
12413 
12414 	return (help);
12415 }
12416 
12417 static void
12418 dtrace_helpers_destroy(void)
12419 {
12420 	dtrace_helpers_t *help;
12421 	dtrace_vstate_t *vstate;
12422 	proc_t *p = curproc;
12423 	int i;
12424 
12425 	mutex_enter(&dtrace_lock);
12426 
12427 	ASSERT(p->p_dtrace_helpers != NULL);
12428 	ASSERT(dtrace_helpers > 0);
12429 
12430 	help = p->p_dtrace_helpers;
12431 	vstate = &help->dthps_vstate;
12432 
12433 	/*
12434 	 * We're now going to lose the help from this process.
12435 	 */
12436 	p->p_dtrace_helpers = NULL;
12437 	dtrace_sync();
12438 
12439 	/*
12440 	 * Destory the helper actions.
12441 	 */
12442 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12443 		dtrace_helper_action_t *h, *next;
12444 
12445 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12446 			next = h->dthp_next;
12447 			dtrace_helper_destroy(h, vstate);
12448 			h = next;
12449 		}
12450 	}
12451 
12452 	mutex_exit(&dtrace_lock);
12453 
12454 	/*
12455 	 * Destroy the helper providers.
12456 	 */
12457 	if (help->dthps_nprovs > 0) {
12458 		mutex_enter(&dtrace_meta_lock);
12459 		if (dtrace_meta_pid != NULL) {
12460 			ASSERT(dtrace_deferred_pid == NULL);
12461 
12462 			for (i = 0; i < help->dthps_nprovs; i++) {
12463 				dtrace_helper_remove(
12464 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12465 			}
12466 		} else {
12467 			mutex_enter(&dtrace_lock);
12468 			ASSERT(dtrace_deferred_pid != NULL);
12469 
12470 			/*
12471 			 * Remove the helper from the deferred list.
12472 			 */
12473 			if (help->dthps_next != NULL)
12474 				help->dthps_next->dthps_prev = help->dthps_prev;
12475 			if (help->dthps_prev != NULL)
12476 				help->dthps_prev->dthps_next = help->dthps_next;
12477 			if (dtrace_deferred_pid == help) {
12478 				dtrace_deferred_pid = help->dthps_next;
12479 				ASSERT(help->dthps_prev == NULL);
12480 			}
12481 
12482 			mutex_exit(&dtrace_lock);
12483 		}
12484 
12485 		mutex_exit(&dtrace_meta_lock);
12486 
12487 		for (i = 0; i < help->dthps_nprovs; i++) {
12488 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12489 		}
12490 
12491 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12492 		    sizeof (dtrace_helper_provider_t *));
12493 	}
12494 
12495 	mutex_enter(&dtrace_lock);
12496 
12497 	dtrace_vstate_fini(&help->dthps_vstate);
12498 	kmem_free(help->dthps_actions,
12499 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12500 	kmem_free(help, sizeof (dtrace_helpers_t));
12501 
12502 	--dtrace_helpers;
12503 	mutex_exit(&dtrace_lock);
12504 }
12505 
12506 static void
12507 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12508 {
12509 	dtrace_helpers_t *help, *newhelp;
12510 	dtrace_helper_action_t *helper, *new, *last;
12511 	dtrace_difo_t *dp;
12512 	dtrace_vstate_t *vstate;
12513 	int i, j, sz, hasprovs = 0;
12514 
12515 	mutex_enter(&dtrace_lock);
12516 	ASSERT(from->p_dtrace_helpers != NULL);
12517 	ASSERT(dtrace_helpers > 0);
12518 
12519 	help = from->p_dtrace_helpers;
12520 	newhelp = dtrace_helpers_create(to);
12521 	ASSERT(to->p_dtrace_helpers != NULL);
12522 
12523 	newhelp->dthps_generation = help->dthps_generation;
12524 	vstate = &newhelp->dthps_vstate;
12525 
12526 	/*
12527 	 * Duplicate the helper actions.
12528 	 */
12529 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12530 		if ((helper = help->dthps_actions[i]) == NULL)
12531 			continue;
12532 
12533 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12534 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12535 			    KM_SLEEP);
12536 			new->dthp_generation = helper->dthp_generation;
12537 
12538 			if ((dp = helper->dthp_predicate) != NULL) {
12539 				dp = dtrace_difo_duplicate(dp, vstate);
12540 				new->dthp_predicate = dp;
12541 			}
12542 
12543 			new->dthp_nactions = helper->dthp_nactions;
12544 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
12545 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
12546 
12547 			for (j = 0; j < new->dthp_nactions; j++) {
12548 				dtrace_difo_t *dp = helper->dthp_actions[j];
12549 
12550 				ASSERT(dp != NULL);
12551 				dp = dtrace_difo_duplicate(dp, vstate);
12552 				new->dthp_actions[j] = dp;
12553 			}
12554 
12555 			if (last != NULL) {
12556 				last->dthp_next = new;
12557 			} else {
12558 				newhelp->dthps_actions[i] = new;
12559 			}
12560 
12561 			last = new;
12562 		}
12563 	}
12564 
12565 	/*
12566 	 * Duplicate the helper providers and register them with the
12567 	 * DTrace framework.
12568 	 */
12569 	if (help->dthps_nprovs > 0) {
12570 		newhelp->dthps_nprovs = help->dthps_nprovs;
12571 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
12572 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12573 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
12574 			newhelp->dthps_provs[i] = help->dthps_provs[i];
12575 			newhelp->dthps_provs[i]->dthp_ref++;
12576 		}
12577 
12578 		hasprovs = 1;
12579 	}
12580 
12581 	mutex_exit(&dtrace_lock);
12582 
12583 	if (hasprovs)
12584 		dtrace_helper_provider_register(to, newhelp, NULL);
12585 }
12586 
12587 /*
12588  * DTrace Hook Functions
12589  */
12590 static void
12591 dtrace_module_loaded(struct modctl *ctl)
12592 {
12593 	dtrace_provider_t *prv;
12594 
12595 	mutex_enter(&dtrace_provider_lock);
12596 	mutex_enter(&mod_lock);
12597 
12598 	ASSERT(ctl->mod_busy);
12599 
12600 	/*
12601 	 * We're going to call each providers per-module provide operation
12602 	 * specifying only this module.
12603 	 */
12604 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
12605 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
12606 
12607 	mutex_exit(&mod_lock);
12608 	mutex_exit(&dtrace_provider_lock);
12609 
12610 	/*
12611 	 * If we have any retained enablings, we need to match against them.
12612 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
12613 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
12614 	 * module.  (In particular, this happens when loading scheduling
12615 	 * classes.)  So if we have any retained enablings, we need to dispatch
12616 	 * our task queue to do the match for us.
12617 	 */
12618 	mutex_enter(&dtrace_lock);
12619 
12620 	if (dtrace_retained == NULL) {
12621 		mutex_exit(&dtrace_lock);
12622 		return;
12623 	}
12624 
12625 	(void) taskq_dispatch(dtrace_taskq,
12626 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
12627 
12628 	mutex_exit(&dtrace_lock);
12629 
12630 	/*
12631 	 * And now, for a little heuristic sleaze:  in general, we want to
12632 	 * match modules as soon as they load.  However, we cannot guarantee
12633 	 * this, because it would lead us to the lock ordering violation
12634 	 * outlined above.  The common case, of course, is that cpu_lock is
12635 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
12636 	 * long enough for the task queue to do its work.  If it's not, it's
12637 	 * not a serious problem -- it just means that the module that we
12638 	 * just loaded may not be immediately instrumentable.
12639 	 */
12640 	delay(1);
12641 }
12642 
12643 static void
12644 dtrace_module_unloaded(struct modctl *ctl)
12645 {
12646 	dtrace_probe_t template, *probe, *first, *next;
12647 	dtrace_provider_t *prov;
12648 
12649 	template.dtpr_mod = ctl->mod_modname;
12650 
12651 	mutex_enter(&dtrace_provider_lock);
12652 	mutex_enter(&mod_lock);
12653 	mutex_enter(&dtrace_lock);
12654 
12655 	if (dtrace_bymod == NULL) {
12656 		/*
12657 		 * The DTrace module is loaded (obviously) but not attached;
12658 		 * we don't have any work to do.
12659 		 */
12660 		mutex_exit(&dtrace_provider_lock);
12661 		mutex_exit(&mod_lock);
12662 		mutex_exit(&dtrace_lock);
12663 		return;
12664 	}
12665 
12666 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
12667 	    probe != NULL; probe = probe->dtpr_nextmod) {
12668 		if (probe->dtpr_ecb != NULL) {
12669 			mutex_exit(&dtrace_provider_lock);
12670 			mutex_exit(&mod_lock);
12671 			mutex_exit(&dtrace_lock);
12672 
12673 			/*
12674 			 * This shouldn't _actually_ be possible -- we're
12675 			 * unloading a module that has an enabled probe in it.
12676 			 * (It's normally up to the provider to make sure that
12677 			 * this can't happen.)  However, because dtps_enable()
12678 			 * doesn't have a failure mode, there can be an
12679 			 * enable/unload race.  Upshot:  we don't want to
12680 			 * assert, but we're not going to disable the
12681 			 * probe, either.
12682 			 */
12683 			if (dtrace_err_verbose) {
12684 				cmn_err(CE_WARN, "unloaded module '%s' had "
12685 				    "enabled probes", ctl->mod_modname);
12686 			}
12687 
12688 			return;
12689 		}
12690 	}
12691 
12692 	probe = first;
12693 
12694 	for (first = NULL; probe != NULL; probe = next) {
12695 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
12696 
12697 		dtrace_probes[probe->dtpr_id - 1] = NULL;
12698 
12699 		next = probe->dtpr_nextmod;
12700 		dtrace_hash_remove(dtrace_bymod, probe);
12701 		dtrace_hash_remove(dtrace_byfunc, probe);
12702 		dtrace_hash_remove(dtrace_byname, probe);
12703 
12704 		if (first == NULL) {
12705 			first = probe;
12706 			probe->dtpr_nextmod = NULL;
12707 		} else {
12708 			probe->dtpr_nextmod = first;
12709 			first = probe;
12710 		}
12711 	}
12712 
12713 	/*
12714 	 * We've removed all of the module's probes from the hash chains and
12715 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
12716 	 * everyone has cleared out from any probe array processing.
12717 	 */
12718 	dtrace_sync();
12719 
12720 	for (probe = first; probe != NULL; probe = first) {
12721 		first = probe->dtpr_nextmod;
12722 		prov = probe->dtpr_provider;
12723 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
12724 		    probe->dtpr_arg);
12725 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
12726 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
12727 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
12728 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
12729 		kmem_free(probe, sizeof (dtrace_probe_t));
12730 	}
12731 
12732 	mutex_exit(&dtrace_lock);
12733 	mutex_exit(&mod_lock);
12734 	mutex_exit(&dtrace_provider_lock);
12735 }
12736 
12737 void
12738 dtrace_suspend(void)
12739 {
12740 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
12741 }
12742 
12743 void
12744 dtrace_resume(void)
12745 {
12746 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
12747 }
12748 
12749 static int
12750 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
12751 {
12752 	ASSERT(MUTEX_HELD(&cpu_lock));
12753 	mutex_enter(&dtrace_lock);
12754 
12755 	switch (what) {
12756 	case CPU_CONFIG: {
12757 		dtrace_state_t *state;
12758 		dtrace_optval_t *opt, rs, c;
12759 
12760 		/*
12761 		 * For now, we only allocate a new buffer for anonymous state.
12762 		 */
12763 		if ((state = dtrace_anon.dta_state) == NULL)
12764 			break;
12765 
12766 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12767 			break;
12768 
12769 		opt = state->dts_options;
12770 		c = opt[DTRACEOPT_CPU];
12771 
12772 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
12773 			break;
12774 
12775 		/*
12776 		 * Regardless of what the actual policy is, we're going to
12777 		 * temporarily set our resize policy to be manual.  We're
12778 		 * also going to temporarily set our CPU option to denote
12779 		 * the newly configured CPU.
12780 		 */
12781 		rs = opt[DTRACEOPT_BUFRESIZE];
12782 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
12783 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
12784 
12785 		(void) dtrace_state_buffers(state);
12786 
12787 		opt[DTRACEOPT_BUFRESIZE] = rs;
12788 		opt[DTRACEOPT_CPU] = c;
12789 
12790 		break;
12791 	}
12792 
12793 	case CPU_UNCONFIG:
12794 		/*
12795 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
12796 		 * buffer will be freed when the consumer exits.)
12797 		 */
12798 		break;
12799 
12800 	default:
12801 		break;
12802 	}
12803 
12804 	mutex_exit(&dtrace_lock);
12805 	return (0);
12806 }
12807 
12808 static void
12809 dtrace_cpu_setup_initial(processorid_t cpu)
12810 {
12811 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
12812 }
12813 
12814 static void
12815 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
12816 {
12817 	if (dtrace_toxranges >= dtrace_toxranges_max) {
12818 		int osize, nsize;
12819 		dtrace_toxrange_t *range;
12820 
12821 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12822 
12823 		if (osize == 0) {
12824 			ASSERT(dtrace_toxrange == NULL);
12825 			ASSERT(dtrace_toxranges_max == 0);
12826 			dtrace_toxranges_max = 1;
12827 		} else {
12828 			dtrace_toxranges_max <<= 1;
12829 		}
12830 
12831 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12832 		range = kmem_zalloc(nsize, KM_SLEEP);
12833 
12834 		if (dtrace_toxrange != NULL) {
12835 			ASSERT(osize != 0);
12836 			bcopy(dtrace_toxrange, range, osize);
12837 			kmem_free(dtrace_toxrange, osize);
12838 		}
12839 
12840 		dtrace_toxrange = range;
12841 	}
12842 
12843 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
12844 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
12845 
12846 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
12847 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
12848 	dtrace_toxranges++;
12849 }
12850 
12851 /*
12852  * DTrace Driver Cookbook Functions
12853  */
12854 /*ARGSUSED*/
12855 static int
12856 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
12857 {
12858 	dtrace_provider_id_t id;
12859 	dtrace_state_t *state = NULL;
12860 	dtrace_enabling_t *enab;
12861 
12862 	mutex_enter(&cpu_lock);
12863 	mutex_enter(&dtrace_provider_lock);
12864 	mutex_enter(&dtrace_lock);
12865 
12866 	if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t) +
12867 	    NCPU * sizeof (dtrace_buffer_t), 0) != 0) {
12868 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
12869 		mutex_exit(&cpu_lock);
12870 		mutex_exit(&dtrace_provider_lock);
12871 		mutex_exit(&dtrace_lock);
12872 		return (DDI_FAILURE);
12873 	}
12874 
12875 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
12876 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
12877 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
12878 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
12879 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
12880 		ddi_remove_minor_node(devi, NULL);
12881 		ddi_soft_state_fini(&dtrace_softstate);
12882 		mutex_exit(&cpu_lock);
12883 		mutex_exit(&dtrace_provider_lock);
12884 		mutex_exit(&dtrace_lock);
12885 		return (DDI_FAILURE);
12886 	}
12887 
12888 	ddi_report_dev(devi);
12889 	dtrace_devi = devi;
12890 
12891 	dtrace_modload = dtrace_module_loaded;
12892 	dtrace_modunload = dtrace_module_unloaded;
12893 	dtrace_cpu_init = dtrace_cpu_setup_initial;
12894 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
12895 	dtrace_helpers_fork = dtrace_helpers_duplicate;
12896 	dtrace_cpustart_init = dtrace_suspend;
12897 	dtrace_cpustart_fini = dtrace_resume;
12898 	dtrace_debugger_init = dtrace_suspend;
12899 	dtrace_debugger_fini = dtrace_resume;
12900 	dtrace_kreloc_init = dtrace_suspend;
12901 	dtrace_kreloc_fini = dtrace_resume;
12902 
12903 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
12904 
12905 	ASSERT(MUTEX_HELD(&cpu_lock));
12906 
12907 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
12908 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12909 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
12910 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
12911 	    VM_SLEEP | VMC_IDENTIFIER);
12912 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
12913 	    1, INT_MAX, 0);
12914 
12915 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
12916 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
12917 	    NULL, NULL, NULL, NULL, NULL, 0);
12918 
12919 	ASSERT(MUTEX_HELD(&cpu_lock));
12920 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
12921 	    offsetof(dtrace_probe_t, dtpr_nextmod),
12922 	    offsetof(dtrace_probe_t, dtpr_prevmod));
12923 
12924 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
12925 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
12926 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
12927 
12928 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
12929 	    offsetof(dtrace_probe_t, dtpr_nextname),
12930 	    offsetof(dtrace_probe_t, dtpr_prevname));
12931 
12932 	if (dtrace_retain_max < 1) {
12933 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
12934 		    "setting to 1", dtrace_retain_max);
12935 		dtrace_retain_max = 1;
12936 	}
12937 
12938 	/*
12939 	 * Now discover our toxic ranges.
12940 	 */
12941 	dtrace_toxic_ranges(dtrace_toxrange_add);
12942 
12943 	/*
12944 	 * Before we register ourselves as a provider to our own framework,
12945 	 * we would like to assert that dtrace_provider is NULL -- but that's
12946 	 * not true if we were loaded as a dependency of a DTrace provider.
12947 	 * Once we've registered, we can assert that dtrace_provider is our
12948 	 * pseudo provider.
12949 	 */
12950 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
12951 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
12952 
12953 	ASSERT(dtrace_provider != NULL);
12954 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
12955 
12956 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
12957 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
12958 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
12959 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
12960 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
12961 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
12962 
12963 	dtrace_anon_property();
12964 	mutex_exit(&cpu_lock);
12965 
12966 	/*
12967 	 * If DTrace helper tracing is enabled, we need to allocate the
12968 	 * trace buffer and initialize the values.
12969 	 */
12970 	if (dtrace_helptrace_enabled) {
12971 		ASSERT(dtrace_helptrace_buffer == NULL);
12972 		dtrace_helptrace_buffer =
12973 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
12974 		dtrace_helptrace_next = 0;
12975 	}
12976 
12977 	/*
12978 	 * If there are already providers, we must ask them to provide their
12979 	 * probes, and then match any anonymous enabling against them.  Note
12980 	 * that there should be no other retained enablings at this time:
12981 	 * the only retained enablings at this time should be the anonymous
12982 	 * enabling.
12983 	 */
12984 	if (dtrace_anon.dta_enabling != NULL) {
12985 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
12986 
12987 		dtrace_enabling_provide(NULL);
12988 		state = dtrace_anon.dta_state;
12989 
12990 		/*
12991 		 * We couldn't hold cpu_lock across the above call to
12992 		 * dtrace_enabling_provide(), but we must hold it to actually
12993 		 * enable the probes.  We have to drop all of our locks, pick
12994 		 * up cpu_lock, and regain our locks before matching the
12995 		 * retained anonymous enabling.
12996 		 */
12997 		mutex_exit(&dtrace_lock);
12998 		mutex_exit(&dtrace_provider_lock);
12999 
13000 		mutex_enter(&cpu_lock);
13001 		mutex_enter(&dtrace_provider_lock);
13002 		mutex_enter(&dtrace_lock);
13003 
13004 		if ((enab = dtrace_anon.dta_enabling) != NULL)
13005 			(void) dtrace_enabling_match(enab, NULL);
13006 
13007 		mutex_exit(&cpu_lock);
13008 	}
13009 
13010 	mutex_exit(&dtrace_lock);
13011 	mutex_exit(&dtrace_provider_lock);
13012 
13013 	if (state != NULL) {
13014 		/*
13015 		 * If we created any anonymous state, set it going now.
13016 		 */
13017 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
13018 	}
13019 
13020 	return (DDI_SUCCESS);
13021 }
13022 
13023 /*ARGSUSED*/
13024 static int
13025 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
13026 {
13027 	dtrace_state_t *state;
13028 	uint32_t priv;
13029 	uid_t uid;
13030 
13031 	if (getminor(*devp) == DTRACEMNRN_HELPER)
13032 		return (0);
13033 
13034 	/*
13035 	 * If this wasn't an open with the "helper" minor, then it must be
13036 	 * the "dtrace" minor.
13037 	 */
13038 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
13039 
13040 	/*
13041 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
13042 	 * caller lacks sufficient permission to do anything with DTrace.
13043 	 */
13044 	dtrace_cred2priv(cred_p, &priv, &uid);
13045 	if (priv == DTRACE_PRIV_NONE)
13046 		return (EACCES);
13047 
13048 	/*
13049 	 * Ask all providers to provide all their probes.
13050 	 */
13051 	mutex_enter(&dtrace_provider_lock);
13052 	dtrace_probe_provide(NULL, NULL);
13053 	mutex_exit(&dtrace_provider_lock);
13054 
13055 	mutex_enter(&cpu_lock);
13056 	mutex_enter(&dtrace_lock);
13057 	dtrace_opens++;
13058 	dtrace_membar_producer();
13059 
13060 	/*
13061 	 * If the kernel debugger is active (that is, if the kernel debugger
13062 	 * modified text in some way), we won't allow the open.
13063 	 */
13064 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13065 		dtrace_opens--;
13066 		mutex_exit(&cpu_lock);
13067 		mutex_exit(&dtrace_lock);
13068 		return (EBUSY);
13069 	}
13070 
13071 	state = dtrace_state_create(devp, cred_p);
13072 	mutex_exit(&cpu_lock);
13073 
13074 	if (state == NULL) {
13075 		if (--dtrace_opens == 0)
13076 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13077 		mutex_exit(&dtrace_lock);
13078 		return (EAGAIN);
13079 	}
13080 
13081 	mutex_exit(&dtrace_lock);
13082 
13083 	return (0);
13084 }
13085 
13086 /*ARGSUSED*/
13087 static int
13088 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
13089 {
13090 	minor_t minor = getminor(dev);
13091 	dtrace_state_t *state;
13092 
13093 	if (minor == DTRACEMNRN_HELPER)
13094 		return (0);
13095 
13096 	state = ddi_get_soft_state(dtrace_softstate, minor);
13097 
13098 	mutex_enter(&cpu_lock);
13099 	mutex_enter(&dtrace_lock);
13100 
13101 	if (state->dts_anon) {
13102 		/*
13103 		 * There is anonymous state. Destroy that first.
13104 		 */
13105 		ASSERT(dtrace_anon.dta_state == NULL);
13106 		dtrace_state_destroy(state->dts_anon);
13107 	}
13108 
13109 	dtrace_state_destroy(state);
13110 	ASSERT(dtrace_opens > 0);
13111 	if (--dtrace_opens == 0)
13112 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13113 
13114 	mutex_exit(&dtrace_lock);
13115 	mutex_exit(&cpu_lock);
13116 
13117 	return (0);
13118 }
13119 
13120 /*ARGSUSED*/
13121 static int
13122 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
13123 {
13124 	int rval;
13125 	dof_helper_t help, *dhp = NULL;
13126 
13127 	switch (cmd) {
13128 	case DTRACEHIOC_ADDDOF:
13129 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
13130 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
13131 			return (EFAULT);
13132 		}
13133 
13134 		dhp = &help;
13135 		arg = (intptr_t)help.dofhp_dof;
13136 		/*FALLTHROUGH*/
13137 
13138 	case DTRACEHIOC_ADD: {
13139 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
13140 
13141 		if (dof == NULL)
13142 			return (rval);
13143 
13144 		mutex_enter(&dtrace_lock);
13145 		dtrace_err = 0;
13146 
13147 		/*
13148 		 * dtrace_helper_slurp() takes responsibility for the dof --
13149 		 * it may free it now or it may save it and free it later.
13150 		 */
13151 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
13152 			*rv = rval;
13153 			rval = 0;
13154 		} else {
13155 			rval = EINVAL;
13156 		}
13157 
13158 		mutex_exit(&dtrace_lock);
13159 		return (rval);
13160 	}
13161 
13162 	case DTRACEHIOC_REMOVE: {
13163 		mutex_enter(&dtrace_lock);
13164 		rval = dtrace_helper_destroygen(arg);
13165 		mutex_exit(&dtrace_lock);
13166 
13167 		return (rval);
13168 	}
13169 
13170 	default:
13171 		break;
13172 	}
13173 
13174 	return (ENOTTY);
13175 }
13176 
13177 /*ARGSUSED*/
13178 static int
13179 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
13180 {
13181 	minor_t minor = getminor(dev);
13182 	dtrace_state_t *state;
13183 	int rval;
13184 
13185 	if (minor == DTRACEMNRN_HELPER)
13186 		return (dtrace_ioctl_helper(cmd, arg, rv));
13187 
13188 	state = ddi_get_soft_state(dtrace_softstate, minor);
13189 
13190 	if (state->dts_anon) {
13191 		ASSERT(dtrace_anon.dta_state == NULL);
13192 		state = state->dts_anon;
13193 	}
13194 
13195 	switch (cmd) {
13196 	case DTRACEIOC_PROVIDER: {
13197 		dtrace_providerdesc_t pvd;
13198 		dtrace_provider_t *pvp;
13199 
13200 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13201 			return (EFAULT);
13202 
13203 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13204 		mutex_enter(&dtrace_provider_lock);
13205 
13206 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13207 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13208 				break;
13209 		}
13210 
13211 		mutex_exit(&dtrace_provider_lock);
13212 
13213 		if (pvp == NULL)
13214 			return (ESRCH);
13215 
13216 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13217 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13218 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13219 			return (EFAULT);
13220 
13221 		return (0);
13222 	}
13223 
13224 	case DTRACEIOC_EPROBE: {
13225 		dtrace_eprobedesc_t epdesc;
13226 		dtrace_ecb_t *ecb;
13227 		dtrace_action_t *act;
13228 		void *buf;
13229 		size_t size;
13230 		uintptr_t dest;
13231 		int nrecs;
13232 
13233 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13234 			return (EFAULT);
13235 
13236 		mutex_enter(&dtrace_lock);
13237 
13238 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13239 			mutex_exit(&dtrace_lock);
13240 			return (EINVAL);
13241 		}
13242 
13243 		if (ecb->dte_probe == NULL) {
13244 			mutex_exit(&dtrace_lock);
13245 			return (EINVAL);
13246 		}
13247 
13248 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13249 		epdesc.dtepd_uarg = ecb->dte_uarg;
13250 		epdesc.dtepd_size = ecb->dte_size;
13251 
13252 		nrecs = epdesc.dtepd_nrecs;
13253 		epdesc.dtepd_nrecs = 0;
13254 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13255 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13256 				continue;
13257 
13258 			epdesc.dtepd_nrecs++;
13259 		}
13260 
13261 		/*
13262 		 * Now that we have the size, we need to allocate a temporary
13263 		 * buffer in which to store the complete description.  We need
13264 		 * the temporary buffer to be able to drop dtrace_lock()
13265 		 * across the copyout(), below.
13266 		 */
13267 		size = sizeof (dtrace_eprobedesc_t) +
13268 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13269 
13270 		buf = kmem_alloc(size, KM_SLEEP);
13271 		dest = (uintptr_t)buf;
13272 
13273 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13274 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13275 
13276 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13277 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13278 				continue;
13279 
13280 			if (nrecs-- == 0)
13281 				break;
13282 
13283 			bcopy(&act->dta_rec, (void *)dest,
13284 			    sizeof (dtrace_recdesc_t));
13285 			dest += sizeof (dtrace_recdesc_t);
13286 		}
13287 
13288 		mutex_exit(&dtrace_lock);
13289 
13290 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13291 			kmem_free(buf, size);
13292 			return (EFAULT);
13293 		}
13294 
13295 		kmem_free(buf, size);
13296 		return (0);
13297 	}
13298 
13299 	case DTRACEIOC_AGGDESC: {
13300 		dtrace_aggdesc_t aggdesc;
13301 		dtrace_action_t *act;
13302 		dtrace_aggregation_t *agg;
13303 		int nrecs;
13304 		uint32_t offs;
13305 		dtrace_recdesc_t *lrec;
13306 		void *buf;
13307 		size_t size;
13308 		uintptr_t dest;
13309 
13310 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13311 			return (EFAULT);
13312 
13313 		mutex_enter(&dtrace_lock);
13314 
13315 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13316 			mutex_exit(&dtrace_lock);
13317 			return (EINVAL);
13318 		}
13319 
13320 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13321 
13322 		nrecs = aggdesc.dtagd_nrecs;
13323 		aggdesc.dtagd_nrecs = 0;
13324 
13325 		offs = agg->dtag_base;
13326 		lrec = &agg->dtag_action.dta_rec;
13327 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13328 
13329 		for (act = agg->dtag_first; ; act = act->dta_next) {
13330 			ASSERT(act->dta_intuple ||
13331 			    DTRACEACT_ISAGG(act->dta_kind));
13332 			aggdesc.dtagd_nrecs++;
13333 
13334 			if (act == &agg->dtag_action)
13335 				break;
13336 		}
13337 
13338 		/*
13339 		 * Now that we have the size, we need to allocate a temporary
13340 		 * buffer in which to store the complete description.  We need
13341 		 * the temporary buffer to be able to drop dtrace_lock()
13342 		 * across the copyout(), below.
13343 		 */
13344 		size = sizeof (dtrace_aggdesc_t) +
13345 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13346 
13347 		buf = kmem_alloc(size, KM_SLEEP);
13348 		dest = (uintptr_t)buf;
13349 
13350 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13351 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13352 
13353 		for (act = agg->dtag_first; ; act = act->dta_next) {
13354 			dtrace_recdesc_t rec = act->dta_rec;
13355 
13356 			if (nrecs-- == 0)
13357 				break;
13358 
13359 			rec.dtrd_offset -= offs;
13360 			bcopy(&rec, (void *)dest, sizeof (rec));
13361 			dest += sizeof (dtrace_recdesc_t);
13362 
13363 			if (act == &agg->dtag_action)
13364 				break;
13365 		}
13366 
13367 		mutex_exit(&dtrace_lock);
13368 
13369 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13370 			kmem_free(buf, size);
13371 			return (EFAULT);
13372 		}
13373 
13374 		kmem_free(buf, size);
13375 		return (0);
13376 	}
13377 
13378 	case DTRACEIOC_ENABLE: {
13379 		dof_hdr_t *dof;
13380 		dtrace_enabling_t *enab = NULL;
13381 		dtrace_vstate_t *vstate;
13382 		int err = 0;
13383 
13384 		*rv = 0;
13385 
13386 		/*
13387 		 * If a NULL argument has been passed, we take this as our
13388 		 * cue to reevaluate our enablings.
13389 		 */
13390 		if (arg == NULL) {
13391 			mutex_enter(&cpu_lock);
13392 			mutex_enter(&dtrace_lock);
13393 			err = dtrace_enabling_matchstate(state, rv);
13394 			mutex_exit(&dtrace_lock);
13395 			mutex_exit(&cpu_lock);
13396 
13397 			return (err);
13398 		}
13399 
13400 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13401 			return (rval);
13402 
13403 		mutex_enter(&cpu_lock);
13404 		mutex_enter(&dtrace_lock);
13405 		vstate = &state->dts_vstate;
13406 
13407 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13408 			mutex_exit(&dtrace_lock);
13409 			mutex_exit(&cpu_lock);
13410 			dtrace_dof_destroy(dof);
13411 			return (EBUSY);
13412 		}
13413 
13414 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13415 			mutex_exit(&dtrace_lock);
13416 			mutex_exit(&cpu_lock);
13417 			dtrace_dof_destroy(dof);
13418 			return (EINVAL);
13419 		}
13420 
13421 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13422 			dtrace_enabling_destroy(enab);
13423 			mutex_exit(&dtrace_lock);
13424 			mutex_exit(&cpu_lock);
13425 			dtrace_dof_destroy(dof);
13426 			return (rval);
13427 		}
13428 
13429 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13430 			err = dtrace_enabling_retain(enab);
13431 		} else {
13432 			dtrace_enabling_destroy(enab);
13433 		}
13434 
13435 		mutex_exit(&cpu_lock);
13436 		mutex_exit(&dtrace_lock);
13437 		dtrace_dof_destroy(dof);
13438 
13439 		return (err);
13440 	}
13441 
13442 	case DTRACEIOC_REPLICATE: {
13443 		dtrace_repldesc_t desc;
13444 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13445 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13446 		int err;
13447 
13448 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13449 			return (EFAULT);
13450 
13451 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13452 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13453 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13454 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13455 
13456 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13457 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13458 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13459 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13460 
13461 		mutex_enter(&dtrace_lock);
13462 		err = dtrace_enabling_replicate(state, match, create);
13463 		mutex_exit(&dtrace_lock);
13464 
13465 		return (err);
13466 	}
13467 
13468 	case DTRACEIOC_PROBEMATCH:
13469 	case DTRACEIOC_PROBES: {
13470 		dtrace_probe_t *probe = NULL;
13471 		dtrace_probedesc_t desc;
13472 		dtrace_probekey_t pkey;
13473 		dtrace_id_t i;
13474 		int m = 0;
13475 		uint32_t priv;
13476 		uid_t uid;
13477 
13478 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13479 			return (EFAULT);
13480 
13481 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13482 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13483 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13484 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13485 
13486 		/*
13487 		 * Before we attempt to match this probe, we want to give
13488 		 * all providers the opportunity to provide it.
13489 		 */
13490 		if (desc.dtpd_id == DTRACE_IDNONE) {
13491 			mutex_enter(&dtrace_provider_lock);
13492 			dtrace_probe_provide(&desc, NULL);
13493 			mutex_exit(&dtrace_provider_lock);
13494 			desc.dtpd_id++;
13495 		}
13496 
13497 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13498 			dtrace_probekey(&desc, &pkey);
13499 			pkey.dtpk_id = DTRACE_IDNONE;
13500 		}
13501 
13502 		uid = crgetuid(cr);
13503 		dtrace_cred2priv(cr, &priv, &uid);
13504 
13505 		mutex_enter(&dtrace_lock);
13506 
13507 		if (cmd == DTRACEIOC_PROBEMATCH) {
13508 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13509 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13510 				    (m = dtrace_match_probe(probe, &pkey,
13511 				    priv, uid)) != 0)
13512 					break;
13513 			}
13514 
13515 			if (m < 0) {
13516 				mutex_exit(&dtrace_lock);
13517 				return (EINVAL);
13518 			}
13519 
13520 		} else {
13521 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13522 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13523 				    dtrace_match_priv(probe, priv, uid))
13524 					break;
13525 			}
13526 		}
13527 
13528 		if (probe == NULL) {
13529 			mutex_exit(&dtrace_lock);
13530 			return (ESRCH);
13531 		}
13532 
13533 		dtrace_probe_description(probe, &desc);
13534 		mutex_exit(&dtrace_lock);
13535 
13536 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13537 			return (EFAULT);
13538 
13539 		return (0);
13540 	}
13541 
13542 	case DTRACEIOC_PROBEARG: {
13543 		dtrace_argdesc_t desc;
13544 		dtrace_probe_t *probe;
13545 		dtrace_provider_t *prov;
13546 
13547 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13548 			return (EFAULT);
13549 
13550 		if (desc.dtargd_id == DTRACE_IDNONE)
13551 			return (EINVAL);
13552 
13553 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
13554 			return (EINVAL);
13555 
13556 		mutex_enter(&dtrace_provider_lock);
13557 		mutex_enter(&mod_lock);
13558 		mutex_enter(&dtrace_lock);
13559 
13560 		if (desc.dtargd_id > dtrace_nprobes) {
13561 			mutex_exit(&dtrace_lock);
13562 			mutex_exit(&mod_lock);
13563 			mutex_exit(&dtrace_provider_lock);
13564 			return (EINVAL);
13565 		}
13566 
13567 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
13568 			mutex_exit(&dtrace_lock);
13569 			mutex_exit(&mod_lock);
13570 			mutex_exit(&dtrace_provider_lock);
13571 			return (EINVAL);
13572 		}
13573 
13574 		mutex_exit(&dtrace_lock);
13575 
13576 		prov = probe->dtpr_provider;
13577 
13578 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
13579 			/*
13580 			 * There isn't any typed information for this probe.
13581 			 * Set the argument number to DTRACE_ARGNONE.
13582 			 */
13583 			desc.dtargd_ndx = DTRACE_ARGNONE;
13584 		} else {
13585 			desc.dtargd_native[0] = '\0';
13586 			desc.dtargd_xlate[0] = '\0';
13587 			desc.dtargd_mapping = desc.dtargd_ndx;
13588 
13589 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
13590 			    probe->dtpr_id, probe->dtpr_arg, &desc);
13591 		}
13592 
13593 		mutex_exit(&mod_lock);
13594 		mutex_exit(&dtrace_provider_lock);
13595 
13596 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13597 			return (EFAULT);
13598 
13599 		return (0);
13600 	}
13601 
13602 	case DTRACEIOC_GO: {
13603 		processorid_t cpuid;
13604 		rval = dtrace_state_go(state, &cpuid);
13605 
13606 		if (rval != 0)
13607 			return (rval);
13608 
13609 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13610 			return (EFAULT);
13611 
13612 		return (0);
13613 	}
13614 
13615 	case DTRACEIOC_STOP: {
13616 		processorid_t cpuid;
13617 
13618 		mutex_enter(&dtrace_lock);
13619 		rval = dtrace_state_stop(state, &cpuid);
13620 		mutex_exit(&dtrace_lock);
13621 
13622 		if (rval != 0)
13623 			return (rval);
13624 
13625 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13626 			return (EFAULT);
13627 
13628 		return (0);
13629 	}
13630 
13631 	case DTRACEIOC_DOFGET: {
13632 		dof_hdr_t hdr, *dof;
13633 		uint64_t len;
13634 
13635 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
13636 			return (EFAULT);
13637 
13638 		mutex_enter(&dtrace_lock);
13639 		dof = dtrace_dof_create(state);
13640 		mutex_exit(&dtrace_lock);
13641 
13642 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
13643 		rval = copyout(dof, (void *)arg, len);
13644 		dtrace_dof_destroy(dof);
13645 
13646 		return (rval == 0 ? 0 : EFAULT);
13647 	}
13648 
13649 	case DTRACEIOC_AGGSNAP:
13650 	case DTRACEIOC_BUFSNAP: {
13651 		dtrace_bufdesc_t desc;
13652 		caddr_t cached;
13653 		dtrace_buffer_t *buf;
13654 
13655 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13656 			return (EFAULT);
13657 
13658 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
13659 			return (EINVAL);
13660 
13661 		mutex_enter(&dtrace_lock);
13662 
13663 		if (cmd == DTRACEIOC_BUFSNAP) {
13664 			buf = &state->dts_buffer[desc.dtbd_cpu];
13665 		} else {
13666 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
13667 		}
13668 
13669 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
13670 			size_t sz = buf->dtb_offset;
13671 
13672 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
13673 				mutex_exit(&dtrace_lock);
13674 				return (EBUSY);
13675 			}
13676 
13677 			/*
13678 			 * If this buffer has already been consumed, we're
13679 			 * going to indicate that there's nothing left here
13680 			 * to consume.
13681 			 */
13682 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
13683 				mutex_exit(&dtrace_lock);
13684 
13685 				desc.dtbd_size = 0;
13686 				desc.dtbd_drops = 0;
13687 				desc.dtbd_errors = 0;
13688 				desc.dtbd_oldest = 0;
13689 				sz = sizeof (desc);
13690 
13691 				if (copyout(&desc, (void *)arg, sz) != 0)
13692 					return (EFAULT);
13693 
13694 				return (0);
13695 			}
13696 
13697 			/*
13698 			 * If this is a ring buffer that has wrapped, we want
13699 			 * to copy the whole thing out.
13700 			 */
13701 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
13702 				dtrace_buffer_polish(buf);
13703 				sz = buf->dtb_size;
13704 			}
13705 
13706 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
13707 				mutex_exit(&dtrace_lock);
13708 				return (EFAULT);
13709 			}
13710 
13711 			desc.dtbd_size = sz;
13712 			desc.dtbd_drops = buf->dtb_drops;
13713 			desc.dtbd_errors = buf->dtb_errors;
13714 			desc.dtbd_oldest = buf->dtb_xamot_offset;
13715 
13716 			mutex_exit(&dtrace_lock);
13717 
13718 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13719 				return (EFAULT);
13720 
13721 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
13722 
13723 			return (0);
13724 		}
13725 
13726 		if (buf->dtb_tomax == NULL) {
13727 			ASSERT(buf->dtb_xamot == NULL);
13728 			mutex_exit(&dtrace_lock);
13729 			return (ENOENT);
13730 		}
13731 
13732 		cached = buf->dtb_tomax;
13733 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
13734 
13735 		dtrace_xcall(desc.dtbd_cpu,
13736 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
13737 
13738 		state->dts_errors += buf->dtb_xamot_errors;
13739 
13740 		/*
13741 		 * If the buffers did not actually switch, then the cross call
13742 		 * did not take place -- presumably because the given CPU is
13743 		 * not in the ready set.  If this is the case, we'll return
13744 		 * ENOENT.
13745 		 */
13746 		if (buf->dtb_tomax == cached) {
13747 			ASSERT(buf->dtb_xamot != cached);
13748 			mutex_exit(&dtrace_lock);
13749 			return (ENOENT);
13750 		}
13751 
13752 		ASSERT(cached == buf->dtb_xamot);
13753 
13754 		/*
13755 		 * We have our snapshot; now copy it out.
13756 		 */
13757 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
13758 		    buf->dtb_xamot_offset) != 0) {
13759 			mutex_exit(&dtrace_lock);
13760 			return (EFAULT);
13761 		}
13762 
13763 		desc.dtbd_size = buf->dtb_xamot_offset;
13764 		desc.dtbd_drops = buf->dtb_xamot_drops;
13765 		desc.dtbd_errors = buf->dtb_xamot_errors;
13766 		desc.dtbd_oldest = 0;
13767 
13768 		mutex_exit(&dtrace_lock);
13769 
13770 		/*
13771 		 * Finally, copy out the buffer description.
13772 		 */
13773 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13774 			return (EFAULT);
13775 
13776 		return (0);
13777 	}
13778 
13779 	case DTRACEIOC_CONF: {
13780 		dtrace_conf_t conf;
13781 
13782 		bzero(&conf, sizeof (conf));
13783 		conf.dtc_difversion = DIF_VERSION;
13784 		conf.dtc_difintregs = DIF_DIR_NREGS;
13785 		conf.dtc_diftupregs = DIF_DTR_NREGS;
13786 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
13787 
13788 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
13789 			return (EFAULT);
13790 
13791 		return (0);
13792 	}
13793 
13794 	case DTRACEIOC_STATUS: {
13795 		dtrace_status_t stat;
13796 		dtrace_dstate_t *dstate;
13797 		int i, j;
13798 		uint64_t nerrs;
13799 
13800 		/*
13801 		 * See the comment in dtrace_state_deadman() for the reason
13802 		 * for setting dts_laststatus to INT64_MAX before setting
13803 		 * it to the correct value.
13804 		 */
13805 		state->dts_laststatus = INT64_MAX;
13806 		dtrace_membar_producer();
13807 		state->dts_laststatus = dtrace_gethrtime();
13808 
13809 		bzero(&stat, sizeof (stat));
13810 
13811 		mutex_enter(&dtrace_lock);
13812 
13813 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
13814 			mutex_exit(&dtrace_lock);
13815 			return (ENOENT);
13816 		}
13817 
13818 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
13819 			stat.dtst_exiting = 1;
13820 
13821 		nerrs = state->dts_errors;
13822 		dstate = &state->dts_vstate.dtvs_dynvars;
13823 
13824 		for (i = 0; i < NCPU; i++) {
13825 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
13826 
13827 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
13828 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
13829 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
13830 
13831 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
13832 				stat.dtst_filled++;
13833 
13834 			nerrs += state->dts_buffer[i].dtb_errors;
13835 
13836 			for (j = 0; j < state->dts_nspeculations; j++) {
13837 				dtrace_speculation_t *spec;
13838 				dtrace_buffer_t *buf;
13839 
13840 				spec = &state->dts_speculations[j];
13841 				buf = &spec->dtsp_buffer[i];
13842 				stat.dtst_specdrops += buf->dtb_xamot_drops;
13843 			}
13844 		}
13845 
13846 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
13847 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
13848 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
13849 		stat.dtst_dblerrors = state->dts_dblerrors;
13850 		stat.dtst_killed =
13851 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
13852 		stat.dtst_errors = nerrs;
13853 
13854 		mutex_exit(&dtrace_lock);
13855 
13856 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
13857 			return (EFAULT);
13858 
13859 		return (0);
13860 	}
13861 
13862 	case DTRACEIOC_FORMAT: {
13863 		dtrace_fmtdesc_t fmt;
13864 		char *str;
13865 		int len;
13866 
13867 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
13868 			return (EFAULT);
13869 
13870 		mutex_enter(&dtrace_lock);
13871 
13872 		if (fmt.dtfd_format == 0 ||
13873 		    fmt.dtfd_format > state->dts_nformats) {
13874 			mutex_exit(&dtrace_lock);
13875 			return (EINVAL);
13876 		}
13877 
13878 		/*
13879 		 * Format strings are allocated contiguously and they are
13880 		 * never freed; if a format index is less than the number
13881 		 * of formats, we can assert that the format map is non-NULL
13882 		 * and that the format for the specified index is non-NULL.
13883 		 */
13884 		ASSERT(state->dts_formats != NULL);
13885 		str = state->dts_formats[fmt.dtfd_format - 1];
13886 		ASSERT(str != NULL);
13887 
13888 		len = strlen(str) + 1;
13889 
13890 		if (len > fmt.dtfd_length) {
13891 			fmt.dtfd_length = len;
13892 
13893 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
13894 				mutex_exit(&dtrace_lock);
13895 				return (EINVAL);
13896 			}
13897 		} else {
13898 			if (copyout(str, fmt.dtfd_string, len) != 0) {
13899 				mutex_exit(&dtrace_lock);
13900 				return (EINVAL);
13901 			}
13902 		}
13903 
13904 		mutex_exit(&dtrace_lock);
13905 		return (0);
13906 	}
13907 
13908 	default:
13909 		break;
13910 	}
13911 
13912 	return (ENOTTY);
13913 }
13914 
13915 /*ARGSUSED*/
13916 static int
13917 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
13918 {
13919 	dtrace_state_t *state;
13920 
13921 	switch (cmd) {
13922 	case DDI_DETACH:
13923 		break;
13924 
13925 	case DDI_SUSPEND:
13926 		return (DDI_SUCCESS);
13927 
13928 	default:
13929 		return (DDI_FAILURE);
13930 	}
13931 
13932 	mutex_enter(&cpu_lock);
13933 	mutex_enter(&dtrace_provider_lock);
13934 	mutex_enter(&dtrace_lock);
13935 
13936 	ASSERT(dtrace_opens == 0);
13937 
13938 	if (dtrace_helpers > 0) {
13939 		mutex_exit(&dtrace_provider_lock);
13940 		mutex_exit(&dtrace_lock);
13941 		mutex_exit(&cpu_lock);
13942 		return (DDI_FAILURE);
13943 	}
13944 
13945 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
13946 		mutex_exit(&dtrace_provider_lock);
13947 		mutex_exit(&dtrace_lock);
13948 		mutex_exit(&cpu_lock);
13949 		return (DDI_FAILURE);
13950 	}
13951 
13952 	dtrace_provider = NULL;
13953 
13954 	if ((state = dtrace_anon_grab()) != NULL) {
13955 		/*
13956 		 * If there were ECBs on this state, the provider should
13957 		 * have not been allowed to detach; assert that there is
13958 		 * none.
13959 		 */
13960 		ASSERT(state->dts_necbs == 0);
13961 		dtrace_state_destroy(state);
13962 
13963 		/*
13964 		 * If we're being detached with anonymous state, we need to
13965 		 * indicate to the kernel debugger that DTrace is now inactive.
13966 		 */
13967 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13968 	}
13969 
13970 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
13971 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13972 	dtrace_cpu_init = NULL;
13973 	dtrace_helpers_cleanup = NULL;
13974 	dtrace_helpers_fork = NULL;
13975 	dtrace_cpustart_init = NULL;
13976 	dtrace_cpustart_fini = NULL;
13977 	dtrace_debugger_init = NULL;
13978 	dtrace_debugger_fini = NULL;
13979 	dtrace_kreloc_init = NULL;
13980 	dtrace_kreloc_fini = NULL;
13981 	dtrace_modload = NULL;
13982 	dtrace_modunload = NULL;
13983 
13984 	mutex_exit(&cpu_lock);
13985 
13986 	if (dtrace_helptrace_enabled) {
13987 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
13988 		dtrace_helptrace_buffer = NULL;
13989 	}
13990 
13991 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
13992 	dtrace_probes = NULL;
13993 	dtrace_nprobes = 0;
13994 
13995 	dtrace_hash_destroy(dtrace_bymod);
13996 	dtrace_hash_destroy(dtrace_byfunc);
13997 	dtrace_hash_destroy(dtrace_byname);
13998 	dtrace_bymod = NULL;
13999 	dtrace_byfunc = NULL;
14000 	dtrace_byname = NULL;
14001 
14002 	kmem_cache_destroy(dtrace_state_cache);
14003 	vmem_destroy(dtrace_minor);
14004 	vmem_destroy(dtrace_arena);
14005 
14006 	if (dtrace_toxrange != NULL) {
14007 		kmem_free(dtrace_toxrange,
14008 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
14009 		dtrace_toxrange = NULL;
14010 		dtrace_toxranges = 0;
14011 		dtrace_toxranges_max = 0;
14012 	}
14013 
14014 	ddi_remove_minor_node(dtrace_devi, NULL);
14015 	dtrace_devi = NULL;
14016 
14017 	ddi_soft_state_fini(&dtrace_softstate);
14018 
14019 	ASSERT(dtrace_vtime_references == 0);
14020 	ASSERT(dtrace_opens == 0);
14021 	ASSERT(dtrace_retained == NULL);
14022 
14023 	mutex_exit(&dtrace_lock);
14024 	mutex_exit(&dtrace_provider_lock);
14025 
14026 	/*
14027 	 * We don't destroy the task queue until after we have dropped our
14028 	 * locks (taskq_destroy() may block on running tasks).  To prevent
14029 	 * attempting to do work after we have effectively detached but before
14030 	 * the task queue has been destroyed, all tasks dispatched via the
14031 	 * task queue must check that DTrace is still attached before
14032 	 * performing any operation.
14033 	 */
14034 	taskq_destroy(dtrace_taskq);
14035 	dtrace_taskq = NULL;
14036 
14037 	return (DDI_SUCCESS);
14038 }
14039 
14040 /*ARGSUSED*/
14041 static int
14042 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
14043 {
14044 	int error;
14045 
14046 	switch (infocmd) {
14047 	case DDI_INFO_DEVT2DEVINFO:
14048 		*result = (void *)dtrace_devi;
14049 		error = DDI_SUCCESS;
14050 		break;
14051 	case DDI_INFO_DEVT2INSTANCE:
14052 		*result = (void *)0;
14053 		error = DDI_SUCCESS;
14054 		break;
14055 	default:
14056 		error = DDI_FAILURE;
14057 	}
14058 	return (error);
14059 }
14060 
14061 static struct cb_ops dtrace_cb_ops = {
14062 	dtrace_open,		/* open */
14063 	dtrace_close,		/* close */
14064 	nulldev,		/* strategy */
14065 	nulldev,		/* print */
14066 	nodev,			/* dump */
14067 	nodev,			/* read */
14068 	nodev,			/* write */
14069 	dtrace_ioctl,		/* ioctl */
14070 	nodev,			/* devmap */
14071 	nodev,			/* mmap */
14072 	nodev,			/* segmap */
14073 	nochpoll,		/* poll */
14074 	ddi_prop_op,		/* cb_prop_op */
14075 	0,			/* streamtab  */
14076 	D_NEW | D_MP		/* Driver compatibility flag */
14077 };
14078 
14079 static struct dev_ops dtrace_ops = {
14080 	DEVO_REV,		/* devo_rev */
14081 	0,			/* refcnt */
14082 	dtrace_info,		/* get_dev_info */
14083 	nulldev,		/* identify */
14084 	nulldev,		/* probe */
14085 	dtrace_attach,		/* attach */
14086 	dtrace_detach,		/* detach */
14087 	nodev,			/* reset */
14088 	&dtrace_cb_ops,		/* driver operations */
14089 	NULL,			/* bus operations */
14090 	nodev			/* dev power */
14091 };
14092 
14093 static struct modldrv modldrv = {
14094 	&mod_driverops,		/* module type (this is a pseudo driver) */
14095 	"Dynamic Tracing",	/* name of module */
14096 	&dtrace_ops,		/* driver ops */
14097 };
14098 
14099 static struct modlinkage modlinkage = {
14100 	MODREV_1,
14101 	(void *)&modldrv,
14102 	NULL
14103 };
14104 
14105 int
14106 _init(void)
14107 {
14108 	return (mod_install(&modlinkage));
14109 }
14110 
14111 int
14112 _info(struct modinfo *modinfop)
14113 {
14114 	return (mod_info(&modlinkage, modinfop));
14115 }
14116 
14117 int
14118 _fini(void)
14119 {
14120 	return (mod_remove(&modlinkage));
14121 }
14122