xref: /titanic_50/usr/src/uts/common/dtrace/dtrace.c (revision 6e93b38e61e2cf3c36f56dc2dac897f37b908dfe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 
94 /*
95  * DTrace Tunable Variables
96  *
97  * The following variables may be tuned by adding a line to /etc/system that
98  * includes both the name of the DTrace module ("dtrace") and the name of the
99  * variable.  For example:
100  *
101  *   set dtrace:dtrace_destructive_disallow = 1
102  *
103  * In general, the only variables that one should be tuning this way are those
104  * that affect system-wide DTrace behavior, and for which the default behavior
105  * is undesirable.  Most of these variables are tunable on a per-consumer
106  * basis using DTrace options, and need not be tuned on a system-wide basis.
107  * When tuning these variables, avoid pathological values; while some attempt
108  * is made to verify the integrity of these variables, they are not considered
109  * part of the supported interface to DTrace, and they are therefore not
110  * checked comprehensively.  Further, these variables should not be tuned
111  * dynamically via "mdb -kw" or other means; they should only be tuned via
112  * /etc/system.
113  */
114 int		dtrace_destructive_disallow = 0;
115 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
116 size_t		dtrace_difo_maxsize = (256 * 1024);
117 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
118 size_t		dtrace_global_maxsize = (16 * 1024);
119 size_t		dtrace_actions_max = (16 * 1024);
120 size_t		dtrace_retain_max = 1024;
121 dtrace_optval_t	dtrace_helper_actions_max = 32;
122 dtrace_optval_t	dtrace_helper_providers_max = 32;
123 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
124 size_t		dtrace_strsize_default = 256;
125 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
126 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
127 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
128 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
129 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
131 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_nspec_default = 1;
133 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
134 dtrace_optval_t dtrace_stackframes_default = 20;
135 dtrace_optval_t dtrace_ustackframes_default = 20;
136 dtrace_optval_t dtrace_jstackframes_default = 50;
137 dtrace_optval_t dtrace_jstackstrsize_default = 512;
138 int		dtrace_msgdsize_max = 128;
139 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
140 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
141 int		dtrace_devdepth_max = 32;
142 int		dtrace_err_verbose;
143 hrtime_t	dtrace_deadman_interval = NANOSEC;
144 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
145 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
146 
147 /*
148  * DTrace External Variables
149  *
150  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
151  * available to DTrace consumers via the backtick (`) syntax.  One of these,
152  * dtrace_zero, is made deliberately so:  it is provided as a source of
153  * well-known, zero-filled memory.  While this variable is not documented,
154  * it is used by some translators as an implementation detail.
155  */
156 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
157 
158 /*
159  * DTrace Internal Variables
160  */
161 static dev_info_t	*dtrace_devi;		/* device info */
162 static vmem_t		*dtrace_arena;		/* probe ID arena */
163 static vmem_t		*dtrace_minor;		/* minor number arena */
164 static taskq_t		*dtrace_taskq;		/* task queue */
165 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
166 static int		dtrace_nprobes;		/* number of probes */
167 static dtrace_provider_t *dtrace_provider;	/* provider list */
168 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
169 static int		dtrace_opens;		/* number of opens */
170 static int		dtrace_helpers;		/* number of helpers */
171 static void		*dtrace_softstate;	/* softstate pointer */
172 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
173 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
174 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
175 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
176 static int		dtrace_toxranges;	/* number of toxic ranges */
177 static int		dtrace_toxranges_max;	/* size of toxic range array */
178 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
179 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
180 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
181 static kthread_t	*dtrace_panicked;	/* panicking thread */
182 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
183 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
184 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
185 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
186 static dtrace_state_t	*dtrace_state;		/* temporary variable */
187 static int		dtrace_err;		/* temporary variable */
188 
189 /*
190  * DTrace Locking
191  * DTrace is protected by three (relatively coarse-grained) locks:
192  *
193  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
194  *     including enabling state, probes, ECBs, consumer state, helper state,
195  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
196  *     probe context is lock-free -- synchronization is handled via the
197  *     dtrace_sync() cross call mechanism.
198  *
199  * (2) dtrace_provider_lock is required when manipulating provider state, or
200  *     when provider state must be held constant.
201  *
202  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
203  *     when meta provider state must be held constant.
204  *
205  * The lock ordering between these three locks is dtrace_meta_lock before
206  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
207  * several places where dtrace_provider_lock is held by the framework as it
208  * calls into the providers -- which then call back into the framework,
209  * grabbing dtrace_lock.)
210  *
211  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
212  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
213  * role as a coarse-grained lock; it is acquired before both of these locks.
214  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
215  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
216  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
217  * acquired _between_ dtrace_provider_lock and dtrace_lock.
218  */
219 static kmutex_t		dtrace_lock;		/* probe state lock */
220 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
221 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
222 
223 /*
224  * DTrace Provider Variables
225  *
226  * These are the variables relating to DTrace as a provider (that is, the
227  * provider of the BEGIN, END, and ERROR probes).
228  */
229 static dtrace_pattr_t	dtrace_provider_attr = {
230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 };
236 
237 static void
238 dtrace_nullop(void)
239 {}
240 
241 static dtrace_pops_t	dtrace_provider_ops = {
242 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
243 	(void (*)(void *, struct modctl *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	NULL,
249 	NULL,
250 	NULL,
251 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
252 };
253 
254 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
255 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
256 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
257 
258 /*
259  * DTrace Helper Tracing Variables
260  */
261 uint32_t dtrace_helptrace_next = 0;
262 uint32_t dtrace_helptrace_nlocals;
263 char	*dtrace_helptrace_buffer;
264 int	dtrace_helptrace_bufsize = 512 * 1024;
265 
266 #ifdef DEBUG
267 int	dtrace_helptrace_enabled = 1;
268 #else
269 int	dtrace_helptrace_enabled = 0;
270 #endif
271 
272 /*
273  * DTrace Error Hashing
274  *
275  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
276  * table.  This is very useful for checking coverage of tests that are
277  * expected to induce DIF or DOF processing errors, and may be useful for
278  * debugging problems in the DIF code generator or in DOF generation .  The
279  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
280  */
281 #ifdef DEBUG
282 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
283 static const char *dtrace_errlast;
284 static kthread_t *dtrace_errthread;
285 static kmutex_t dtrace_errlock;
286 #endif
287 
288 /*
289  * DTrace Macros and Constants
290  *
291  * These are various macros that are useful in various spots in the
292  * implementation, along with a few random constants that have no meaning
293  * outside of the implementation.  There is no real structure to this cpp
294  * mishmash -- but is there ever?
295  */
296 #define	DTRACE_HASHSTR(hash, probe)	\
297 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
298 
299 #define	DTRACE_HASHNEXT(hash, probe)	\
300 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
301 
302 #define	DTRACE_HASHPREV(hash, probe)	\
303 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
304 
305 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
306 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
307 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
308 
309 #define	DTRACE_AGGHASHSIZE_SLEW		17
310 
311 /*
312  * The key for a thread-local variable consists of the lower 61 bits of the
313  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
314  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
315  * equal to a variable identifier.  This is necessary (but not sufficient) to
316  * assure that global associative arrays never collide with thread-local
317  * variables.  To guarantee that they cannot collide, we must also define the
318  * order for keying dynamic variables.  That order is:
319  *
320  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
321  *
322  * Because the variable-key and the tls-key are in orthogonal spaces, there is
323  * no way for a global variable key signature to match a thread-local key
324  * signature.
325  */
326 #define	DTRACE_TLS_THRKEY(where) { \
327 	uint_t intr = 0; \
328 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
329 	for (; actv; actv >>= 1) \
330 		intr++; \
331 	ASSERT(intr < (1 << 3)); \
332 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
333 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
334 }
335 
336 #define	DTRACE_STORE(type, tomax, offset, what) \
337 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
338 
339 #ifndef __i386
340 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
341 	if (addr & (size - 1)) {					\
342 		*flags |= CPU_DTRACE_BADALIGN;				\
343 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
344 		return (0);						\
345 	}
346 #else
347 #define	DTRACE_ALIGNCHECK(addr, size, flags)
348 #endif
349 
350 #define	DTRACE_LOADFUNC(bits)						\
351 /*CSTYLED*/								\
352 uint##bits##_t								\
353 dtrace_load##bits(uintptr_t addr)					\
354 {									\
355 	size_t size = bits / NBBY;					\
356 	/*CSTYLED*/							\
357 	uint##bits##_t rval;						\
358 	int i;								\
359 	volatile uint16_t *flags = (volatile uint16_t *)		\
360 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
361 									\
362 	DTRACE_ALIGNCHECK(addr, size, flags);				\
363 									\
364 	for (i = 0; i < dtrace_toxranges; i++) {			\
365 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
366 			continue;					\
367 									\
368 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
369 			continue;					\
370 									\
371 		/*							\
372 		 * This address falls within a toxic region; return 0.	\
373 		 */							\
374 		*flags |= CPU_DTRACE_BADADDR;				\
375 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
376 		return (0);						\
377 	}								\
378 									\
379 	*flags |= CPU_DTRACE_NOFAULT;					\
380 	/*CSTYLED*/							\
381 	rval = *((volatile uint##bits##_t *)addr);			\
382 	*flags &= ~CPU_DTRACE_NOFAULT;					\
383 									\
384 	return (rval);							\
385 }
386 
387 #ifdef _LP64
388 #define	dtrace_loadptr	dtrace_load64
389 #else
390 #define	dtrace_loadptr	dtrace_load32
391 #endif
392 
393 #define	DTRACE_MATCH_NEXT	0
394 #define	DTRACE_MATCH_DONE	1
395 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
396 #define	DTRACE_STATE_ALIGN	64
397 
398 #define	DTRACE_FLAGS2FLT(flags)						\
399 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
400 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
401 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
402 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
403 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
404 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
405 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
406 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
407 	DTRACEFLT_UNKNOWN)
408 
409 #define	DTRACEACT_ISSTRING(act)						\
410 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
411 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
412 
413 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
414 static void dtrace_enabling_provide(dtrace_provider_t *);
415 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
416 static void dtrace_enabling_matchall(void);
417 static dtrace_state_t *dtrace_anon_grab(void);
418 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
419     dtrace_state_t *, uint64_t, uint64_t);
420 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
421 static void dtrace_buffer_drop(dtrace_buffer_t *);
422 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
423     dtrace_state_t *, dtrace_mstate_t *);
424 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
425     dtrace_optval_t);
426 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
427 
428 /*
429  * DTrace Probe Context Functions
430  *
431  * These functions are called from probe context.  Because probe context is
432  * any context in which C may be called, arbitrarily locks may be held,
433  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
434  * As a result, functions called from probe context may only call other DTrace
435  * support functions -- they may not interact at all with the system at large.
436  * (Note that the ASSERT macro is made probe-context safe by redefining it in
437  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
438  * loads are to be performed from probe context, they _must_ be in terms of
439  * the safe dtrace_load*() variants.
440  *
441  * Some functions in this block are not actually called from probe context;
442  * for these functions, there will be a comment above the function reading
443  * "Note:  not called from probe context."
444  */
445 void
446 dtrace_panic(const char *format, ...)
447 {
448 	va_list alist;
449 
450 	va_start(alist, format);
451 	dtrace_vpanic(format, alist);
452 	va_end(alist);
453 }
454 
455 int
456 dtrace_assfail(const char *a, const char *f, int l)
457 {
458 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
459 
460 	/*
461 	 * We just need something here that even the most clever compiler
462 	 * cannot optimize away.
463 	 */
464 	return (a[(uintptr_t)f]);
465 }
466 
467 /*
468  * Atomically increment a specified error counter from probe context.
469  */
470 static void
471 dtrace_error(uint32_t *counter)
472 {
473 	/*
474 	 * Most counters stored to in probe context are per-CPU counters.
475 	 * However, there are some error conditions that are sufficiently
476 	 * arcane that they don't merit per-CPU storage.  If these counters
477 	 * are incremented concurrently on different CPUs, scalability will be
478 	 * adversely affected -- but we don't expect them to be white-hot in a
479 	 * correctly constructed enabling...
480 	 */
481 	uint32_t oval, nval;
482 
483 	do {
484 		oval = *counter;
485 
486 		if ((nval = oval + 1) == 0) {
487 			/*
488 			 * If the counter would wrap, set it to 1 -- assuring
489 			 * that the counter is never zero when we have seen
490 			 * errors.  (The counter must be 32-bits because we
491 			 * aren't guaranteed a 64-bit compare&swap operation.)
492 			 * To save this code both the infamy of being fingered
493 			 * by a priggish news story and the indignity of being
494 			 * the target of a neo-puritan witch trial, we're
495 			 * carefully avoiding any colorful description of the
496 			 * likelihood of this condition -- but suffice it to
497 			 * say that it is only slightly more likely than the
498 			 * overflow of predicate cache IDs, as discussed in
499 			 * dtrace_predicate_create().
500 			 */
501 			nval = 1;
502 		}
503 	} while (dtrace_cas32(counter, oval, nval) != oval);
504 }
505 
506 /*
507  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
508  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
509  */
510 DTRACE_LOADFUNC(8)
511 DTRACE_LOADFUNC(16)
512 DTRACE_LOADFUNC(32)
513 DTRACE_LOADFUNC(64)
514 
515 static int
516 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
517 {
518 	if (dest < mstate->dtms_scratch_base)
519 		return (0);
520 
521 	if (dest + size < dest)
522 		return (0);
523 
524 	if (dest + size > mstate->dtms_scratch_ptr)
525 		return (0);
526 
527 	return (1);
528 }
529 
530 static int
531 dtrace_canstore_statvar(uint64_t addr, size_t sz,
532     dtrace_statvar_t **svars, int nsvars)
533 {
534 	int i;
535 
536 	for (i = 0; i < nsvars; i++) {
537 		dtrace_statvar_t *svar = svars[i];
538 
539 		if (svar == NULL || svar->dtsv_size == 0)
540 			continue;
541 
542 		if (addr - svar->dtsv_data < svar->dtsv_size &&
543 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
544 			return (1);
545 	}
546 
547 	return (0);
548 }
549 
550 /*
551  * Check to see if the address is within a memory region to which a store may
552  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
553  * region.  The caller of dtrace_canstore() is responsible for performing any
554  * alignment checks that are needed before stores are actually executed.
555  */
556 static int
557 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
558     dtrace_vstate_t *vstate)
559 {
560 	uintptr_t a;
561 	size_t s;
562 
563 	/*
564 	 * First, check to see if the address is in scratch space...
565 	 */
566 	a = mstate->dtms_scratch_base;
567 	s = mstate->dtms_scratch_size;
568 
569 	if (addr - a < s && addr + sz <= a + s)
570 		return (1);
571 
572 	/*
573 	 * Now check to see if it's a dynamic variable.  This check will pick
574 	 * up both thread-local variables and any global dynamically-allocated
575 	 * variables.
576 	 */
577 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
578 	s = vstate->dtvs_dynvars.dtds_size;
579 	if (addr - a < s && addr + sz <= a + s)
580 		return (1);
581 
582 	/*
583 	 * Finally, check the static local and global variables.  These checks
584 	 * take the longest, so we perform them last.
585 	 */
586 	if (dtrace_canstore_statvar(addr, sz,
587 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
588 		return (1);
589 
590 	if (dtrace_canstore_statvar(addr, sz,
591 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
592 		return (1);
593 
594 	return (0);
595 }
596 
597 /*
598  * Compare two strings using safe loads.
599  */
600 static int
601 dtrace_strncmp(char *s1, char *s2, size_t limit)
602 {
603 	uint8_t c1, c2;
604 	volatile uint16_t *flags;
605 
606 	if (s1 == s2 || limit == 0)
607 		return (0);
608 
609 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
610 
611 	do {
612 		if (s1 == NULL) {
613 			c1 = '\0';
614 		} else {
615 			c1 = dtrace_load8((uintptr_t)s1++);
616 		}
617 
618 		if (s2 == NULL) {
619 			c2 = '\0';
620 		} else {
621 			c2 = dtrace_load8((uintptr_t)s2++);
622 		}
623 
624 		if (c1 != c2)
625 			return (c1 - c2);
626 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
627 
628 	return (0);
629 }
630 
631 /*
632  * Compute strlen(s) for a string using safe memory accesses.  The additional
633  * len parameter is used to specify a maximum length to ensure completion.
634  */
635 static size_t
636 dtrace_strlen(const char *s, size_t lim)
637 {
638 	uint_t len;
639 
640 	for (len = 0; len != lim; len++) {
641 		if (dtrace_load8((uintptr_t)s++) == '\0')
642 			break;
643 	}
644 
645 	return (len);
646 }
647 
648 /*
649  * Check if an address falls within a toxic region.
650  */
651 static int
652 dtrace_istoxic(uintptr_t kaddr, size_t size)
653 {
654 	uintptr_t taddr, tsize;
655 	int i;
656 
657 	for (i = 0; i < dtrace_toxranges; i++) {
658 		taddr = dtrace_toxrange[i].dtt_base;
659 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
660 
661 		if (kaddr - taddr < tsize) {
662 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
663 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
664 			return (1);
665 		}
666 
667 		if (taddr - kaddr < size) {
668 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
669 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
670 			return (1);
671 		}
672 	}
673 
674 	return (0);
675 }
676 
677 /*
678  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
679  * memory specified by the DIF program.  The dst is assumed to be safe memory
680  * that we can store to directly because it is managed by DTrace.  As with
681  * standard bcopy, overlapping copies are handled properly.
682  */
683 static void
684 dtrace_bcopy(const void *src, void *dst, size_t len)
685 {
686 	if (len != 0) {
687 		uint8_t *s1 = dst;
688 		const uint8_t *s2 = src;
689 
690 		if (s1 <= s2) {
691 			do {
692 				*s1++ = dtrace_load8((uintptr_t)s2++);
693 			} while (--len != 0);
694 		} else {
695 			s2 += len;
696 			s1 += len;
697 
698 			do {
699 				*--s1 = dtrace_load8((uintptr_t)--s2);
700 			} while (--len != 0);
701 		}
702 	}
703 }
704 
705 /*
706  * Copy src to dst using safe memory accesses, up to either the specified
707  * length, or the point that a nul byte is encountered.  The src is assumed to
708  * be unsafe memory specified by the DIF program.  The dst is assumed to be
709  * safe memory that we can store to directly because it is managed by DTrace.
710  * Unlike dtrace_bcopy(), overlapping regions are not handled.
711  */
712 static void
713 dtrace_strcpy(const void *src, void *dst, size_t len)
714 {
715 	if (len != 0) {
716 		uint8_t *s1 = dst, c;
717 		const uint8_t *s2 = src;
718 
719 		do {
720 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
721 		} while (--len != 0 && c != '\0');
722 	}
723 }
724 
725 /*
726  * Copy src to dst, deriving the size and type from the specified (BYREF)
727  * variable type.  The src is assumed to be unsafe memory specified by the DIF
728  * program.  The dst is assumed to be DTrace variable memory that is of the
729  * specified type; we assume that we can store to directly.
730  */
731 static void
732 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
733 {
734 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
735 
736 	if (type->dtdt_kind == DIF_TYPE_STRING) {
737 		dtrace_strcpy(src, dst, type->dtdt_size);
738 	} else {
739 		dtrace_bcopy(src, dst, type->dtdt_size);
740 	}
741 }
742 
743 /*
744  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
745  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
746  * safe memory that we can access directly because it is managed by DTrace.
747  */
748 static int
749 dtrace_bcmp(const void *s1, const void *s2, size_t len)
750 {
751 	volatile uint16_t *flags;
752 
753 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
754 
755 	if (s1 == s2)
756 		return (0);
757 
758 	if (s1 == NULL || s2 == NULL)
759 		return (1);
760 
761 	if (s1 != s2 && len != 0) {
762 		const uint8_t *ps1 = s1;
763 		const uint8_t *ps2 = s2;
764 
765 		do {
766 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
767 				return (1);
768 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
769 	}
770 	return (0);
771 }
772 
773 /*
774  * Zero the specified region using a simple byte-by-byte loop.  Note that this
775  * is for safe DTrace-managed memory only.
776  */
777 static void
778 dtrace_bzero(void *dst, size_t len)
779 {
780 	uchar_t *cp;
781 
782 	for (cp = dst; len != 0; len--)
783 		*cp++ = 0;
784 }
785 
786 /*
787  * This privilege check should be used by actions and subroutines to
788  * verify that the user credentials of the process that enabled the
789  * invoking ECB match the target credentials
790  */
791 static int
792 dtrace_priv_proc_common_user(dtrace_state_t *state)
793 {
794 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
795 
796 	/*
797 	 * We should always have a non-NULL state cred here, since if cred
798 	 * is null (anonymous tracing), we fast-path bypass this routine.
799 	 */
800 	ASSERT(s_cr != NULL);
801 
802 	if ((cr = CRED()) != NULL &&
803 	    s_cr->cr_uid == cr->cr_uid &&
804 	    s_cr->cr_uid == cr->cr_ruid &&
805 	    s_cr->cr_uid == cr->cr_suid &&
806 	    s_cr->cr_gid == cr->cr_gid &&
807 	    s_cr->cr_gid == cr->cr_rgid &&
808 	    s_cr->cr_gid == cr->cr_sgid)
809 		return (1);
810 
811 	return (0);
812 }
813 
814 /*
815  * This privilege check should be used by actions and subroutines to
816  * verify that the zone of the process that enabled the invoking ECB
817  * matches the target credentials
818  */
819 static int
820 dtrace_priv_proc_common_zone(dtrace_state_t *state)
821 {
822 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
823 
824 	/*
825 	 * We should always have a non-NULL state cred here, since if cred
826 	 * is null (anonymous tracing), we fast-path bypass this routine.
827 	 */
828 	ASSERT(s_cr != NULL);
829 
830 	if ((cr = CRED()) != NULL &&
831 	    s_cr->cr_zone == cr->cr_zone)
832 		return (1);
833 
834 	return (0);
835 }
836 
837 /*
838  * This privilege check should be used by actions and subroutines to
839  * verify that the process has not setuid or changed credentials.
840  */
841 static int
842 dtrace_priv_proc_common_nocd()
843 {
844 	proc_t *proc;
845 
846 	if ((proc = ttoproc(curthread)) != NULL &&
847 	    !(proc->p_flag & SNOCD))
848 		return (1);
849 
850 	return (0);
851 }
852 
853 static int
854 dtrace_priv_proc_destructive(dtrace_state_t *state)
855 {
856 	int action = state->dts_cred.dcr_action;
857 
858 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
859 	    dtrace_priv_proc_common_zone(state) == 0)
860 		goto bad;
861 
862 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
863 	    dtrace_priv_proc_common_user(state) == 0)
864 		goto bad;
865 
866 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
867 	    dtrace_priv_proc_common_nocd() == 0)
868 		goto bad;
869 
870 	return (1);
871 
872 bad:
873 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
874 
875 	return (0);
876 }
877 
878 static int
879 dtrace_priv_proc_control(dtrace_state_t *state)
880 {
881 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
882 		return (1);
883 
884 	if (dtrace_priv_proc_common_zone(state) &&
885 	    dtrace_priv_proc_common_user(state) &&
886 	    dtrace_priv_proc_common_nocd())
887 		return (1);
888 
889 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
890 
891 	return (0);
892 }
893 
894 static int
895 dtrace_priv_proc(dtrace_state_t *state)
896 {
897 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
898 		return (1);
899 
900 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
901 
902 	return (0);
903 }
904 
905 static int
906 dtrace_priv_kernel(dtrace_state_t *state)
907 {
908 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
909 		return (1);
910 
911 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
912 
913 	return (0);
914 }
915 
916 static int
917 dtrace_priv_kernel_destructive(dtrace_state_t *state)
918 {
919 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
920 		return (1);
921 
922 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
923 
924 	return (0);
925 }
926 
927 /*
928  * Note:  not called from probe context.  This function is called
929  * asynchronously (and at a regular interval) from outside of probe context to
930  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
931  * cleaning is explained in detail in <sys/dtrace_impl.h>.
932  */
933 void
934 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
935 {
936 	dtrace_dynvar_t *dirty;
937 	dtrace_dstate_percpu_t *dcpu;
938 	int i, work = 0;
939 
940 	for (i = 0; i < NCPU; i++) {
941 		dcpu = &dstate->dtds_percpu[i];
942 
943 		ASSERT(dcpu->dtdsc_rinsing == NULL);
944 
945 		/*
946 		 * If the dirty list is NULL, there is no dirty work to do.
947 		 */
948 		if (dcpu->dtdsc_dirty == NULL)
949 			continue;
950 
951 		/*
952 		 * If the clean list is non-NULL, then we're not going to do
953 		 * any work for this CPU -- it means that there has not been
954 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
955 		 * since the last time we cleaned house.
956 		 */
957 		if (dcpu->dtdsc_clean != NULL)
958 			continue;
959 
960 		work = 1;
961 
962 		/*
963 		 * Atomically move the dirty list aside.
964 		 */
965 		do {
966 			dirty = dcpu->dtdsc_dirty;
967 
968 			/*
969 			 * Before we zap the dirty list, set the rinsing list.
970 			 * (This allows for a potential assertion in
971 			 * dtrace_dynvar():  if a free dynamic variable appears
972 			 * on a hash chain, either the dirty list or the
973 			 * rinsing list for some CPU must be non-NULL.)
974 			 */
975 			dcpu->dtdsc_rinsing = dirty;
976 			dtrace_membar_producer();
977 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
978 		    dirty, NULL) != dirty);
979 	}
980 
981 	if (!work) {
982 		/*
983 		 * We have no work to do; we can simply return.
984 		 */
985 		return;
986 	}
987 
988 	dtrace_sync();
989 
990 	for (i = 0; i < NCPU; i++) {
991 		dcpu = &dstate->dtds_percpu[i];
992 
993 		if (dcpu->dtdsc_rinsing == NULL)
994 			continue;
995 
996 		/*
997 		 * We are now guaranteed that no hash chain contains a pointer
998 		 * into this dirty list; we can make it clean.
999 		 */
1000 		ASSERT(dcpu->dtdsc_clean == NULL);
1001 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1002 		dcpu->dtdsc_rinsing = NULL;
1003 	}
1004 
1005 	/*
1006 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1007 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1008 	 * This prevents a race whereby a CPU incorrectly decides that
1009 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1010 	 * after dtrace_dynvar_clean() has completed.
1011 	 */
1012 	dtrace_sync();
1013 
1014 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1015 }
1016 
1017 /*
1018  * Depending on the value of the op parameter, this function looks-up,
1019  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1020  * allocation is requested, this function will return a pointer to a
1021  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1022  * variable can be allocated.  If NULL is returned, the appropriate counter
1023  * will be incremented.
1024  */
1025 dtrace_dynvar_t *
1026 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1027     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
1028 {
1029 	uint64_t hashval = 1;
1030 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1031 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1032 	processorid_t me = CPU->cpu_id, cpu = me;
1033 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1034 	size_t bucket, ksize;
1035 	size_t chunksize = dstate->dtds_chunksize;
1036 	uintptr_t kdata, lock, nstate;
1037 	uint_t i;
1038 
1039 	ASSERT(nkeys != 0);
1040 
1041 	/*
1042 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1043 	 * algorithm.  For the by-value portions, we perform the algorithm in
1044 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1045 	 * bit, and seems to have only a minute effect on distribution.  For
1046 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1047 	 * over each referenced byte.  It's painful to do this, but it's much
1048 	 * better than pathological hash distribution.  The efficacy of the
1049 	 * hashing algorithm (and a comparison with other algorithms) may be
1050 	 * found by running the ::dtrace_dynstat MDB dcmd.
1051 	 */
1052 	for (i = 0; i < nkeys; i++) {
1053 		if (key[i].dttk_size == 0) {
1054 			uint64_t val = key[i].dttk_value;
1055 
1056 			hashval += (val >> 48) & 0xffff;
1057 			hashval += (hashval << 10);
1058 			hashval ^= (hashval >> 6);
1059 
1060 			hashval += (val >> 32) & 0xffff;
1061 			hashval += (hashval << 10);
1062 			hashval ^= (hashval >> 6);
1063 
1064 			hashval += (val >> 16) & 0xffff;
1065 			hashval += (hashval << 10);
1066 			hashval ^= (hashval >> 6);
1067 
1068 			hashval += val & 0xffff;
1069 			hashval += (hashval << 10);
1070 			hashval ^= (hashval >> 6);
1071 		} else {
1072 			/*
1073 			 * This is incredibly painful, but it beats the hell
1074 			 * out of the alternative.
1075 			 */
1076 			uint64_t j, size = key[i].dttk_size;
1077 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1078 
1079 			for (j = 0; j < size; j++) {
1080 				hashval += dtrace_load8(base + j);
1081 				hashval += (hashval << 10);
1082 				hashval ^= (hashval >> 6);
1083 			}
1084 		}
1085 	}
1086 
1087 	hashval += (hashval << 3);
1088 	hashval ^= (hashval >> 11);
1089 	hashval += (hashval << 15);
1090 
1091 	/*
1092 	 * There is a remote chance (ideally, 1 in 2^32) that our hashval
1093 	 * comes out to be 0.  We rely on a zero hashval denoting a free
1094 	 * element; if this actually happens, we set the hashval to 1.
1095 	 */
1096 	if (hashval == 0)
1097 		hashval = 1;
1098 
1099 	/*
1100 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1101 	 * important here, tricks can be pulled to reduce it.  (However, it's
1102 	 * critical that hash collisions be kept to an absolute minimum;
1103 	 * they're much more painful than a divide.)  It's better to have a
1104 	 * solution that generates few collisions and still keeps things
1105 	 * relatively simple.
1106 	 */
1107 	bucket = hashval % dstate->dtds_hashsize;
1108 
1109 	if (op == DTRACE_DYNVAR_DEALLOC) {
1110 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1111 
1112 		for (;;) {
1113 			while ((lock = *lockp) & 1)
1114 				continue;
1115 
1116 			if (dtrace_casptr((void *)lockp,
1117 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1118 				break;
1119 		}
1120 
1121 		dtrace_membar_producer();
1122 	}
1123 
1124 top:
1125 	prev = NULL;
1126 	lock = hash[bucket].dtdh_lock;
1127 
1128 	dtrace_membar_consumer();
1129 
1130 	start = hash[bucket].dtdh_chain;
1131 	ASSERT(start == NULL || start->dtdv_hashval != 0 ||
1132 	    op != DTRACE_DYNVAR_DEALLOC);
1133 
1134 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1135 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1136 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1137 
1138 		if (dvar->dtdv_hashval != hashval) {
1139 			if (dvar->dtdv_hashval == 0) {
1140 				/*
1141 				 * We've gone off the rails.  Somewhere
1142 				 * along the line, one of the members of this
1143 				 * hash chain was deleted.  We could assert
1144 				 * that either the dirty list or the rinsing
1145 				 * list is non-NULL.  (The dtrace_sync() in
1146 				 * dtrace_dynvar_clean() would validate this
1147 				 * assertion.)
1148 				 */
1149 				ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1150 				goto top;
1151 			}
1152 
1153 			goto next;
1154 		}
1155 
1156 		if (dtuple->dtt_nkeys != nkeys)
1157 			goto next;
1158 
1159 		for (i = 0; i < nkeys; i++, dkey++) {
1160 			if (dkey->dttk_size != key[i].dttk_size)
1161 				goto next; /* size or type mismatch */
1162 
1163 			if (dkey->dttk_size != 0) {
1164 				if (dtrace_bcmp(
1165 				    (void *)(uintptr_t)key[i].dttk_value,
1166 				    (void *)(uintptr_t)dkey->dttk_value,
1167 				    dkey->dttk_size))
1168 					goto next;
1169 			} else {
1170 				if (dkey->dttk_value != key[i].dttk_value)
1171 					goto next;
1172 			}
1173 		}
1174 
1175 		if (op != DTRACE_DYNVAR_DEALLOC)
1176 			return (dvar);
1177 
1178 		ASSERT(dvar->dtdv_next == NULL ||
1179 		    dvar->dtdv_next->dtdv_hashval != 0);
1180 
1181 		if (prev != NULL) {
1182 			ASSERT(hash[bucket].dtdh_chain != dvar);
1183 			ASSERT(start != dvar);
1184 			ASSERT(prev->dtdv_next == dvar);
1185 			prev->dtdv_next = dvar->dtdv_next;
1186 		} else {
1187 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1188 			    start, dvar->dtdv_next) != start) {
1189 				/*
1190 				 * We have failed to atomically swing the
1191 				 * hash table head pointer, presumably because
1192 				 * of a conflicting allocation on another CPU.
1193 				 * We need to reread the hash chain and try
1194 				 * again.
1195 				 */
1196 				goto top;
1197 			}
1198 		}
1199 
1200 		dtrace_membar_producer();
1201 
1202 		/*
1203 		 * Now clear the hash value to indicate that it's free.
1204 		 */
1205 		ASSERT(hash[bucket].dtdh_chain != dvar);
1206 		dvar->dtdv_hashval = 0;
1207 
1208 		dtrace_membar_producer();
1209 
1210 		/*
1211 		 * Set the next pointer to point at the dirty list, and
1212 		 * atomically swing the dirty pointer to the newly freed dvar.
1213 		 */
1214 		do {
1215 			next = dcpu->dtdsc_dirty;
1216 			dvar->dtdv_next = next;
1217 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1218 
1219 		/*
1220 		 * Finally, unlock this hash bucket.
1221 		 */
1222 		ASSERT(hash[bucket].dtdh_lock == lock);
1223 		ASSERT(lock & 1);
1224 		hash[bucket].dtdh_lock++;
1225 
1226 		return (NULL);
1227 next:
1228 		prev = dvar;
1229 		continue;
1230 	}
1231 
1232 	if (op != DTRACE_DYNVAR_ALLOC) {
1233 		/*
1234 		 * If we are not to allocate a new variable, we want to
1235 		 * return NULL now.  Before we return, check that the value
1236 		 * of the lock word hasn't changed.  If it has, we may have
1237 		 * seen an inconsistent snapshot.
1238 		 */
1239 		if (op == DTRACE_DYNVAR_NOALLOC) {
1240 			if (hash[bucket].dtdh_lock != lock)
1241 				goto top;
1242 		} else {
1243 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1244 			ASSERT(hash[bucket].dtdh_lock == lock);
1245 			ASSERT(lock & 1);
1246 			hash[bucket].dtdh_lock++;
1247 		}
1248 
1249 		return (NULL);
1250 	}
1251 
1252 	/*
1253 	 * We need to allocate a new dynamic variable.  The size we need is the
1254 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1255 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1256 	 * the size of any referred-to data (dsize).  We then round the final
1257 	 * size up to the chunksize for allocation.
1258 	 */
1259 	for (ksize = 0, i = 0; i < nkeys; i++)
1260 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1261 
1262 	/*
1263 	 * This should be pretty much impossible, but could happen if, say,
1264 	 * strange DIF specified the tuple.  Ideally, this should be an
1265 	 * assertion and not an error condition -- but that requires that the
1266 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1267 	 * bullet-proof.  (That is, it must not be able to be fooled by
1268 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1269 	 * solving this would presumably not amount to solving the Halting
1270 	 * Problem -- but it still seems awfully hard.
1271 	 */
1272 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1273 	    ksize + dsize > chunksize) {
1274 		dcpu->dtdsc_drops++;
1275 		return (NULL);
1276 	}
1277 
1278 	nstate = DTRACE_DSTATE_EMPTY;
1279 
1280 	do {
1281 retry:
1282 		free = dcpu->dtdsc_free;
1283 
1284 		if (free == NULL) {
1285 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1286 			void *rval;
1287 
1288 			if (clean == NULL) {
1289 				/*
1290 				 * We're out of dynamic variable space on
1291 				 * this CPU.  Unless we have tried all CPUs,
1292 				 * we'll try to allocate from a different
1293 				 * CPU.
1294 				 */
1295 				switch (dstate->dtds_state) {
1296 				case DTRACE_DSTATE_CLEAN: {
1297 					void *sp = &dstate->dtds_state;
1298 
1299 					if (++cpu >= NCPU)
1300 						cpu = 0;
1301 
1302 					if (dcpu->dtdsc_dirty != NULL &&
1303 					    nstate == DTRACE_DSTATE_EMPTY)
1304 						nstate = DTRACE_DSTATE_DIRTY;
1305 
1306 					if (dcpu->dtdsc_rinsing != NULL)
1307 						nstate = DTRACE_DSTATE_RINSING;
1308 
1309 					dcpu = &dstate->dtds_percpu[cpu];
1310 
1311 					if (cpu != me)
1312 						goto retry;
1313 
1314 					(void) dtrace_cas32(sp,
1315 					    DTRACE_DSTATE_CLEAN, nstate);
1316 
1317 					/*
1318 					 * To increment the correct bean
1319 					 * counter, take another lap.
1320 					 */
1321 					goto retry;
1322 				}
1323 
1324 				case DTRACE_DSTATE_DIRTY:
1325 					dcpu->dtdsc_dirty_drops++;
1326 					break;
1327 
1328 				case DTRACE_DSTATE_RINSING:
1329 					dcpu->dtdsc_rinsing_drops++;
1330 					break;
1331 
1332 				case DTRACE_DSTATE_EMPTY:
1333 					dcpu->dtdsc_drops++;
1334 					break;
1335 				}
1336 
1337 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1338 				return (NULL);
1339 			}
1340 
1341 			/*
1342 			 * The clean list appears to be non-empty.  We want to
1343 			 * move the clean list to the free list; we start by
1344 			 * moving the clean pointer aside.
1345 			 */
1346 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1347 			    clean, NULL) != clean) {
1348 				/*
1349 				 * We are in one of two situations:
1350 				 *
1351 				 *  (a)	The clean list was switched to the
1352 				 *	free list by another CPU.
1353 				 *
1354 				 *  (b)	The clean list was added to by the
1355 				 *	cleansing cyclic.
1356 				 *
1357 				 * In either of these situations, we can
1358 				 * just reattempt the free list allocation.
1359 				 */
1360 				goto retry;
1361 			}
1362 
1363 			ASSERT(clean->dtdv_hashval == 0);
1364 
1365 			/*
1366 			 * Now we'll move the clean list to the free list.
1367 			 * It's impossible for this to fail:  the only way
1368 			 * the free list can be updated is through this
1369 			 * code path, and only one CPU can own the clean list.
1370 			 * Thus, it would only be possible for this to fail if
1371 			 * this code were racing with dtrace_dynvar_clean().
1372 			 * (That is, if dtrace_dynvar_clean() updated the clean
1373 			 * list, and we ended up racing to update the free
1374 			 * list.)  This race is prevented by the dtrace_sync()
1375 			 * in dtrace_dynvar_clean() -- which flushes the
1376 			 * owners of the clean lists out before resetting
1377 			 * the clean lists.
1378 			 */
1379 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1380 			ASSERT(rval == NULL);
1381 			goto retry;
1382 		}
1383 
1384 		dvar = free;
1385 		new_free = dvar->dtdv_next;
1386 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1387 
1388 	/*
1389 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1390 	 * tuple array and copy any referenced key data into the data space
1391 	 * following the tuple array.  As we do this, we relocate dttk_value
1392 	 * in the final tuple to point to the key data address in the chunk.
1393 	 */
1394 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1395 	dvar->dtdv_data = (void *)(kdata + ksize);
1396 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1397 
1398 	for (i = 0; i < nkeys; i++) {
1399 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1400 		size_t kesize = key[i].dttk_size;
1401 
1402 		if (kesize != 0) {
1403 			dtrace_bcopy(
1404 			    (const void *)(uintptr_t)key[i].dttk_value,
1405 			    (void *)kdata, kesize);
1406 			dkey->dttk_value = kdata;
1407 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1408 		} else {
1409 			dkey->dttk_value = key[i].dttk_value;
1410 		}
1411 
1412 		dkey->dttk_size = kesize;
1413 	}
1414 
1415 	ASSERT(dvar->dtdv_hashval == 0);
1416 	dvar->dtdv_hashval = hashval;
1417 	dvar->dtdv_next = start;
1418 
1419 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1420 		return (dvar);
1421 
1422 	/*
1423 	 * The cas has failed.  Either another CPU is adding an element to
1424 	 * this hash chain, or another CPU is deleting an element from this
1425 	 * hash chain.  The simplest way to deal with both of these cases
1426 	 * (though not necessarily the most efficient) is to free our
1427 	 * allocated block and tail-call ourselves.  Note that the free is
1428 	 * to the dirty list and _not_ to the free list.  This is to prevent
1429 	 * races with allocators, above.
1430 	 */
1431 	dvar->dtdv_hashval = 0;
1432 
1433 	dtrace_membar_producer();
1434 
1435 	do {
1436 		free = dcpu->dtdsc_dirty;
1437 		dvar->dtdv_next = free;
1438 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1439 
1440 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1441 }
1442 
1443 /*ARGSUSED*/
1444 static void
1445 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1446 {
1447 	if (nval < *oval)
1448 		*oval = nval;
1449 }
1450 
1451 /*ARGSUSED*/
1452 static void
1453 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1454 {
1455 	if (nval > *oval)
1456 		*oval = nval;
1457 }
1458 
1459 static void
1460 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1461 {
1462 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1463 	int64_t val = (int64_t)nval;
1464 
1465 	if (val < 0) {
1466 		for (i = 0; i < zero; i++) {
1467 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1468 				quanta[i] += incr;
1469 				return;
1470 			}
1471 		}
1472 	} else {
1473 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1474 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1475 				quanta[i - 1] += incr;
1476 				return;
1477 			}
1478 		}
1479 
1480 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1481 		return;
1482 	}
1483 
1484 	ASSERT(0);
1485 }
1486 
1487 static void
1488 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1489 {
1490 	uint64_t arg = *lquanta++;
1491 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1492 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1493 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1494 	int32_t val = (int32_t)nval, level;
1495 
1496 	ASSERT(step != 0);
1497 	ASSERT(levels != 0);
1498 
1499 	if (val < base) {
1500 		/*
1501 		 * This is an underflow.
1502 		 */
1503 		lquanta[0] += incr;
1504 		return;
1505 	}
1506 
1507 	level = (val - base) / step;
1508 
1509 	if (level < levels) {
1510 		lquanta[level + 1] += incr;
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * This is an overflow.
1516 	 */
1517 	lquanta[levels + 1] += incr;
1518 }
1519 
1520 /*ARGSUSED*/
1521 static void
1522 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1523 {
1524 	data[0]++;
1525 	data[1] += nval;
1526 }
1527 
1528 /*ARGSUSED*/
1529 static void
1530 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1531 {
1532 	*oval = *oval + 1;
1533 }
1534 
1535 /*ARGSUSED*/
1536 static void
1537 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1538 {
1539 	*oval += nval;
1540 }
1541 
1542 /*
1543  * Aggregate given the tuple in the principal data buffer, and the aggregating
1544  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1545  * buffer is specified as the buf parameter.  This routine does not return
1546  * failure; if there is no space in the aggregation buffer, the data will be
1547  * dropped, and a corresponding counter incremented.
1548  */
1549 static void
1550 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1551     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1552 {
1553 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1554 	uint32_t i, ndx, size, fsize;
1555 	uint32_t align = sizeof (uint64_t) - 1;
1556 	dtrace_aggbuffer_t *agb;
1557 	dtrace_aggkey_t *key;
1558 	uint32_t hashval = 0, limit, isstr;
1559 	caddr_t tomax, data, kdata;
1560 	dtrace_actkind_t action;
1561 	dtrace_action_t *act;
1562 	uintptr_t offs;
1563 
1564 	if (buf == NULL)
1565 		return;
1566 
1567 	if (!agg->dtag_hasarg) {
1568 		/*
1569 		 * Currently, only quantize() and lquantize() take additional
1570 		 * arguments, and they have the same semantics:  an increment
1571 		 * value that defaults to 1 when not present.  If additional
1572 		 * aggregating actions take arguments, the setting of the
1573 		 * default argument value will presumably have to become more
1574 		 * sophisticated...
1575 		 */
1576 		arg = 1;
1577 	}
1578 
1579 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1580 	size = rec->dtrd_offset - agg->dtag_base;
1581 	fsize = size + rec->dtrd_size;
1582 
1583 	ASSERT(dbuf->dtb_tomax != NULL);
1584 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1585 
1586 	if ((tomax = buf->dtb_tomax) == NULL) {
1587 		dtrace_buffer_drop(buf);
1588 		return;
1589 	}
1590 
1591 	/*
1592 	 * The metastructure is always at the bottom of the buffer.
1593 	 */
1594 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1595 	    sizeof (dtrace_aggbuffer_t));
1596 
1597 	if (buf->dtb_offset == 0) {
1598 		/*
1599 		 * We just kludge up approximately 1/8th of the size to be
1600 		 * buckets.  If this guess ends up being routinely
1601 		 * off-the-mark, we may need to dynamically readjust this
1602 		 * based on past performance.
1603 		 */
1604 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1605 
1606 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1607 		    (uintptr_t)tomax || hashsize == 0) {
1608 			/*
1609 			 * We've been given a ludicrously small buffer;
1610 			 * increment our drop count and leave.
1611 			 */
1612 			dtrace_buffer_drop(buf);
1613 			return;
1614 		}
1615 
1616 		/*
1617 		 * And now, a pathetic attempt to try to get a an odd (or
1618 		 * perchance, a prime) hash size for better hash distribution.
1619 		 */
1620 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1621 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1622 
1623 		agb->dtagb_hashsize = hashsize;
1624 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1625 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1626 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1627 
1628 		for (i = 0; i < agb->dtagb_hashsize; i++)
1629 			agb->dtagb_hash[i] = NULL;
1630 	}
1631 
1632 	ASSERT(agg->dtag_first != NULL);
1633 	ASSERT(agg->dtag_first->dta_intuple);
1634 
1635 	/*
1636 	 * Calculate the hash value based on the key.  Note that we _don't_
1637 	 * include the aggid in the hashing (but we will store it as part of
1638 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1639 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1640 	 * gets good distribution in practice.  The efficacy of the hashing
1641 	 * algorithm (and a comparison with other algorithms) may be found by
1642 	 * running the ::dtrace_aggstat MDB dcmd.
1643 	 */
1644 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1645 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1646 		limit = i + act->dta_rec.dtrd_size;
1647 		ASSERT(limit <= size);
1648 		isstr = DTRACEACT_ISSTRING(act);
1649 
1650 		for (; i < limit; i++) {
1651 			hashval += data[i];
1652 			hashval += (hashval << 10);
1653 			hashval ^= (hashval >> 6);
1654 
1655 			if (isstr && data[i] == '\0')
1656 				break;
1657 		}
1658 	}
1659 
1660 	hashval += (hashval << 3);
1661 	hashval ^= (hashval >> 11);
1662 	hashval += (hashval << 15);
1663 
1664 	/*
1665 	 * Yes, the divide here is expensive -- but it's generally the least
1666 	 * of the performance issues given the amount of data that we iterate
1667 	 * over to compute hash values, compare data, etc.
1668 	 */
1669 	ndx = hashval % agb->dtagb_hashsize;
1670 
1671 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1672 		ASSERT((caddr_t)key >= tomax);
1673 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1674 
1675 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1676 			continue;
1677 
1678 		kdata = key->dtak_data;
1679 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1680 
1681 		for (act = agg->dtag_first; act->dta_intuple;
1682 		    act = act->dta_next) {
1683 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1684 			limit = i + act->dta_rec.dtrd_size;
1685 			ASSERT(limit <= size);
1686 			isstr = DTRACEACT_ISSTRING(act);
1687 
1688 			for (; i < limit; i++) {
1689 				if (kdata[i] != data[i])
1690 					goto next;
1691 
1692 				if (isstr && data[i] == '\0')
1693 					break;
1694 			}
1695 		}
1696 
1697 		if (action != key->dtak_action) {
1698 			/*
1699 			 * We are aggregating on the same value in the same
1700 			 * aggregation with two different aggregating actions.
1701 			 * (This should have been picked up in the compiler,
1702 			 * so we may be dealing with errant or devious DIF.)
1703 			 * This is an error condition; we indicate as much,
1704 			 * and return.
1705 			 */
1706 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1707 			return;
1708 		}
1709 
1710 		/*
1711 		 * This is a hit:  we need to apply the aggregator to
1712 		 * the value at this key.
1713 		 */
1714 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1715 		return;
1716 next:
1717 		continue;
1718 	}
1719 
1720 	/*
1721 	 * We didn't find it.  We need to allocate some zero-filled space,
1722 	 * link it into the hash table appropriately, and apply the aggregator
1723 	 * to the (zero-filled) value.
1724 	 */
1725 	offs = buf->dtb_offset;
1726 	while (offs & (align - 1))
1727 		offs += sizeof (uint32_t);
1728 
1729 	/*
1730 	 * If we don't have enough room to both allocate a new key _and_
1731 	 * its associated data, increment the drop count and return.
1732 	 */
1733 	if ((uintptr_t)tomax + offs + fsize >
1734 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1735 		dtrace_buffer_drop(buf);
1736 		return;
1737 	}
1738 
1739 	/*CONSTCOND*/
1740 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1741 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1742 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1743 
1744 	key->dtak_data = kdata = tomax + offs;
1745 	buf->dtb_offset = offs + fsize;
1746 
1747 	/*
1748 	 * Now copy the data across.
1749 	 */
1750 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1751 
1752 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1753 		kdata[i] = data[i];
1754 
1755 	/*
1756 	 * Because strings are not zeroed out by default, we need to iterate
1757 	 * looking for actions that store strings, and we need to explicitly
1758 	 * pad these strings out with zeroes.
1759 	 */
1760 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1761 		int nul;
1762 
1763 		if (!DTRACEACT_ISSTRING(act))
1764 			continue;
1765 
1766 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1767 		limit = i + act->dta_rec.dtrd_size;
1768 		ASSERT(limit <= size);
1769 
1770 		for (nul = 0; i < limit; i++) {
1771 			if (nul) {
1772 				kdata[i] = '\0';
1773 				continue;
1774 			}
1775 
1776 			if (data[i] != '\0')
1777 				continue;
1778 
1779 			nul = 1;
1780 		}
1781 	}
1782 
1783 	for (i = size; i < fsize; i++)
1784 		kdata[i] = 0;
1785 
1786 	key->dtak_hashval = hashval;
1787 	key->dtak_size = size;
1788 	key->dtak_action = action;
1789 	key->dtak_next = agb->dtagb_hash[ndx];
1790 	agb->dtagb_hash[ndx] = key;
1791 
1792 	/*
1793 	 * Finally, apply the aggregator.
1794 	 */
1795 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1796 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1797 }
1798 
1799 /*
1800  * Given consumer state, this routine finds a speculation in the INACTIVE
1801  * state and transitions it into the ACTIVE state.  If there is no speculation
1802  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1803  * incremented -- it is up to the caller to take appropriate action.
1804  */
1805 static int
1806 dtrace_speculation(dtrace_state_t *state)
1807 {
1808 	int i = 0;
1809 	dtrace_speculation_state_t current;
1810 	uint32_t *stat = &state->dts_speculations_unavail, count;
1811 
1812 	while (i < state->dts_nspeculations) {
1813 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1814 
1815 		current = spec->dtsp_state;
1816 
1817 		if (current != DTRACESPEC_INACTIVE) {
1818 			if (current == DTRACESPEC_COMMITTINGMANY ||
1819 			    current == DTRACESPEC_COMMITTING ||
1820 			    current == DTRACESPEC_DISCARDING)
1821 				stat = &state->dts_speculations_busy;
1822 			i++;
1823 			continue;
1824 		}
1825 
1826 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1827 		    current, DTRACESPEC_ACTIVE) == current)
1828 			return (i + 1);
1829 	}
1830 
1831 	/*
1832 	 * We couldn't find a speculation.  If we found as much as a single
1833 	 * busy speculation buffer, we'll attribute this failure as "busy"
1834 	 * instead of "unavail".
1835 	 */
1836 	do {
1837 		count = *stat;
1838 	} while (dtrace_cas32(stat, count, count + 1) != count);
1839 
1840 	return (0);
1841 }
1842 
1843 /*
1844  * This routine commits an active speculation.  If the specified speculation
1845  * is not in a valid state to perform a commit(), this routine will silently do
1846  * nothing.  The state of the specified speculation is transitioned according
1847  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1848  */
1849 static void
1850 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1851     dtrace_specid_t which)
1852 {
1853 	dtrace_speculation_t *spec;
1854 	dtrace_buffer_t *src, *dest;
1855 	uintptr_t daddr, saddr, dlimit;
1856 	dtrace_speculation_state_t current, new;
1857 	intptr_t offs;
1858 
1859 	if (which == 0)
1860 		return;
1861 
1862 	if (which > state->dts_nspeculations) {
1863 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1864 		return;
1865 	}
1866 
1867 	spec = &state->dts_speculations[which - 1];
1868 	src = &spec->dtsp_buffer[cpu];
1869 	dest = &state->dts_buffer[cpu];
1870 
1871 	do {
1872 		current = spec->dtsp_state;
1873 
1874 		if (current == DTRACESPEC_COMMITTINGMANY)
1875 			break;
1876 
1877 		switch (current) {
1878 		case DTRACESPEC_INACTIVE:
1879 		case DTRACESPEC_DISCARDING:
1880 			return;
1881 
1882 		case DTRACESPEC_COMMITTING:
1883 			/*
1884 			 * This is only possible if we are (a) commit()'ing
1885 			 * without having done a prior speculate() on this CPU
1886 			 * and (b) racing with another commit() on a different
1887 			 * CPU.  There's nothing to do -- we just assert that
1888 			 * our offset is 0.
1889 			 */
1890 			ASSERT(src->dtb_offset == 0);
1891 			return;
1892 
1893 		case DTRACESPEC_ACTIVE:
1894 			new = DTRACESPEC_COMMITTING;
1895 			break;
1896 
1897 		case DTRACESPEC_ACTIVEONE:
1898 			/*
1899 			 * This speculation is active on one CPU.  If our
1900 			 * buffer offset is non-zero, we know that the one CPU
1901 			 * must be us.  Otherwise, we are committing on a
1902 			 * different CPU from the speculate(), and we must
1903 			 * rely on being asynchronously cleaned.
1904 			 */
1905 			if (src->dtb_offset != 0) {
1906 				new = DTRACESPEC_COMMITTING;
1907 				break;
1908 			}
1909 			/*FALLTHROUGH*/
1910 
1911 		case DTRACESPEC_ACTIVEMANY:
1912 			new = DTRACESPEC_COMMITTINGMANY;
1913 			break;
1914 
1915 		default:
1916 			ASSERT(0);
1917 		}
1918 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1919 	    current, new) != current);
1920 
1921 	/*
1922 	 * We have set the state to indicate that we are committing this
1923 	 * speculation.  Now reserve the necessary space in the destination
1924 	 * buffer.
1925 	 */
1926 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1927 	    sizeof (uint64_t), state, NULL)) < 0) {
1928 		dtrace_buffer_drop(dest);
1929 		goto out;
1930 	}
1931 
1932 	/*
1933 	 * We have the space; copy the buffer across.  (Note that this is a
1934 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1935 	 * a serious performance issue, a high-performance DTrace-specific
1936 	 * bcopy() should obviously be invented.)
1937 	 */
1938 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1939 	dlimit = daddr + src->dtb_offset;
1940 	saddr = (uintptr_t)src->dtb_tomax;
1941 
1942 	/*
1943 	 * First, the aligned portion.
1944 	 */
1945 	while (dlimit - daddr >= sizeof (uint64_t)) {
1946 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1947 
1948 		daddr += sizeof (uint64_t);
1949 		saddr += sizeof (uint64_t);
1950 	}
1951 
1952 	/*
1953 	 * Now any left-over bit...
1954 	 */
1955 	while (dlimit - daddr)
1956 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1957 
1958 	/*
1959 	 * Finally, commit the reserved space in the destination buffer.
1960 	 */
1961 	dest->dtb_offset = offs + src->dtb_offset;
1962 
1963 out:
1964 	/*
1965 	 * If we're lucky enough to be the only active CPU on this speculation
1966 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
1967 	 */
1968 	if (current == DTRACESPEC_ACTIVE ||
1969 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
1970 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
1971 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
1972 
1973 		ASSERT(rval == DTRACESPEC_COMMITTING);
1974 	}
1975 
1976 	src->dtb_offset = 0;
1977 	src->dtb_xamot_drops += src->dtb_drops;
1978 	src->dtb_drops = 0;
1979 }
1980 
1981 /*
1982  * This routine discards an active speculation.  If the specified speculation
1983  * is not in a valid state to perform a discard(), this routine will silently
1984  * do nothing.  The state of the specified speculation is transitioned
1985  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
1986  */
1987 static void
1988 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
1989     dtrace_specid_t which)
1990 {
1991 	dtrace_speculation_t *spec;
1992 	dtrace_speculation_state_t current, new;
1993 	dtrace_buffer_t *buf;
1994 
1995 	if (which == 0)
1996 		return;
1997 
1998 	if (which > state->dts_nspeculations) {
1999 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2000 		return;
2001 	}
2002 
2003 	spec = &state->dts_speculations[which - 1];
2004 	buf = &spec->dtsp_buffer[cpu];
2005 
2006 	do {
2007 		current = spec->dtsp_state;
2008 
2009 		switch (current) {
2010 		case DTRACESPEC_INACTIVE:
2011 		case DTRACESPEC_COMMITTINGMANY:
2012 		case DTRACESPEC_COMMITTING:
2013 		case DTRACESPEC_DISCARDING:
2014 			return;
2015 
2016 		case DTRACESPEC_ACTIVE:
2017 		case DTRACESPEC_ACTIVEMANY:
2018 			new = DTRACESPEC_DISCARDING;
2019 			break;
2020 
2021 		case DTRACESPEC_ACTIVEONE:
2022 			if (buf->dtb_offset != 0) {
2023 				new = DTRACESPEC_INACTIVE;
2024 			} else {
2025 				new = DTRACESPEC_DISCARDING;
2026 			}
2027 			break;
2028 
2029 		default:
2030 			ASSERT(0);
2031 		}
2032 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2033 	    current, new) != current);
2034 
2035 	buf->dtb_offset = 0;
2036 	buf->dtb_drops = 0;
2037 }
2038 
2039 /*
2040  * Note:  not called from probe context.  This function is called
2041  * asynchronously from cross call context to clean any speculations that are
2042  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2043  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2044  * speculation.
2045  */
2046 static void
2047 dtrace_speculation_clean_here(dtrace_state_t *state)
2048 {
2049 	dtrace_icookie_t cookie;
2050 	processorid_t cpu = CPU->cpu_id;
2051 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2052 	dtrace_specid_t i;
2053 
2054 	cookie = dtrace_interrupt_disable();
2055 
2056 	if (dest->dtb_tomax == NULL) {
2057 		dtrace_interrupt_enable(cookie);
2058 		return;
2059 	}
2060 
2061 	for (i = 0; i < state->dts_nspeculations; i++) {
2062 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2063 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2064 
2065 		if (src->dtb_tomax == NULL)
2066 			continue;
2067 
2068 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2069 			src->dtb_offset = 0;
2070 			continue;
2071 		}
2072 
2073 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2074 			continue;
2075 
2076 		if (src->dtb_offset == 0)
2077 			continue;
2078 
2079 		dtrace_speculation_commit(state, cpu, i + 1);
2080 	}
2081 
2082 	dtrace_interrupt_enable(cookie);
2083 }
2084 
2085 /*
2086  * Note:  not called from probe context.  This function is called
2087  * asynchronously (and at a regular interval) to clean any speculations that
2088  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2089  * is work to be done, it cross calls all CPUs to perform that work;
2090  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2091  * INACTIVE state until they have been cleaned by all CPUs.
2092  */
2093 static void
2094 dtrace_speculation_clean(dtrace_state_t *state)
2095 {
2096 	int work = 0, rv;
2097 	dtrace_specid_t i;
2098 
2099 	for (i = 0; i < state->dts_nspeculations; i++) {
2100 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2101 
2102 		ASSERT(!spec->dtsp_cleaning);
2103 
2104 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2105 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2106 			continue;
2107 
2108 		work++;
2109 		spec->dtsp_cleaning = 1;
2110 	}
2111 
2112 	if (!work)
2113 		return;
2114 
2115 	dtrace_xcall(DTRACE_CPUALL,
2116 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2117 
2118 	/*
2119 	 * We now know that all CPUs have committed or discarded their
2120 	 * speculation buffers, as appropriate.  We can now set the state
2121 	 * to inactive.
2122 	 */
2123 	for (i = 0; i < state->dts_nspeculations; i++) {
2124 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2125 		dtrace_speculation_state_t current, new;
2126 
2127 		if (!spec->dtsp_cleaning)
2128 			continue;
2129 
2130 		current = spec->dtsp_state;
2131 		ASSERT(current == DTRACESPEC_DISCARDING ||
2132 		    current == DTRACESPEC_COMMITTINGMANY);
2133 
2134 		new = DTRACESPEC_INACTIVE;
2135 
2136 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2137 		ASSERT(rv == current);
2138 		spec->dtsp_cleaning = 0;
2139 	}
2140 }
2141 
2142 /*
2143  * Called as part of a speculate() to get the speculative buffer associated
2144  * with a given speculation.  Returns NULL if the specified speculation is not
2145  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2146  * the active CPU is not the specified CPU -- the speculation will be
2147  * atomically transitioned into the ACTIVEMANY state.
2148  */
2149 static dtrace_buffer_t *
2150 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2151     dtrace_specid_t which)
2152 {
2153 	dtrace_speculation_t *spec;
2154 	dtrace_speculation_state_t current, new;
2155 	dtrace_buffer_t *buf;
2156 
2157 	if (which == 0)
2158 		return (NULL);
2159 
2160 	if (which > state->dts_nspeculations) {
2161 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2162 		return (NULL);
2163 	}
2164 
2165 	spec = &state->dts_speculations[which - 1];
2166 	buf = &spec->dtsp_buffer[cpuid];
2167 
2168 	do {
2169 		current = spec->dtsp_state;
2170 
2171 		switch (current) {
2172 		case DTRACESPEC_INACTIVE:
2173 		case DTRACESPEC_COMMITTINGMANY:
2174 		case DTRACESPEC_DISCARDING:
2175 			return (NULL);
2176 
2177 		case DTRACESPEC_COMMITTING:
2178 			ASSERT(buf->dtb_offset == 0);
2179 			return (NULL);
2180 
2181 		case DTRACESPEC_ACTIVEONE:
2182 			/*
2183 			 * This speculation is currently active on one CPU.
2184 			 * Check the offset in the buffer; if it's non-zero,
2185 			 * that CPU must be us (and we leave the state alone).
2186 			 * If it's zero, assume that we're starting on a new
2187 			 * CPU -- and change the state to indicate that the
2188 			 * speculation is active on more than one CPU.
2189 			 */
2190 			if (buf->dtb_offset != 0)
2191 				return (buf);
2192 
2193 			new = DTRACESPEC_ACTIVEMANY;
2194 			break;
2195 
2196 		case DTRACESPEC_ACTIVEMANY:
2197 			return (buf);
2198 
2199 		case DTRACESPEC_ACTIVE:
2200 			new = DTRACESPEC_ACTIVEONE;
2201 			break;
2202 
2203 		default:
2204 			ASSERT(0);
2205 		}
2206 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2207 	    current, new) != current);
2208 
2209 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2210 	return (buf);
2211 }
2212 
2213 /*
2214  * This function implements the DIF emulator's variable lookups.  The emulator
2215  * passes a reserved variable identifier and optional built-in array index.
2216  */
2217 static uint64_t
2218 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2219     uint64_t ndx)
2220 {
2221 	/*
2222 	 * If we're accessing one of the uncached arguments, we'll turn this
2223 	 * into a reference in the args array.
2224 	 */
2225 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2226 		ndx = v - DIF_VAR_ARG0;
2227 		v = DIF_VAR_ARGS;
2228 	}
2229 
2230 	switch (v) {
2231 	case DIF_VAR_ARGS:
2232 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2233 		if (ndx >= sizeof (mstate->dtms_arg) /
2234 		    sizeof (mstate->dtms_arg[0])) {
2235 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2236 			dtrace_provider_t *pv;
2237 			uint64_t val;
2238 
2239 			pv = mstate->dtms_probe->dtpr_provider;
2240 			if (pv->dtpv_pops.dtps_getargval != NULL)
2241 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2242 				    mstate->dtms_probe->dtpr_id,
2243 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2244 			else
2245 				val = dtrace_getarg(ndx, aframes);
2246 
2247 			/*
2248 			 * This is regrettably required to keep the compiler
2249 			 * from tail-optimizing the call to dtrace_getarg().
2250 			 * The condition always evaluates to true, but the
2251 			 * compiler has no way of figuring that out a priori.
2252 			 * (None of this would be necessary if the compiler
2253 			 * could be relied upon to _always_ tail-optimize
2254 			 * the call to dtrace_getarg() -- but it can't.)
2255 			 */
2256 			if (mstate->dtms_probe != NULL)
2257 				return (val);
2258 
2259 			ASSERT(0);
2260 		}
2261 
2262 		return (mstate->dtms_arg[ndx]);
2263 
2264 	case DIF_VAR_UREGS: {
2265 		klwp_t *lwp;
2266 
2267 		if (!dtrace_priv_proc(state))
2268 			return (0);
2269 
2270 		if ((lwp = curthread->t_lwp) == NULL) {
2271 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2272 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2273 			return (0);
2274 		}
2275 
2276 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2277 	}
2278 
2279 	case DIF_VAR_CURTHREAD:
2280 		if (!dtrace_priv_kernel(state))
2281 			return (0);
2282 		return ((uint64_t)(uintptr_t)curthread);
2283 
2284 	case DIF_VAR_TIMESTAMP:
2285 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2286 			mstate->dtms_timestamp = dtrace_gethrtime();
2287 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2288 		}
2289 		return (mstate->dtms_timestamp);
2290 
2291 	case DIF_VAR_VTIMESTAMP:
2292 		ASSERT(dtrace_vtime_references != 0);
2293 		return (curthread->t_dtrace_vtime);
2294 
2295 	case DIF_VAR_WALLTIMESTAMP:
2296 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2297 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2298 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2299 		}
2300 		return (mstate->dtms_walltimestamp);
2301 
2302 	case DIF_VAR_IPL:
2303 		if (!dtrace_priv_kernel(state))
2304 			return (0);
2305 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2306 			mstate->dtms_ipl = dtrace_getipl();
2307 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2308 		}
2309 		return (mstate->dtms_ipl);
2310 
2311 	case DIF_VAR_EPID:
2312 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2313 		return (mstate->dtms_epid);
2314 
2315 	case DIF_VAR_ID:
2316 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2317 		return (mstate->dtms_probe->dtpr_id);
2318 
2319 	case DIF_VAR_STACKDEPTH:
2320 		if (!dtrace_priv_kernel(state))
2321 			return (0);
2322 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2323 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2324 
2325 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2326 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2327 		}
2328 		return (mstate->dtms_stackdepth);
2329 
2330 	case DIF_VAR_USTACKDEPTH:
2331 		if (!dtrace_priv_proc(state))
2332 			return (0);
2333 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2334 			/*
2335 			 * See comment in DIF_VAR_PID.
2336 			 */
2337 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2338 			    CPU_ON_INTR(CPU)) {
2339 				mstate->dtms_ustackdepth = 0;
2340 			} else {
2341 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2342 				mstate->dtms_ustackdepth =
2343 				    dtrace_getustackdepth();
2344 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2345 			}
2346 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2347 		}
2348 		return (mstate->dtms_ustackdepth);
2349 
2350 	case DIF_VAR_CALLER:
2351 		if (!dtrace_priv_kernel(state))
2352 			return (0);
2353 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2354 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2355 
2356 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2357 				/*
2358 				 * If this is an unanchored probe, we are
2359 				 * required to go through the slow path:
2360 				 * dtrace_caller() only guarantees correct
2361 				 * results for anchored probes.
2362 				 */
2363 				pc_t caller[2];
2364 
2365 				dtrace_getpcstack(caller, 2, aframes,
2366 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2367 				mstate->dtms_caller = caller[1];
2368 			} else if ((mstate->dtms_caller =
2369 			    dtrace_caller(aframes)) == -1) {
2370 				/*
2371 				 * We have failed to do this the quick way;
2372 				 * we must resort to the slower approach of
2373 				 * calling dtrace_getpcstack().
2374 				 */
2375 				pc_t caller;
2376 
2377 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2378 				mstate->dtms_caller = caller;
2379 			}
2380 
2381 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2382 		}
2383 		return (mstate->dtms_caller);
2384 
2385 	case DIF_VAR_UCALLER:
2386 		if (!dtrace_priv_proc(state))
2387 			return (0);
2388 
2389 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2390 			uint64_t ustack[3];
2391 
2392 			/*
2393 			 * dtrace_getupcstack() fills in the first uint64_t
2394 			 * with the current PID.  The second uint64_t will
2395 			 * be the program counter at user-level.  The third
2396 			 * uint64_t will contain the caller, which is what
2397 			 * we're after.
2398 			 */
2399 			ustack[2] = NULL;
2400 			dtrace_getupcstack(ustack, 3);
2401 			mstate->dtms_ucaller = ustack[2];
2402 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2403 		}
2404 
2405 		return (mstate->dtms_ucaller);
2406 
2407 	case DIF_VAR_PROBEPROV:
2408 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2409 		return ((uint64_t)(uintptr_t)
2410 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2411 
2412 	case DIF_VAR_PROBEMOD:
2413 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2414 		return ((uint64_t)(uintptr_t)
2415 		    mstate->dtms_probe->dtpr_mod);
2416 
2417 	case DIF_VAR_PROBEFUNC:
2418 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2419 		return ((uint64_t)(uintptr_t)
2420 		    mstate->dtms_probe->dtpr_func);
2421 
2422 	case DIF_VAR_PROBENAME:
2423 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2424 		return ((uint64_t)(uintptr_t)
2425 		    mstate->dtms_probe->dtpr_name);
2426 
2427 	case DIF_VAR_PID:
2428 		if (!dtrace_priv_proc(state))
2429 			return (0);
2430 
2431 		/*
2432 		 * Note that we are assuming that an unanchored probe is
2433 		 * always due to a high-level interrupt.  (And we're assuming
2434 		 * that there is only a single high level interrupt.)
2435 		 */
2436 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2437 			return (pid0.pid_id);
2438 
2439 		/*
2440 		 * It is always safe to dereference one's own t_procp pointer:
2441 		 * it always points to a valid, allocated proc structure.
2442 		 * Further, it is always safe to dereference the p_pidp member
2443 		 * of one's own proc structure.  (These are truisms becuase
2444 		 * threads and processes don't clean up their own state --
2445 		 * they leave that task to whomever reaps them.)
2446 		 */
2447 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2448 
2449 	case DIF_VAR_TID:
2450 		/*
2451 		 * See comment in DIF_VAR_PID.
2452 		 */
2453 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2454 			return (0);
2455 
2456 		return ((uint64_t)curthread->t_tid);
2457 
2458 	case DIF_VAR_EXECNAME:
2459 		if (!dtrace_priv_proc(state))
2460 			return (0);
2461 
2462 		/*
2463 		 * See comment in DIF_VAR_PID.
2464 		 */
2465 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2466 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2467 
2468 		/*
2469 		 * It is always safe to dereference one's own t_procp pointer:
2470 		 * it always points to a valid, allocated proc structure.
2471 		 * (This is true because threads don't clean up their own
2472 		 * state -- they leave that task to whomever reaps them.)
2473 		 */
2474 		return ((uint64_t)(uintptr_t)
2475 		    curthread->t_procp->p_user.u_comm);
2476 
2477 	case DIF_VAR_ZONENAME:
2478 		if (!dtrace_priv_proc(state))
2479 			return (0);
2480 
2481 		/*
2482 		 * See comment in DIF_VAR_PID.
2483 		 */
2484 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2485 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2486 
2487 		/*
2488 		 * It is always safe to dereference one's own t_procp pointer:
2489 		 * it always points to a valid, allocated proc structure.
2490 		 * (This is true because threads don't clean up their own
2491 		 * state -- they leave that task to whomever reaps them.)
2492 		 */
2493 		return ((uint64_t)(uintptr_t)
2494 		    curthread->t_procp->p_zone->zone_name);
2495 
2496 	default:
2497 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2498 		return (0);
2499 	}
2500 }
2501 
2502 /*
2503  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2504  * Notice that we don't bother validating the proper number of arguments or
2505  * their types in the tuple stack.  This isn't needed because all argument
2506  * interpretation is safe because of our load safety -- the worst that can
2507  * happen is that a bogus program can obtain bogus results.
2508  */
2509 static void
2510 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2511     dtrace_key_t *tupregs, int nargs,
2512     dtrace_mstate_t *mstate, dtrace_state_t *state)
2513 {
2514 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2515 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2516 
2517 	union {
2518 		mutex_impl_t mi;
2519 		uint64_t mx;
2520 	} m;
2521 
2522 	union {
2523 		krwlock_t ri;
2524 		uintptr_t rw;
2525 	} r;
2526 
2527 	switch (subr) {
2528 	case DIF_SUBR_RAND:
2529 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2530 		break;
2531 
2532 	case DIF_SUBR_MUTEX_OWNED:
2533 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2534 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2535 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2536 		else
2537 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2538 		break;
2539 
2540 	case DIF_SUBR_MUTEX_OWNER:
2541 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2542 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2543 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2544 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2545 		else
2546 			regs[rd] = 0;
2547 		break;
2548 
2549 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2550 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2551 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2552 		break;
2553 
2554 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2555 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2556 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2557 		break;
2558 
2559 	case DIF_SUBR_RW_READ_HELD: {
2560 		uintptr_t tmp;
2561 
2562 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2563 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2564 		break;
2565 	}
2566 
2567 	case DIF_SUBR_RW_WRITE_HELD:
2568 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2569 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2570 		break;
2571 
2572 	case DIF_SUBR_RW_ISWRITER:
2573 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2574 		regs[rd] = _RW_ISWRITER(&r.ri);
2575 		break;
2576 
2577 	case DIF_SUBR_BCOPY: {
2578 		/*
2579 		 * We need to be sure that the destination is in the scratch
2580 		 * region -- no other region is allowed.
2581 		 */
2582 		uintptr_t src = tupregs[0].dttk_value;
2583 		uintptr_t dest = tupregs[1].dttk_value;
2584 		size_t size = tupregs[2].dttk_value;
2585 
2586 		if (!dtrace_inscratch(dest, size, mstate)) {
2587 			*flags |= CPU_DTRACE_BADADDR;
2588 			*illval = regs[rd];
2589 			break;
2590 		}
2591 
2592 		dtrace_bcopy((void *)src, (void *)dest, size);
2593 		break;
2594 	}
2595 
2596 	case DIF_SUBR_ALLOCA:
2597 	case DIF_SUBR_COPYIN: {
2598 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2599 		uint64_t size =
2600 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2601 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2602 
2603 		/*
2604 		 * This action doesn't require any credential checks since
2605 		 * probes will not activate in user contexts to which the
2606 		 * enabling user does not have permissions.
2607 		 */
2608 		if (mstate->dtms_scratch_ptr + scratch_size >
2609 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2610 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2611 			regs[rd] = NULL;
2612 			break;
2613 		}
2614 
2615 		if (subr == DIF_SUBR_COPYIN) {
2616 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2617 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2618 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2619 		}
2620 
2621 		mstate->dtms_scratch_ptr += scratch_size;
2622 		regs[rd] = dest;
2623 		break;
2624 	}
2625 
2626 	case DIF_SUBR_COPYINTO: {
2627 		uint64_t size = tupregs[1].dttk_value;
2628 		uintptr_t dest = tupregs[2].dttk_value;
2629 
2630 		/*
2631 		 * This action doesn't require any credential checks since
2632 		 * probes will not activate in user contexts to which the
2633 		 * enabling user does not have permissions.
2634 		 */
2635 		if (!dtrace_inscratch(dest, size, mstate)) {
2636 			*flags |= CPU_DTRACE_BADADDR;
2637 			*illval = regs[rd];
2638 			break;
2639 		}
2640 
2641 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2642 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2643 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2644 		break;
2645 	}
2646 
2647 	case DIF_SUBR_COPYINSTR: {
2648 		uintptr_t dest = mstate->dtms_scratch_ptr;
2649 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2650 
2651 		if (nargs > 1 && tupregs[1].dttk_value < size)
2652 			size = tupregs[1].dttk_value + 1;
2653 
2654 		/*
2655 		 * This action doesn't require any credential checks since
2656 		 * probes will not activate in user contexts to which the
2657 		 * enabling user does not have permissions.
2658 		 */
2659 		if (mstate->dtms_scratch_ptr + size >
2660 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2661 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2662 			regs[rd] = NULL;
2663 			break;
2664 		}
2665 
2666 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2667 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2668 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2669 
2670 		((char *)dest)[size - 1] = '\0';
2671 		mstate->dtms_scratch_ptr += size;
2672 		regs[rd] = dest;
2673 		break;
2674 	}
2675 
2676 	case DIF_SUBR_MSGSIZE:
2677 	case DIF_SUBR_MSGDSIZE: {
2678 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2679 		uintptr_t wptr, rptr;
2680 		size_t count = 0;
2681 		int cont = 0;
2682 
2683 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2684 			wptr = dtrace_loadptr(baddr +
2685 			    offsetof(mblk_t, b_wptr));
2686 
2687 			rptr = dtrace_loadptr(baddr +
2688 			    offsetof(mblk_t, b_rptr));
2689 
2690 			if (wptr < rptr) {
2691 				*flags |= CPU_DTRACE_BADADDR;
2692 				*illval = tupregs[0].dttk_value;
2693 				break;
2694 			}
2695 
2696 			daddr = dtrace_loadptr(baddr +
2697 			    offsetof(mblk_t, b_datap));
2698 
2699 			baddr = dtrace_loadptr(baddr +
2700 			    offsetof(mblk_t, b_cont));
2701 
2702 			/*
2703 			 * We want to prevent against denial-of-service here,
2704 			 * so we're only going to search the list for
2705 			 * dtrace_msgdsize_max mblks.
2706 			 */
2707 			if (cont++ > dtrace_msgdsize_max) {
2708 				*flags |= CPU_DTRACE_ILLOP;
2709 				break;
2710 			}
2711 
2712 			if (subr == DIF_SUBR_MSGDSIZE) {
2713 				if (dtrace_load8(daddr +
2714 				    offsetof(dblk_t, db_type)) != M_DATA)
2715 					continue;
2716 			}
2717 
2718 			count += wptr - rptr;
2719 		}
2720 
2721 		if (!(*flags & CPU_DTRACE_FAULT))
2722 			regs[rd] = count;
2723 
2724 		break;
2725 	}
2726 
2727 	case DIF_SUBR_PROGENYOF: {
2728 		pid_t pid = tupregs[0].dttk_value;
2729 		proc_t *p;
2730 		int rval = 0;
2731 
2732 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2733 
2734 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2735 			if (p->p_pidp->pid_id == pid) {
2736 				rval = 1;
2737 				break;
2738 			}
2739 		}
2740 
2741 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2742 
2743 		regs[rd] = rval;
2744 		break;
2745 	}
2746 
2747 	case DIF_SUBR_SPECULATION:
2748 		regs[rd] = dtrace_speculation(state);
2749 		break;
2750 
2751 	case DIF_SUBR_COPYOUT: {
2752 		uintptr_t kaddr = tupregs[0].dttk_value;
2753 		uintptr_t uaddr = tupregs[1].dttk_value;
2754 		uint64_t size = tupregs[2].dttk_value;
2755 
2756 		if (!dtrace_destructive_disallow &&
2757 		    dtrace_priv_proc_control(state) &&
2758 		    !dtrace_istoxic(kaddr, size)) {
2759 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2760 			dtrace_copyout(kaddr, uaddr, size);
2761 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2762 		}
2763 		break;
2764 	}
2765 
2766 	case DIF_SUBR_COPYOUTSTR: {
2767 		uintptr_t kaddr = tupregs[0].dttk_value;
2768 		uintptr_t uaddr = tupregs[1].dttk_value;
2769 		uint64_t size = tupregs[2].dttk_value;
2770 
2771 		if (!dtrace_destructive_disallow &&
2772 		    dtrace_priv_proc_control(state) &&
2773 		    !dtrace_istoxic(kaddr, size)) {
2774 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2775 			dtrace_copyoutstr(kaddr, uaddr, size);
2776 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2777 		}
2778 		break;
2779 	}
2780 
2781 	case DIF_SUBR_STRLEN:
2782 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2783 		    tupregs[0].dttk_value,
2784 		    state->dts_options[DTRACEOPT_STRSIZE]);
2785 		break;
2786 
2787 	case DIF_SUBR_STRCHR:
2788 	case DIF_SUBR_STRRCHR: {
2789 		/*
2790 		 * We're going to iterate over the string looking for the
2791 		 * specified character.  We will iterate until we have reached
2792 		 * the string length or we have found the character.  If this
2793 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2794 		 * of the specified character instead of the first.
2795 		 */
2796 		uintptr_t addr = tupregs[0].dttk_value;
2797 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2798 		char c, target = (char)tupregs[1].dttk_value;
2799 
2800 		for (regs[rd] = NULL; addr < limit; addr++) {
2801 			if ((c = dtrace_load8(addr)) == target) {
2802 				regs[rd] = addr;
2803 
2804 				if (subr == DIF_SUBR_STRCHR)
2805 					break;
2806 			}
2807 
2808 			if (c == '\0')
2809 				break;
2810 		}
2811 
2812 		break;
2813 	}
2814 
2815 	case DIF_SUBR_STRSTR:
2816 	case DIF_SUBR_INDEX:
2817 	case DIF_SUBR_RINDEX: {
2818 		/*
2819 		 * We're going to iterate over the string looking for the
2820 		 * specified string.  We will iterate until we have reached
2821 		 * the string length or we have found the string.  (Yes, this
2822 		 * is done in the most naive way possible -- but considering
2823 		 * that the string we're searching for is likely to be
2824 		 * relatively short, the complexity of Rabin-Karp or similar
2825 		 * hardly seems merited.)
2826 		 */
2827 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
2828 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
2829 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2830 		size_t len = dtrace_strlen(addr, size);
2831 		size_t sublen = dtrace_strlen(substr, size);
2832 		char *limit = addr + len, *orig = addr;
2833 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2834 		int inc = 1;
2835 
2836 		regs[rd] = notfound;
2837 
2838 		/*
2839 		 * strstr() and index()/rindex() have similar semantics if
2840 		 * both strings are the empty string: strstr() returns a
2841 		 * pointer to the (empty) string, and index() and rindex()
2842 		 * both return index 0 (regardless of any position argument).
2843 		 */
2844 		if (sublen == 0 && len == 0) {
2845 			if (subr == DIF_SUBR_STRSTR)
2846 				regs[rd] = (uintptr_t)addr;
2847 			else
2848 				regs[rd] = 0;
2849 			break;
2850 		}
2851 
2852 		if (subr != DIF_SUBR_STRSTR) {
2853 			if (subr == DIF_SUBR_RINDEX) {
2854 				limit = orig - 1;
2855 				addr += len;
2856 				inc = -1;
2857 			}
2858 
2859 			/*
2860 			 * Both index() and rindex() take an optional position
2861 			 * argument that denotes the starting position.
2862 			 */
2863 			if (nargs == 3) {
2864 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2865 
2866 				/*
2867 				 * If the position argument to index() is
2868 				 * negative, Perl implicitly clamps it at
2869 				 * zero.  This semantic is a little surprising
2870 				 * given the special meaning of negative
2871 				 * positions to similar Perl functions like
2872 				 * substr(), but it appears to reflect a
2873 				 * notion that index() can start from a
2874 				 * negative index and increment its way up to
2875 				 * the string.  Given this notion, Perl's
2876 				 * rindex() is at least self-consistent in
2877 				 * that it implicitly clamps positions greater
2878 				 * than the string length to be the string
2879 				 * length.  Where Perl completely loses
2880 				 * coherence, however, is when the specified
2881 				 * substring is the empty string ("").  In
2882 				 * this case, even if the position is
2883 				 * negative, rindex() returns 0 -- and even if
2884 				 * the position is greater than the length,
2885 				 * index() returns the string length.  These
2886 				 * semantics violate the notion that index()
2887 				 * should never return a value less than the
2888 				 * specified position and that rindex() should
2889 				 * never return a value greater than the
2890 				 * specified position.  (One assumes that
2891 				 * these semantics are artifacts of Perl's
2892 				 * implementation and not the results of
2893 				 * deliberate design -- it beggars belief that
2894 				 * even Larry Wall could desire such oddness.)
2895 				 * While in the abstract one would wish for
2896 				 * consistent position semantics across
2897 				 * substr(), index() and rindex() -- or at the
2898 				 * very least self-consistent position
2899 				 * semantics for index() and rindex() -- we
2900 				 * instead opt to keep with the extant Perl
2901 				 * semantics, in all their broken glory.  (Do
2902 				 * we have more desire to maintain Perl's
2903 				 * semantics than Perl does?  Probably.)
2904 				 */
2905 				if (subr == DIF_SUBR_RINDEX) {
2906 					if (pos < 0) {
2907 						if (sublen == 0)
2908 							regs[rd] = 0;
2909 						break;
2910 					}
2911 
2912 					if (pos > len)
2913 						pos = len;
2914 				} else {
2915 					if (pos < 0)
2916 						pos = 0;
2917 
2918 					if (pos >= len) {
2919 						if (sublen == 0)
2920 							regs[rd] = len;
2921 						break;
2922 					}
2923 				}
2924 
2925 				addr = orig + pos;
2926 			}
2927 		}
2928 
2929 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2930 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2931 				if (subr != DIF_SUBR_STRSTR) {
2932 					/*
2933 					 * As D index() and rindex() are
2934 					 * modeled on Perl (and not on awk),
2935 					 * we return a zero-based (and not a
2936 					 * one-based) index.  (For you Perl
2937 					 * weenies: no, we're not going to add
2938 					 * $[ -- and shouldn't you be at a con
2939 					 * or something?)
2940 					 */
2941 					regs[rd] = (uintptr_t)(addr - orig);
2942 					break;
2943 				}
2944 
2945 				ASSERT(subr == DIF_SUBR_STRSTR);
2946 				regs[rd] = (uintptr_t)addr;
2947 				break;
2948 			}
2949 		}
2950 
2951 		break;
2952 	}
2953 
2954 	case DIF_SUBR_STRTOK: {
2955 		uintptr_t addr = tupregs[0].dttk_value;
2956 		uintptr_t tokaddr = tupregs[1].dttk_value;
2957 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2958 		uintptr_t limit, toklimit = tokaddr + size;
2959 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2960 		char *dest = (char *)mstate->dtms_scratch_ptr;
2961 		int i;
2962 
2963 		if (mstate->dtms_scratch_ptr + size >
2964 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2965 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2966 			regs[rd] = NULL;
2967 			break;
2968 		}
2969 
2970 		if (addr == NULL) {
2971 			/*
2972 			 * If the address specified is NULL, we use our saved
2973 			 * strtok pointer from the mstate.  Note that this
2974 			 * means that the saved strtok pointer is _only_
2975 			 * valid within multiple enablings of the same probe --
2976 			 * it behaves like an implicit clause-local variable.
2977 			 */
2978 			addr = mstate->dtms_strtok;
2979 		}
2980 
2981 		/*
2982 		 * First, zero the token map, and then process the token
2983 		 * string -- setting a bit in the map for every character
2984 		 * found in the token string.
2985 		 */
2986 		for (i = 0; i < sizeof (tokmap); i++)
2987 			tokmap[i] = 0;
2988 
2989 		for (; tokaddr < toklimit; tokaddr++) {
2990 			if ((c = dtrace_load8(tokaddr)) == '\0')
2991 				break;
2992 
2993 			ASSERT((c >> 3) < sizeof (tokmap));
2994 			tokmap[c >> 3] |= (1 << (c & 0x7));
2995 		}
2996 
2997 		for (limit = addr + size; addr < limit; addr++) {
2998 			/*
2999 			 * We're looking for a character that is _not_ contained
3000 			 * in the token string.
3001 			 */
3002 			if ((c = dtrace_load8(addr)) == '\0')
3003 				break;
3004 
3005 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3006 				break;
3007 		}
3008 
3009 		if (c == '\0') {
3010 			/*
3011 			 * We reached the end of the string without finding
3012 			 * any character that was not in the token string.
3013 			 * We return NULL in this case, and we set the saved
3014 			 * address to NULL as well.
3015 			 */
3016 			regs[rd] = NULL;
3017 			mstate->dtms_strtok = NULL;
3018 			break;
3019 		}
3020 
3021 		/*
3022 		 * From here on, we're copying into the destination string.
3023 		 */
3024 		for (i = 0; addr < limit && i < size - 1; addr++) {
3025 			if ((c = dtrace_load8(addr)) == '\0')
3026 				break;
3027 
3028 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3029 				break;
3030 
3031 			ASSERT(i < size);
3032 			dest[i++] = c;
3033 		}
3034 
3035 		ASSERT(i < size);
3036 		dest[i] = '\0';
3037 		regs[rd] = (uintptr_t)dest;
3038 		mstate->dtms_scratch_ptr += size;
3039 		mstate->dtms_strtok = addr;
3040 		break;
3041 	}
3042 
3043 	case DIF_SUBR_SUBSTR: {
3044 		uintptr_t s = tupregs[0].dttk_value;
3045 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3046 		char *d = (char *)mstate->dtms_scratch_ptr;
3047 		int64_t index = (int64_t)tupregs[1].dttk_value;
3048 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3049 		size_t len = dtrace_strlen((char *)s, size);
3050 		int64_t i = 0;
3051 
3052 		if (nargs <= 2)
3053 			remaining = (int64_t)size;
3054 
3055 		if (mstate->dtms_scratch_ptr + size >
3056 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3057 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3058 			regs[rd] = NULL;
3059 			break;
3060 		}
3061 
3062 		if (index < 0) {
3063 			index += len;
3064 
3065 			if (index < 0 && index + remaining > 0) {
3066 				remaining += index;
3067 				index = 0;
3068 			}
3069 		}
3070 
3071 		if (index >= len || index < 0)
3072 			index = len;
3073 
3074 		for (d[0] = '\0'; remaining > 0; remaining--) {
3075 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3076 				break;
3077 
3078 			if (i == size) {
3079 				d[i - 1] = '\0';
3080 				break;
3081 			}
3082 		}
3083 
3084 		mstate->dtms_scratch_ptr += size;
3085 		regs[rd] = (uintptr_t)d;
3086 		break;
3087 	}
3088 
3089 	case DIF_SUBR_GETMAJOR:
3090 #ifdef _LP64
3091 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3092 #else
3093 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3094 #endif
3095 		break;
3096 
3097 	case DIF_SUBR_GETMINOR:
3098 #ifdef _LP64
3099 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3100 #else
3101 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3102 #endif
3103 		break;
3104 
3105 	case DIF_SUBR_DDI_PATHNAME: {
3106 		/*
3107 		 * This one is a galactic mess.  We are going to roughly
3108 		 * emulate ddi_pathname(), but it's made more complicated
3109 		 * by the fact that we (a) want to include the minor name and
3110 		 * (b) must proceed iteratively instead of recursively.
3111 		 */
3112 		uintptr_t dest = mstate->dtms_scratch_ptr;
3113 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3114 		char *start = (char *)dest, *end = start + size - 1;
3115 		uintptr_t daddr = tupregs[0].dttk_value;
3116 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3117 		char *s;
3118 		int i, len, depth = 0;
3119 
3120 		if (size == 0 || mstate->dtms_scratch_ptr + size >
3121 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3122 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3123 			regs[rd] = NULL;
3124 			break;
3125 		}
3126 
3127 		*end = '\0';
3128 
3129 		/*
3130 		 * We want to have a name for the minor.  In order to do this,
3131 		 * we need to walk the minor list from the devinfo.  We want
3132 		 * to be sure that we don't infinitely walk a circular list,
3133 		 * so we check for circularity by sending a scout pointer
3134 		 * ahead two elements for every element that we iterate over;
3135 		 * if the list is circular, these will ultimately point to the
3136 		 * same element.  You may recognize this little trick as the
3137 		 * answer to a stupid interview question -- one that always
3138 		 * seems to be asked by those who had to have it laboriously
3139 		 * explained to them, and who can't even concisely describe
3140 		 * the conditions under which one would be forced to resort to
3141 		 * this technique.  Needless to say, those conditions are
3142 		 * found here -- and probably only here.  Is this is the only
3143 		 * use of this infamous trick in shipping, production code?
3144 		 * If it isn't, it probably should be...
3145 		 */
3146 		if (minor != -1) {
3147 			uintptr_t maddr = dtrace_loadptr(daddr +
3148 			    offsetof(struct dev_info, devi_minor));
3149 
3150 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3151 			uintptr_t name = offsetof(struct ddi_minor_data,
3152 			    d_minor) + offsetof(struct ddi_minor, name);
3153 			uintptr_t dev = offsetof(struct ddi_minor_data,
3154 			    d_minor) + offsetof(struct ddi_minor, dev);
3155 			uintptr_t scout;
3156 
3157 			if (maddr != NULL)
3158 				scout = dtrace_loadptr(maddr + next);
3159 
3160 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3161 				uint64_t m;
3162 #ifdef _LP64
3163 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3164 #else
3165 				m = dtrace_load32(maddr + dev) & MAXMIN;
3166 #endif
3167 				if (m != minor) {
3168 					maddr = dtrace_loadptr(maddr + next);
3169 
3170 					if (scout == NULL)
3171 						continue;
3172 
3173 					scout = dtrace_loadptr(scout + next);
3174 
3175 					if (scout == NULL)
3176 						continue;
3177 
3178 					scout = dtrace_loadptr(scout + next);
3179 
3180 					if (scout == NULL)
3181 						continue;
3182 
3183 					if (scout == maddr) {
3184 						*flags |= CPU_DTRACE_ILLOP;
3185 						break;
3186 					}
3187 
3188 					continue;
3189 				}
3190 
3191 				/*
3192 				 * We have the minor data.  Now we need to
3193 				 * copy the minor's name into the end of the
3194 				 * pathname.
3195 				 */
3196 				s = (char *)dtrace_loadptr(maddr + name);
3197 				len = dtrace_strlen(s, size);
3198 
3199 				if (*flags & CPU_DTRACE_FAULT)
3200 					break;
3201 
3202 				if (len != 0) {
3203 					if ((end -= (len + 1)) < start)
3204 						break;
3205 
3206 					*end = ':';
3207 				}
3208 
3209 				for (i = 1; i <= len; i++)
3210 					end[i] = dtrace_load8((uintptr_t)s++);
3211 				break;
3212 			}
3213 		}
3214 
3215 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3216 			ddi_node_state_t devi_state;
3217 
3218 			devi_state = dtrace_load32(daddr +
3219 			    offsetof(struct dev_info, devi_node_state));
3220 
3221 			if (*flags & CPU_DTRACE_FAULT)
3222 				break;
3223 
3224 			if (devi_state >= DS_INITIALIZED) {
3225 				s = (char *)dtrace_loadptr(daddr +
3226 				    offsetof(struct dev_info, devi_addr));
3227 				len = dtrace_strlen(s, size);
3228 
3229 				if (*flags & CPU_DTRACE_FAULT)
3230 					break;
3231 
3232 				if (len != 0) {
3233 					if ((end -= (len + 1)) < start)
3234 						break;
3235 
3236 					*end = '@';
3237 				}
3238 
3239 				for (i = 1; i <= len; i++)
3240 					end[i] = dtrace_load8((uintptr_t)s++);
3241 			}
3242 
3243 			/*
3244 			 * Now for the node name...
3245 			 */
3246 			s = (char *)dtrace_loadptr(daddr +
3247 			    offsetof(struct dev_info, devi_node_name));
3248 
3249 			daddr = dtrace_loadptr(daddr +
3250 			    offsetof(struct dev_info, devi_parent));
3251 
3252 			/*
3253 			 * If our parent is NULL (that is, if we're the root
3254 			 * node), we're going to use the special path
3255 			 * "devices".
3256 			 */
3257 			if (daddr == NULL)
3258 				s = "devices";
3259 
3260 			len = dtrace_strlen(s, size);
3261 			if (*flags & CPU_DTRACE_FAULT)
3262 				break;
3263 
3264 			if ((end -= (len + 1)) < start)
3265 				break;
3266 
3267 			for (i = 1; i <= len; i++)
3268 				end[i] = dtrace_load8((uintptr_t)s++);
3269 			*end = '/';
3270 
3271 			if (depth++ > dtrace_devdepth_max) {
3272 				*flags |= CPU_DTRACE_ILLOP;
3273 				break;
3274 			}
3275 		}
3276 
3277 		if (end < start)
3278 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3279 
3280 		if (daddr == NULL) {
3281 			regs[rd] = (uintptr_t)end;
3282 			mstate->dtms_scratch_ptr += size;
3283 		}
3284 
3285 		break;
3286 	}
3287 
3288 	case DIF_SUBR_STRJOIN: {
3289 		char *d = (char *)mstate->dtms_scratch_ptr;
3290 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3291 		uintptr_t s1 = tupregs[0].dttk_value;
3292 		uintptr_t s2 = tupregs[1].dttk_value;
3293 		int i = 0;
3294 
3295 		if (mstate->dtms_scratch_ptr + size >
3296 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3297 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3298 			regs[rd] = NULL;
3299 			break;
3300 		}
3301 
3302 		for (;;) {
3303 			if (i >= size) {
3304 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3305 				regs[rd] = NULL;
3306 				break;
3307 			}
3308 
3309 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3310 				i--;
3311 				break;
3312 			}
3313 		}
3314 
3315 		for (;;) {
3316 			if (i >= size) {
3317 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3318 				regs[rd] = NULL;
3319 				break;
3320 			}
3321 
3322 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3323 				break;
3324 		}
3325 
3326 		if (i < size) {
3327 			mstate->dtms_scratch_ptr += i;
3328 			regs[rd] = (uintptr_t)d;
3329 		}
3330 
3331 		break;
3332 	}
3333 
3334 	case DIF_SUBR_LLTOSTR: {
3335 		int64_t i = (int64_t)tupregs[0].dttk_value;
3336 		int64_t val = i < 0 ? i * -1 : i;
3337 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3338 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3339 
3340 		if (mstate->dtms_scratch_ptr + size >
3341 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3342 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3343 			regs[rd] = NULL;
3344 			break;
3345 		}
3346 
3347 		for (*end-- = '\0'; val; val /= 10)
3348 			*end-- = '0' + (val % 10);
3349 
3350 		if (i == 0)
3351 			*end-- = '0';
3352 
3353 		if (i < 0)
3354 			*end-- = '-';
3355 
3356 		regs[rd] = (uintptr_t)end + 1;
3357 		mstate->dtms_scratch_ptr += size;
3358 		break;
3359 	}
3360 
3361 	case DIF_SUBR_DIRNAME:
3362 	case DIF_SUBR_BASENAME: {
3363 		char *dest = (char *)mstate->dtms_scratch_ptr;
3364 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3365 		uintptr_t src = tupregs[0].dttk_value;
3366 		int i, j, len = dtrace_strlen((char *)src, size);
3367 		int lastbase = -1, firstbase = -1, lastdir = -1;
3368 		int start, end;
3369 
3370 		if (mstate->dtms_scratch_ptr + size >
3371 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3372 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3373 			regs[rd] = NULL;
3374 			break;
3375 		}
3376 
3377 		/*
3378 		 * The basename and dirname for a zero-length string is
3379 		 * defined to be "."
3380 		 */
3381 		if (len == 0) {
3382 			len = 1;
3383 			src = (uintptr_t)".";
3384 		}
3385 
3386 		/*
3387 		 * Start from the back of the string, moving back toward the
3388 		 * front until we see a character that isn't a slash.  That
3389 		 * character is the last character in the basename.
3390 		 */
3391 		for (i = len - 1; i >= 0; i--) {
3392 			if (dtrace_load8(src + i) != '/')
3393 				break;
3394 		}
3395 
3396 		if (i >= 0)
3397 			lastbase = i;
3398 
3399 		/*
3400 		 * Starting from the last character in the basename, move
3401 		 * towards the front until we find a slash.  The character
3402 		 * that we processed immediately before that is the first
3403 		 * character in the basename.
3404 		 */
3405 		for (; i >= 0; i--) {
3406 			if (dtrace_load8(src + i) == '/')
3407 				break;
3408 		}
3409 
3410 		if (i >= 0)
3411 			firstbase = i + 1;
3412 
3413 		/*
3414 		 * Now keep going until we find a non-slash character.  That
3415 		 * character is the last character in the dirname.
3416 		 */
3417 		for (; i >= 0; i--) {
3418 			if (dtrace_load8(src + i) != '/')
3419 				break;
3420 		}
3421 
3422 		if (i >= 0)
3423 			lastdir = i;
3424 
3425 		ASSERT(!(lastbase == -1 && firstbase != -1));
3426 		ASSERT(!(firstbase == -1 && lastdir != -1));
3427 
3428 		if (lastbase == -1) {
3429 			/*
3430 			 * We didn't find a non-slash character.  We know that
3431 			 * the length is non-zero, so the whole string must be
3432 			 * slashes.  In either the dirname or the basename
3433 			 * case, we return '/'.
3434 			 */
3435 			ASSERT(firstbase == -1);
3436 			firstbase = lastbase = lastdir = 0;
3437 		}
3438 
3439 		if (firstbase == -1) {
3440 			/*
3441 			 * The entire string consists only of a basename
3442 			 * component.  If we're looking for dirname, we need
3443 			 * to change our string to be just "."; if we're
3444 			 * looking for a basename, we'll just set the first
3445 			 * character of the basename to be 0.
3446 			 */
3447 			if (subr == DIF_SUBR_DIRNAME) {
3448 				ASSERT(lastdir == -1);
3449 				src = (uintptr_t)".";
3450 				lastdir = 0;
3451 			} else {
3452 				firstbase = 0;
3453 			}
3454 		}
3455 
3456 		if (subr == DIF_SUBR_DIRNAME) {
3457 			if (lastdir == -1) {
3458 				/*
3459 				 * We know that we have a slash in the name --
3460 				 * or lastdir would be set to 0, above.  And
3461 				 * because lastdir is -1, we know that this
3462 				 * slash must be the first character.  (That
3463 				 * is, the full string must be of the form
3464 				 * "/basename".)  In this case, the last
3465 				 * character of the directory name is 0.
3466 				 */
3467 				lastdir = 0;
3468 			}
3469 
3470 			start = 0;
3471 			end = lastdir;
3472 		} else {
3473 			ASSERT(subr == DIF_SUBR_BASENAME);
3474 			ASSERT(firstbase != -1 && lastbase != -1);
3475 			start = firstbase;
3476 			end = lastbase;
3477 		}
3478 
3479 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3480 			dest[j] = dtrace_load8(src + i);
3481 
3482 		dest[j] = '\0';
3483 		regs[rd] = (uintptr_t)dest;
3484 		mstate->dtms_scratch_ptr += size;
3485 		break;
3486 	}
3487 
3488 	case DIF_SUBR_CLEANPATH: {
3489 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3490 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3491 		uintptr_t src = tupregs[0].dttk_value;
3492 		int i = 0, j = 0;
3493 
3494 		if (mstate->dtms_scratch_ptr + size >
3495 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3496 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3497 			regs[rd] = NULL;
3498 			break;
3499 		}
3500 
3501 		/*
3502 		 * Move forward, loading each character.
3503 		 */
3504 		do {
3505 			c = dtrace_load8(src + i++);
3506 next:
3507 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3508 				break;
3509 
3510 			if (c != '/') {
3511 				dest[j++] = c;
3512 				continue;
3513 			}
3514 
3515 			c = dtrace_load8(src + i++);
3516 
3517 			if (c == '/') {
3518 				/*
3519 				 * We have two slashes -- we can just advance
3520 				 * to the next character.
3521 				 */
3522 				goto next;
3523 			}
3524 
3525 			if (c != '.') {
3526 				/*
3527 				 * This is not "." and it's not ".." -- we can
3528 				 * just store the "/" and this character and
3529 				 * drive on.
3530 				 */
3531 				dest[j++] = '/';
3532 				dest[j++] = c;
3533 				continue;
3534 			}
3535 
3536 			c = dtrace_load8(src + i++);
3537 
3538 			if (c == '/') {
3539 				/*
3540 				 * This is a "/./" component.  We're not going
3541 				 * to store anything in the destination buffer;
3542 				 * we're just going to go to the next component.
3543 				 */
3544 				goto next;
3545 			}
3546 
3547 			if (c != '.') {
3548 				/*
3549 				 * This is not ".." -- we can just store the
3550 				 * "/." and this character and continue
3551 				 * processing.
3552 				 */
3553 				dest[j++] = '/';
3554 				dest[j++] = '.';
3555 				dest[j++] = c;
3556 				continue;
3557 			}
3558 
3559 			c = dtrace_load8(src + i++);
3560 
3561 			if (c != '/' && c != '\0') {
3562 				/*
3563 				 * This is not ".." -- it's "..[mumble]".
3564 				 * We'll store the "/.." and this character
3565 				 * and continue processing.
3566 				 */
3567 				dest[j++] = '/';
3568 				dest[j++] = '.';
3569 				dest[j++] = '.';
3570 				dest[j++] = c;
3571 				continue;
3572 			}
3573 
3574 			/*
3575 			 * This is "/../" or "/..\0".  We need to back up
3576 			 * our destination pointer until we find a "/".
3577 			 */
3578 			i--;
3579 			while (j != 0 && dest[--j] != '/')
3580 				continue;
3581 
3582 			if (c == '\0')
3583 				dest[++j] = '/';
3584 		} while (c != '\0');
3585 
3586 		dest[j] = '\0';
3587 		regs[rd] = (uintptr_t)dest;
3588 		mstate->dtms_scratch_ptr += size;
3589 		break;
3590 	}
3591 	}
3592 }
3593 
3594 /*
3595  * Emulate the execution of DTrace IR instructions specified by the given
3596  * DIF object.  This function is deliberately void of assertions as all of
3597  * the necessary checks are handled by a call to dtrace_difo_validate().
3598  */
3599 static uint64_t
3600 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3601     dtrace_vstate_t *vstate, dtrace_state_t *state)
3602 {
3603 	const dif_instr_t *text = difo->dtdo_buf;
3604 	const uint_t textlen = difo->dtdo_len;
3605 	const char *strtab = difo->dtdo_strtab;
3606 	const uint64_t *inttab = difo->dtdo_inttab;
3607 
3608 	uint64_t rval = 0;
3609 	dtrace_statvar_t *svar;
3610 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3611 	dtrace_difv_t *v;
3612 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3613 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3614 
3615 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3616 	uint64_t regs[DIF_DIR_NREGS];
3617 	uint64_t *tmp;
3618 
3619 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3620 	int64_t cc_r;
3621 	uint_t pc = 0, id, opc;
3622 	uint8_t ttop = 0;
3623 	dif_instr_t instr;
3624 	uint_t r1, r2, rd;
3625 
3626 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3627 
3628 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3629 		opc = pc;
3630 
3631 		instr = text[pc++];
3632 		r1 = DIF_INSTR_R1(instr);
3633 		r2 = DIF_INSTR_R2(instr);
3634 		rd = DIF_INSTR_RD(instr);
3635 
3636 		switch (DIF_INSTR_OP(instr)) {
3637 		case DIF_OP_OR:
3638 			regs[rd] = regs[r1] | regs[r2];
3639 			break;
3640 		case DIF_OP_XOR:
3641 			regs[rd] = regs[r1] ^ regs[r2];
3642 			break;
3643 		case DIF_OP_AND:
3644 			regs[rd] = regs[r1] & regs[r2];
3645 			break;
3646 		case DIF_OP_SLL:
3647 			regs[rd] = regs[r1] << regs[r2];
3648 			break;
3649 		case DIF_OP_SRL:
3650 			regs[rd] = regs[r1] >> regs[r2];
3651 			break;
3652 		case DIF_OP_SUB:
3653 			regs[rd] = regs[r1] - regs[r2];
3654 			break;
3655 		case DIF_OP_ADD:
3656 			regs[rd] = regs[r1] + regs[r2];
3657 			break;
3658 		case DIF_OP_MUL:
3659 			regs[rd] = regs[r1] * regs[r2];
3660 			break;
3661 		case DIF_OP_SDIV:
3662 			if (regs[r2] == 0) {
3663 				regs[rd] = 0;
3664 				*flags |= CPU_DTRACE_DIVZERO;
3665 			} else {
3666 				regs[rd] = (int64_t)regs[r1] /
3667 				    (int64_t)regs[r2];
3668 			}
3669 			break;
3670 
3671 		case DIF_OP_UDIV:
3672 			if (regs[r2] == 0) {
3673 				regs[rd] = 0;
3674 				*flags |= CPU_DTRACE_DIVZERO;
3675 			} else {
3676 				regs[rd] = regs[r1] / regs[r2];
3677 			}
3678 			break;
3679 
3680 		case DIF_OP_SREM:
3681 			if (regs[r2] == 0) {
3682 				regs[rd] = 0;
3683 				*flags |= CPU_DTRACE_DIVZERO;
3684 			} else {
3685 				regs[rd] = (int64_t)regs[r1] %
3686 				    (int64_t)regs[r2];
3687 			}
3688 			break;
3689 
3690 		case DIF_OP_UREM:
3691 			if (regs[r2] == 0) {
3692 				regs[rd] = 0;
3693 				*flags |= CPU_DTRACE_DIVZERO;
3694 			} else {
3695 				regs[rd] = regs[r1] % regs[r2];
3696 			}
3697 			break;
3698 
3699 		case DIF_OP_NOT:
3700 			regs[rd] = ~regs[r1];
3701 			break;
3702 		case DIF_OP_MOV:
3703 			regs[rd] = regs[r1];
3704 			break;
3705 		case DIF_OP_CMP:
3706 			cc_r = regs[r1] - regs[r2];
3707 			cc_n = cc_r < 0;
3708 			cc_z = cc_r == 0;
3709 			cc_v = 0;
3710 			cc_c = regs[r1] < regs[r2];
3711 			break;
3712 		case DIF_OP_TST:
3713 			cc_n = cc_v = cc_c = 0;
3714 			cc_z = regs[r1] == 0;
3715 			break;
3716 		case DIF_OP_BA:
3717 			pc = DIF_INSTR_LABEL(instr);
3718 			break;
3719 		case DIF_OP_BE:
3720 			if (cc_z)
3721 				pc = DIF_INSTR_LABEL(instr);
3722 			break;
3723 		case DIF_OP_BNE:
3724 			if (cc_z == 0)
3725 				pc = DIF_INSTR_LABEL(instr);
3726 			break;
3727 		case DIF_OP_BG:
3728 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3729 				pc = DIF_INSTR_LABEL(instr);
3730 			break;
3731 		case DIF_OP_BGU:
3732 			if ((cc_c | cc_z) == 0)
3733 				pc = DIF_INSTR_LABEL(instr);
3734 			break;
3735 		case DIF_OP_BGE:
3736 			if ((cc_n ^ cc_v) == 0)
3737 				pc = DIF_INSTR_LABEL(instr);
3738 			break;
3739 		case DIF_OP_BGEU:
3740 			if (cc_c == 0)
3741 				pc = DIF_INSTR_LABEL(instr);
3742 			break;
3743 		case DIF_OP_BL:
3744 			if (cc_n ^ cc_v)
3745 				pc = DIF_INSTR_LABEL(instr);
3746 			break;
3747 		case DIF_OP_BLU:
3748 			if (cc_c)
3749 				pc = DIF_INSTR_LABEL(instr);
3750 			break;
3751 		case DIF_OP_BLE:
3752 			if (cc_z | (cc_n ^ cc_v))
3753 				pc = DIF_INSTR_LABEL(instr);
3754 			break;
3755 		case DIF_OP_BLEU:
3756 			if (cc_c | cc_z)
3757 				pc = DIF_INSTR_LABEL(instr);
3758 			break;
3759 		case DIF_OP_RLDSB:
3760 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3761 				*flags |= CPU_DTRACE_KPRIV;
3762 				*illval = regs[r1];
3763 				break;
3764 			}
3765 			/*FALLTHROUGH*/
3766 		case DIF_OP_LDSB:
3767 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3768 			break;
3769 		case DIF_OP_RLDSH:
3770 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3771 				*flags |= CPU_DTRACE_KPRIV;
3772 				*illval = regs[r1];
3773 				break;
3774 			}
3775 			/*FALLTHROUGH*/
3776 		case DIF_OP_LDSH:
3777 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3778 			break;
3779 		case DIF_OP_RLDSW:
3780 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3781 				*flags |= CPU_DTRACE_KPRIV;
3782 				*illval = regs[r1];
3783 				break;
3784 			}
3785 			/*FALLTHROUGH*/
3786 		case DIF_OP_LDSW:
3787 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3788 			break;
3789 		case DIF_OP_RLDUB:
3790 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3791 				*flags |= CPU_DTRACE_KPRIV;
3792 				*illval = regs[r1];
3793 				break;
3794 			}
3795 			/*FALLTHROUGH*/
3796 		case DIF_OP_LDUB:
3797 			regs[rd] = dtrace_load8(regs[r1]);
3798 			break;
3799 		case DIF_OP_RLDUH:
3800 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3801 				*flags |= CPU_DTRACE_KPRIV;
3802 				*illval = regs[r1];
3803 				break;
3804 			}
3805 			/*FALLTHROUGH*/
3806 		case DIF_OP_LDUH:
3807 			regs[rd] = dtrace_load16(regs[r1]);
3808 			break;
3809 		case DIF_OP_RLDUW:
3810 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3811 				*flags |= CPU_DTRACE_KPRIV;
3812 				*illval = regs[r1];
3813 				break;
3814 			}
3815 			/*FALLTHROUGH*/
3816 		case DIF_OP_LDUW:
3817 			regs[rd] = dtrace_load32(regs[r1]);
3818 			break;
3819 		case DIF_OP_RLDX:
3820 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3821 				*flags |= CPU_DTRACE_KPRIV;
3822 				*illval = regs[r1];
3823 				break;
3824 			}
3825 			/*FALLTHROUGH*/
3826 		case DIF_OP_LDX:
3827 			regs[rd] = dtrace_load64(regs[r1]);
3828 			break;
3829 		case DIF_OP_ULDSB:
3830 			regs[rd] = (int8_t)
3831 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3832 			break;
3833 		case DIF_OP_ULDSH:
3834 			regs[rd] = (int16_t)
3835 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3836 			break;
3837 		case DIF_OP_ULDSW:
3838 			regs[rd] = (int32_t)
3839 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3840 			break;
3841 		case DIF_OP_ULDUB:
3842 			regs[rd] =
3843 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3844 			break;
3845 		case DIF_OP_ULDUH:
3846 			regs[rd] =
3847 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3848 			break;
3849 		case DIF_OP_ULDUW:
3850 			regs[rd] =
3851 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3852 			break;
3853 		case DIF_OP_ULDX:
3854 			regs[rd] =
3855 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3856 			break;
3857 		case DIF_OP_RET:
3858 			rval = regs[rd];
3859 			break;
3860 		case DIF_OP_NOP:
3861 			break;
3862 		case DIF_OP_SETX:
3863 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3864 			break;
3865 		case DIF_OP_SETS:
3866 			regs[rd] = (uint64_t)(uintptr_t)
3867 			    (strtab + DIF_INSTR_STRING(instr));
3868 			break;
3869 		case DIF_OP_SCMP:
3870 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3871 			    (char *)(uintptr_t)regs[r2],
3872 			    state->dts_options[DTRACEOPT_STRSIZE]);
3873 
3874 			cc_n = cc_r < 0;
3875 			cc_z = cc_r == 0;
3876 			cc_v = cc_c = 0;
3877 			break;
3878 		case DIF_OP_LDGA:
3879 			regs[rd] = dtrace_dif_variable(mstate, state,
3880 			    r1, regs[r2]);
3881 			break;
3882 		case DIF_OP_LDGS:
3883 			id = DIF_INSTR_VAR(instr);
3884 
3885 			if (id >= DIF_VAR_OTHER_UBASE) {
3886 				uintptr_t a;
3887 
3888 				id -= DIF_VAR_OTHER_UBASE;
3889 				svar = vstate->dtvs_globals[id];
3890 				ASSERT(svar != NULL);
3891 				v = &svar->dtsv_var;
3892 
3893 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3894 					regs[rd] = svar->dtsv_data;
3895 					break;
3896 				}
3897 
3898 				a = (uintptr_t)svar->dtsv_data;
3899 
3900 				if (*(uint8_t *)a == UINT8_MAX) {
3901 					/*
3902 					 * If the 0th byte is set to UINT8_MAX
3903 					 * then this is to be treated as a
3904 					 * reference to a NULL variable.
3905 					 */
3906 					regs[rd] = NULL;
3907 				} else {
3908 					regs[rd] = a + sizeof (uint64_t);
3909 				}
3910 
3911 				break;
3912 			}
3913 
3914 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3915 			break;
3916 
3917 		case DIF_OP_STGS:
3918 			id = DIF_INSTR_VAR(instr);
3919 
3920 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3921 			id -= DIF_VAR_OTHER_UBASE;
3922 
3923 			svar = vstate->dtvs_globals[id];
3924 			ASSERT(svar != NULL);
3925 			v = &svar->dtsv_var;
3926 
3927 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3928 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3929 
3930 				ASSERT(a != NULL);
3931 				ASSERT(svar->dtsv_size != 0);
3932 
3933 				if (regs[rd] == NULL) {
3934 					*(uint8_t *)a = UINT8_MAX;
3935 					break;
3936 				} else {
3937 					*(uint8_t *)a = 0;
3938 					a += sizeof (uint64_t);
3939 				}
3940 
3941 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3942 				    (void *)a, &v->dtdv_type);
3943 				break;
3944 			}
3945 
3946 			svar->dtsv_data = regs[rd];
3947 			break;
3948 
3949 		case DIF_OP_LDTA:
3950 			/*
3951 			 * There are no DTrace built-in thread-local arrays at
3952 			 * present.  This opcode is saved for future work.
3953 			 */
3954 			*flags |= CPU_DTRACE_ILLOP;
3955 			regs[rd] = 0;
3956 			break;
3957 
3958 		case DIF_OP_LDLS:
3959 			id = DIF_INSTR_VAR(instr);
3960 
3961 			if (id < DIF_VAR_OTHER_UBASE) {
3962 				/*
3963 				 * For now, this has no meaning.
3964 				 */
3965 				regs[rd] = 0;
3966 				break;
3967 			}
3968 
3969 			id -= DIF_VAR_OTHER_UBASE;
3970 
3971 			ASSERT(id < vstate->dtvs_nlocals);
3972 			ASSERT(vstate->dtvs_locals != NULL);
3973 
3974 			svar = vstate->dtvs_locals[id];
3975 			ASSERT(svar != NULL);
3976 			v = &svar->dtsv_var;
3977 
3978 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3979 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3980 				size_t sz = v->dtdv_type.dtdt_size;
3981 
3982 				sz += sizeof (uint64_t);
3983 				ASSERT(svar->dtsv_size == NCPU * sz);
3984 				a += CPU->cpu_id * sz;
3985 
3986 				if (*(uint8_t *)a == UINT8_MAX) {
3987 					/*
3988 					 * If the 0th byte is set to UINT8_MAX
3989 					 * then this is to be treated as a
3990 					 * reference to a NULL variable.
3991 					 */
3992 					regs[rd] = NULL;
3993 				} else {
3994 					regs[rd] = a + sizeof (uint64_t);
3995 				}
3996 
3997 				break;
3998 			}
3999 
4000 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4001 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4002 			regs[rd] = tmp[CPU->cpu_id];
4003 			break;
4004 
4005 		case DIF_OP_STLS:
4006 			id = DIF_INSTR_VAR(instr);
4007 
4008 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4009 			id -= DIF_VAR_OTHER_UBASE;
4010 			ASSERT(id < vstate->dtvs_nlocals);
4011 
4012 			ASSERT(vstate->dtvs_locals != NULL);
4013 			svar = vstate->dtvs_locals[id];
4014 			ASSERT(svar != NULL);
4015 			v = &svar->dtsv_var;
4016 
4017 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4018 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4019 				size_t sz = v->dtdv_type.dtdt_size;
4020 
4021 				sz += sizeof (uint64_t);
4022 				ASSERT(svar->dtsv_size == NCPU * sz);
4023 				a += CPU->cpu_id * sz;
4024 
4025 				if (regs[rd] == NULL) {
4026 					*(uint8_t *)a = UINT8_MAX;
4027 					break;
4028 				} else {
4029 					*(uint8_t *)a = 0;
4030 					a += sizeof (uint64_t);
4031 				}
4032 
4033 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4034 				    (void *)a, &v->dtdv_type);
4035 				break;
4036 			}
4037 
4038 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4039 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4040 			tmp[CPU->cpu_id] = regs[rd];
4041 			break;
4042 
4043 		case DIF_OP_LDTS: {
4044 			dtrace_dynvar_t *dvar;
4045 			dtrace_key_t *key;
4046 
4047 			id = DIF_INSTR_VAR(instr);
4048 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4049 			id -= DIF_VAR_OTHER_UBASE;
4050 			v = &vstate->dtvs_tlocals[id];
4051 
4052 			key = &tupregs[DIF_DTR_NREGS];
4053 			key[0].dttk_value = (uint64_t)id;
4054 			key[0].dttk_size = 0;
4055 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4056 			key[1].dttk_size = 0;
4057 
4058 			dvar = dtrace_dynvar(dstate, 2, key,
4059 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
4060 
4061 			if (dvar == NULL) {
4062 				regs[rd] = 0;
4063 				break;
4064 			}
4065 
4066 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4067 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4068 			} else {
4069 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4070 			}
4071 
4072 			break;
4073 		}
4074 
4075 		case DIF_OP_STTS: {
4076 			dtrace_dynvar_t *dvar;
4077 			dtrace_key_t *key;
4078 
4079 			id = DIF_INSTR_VAR(instr);
4080 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4081 			id -= DIF_VAR_OTHER_UBASE;
4082 
4083 			key = &tupregs[DIF_DTR_NREGS];
4084 			key[0].dttk_value = (uint64_t)id;
4085 			key[0].dttk_size = 0;
4086 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4087 			key[1].dttk_size = 0;
4088 			v = &vstate->dtvs_tlocals[id];
4089 
4090 			dvar = dtrace_dynvar(dstate, 2, key,
4091 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4092 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4093 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4094 			    DTRACE_DYNVAR_DEALLOC);
4095 
4096 			/*
4097 			 * Given that we're storing to thread-local data,
4098 			 * we need to flush our predicate cache.
4099 			 */
4100 			curthread->t_predcache = NULL;
4101 
4102 			if (dvar == NULL)
4103 				break;
4104 
4105 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4106 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4107 				    dvar->dtdv_data, &v->dtdv_type);
4108 			} else {
4109 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4110 			}
4111 
4112 			break;
4113 		}
4114 
4115 		case DIF_OP_SRA:
4116 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4117 			break;
4118 
4119 		case DIF_OP_CALL:
4120 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4121 			    regs, tupregs, ttop, mstate, state);
4122 			break;
4123 
4124 		case DIF_OP_PUSHTR:
4125 			if (ttop == DIF_DTR_NREGS) {
4126 				*flags |= CPU_DTRACE_TUPOFLOW;
4127 				break;
4128 			}
4129 
4130 			if (r1 == DIF_TYPE_STRING) {
4131 				/*
4132 				 * If this is a string type and the size is 0,
4133 				 * we'll use the system-wide default string
4134 				 * size.  Note that we are _not_ looking at
4135 				 * the value of the DTRACEOPT_STRSIZE option;
4136 				 * had this been set, we would expect to have
4137 				 * a non-zero size value in the "pushtr".
4138 				 */
4139 				tupregs[ttop].dttk_size =
4140 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4141 				    regs[r2] ? regs[r2] :
4142 				    dtrace_strsize_default) + 1;
4143 			} else {
4144 				tupregs[ttop].dttk_size = regs[r2];
4145 			}
4146 
4147 			tupregs[ttop++].dttk_value = regs[rd];
4148 			break;
4149 
4150 		case DIF_OP_PUSHTV:
4151 			if (ttop == DIF_DTR_NREGS) {
4152 				*flags |= CPU_DTRACE_TUPOFLOW;
4153 				break;
4154 			}
4155 
4156 			tupregs[ttop].dttk_value = regs[rd];
4157 			tupregs[ttop++].dttk_size = 0;
4158 			break;
4159 
4160 		case DIF_OP_POPTS:
4161 			if (ttop != 0)
4162 				ttop--;
4163 			break;
4164 
4165 		case DIF_OP_FLUSHTS:
4166 			ttop = 0;
4167 			break;
4168 
4169 		case DIF_OP_LDGAA:
4170 		case DIF_OP_LDTAA: {
4171 			dtrace_dynvar_t *dvar;
4172 			dtrace_key_t *key = tupregs;
4173 			uint_t nkeys = ttop;
4174 
4175 			id = DIF_INSTR_VAR(instr);
4176 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4177 			id -= DIF_VAR_OTHER_UBASE;
4178 
4179 			key[nkeys].dttk_value = (uint64_t)id;
4180 			key[nkeys++].dttk_size = 0;
4181 
4182 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4183 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4184 				key[nkeys++].dttk_size = 0;
4185 				v = &vstate->dtvs_tlocals[id];
4186 			} else {
4187 				v = &vstate->dtvs_globals[id]->dtsv_var;
4188 			}
4189 
4190 			dvar = dtrace_dynvar(dstate, nkeys, key,
4191 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4192 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4193 			    DTRACE_DYNVAR_NOALLOC);
4194 
4195 			if (dvar == NULL) {
4196 				regs[rd] = 0;
4197 				break;
4198 			}
4199 
4200 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4201 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4202 			} else {
4203 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4204 			}
4205 
4206 			break;
4207 		}
4208 
4209 		case DIF_OP_STGAA:
4210 		case DIF_OP_STTAA: {
4211 			dtrace_dynvar_t *dvar;
4212 			dtrace_key_t *key = tupregs;
4213 			uint_t nkeys = ttop;
4214 
4215 			id = DIF_INSTR_VAR(instr);
4216 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4217 			id -= DIF_VAR_OTHER_UBASE;
4218 
4219 			key[nkeys].dttk_value = (uint64_t)id;
4220 			key[nkeys++].dttk_size = 0;
4221 
4222 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4223 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4224 				key[nkeys++].dttk_size = 0;
4225 				v = &vstate->dtvs_tlocals[id];
4226 			} else {
4227 				v = &vstate->dtvs_globals[id]->dtsv_var;
4228 			}
4229 
4230 			dvar = dtrace_dynvar(dstate, nkeys, key,
4231 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4232 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4233 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4234 			    DTRACE_DYNVAR_DEALLOC);
4235 
4236 			if (dvar == NULL)
4237 				break;
4238 
4239 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4240 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4241 				    dvar->dtdv_data, &v->dtdv_type);
4242 			} else {
4243 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4244 			}
4245 
4246 			break;
4247 		}
4248 
4249 		case DIF_OP_ALLOCS: {
4250 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4251 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4252 
4253 			if (mstate->dtms_scratch_ptr + size >
4254 			    mstate->dtms_scratch_base +
4255 			    mstate->dtms_scratch_size) {
4256 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4257 				regs[rd] = NULL;
4258 			} else {
4259 				dtrace_bzero((void *)
4260 				    mstate->dtms_scratch_ptr, size);
4261 				mstate->dtms_scratch_ptr += size;
4262 				regs[rd] = ptr;
4263 			}
4264 			break;
4265 		}
4266 
4267 		case DIF_OP_COPYS:
4268 			if (!dtrace_canstore(regs[rd], regs[r2],
4269 			    mstate, vstate)) {
4270 				*flags |= CPU_DTRACE_BADADDR;
4271 				*illval = regs[rd];
4272 				break;
4273 			}
4274 
4275 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4276 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4277 			break;
4278 
4279 		case DIF_OP_STB:
4280 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4281 				*flags |= CPU_DTRACE_BADADDR;
4282 				*illval = regs[rd];
4283 				break;
4284 			}
4285 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4286 			break;
4287 
4288 		case DIF_OP_STH:
4289 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4290 				*flags |= CPU_DTRACE_BADADDR;
4291 				*illval = regs[rd];
4292 				break;
4293 			}
4294 			if (regs[rd] & 1) {
4295 				*flags |= CPU_DTRACE_BADALIGN;
4296 				*illval = regs[rd];
4297 				break;
4298 			}
4299 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4300 			break;
4301 
4302 		case DIF_OP_STW:
4303 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4304 				*flags |= CPU_DTRACE_BADADDR;
4305 				*illval = regs[rd];
4306 				break;
4307 			}
4308 			if (regs[rd] & 3) {
4309 				*flags |= CPU_DTRACE_BADALIGN;
4310 				*illval = regs[rd];
4311 				break;
4312 			}
4313 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4314 			break;
4315 
4316 		case DIF_OP_STX:
4317 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4318 				*flags |= CPU_DTRACE_BADADDR;
4319 				*illval = regs[rd];
4320 				break;
4321 			}
4322 			if (regs[rd] & 7) {
4323 				*flags |= CPU_DTRACE_BADALIGN;
4324 				*illval = regs[rd];
4325 				break;
4326 			}
4327 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4328 			break;
4329 		}
4330 	}
4331 
4332 	if (!(*flags & CPU_DTRACE_FAULT))
4333 		return (rval);
4334 
4335 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4336 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4337 
4338 	return (0);
4339 }
4340 
4341 static void
4342 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4343 {
4344 	dtrace_probe_t *probe = ecb->dte_probe;
4345 	dtrace_provider_t *prov = probe->dtpr_provider;
4346 	char c[DTRACE_FULLNAMELEN + 80], *str;
4347 	char *msg = "dtrace: breakpoint action at probe ";
4348 	char *ecbmsg = " (ecb ";
4349 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4350 	uintptr_t val = (uintptr_t)ecb;
4351 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4352 
4353 	if (dtrace_destructive_disallow)
4354 		return;
4355 
4356 	/*
4357 	 * It's impossible to be taking action on the NULL probe.
4358 	 */
4359 	ASSERT(probe != NULL);
4360 
4361 	/*
4362 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4363 	 * print the provider name, module name, function name and name of
4364 	 * the probe, along with the hex address of the ECB with the breakpoint
4365 	 * action -- all of which we must place in the character buffer by
4366 	 * hand.
4367 	 */
4368 	while (*msg != '\0')
4369 		c[i++] = *msg++;
4370 
4371 	for (str = prov->dtpv_name; *str != '\0'; str++)
4372 		c[i++] = *str;
4373 	c[i++] = ':';
4374 
4375 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4376 		c[i++] = *str;
4377 	c[i++] = ':';
4378 
4379 	for (str = probe->dtpr_func; *str != '\0'; str++)
4380 		c[i++] = *str;
4381 	c[i++] = ':';
4382 
4383 	for (str = probe->dtpr_name; *str != '\0'; str++)
4384 		c[i++] = *str;
4385 
4386 	while (*ecbmsg != '\0')
4387 		c[i++] = *ecbmsg++;
4388 
4389 	while (shift >= 0) {
4390 		mask = (uintptr_t)0xf << shift;
4391 
4392 		if (val >= ((uintptr_t)1 << shift))
4393 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4394 		shift -= 4;
4395 	}
4396 
4397 	c[i++] = ')';
4398 	c[i] = '\0';
4399 
4400 	debug_enter(c);
4401 }
4402 
4403 static void
4404 dtrace_action_panic(dtrace_ecb_t *ecb)
4405 {
4406 	dtrace_probe_t *probe = ecb->dte_probe;
4407 
4408 	/*
4409 	 * It's impossible to be taking action on the NULL probe.
4410 	 */
4411 	ASSERT(probe != NULL);
4412 
4413 	if (dtrace_destructive_disallow)
4414 		return;
4415 
4416 	if (dtrace_panicked != NULL)
4417 		return;
4418 
4419 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4420 		return;
4421 
4422 	/*
4423 	 * We won the right to panic.  (We want to be sure that only one
4424 	 * thread calls panic() from dtrace_probe(), and that panic() is
4425 	 * called exactly once.)
4426 	 */
4427 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4428 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4429 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4430 }
4431 
4432 static void
4433 dtrace_action_raise(uint64_t sig)
4434 {
4435 	if (dtrace_destructive_disallow)
4436 		return;
4437 
4438 	if (sig >= NSIG) {
4439 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4440 		return;
4441 	}
4442 
4443 	/*
4444 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4445 	 * invocations of the raise() action.
4446 	 */
4447 	if (curthread->t_dtrace_sig == 0)
4448 		curthread->t_dtrace_sig = (uint8_t)sig;
4449 
4450 	curthread->t_sig_check = 1;
4451 	aston(curthread);
4452 }
4453 
4454 static void
4455 dtrace_action_stop(void)
4456 {
4457 	if (dtrace_destructive_disallow)
4458 		return;
4459 
4460 	if (!curthread->t_dtrace_stop) {
4461 		curthread->t_dtrace_stop = 1;
4462 		curthread->t_sig_check = 1;
4463 		aston(curthread);
4464 	}
4465 }
4466 
4467 static void
4468 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4469 {
4470 	hrtime_t now;
4471 	volatile uint16_t *flags;
4472 	cpu_t *cpu = CPU;
4473 
4474 	if (dtrace_destructive_disallow)
4475 		return;
4476 
4477 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4478 
4479 	now = dtrace_gethrtime();
4480 
4481 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4482 		/*
4483 		 * We need to advance the mark to the current time.
4484 		 */
4485 		cpu->cpu_dtrace_chillmark = now;
4486 		cpu->cpu_dtrace_chilled = 0;
4487 	}
4488 
4489 	/*
4490 	 * Now check to see if the requested chill time would take us over
4491 	 * the maximum amount of time allowed in the chill interval.  (Or
4492 	 * worse, if the calculation itself induces overflow.)
4493 	 */
4494 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4495 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4496 		*flags |= CPU_DTRACE_ILLOP;
4497 		return;
4498 	}
4499 
4500 	while (dtrace_gethrtime() - now < val)
4501 		continue;
4502 
4503 	/*
4504 	 * Normally, we assure that the value of the variable "timestamp" does
4505 	 * not change within an ECB.  The presence of chill() represents an
4506 	 * exception to this rule, however.
4507 	 */
4508 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4509 	cpu->cpu_dtrace_chilled += val;
4510 }
4511 
4512 static void
4513 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4514     uint64_t *buf, uint64_t arg)
4515 {
4516 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4517 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4518 	uint64_t *pcs = &buf[1], *fps;
4519 	char *str = (char *)&pcs[nframes];
4520 	int size, offs = 0, i, j;
4521 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4522 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4523 	char *sym;
4524 
4525 	/*
4526 	 * Should be taking a faster path if string space has not been
4527 	 * allocated.
4528 	 */
4529 	ASSERT(strsize != 0);
4530 
4531 	/*
4532 	 * We will first allocate some temporary space for the frame pointers.
4533 	 */
4534 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4535 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4536 	    (nframes * sizeof (uint64_t));
4537 
4538 	if (mstate->dtms_scratch_ptr + size >
4539 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4540 		/*
4541 		 * Not enough room for our frame pointers -- need to indicate
4542 		 * that we ran out of scratch space.
4543 		 */
4544 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4545 		return;
4546 	}
4547 
4548 	mstate->dtms_scratch_ptr += size;
4549 	saved = mstate->dtms_scratch_ptr;
4550 
4551 	/*
4552 	 * Now get a stack with both program counters and frame pointers.
4553 	 */
4554 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4555 	dtrace_getufpstack(buf, fps, nframes + 1);
4556 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4557 
4558 	/*
4559 	 * If that faulted, we're cooked.
4560 	 */
4561 	if (*flags & CPU_DTRACE_FAULT)
4562 		goto out;
4563 
4564 	/*
4565 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4566 	 * each iteration, we restore the scratch pointer.
4567 	 */
4568 	for (i = 0; i < nframes; i++) {
4569 		mstate->dtms_scratch_ptr = saved;
4570 
4571 		if (offs >= strsize)
4572 			break;
4573 
4574 		sym = (char *)(uintptr_t)dtrace_helper(
4575 		    DTRACE_HELPER_ACTION_USTACK,
4576 		    mstate, state, pcs[i], fps[i]);
4577 
4578 		/*
4579 		 * If we faulted while running the helper, we're going to
4580 		 * clear the fault and null out the corresponding string.
4581 		 */
4582 		if (*flags & CPU_DTRACE_FAULT) {
4583 			*flags &= ~CPU_DTRACE_FAULT;
4584 			str[offs++] = '\0';
4585 			continue;
4586 		}
4587 
4588 		if (sym == NULL) {
4589 			str[offs++] = '\0';
4590 			continue;
4591 		}
4592 
4593 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4594 
4595 		/*
4596 		 * Now copy in the string that the helper returned to us.
4597 		 */
4598 		for (j = 0; offs + j < strsize; j++) {
4599 			if ((str[offs + j] = sym[j]) == '\0')
4600 				break;
4601 		}
4602 
4603 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4604 
4605 		offs += j + 1;
4606 	}
4607 
4608 	if (offs >= strsize) {
4609 		/*
4610 		 * If we didn't have room for all of the strings, we don't
4611 		 * abort processing -- this needn't be a fatal error -- but we
4612 		 * still want to increment a counter (dts_stkstroverflows) to
4613 		 * allow this condition to be warned about.  (If this is from
4614 		 * a jstack() action, it is easily tuned via jstackstrsize.)
4615 		 */
4616 		dtrace_error(&state->dts_stkstroverflows);
4617 	}
4618 
4619 	while (offs < strsize)
4620 		str[offs++] = '\0';
4621 
4622 out:
4623 	mstate->dtms_scratch_ptr = old;
4624 }
4625 
4626 /*
4627  * If you're looking for the epicenter of DTrace, you just found it.  This
4628  * is the function called by the provider to fire a probe -- from which all
4629  * subsequent probe-context DTrace activity emanates.
4630  */
4631 void
4632 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4633     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4634 {
4635 	processorid_t cpuid;
4636 	dtrace_icookie_t cookie;
4637 	dtrace_probe_t *probe;
4638 	dtrace_mstate_t mstate;
4639 	dtrace_ecb_t *ecb;
4640 	dtrace_action_t *act;
4641 	intptr_t offs;
4642 	size_t size;
4643 	int vtime, onintr;
4644 	volatile uint16_t *flags;
4645 	hrtime_t now;
4646 
4647 	/*
4648 	 * Kick out immediately if this CPU is still being born (in which case
4649 	 * curthread will be set to -1)
4650 	 */
4651 	if ((uintptr_t)curthread & 1)
4652 		return;
4653 
4654 	cookie = dtrace_interrupt_disable();
4655 	probe = dtrace_probes[id - 1];
4656 	cpuid = CPU->cpu_id;
4657 	onintr = CPU_ON_INTR(CPU);
4658 
4659 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4660 	    probe->dtpr_predcache == curthread->t_predcache) {
4661 		/*
4662 		 * We have hit in the predicate cache; we know that
4663 		 * this predicate would evaluate to be false.
4664 		 */
4665 		dtrace_interrupt_enable(cookie);
4666 		return;
4667 	}
4668 
4669 	if (panic_quiesce) {
4670 		/*
4671 		 * We don't trace anything if we're panicking.
4672 		 */
4673 		dtrace_interrupt_enable(cookie);
4674 		return;
4675 	}
4676 
4677 	now = dtrace_gethrtime();
4678 	vtime = dtrace_vtime_references != 0;
4679 
4680 	if (vtime && curthread->t_dtrace_start)
4681 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4682 
4683 	mstate.dtms_probe = probe;
4684 	mstate.dtms_arg[0] = arg0;
4685 	mstate.dtms_arg[1] = arg1;
4686 	mstate.dtms_arg[2] = arg2;
4687 	mstate.dtms_arg[3] = arg3;
4688 	mstate.dtms_arg[4] = arg4;
4689 
4690 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4691 
4692 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4693 		dtrace_predicate_t *pred = ecb->dte_predicate;
4694 		dtrace_state_t *state = ecb->dte_state;
4695 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4696 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4697 		dtrace_vstate_t *vstate = &state->dts_vstate;
4698 		dtrace_provider_t *prov = probe->dtpr_provider;
4699 		int committed = 0;
4700 		caddr_t tomax;
4701 
4702 		/*
4703 		 * A little subtlety with the following (seemingly innocuous)
4704 		 * declaration of the automatic 'val':  by looking at the
4705 		 * code, you might think that it could be declared in the
4706 		 * action processing loop, below.  (That is, it's only used in
4707 		 * the action processing loop.)  However, it must be declared
4708 		 * out of that scope because in the case of DIF expression
4709 		 * arguments to aggregating actions, one iteration of the
4710 		 * action loop will use the last iteration's value.
4711 		 */
4712 #ifdef lint
4713 		uint64_t val = 0;
4714 #else
4715 		uint64_t val;
4716 #endif
4717 
4718 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4719 		*flags &= ~CPU_DTRACE_ERROR;
4720 
4721 		if (prov == dtrace_provider) {
4722 			/*
4723 			 * If dtrace itself is the provider of this probe,
4724 			 * we're only going to continue processing the ECB if
4725 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4726 			 * creating state.  (This prevents disjoint consumers
4727 			 * from seeing one another's metaprobes.)
4728 			 */
4729 			if (arg0 != (uint64_t)(uintptr_t)state)
4730 				continue;
4731 		}
4732 
4733 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4734 			/*
4735 			 * We're not currently active.  If our provider isn't
4736 			 * the dtrace pseudo provider, we're not interested.
4737 			 */
4738 			if (prov != dtrace_provider)
4739 				continue;
4740 
4741 			/*
4742 			 * Now we must further check if we are in the BEGIN
4743 			 * probe.  If we are, we will only continue processing
4744 			 * if we're still in WARMUP -- if one BEGIN enabling
4745 			 * has invoked the exit() action, we don't want to
4746 			 * evaluate subsequent BEGIN enablings.
4747 			 */
4748 			if (probe->dtpr_id == dtrace_probeid_begin &&
4749 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4750 				ASSERT(state->dts_activity ==
4751 				    DTRACE_ACTIVITY_DRAINING);
4752 				continue;
4753 			}
4754 		}
4755 
4756 		if (ecb->dte_cond) {
4757 			/*
4758 			 * If the dte_cond bits indicate that this
4759 			 * consumer is only allowed to see user-mode firings
4760 			 * of this probe, call the provider's dtps_usermode()
4761 			 * entry point to check that the probe was fired
4762 			 * while in a user context. Skip this ECB if that's
4763 			 * not the case.
4764 			 */
4765 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4766 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4767 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4768 				continue;
4769 
4770 			/*
4771 			 * This is more subtle than it looks. We have to be
4772 			 * absolutely certain that CRED() isn't going to
4773 			 * change out from under us so it's only legit to
4774 			 * examine that structure if we're in constrained
4775 			 * situations. Currently, the only times we'll this
4776 			 * check is if a non-super-user has enabled the
4777 			 * profile or syscall providers -- providers that
4778 			 * allow visibility of all processes. For the
4779 			 * profile case, the check above will ensure that
4780 			 * we're examining a user context.
4781 			 */
4782 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4783 				cred_t *cr;
4784 				cred_t *s_cr =
4785 				    ecb->dte_state->dts_cred.dcr_cred;
4786 				proc_t *proc;
4787 
4788 				ASSERT(s_cr != NULL);
4789 
4790 				if ((cr = CRED()) == NULL ||
4791 				    s_cr->cr_uid != cr->cr_uid ||
4792 				    s_cr->cr_uid != cr->cr_ruid ||
4793 				    s_cr->cr_uid != cr->cr_suid ||
4794 				    s_cr->cr_gid != cr->cr_gid ||
4795 				    s_cr->cr_gid != cr->cr_rgid ||
4796 				    s_cr->cr_gid != cr->cr_sgid ||
4797 				    (proc = ttoproc(curthread)) == NULL ||
4798 				    (proc->p_flag & SNOCD))
4799 					continue;
4800 			}
4801 
4802 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
4803 				cred_t *cr;
4804 				cred_t *s_cr =
4805 				    ecb->dte_state->dts_cred.dcr_cred;
4806 
4807 				ASSERT(s_cr != NULL);
4808 
4809 				if ((cr = CRED()) == NULL ||
4810 				    s_cr->cr_zone->zone_id !=
4811 				    cr->cr_zone->zone_id)
4812 					continue;
4813 			}
4814 		}
4815 
4816 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4817 			/*
4818 			 * We seem to be dead.  Unless we (a) have kernel
4819 			 * destructive permissions (b) have expicitly enabled
4820 			 * destructive actions and (c) destructive actions have
4821 			 * not been disabled, we're going to transition into
4822 			 * the KILLED state, from which no further processing
4823 			 * on this state will be performed.
4824 			 */
4825 			if (!dtrace_priv_kernel_destructive(state) ||
4826 			    !state->dts_cred.dcr_destructive ||
4827 			    dtrace_destructive_disallow) {
4828 				void *activity = &state->dts_activity;
4829 				dtrace_activity_t current;
4830 
4831 				do {
4832 					current = state->dts_activity;
4833 				} while (dtrace_cas32(activity, current,
4834 				    DTRACE_ACTIVITY_KILLED) != current);
4835 
4836 				continue;
4837 			}
4838 		}
4839 
4840 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4841 		    ecb->dte_alignment, state, &mstate)) < 0)
4842 			continue;
4843 
4844 		tomax = buf->dtb_tomax;
4845 		ASSERT(tomax != NULL);
4846 
4847 		if (ecb->dte_size != 0)
4848 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4849 
4850 		mstate.dtms_epid = ecb->dte_epid;
4851 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4852 
4853 		if (pred != NULL) {
4854 			dtrace_difo_t *dp = pred->dtp_difo;
4855 			int rval;
4856 
4857 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4858 
4859 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4860 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4861 
4862 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4863 					/*
4864 					 * Update the predicate cache...
4865 					 */
4866 					ASSERT(cid == pred->dtp_cacheid);
4867 					curthread->t_predcache = cid;
4868 				}
4869 
4870 				continue;
4871 			}
4872 		}
4873 
4874 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4875 		    act != NULL; act = act->dta_next) {
4876 			size_t valoffs;
4877 			dtrace_difo_t *dp;
4878 			dtrace_recdesc_t *rec = &act->dta_rec;
4879 
4880 			size = rec->dtrd_size;
4881 			valoffs = offs + rec->dtrd_offset;
4882 
4883 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4884 				uint64_t v = 0xbad;
4885 				dtrace_aggregation_t *agg;
4886 
4887 				agg = (dtrace_aggregation_t *)act;
4888 
4889 				if ((dp = act->dta_difo) != NULL)
4890 					v = dtrace_dif_emulate(dp,
4891 					    &mstate, vstate, state);
4892 
4893 				if (*flags & CPU_DTRACE_ERROR)
4894 					continue;
4895 
4896 				/*
4897 				 * Note that we always pass the expression
4898 				 * value from the previous iteration of the
4899 				 * action loop.  This value will only be used
4900 				 * if there is an expression argument to the
4901 				 * aggregating action, denoted by the
4902 				 * dtag_hasarg field.
4903 				 */
4904 				dtrace_aggregate(agg, buf,
4905 				    offs, aggbuf, v, val);
4906 				continue;
4907 			}
4908 
4909 			switch (act->dta_kind) {
4910 			case DTRACEACT_STOP:
4911 				if (dtrace_priv_proc_destructive(state))
4912 					dtrace_action_stop();
4913 				continue;
4914 
4915 			case DTRACEACT_BREAKPOINT:
4916 				if (dtrace_priv_kernel_destructive(state))
4917 					dtrace_action_breakpoint(ecb);
4918 				continue;
4919 
4920 			case DTRACEACT_PANIC:
4921 				if (dtrace_priv_kernel_destructive(state))
4922 					dtrace_action_panic(ecb);
4923 				continue;
4924 
4925 			case DTRACEACT_STACK:
4926 				if (!dtrace_priv_kernel(state))
4927 					continue;
4928 
4929 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4930 				    size / sizeof (pc_t), probe->dtpr_aframes,
4931 				    DTRACE_ANCHORED(probe) ? NULL :
4932 				    (uint32_t *)arg0);
4933 
4934 				continue;
4935 
4936 			case DTRACEACT_JSTACK:
4937 			case DTRACEACT_USTACK:
4938 				if (!dtrace_priv_proc(state))
4939 					continue;
4940 
4941 				/*
4942 				 * See comment in DIF_VAR_PID.
4943 				 */
4944 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
4945 				    CPU_ON_INTR(CPU)) {
4946 					int depth = DTRACE_USTACK_NFRAMES(
4947 					    rec->dtrd_arg) + 1;
4948 
4949 					dtrace_bzero((void *)(tomax + valoffs),
4950 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
4951 					    + depth * sizeof (uint64_t));
4952 
4953 					continue;
4954 				}
4955 
4956 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4957 				    curproc->p_dtrace_helpers != NULL) {
4958 					/*
4959 					 * This is the slow path -- we have
4960 					 * allocated string space, and we're
4961 					 * getting the stack of a process that
4962 					 * has helpers.  Call into a separate
4963 					 * routine to perform this processing.
4964 					 */
4965 					dtrace_action_ustack(&mstate, state,
4966 					    (uint64_t *)(tomax + valoffs),
4967 					    rec->dtrd_arg);
4968 					continue;
4969 				}
4970 
4971 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4972 				dtrace_getupcstack((uint64_t *)
4973 				    (tomax + valoffs),
4974 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
4975 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4976 				continue;
4977 
4978 			default:
4979 				break;
4980 			}
4981 
4982 			dp = act->dta_difo;
4983 			ASSERT(dp != NULL);
4984 
4985 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
4986 
4987 			if (*flags & CPU_DTRACE_ERROR)
4988 				continue;
4989 
4990 			switch (act->dta_kind) {
4991 			case DTRACEACT_SPECULATE:
4992 				ASSERT(buf == &state->dts_buffer[cpuid]);
4993 				buf = dtrace_speculation_buffer(state,
4994 				    cpuid, val);
4995 
4996 				if (buf == NULL) {
4997 					*flags |= CPU_DTRACE_DROP;
4998 					continue;
4999 				}
5000 
5001 				offs = dtrace_buffer_reserve(buf,
5002 				    ecb->dte_needed, ecb->dte_alignment,
5003 				    state, NULL);
5004 
5005 				if (offs < 0) {
5006 					*flags |= CPU_DTRACE_DROP;
5007 					continue;
5008 				}
5009 
5010 				tomax = buf->dtb_tomax;
5011 				ASSERT(tomax != NULL);
5012 
5013 				if (ecb->dte_size != 0)
5014 					DTRACE_STORE(uint32_t, tomax, offs,
5015 					    ecb->dte_epid);
5016 				continue;
5017 
5018 			case DTRACEACT_CHILL:
5019 				if (dtrace_priv_kernel_destructive(state))
5020 					dtrace_action_chill(&mstate, val);
5021 				continue;
5022 
5023 			case DTRACEACT_RAISE:
5024 				if (dtrace_priv_proc_destructive(state))
5025 					dtrace_action_raise(val);
5026 				continue;
5027 
5028 			case DTRACEACT_COMMIT:
5029 				ASSERT(!committed);
5030 
5031 				/*
5032 				 * We need to commit our buffer state.
5033 				 */
5034 				if (ecb->dte_size)
5035 					buf->dtb_offset = offs + ecb->dte_size;
5036 				buf = &state->dts_buffer[cpuid];
5037 				dtrace_speculation_commit(state, cpuid, val);
5038 				committed = 1;
5039 				continue;
5040 
5041 			case DTRACEACT_DISCARD:
5042 				dtrace_speculation_discard(state, cpuid, val);
5043 				continue;
5044 
5045 			case DTRACEACT_DIFEXPR:
5046 			case DTRACEACT_LIBACT:
5047 			case DTRACEACT_PRINTF:
5048 			case DTRACEACT_PRINTA:
5049 			case DTRACEACT_SYSTEM:
5050 			case DTRACEACT_FREOPEN:
5051 				break;
5052 
5053 			case DTRACEACT_SYM:
5054 			case DTRACEACT_MOD:
5055 				if (!dtrace_priv_kernel(state))
5056 					continue;
5057 				break;
5058 
5059 			case DTRACEACT_USYM:
5060 			case DTRACEACT_UMOD:
5061 			case DTRACEACT_UADDR: {
5062 				struct pid *pid = curthread->t_procp->p_pidp;
5063 
5064 				if (!dtrace_priv_proc(state))
5065 					continue;
5066 
5067 				DTRACE_STORE(uint64_t, tomax,
5068 				    valoffs, (uint64_t)pid->pid_id);
5069 				DTRACE_STORE(uint64_t, tomax,
5070 				    valoffs + sizeof (uint64_t), val);
5071 
5072 				continue;
5073 			}
5074 
5075 			case DTRACEACT_EXIT: {
5076 				/*
5077 				 * For the exit action, we are going to attempt
5078 				 * to atomically set our activity to be
5079 				 * draining.  If this fails (either because
5080 				 * another CPU has beat us to the exit action,
5081 				 * or because our current activity is something
5082 				 * other than ACTIVE or WARMUP), we will
5083 				 * continue.  This assures that the exit action
5084 				 * can be successfully recorded at most once
5085 				 * when we're in the ACTIVE state.  If we're
5086 				 * encountering the exit() action while in
5087 				 * COOLDOWN, however, we want to honor the new
5088 				 * status code.  (We know that we're the only
5089 				 * thread in COOLDOWN, so there is no race.)
5090 				 */
5091 				void *activity = &state->dts_activity;
5092 				dtrace_activity_t current = state->dts_activity;
5093 
5094 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5095 					break;
5096 
5097 				if (current != DTRACE_ACTIVITY_WARMUP)
5098 					current = DTRACE_ACTIVITY_ACTIVE;
5099 
5100 				if (dtrace_cas32(activity, current,
5101 				    DTRACE_ACTIVITY_DRAINING) != current) {
5102 					*flags |= CPU_DTRACE_DROP;
5103 					continue;
5104 				}
5105 
5106 				break;
5107 			}
5108 
5109 			default:
5110 				ASSERT(0);
5111 			}
5112 
5113 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5114 				uintptr_t end = valoffs + size;
5115 
5116 				/*
5117 				 * If this is a string, we're going to only
5118 				 * load until we find the zero byte -- after
5119 				 * which we'll store zero bytes.
5120 				 */
5121 				if (dp->dtdo_rtype.dtdt_kind ==
5122 				    DIF_TYPE_STRING) {
5123 					char c = '\0' + 1;
5124 					int intuple = act->dta_intuple;
5125 					size_t s;
5126 
5127 					for (s = 0; s < size; s++) {
5128 						if (c != '\0')
5129 							c = dtrace_load8(val++);
5130 
5131 						DTRACE_STORE(uint8_t, tomax,
5132 						    valoffs++, c);
5133 
5134 						if (c == '\0' && intuple)
5135 							break;
5136 					}
5137 
5138 					continue;
5139 				}
5140 
5141 				while (valoffs < end) {
5142 					DTRACE_STORE(uint8_t, tomax, valoffs++,
5143 					    dtrace_load8(val++));
5144 				}
5145 
5146 				continue;
5147 			}
5148 
5149 			switch (size) {
5150 			case 0:
5151 				break;
5152 
5153 			case sizeof (uint8_t):
5154 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
5155 				break;
5156 			case sizeof (uint16_t):
5157 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
5158 				break;
5159 			case sizeof (uint32_t):
5160 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5161 				break;
5162 			case sizeof (uint64_t):
5163 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5164 				break;
5165 			default:
5166 				/*
5167 				 * Any other size should have been returned by
5168 				 * reference, not by value.
5169 				 */
5170 				ASSERT(0);
5171 				break;
5172 			}
5173 		}
5174 
5175 		if (*flags & CPU_DTRACE_DROP)
5176 			continue;
5177 
5178 		if (*flags & CPU_DTRACE_FAULT) {
5179 			int ndx;
5180 			dtrace_action_t *err;
5181 
5182 			buf->dtb_errors++;
5183 
5184 			if (probe->dtpr_id == dtrace_probeid_error) {
5185 				/*
5186 				 * There's nothing we can do -- we had an
5187 				 * error on the error probe.  We bump an
5188 				 * error counter to at least indicate that
5189 				 * this condition happened.
5190 				 */
5191 				dtrace_error(&state->dts_dblerrors);
5192 				continue;
5193 			}
5194 
5195 			if (vtime) {
5196 				/*
5197 				 * Before recursing on dtrace_probe(), we
5198 				 * need to explicitly clear out our start
5199 				 * time to prevent it from being accumulated
5200 				 * into t_dtrace_vtime.
5201 				 */
5202 				curthread->t_dtrace_start = 0;
5203 			}
5204 
5205 			/*
5206 			 * Iterate over the actions to figure out which action
5207 			 * we were processing when we experienced the error.
5208 			 * Note that act points _past_ the faulting action; if
5209 			 * act is ecb->dte_action, the fault was in the
5210 			 * predicate, if it's ecb->dte_action->dta_next it's
5211 			 * in action #1, and so on.
5212 			 */
5213 			for (err = ecb->dte_action, ndx = 0;
5214 			    err != act; err = err->dta_next, ndx++)
5215 				continue;
5216 
5217 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5218 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5219 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5220 			    cpu_core[cpuid].cpuc_dtrace_illval);
5221 
5222 			continue;
5223 		}
5224 
5225 		if (!committed)
5226 			buf->dtb_offset = offs + ecb->dte_size;
5227 	}
5228 
5229 	if (vtime)
5230 		curthread->t_dtrace_start = dtrace_gethrtime();
5231 
5232 	dtrace_interrupt_enable(cookie);
5233 }
5234 
5235 /*
5236  * DTrace Probe Hashing Functions
5237  *
5238  * The functions in this section (and indeed, the functions in remaining
5239  * sections) are not _called_ from probe context.  (Any exceptions to this are
5240  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5241  * DTrace framework to look-up probes in, add probes to and remove probes from
5242  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5243  * probe tuple -- allowing for fast lookups, regardless of what was
5244  * specified.)
5245  */
5246 static uint_t
5247 dtrace_hash_str(char *p)
5248 {
5249 	unsigned int g;
5250 	uint_t hval = 0;
5251 
5252 	while (*p) {
5253 		hval = (hval << 4) + *p++;
5254 		if ((g = (hval & 0xf0000000)) != 0)
5255 			hval ^= g >> 24;
5256 		hval &= ~g;
5257 	}
5258 	return (hval);
5259 }
5260 
5261 static dtrace_hash_t *
5262 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5263 {
5264 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5265 
5266 	hash->dth_stroffs = stroffs;
5267 	hash->dth_nextoffs = nextoffs;
5268 	hash->dth_prevoffs = prevoffs;
5269 
5270 	hash->dth_size = 1;
5271 	hash->dth_mask = hash->dth_size - 1;
5272 
5273 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5274 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5275 
5276 	return (hash);
5277 }
5278 
5279 static void
5280 dtrace_hash_destroy(dtrace_hash_t *hash)
5281 {
5282 #ifdef DEBUG
5283 	int i;
5284 
5285 	for (i = 0; i < hash->dth_size; i++)
5286 		ASSERT(hash->dth_tab[i] == NULL);
5287 #endif
5288 
5289 	kmem_free(hash->dth_tab,
5290 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5291 	kmem_free(hash, sizeof (dtrace_hash_t));
5292 }
5293 
5294 static void
5295 dtrace_hash_resize(dtrace_hash_t *hash)
5296 {
5297 	int size = hash->dth_size, i, ndx;
5298 	int new_size = hash->dth_size << 1;
5299 	int new_mask = new_size - 1;
5300 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5301 
5302 	ASSERT((new_size & new_mask) == 0);
5303 
5304 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5305 
5306 	for (i = 0; i < size; i++) {
5307 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5308 			dtrace_probe_t *probe = bucket->dthb_chain;
5309 
5310 			ASSERT(probe != NULL);
5311 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5312 
5313 			next = bucket->dthb_next;
5314 			bucket->dthb_next = new_tab[ndx];
5315 			new_tab[ndx] = bucket;
5316 		}
5317 	}
5318 
5319 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5320 	hash->dth_tab = new_tab;
5321 	hash->dth_size = new_size;
5322 	hash->dth_mask = new_mask;
5323 }
5324 
5325 static void
5326 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5327 {
5328 	int hashval = DTRACE_HASHSTR(hash, new);
5329 	int ndx = hashval & hash->dth_mask;
5330 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5331 	dtrace_probe_t **nextp, **prevp;
5332 
5333 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5334 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5335 			goto add;
5336 	}
5337 
5338 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5339 		dtrace_hash_resize(hash);
5340 		dtrace_hash_add(hash, new);
5341 		return;
5342 	}
5343 
5344 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5345 	bucket->dthb_next = hash->dth_tab[ndx];
5346 	hash->dth_tab[ndx] = bucket;
5347 	hash->dth_nbuckets++;
5348 
5349 add:
5350 	nextp = DTRACE_HASHNEXT(hash, new);
5351 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5352 	*nextp = bucket->dthb_chain;
5353 
5354 	if (bucket->dthb_chain != NULL) {
5355 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5356 		ASSERT(*prevp == NULL);
5357 		*prevp = new;
5358 	}
5359 
5360 	bucket->dthb_chain = new;
5361 	bucket->dthb_len++;
5362 }
5363 
5364 static dtrace_probe_t *
5365 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5366 {
5367 	int hashval = DTRACE_HASHSTR(hash, template);
5368 	int ndx = hashval & hash->dth_mask;
5369 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5370 
5371 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5372 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5373 			return (bucket->dthb_chain);
5374 	}
5375 
5376 	return (NULL);
5377 }
5378 
5379 static int
5380 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5381 {
5382 	int hashval = DTRACE_HASHSTR(hash, template);
5383 	int ndx = hashval & hash->dth_mask;
5384 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5385 
5386 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5387 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5388 			return (bucket->dthb_len);
5389 	}
5390 
5391 	return (NULL);
5392 }
5393 
5394 static void
5395 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5396 {
5397 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5398 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5399 
5400 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5401 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5402 
5403 	/*
5404 	 * Find the bucket that we're removing this probe from.
5405 	 */
5406 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5407 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5408 			break;
5409 	}
5410 
5411 	ASSERT(bucket != NULL);
5412 
5413 	if (*prevp == NULL) {
5414 		if (*nextp == NULL) {
5415 			/*
5416 			 * The removed probe was the only probe on this
5417 			 * bucket; we need to remove the bucket.
5418 			 */
5419 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5420 
5421 			ASSERT(bucket->dthb_chain == probe);
5422 			ASSERT(b != NULL);
5423 
5424 			if (b == bucket) {
5425 				hash->dth_tab[ndx] = bucket->dthb_next;
5426 			} else {
5427 				while (b->dthb_next != bucket)
5428 					b = b->dthb_next;
5429 				b->dthb_next = bucket->dthb_next;
5430 			}
5431 
5432 			ASSERT(hash->dth_nbuckets > 0);
5433 			hash->dth_nbuckets--;
5434 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5435 			return;
5436 		}
5437 
5438 		bucket->dthb_chain = *nextp;
5439 	} else {
5440 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5441 	}
5442 
5443 	if (*nextp != NULL)
5444 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5445 }
5446 
5447 /*
5448  * DTrace Utility Functions
5449  *
5450  * These are random utility functions that are _not_ called from probe context.
5451  */
5452 static int
5453 dtrace_badattr(const dtrace_attribute_t *a)
5454 {
5455 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5456 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5457 	    a->dtat_class > DTRACE_CLASS_MAX);
5458 }
5459 
5460 /*
5461  * Return a duplicate copy of a string.  If the specified string is NULL,
5462  * this function returns a zero-length string.
5463  */
5464 static char *
5465 dtrace_strdup(const char *str)
5466 {
5467 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5468 
5469 	if (str != NULL)
5470 		(void) strcpy(new, str);
5471 
5472 	return (new);
5473 }
5474 
5475 #define	DTRACE_ISALPHA(c)	\
5476 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5477 
5478 static int
5479 dtrace_badname(const char *s)
5480 {
5481 	char c;
5482 
5483 	if (s == NULL || (c = *s++) == '\0')
5484 		return (0);
5485 
5486 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5487 		return (1);
5488 
5489 	while ((c = *s++) != '\0') {
5490 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5491 		    c != '-' && c != '_' && c != '.' && c != '`')
5492 			return (1);
5493 	}
5494 
5495 	return (0);
5496 }
5497 
5498 static void
5499 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
5500 {
5501 	uint32_t priv;
5502 
5503 	*uidp = crgetuid(cr);
5504 	*zoneidp = crgetzoneid(cr);
5505 	if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5506 		priv = DTRACE_PRIV_ALL;
5507 	} else {
5508 		priv = 0;
5509 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5510 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5511 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5512 			priv |= DTRACE_PRIV_USER;
5513 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5514 			priv |= DTRACE_PRIV_PROC;
5515 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5516 			priv |= DTRACE_PRIV_OWNER;
5517 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
5518 			priv |= DTRACE_PRIV_ZONEOWNER;
5519 	}
5520 
5521 	*privp = priv;
5522 }
5523 
5524 #ifdef DTRACE_ERRDEBUG
5525 static void
5526 dtrace_errdebug(const char *str)
5527 {
5528 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5529 	int occupied = 0;
5530 
5531 	mutex_enter(&dtrace_errlock);
5532 	dtrace_errlast = str;
5533 	dtrace_errthread = curthread;
5534 
5535 	while (occupied++ < DTRACE_ERRHASHSZ) {
5536 		if (dtrace_errhash[hval].dter_msg == str) {
5537 			dtrace_errhash[hval].dter_count++;
5538 			goto out;
5539 		}
5540 
5541 		if (dtrace_errhash[hval].dter_msg != NULL) {
5542 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5543 			continue;
5544 		}
5545 
5546 		dtrace_errhash[hval].dter_msg = str;
5547 		dtrace_errhash[hval].dter_count = 1;
5548 		goto out;
5549 	}
5550 
5551 	panic("dtrace: undersized error hash");
5552 out:
5553 	mutex_exit(&dtrace_errlock);
5554 }
5555 #endif
5556 
5557 /*
5558  * DTrace Matching Functions
5559  *
5560  * These functions are used to match groups of probes, given some elements of
5561  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5562  */
5563 static int
5564 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
5565     zoneid_t zoneid)
5566 {
5567 	if (priv != DTRACE_PRIV_ALL) {
5568 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5569 		uint32_t match = priv & ppriv;
5570 
5571 		/*
5572 		 * No PRIV_DTRACE_* privileges...
5573 		 */
5574 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5575 		    DTRACE_PRIV_KERNEL)) == 0)
5576 			return (0);
5577 
5578 		/*
5579 		 * No matching bits, but there were bits to match...
5580 		 */
5581 		if (match == 0 && ppriv != 0)
5582 			return (0);
5583 
5584 		/*
5585 		 * Need to have permissions to the process, but don't...
5586 		 */
5587 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5588 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
5589 			return (0);
5590 		}
5591 
5592 		/*
5593 		 * Need to be in the same zone unless we possess the
5594 		 * privilege to examine all zones.
5595 		 */
5596 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
5597 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
5598 			return (0);
5599 		}
5600 	}
5601 
5602 	return (1);
5603 }
5604 
5605 /*
5606  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5607  * consists of input pattern strings and an ops-vector to evaluate them.
5608  * This function returns >0 for match, 0 for no match, and <0 for error.
5609  */
5610 static int
5611 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5612     uint32_t priv, uid_t uid, zoneid_t zoneid)
5613 {
5614 	dtrace_provider_t *pvp = prp->dtpr_provider;
5615 	int rv;
5616 
5617 	if (pvp->dtpv_defunct)
5618 		return (0);
5619 
5620 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5621 		return (rv);
5622 
5623 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5624 		return (rv);
5625 
5626 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5627 		return (rv);
5628 
5629 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5630 		return (rv);
5631 
5632 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
5633 		return (0);
5634 
5635 	return (rv);
5636 }
5637 
5638 /*
5639  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5640  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5641  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5642  * In addition, all of the recursion cases except for '*' matching have been
5643  * unwound.  For '*', we still implement recursive evaluation, but a depth
5644  * counter is maintained and matching is aborted if we recurse too deep.
5645  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5646  */
5647 static int
5648 dtrace_match_glob(const char *s, const char *p, int depth)
5649 {
5650 	const char *olds;
5651 	char s1, c;
5652 	int gs;
5653 
5654 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5655 		return (-1);
5656 
5657 	if (s == NULL)
5658 		s = ""; /* treat NULL as empty string */
5659 
5660 top:
5661 	olds = s;
5662 	s1 = *s++;
5663 
5664 	if (p == NULL)
5665 		return (0);
5666 
5667 	if ((c = *p++) == '\0')
5668 		return (s1 == '\0');
5669 
5670 	switch (c) {
5671 	case '[': {
5672 		int ok = 0, notflag = 0;
5673 		char lc = '\0';
5674 
5675 		if (s1 == '\0')
5676 			return (0);
5677 
5678 		if (*p == '!') {
5679 			notflag = 1;
5680 			p++;
5681 		}
5682 
5683 		if ((c = *p++) == '\0')
5684 			return (0);
5685 
5686 		do {
5687 			if (c == '-' && lc != '\0' && *p != ']') {
5688 				if ((c = *p++) == '\0')
5689 					return (0);
5690 				if (c == '\\' && (c = *p++) == '\0')
5691 					return (0);
5692 
5693 				if (notflag) {
5694 					if (s1 < lc || s1 > c)
5695 						ok++;
5696 					else
5697 						return (0);
5698 				} else if (lc <= s1 && s1 <= c)
5699 					ok++;
5700 
5701 			} else if (c == '\\' && (c = *p++) == '\0')
5702 				return (0);
5703 
5704 			lc = c; /* save left-hand 'c' for next iteration */
5705 
5706 			if (notflag) {
5707 				if (s1 != c)
5708 					ok++;
5709 				else
5710 					return (0);
5711 			} else if (s1 == c)
5712 				ok++;
5713 
5714 			if ((c = *p++) == '\0')
5715 				return (0);
5716 
5717 		} while (c != ']');
5718 
5719 		if (ok)
5720 			goto top;
5721 
5722 		return (0);
5723 	}
5724 
5725 	case '\\':
5726 		if ((c = *p++) == '\0')
5727 			return (0);
5728 		/*FALLTHRU*/
5729 
5730 	default:
5731 		if (c != s1)
5732 			return (0);
5733 		/*FALLTHRU*/
5734 
5735 	case '?':
5736 		if (s1 != '\0')
5737 			goto top;
5738 		return (0);
5739 
5740 	case '*':
5741 		while (*p == '*')
5742 			p++; /* consecutive *'s are identical to a single one */
5743 
5744 		if (*p == '\0')
5745 			return (1);
5746 
5747 		for (s = olds; *s != '\0'; s++) {
5748 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5749 				return (gs);
5750 		}
5751 
5752 		return (0);
5753 	}
5754 }
5755 
5756 /*ARGSUSED*/
5757 static int
5758 dtrace_match_string(const char *s, const char *p, int depth)
5759 {
5760 	return (s != NULL && strcmp(s, p) == 0);
5761 }
5762 
5763 /*ARGSUSED*/
5764 static int
5765 dtrace_match_nul(const char *s, const char *p, int depth)
5766 {
5767 	return (1); /* always match the empty pattern */
5768 }
5769 
5770 /*ARGSUSED*/
5771 static int
5772 dtrace_match_nonzero(const char *s, const char *p, int depth)
5773 {
5774 	return (s != NULL && s[0] != '\0');
5775 }
5776 
5777 static int
5778 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5779     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
5780 {
5781 	dtrace_probe_t template, *probe;
5782 	dtrace_hash_t *hash = NULL;
5783 	int len, best = INT_MAX, nmatched = 0;
5784 	dtrace_id_t i;
5785 
5786 	ASSERT(MUTEX_HELD(&dtrace_lock));
5787 
5788 	/*
5789 	 * If the probe ID is specified in the key, just lookup by ID and
5790 	 * invoke the match callback once if a matching probe is found.
5791 	 */
5792 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5793 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5794 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
5795 			(void) (*matched)(probe, arg);
5796 			nmatched++;
5797 		}
5798 		return (nmatched);
5799 	}
5800 
5801 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5802 	template.dtpr_func = (char *)pkp->dtpk_func;
5803 	template.dtpr_name = (char *)pkp->dtpk_name;
5804 
5805 	/*
5806 	 * We want to find the most distinct of the module name, function
5807 	 * name, and name.  So for each one that is not a glob pattern or
5808 	 * empty string, we perform a lookup in the corresponding hash and
5809 	 * use the hash table with the fewest collisions to do our search.
5810 	 */
5811 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5812 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5813 		best = len;
5814 		hash = dtrace_bymod;
5815 	}
5816 
5817 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5818 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5819 		best = len;
5820 		hash = dtrace_byfunc;
5821 	}
5822 
5823 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5824 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5825 		best = len;
5826 		hash = dtrace_byname;
5827 	}
5828 
5829 	/*
5830 	 * If we did not select a hash table, iterate over every probe and
5831 	 * invoke our callback for each one that matches our input probe key.
5832 	 */
5833 	if (hash == NULL) {
5834 		for (i = 0; i < dtrace_nprobes; i++) {
5835 			if ((probe = dtrace_probes[i]) == NULL ||
5836 			    dtrace_match_probe(probe, pkp, priv, uid,
5837 			    zoneid) <= 0)
5838 				continue;
5839 
5840 			nmatched++;
5841 
5842 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5843 				break;
5844 		}
5845 
5846 		return (nmatched);
5847 	}
5848 
5849 	/*
5850 	 * If we selected a hash table, iterate over each probe of the same key
5851 	 * name and invoke the callback for every probe that matches the other
5852 	 * attributes of our input probe key.
5853 	 */
5854 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5855 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5856 
5857 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
5858 			continue;
5859 
5860 		nmatched++;
5861 
5862 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5863 			break;
5864 	}
5865 
5866 	return (nmatched);
5867 }
5868 
5869 /*
5870  * Return the function pointer dtrace_probecmp() should use to compare the
5871  * specified pattern with a string.  For NULL or empty patterns, we select
5872  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5873  * For non-empty non-glob strings, we use dtrace_match_string().
5874  */
5875 static dtrace_probekey_f *
5876 dtrace_probekey_func(const char *p)
5877 {
5878 	char c;
5879 
5880 	if (p == NULL || *p == '\0')
5881 		return (&dtrace_match_nul);
5882 
5883 	while ((c = *p++) != '\0') {
5884 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5885 			return (&dtrace_match_glob);
5886 	}
5887 
5888 	return (&dtrace_match_string);
5889 }
5890 
5891 /*
5892  * Build a probe comparison key for use with dtrace_match_probe() from the
5893  * given probe description.  By convention, a null key only matches anchored
5894  * probes: if each field is the empty string, reset dtpk_fmatch to
5895  * dtrace_match_nonzero().
5896  */
5897 static void
5898 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5899 {
5900 	pkp->dtpk_prov = pdp->dtpd_provider;
5901 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5902 
5903 	pkp->dtpk_mod = pdp->dtpd_mod;
5904 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5905 
5906 	pkp->dtpk_func = pdp->dtpd_func;
5907 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5908 
5909 	pkp->dtpk_name = pdp->dtpd_name;
5910 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5911 
5912 	pkp->dtpk_id = pdp->dtpd_id;
5913 
5914 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5915 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5916 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5917 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5918 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5919 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5920 }
5921 
5922 /*
5923  * DTrace Provider-to-Framework API Functions
5924  *
5925  * These functions implement much of the Provider-to-Framework API, as
5926  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5927  * the functions in the API for probe management (found below), and
5928  * dtrace_probe() itself (found above).
5929  */
5930 
5931 /*
5932  * Register the calling provider with the DTrace framework.  This should
5933  * generally be called by DTrace providers in their attach(9E) entry point.
5934  */
5935 int
5936 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5937     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5938 {
5939 	dtrace_provider_t *provider;
5940 
5941 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5942 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5943 		    "arguments", name ? name : "<NULL>");
5944 		return (EINVAL);
5945 	}
5946 
5947 	if (name[0] == '\0' || dtrace_badname(name)) {
5948 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5949 		    "provider name", name);
5950 		return (EINVAL);
5951 	}
5952 
5953 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5954 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5955 	    pops->dtps_destroy == NULL ||
5956 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5957 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5958 		    "provider ops", name);
5959 		return (EINVAL);
5960 	}
5961 
5962 	if (dtrace_badattr(&pap->dtpa_provider) ||
5963 	    dtrace_badattr(&pap->dtpa_mod) ||
5964 	    dtrace_badattr(&pap->dtpa_func) ||
5965 	    dtrace_badattr(&pap->dtpa_name) ||
5966 	    dtrace_badattr(&pap->dtpa_args)) {
5967 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5968 		    "provider attributes", name);
5969 		return (EINVAL);
5970 	}
5971 
5972 	if (priv & ~DTRACE_PRIV_ALL) {
5973 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5974 		    "privilege attributes", name);
5975 		return (EINVAL);
5976 	}
5977 
5978 	if ((priv & DTRACE_PRIV_KERNEL) &&
5979 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
5980 	    pops->dtps_usermode == NULL) {
5981 		cmn_err(CE_WARN, "failed to register provider '%s': need "
5982 		    "dtps_usermode() op for given privilege attributes", name);
5983 		return (EINVAL);
5984 	}
5985 
5986 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
5987 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
5988 	(void) strcpy(provider->dtpv_name, name);
5989 
5990 	provider->dtpv_attr = *pap;
5991 	provider->dtpv_priv.dtpp_flags = priv;
5992 	if (cr != NULL) {
5993 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
5994 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
5995 	}
5996 	provider->dtpv_pops = *pops;
5997 
5998 	if (pops->dtps_provide == NULL) {
5999 		ASSERT(pops->dtps_provide_module != NULL);
6000 		provider->dtpv_pops.dtps_provide =
6001 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6002 	}
6003 
6004 	if (pops->dtps_provide_module == NULL) {
6005 		ASSERT(pops->dtps_provide != NULL);
6006 		provider->dtpv_pops.dtps_provide_module =
6007 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6008 	}
6009 
6010 	if (pops->dtps_suspend == NULL) {
6011 		ASSERT(pops->dtps_resume == NULL);
6012 		provider->dtpv_pops.dtps_suspend =
6013 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6014 		provider->dtpv_pops.dtps_resume =
6015 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6016 	}
6017 
6018 	provider->dtpv_arg = arg;
6019 	*idp = (dtrace_provider_id_t)provider;
6020 
6021 	if (pops == &dtrace_provider_ops) {
6022 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6023 		ASSERT(MUTEX_HELD(&dtrace_lock));
6024 		ASSERT(dtrace_anon.dta_enabling == NULL);
6025 
6026 		/*
6027 		 * We make sure that the DTrace provider is at the head of
6028 		 * the provider chain.
6029 		 */
6030 		provider->dtpv_next = dtrace_provider;
6031 		dtrace_provider = provider;
6032 		return (0);
6033 	}
6034 
6035 	mutex_enter(&dtrace_provider_lock);
6036 	mutex_enter(&dtrace_lock);
6037 
6038 	/*
6039 	 * If there is at least one provider registered, we'll add this
6040 	 * provider after the first provider.
6041 	 */
6042 	if (dtrace_provider != NULL) {
6043 		provider->dtpv_next = dtrace_provider->dtpv_next;
6044 		dtrace_provider->dtpv_next = provider;
6045 	} else {
6046 		dtrace_provider = provider;
6047 	}
6048 
6049 	if (dtrace_retained != NULL) {
6050 		dtrace_enabling_provide(provider);
6051 
6052 		/*
6053 		 * Now we need to call dtrace_enabling_matchall() -- which
6054 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6055 		 * to drop all of our locks before calling into it...
6056 		 */
6057 		mutex_exit(&dtrace_lock);
6058 		mutex_exit(&dtrace_provider_lock);
6059 		dtrace_enabling_matchall();
6060 
6061 		return (0);
6062 	}
6063 
6064 	mutex_exit(&dtrace_lock);
6065 	mutex_exit(&dtrace_provider_lock);
6066 
6067 	return (0);
6068 }
6069 
6070 /*
6071  * Unregister the specified provider from the DTrace framework.  This should
6072  * generally be called by DTrace providers in their detach(9E) entry point.
6073  */
6074 int
6075 dtrace_unregister(dtrace_provider_id_t id)
6076 {
6077 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6078 	dtrace_provider_t *prev = NULL;
6079 	int i, self = 0;
6080 	dtrace_probe_t *probe, *first = NULL;
6081 
6082 	if (old->dtpv_pops.dtps_enable ==
6083 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6084 		/*
6085 		 * If DTrace itself is the provider, we're called with locks
6086 		 * already held.
6087 		 */
6088 		ASSERT(old == dtrace_provider);
6089 		ASSERT(dtrace_devi != NULL);
6090 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6091 		ASSERT(MUTEX_HELD(&dtrace_lock));
6092 		self = 1;
6093 
6094 		if (dtrace_provider->dtpv_next != NULL) {
6095 			/*
6096 			 * There's another provider here; return failure.
6097 			 */
6098 			return (EBUSY);
6099 		}
6100 	} else {
6101 		mutex_enter(&dtrace_provider_lock);
6102 		mutex_enter(&mod_lock);
6103 		mutex_enter(&dtrace_lock);
6104 	}
6105 
6106 	/*
6107 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6108 	 * probes, we refuse to let providers slither away, unless this
6109 	 * provider has already been explicitly invalidated.
6110 	 */
6111 	if (!old->dtpv_defunct &&
6112 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6113 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6114 		if (!self) {
6115 			mutex_exit(&dtrace_lock);
6116 			mutex_exit(&mod_lock);
6117 			mutex_exit(&dtrace_provider_lock);
6118 		}
6119 		return (EBUSY);
6120 	}
6121 
6122 	/*
6123 	 * Attempt to destroy the probes associated with this provider.
6124 	 */
6125 	for (i = 0; i < dtrace_nprobes; i++) {
6126 		if ((probe = dtrace_probes[i]) == NULL)
6127 			continue;
6128 
6129 		if (probe->dtpr_provider != old)
6130 			continue;
6131 
6132 		if (probe->dtpr_ecb == NULL)
6133 			continue;
6134 
6135 		/*
6136 		 * We have at least one ECB; we can't remove this provider.
6137 		 */
6138 		if (!self) {
6139 			mutex_exit(&dtrace_lock);
6140 			mutex_exit(&mod_lock);
6141 			mutex_exit(&dtrace_provider_lock);
6142 		}
6143 		return (EBUSY);
6144 	}
6145 
6146 	/*
6147 	 * All of the probes for this provider are disabled; we can safely
6148 	 * remove all of them from their hash chains and from the probe array.
6149 	 */
6150 	for (i = 0; i < dtrace_nprobes; i++) {
6151 		if ((probe = dtrace_probes[i]) == NULL)
6152 			continue;
6153 
6154 		if (probe->dtpr_provider != old)
6155 			continue;
6156 
6157 		dtrace_probes[i] = NULL;
6158 
6159 		dtrace_hash_remove(dtrace_bymod, probe);
6160 		dtrace_hash_remove(dtrace_byfunc, probe);
6161 		dtrace_hash_remove(dtrace_byname, probe);
6162 
6163 		if (first == NULL) {
6164 			first = probe;
6165 			probe->dtpr_nextmod = NULL;
6166 		} else {
6167 			probe->dtpr_nextmod = first;
6168 			first = probe;
6169 		}
6170 	}
6171 
6172 	/*
6173 	 * The provider's probes have been removed from the hash chains and
6174 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
6175 	 * everyone has cleared out from any probe array processing.
6176 	 */
6177 	dtrace_sync();
6178 
6179 	for (probe = first; probe != NULL; probe = first) {
6180 		first = probe->dtpr_nextmod;
6181 
6182 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6183 		    probe->dtpr_arg);
6184 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6185 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6186 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6187 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6188 		kmem_free(probe, sizeof (dtrace_probe_t));
6189 	}
6190 
6191 	if ((prev = dtrace_provider) == old) {
6192 		ASSERT(self || dtrace_devi == NULL);
6193 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6194 		dtrace_provider = old->dtpv_next;
6195 	} else {
6196 		while (prev != NULL && prev->dtpv_next != old)
6197 			prev = prev->dtpv_next;
6198 
6199 		if (prev == NULL) {
6200 			panic("attempt to unregister non-existent "
6201 			    "dtrace provider %p\n", (void *)id);
6202 		}
6203 
6204 		prev->dtpv_next = old->dtpv_next;
6205 	}
6206 
6207 	if (!self) {
6208 		mutex_exit(&dtrace_lock);
6209 		mutex_exit(&mod_lock);
6210 		mutex_exit(&dtrace_provider_lock);
6211 	}
6212 
6213 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6214 	kmem_free(old, sizeof (dtrace_provider_t));
6215 
6216 	return (0);
6217 }
6218 
6219 /*
6220  * Invalidate the specified provider.  All subsequent probe lookups for the
6221  * specified provider will fail, but its probes will not be removed.
6222  */
6223 void
6224 dtrace_invalidate(dtrace_provider_id_t id)
6225 {
6226 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6227 
6228 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6229 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6230 
6231 	mutex_enter(&dtrace_provider_lock);
6232 	mutex_enter(&dtrace_lock);
6233 
6234 	pvp->dtpv_defunct = 1;
6235 
6236 	mutex_exit(&dtrace_lock);
6237 	mutex_exit(&dtrace_provider_lock);
6238 }
6239 
6240 /*
6241  * Indicate whether or not DTrace has attached.
6242  */
6243 int
6244 dtrace_attached(void)
6245 {
6246 	/*
6247 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6248 	 * attached.  (It's non-NULL because DTrace is always itself a
6249 	 * provider.)
6250 	 */
6251 	return (dtrace_provider != NULL);
6252 }
6253 
6254 /*
6255  * Remove all the unenabled probes for the given provider.  This function is
6256  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6257  * -- just as many of its associated probes as it can.
6258  */
6259 int
6260 dtrace_condense(dtrace_provider_id_t id)
6261 {
6262 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6263 	int i;
6264 	dtrace_probe_t *probe;
6265 
6266 	/*
6267 	 * Make sure this isn't the dtrace provider itself.
6268 	 */
6269 	ASSERT(prov->dtpv_pops.dtps_enable !=
6270 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6271 
6272 	mutex_enter(&dtrace_provider_lock);
6273 	mutex_enter(&dtrace_lock);
6274 
6275 	/*
6276 	 * Attempt to destroy the probes associated with this provider.
6277 	 */
6278 	for (i = 0; i < dtrace_nprobes; i++) {
6279 		if ((probe = dtrace_probes[i]) == NULL)
6280 			continue;
6281 
6282 		if (probe->dtpr_provider != prov)
6283 			continue;
6284 
6285 		if (probe->dtpr_ecb != NULL)
6286 			continue;
6287 
6288 		dtrace_probes[i] = NULL;
6289 
6290 		dtrace_hash_remove(dtrace_bymod, probe);
6291 		dtrace_hash_remove(dtrace_byfunc, probe);
6292 		dtrace_hash_remove(dtrace_byname, probe);
6293 
6294 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6295 		    probe->dtpr_arg);
6296 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6297 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6298 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6299 		kmem_free(probe, sizeof (dtrace_probe_t));
6300 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6301 	}
6302 
6303 	mutex_exit(&dtrace_lock);
6304 	mutex_exit(&dtrace_provider_lock);
6305 
6306 	return (0);
6307 }
6308 
6309 /*
6310  * DTrace Probe Management Functions
6311  *
6312  * The functions in this section perform the DTrace probe management,
6313  * including functions to create probes, look-up probes, and call into the
6314  * providers to request that probes be provided.  Some of these functions are
6315  * in the Provider-to-Framework API; these functions can be identified by the
6316  * fact that they are not declared "static".
6317  */
6318 
6319 /*
6320  * Create a probe with the specified module name, function name, and name.
6321  */
6322 dtrace_id_t
6323 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6324     const char *func, const char *name, int aframes, void *arg)
6325 {
6326 	dtrace_probe_t *probe, **probes;
6327 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6328 	dtrace_id_t id;
6329 
6330 	if (provider == dtrace_provider) {
6331 		ASSERT(MUTEX_HELD(&dtrace_lock));
6332 	} else {
6333 		mutex_enter(&dtrace_lock);
6334 	}
6335 
6336 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6337 	    VM_BESTFIT | VM_SLEEP);
6338 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6339 
6340 	probe->dtpr_id = id;
6341 	probe->dtpr_gen = dtrace_probegen++;
6342 	probe->dtpr_mod = dtrace_strdup(mod);
6343 	probe->dtpr_func = dtrace_strdup(func);
6344 	probe->dtpr_name = dtrace_strdup(name);
6345 	probe->dtpr_arg = arg;
6346 	probe->dtpr_aframes = aframes;
6347 	probe->dtpr_provider = provider;
6348 
6349 	dtrace_hash_add(dtrace_bymod, probe);
6350 	dtrace_hash_add(dtrace_byfunc, probe);
6351 	dtrace_hash_add(dtrace_byname, probe);
6352 
6353 	if (id - 1 >= dtrace_nprobes) {
6354 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6355 		size_t nsize = osize << 1;
6356 
6357 		if (nsize == 0) {
6358 			ASSERT(osize == 0);
6359 			ASSERT(dtrace_probes == NULL);
6360 			nsize = sizeof (dtrace_probe_t *);
6361 		}
6362 
6363 		probes = kmem_zalloc(nsize, KM_SLEEP);
6364 
6365 		if (dtrace_probes == NULL) {
6366 			ASSERT(osize == 0);
6367 			dtrace_probes = probes;
6368 			dtrace_nprobes = 1;
6369 		} else {
6370 			dtrace_probe_t **oprobes = dtrace_probes;
6371 
6372 			bcopy(oprobes, probes, osize);
6373 			dtrace_membar_producer();
6374 			dtrace_probes = probes;
6375 
6376 			dtrace_sync();
6377 
6378 			/*
6379 			 * All CPUs are now seeing the new probes array; we can
6380 			 * safely free the old array.
6381 			 */
6382 			kmem_free(oprobes, osize);
6383 			dtrace_nprobes <<= 1;
6384 		}
6385 
6386 		ASSERT(id - 1 < dtrace_nprobes);
6387 	}
6388 
6389 	ASSERT(dtrace_probes[id - 1] == NULL);
6390 	dtrace_probes[id - 1] = probe;
6391 
6392 	if (provider != dtrace_provider)
6393 		mutex_exit(&dtrace_lock);
6394 
6395 	return (id);
6396 }
6397 
6398 static dtrace_probe_t *
6399 dtrace_probe_lookup_id(dtrace_id_t id)
6400 {
6401 	ASSERT(MUTEX_HELD(&dtrace_lock));
6402 
6403 	if (id == 0 || id > dtrace_nprobes)
6404 		return (NULL);
6405 
6406 	return (dtrace_probes[id - 1]);
6407 }
6408 
6409 static int
6410 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6411 {
6412 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6413 
6414 	return (DTRACE_MATCH_DONE);
6415 }
6416 
6417 /*
6418  * Look up a probe based on provider and one or more of module name, function
6419  * name and probe name.
6420  */
6421 dtrace_id_t
6422 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6423     const char *func, const char *name)
6424 {
6425 	dtrace_probekey_t pkey;
6426 	dtrace_id_t id;
6427 	int match;
6428 
6429 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6430 	pkey.dtpk_pmatch = &dtrace_match_string;
6431 	pkey.dtpk_mod = mod;
6432 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6433 	pkey.dtpk_func = func;
6434 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6435 	pkey.dtpk_name = name;
6436 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6437 	pkey.dtpk_id = DTRACE_IDNONE;
6438 
6439 	mutex_enter(&dtrace_lock);
6440 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
6441 	    dtrace_probe_lookup_match, &id);
6442 	mutex_exit(&dtrace_lock);
6443 
6444 	ASSERT(match == 1 || match == 0);
6445 	return (match ? id : 0);
6446 }
6447 
6448 /*
6449  * Returns the probe argument associated with the specified probe.
6450  */
6451 void *
6452 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6453 {
6454 	dtrace_probe_t *probe;
6455 	void *rval = NULL;
6456 
6457 	mutex_enter(&dtrace_lock);
6458 
6459 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6460 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6461 		rval = probe->dtpr_arg;
6462 
6463 	mutex_exit(&dtrace_lock);
6464 
6465 	return (rval);
6466 }
6467 
6468 /*
6469  * Copy a probe into a probe description.
6470  */
6471 static void
6472 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6473 {
6474 	bzero(pdp, sizeof (dtrace_probedesc_t));
6475 	pdp->dtpd_id = prp->dtpr_id;
6476 
6477 	(void) strncpy(pdp->dtpd_provider,
6478 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6479 
6480 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6481 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6482 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6483 }
6484 
6485 /*
6486  * Called to indicate that a probe -- or probes -- should be provided by a
6487  * specfied provider.  If the specified description is NULL, the provider will
6488  * be told to provide all of its probes.  (This is done whenever a new
6489  * consumer comes along, or whenever a retained enabling is to be matched.) If
6490  * the specified description is non-NULL, the provider is given the
6491  * opportunity to dynamically provide the specified probe, allowing providers
6492  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6493  * probes.)  If the provider is NULL, the operations will be applied to all
6494  * providers; if the provider is non-NULL the operations will only be applied
6495  * to the specified provider.  The dtrace_provider_lock must be held, and the
6496  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6497  * will need to grab the dtrace_lock when it reenters the framework through
6498  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6499  */
6500 static void
6501 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6502 {
6503 	struct modctl *ctl;
6504 	int all = 0;
6505 
6506 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6507 
6508 	if (prv == NULL) {
6509 		all = 1;
6510 		prv = dtrace_provider;
6511 	}
6512 
6513 	do {
6514 		/*
6515 		 * First, call the blanket provide operation.
6516 		 */
6517 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6518 
6519 		/*
6520 		 * Now call the per-module provide operation.  We will grab
6521 		 * mod_lock to prevent the list from being modified.  Note
6522 		 * that this also prevents the mod_busy bits from changing.
6523 		 * (mod_busy can only be changed with mod_lock held.)
6524 		 */
6525 		mutex_enter(&mod_lock);
6526 
6527 		ctl = &modules;
6528 		do {
6529 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6530 				continue;
6531 
6532 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6533 
6534 		} while ((ctl = ctl->mod_next) != &modules);
6535 
6536 		mutex_exit(&mod_lock);
6537 	} while (all && (prv = prv->dtpv_next) != NULL);
6538 }
6539 
6540 /*
6541  * Iterate over each probe, and call the Framework-to-Provider API function
6542  * denoted by offs.
6543  */
6544 static void
6545 dtrace_probe_foreach(uintptr_t offs)
6546 {
6547 	dtrace_provider_t *prov;
6548 	void (*func)(void *, dtrace_id_t, void *);
6549 	dtrace_probe_t *probe;
6550 	dtrace_icookie_t cookie;
6551 	int i;
6552 
6553 	/*
6554 	 * We disable interrupts to walk through the probe array.  This is
6555 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6556 	 * won't see stale data.
6557 	 */
6558 	cookie = dtrace_interrupt_disable();
6559 
6560 	for (i = 0; i < dtrace_nprobes; i++) {
6561 		if ((probe = dtrace_probes[i]) == NULL)
6562 			continue;
6563 
6564 		if (probe->dtpr_ecb == NULL) {
6565 			/*
6566 			 * This probe isn't enabled -- don't call the function.
6567 			 */
6568 			continue;
6569 		}
6570 
6571 		prov = probe->dtpr_provider;
6572 		func = *((void(**)(void *, dtrace_id_t, void *))
6573 		    ((uintptr_t)&prov->dtpv_pops + offs));
6574 
6575 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6576 	}
6577 
6578 	dtrace_interrupt_enable(cookie);
6579 }
6580 
6581 static int
6582 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6583 {
6584 	dtrace_probekey_t pkey;
6585 	uint32_t priv;
6586 	uid_t uid;
6587 	zoneid_t zoneid;
6588 
6589 	ASSERT(MUTEX_HELD(&dtrace_lock));
6590 	dtrace_ecb_create_cache = NULL;
6591 
6592 	if (desc == NULL) {
6593 		/*
6594 		 * If we're passed a NULL description, we're being asked to
6595 		 * create an ECB with a NULL probe.
6596 		 */
6597 		(void) dtrace_ecb_create_enable(NULL, enab);
6598 		return (0);
6599 	}
6600 
6601 	dtrace_probekey(desc, &pkey);
6602 	dtrace_cred2priv(CRED(), &priv, &uid, &zoneid);
6603 
6604 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
6605 	    enab));
6606 }
6607 
6608 /*
6609  * DTrace Helper Provider Functions
6610  */
6611 static void
6612 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6613 {
6614 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6615 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6616 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6617 }
6618 
6619 static void
6620 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6621     const dof_provider_t *dofprov, char *strtab)
6622 {
6623 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6624 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6625 	    dofprov->dofpv_provattr);
6626 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6627 	    dofprov->dofpv_modattr);
6628 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6629 	    dofprov->dofpv_funcattr);
6630 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6631 	    dofprov->dofpv_nameattr);
6632 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6633 	    dofprov->dofpv_argsattr);
6634 }
6635 
6636 static void
6637 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6638 {
6639 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6640 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6641 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
6642 	dof_provider_t *provider;
6643 	dof_probe_t *probe;
6644 	uint32_t *off;
6645 	uint8_t *arg;
6646 	char *strtab;
6647 	uint_t i, nprobes;
6648 	dtrace_helper_provdesc_t dhpv;
6649 	dtrace_helper_probedesc_t dhpb;
6650 	dtrace_meta_t *meta = dtrace_meta_pid;
6651 	dtrace_mops_t *mops = &meta->dtm_mops;
6652 	void *parg;
6653 
6654 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6655 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6656 	    provider->dofpv_strtab * dof->dofh_secsize);
6657 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6658 	    provider->dofpv_probes * dof->dofh_secsize);
6659 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6660 	    provider->dofpv_prargs * dof->dofh_secsize);
6661 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6662 	    provider->dofpv_proffs * dof->dofh_secsize);
6663 
6664 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6665 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
6666 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
6667 
6668 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6669 
6670 	/*
6671 	 * Create the provider.
6672 	 */
6673 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6674 
6675 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6676 		return;
6677 
6678 	meta->dtm_count++;
6679 
6680 	/*
6681 	 * Create the probes.
6682 	 */
6683 	for (i = 0; i < nprobes; i++) {
6684 		probe = (dof_probe_t *)(uintptr_t)(daddr +
6685 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
6686 
6687 		dhpb.dthpb_mod = dhp->dofhp_mod;
6688 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6689 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6690 		dhpb.dthpb_base = probe->dofpr_addr;
6691 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6692 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6693 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6694 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6695 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6696 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6697 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6698 
6699 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6700 	}
6701 }
6702 
6703 static void
6704 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6705 {
6706 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6707 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6708 	int i;
6709 
6710 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6711 
6712 	for (i = 0; i < dof->dofh_secnum; i++) {
6713 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6714 		    dof->dofh_secoff + i * dof->dofh_secsize);
6715 
6716 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6717 			continue;
6718 
6719 		dtrace_helper_provide_one(dhp, sec, pid);
6720 	}
6721 
6722 	/*
6723 	 * We may have just created probes, so we must now rematch against
6724 	 * any retained enablings.  Note that this call will acquire both
6725 	 * cpu_lock and dtrace_lock; the fact that we are holding
6726 	 * dtrace_meta_lock now is what defines the ordering with respect to
6727 	 * these three locks.
6728 	 */
6729 	dtrace_enabling_matchall();
6730 }
6731 
6732 static void
6733 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6734 {
6735 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6736 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6737 	dof_sec_t *str_sec;
6738 	dof_provider_t *provider;
6739 	char *strtab;
6740 	dtrace_helper_provdesc_t dhpv;
6741 	dtrace_meta_t *meta = dtrace_meta_pid;
6742 	dtrace_mops_t *mops = &meta->dtm_mops;
6743 
6744 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6745 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6746 	    provider->dofpv_strtab * dof->dofh_secsize);
6747 
6748 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6749 
6750 	/*
6751 	 * Create the provider.
6752 	 */
6753 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6754 
6755 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6756 
6757 	meta->dtm_count--;
6758 }
6759 
6760 static void
6761 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6762 {
6763 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6764 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6765 	int i;
6766 
6767 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6768 
6769 	for (i = 0; i < dof->dofh_secnum; i++) {
6770 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6771 		    dof->dofh_secoff + i * dof->dofh_secsize);
6772 
6773 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6774 			continue;
6775 
6776 		dtrace_helper_remove_one(dhp, sec, pid);
6777 	}
6778 }
6779 
6780 /*
6781  * DTrace Meta Provider-to-Framework API Functions
6782  *
6783  * These functions implement the Meta Provider-to-Framework API, as described
6784  * in <sys/dtrace.h>.
6785  */
6786 int
6787 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6788     dtrace_meta_provider_id_t *idp)
6789 {
6790 	dtrace_meta_t *meta;
6791 	dtrace_helpers_t *help, *next;
6792 	int i;
6793 
6794 	*idp = DTRACE_METAPROVNONE;
6795 
6796 	/*
6797 	 * We strictly don't need the name, but we hold onto it for
6798 	 * debuggability. All hail error queues!
6799 	 */
6800 	if (name == NULL) {
6801 		cmn_err(CE_WARN, "failed to register meta-provider: "
6802 		    "invalid name");
6803 		return (EINVAL);
6804 	}
6805 
6806 	if (mops == NULL ||
6807 	    mops->dtms_create_probe == NULL ||
6808 	    mops->dtms_provide_pid == NULL ||
6809 	    mops->dtms_remove_pid == NULL) {
6810 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6811 		    "invalid ops", name);
6812 		return (EINVAL);
6813 	}
6814 
6815 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6816 	meta->dtm_mops = *mops;
6817 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6818 	(void) strcpy(meta->dtm_name, name);
6819 	meta->dtm_arg = arg;
6820 
6821 	mutex_enter(&dtrace_meta_lock);
6822 	mutex_enter(&dtrace_lock);
6823 
6824 	if (dtrace_meta_pid != NULL) {
6825 		mutex_exit(&dtrace_lock);
6826 		mutex_exit(&dtrace_meta_lock);
6827 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6828 		    "user-land meta-provider exists", name);
6829 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6830 		kmem_free(meta, sizeof (dtrace_meta_t));
6831 		return (EINVAL);
6832 	}
6833 
6834 	dtrace_meta_pid = meta;
6835 	*idp = (dtrace_meta_provider_id_t)meta;
6836 
6837 	/*
6838 	 * If there are providers and probes ready to go, pass them
6839 	 * off to the new meta provider now.
6840 	 */
6841 
6842 	help = dtrace_deferred_pid;
6843 	dtrace_deferred_pid = NULL;
6844 
6845 	mutex_exit(&dtrace_lock);
6846 
6847 	while (help != NULL) {
6848 		for (i = 0; i < help->dthps_nprovs; i++) {
6849 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6850 			    help->dthps_pid);
6851 		}
6852 
6853 		next = help->dthps_next;
6854 		help->dthps_next = NULL;
6855 		help->dthps_prev = NULL;
6856 		help->dthps_deferred = 0;
6857 		help = next;
6858 	}
6859 
6860 	mutex_exit(&dtrace_meta_lock);
6861 
6862 	return (0);
6863 }
6864 
6865 int
6866 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6867 {
6868 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6869 
6870 	mutex_enter(&dtrace_meta_lock);
6871 	mutex_enter(&dtrace_lock);
6872 
6873 	if (old == dtrace_meta_pid) {
6874 		pp = &dtrace_meta_pid;
6875 	} else {
6876 		panic("attempt to unregister non-existent "
6877 		    "dtrace meta-provider %p\n", (void *)old);
6878 	}
6879 
6880 	if (old->dtm_count != 0) {
6881 		mutex_exit(&dtrace_lock);
6882 		mutex_exit(&dtrace_meta_lock);
6883 		return (EBUSY);
6884 	}
6885 
6886 	*pp = NULL;
6887 
6888 	mutex_exit(&dtrace_lock);
6889 	mutex_exit(&dtrace_meta_lock);
6890 
6891 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6892 	kmem_free(old, sizeof (dtrace_meta_t));
6893 
6894 	return (0);
6895 }
6896 
6897 
6898 /*
6899  * DTrace DIF Object Functions
6900  */
6901 static int
6902 dtrace_difo_err(uint_t pc, const char *format, ...)
6903 {
6904 	if (dtrace_err_verbose) {
6905 		va_list alist;
6906 
6907 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6908 		va_start(alist, format);
6909 		(void) vuprintf(format, alist);
6910 		va_end(alist);
6911 	}
6912 
6913 #ifdef DTRACE_ERRDEBUG
6914 	dtrace_errdebug(format);
6915 #endif
6916 	return (1);
6917 }
6918 
6919 /*
6920  * Validate a DTrace DIF object by checking the IR instructions.  The following
6921  * rules are currently enforced by dtrace_difo_validate():
6922  *
6923  * 1. Each instruction must have a valid opcode
6924  * 2. Each register, string, variable, or subroutine reference must be valid
6925  * 3. No instruction can modify register %r0 (must be zero)
6926  * 4. All instruction reserved bits must be set to zero
6927  * 5. The last instruction must be a "ret" instruction
6928  * 6. All branch targets must reference a valid instruction _after_ the branch
6929  */
6930 static int
6931 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6932     cred_t *cr)
6933 {
6934 	int err = 0, i;
6935 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6936 	int kcheck;
6937 	uint_t pc;
6938 
6939 	kcheck = cr == NULL ||
6940 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
6941 
6942 	dp->dtdo_destructive = 0;
6943 
6944 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
6945 		dif_instr_t instr = dp->dtdo_buf[pc];
6946 
6947 		uint_t r1 = DIF_INSTR_R1(instr);
6948 		uint_t r2 = DIF_INSTR_R2(instr);
6949 		uint_t rd = DIF_INSTR_RD(instr);
6950 		uint_t rs = DIF_INSTR_RS(instr);
6951 		uint_t label = DIF_INSTR_LABEL(instr);
6952 		uint_t v = DIF_INSTR_VAR(instr);
6953 		uint_t subr = DIF_INSTR_SUBR(instr);
6954 		uint_t type = DIF_INSTR_TYPE(instr);
6955 		uint_t op = DIF_INSTR_OP(instr);
6956 
6957 		switch (op) {
6958 		case DIF_OP_OR:
6959 		case DIF_OP_XOR:
6960 		case DIF_OP_AND:
6961 		case DIF_OP_SLL:
6962 		case DIF_OP_SRL:
6963 		case DIF_OP_SRA:
6964 		case DIF_OP_SUB:
6965 		case DIF_OP_ADD:
6966 		case DIF_OP_MUL:
6967 		case DIF_OP_SDIV:
6968 		case DIF_OP_UDIV:
6969 		case DIF_OP_SREM:
6970 		case DIF_OP_UREM:
6971 		case DIF_OP_COPYS:
6972 			if (r1 >= nregs)
6973 				err += efunc(pc, "invalid register %u\n", r1);
6974 			if (r2 >= nregs)
6975 				err += efunc(pc, "invalid register %u\n", r2);
6976 			if (rd >= nregs)
6977 				err += efunc(pc, "invalid register %u\n", rd);
6978 			if (rd == 0)
6979 				err += efunc(pc, "cannot write to %r0\n");
6980 			break;
6981 		case DIF_OP_NOT:
6982 		case DIF_OP_MOV:
6983 		case DIF_OP_ALLOCS:
6984 			if (r1 >= nregs)
6985 				err += efunc(pc, "invalid register %u\n", r1);
6986 			if (r2 != 0)
6987 				err += efunc(pc, "non-zero reserved bits\n");
6988 			if (rd >= nregs)
6989 				err += efunc(pc, "invalid register %u\n", rd);
6990 			if (rd == 0)
6991 				err += efunc(pc, "cannot write to %r0\n");
6992 			break;
6993 		case DIF_OP_LDSB:
6994 		case DIF_OP_LDSH:
6995 		case DIF_OP_LDSW:
6996 		case DIF_OP_LDUB:
6997 		case DIF_OP_LDUH:
6998 		case DIF_OP_LDUW:
6999 		case DIF_OP_LDX:
7000 			if (r1 >= nregs)
7001 				err += efunc(pc, "invalid register %u\n", r1);
7002 			if (r2 != 0)
7003 				err += efunc(pc, "non-zero reserved bits\n");
7004 			if (rd >= nregs)
7005 				err += efunc(pc, "invalid register %u\n", rd);
7006 			if (rd == 0)
7007 				err += efunc(pc, "cannot write to %r0\n");
7008 			if (kcheck)
7009 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7010 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7011 			break;
7012 		case DIF_OP_RLDSB:
7013 		case DIF_OP_RLDSH:
7014 		case DIF_OP_RLDSW:
7015 		case DIF_OP_RLDUB:
7016 		case DIF_OP_RLDUH:
7017 		case DIF_OP_RLDUW:
7018 		case DIF_OP_RLDX:
7019 			if (r1 >= nregs)
7020 				err += efunc(pc, "invalid register %u\n", r1);
7021 			if (r2 != 0)
7022 				err += efunc(pc, "non-zero reserved bits\n");
7023 			if (rd >= nregs)
7024 				err += efunc(pc, "invalid register %u\n", rd);
7025 			if (rd == 0)
7026 				err += efunc(pc, "cannot write to %r0\n");
7027 			break;
7028 		case DIF_OP_ULDSB:
7029 		case DIF_OP_ULDSH:
7030 		case DIF_OP_ULDSW:
7031 		case DIF_OP_ULDUB:
7032 		case DIF_OP_ULDUH:
7033 		case DIF_OP_ULDUW:
7034 		case DIF_OP_ULDX:
7035 			if (r1 >= nregs)
7036 				err += efunc(pc, "invalid register %u\n", r1);
7037 			if (r2 != 0)
7038 				err += efunc(pc, "non-zero reserved bits\n");
7039 			if (rd >= nregs)
7040 				err += efunc(pc, "invalid register %u\n", rd);
7041 			if (rd == 0)
7042 				err += efunc(pc, "cannot write to %r0\n");
7043 			break;
7044 		case DIF_OP_STB:
7045 		case DIF_OP_STH:
7046 		case DIF_OP_STW:
7047 		case DIF_OP_STX:
7048 			if (r1 >= nregs)
7049 				err += efunc(pc, "invalid register %u\n", r1);
7050 			if (r2 != 0)
7051 				err += efunc(pc, "non-zero reserved bits\n");
7052 			if (rd >= nregs)
7053 				err += efunc(pc, "invalid register %u\n", rd);
7054 			if (rd == 0)
7055 				err += efunc(pc, "cannot write to 0 address\n");
7056 			break;
7057 		case DIF_OP_CMP:
7058 		case DIF_OP_SCMP:
7059 			if (r1 >= nregs)
7060 				err += efunc(pc, "invalid register %u\n", r1);
7061 			if (r2 >= nregs)
7062 				err += efunc(pc, "invalid register %u\n", r2);
7063 			if (rd != 0)
7064 				err += efunc(pc, "non-zero reserved bits\n");
7065 			break;
7066 		case DIF_OP_TST:
7067 			if (r1 >= nregs)
7068 				err += efunc(pc, "invalid register %u\n", r1);
7069 			if (r2 != 0 || rd != 0)
7070 				err += efunc(pc, "non-zero reserved bits\n");
7071 			break;
7072 		case DIF_OP_BA:
7073 		case DIF_OP_BE:
7074 		case DIF_OP_BNE:
7075 		case DIF_OP_BG:
7076 		case DIF_OP_BGU:
7077 		case DIF_OP_BGE:
7078 		case DIF_OP_BGEU:
7079 		case DIF_OP_BL:
7080 		case DIF_OP_BLU:
7081 		case DIF_OP_BLE:
7082 		case DIF_OP_BLEU:
7083 			if (label >= dp->dtdo_len) {
7084 				err += efunc(pc, "invalid branch target %u\n",
7085 				    label);
7086 			}
7087 			if (label <= pc) {
7088 				err += efunc(pc, "backward branch to %u\n",
7089 				    label);
7090 			}
7091 			break;
7092 		case DIF_OP_RET:
7093 			if (r1 != 0 || r2 != 0)
7094 				err += efunc(pc, "non-zero reserved bits\n");
7095 			if (rd >= nregs)
7096 				err += efunc(pc, "invalid register %u\n", rd);
7097 			break;
7098 		case DIF_OP_NOP:
7099 		case DIF_OP_POPTS:
7100 		case DIF_OP_FLUSHTS:
7101 			if (r1 != 0 || r2 != 0 || rd != 0)
7102 				err += efunc(pc, "non-zero reserved bits\n");
7103 			break;
7104 		case DIF_OP_SETX:
7105 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7106 				err += efunc(pc, "invalid integer ref %u\n",
7107 				    DIF_INSTR_INTEGER(instr));
7108 			}
7109 			if (rd >= nregs)
7110 				err += efunc(pc, "invalid register %u\n", rd);
7111 			if (rd == 0)
7112 				err += efunc(pc, "cannot write to %r0\n");
7113 			break;
7114 		case DIF_OP_SETS:
7115 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
7116 				err += efunc(pc, "invalid string ref %u\n",
7117 				    DIF_INSTR_STRING(instr));
7118 			}
7119 			if (rd >= nregs)
7120 				err += efunc(pc, "invalid register %u\n", rd);
7121 			if (rd == 0)
7122 				err += efunc(pc, "cannot write to %r0\n");
7123 			break;
7124 		case DIF_OP_LDGA:
7125 		case DIF_OP_LDTA:
7126 			if (r1 > DIF_VAR_ARRAY_MAX)
7127 				err += efunc(pc, "invalid array %u\n", r1);
7128 			if (r2 >= nregs)
7129 				err += efunc(pc, "invalid register %u\n", r2);
7130 			if (rd >= nregs)
7131 				err += efunc(pc, "invalid register %u\n", rd);
7132 			if (rd == 0)
7133 				err += efunc(pc, "cannot write to %r0\n");
7134 			break;
7135 		case DIF_OP_LDGS:
7136 		case DIF_OP_LDTS:
7137 		case DIF_OP_LDLS:
7138 		case DIF_OP_LDGAA:
7139 		case DIF_OP_LDTAA:
7140 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
7141 				err += efunc(pc, "invalid variable %u\n", v);
7142 			if (rd >= nregs)
7143 				err += efunc(pc, "invalid register %u\n", rd);
7144 			if (rd == 0)
7145 				err += efunc(pc, "cannot write to %r0\n");
7146 			break;
7147 		case DIF_OP_STGS:
7148 		case DIF_OP_STTS:
7149 		case DIF_OP_STLS:
7150 		case DIF_OP_STGAA:
7151 		case DIF_OP_STTAA:
7152 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
7153 				err += efunc(pc, "invalid variable %u\n", v);
7154 			if (rs >= nregs)
7155 				err += efunc(pc, "invalid register %u\n", rd);
7156 			break;
7157 		case DIF_OP_CALL:
7158 			if (subr > DIF_SUBR_MAX)
7159 				err += efunc(pc, "invalid subr %u\n", subr);
7160 			if (rd >= nregs)
7161 				err += efunc(pc, "invalid register %u\n", rd);
7162 			if (rd == 0)
7163 				err += efunc(pc, "cannot write to %r0\n");
7164 
7165 			if (subr == DIF_SUBR_COPYOUT ||
7166 			    subr == DIF_SUBR_COPYOUTSTR) {
7167 				dp->dtdo_destructive = 1;
7168 			}
7169 			break;
7170 		case DIF_OP_PUSHTR:
7171 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
7172 				err += efunc(pc, "invalid ref type %u\n", type);
7173 			if (r2 >= nregs)
7174 				err += efunc(pc, "invalid register %u\n", r2);
7175 			if (rs >= nregs)
7176 				err += efunc(pc, "invalid register %u\n", rs);
7177 			break;
7178 		case DIF_OP_PUSHTV:
7179 			if (type != DIF_TYPE_CTF)
7180 				err += efunc(pc, "invalid val type %u\n", type);
7181 			if (r2 >= nregs)
7182 				err += efunc(pc, "invalid register %u\n", r2);
7183 			if (rs >= nregs)
7184 				err += efunc(pc, "invalid register %u\n", rs);
7185 			break;
7186 		default:
7187 			err += efunc(pc, "invalid opcode %u\n",
7188 			    DIF_INSTR_OP(instr));
7189 		}
7190 	}
7191 
7192 	if (dp->dtdo_len != 0 &&
7193 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7194 		err += efunc(dp->dtdo_len - 1,
7195 		    "expected 'ret' as last DIF instruction\n");
7196 	}
7197 
7198 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7199 		/*
7200 		 * If we're not returning by reference, the size must be either
7201 		 * 0 or the size of one of the base types.
7202 		 */
7203 		switch (dp->dtdo_rtype.dtdt_size) {
7204 		case 0:
7205 		case sizeof (uint8_t):
7206 		case sizeof (uint16_t):
7207 		case sizeof (uint32_t):
7208 		case sizeof (uint64_t):
7209 			break;
7210 
7211 		default:
7212 			err += efunc(dp->dtdo_len - 1, "bad return size");
7213 		}
7214 	}
7215 
7216 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7217 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7218 		dtrace_diftype_t *vt, *et;
7219 		uint_t id, ndx;
7220 
7221 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7222 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7223 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7224 			err += efunc(i, "unrecognized variable scope %d\n",
7225 			    v->dtdv_scope);
7226 			break;
7227 		}
7228 
7229 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7230 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7231 			err += efunc(i, "unrecognized variable type %d\n",
7232 			    v->dtdv_kind);
7233 			break;
7234 		}
7235 
7236 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7237 			err += efunc(i, "%d exceeds variable id limit\n", id);
7238 			break;
7239 		}
7240 
7241 		if (id < DIF_VAR_OTHER_UBASE)
7242 			continue;
7243 
7244 		/*
7245 		 * For user-defined variables, we need to check that this
7246 		 * definition is identical to any previous definition that we
7247 		 * encountered.
7248 		 */
7249 		ndx = id - DIF_VAR_OTHER_UBASE;
7250 
7251 		switch (v->dtdv_scope) {
7252 		case DIFV_SCOPE_GLOBAL:
7253 			if (ndx < vstate->dtvs_nglobals) {
7254 				dtrace_statvar_t *svar;
7255 
7256 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7257 					existing = &svar->dtsv_var;
7258 			}
7259 
7260 			break;
7261 
7262 		case DIFV_SCOPE_THREAD:
7263 			if (ndx < vstate->dtvs_ntlocals)
7264 				existing = &vstate->dtvs_tlocals[ndx];
7265 			break;
7266 
7267 		case DIFV_SCOPE_LOCAL:
7268 			if (ndx < vstate->dtvs_nlocals) {
7269 				dtrace_statvar_t *svar;
7270 
7271 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7272 					existing = &svar->dtsv_var;
7273 			}
7274 
7275 			break;
7276 		}
7277 
7278 		vt = &v->dtdv_type;
7279 
7280 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7281 			if (vt->dtdt_size == 0) {
7282 				err += efunc(i, "zero-sized variable\n");
7283 				break;
7284 			}
7285 
7286 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7287 			    vt->dtdt_size > dtrace_global_maxsize) {
7288 				err += efunc(i, "oversized by-ref global\n");
7289 				break;
7290 			}
7291 		}
7292 
7293 		if (existing == NULL || existing->dtdv_id == 0)
7294 			continue;
7295 
7296 		ASSERT(existing->dtdv_id == v->dtdv_id);
7297 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7298 
7299 		if (existing->dtdv_kind != v->dtdv_kind)
7300 			err += efunc(i, "%d changed variable kind\n", id);
7301 
7302 		et = &existing->dtdv_type;
7303 
7304 		if (vt->dtdt_flags != et->dtdt_flags) {
7305 			err += efunc(i, "%d changed variable type flags\n", id);
7306 			break;
7307 		}
7308 
7309 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7310 			err += efunc(i, "%d changed variable type size\n", id);
7311 			break;
7312 		}
7313 	}
7314 
7315 	return (err);
7316 }
7317 
7318 /*
7319  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7320  * are much more constrained than normal DIFOs.  Specifically, they may
7321  * not:
7322  *
7323  * 1. Make calls to subroutines other than copyin(), copyinstr() or
7324  *    miscellaneous string routines
7325  * 2. Access DTrace variables other than the args[] array, and the
7326  *    curthread, pid, tid and execname variables.
7327  * 3. Have thread-local variables.
7328  * 4. Have dynamic variables.
7329  */
7330 static int
7331 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7332 {
7333 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7334 	int err = 0;
7335 	uint_t pc;
7336 
7337 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7338 		dif_instr_t instr = dp->dtdo_buf[pc];
7339 
7340 		uint_t v = DIF_INSTR_VAR(instr);
7341 		uint_t subr = DIF_INSTR_SUBR(instr);
7342 		uint_t op = DIF_INSTR_OP(instr);
7343 
7344 		switch (op) {
7345 		case DIF_OP_OR:
7346 		case DIF_OP_XOR:
7347 		case DIF_OP_AND:
7348 		case DIF_OP_SLL:
7349 		case DIF_OP_SRL:
7350 		case DIF_OP_SRA:
7351 		case DIF_OP_SUB:
7352 		case DIF_OP_ADD:
7353 		case DIF_OP_MUL:
7354 		case DIF_OP_SDIV:
7355 		case DIF_OP_UDIV:
7356 		case DIF_OP_SREM:
7357 		case DIF_OP_UREM:
7358 		case DIF_OP_COPYS:
7359 		case DIF_OP_NOT:
7360 		case DIF_OP_MOV:
7361 		case DIF_OP_RLDSB:
7362 		case DIF_OP_RLDSH:
7363 		case DIF_OP_RLDSW:
7364 		case DIF_OP_RLDUB:
7365 		case DIF_OP_RLDUH:
7366 		case DIF_OP_RLDUW:
7367 		case DIF_OP_RLDX:
7368 		case DIF_OP_ULDSB:
7369 		case DIF_OP_ULDSH:
7370 		case DIF_OP_ULDSW:
7371 		case DIF_OP_ULDUB:
7372 		case DIF_OP_ULDUH:
7373 		case DIF_OP_ULDUW:
7374 		case DIF_OP_ULDX:
7375 		case DIF_OP_STB:
7376 		case DIF_OP_STH:
7377 		case DIF_OP_STW:
7378 		case DIF_OP_STX:
7379 		case DIF_OP_ALLOCS:
7380 		case DIF_OP_CMP:
7381 		case DIF_OP_SCMP:
7382 		case DIF_OP_TST:
7383 		case DIF_OP_BA:
7384 		case DIF_OP_BE:
7385 		case DIF_OP_BNE:
7386 		case DIF_OP_BG:
7387 		case DIF_OP_BGU:
7388 		case DIF_OP_BGE:
7389 		case DIF_OP_BGEU:
7390 		case DIF_OP_BL:
7391 		case DIF_OP_BLU:
7392 		case DIF_OP_BLE:
7393 		case DIF_OP_BLEU:
7394 		case DIF_OP_RET:
7395 		case DIF_OP_NOP:
7396 		case DIF_OP_POPTS:
7397 		case DIF_OP_FLUSHTS:
7398 		case DIF_OP_SETX:
7399 		case DIF_OP_SETS:
7400 		case DIF_OP_LDGA:
7401 		case DIF_OP_LDLS:
7402 		case DIF_OP_STGS:
7403 		case DIF_OP_STLS:
7404 		case DIF_OP_PUSHTR:
7405 		case DIF_OP_PUSHTV:
7406 			break;
7407 
7408 		case DIF_OP_LDGS:
7409 			if (v >= DIF_VAR_OTHER_UBASE)
7410 				break;
7411 
7412 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7413 				break;
7414 
7415 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7416 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7417 			    v == DIF_VAR_ZONENAME)
7418 				break;
7419 
7420 			err += efunc(pc, "illegal variable %u\n", v);
7421 			break;
7422 
7423 		case DIF_OP_LDTA:
7424 		case DIF_OP_LDTS:
7425 		case DIF_OP_LDGAA:
7426 		case DIF_OP_LDTAA:
7427 			err += efunc(pc, "illegal dynamic variable load\n");
7428 			break;
7429 
7430 		case DIF_OP_STTS:
7431 		case DIF_OP_STGAA:
7432 		case DIF_OP_STTAA:
7433 			err += efunc(pc, "illegal dynamic variable store\n");
7434 			break;
7435 
7436 		case DIF_OP_CALL:
7437 			if (subr == DIF_SUBR_ALLOCA ||
7438 			    subr == DIF_SUBR_BCOPY ||
7439 			    subr == DIF_SUBR_COPYIN ||
7440 			    subr == DIF_SUBR_COPYINTO ||
7441 			    subr == DIF_SUBR_COPYINSTR ||
7442 			    subr == DIF_SUBR_INDEX ||
7443 			    subr == DIF_SUBR_LLTOSTR ||
7444 			    subr == DIF_SUBR_RINDEX ||
7445 			    subr == DIF_SUBR_STRCHR ||
7446 			    subr == DIF_SUBR_STRJOIN ||
7447 			    subr == DIF_SUBR_STRRCHR ||
7448 			    subr == DIF_SUBR_STRSTR)
7449 				break;
7450 
7451 			err += efunc(pc, "invalid subr %u\n", subr);
7452 			break;
7453 
7454 		default:
7455 			err += efunc(pc, "invalid opcode %u\n",
7456 			    DIF_INSTR_OP(instr));
7457 		}
7458 	}
7459 
7460 	return (err);
7461 }
7462 
7463 /*
7464  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7465  * basis; 0 if not.
7466  */
7467 static int
7468 dtrace_difo_cacheable(dtrace_difo_t *dp)
7469 {
7470 	int i;
7471 
7472 	if (dp == NULL)
7473 		return (0);
7474 
7475 	for (i = 0; i < dp->dtdo_varlen; i++) {
7476 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7477 
7478 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7479 			continue;
7480 
7481 		switch (v->dtdv_id) {
7482 		case DIF_VAR_CURTHREAD:
7483 		case DIF_VAR_PID:
7484 		case DIF_VAR_TID:
7485 		case DIF_VAR_EXECNAME:
7486 		case DIF_VAR_ZONENAME:
7487 			break;
7488 
7489 		default:
7490 			return (0);
7491 		}
7492 	}
7493 
7494 	/*
7495 	 * This DIF object may be cacheable.  Now we need to look for any
7496 	 * array loading instructions, any memory loading instructions, or
7497 	 * any stores to thread-local variables.
7498 	 */
7499 	for (i = 0; i < dp->dtdo_len; i++) {
7500 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7501 
7502 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7503 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7504 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7505 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
7506 			return (0);
7507 	}
7508 
7509 	return (1);
7510 }
7511 
7512 static void
7513 dtrace_difo_hold(dtrace_difo_t *dp)
7514 {
7515 	int i;
7516 
7517 	ASSERT(MUTEX_HELD(&dtrace_lock));
7518 
7519 	dp->dtdo_refcnt++;
7520 	ASSERT(dp->dtdo_refcnt != 0);
7521 
7522 	/*
7523 	 * We need to check this DIF object for references to the variable
7524 	 * DIF_VAR_VTIMESTAMP.
7525 	 */
7526 	for (i = 0; i < dp->dtdo_varlen; i++) {
7527 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7528 
7529 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7530 			continue;
7531 
7532 		if (dtrace_vtime_references++ == 0)
7533 			dtrace_vtime_enable();
7534 	}
7535 }
7536 
7537 /*
7538  * This routine calculates the dynamic variable chunksize for a given DIF
7539  * object.  The calculation is not fool-proof, and can probably be tricked by
7540  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7541  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7542  * if a dynamic variable size exceeds the chunksize.
7543  */
7544 static void
7545 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7546 {
7547 	uint64_t sval;
7548 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7549 	const dif_instr_t *text = dp->dtdo_buf;
7550 	uint_t pc, srd = 0;
7551 	uint_t ttop = 0;
7552 	size_t size, ksize;
7553 	uint_t id, i;
7554 
7555 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7556 		dif_instr_t instr = text[pc];
7557 		uint_t op = DIF_INSTR_OP(instr);
7558 		uint_t rd = DIF_INSTR_RD(instr);
7559 		uint_t r1 = DIF_INSTR_R1(instr);
7560 		uint_t nkeys = 0;
7561 		uchar_t scope;
7562 
7563 		dtrace_key_t *key = tupregs;
7564 
7565 		switch (op) {
7566 		case DIF_OP_SETX:
7567 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7568 			srd = rd;
7569 			continue;
7570 
7571 		case DIF_OP_STTS:
7572 			key = &tupregs[DIF_DTR_NREGS];
7573 			key[0].dttk_size = 0;
7574 			key[1].dttk_size = 0;
7575 			nkeys = 2;
7576 			scope = DIFV_SCOPE_THREAD;
7577 			break;
7578 
7579 		case DIF_OP_STGAA:
7580 		case DIF_OP_STTAA:
7581 			nkeys = ttop;
7582 
7583 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7584 				key[nkeys++].dttk_size = 0;
7585 
7586 			key[nkeys++].dttk_size = 0;
7587 
7588 			if (op == DIF_OP_STTAA) {
7589 				scope = DIFV_SCOPE_THREAD;
7590 			} else {
7591 				scope = DIFV_SCOPE_GLOBAL;
7592 			}
7593 
7594 			break;
7595 
7596 		case DIF_OP_PUSHTR:
7597 			if (ttop == DIF_DTR_NREGS)
7598 				return;
7599 
7600 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7601 				/*
7602 				 * If the register for the size of the "pushtr"
7603 				 * is %r0 (or the value is 0) and the type is
7604 				 * a string, we'll use the system-wide default
7605 				 * string size.
7606 				 */
7607 				tupregs[ttop++].dttk_size =
7608 				    dtrace_strsize_default;
7609 			} else {
7610 				if (srd == 0)
7611 					return;
7612 
7613 				tupregs[ttop++].dttk_size = sval;
7614 			}
7615 
7616 			break;
7617 
7618 		case DIF_OP_PUSHTV:
7619 			if (ttop == DIF_DTR_NREGS)
7620 				return;
7621 
7622 			tupregs[ttop++].dttk_size = 0;
7623 			break;
7624 
7625 		case DIF_OP_FLUSHTS:
7626 			ttop = 0;
7627 			break;
7628 
7629 		case DIF_OP_POPTS:
7630 			if (ttop != 0)
7631 				ttop--;
7632 			break;
7633 		}
7634 
7635 		sval = 0;
7636 		srd = 0;
7637 
7638 		if (nkeys == 0)
7639 			continue;
7640 
7641 		/*
7642 		 * We have a dynamic variable allocation; calculate its size.
7643 		 */
7644 		for (ksize = 0, i = 0; i < nkeys; i++)
7645 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7646 
7647 		size = sizeof (dtrace_dynvar_t);
7648 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7649 		size += ksize;
7650 
7651 		/*
7652 		 * Now we need to determine the size of the stored data.
7653 		 */
7654 		id = DIF_INSTR_VAR(instr);
7655 
7656 		for (i = 0; i < dp->dtdo_varlen; i++) {
7657 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7658 
7659 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7660 				size += v->dtdv_type.dtdt_size;
7661 				break;
7662 			}
7663 		}
7664 
7665 		if (i == dp->dtdo_varlen)
7666 			return;
7667 
7668 		/*
7669 		 * We have the size.  If this is larger than the chunk size
7670 		 * for our dynamic variable state, reset the chunk size.
7671 		 */
7672 		size = P2ROUNDUP(size, sizeof (uint64_t));
7673 
7674 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7675 			vstate->dtvs_dynvars.dtds_chunksize = size;
7676 	}
7677 }
7678 
7679 static void
7680 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7681 {
7682 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7683 	uint_t id;
7684 
7685 	ASSERT(MUTEX_HELD(&dtrace_lock));
7686 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7687 
7688 	for (i = 0; i < dp->dtdo_varlen; i++) {
7689 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7690 		dtrace_statvar_t *svar, ***svarp;
7691 		size_t dsize = 0;
7692 		uint8_t scope = v->dtdv_scope;
7693 		int *np;
7694 
7695 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7696 			continue;
7697 
7698 		id -= DIF_VAR_OTHER_UBASE;
7699 
7700 		switch (scope) {
7701 		case DIFV_SCOPE_THREAD:
7702 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7703 				dtrace_difv_t *tlocals;
7704 
7705 				if ((ntlocals = (otlocals << 1)) == 0)
7706 					ntlocals = 1;
7707 
7708 				osz = otlocals * sizeof (dtrace_difv_t);
7709 				nsz = ntlocals * sizeof (dtrace_difv_t);
7710 
7711 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7712 
7713 				if (osz != 0) {
7714 					bcopy(vstate->dtvs_tlocals,
7715 					    tlocals, osz);
7716 					kmem_free(vstate->dtvs_tlocals, osz);
7717 				}
7718 
7719 				vstate->dtvs_tlocals = tlocals;
7720 				vstate->dtvs_ntlocals = ntlocals;
7721 			}
7722 
7723 			vstate->dtvs_tlocals[id] = *v;
7724 			continue;
7725 
7726 		case DIFV_SCOPE_LOCAL:
7727 			np = &vstate->dtvs_nlocals;
7728 			svarp = &vstate->dtvs_locals;
7729 
7730 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7731 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7732 				    sizeof (uint64_t));
7733 			else
7734 				dsize = NCPU * sizeof (uint64_t);
7735 
7736 			break;
7737 
7738 		case DIFV_SCOPE_GLOBAL:
7739 			np = &vstate->dtvs_nglobals;
7740 			svarp = &vstate->dtvs_globals;
7741 
7742 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7743 				dsize = v->dtdv_type.dtdt_size +
7744 				    sizeof (uint64_t);
7745 
7746 			break;
7747 
7748 		default:
7749 			ASSERT(0);
7750 		}
7751 
7752 		while (id >= (oldsvars = *np)) {
7753 			dtrace_statvar_t **statics;
7754 			int newsvars, oldsize, newsize;
7755 
7756 			if ((newsvars = (oldsvars << 1)) == 0)
7757 				newsvars = 1;
7758 
7759 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7760 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7761 
7762 			statics = kmem_zalloc(newsize, KM_SLEEP);
7763 
7764 			if (oldsize != 0) {
7765 				bcopy(*svarp, statics, oldsize);
7766 				kmem_free(*svarp, oldsize);
7767 			}
7768 
7769 			*svarp = statics;
7770 			*np = newsvars;
7771 		}
7772 
7773 		if ((svar = (*svarp)[id]) == NULL) {
7774 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7775 			svar->dtsv_var = *v;
7776 
7777 			if ((svar->dtsv_size = dsize) != 0) {
7778 				svar->dtsv_data = (uint64_t)(uintptr_t)
7779 				    kmem_zalloc(dsize, KM_SLEEP);
7780 			}
7781 
7782 			(*svarp)[id] = svar;
7783 		}
7784 
7785 		svar->dtsv_refcnt++;
7786 	}
7787 
7788 	dtrace_difo_chunksize(dp, vstate);
7789 	dtrace_difo_hold(dp);
7790 }
7791 
7792 static dtrace_difo_t *
7793 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7794 {
7795 	dtrace_difo_t *new;
7796 	size_t sz;
7797 
7798 	ASSERT(dp->dtdo_buf != NULL);
7799 	ASSERT(dp->dtdo_refcnt != 0);
7800 
7801 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7802 
7803 	ASSERT(dp->dtdo_buf != NULL);
7804 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7805 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7806 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7807 	new->dtdo_len = dp->dtdo_len;
7808 
7809 	if (dp->dtdo_strtab != NULL) {
7810 		ASSERT(dp->dtdo_strlen != 0);
7811 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7812 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7813 		new->dtdo_strlen = dp->dtdo_strlen;
7814 	}
7815 
7816 	if (dp->dtdo_inttab != NULL) {
7817 		ASSERT(dp->dtdo_intlen != 0);
7818 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7819 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7820 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7821 		new->dtdo_intlen = dp->dtdo_intlen;
7822 	}
7823 
7824 	if (dp->dtdo_vartab != NULL) {
7825 		ASSERT(dp->dtdo_varlen != 0);
7826 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7827 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7828 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7829 		new->dtdo_varlen = dp->dtdo_varlen;
7830 	}
7831 
7832 	dtrace_difo_init(new, vstate);
7833 	return (new);
7834 }
7835 
7836 static void
7837 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7838 {
7839 	int i;
7840 
7841 	ASSERT(dp->dtdo_refcnt == 0);
7842 
7843 	for (i = 0; i < dp->dtdo_varlen; i++) {
7844 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7845 		dtrace_statvar_t *svar, **svarp;
7846 		uint_t id;
7847 		uint8_t scope = v->dtdv_scope;
7848 		int *np;
7849 
7850 		switch (scope) {
7851 		case DIFV_SCOPE_THREAD:
7852 			continue;
7853 
7854 		case DIFV_SCOPE_LOCAL:
7855 			np = &vstate->dtvs_nlocals;
7856 			svarp = vstate->dtvs_locals;
7857 			break;
7858 
7859 		case DIFV_SCOPE_GLOBAL:
7860 			np = &vstate->dtvs_nglobals;
7861 			svarp = vstate->dtvs_globals;
7862 			break;
7863 
7864 		default:
7865 			ASSERT(0);
7866 		}
7867 
7868 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7869 			continue;
7870 
7871 		id -= DIF_VAR_OTHER_UBASE;
7872 		ASSERT(id < *np);
7873 
7874 		svar = svarp[id];
7875 		ASSERT(svar != NULL);
7876 		ASSERT(svar->dtsv_refcnt > 0);
7877 
7878 		if (--svar->dtsv_refcnt > 0)
7879 			continue;
7880 
7881 		if (svar->dtsv_size != 0) {
7882 			ASSERT(svar->dtsv_data != NULL);
7883 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7884 			    svar->dtsv_size);
7885 		}
7886 
7887 		kmem_free(svar, sizeof (dtrace_statvar_t));
7888 		svarp[id] = NULL;
7889 	}
7890 
7891 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7892 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7893 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7894 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7895 
7896 	kmem_free(dp, sizeof (dtrace_difo_t));
7897 }
7898 
7899 static void
7900 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7901 {
7902 	int i;
7903 
7904 	ASSERT(MUTEX_HELD(&dtrace_lock));
7905 	ASSERT(dp->dtdo_refcnt != 0);
7906 
7907 	for (i = 0; i < dp->dtdo_varlen; i++) {
7908 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7909 
7910 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7911 			continue;
7912 
7913 		ASSERT(dtrace_vtime_references > 0);
7914 		if (--dtrace_vtime_references == 0)
7915 			dtrace_vtime_disable();
7916 	}
7917 
7918 	if (--dp->dtdo_refcnt == 0)
7919 		dtrace_difo_destroy(dp, vstate);
7920 }
7921 
7922 /*
7923  * DTrace Format Functions
7924  */
7925 static uint16_t
7926 dtrace_format_add(dtrace_state_t *state, char *str)
7927 {
7928 	char *fmt, **new;
7929 	uint16_t ndx, len = strlen(str) + 1;
7930 
7931 	fmt = kmem_zalloc(len, KM_SLEEP);
7932 	bcopy(str, fmt, len);
7933 
7934 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7935 		if (state->dts_formats[ndx] == NULL) {
7936 			state->dts_formats[ndx] = fmt;
7937 			return (ndx + 1);
7938 		}
7939 	}
7940 
7941 	if (state->dts_nformats == USHRT_MAX) {
7942 		/*
7943 		 * This is only likely if a denial-of-service attack is being
7944 		 * attempted.  As such, it's okay to fail silently here.
7945 		 */
7946 		kmem_free(fmt, len);
7947 		return (0);
7948 	}
7949 
7950 	/*
7951 	 * For simplicity, we always resize the formats array to be exactly the
7952 	 * number of formats.
7953 	 */
7954 	ndx = state->dts_nformats++;
7955 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
7956 
7957 	if (state->dts_formats != NULL) {
7958 		ASSERT(ndx != 0);
7959 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
7960 		kmem_free(state->dts_formats, ndx * sizeof (char *));
7961 	}
7962 
7963 	state->dts_formats = new;
7964 	state->dts_formats[ndx] = fmt;
7965 
7966 	return (ndx + 1);
7967 }
7968 
7969 static void
7970 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
7971 {
7972 	char *fmt;
7973 
7974 	ASSERT(state->dts_formats != NULL);
7975 	ASSERT(format <= state->dts_nformats);
7976 	ASSERT(state->dts_formats[format - 1] != NULL);
7977 
7978 	fmt = state->dts_formats[format - 1];
7979 	kmem_free(fmt, strlen(fmt) + 1);
7980 	state->dts_formats[format - 1] = NULL;
7981 }
7982 
7983 static void
7984 dtrace_format_destroy(dtrace_state_t *state)
7985 {
7986 	int i;
7987 
7988 	if (state->dts_nformats == 0) {
7989 		ASSERT(state->dts_formats == NULL);
7990 		return;
7991 	}
7992 
7993 	ASSERT(state->dts_formats != NULL);
7994 
7995 	for (i = 0; i < state->dts_nformats; i++) {
7996 		char *fmt = state->dts_formats[i];
7997 
7998 		if (fmt == NULL)
7999 			continue;
8000 
8001 		kmem_free(fmt, strlen(fmt) + 1);
8002 	}
8003 
8004 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8005 	state->dts_nformats = 0;
8006 	state->dts_formats = NULL;
8007 }
8008 
8009 /*
8010  * DTrace Predicate Functions
8011  */
8012 static dtrace_predicate_t *
8013 dtrace_predicate_create(dtrace_difo_t *dp)
8014 {
8015 	dtrace_predicate_t *pred;
8016 
8017 	ASSERT(MUTEX_HELD(&dtrace_lock));
8018 	ASSERT(dp->dtdo_refcnt != 0);
8019 
8020 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8021 	pred->dtp_difo = dp;
8022 	pred->dtp_refcnt = 1;
8023 
8024 	if (!dtrace_difo_cacheable(dp))
8025 		return (pred);
8026 
8027 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8028 		/*
8029 		 * This is only theoretically possible -- we have had 2^32
8030 		 * cacheable predicates on this machine.  We cannot allow any
8031 		 * more predicates to become cacheable:  as unlikely as it is,
8032 		 * there may be a thread caching a (now stale) predicate cache
8033 		 * ID. (N.B.: the temptation is being successfully resisted to
8034 		 * have this cmn_err() "Holy shit -- we executed this code!")
8035 		 */
8036 		return (pred);
8037 	}
8038 
8039 	pred->dtp_cacheid = dtrace_predcache_id++;
8040 
8041 	return (pred);
8042 }
8043 
8044 static void
8045 dtrace_predicate_hold(dtrace_predicate_t *pred)
8046 {
8047 	ASSERT(MUTEX_HELD(&dtrace_lock));
8048 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8049 	ASSERT(pred->dtp_refcnt > 0);
8050 
8051 	pred->dtp_refcnt++;
8052 }
8053 
8054 static void
8055 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8056 {
8057 	dtrace_difo_t *dp = pred->dtp_difo;
8058 
8059 	ASSERT(MUTEX_HELD(&dtrace_lock));
8060 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8061 	ASSERT(pred->dtp_refcnt > 0);
8062 
8063 	if (--pred->dtp_refcnt == 0) {
8064 		dtrace_difo_release(pred->dtp_difo, vstate);
8065 		kmem_free(pred, sizeof (dtrace_predicate_t));
8066 	}
8067 }
8068 
8069 /*
8070  * DTrace Action Description Functions
8071  */
8072 static dtrace_actdesc_t *
8073 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8074     uint64_t uarg, uint64_t arg)
8075 {
8076 	dtrace_actdesc_t *act;
8077 
8078 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8079 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8080 
8081 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8082 	act->dtad_kind = kind;
8083 	act->dtad_ntuple = ntuple;
8084 	act->dtad_uarg = uarg;
8085 	act->dtad_arg = arg;
8086 	act->dtad_refcnt = 1;
8087 
8088 	return (act);
8089 }
8090 
8091 static void
8092 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8093 {
8094 	ASSERT(act->dtad_refcnt >= 1);
8095 	act->dtad_refcnt++;
8096 }
8097 
8098 static void
8099 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
8100 {
8101 	dtrace_actkind_t kind = act->dtad_kind;
8102 	dtrace_difo_t *dp;
8103 
8104 	ASSERT(act->dtad_refcnt >= 1);
8105 
8106 	if (--act->dtad_refcnt != 0)
8107 		return;
8108 
8109 	if ((dp = act->dtad_difo) != NULL)
8110 		dtrace_difo_release(dp, vstate);
8111 
8112 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
8113 		char *str = (char *)(uintptr_t)act->dtad_arg;
8114 
8115 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
8116 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
8117 
8118 		if (str != NULL)
8119 			kmem_free(str, strlen(str) + 1);
8120 	}
8121 
8122 	kmem_free(act, sizeof (dtrace_actdesc_t));
8123 }
8124 
8125 /*
8126  * DTrace ECB Functions
8127  */
8128 static dtrace_ecb_t *
8129 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
8130 {
8131 	dtrace_ecb_t *ecb;
8132 	dtrace_epid_t epid;
8133 
8134 	ASSERT(MUTEX_HELD(&dtrace_lock));
8135 
8136 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
8137 	ecb->dte_predicate = NULL;
8138 	ecb->dte_probe = probe;
8139 
8140 	/*
8141 	 * The default size is the size of the default action: recording
8142 	 * the epid.
8143 	 */
8144 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8145 	ecb->dte_alignment = sizeof (dtrace_epid_t);
8146 
8147 	epid = state->dts_epid++;
8148 
8149 	if (epid - 1 >= state->dts_necbs) {
8150 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
8151 		int necbs = state->dts_necbs << 1;
8152 
8153 		ASSERT(epid == state->dts_necbs + 1);
8154 
8155 		if (necbs == 0) {
8156 			ASSERT(oecbs == NULL);
8157 			necbs = 1;
8158 		}
8159 
8160 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
8161 
8162 		if (oecbs != NULL)
8163 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
8164 
8165 		dtrace_membar_producer();
8166 		state->dts_ecbs = ecbs;
8167 
8168 		if (oecbs != NULL) {
8169 			/*
8170 			 * If this state is active, we must dtrace_sync()
8171 			 * before we can free the old dts_ecbs array:  we're
8172 			 * coming in hot, and there may be active ring
8173 			 * buffer processing (which indexes into the dts_ecbs
8174 			 * array) on another CPU.
8175 			 */
8176 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
8177 				dtrace_sync();
8178 
8179 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
8180 		}
8181 
8182 		dtrace_membar_producer();
8183 		state->dts_necbs = necbs;
8184 	}
8185 
8186 	ecb->dte_state = state;
8187 
8188 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8189 	dtrace_membar_producer();
8190 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8191 
8192 	return (ecb);
8193 }
8194 
8195 static void
8196 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8197 {
8198 	dtrace_probe_t *probe = ecb->dte_probe;
8199 
8200 	ASSERT(MUTEX_HELD(&cpu_lock));
8201 	ASSERT(MUTEX_HELD(&dtrace_lock));
8202 	ASSERT(ecb->dte_next == NULL);
8203 
8204 	if (probe == NULL) {
8205 		/*
8206 		 * This is the NULL probe -- there's nothing to do.
8207 		 */
8208 		return;
8209 	}
8210 
8211 	if (probe->dtpr_ecb == NULL) {
8212 		dtrace_provider_t *prov = probe->dtpr_provider;
8213 
8214 		/*
8215 		 * We're the first ECB on this probe.
8216 		 */
8217 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8218 
8219 		if (ecb->dte_predicate != NULL)
8220 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8221 
8222 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8223 		    probe->dtpr_id, probe->dtpr_arg);
8224 	} else {
8225 		/*
8226 		 * This probe is already active.  Swing the last pointer to
8227 		 * point to the new ECB, and issue a dtrace_sync() to assure
8228 		 * that all CPUs have seen the change.
8229 		 */
8230 		ASSERT(probe->dtpr_ecb_last != NULL);
8231 		probe->dtpr_ecb_last->dte_next = ecb;
8232 		probe->dtpr_ecb_last = ecb;
8233 		probe->dtpr_predcache = 0;
8234 
8235 		dtrace_sync();
8236 	}
8237 }
8238 
8239 static void
8240 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8241 {
8242 	uint32_t maxalign = sizeof (dtrace_epid_t);
8243 	uint32_t align = sizeof (uint8_t), offs, diff;
8244 	dtrace_action_t *act;
8245 	int wastuple = 0;
8246 	uint32_t aggbase = UINT32_MAX;
8247 	dtrace_state_t *state = ecb->dte_state;
8248 
8249 	/*
8250 	 * If we record anything, we always record the epid.  (And we always
8251 	 * record it first.)
8252 	 */
8253 	offs = sizeof (dtrace_epid_t);
8254 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8255 
8256 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8257 		dtrace_recdesc_t *rec = &act->dta_rec;
8258 
8259 		if ((align = rec->dtrd_alignment) > maxalign)
8260 			maxalign = align;
8261 
8262 		if (!wastuple && act->dta_intuple) {
8263 			/*
8264 			 * This is the first record in a tuple.  Align the
8265 			 * offset to be at offset 4 in an 8-byte aligned
8266 			 * block.
8267 			 */
8268 			diff = offs + sizeof (dtrace_aggid_t);
8269 
8270 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8271 				offs += sizeof (uint64_t) - diff;
8272 
8273 			aggbase = offs - sizeof (dtrace_aggid_t);
8274 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8275 		}
8276 
8277 		/*LINTED*/
8278 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8279 			/*
8280 			 * The current offset is not properly aligned; align it.
8281 			 */
8282 			offs += align - diff;
8283 		}
8284 
8285 		rec->dtrd_offset = offs;
8286 
8287 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8288 			ecb->dte_needed = offs + rec->dtrd_size;
8289 
8290 			if (ecb->dte_needed > state->dts_needed)
8291 				state->dts_needed = ecb->dte_needed;
8292 		}
8293 
8294 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8295 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8296 			dtrace_action_t *first = agg->dtag_first, *prev;
8297 
8298 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8299 			ASSERT(wastuple);
8300 			ASSERT(aggbase != UINT32_MAX);
8301 
8302 			agg->dtag_base = aggbase;
8303 
8304 			while ((prev = first->dta_prev) != NULL &&
8305 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8306 				agg = (dtrace_aggregation_t *)prev;
8307 				first = agg->dtag_first;
8308 			}
8309 
8310 			if (prev != NULL) {
8311 				offs = prev->dta_rec.dtrd_offset +
8312 				    prev->dta_rec.dtrd_size;
8313 			} else {
8314 				offs = sizeof (dtrace_epid_t);
8315 			}
8316 			wastuple = 0;
8317 		} else {
8318 			if (!act->dta_intuple)
8319 				ecb->dte_size = offs + rec->dtrd_size;
8320 
8321 			offs += rec->dtrd_size;
8322 		}
8323 
8324 		wastuple = act->dta_intuple;
8325 	}
8326 
8327 	if ((act = ecb->dte_action) != NULL &&
8328 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8329 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8330 		/*
8331 		 * If the size is still sizeof (dtrace_epid_t), then all
8332 		 * actions store no data; set the size to 0.
8333 		 */
8334 		ecb->dte_alignment = maxalign;
8335 		ecb->dte_size = 0;
8336 
8337 		/*
8338 		 * If the needed space is still sizeof (dtrace_epid_t), then
8339 		 * all actions need no additional space; set the needed
8340 		 * size to 0.
8341 		 */
8342 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8343 			ecb->dte_needed = 0;
8344 
8345 		return;
8346 	}
8347 
8348 	/*
8349 	 * Set our alignment, and make sure that the dte_size and dte_needed
8350 	 * are aligned to the size of an EPID.
8351 	 */
8352 	ecb->dte_alignment = maxalign;
8353 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8354 	    ~(sizeof (dtrace_epid_t) - 1);
8355 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8356 	    ~(sizeof (dtrace_epid_t) - 1);
8357 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8358 }
8359 
8360 static dtrace_action_t *
8361 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8362 {
8363 	dtrace_aggregation_t *agg;
8364 	size_t size = sizeof (uint64_t);
8365 	int ntuple = desc->dtad_ntuple;
8366 	dtrace_action_t *act;
8367 	dtrace_recdesc_t *frec;
8368 	dtrace_aggid_t aggid;
8369 	dtrace_state_t *state = ecb->dte_state;
8370 
8371 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8372 	agg->dtag_ecb = ecb;
8373 
8374 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8375 
8376 	switch (desc->dtad_kind) {
8377 	case DTRACEAGG_MIN:
8378 		agg->dtag_initial = UINT64_MAX;
8379 		agg->dtag_aggregate = dtrace_aggregate_min;
8380 		break;
8381 
8382 	case DTRACEAGG_MAX:
8383 		agg->dtag_aggregate = dtrace_aggregate_max;
8384 		break;
8385 
8386 	case DTRACEAGG_COUNT:
8387 		agg->dtag_aggregate = dtrace_aggregate_count;
8388 		break;
8389 
8390 	case DTRACEAGG_QUANTIZE:
8391 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8392 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8393 		    sizeof (uint64_t);
8394 		break;
8395 
8396 	case DTRACEAGG_LQUANTIZE: {
8397 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8398 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8399 
8400 		agg->dtag_initial = desc->dtad_arg;
8401 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8402 
8403 		if (step == 0 || levels == 0)
8404 			goto err;
8405 
8406 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8407 		break;
8408 	}
8409 
8410 	case DTRACEAGG_AVG:
8411 		agg->dtag_aggregate = dtrace_aggregate_avg;
8412 		size = sizeof (uint64_t) * 2;
8413 		break;
8414 
8415 	case DTRACEAGG_SUM:
8416 		agg->dtag_aggregate = dtrace_aggregate_sum;
8417 		break;
8418 
8419 	default:
8420 		goto err;
8421 	}
8422 
8423 	agg->dtag_action.dta_rec.dtrd_size = size;
8424 
8425 	if (ntuple == 0)
8426 		goto err;
8427 
8428 	/*
8429 	 * We must make sure that we have enough actions for the n-tuple.
8430 	 */
8431 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8432 		if (DTRACEACT_ISAGG(act->dta_kind))
8433 			break;
8434 
8435 		if (--ntuple == 0) {
8436 			/*
8437 			 * This is the action with which our n-tuple begins.
8438 			 */
8439 			agg->dtag_first = act;
8440 			goto success;
8441 		}
8442 	}
8443 
8444 	/*
8445 	 * This n-tuple is short by ntuple elements.  Return failure.
8446 	 */
8447 	ASSERT(ntuple != 0);
8448 err:
8449 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8450 	return (NULL);
8451 
8452 success:
8453 	/*
8454 	 * If the last action in the tuple has a size of zero, it's actually
8455 	 * an expression argument for the aggregating action.
8456 	 */
8457 	ASSERT(ecb->dte_action_last != NULL);
8458 	act = ecb->dte_action_last;
8459 
8460 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8461 		ASSERT(act->dta_difo != NULL);
8462 
8463 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8464 			agg->dtag_hasarg = 1;
8465 	}
8466 
8467 	/*
8468 	 * We need to allocate an id for this aggregation.
8469 	 */
8470 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8471 	    VM_BESTFIT | VM_SLEEP);
8472 
8473 	if (aggid - 1 >= state->dts_naggregations) {
8474 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8475 		dtrace_aggregation_t **aggs;
8476 		int naggs = state->dts_naggregations << 1;
8477 		int onaggs = state->dts_naggregations;
8478 
8479 		ASSERT(aggid == state->dts_naggregations + 1);
8480 
8481 		if (naggs == 0) {
8482 			ASSERT(oaggs == NULL);
8483 			naggs = 1;
8484 		}
8485 
8486 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8487 
8488 		if (oaggs != NULL) {
8489 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8490 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8491 		}
8492 
8493 		state->dts_aggregations = aggs;
8494 		state->dts_naggregations = naggs;
8495 	}
8496 
8497 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8498 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8499 
8500 	frec = &agg->dtag_first->dta_rec;
8501 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8502 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8503 
8504 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8505 		ASSERT(!act->dta_intuple);
8506 		act->dta_intuple = 1;
8507 	}
8508 
8509 	return (&agg->dtag_action);
8510 }
8511 
8512 static void
8513 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8514 {
8515 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8516 	dtrace_state_t *state = ecb->dte_state;
8517 	dtrace_aggid_t aggid = agg->dtag_id;
8518 
8519 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8520 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8521 
8522 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8523 	state->dts_aggregations[aggid - 1] = NULL;
8524 
8525 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8526 }
8527 
8528 static int
8529 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8530 {
8531 	dtrace_action_t *action, *last;
8532 	dtrace_difo_t *dp = desc->dtad_difo;
8533 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8534 	uint16_t format = 0;
8535 	dtrace_recdesc_t *rec;
8536 	dtrace_state_t *state = ecb->dte_state;
8537 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8538 	uint64_t arg = desc->dtad_arg;
8539 
8540 	ASSERT(MUTEX_HELD(&dtrace_lock));
8541 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8542 
8543 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8544 		/*
8545 		 * If this is an aggregating action, there must be neither
8546 		 * a speculate nor a commit on the action chain.
8547 		 */
8548 		dtrace_action_t *act;
8549 
8550 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8551 			if (act->dta_kind == DTRACEACT_COMMIT)
8552 				return (EINVAL);
8553 
8554 			if (act->dta_kind == DTRACEACT_SPECULATE)
8555 				return (EINVAL);
8556 		}
8557 
8558 		action = dtrace_ecb_aggregation_create(ecb, desc);
8559 
8560 		if (action == NULL)
8561 			return (EINVAL);
8562 	} else {
8563 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8564 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8565 		    dp != NULL && dp->dtdo_destructive)) {
8566 			state->dts_destructive = 1;
8567 		}
8568 
8569 		switch (desc->dtad_kind) {
8570 		case DTRACEACT_PRINTF:
8571 		case DTRACEACT_PRINTA:
8572 		case DTRACEACT_SYSTEM:
8573 		case DTRACEACT_FREOPEN:
8574 			/*
8575 			 * We know that our arg is a string -- turn it into a
8576 			 * format.
8577 			 */
8578 			if (arg == NULL) {
8579 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8580 				format = 0;
8581 			} else {
8582 				ASSERT(arg != NULL);
8583 				ASSERT(arg > KERNELBASE);
8584 				format = dtrace_format_add(state,
8585 				    (char *)(uintptr_t)arg);
8586 			}
8587 
8588 			/*FALLTHROUGH*/
8589 		case DTRACEACT_LIBACT:
8590 		case DTRACEACT_DIFEXPR:
8591 			if (dp == NULL)
8592 				return (EINVAL);
8593 
8594 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8595 				break;
8596 
8597 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8598 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8599 					return (EINVAL);
8600 
8601 				size = opt[DTRACEOPT_STRSIZE];
8602 			}
8603 
8604 			break;
8605 
8606 		case DTRACEACT_STACK:
8607 			if ((nframes = arg) == 0) {
8608 				nframes = opt[DTRACEOPT_STACKFRAMES];
8609 				ASSERT(nframes > 0);
8610 				arg = nframes;
8611 			}
8612 
8613 			size = nframes * sizeof (pc_t);
8614 			break;
8615 
8616 		case DTRACEACT_JSTACK:
8617 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8618 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8619 
8620 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8621 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8622 
8623 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8624 
8625 			/*FALLTHROUGH*/
8626 		case DTRACEACT_USTACK:
8627 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8628 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8629 				strsize = DTRACE_USTACK_STRSIZE(arg);
8630 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8631 				ASSERT(nframes > 0);
8632 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8633 			}
8634 
8635 			/*
8636 			 * Save a slot for the pid.
8637 			 */
8638 			size = (nframes + 1) * sizeof (uint64_t);
8639 			size += DTRACE_USTACK_STRSIZE(arg);
8640 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8641 
8642 			break;
8643 
8644 		case DTRACEACT_SYM:
8645 		case DTRACEACT_MOD:
8646 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
8647 			    sizeof (uint64_t)) ||
8648 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8649 				return (EINVAL);
8650 			break;
8651 
8652 		case DTRACEACT_USYM:
8653 		case DTRACEACT_UMOD:
8654 		case DTRACEACT_UADDR:
8655 			if (dp == NULL ||
8656 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
8657 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8658 				return (EINVAL);
8659 
8660 			/*
8661 			 * We have a slot for the pid, plus a slot for the
8662 			 * argument.  To keep things simple (aligned with
8663 			 * bitness-neutral sizing), we store each as a 64-bit
8664 			 * quantity.
8665 			 */
8666 			size = 2 * sizeof (uint64_t);
8667 			break;
8668 
8669 		case DTRACEACT_STOP:
8670 		case DTRACEACT_BREAKPOINT:
8671 		case DTRACEACT_PANIC:
8672 			break;
8673 
8674 		case DTRACEACT_CHILL:
8675 		case DTRACEACT_DISCARD:
8676 		case DTRACEACT_RAISE:
8677 			if (dp == NULL)
8678 				return (EINVAL);
8679 			break;
8680 
8681 		case DTRACEACT_EXIT:
8682 			if (dp == NULL ||
8683 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8684 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8685 				return (EINVAL);
8686 			break;
8687 
8688 		case DTRACEACT_SPECULATE:
8689 			if (ecb->dte_size > sizeof (dtrace_epid_t))
8690 				return (EINVAL);
8691 
8692 			if (dp == NULL)
8693 				return (EINVAL);
8694 
8695 			state->dts_speculates = 1;
8696 			break;
8697 
8698 		case DTRACEACT_COMMIT: {
8699 			dtrace_action_t *act = ecb->dte_action;
8700 
8701 			for (; act != NULL; act = act->dta_next) {
8702 				if (act->dta_kind == DTRACEACT_COMMIT)
8703 					return (EINVAL);
8704 			}
8705 
8706 			if (dp == NULL)
8707 				return (EINVAL);
8708 			break;
8709 		}
8710 
8711 		default:
8712 			return (EINVAL);
8713 		}
8714 
8715 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8716 			/*
8717 			 * If this is a data-storing action or a speculate,
8718 			 * we must be sure that there isn't a commit on the
8719 			 * action chain.
8720 			 */
8721 			dtrace_action_t *act = ecb->dte_action;
8722 
8723 			for (; act != NULL; act = act->dta_next) {
8724 				if (act->dta_kind == DTRACEACT_COMMIT)
8725 					return (EINVAL);
8726 			}
8727 		}
8728 
8729 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8730 		action->dta_rec.dtrd_size = size;
8731 	}
8732 
8733 	action->dta_refcnt = 1;
8734 	rec = &action->dta_rec;
8735 	size = rec->dtrd_size;
8736 
8737 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8738 		if (!(size & mask)) {
8739 			align = mask + 1;
8740 			break;
8741 		}
8742 	}
8743 
8744 	action->dta_kind = desc->dtad_kind;
8745 
8746 	if ((action->dta_difo = dp) != NULL)
8747 		dtrace_difo_hold(dp);
8748 
8749 	rec->dtrd_action = action->dta_kind;
8750 	rec->dtrd_arg = arg;
8751 	rec->dtrd_uarg = desc->dtad_uarg;
8752 	rec->dtrd_alignment = (uint16_t)align;
8753 	rec->dtrd_format = format;
8754 
8755 	if ((last = ecb->dte_action_last) != NULL) {
8756 		ASSERT(ecb->dte_action != NULL);
8757 		action->dta_prev = last;
8758 		last->dta_next = action;
8759 	} else {
8760 		ASSERT(ecb->dte_action == NULL);
8761 		ecb->dte_action = action;
8762 	}
8763 
8764 	ecb->dte_action_last = action;
8765 
8766 	return (0);
8767 }
8768 
8769 static void
8770 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8771 {
8772 	dtrace_action_t *act = ecb->dte_action, *next;
8773 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8774 	dtrace_difo_t *dp;
8775 	uint16_t format;
8776 
8777 	if (act != NULL && act->dta_refcnt > 1) {
8778 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8779 		act->dta_refcnt--;
8780 	} else {
8781 		for (; act != NULL; act = next) {
8782 			next = act->dta_next;
8783 			ASSERT(next != NULL || act == ecb->dte_action_last);
8784 			ASSERT(act->dta_refcnt == 1);
8785 
8786 			if ((format = act->dta_rec.dtrd_format) != 0)
8787 				dtrace_format_remove(ecb->dte_state, format);
8788 
8789 			if ((dp = act->dta_difo) != NULL)
8790 				dtrace_difo_release(dp, vstate);
8791 
8792 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8793 				dtrace_ecb_aggregation_destroy(ecb, act);
8794 			} else {
8795 				kmem_free(act, sizeof (dtrace_action_t));
8796 			}
8797 		}
8798 	}
8799 
8800 	ecb->dte_action = NULL;
8801 	ecb->dte_action_last = NULL;
8802 	ecb->dte_size = sizeof (dtrace_epid_t);
8803 }
8804 
8805 static void
8806 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8807 {
8808 	/*
8809 	 * We disable the ECB by removing it from its probe.
8810 	 */
8811 	dtrace_ecb_t *pecb, *prev = NULL;
8812 	dtrace_probe_t *probe = ecb->dte_probe;
8813 
8814 	ASSERT(MUTEX_HELD(&dtrace_lock));
8815 
8816 	if (probe == NULL) {
8817 		/*
8818 		 * This is the NULL probe; there is nothing to disable.
8819 		 */
8820 		return;
8821 	}
8822 
8823 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8824 		if (pecb == ecb)
8825 			break;
8826 		prev = pecb;
8827 	}
8828 
8829 	ASSERT(pecb != NULL);
8830 
8831 	if (prev == NULL) {
8832 		probe->dtpr_ecb = ecb->dte_next;
8833 	} else {
8834 		prev->dte_next = ecb->dte_next;
8835 	}
8836 
8837 	if (ecb == probe->dtpr_ecb_last) {
8838 		ASSERT(ecb->dte_next == NULL);
8839 		probe->dtpr_ecb_last = prev;
8840 	}
8841 
8842 	/*
8843 	 * The ECB has been disconnected from the probe; now sync to assure
8844 	 * that all CPUs have seen the change before returning.
8845 	 */
8846 	dtrace_sync();
8847 
8848 	if (probe->dtpr_ecb == NULL) {
8849 		/*
8850 		 * That was the last ECB on the probe; clear the predicate
8851 		 * cache ID for the probe, disable it and sync one more time
8852 		 * to assure that we'll never hit it again.
8853 		 */
8854 		dtrace_provider_t *prov = probe->dtpr_provider;
8855 
8856 		ASSERT(ecb->dte_next == NULL);
8857 		ASSERT(probe->dtpr_ecb_last == NULL);
8858 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8859 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8860 		    probe->dtpr_id, probe->dtpr_arg);
8861 		dtrace_sync();
8862 	} else {
8863 		/*
8864 		 * There is at least one ECB remaining on the probe.  If there
8865 		 * is _exactly_ one, set the probe's predicate cache ID to be
8866 		 * the predicate cache ID of the remaining ECB.
8867 		 */
8868 		ASSERT(probe->dtpr_ecb_last != NULL);
8869 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8870 
8871 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8872 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8873 
8874 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8875 
8876 			if (p != NULL)
8877 				probe->dtpr_predcache = p->dtp_cacheid;
8878 		}
8879 
8880 		ecb->dte_next = NULL;
8881 	}
8882 }
8883 
8884 static void
8885 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8886 {
8887 	dtrace_state_t *state = ecb->dte_state;
8888 	dtrace_vstate_t *vstate = &state->dts_vstate;
8889 	dtrace_predicate_t *pred;
8890 	dtrace_epid_t epid = ecb->dte_epid;
8891 
8892 	ASSERT(MUTEX_HELD(&dtrace_lock));
8893 	ASSERT(ecb->dte_next == NULL);
8894 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8895 
8896 	if ((pred = ecb->dte_predicate) != NULL)
8897 		dtrace_predicate_release(pred, vstate);
8898 
8899 	dtrace_ecb_action_remove(ecb);
8900 
8901 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8902 	state->dts_ecbs[epid - 1] = NULL;
8903 
8904 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8905 }
8906 
8907 static dtrace_ecb_t *
8908 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8909     dtrace_enabling_t *enab)
8910 {
8911 	dtrace_ecb_t *ecb;
8912 	dtrace_predicate_t *pred;
8913 	dtrace_actdesc_t *act;
8914 	dtrace_provider_t *prov;
8915 	dtrace_ecbdesc_t *desc = enab->dten_current;
8916 
8917 	ASSERT(MUTEX_HELD(&dtrace_lock));
8918 	ASSERT(state != NULL);
8919 
8920 	ecb = dtrace_ecb_add(state, probe);
8921 	ecb->dte_uarg = desc->dted_uarg;
8922 
8923 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8924 		dtrace_predicate_hold(pred);
8925 		ecb->dte_predicate = pred;
8926 	}
8927 
8928 	if (probe != NULL) {
8929 		/*
8930 		 * If the provider shows more leg than the consumer is old
8931 		 * enough to see, we need to enable the appropriate implicit
8932 		 * predicate bits to prevent the ecb from activating at
8933 		 * revealing times.
8934 		 *
8935 		 * Providers specifying DTRACE_PRIV_USER at register time
8936 		 * are stating that they need the /proc-style privilege
8937 		 * model to be enforced, and this is what DTRACE_COND_OWNER
8938 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
8939 		 */
8940 		prov = probe->dtpr_provider;
8941 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
8942 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8943 			ecb->dte_cond |= DTRACE_COND_OWNER;
8944 
8945 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
8946 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8947 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
8948 
8949 		/*
8950 		 * If the provider shows us kernel innards and the user
8951 		 * is lacking sufficient privilege, enable the
8952 		 * DTRACE_COND_USERMODE implicit predicate.
8953 		 */
8954 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
8955 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
8956 			ecb->dte_cond |= DTRACE_COND_USERMODE;
8957 	}
8958 
8959 	if (dtrace_ecb_create_cache != NULL) {
8960 		/*
8961 		 * If we have a cached ecb, we'll use its action list instead
8962 		 * of creating our own (saving both time and space).
8963 		 */
8964 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
8965 		dtrace_action_t *act = cached->dte_action;
8966 
8967 		if (act != NULL) {
8968 			ASSERT(act->dta_refcnt > 0);
8969 			act->dta_refcnt++;
8970 			ecb->dte_action = act;
8971 			ecb->dte_action_last = cached->dte_action_last;
8972 			ecb->dte_needed = cached->dte_needed;
8973 			ecb->dte_size = cached->dte_size;
8974 			ecb->dte_alignment = cached->dte_alignment;
8975 		}
8976 
8977 		return (ecb);
8978 	}
8979 
8980 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
8981 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
8982 			dtrace_ecb_destroy(ecb);
8983 			return (NULL);
8984 		}
8985 	}
8986 
8987 	dtrace_ecb_resize(ecb);
8988 
8989 	return (dtrace_ecb_create_cache = ecb);
8990 }
8991 
8992 static int
8993 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
8994 {
8995 	dtrace_ecb_t *ecb;
8996 	dtrace_enabling_t *enab = arg;
8997 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8998 
8999 	ASSERT(state != NULL);
9000 
9001 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9002 		/*
9003 		 * This probe was created in a generation for which this
9004 		 * enabling has previously created ECBs; we don't want to
9005 		 * enable it again, so just kick out.
9006 		 */
9007 		return (DTRACE_MATCH_NEXT);
9008 	}
9009 
9010 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9011 		return (DTRACE_MATCH_DONE);
9012 
9013 	dtrace_ecb_enable(ecb);
9014 	return (DTRACE_MATCH_NEXT);
9015 }
9016 
9017 static dtrace_ecb_t *
9018 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9019 {
9020 	dtrace_ecb_t *ecb;
9021 
9022 	ASSERT(MUTEX_HELD(&dtrace_lock));
9023 
9024 	if (id == 0 || id > state->dts_necbs)
9025 		return (NULL);
9026 
9027 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9028 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9029 
9030 	return (state->dts_ecbs[id - 1]);
9031 }
9032 
9033 static dtrace_aggregation_t *
9034 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9035 {
9036 	dtrace_aggregation_t *agg;
9037 
9038 	ASSERT(MUTEX_HELD(&dtrace_lock));
9039 
9040 	if (id == 0 || id > state->dts_naggregations)
9041 		return (NULL);
9042 
9043 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9044 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9045 	    agg->dtag_id == id);
9046 
9047 	return (state->dts_aggregations[id - 1]);
9048 }
9049 
9050 /*
9051  * DTrace Buffer Functions
9052  *
9053  * The following functions manipulate DTrace buffers.  Most of these functions
9054  * are called in the context of establishing or processing consumer state;
9055  * exceptions are explicitly noted.
9056  */
9057 
9058 /*
9059  * Note:  called from cross call context.  This function switches the two
9060  * buffers on a given CPU.  The atomicity of this operation is assured by
9061  * disabling interrupts while the actual switch takes place; the disabling of
9062  * interrupts serializes the execution with any execution of dtrace_probe() on
9063  * the same CPU.
9064  */
9065 static void
9066 dtrace_buffer_switch(dtrace_buffer_t *buf)
9067 {
9068 	caddr_t tomax = buf->dtb_tomax;
9069 	caddr_t xamot = buf->dtb_xamot;
9070 	dtrace_icookie_t cookie;
9071 
9072 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9073 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9074 
9075 	cookie = dtrace_interrupt_disable();
9076 	buf->dtb_tomax = xamot;
9077 	buf->dtb_xamot = tomax;
9078 	buf->dtb_xamot_drops = buf->dtb_drops;
9079 	buf->dtb_xamot_offset = buf->dtb_offset;
9080 	buf->dtb_xamot_errors = buf->dtb_errors;
9081 	buf->dtb_xamot_flags = buf->dtb_flags;
9082 	buf->dtb_offset = 0;
9083 	buf->dtb_drops = 0;
9084 	buf->dtb_errors = 0;
9085 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9086 	dtrace_interrupt_enable(cookie);
9087 }
9088 
9089 /*
9090  * Note:  called from cross call context.  This function activates a buffer
9091  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
9092  * is guaranteed by the disabling of interrupts.
9093  */
9094 static void
9095 dtrace_buffer_activate(dtrace_state_t *state)
9096 {
9097 	dtrace_buffer_t *buf;
9098 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
9099 
9100 	buf = &state->dts_buffer[CPU->cpu_id];
9101 
9102 	if (buf->dtb_tomax != NULL) {
9103 		/*
9104 		 * We might like to assert that the buffer is marked inactive,
9105 		 * but this isn't necessarily true:  the buffer for the CPU
9106 		 * that processes the BEGIN probe has its buffer activated
9107 		 * manually.  In this case, we take the (harmless) action
9108 		 * re-clearing the bit INACTIVE bit.
9109 		 */
9110 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
9111 	}
9112 
9113 	dtrace_interrupt_enable(cookie);
9114 }
9115 
9116 static int
9117 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
9118     processorid_t cpu)
9119 {
9120 	cpu_t *cp;
9121 	dtrace_buffer_t *buf;
9122 
9123 	ASSERT(MUTEX_HELD(&cpu_lock));
9124 	ASSERT(MUTEX_HELD(&dtrace_lock));
9125 
9126 	if (size > dtrace_nonroot_maxsize &&
9127 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
9128 		return (EFBIG);
9129 
9130 	cp = cpu_list;
9131 
9132 	do {
9133 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9134 			continue;
9135 
9136 		buf = &bufs[cp->cpu_id];
9137 
9138 		/*
9139 		 * If there is already a buffer allocated for this CPU, it
9140 		 * is only possible that this is a DR event.  In this case,
9141 		 * the buffer size must match our specified size.
9142 		 */
9143 		if (buf->dtb_tomax != NULL) {
9144 			ASSERT(buf->dtb_size == size);
9145 			continue;
9146 		}
9147 
9148 		ASSERT(buf->dtb_xamot == NULL);
9149 
9150 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9151 			goto err;
9152 
9153 		buf->dtb_size = size;
9154 		buf->dtb_flags = flags;
9155 		buf->dtb_offset = 0;
9156 		buf->dtb_drops = 0;
9157 
9158 		if (flags & DTRACEBUF_NOSWITCH)
9159 			continue;
9160 
9161 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9162 			goto err;
9163 	} while ((cp = cp->cpu_next) != cpu_list);
9164 
9165 	return (0);
9166 
9167 err:
9168 	cp = cpu_list;
9169 
9170 	do {
9171 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9172 			continue;
9173 
9174 		buf = &bufs[cp->cpu_id];
9175 
9176 		if (buf->dtb_xamot != NULL) {
9177 			ASSERT(buf->dtb_tomax != NULL);
9178 			ASSERT(buf->dtb_size == size);
9179 			kmem_free(buf->dtb_xamot, size);
9180 		}
9181 
9182 		if (buf->dtb_tomax != NULL) {
9183 			ASSERT(buf->dtb_size == size);
9184 			kmem_free(buf->dtb_tomax, size);
9185 		}
9186 
9187 		buf->dtb_tomax = NULL;
9188 		buf->dtb_xamot = NULL;
9189 		buf->dtb_size = 0;
9190 	} while ((cp = cp->cpu_next) != cpu_list);
9191 
9192 	return (ENOMEM);
9193 }
9194 
9195 /*
9196  * Note:  called from probe context.  This function just increments the drop
9197  * count on a buffer.  It has been made a function to allow for the
9198  * possibility of understanding the source of mysterious drop counts.  (A
9199  * problem for which one may be particularly disappointed that DTrace cannot
9200  * be used to understand DTrace.)
9201  */
9202 static void
9203 dtrace_buffer_drop(dtrace_buffer_t *buf)
9204 {
9205 	buf->dtb_drops++;
9206 }
9207 
9208 /*
9209  * Note:  called from probe context.  This function is called to reserve space
9210  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9211  * mstate.  Returns the new offset in the buffer, or a negative value if an
9212  * error has occurred.
9213  */
9214 static intptr_t
9215 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9216     dtrace_state_t *state, dtrace_mstate_t *mstate)
9217 {
9218 	intptr_t offs = buf->dtb_offset, soffs;
9219 	intptr_t woffs;
9220 	caddr_t tomax;
9221 	size_t total;
9222 
9223 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9224 		return (-1);
9225 
9226 	if ((tomax = buf->dtb_tomax) == NULL) {
9227 		dtrace_buffer_drop(buf);
9228 		return (-1);
9229 	}
9230 
9231 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9232 		while (offs & (align - 1)) {
9233 			/*
9234 			 * Assert that our alignment is off by a number which
9235 			 * is itself sizeof (uint32_t) aligned.
9236 			 */
9237 			ASSERT(!((align - (offs & (align - 1))) &
9238 			    (sizeof (uint32_t) - 1)));
9239 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9240 			offs += sizeof (uint32_t);
9241 		}
9242 
9243 		if ((soffs = offs + needed) > buf->dtb_size) {
9244 			dtrace_buffer_drop(buf);
9245 			return (-1);
9246 		}
9247 
9248 		if (mstate == NULL)
9249 			return (offs);
9250 
9251 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9252 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9253 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9254 
9255 		return (offs);
9256 	}
9257 
9258 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9259 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9260 		    (buf->dtb_flags & DTRACEBUF_FULL))
9261 			return (-1);
9262 		goto out;
9263 	}
9264 
9265 	total = needed + (offs & (align - 1));
9266 
9267 	/*
9268 	 * For a ring buffer, life is quite a bit more complicated.  Before
9269 	 * we can store any padding, we need to adjust our wrapping offset.
9270 	 * (If we've never before wrapped or we're not about to, no adjustment
9271 	 * is required.)
9272 	 */
9273 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9274 	    offs + total > buf->dtb_size) {
9275 		woffs = buf->dtb_xamot_offset;
9276 
9277 		if (offs + total > buf->dtb_size) {
9278 			/*
9279 			 * We can't fit in the end of the buffer.  First, a
9280 			 * sanity check that we can fit in the buffer at all.
9281 			 */
9282 			if (total > buf->dtb_size) {
9283 				dtrace_buffer_drop(buf);
9284 				return (-1);
9285 			}
9286 
9287 			/*
9288 			 * We're going to be storing at the top of the buffer,
9289 			 * so now we need to deal with the wrapped offset.  We
9290 			 * only reset our wrapped offset to 0 if it is
9291 			 * currently greater than the current offset.  If it
9292 			 * is less than the current offset, it is because a
9293 			 * previous allocation induced a wrap -- but the
9294 			 * allocation didn't subsequently take the space due
9295 			 * to an error or false predicate evaluation.  In this
9296 			 * case, we'll just leave the wrapped offset alone: if
9297 			 * the wrapped offset hasn't been advanced far enough
9298 			 * for this allocation, it will be adjusted in the
9299 			 * lower loop.
9300 			 */
9301 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9302 				if (woffs >= offs)
9303 					woffs = 0;
9304 			} else {
9305 				woffs = 0;
9306 			}
9307 
9308 			/*
9309 			 * Now we know that we're going to be storing to the
9310 			 * top of the buffer and that there is room for us
9311 			 * there.  We need to clear the buffer from the current
9312 			 * offset to the end (there may be old gunk there).
9313 			 */
9314 			while (offs < buf->dtb_size)
9315 				tomax[offs++] = 0;
9316 
9317 			/*
9318 			 * We need to set our offset to zero.  And because we
9319 			 * are wrapping, we need to set the bit indicating as
9320 			 * much.  We can also adjust our needed space back
9321 			 * down to the space required by the ECB -- we know
9322 			 * that the top of the buffer is aligned.
9323 			 */
9324 			offs = 0;
9325 			total = needed;
9326 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9327 		} else {
9328 			/*
9329 			 * There is room for us in the buffer, so we simply
9330 			 * need to check the wrapped offset.
9331 			 */
9332 			if (woffs < offs) {
9333 				/*
9334 				 * The wrapped offset is less than the offset.
9335 				 * This can happen if we allocated buffer space
9336 				 * that induced a wrap, but then we didn't
9337 				 * subsequently take the space due to an error
9338 				 * or false predicate evaluation.  This is
9339 				 * okay; we know that _this_ allocation isn't
9340 				 * going to induce a wrap.  We still can't
9341 				 * reset the wrapped offset to be zero,
9342 				 * however: the space may have been trashed in
9343 				 * the previous failed probe attempt.  But at
9344 				 * least the wrapped offset doesn't need to
9345 				 * be adjusted at all...
9346 				 */
9347 				goto out;
9348 			}
9349 		}
9350 
9351 		while (offs + total > woffs) {
9352 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9353 			size_t size;
9354 
9355 			if (epid == DTRACE_EPIDNONE) {
9356 				size = sizeof (uint32_t);
9357 			} else {
9358 				ASSERT(epid <= state->dts_necbs);
9359 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9360 
9361 				size = state->dts_ecbs[epid - 1]->dte_size;
9362 			}
9363 
9364 			ASSERT(woffs + size <= buf->dtb_size);
9365 			ASSERT(size != 0);
9366 
9367 			if (woffs + size == buf->dtb_size) {
9368 				/*
9369 				 * We've reached the end of the buffer; we want
9370 				 * to set the wrapped offset to 0 and break
9371 				 * out.  However, if the offs is 0, then we're
9372 				 * in a strange edge-condition:  the amount of
9373 				 * space that we want to reserve plus the size
9374 				 * of the record that we're overwriting is
9375 				 * greater than the size of the buffer.  This
9376 				 * is problematic because if we reserve the
9377 				 * space but subsequently don't consume it (due
9378 				 * to a failed predicate or error) the wrapped
9379 				 * offset will be 0 -- yet the EPID at offset 0
9380 				 * will not be committed.  This situation is
9381 				 * relatively easy to deal with:  if we're in
9382 				 * this case, the buffer is indistinguishable
9383 				 * from one that hasn't wrapped; we need only
9384 				 * finish the job by clearing the wrapped bit,
9385 				 * explicitly setting the offset to be 0, and
9386 				 * zero'ing out the old data in the buffer.
9387 				 */
9388 				if (offs == 0) {
9389 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9390 					buf->dtb_offset = 0;
9391 					woffs = total;
9392 
9393 					while (woffs < buf->dtb_size)
9394 						tomax[woffs++] = 0;
9395 				}
9396 
9397 				woffs = 0;
9398 				break;
9399 			}
9400 
9401 			woffs += size;
9402 		}
9403 
9404 		/*
9405 		 * We have a wrapped offset.  It may be that the wrapped offset
9406 		 * has become zero -- that's okay.
9407 		 */
9408 		buf->dtb_xamot_offset = woffs;
9409 	}
9410 
9411 out:
9412 	/*
9413 	 * Now we can plow the buffer with any necessary padding.
9414 	 */
9415 	while (offs & (align - 1)) {
9416 		/*
9417 		 * Assert that our alignment is off by a number which
9418 		 * is itself sizeof (uint32_t) aligned.
9419 		 */
9420 		ASSERT(!((align - (offs & (align - 1))) &
9421 		    (sizeof (uint32_t) - 1)));
9422 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9423 		offs += sizeof (uint32_t);
9424 	}
9425 
9426 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9427 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9428 			buf->dtb_flags |= DTRACEBUF_FULL;
9429 			return (-1);
9430 		}
9431 	}
9432 
9433 	if (mstate == NULL)
9434 		return (offs);
9435 
9436 	/*
9437 	 * For ring buffers and fill buffers, the scratch space is always
9438 	 * the inactive buffer.
9439 	 */
9440 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9441 	mstate->dtms_scratch_size = buf->dtb_size;
9442 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9443 
9444 	return (offs);
9445 }
9446 
9447 static void
9448 dtrace_buffer_polish(dtrace_buffer_t *buf)
9449 {
9450 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9451 	ASSERT(MUTEX_HELD(&dtrace_lock));
9452 
9453 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9454 		return;
9455 
9456 	/*
9457 	 * We need to polish the ring buffer.  There are three cases:
9458 	 *
9459 	 * - The first (and presumably most common) is that there is no gap
9460 	 *   between the buffer offset and the wrapped offset.  In this case,
9461 	 *   there is nothing in the buffer that isn't valid data; we can
9462 	 *   mark the buffer as polished and return.
9463 	 *
9464 	 * - The second (less common than the first but still more common
9465 	 *   than the third) is that there is a gap between the buffer offset
9466 	 *   and the wrapped offset, and the wrapped offset is larger than the
9467 	 *   buffer offset.  This can happen because of an alignment issue, or
9468 	 *   can happen because of a call to dtrace_buffer_reserve() that
9469 	 *   didn't subsequently consume the buffer space.  In this case,
9470 	 *   we need to zero the data from the buffer offset to the wrapped
9471 	 *   offset.
9472 	 *
9473 	 * - The third (and least common) is that there is a gap between the
9474 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9475 	 *   _less_ than the buffer offset.  This can only happen because a
9476 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9477 	 *   was not subsequently consumed.  In this case, we need to zero the
9478 	 *   space from the offset to the end of the buffer _and_ from the
9479 	 *   top of the buffer to the wrapped offset.
9480 	 */
9481 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9482 		bzero(buf->dtb_tomax + buf->dtb_offset,
9483 		    buf->dtb_xamot_offset - buf->dtb_offset);
9484 	}
9485 
9486 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9487 		bzero(buf->dtb_tomax + buf->dtb_offset,
9488 		    buf->dtb_size - buf->dtb_offset);
9489 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9490 	}
9491 }
9492 
9493 static void
9494 dtrace_buffer_free(dtrace_buffer_t *bufs)
9495 {
9496 	int i;
9497 
9498 	for (i = 0; i < NCPU; i++) {
9499 		dtrace_buffer_t *buf = &bufs[i];
9500 
9501 		if (buf->dtb_tomax == NULL) {
9502 			ASSERT(buf->dtb_xamot == NULL);
9503 			ASSERT(buf->dtb_size == 0);
9504 			continue;
9505 		}
9506 
9507 		if (buf->dtb_xamot != NULL) {
9508 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9509 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9510 		}
9511 
9512 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9513 		buf->dtb_size = 0;
9514 		buf->dtb_tomax = NULL;
9515 		buf->dtb_xamot = NULL;
9516 	}
9517 }
9518 
9519 /*
9520  * DTrace Enabling Functions
9521  */
9522 static dtrace_enabling_t *
9523 dtrace_enabling_create(dtrace_vstate_t *vstate)
9524 {
9525 	dtrace_enabling_t *enab;
9526 
9527 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9528 	enab->dten_vstate = vstate;
9529 
9530 	return (enab);
9531 }
9532 
9533 static void
9534 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9535 {
9536 	dtrace_ecbdesc_t **ndesc;
9537 	size_t osize, nsize;
9538 
9539 	/*
9540 	 * We can't add to enablings after we've enabled them, or after we've
9541 	 * retained them.
9542 	 */
9543 	ASSERT(enab->dten_probegen == 0);
9544 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9545 
9546 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9547 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9548 		return;
9549 	}
9550 
9551 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9552 
9553 	if (enab->dten_maxdesc == 0) {
9554 		enab->dten_maxdesc = 1;
9555 	} else {
9556 		enab->dten_maxdesc <<= 1;
9557 	}
9558 
9559 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9560 
9561 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9562 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9563 	bcopy(enab->dten_desc, ndesc, osize);
9564 	kmem_free(enab->dten_desc, osize);
9565 
9566 	enab->dten_desc = ndesc;
9567 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9568 }
9569 
9570 static void
9571 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9572     dtrace_probedesc_t *pd)
9573 {
9574 	dtrace_ecbdesc_t *new;
9575 	dtrace_predicate_t *pred;
9576 	dtrace_actdesc_t *act;
9577 
9578 	/*
9579 	 * We're going to create a new ECB description that matches the
9580 	 * specified ECB in every way, but has the specified probe description.
9581 	 */
9582 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9583 
9584 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9585 		dtrace_predicate_hold(pred);
9586 
9587 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9588 		dtrace_actdesc_hold(act);
9589 
9590 	new->dted_action = ecb->dted_action;
9591 	new->dted_pred = ecb->dted_pred;
9592 	new->dted_probe = *pd;
9593 	new->dted_uarg = ecb->dted_uarg;
9594 
9595 	dtrace_enabling_add(enab, new);
9596 }
9597 
9598 static void
9599 dtrace_enabling_dump(dtrace_enabling_t *enab)
9600 {
9601 	int i;
9602 
9603 	for (i = 0; i < enab->dten_ndesc; i++) {
9604 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9605 
9606 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9607 		    desc->dtpd_provider, desc->dtpd_mod,
9608 		    desc->dtpd_func, desc->dtpd_name);
9609 	}
9610 }
9611 
9612 static void
9613 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9614 {
9615 	int i;
9616 	dtrace_ecbdesc_t *ep;
9617 	dtrace_vstate_t *vstate = enab->dten_vstate;
9618 
9619 	ASSERT(MUTEX_HELD(&dtrace_lock));
9620 
9621 	for (i = 0; i < enab->dten_ndesc; i++) {
9622 		dtrace_actdesc_t *act, *next;
9623 		dtrace_predicate_t *pred;
9624 
9625 		ep = enab->dten_desc[i];
9626 
9627 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9628 			dtrace_predicate_release(pred, vstate);
9629 
9630 		for (act = ep->dted_action; act != NULL; act = next) {
9631 			next = act->dtad_next;
9632 			dtrace_actdesc_release(act, vstate);
9633 		}
9634 
9635 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9636 	}
9637 
9638 	kmem_free(enab->dten_desc,
9639 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9640 
9641 	/*
9642 	 * If this was a retained enabling, decrement the dts_nretained count
9643 	 * and take it off of the dtrace_retained list.
9644 	 */
9645 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9646 	    dtrace_retained == enab) {
9647 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9648 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9649 		enab->dten_vstate->dtvs_state->dts_nretained--;
9650 	}
9651 
9652 	if (enab->dten_prev == NULL) {
9653 		if (dtrace_retained == enab) {
9654 			dtrace_retained = enab->dten_next;
9655 
9656 			if (dtrace_retained != NULL)
9657 				dtrace_retained->dten_prev = NULL;
9658 		}
9659 	} else {
9660 		ASSERT(enab != dtrace_retained);
9661 		ASSERT(dtrace_retained != NULL);
9662 		enab->dten_prev->dten_next = enab->dten_next;
9663 	}
9664 
9665 	if (enab->dten_next != NULL) {
9666 		ASSERT(dtrace_retained != NULL);
9667 		enab->dten_next->dten_prev = enab->dten_prev;
9668 	}
9669 
9670 	kmem_free(enab, sizeof (dtrace_enabling_t));
9671 }
9672 
9673 static int
9674 dtrace_enabling_retain(dtrace_enabling_t *enab)
9675 {
9676 	dtrace_state_t *state;
9677 
9678 	ASSERT(MUTEX_HELD(&dtrace_lock));
9679 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9680 	ASSERT(enab->dten_vstate != NULL);
9681 
9682 	state = enab->dten_vstate->dtvs_state;
9683 	ASSERT(state != NULL);
9684 
9685 	/*
9686 	 * We only allow each state to retain dtrace_retain_max enablings.
9687 	 */
9688 	if (state->dts_nretained >= dtrace_retain_max)
9689 		return (ENOSPC);
9690 
9691 	state->dts_nretained++;
9692 
9693 	if (dtrace_retained == NULL) {
9694 		dtrace_retained = enab;
9695 		return (0);
9696 	}
9697 
9698 	enab->dten_next = dtrace_retained;
9699 	dtrace_retained->dten_prev = enab;
9700 	dtrace_retained = enab;
9701 
9702 	return (0);
9703 }
9704 
9705 static int
9706 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9707     dtrace_probedesc_t *create)
9708 {
9709 	dtrace_enabling_t *new, *enab;
9710 	int found = 0, err = ENOENT;
9711 
9712 	ASSERT(MUTEX_HELD(&dtrace_lock));
9713 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9714 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9715 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9716 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9717 
9718 	new = dtrace_enabling_create(&state->dts_vstate);
9719 
9720 	/*
9721 	 * Iterate over all retained enablings, looking for enablings that
9722 	 * match the specified state.
9723 	 */
9724 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9725 		int i;
9726 
9727 		/*
9728 		 * dtvs_state can only be NULL for helper enablings -- and
9729 		 * helper enablings can't be retained.
9730 		 */
9731 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9732 
9733 		if (enab->dten_vstate->dtvs_state != state)
9734 			continue;
9735 
9736 		/*
9737 		 * Now iterate over each probe description; we're looking for
9738 		 * an exact match to the specified probe description.
9739 		 */
9740 		for (i = 0; i < enab->dten_ndesc; i++) {
9741 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9742 			dtrace_probedesc_t *pd = &ep->dted_probe;
9743 
9744 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9745 				continue;
9746 
9747 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9748 				continue;
9749 
9750 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9751 				continue;
9752 
9753 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9754 				continue;
9755 
9756 			/*
9757 			 * We have a winning probe!  Add it to our growing
9758 			 * enabling.
9759 			 */
9760 			found = 1;
9761 			dtrace_enabling_addlike(new, ep, create);
9762 		}
9763 	}
9764 
9765 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9766 		dtrace_enabling_destroy(new);
9767 		return (err);
9768 	}
9769 
9770 	return (0);
9771 }
9772 
9773 static void
9774 dtrace_enabling_retract(dtrace_state_t *state)
9775 {
9776 	dtrace_enabling_t *enab, *next;
9777 
9778 	ASSERT(MUTEX_HELD(&dtrace_lock));
9779 
9780 	/*
9781 	 * Iterate over all retained enablings, destroy the enablings retained
9782 	 * for the specified state.
9783 	 */
9784 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9785 		next = enab->dten_next;
9786 
9787 		/*
9788 		 * dtvs_state can only be NULL for helper enablings -- and
9789 		 * helper enablings can't be retained.
9790 		 */
9791 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9792 
9793 		if (enab->dten_vstate->dtvs_state == state) {
9794 			ASSERT(state->dts_nretained > 0);
9795 			dtrace_enabling_destroy(enab);
9796 		}
9797 	}
9798 
9799 	ASSERT(state->dts_nretained == 0);
9800 }
9801 
9802 static int
9803 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9804 {
9805 	int i = 0;
9806 	int matched = 0;
9807 
9808 	ASSERT(MUTEX_HELD(&cpu_lock));
9809 	ASSERT(MUTEX_HELD(&dtrace_lock));
9810 
9811 	for (i = 0; i < enab->dten_ndesc; i++) {
9812 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9813 
9814 		enab->dten_current = ep;
9815 		enab->dten_error = 0;
9816 
9817 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9818 
9819 		if (enab->dten_error != 0) {
9820 			/*
9821 			 * If we get an error half-way through enabling the
9822 			 * probes, we kick out -- perhaps with some number of
9823 			 * them enabled.  Leaving enabled probes enabled may
9824 			 * be slightly confusing for user-level, but we expect
9825 			 * that no one will attempt to actually drive on in
9826 			 * the face of such errors.  If this is an anonymous
9827 			 * enabling (indicated with a NULL nmatched pointer),
9828 			 * we cmn_err() a message.  We aren't expecting to
9829 			 * get such an error -- such as it can exist at all,
9830 			 * it would be a result of corrupted DOF in the driver
9831 			 * properties.
9832 			 */
9833 			if (nmatched == NULL) {
9834 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9835 				    "error on %p: %d", (void *)ep,
9836 				    enab->dten_error);
9837 			}
9838 
9839 			return (enab->dten_error);
9840 		}
9841 	}
9842 
9843 	enab->dten_probegen = dtrace_probegen;
9844 	if (nmatched != NULL)
9845 		*nmatched = matched;
9846 
9847 	return (0);
9848 }
9849 
9850 static void
9851 dtrace_enabling_matchall(void)
9852 {
9853 	dtrace_enabling_t *enab;
9854 
9855 	mutex_enter(&cpu_lock);
9856 	mutex_enter(&dtrace_lock);
9857 
9858 	/*
9859 	 * Because we can be called after dtrace_detach() has been called, we
9860 	 * cannot assert that there are retained enablings.  We can safely
9861 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9862 	 * end of dtrace_detach() will block pending our completion.
9863 	 */
9864 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9865 		(void) dtrace_enabling_match(enab, NULL);
9866 
9867 	mutex_exit(&dtrace_lock);
9868 	mutex_exit(&cpu_lock);
9869 }
9870 
9871 static int
9872 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9873 {
9874 	dtrace_enabling_t *enab;
9875 	int matched, total = 0, err;
9876 
9877 	ASSERT(MUTEX_HELD(&cpu_lock));
9878 	ASSERT(MUTEX_HELD(&dtrace_lock));
9879 
9880 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9881 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9882 
9883 		if (enab->dten_vstate->dtvs_state != state)
9884 			continue;
9885 
9886 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9887 			return (err);
9888 
9889 		total += matched;
9890 	}
9891 
9892 	if (nmatched != NULL)
9893 		*nmatched = total;
9894 
9895 	return (0);
9896 }
9897 
9898 /*
9899  * If an enabling is to be enabled without having matched probes (that is, if
9900  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9901  * enabling must be _primed_ by creating an ECB for every ECB description.
9902  * This must be done to assure that we know the number of speculations, the
9903  * number of aggregations, the minimum buffer size needed, etc. before we
9904  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9905  * enabling any probes, we create ECBs for every ECB decription, but with a
9906  * NULL probe -- which is exactly what this function does.
9907  */
9908 static void
9909 dtrace_enabling_prime(dtrace_state_t *state)
9910 {
9911 	dtrace_enabling_t *enab;
9912 	int i;
9913 
9914 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9915 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9916 
9917 		if (enab->dten_vstate->dtvs_state != state)
9918 			continue;
9919 
9920 		/*
9921 		 * We don't want to prime an enabling more than once, lest
9922 		 * we allow a malicious user to induce resource exhaustion.
9923 		 * (The ECBs that result from priming an enabling aren't
9924 		 * leaked -- but they also aren't deallocated until the
9925 		 * consumer state is destroyed.)
9926 		 */
9927 		if (enab->dten_primed)
9928 			continue;
9929 
9930 		for (i = 0; i < enab->dten_ndesc; i++) {
9931 			enab->dten_current = enab->dten_desc[i];
9932 			(void) dtrace_probe_enable(NULL, enab);
9933 		}
9934 
9935 		enab->dten_primed = 1;
9936 	}
9937 }
9938 
9939 /*
9940  * Called to indicate that probes should be provided due to retained
9941  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
9942  * must take an initial lap through the enabling calling the dtps_provide()
9943  * entry point explicitly to allow for autocreated probes.
9944  */
9945 static void
9946 dtrace_enabling_provide(dtrace_provider_t *prv)
9947 {
9948 	int i, all = 0;
9949 	dtrace_probedesc_t desc;
9950 
9951 	ASSERT(MUTEX_HELD(&dtrace_lock));
9952 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9953 
9954 	if (prv == NULL) {
9955 		all = 1;
9956 		prv = dtrace_provider;
9957 	}
9958 
9959 	do {
9960 		dtrace_enabling_t *enab = dtrace_retained;
9961 		void *parg = prv->dtpv_arg;
9962 
9963 		for (; enab != NULL; enab = enab->dten_next) {
9964 			for (i = 0; i < enab->dten_ndesc; i++) {
9965 				desc = enab->dten_desc[i]->dted_probe;
9966 				mutex_exit(&dtrace_lock);
9967 				prv->dtpv_pops.dtps_provide(parg, &desc);
9968 				mutex_enter(&dtrace_lock);
9969 			}
9970 		}
9971 	} while (all && (prv = prv->dtpv_next) != NULL);
9972 
9973 	mutex_exit(&dtrace_lock);
9974 	dtrace_probe_provide(NULL, all ? NULL : prv);
9975 	mutex_enter(&dtrace_lock);
9976 }
9977 
9978 /*
9979  * DTrace DOF Functions
9980  */
9981 /*ARGSUSED*/
9982 static void
9983 dtrace_dof_error(dof_hdr_t *dof, const char *str)
9984 {
9985 	if (dtrace_err_verbose)
9986 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
9987 
9988 #ifdef DTRACE_ERRDEBUG
9989 	dtrace_errdebug(str);
9990 #endif
9991 }
9992 
9993 /*
9994  * Create DOF out of a currently enabled state.  Right now, we only create
9995  * DOF containing the run-time options -- but this could be expanded to create
9996  * complete DOF representing the enabled state.
9997  */
9998 static dof_hdr_t *
9999 dtrace_dof_create(dtrace_state_t *state)
10000 {
10001 	dof_hdr_t *dof;
10002 	dof_sec_t *sec;
10003 	dof_optdesc_t *opt;
10004 	int i, len = sizeof (dof_hdr_t) +
10005 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10006 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10007 
10008 	ASSERT(MUTEX_HELD(&dtrace_lock));
10009 
10010 	dof = kmem_zalloc(len, KM_SLEEP);
10011 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10012 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10013 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10014 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10015 
10016 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10017 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10018 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION_1;
10019 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10020 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10021 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10022 
10023 	dof->dofh_flags = 0;
10024 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10025 	dof->dofh_secsize = sizeof (dof_sec_t);
10026 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10027 	dof->dofh_secoff = sizeof (dof_hdr_t);
10028 	dof->dofh_loadsz = len;
10029 	dof->dofh_filesz = len;
10030 	dof->dofh_pad = 0;
10031 
10032 	/*
10033 	 * Fill in the option section header...
10034 	 */
10035 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10036 	sec->dofs_type = DOF_SECT_OPTDESC;
10037 	sec->dofs_align = sizeof (uint64_t);
10038 	sec->dofs_flags = DOF_SECF_LOAD;
10039 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10040 
10041 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10042 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10043 
10044 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10045 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10046 
10047 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10048 		opt[i].dofo_option = i;
10049 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10050 		opt[i].dofo_value = state->dts_options[i];
10051 	}
10052 
10053 	return (dof);
10054 }
10055 
10056 static dof_hdr_t *
10057 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10058 {
10059 	dof_hdr_t hdr, *dof;
10060 
10061 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10062 
10063 	/*
10064 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10065 	 */
10066 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10067 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10068 		*errp = EFAULT;
10069 		return (NULL);
10070 	}
10071 
10072 	/*
10073 	 * Now we'll allocate the entire DOF and copy it in -- provided
10074 	 * that the length isn't outrageous.
10075 	 */
10076 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10077 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10078 		*errp = E2BIG;
10079 		return (NULL);
10080 	}
10081 
10082 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10083 		dtrace_dof_error(&hdr, "invalid load size");
10084 		*errp = EINVAL;
10085 		return (NULL);
10086 	}
10087 
10088 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10089 
10090 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10091 		kmem_free(dof, hdr.dofh_loadsz);
10092 		*errp = EFAULT;
10093 		return (NULL);
10094 	}
10095 
10096 	return (dof);
10097 }
10098 
10099 static dof_hdr_t *
10100 dtrace_dof_property(const char *name)
10101 {
10102 	uchar_t *buf;
10103 	uint64_t loadsz;
10104 	unsigned int len, i;
10105 	dof_hdr_t *dof;
10106 
10107 	/*
10108 	 * Unfortunately, array of values in .conf files are always (and
10109 	 * only) interpreted to be integer arrays.  We must read our DOF
10110 	 * as an integer array, and then squeeze it into a byte array.
10111 	 */
10112 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
10113 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
10114 		return (NULL);
10115 
10116 	for (i = 0; i < len; i++)
10117 		buf[i] = (uchar_t)(((int *)buf)[i]);
10118 
10119 	if (len < sizeof (dof_hdr_t)) {
10120 		ddi_prop_free(buf);
10121 		dtrace_dof_error(NULL, "truncated header");
10122 		return (NULL);
10123 	}
10124 
10125 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
10126 		ddi_prop_free(buf);
10127 		dtrace_dof_error(NULL, "truncated DOF");
10128 		return (NULL);
10129 	}
10130 
10131 	if (loadsz >= dtrace_dof_maxsize) {
10132 		ddi_prop_free(buf);
10133 		dtrace_dof_error(NULL, "oversized DOF");
10134 		return (NULL);
10135 	}
10136 
10137 	dof = kmem_alloc(loadsz, KM_SLEEP);
10138 	bcopy(buf, dof, loadsz);
10139 	ddi_prop_free(buf);
10140 
10141 	return (dof);
10142 }
10143 
10144 static void
10145 dtrace_dof_destroy(dof_hdr_t *dof)
10146 {
10147 	kmem_free(dof, dof->dofh_loadsz);
10148 }
10149 
10150 /*
10151  * Return the dof_sec_t pointer corresponding to a given section index.  If the
10152  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
10153  * a type other than DOF_SECT_NONE is specified, the header is checked against
10154  * this type and NULL is returned if the types do not match.
10155  */
10156 static dof_sec_t *
10157 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
10158 {
10159 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
10160 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
10161 
10162 	if (i >= dof->dofh_secnum) {
10163 		dtrace_dof_error(dof, "referenced section index is invalid");
10164 		return (NULL);
10165 	}
10166 
10167 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
10168 		dtrace_dof_error(dof, "referenced section is not loadable");
10169 		return (NULL);
10170 	}
10171 
10172 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
10173 		dtrace_dof_error(dof, "referenced section is the wrong type");
10174 		return (NULL);
10175 	}
10176 
10177 	return (sec);
10178 }
10179 
10180 static dtrace_probedesc_t *
10181 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
10182 {
10183 	dof_probedesc_t *probe;
10184 	dof_sec_t *strtab;
10185 	uintptr_t daddr = (uintptr_t)dof;
10186 	uintptr_t str;
10187 	size_t size;
10188 
10189 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10190 		dtrace_dof_error(dof, "invalid probe section");
10191 		return (NULL);
10192 	}
10193 
10194 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10195 		dtrace_dof_error(dof, "bad alignment in probe description");
10196 		return (NULL);
10197 	}
10198 
10199 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10200 		dtrace_dof_error(dof, "truncated probe description");
10201 		return (NULL);
10202 	}
10203 
10204 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10205 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10206 
10207 	if (strtab == NULL)
10208 		return (NULL);
10209 
10210 	str = daddr + strtab->dofs_offset;
10211 	size = strtab->dofs_size;
10212 
10213 	if (probe->dofp_provider >= strtab->dofs_size) {
10214 		dtrace_dof_error(dof, "corrupt probe provider");
10215 		return (NULL);
10216 	}
10217 
10218 	(void) strncpy(desc->dtpd_provider,
10219 	    (char *)(str + probe->dofp_provider),
10220 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10221 
10222 	if (probe->dofp_mod >= strtab->dofs_size) {
10223 		dtrace_dof_error(dof, "corrupt probe module");
10224 		return (NULL);
10225 	}
10226 
10227 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10228 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10229 
10230 	if (probe->dofp_func >= strtab->dofs_size) {
10231 		dtrace_dof_error(dof, "corrupt probe function");
10232 		return (NULL);
10233 	}
10234 
10235 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10236 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10237 
10238 	if (probe->dofp_name >= strtab->dofs_size) {
10239 		dtrace_dof_error(dof, "corrupt probe name");
10240 		return (NULL);
10241 	}
10242 
10243 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10244 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10245 
10246 	return (desc);
10247 }
10248 
10249 static dtrace_difo_t *
10250 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10251     cred_t *cr)
10252 {
10253 	dtrace_difo_t *dp;
10254 	size_t ttl = 0;
10255 	dof_difohdr_t *dofd;
10256 	uintptr_t daddr = (uintptr_t)dof;
10257 	size_t max = dtrace_difo_maxsize;
10258 	int i, l, n;
10259 
10260 	static const struct {
10261 		int section;
10262 		int bufoffs;
10263 		int lenoffs;
10264 		int entsize;
10265 		int align;
10266 		const char *msg;
10267 	} difo[] = {
10268 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10269 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10270 		sizeof (dif_instr_t), "multiple DIF sections" },
10271 
10272 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10273 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10274 		sizeof (uint64_t), "multiple integer tables" },
10275 
10276 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10277 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10278 		sizeof (char), "multiple string tables" },
10279 
10280 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10281 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10282 		sizeof (uint_t), "multiple variable tables" },
10283 
10284 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10285 	};
10286 
10287 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10288 		dtrace_dof_error(dof, "invalid DIFO header section");
10289 		return (NULL);
10290 	}
10291 
10292 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10293 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10294 		return (NULL);
10295 	}
10296 
10297 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10298 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10299 		dtrace_dof_error(dof, "bad size in DIFO header");
10300 		return (NULL);
10301 	}
10302 
10303 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10304 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10305 
10306 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10307 	dp->dtdo_rtype = dofd->dofd_rtype;
10308 
10309 	for (l = 0; l < n; l++) {
10310 		dof_sec_t *subsec;
10311 		void **bufp;
10312 		uint32_t *lenp;
10313 
10314 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10315 		    dofd->dofd_links[l])) == NULL)
10316 			goto err; /* invalid section link */
10317 
10318 		if (ttl + subsec->dofs_size > max) {
10319 			dtrace_dof_error(dof, "exceeds maximum size");
10320 			goto err;
10321 		}
10322 
10323 		ttl += subsec->dofs_size;
10324 
10325 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10326 			if (subsec->dofs_type != difo[i].section)
10327 				continue;
10328 
10329 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10330 				dtrace_dof_error(dof, "section not loaded");
10331 				goto err;
10332 			}
10333 
10334 			if (subsec->dofs_align != difo[i].align) {
10335 				dtrace_dof_error(dof, "bad alignment");
10336 				goto err;
10337 			}
10338 
10339 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10340 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10341 
10342 			if (*bufp != NULL) {
10343 				dtrace_dof_error(dof, difo[i].msg);
10344 				goto err;
10345 			}
10346 
10347 			if (difo[i].entsize != subsec->dofs_entsize) {
10348 				dtrace_dof_error(dof, "entry size mismatch");
10349 				goto err;
10350 			}
10351 
10352 			if (subsec->dofs_entsize != 0 &&
10353 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10354 				dtrace_dof_error(dof, "corrupt entry size");
10355 				goto err;
10356 			}
10357 
10358 			*lenp = subsec->dofs_size;
10359 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10360 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10361 			    *bufp, subsec->dofs_size);
10362 
10363 			if (subsec->dofs_entsize != 0)
10364 				*lenp /= subsec->dofs_entsize;
10365 
10366 			break;
10367 		}
10368 
10369 		/*
10370 		 * If we encounter a loadable DIFO sub-section that is not
10371 		 * known to us, assume this is a broken program and fail.
10372 		 */
10373 		if (difo[i].section == DOF_SECT_NONE &&
10374 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10375 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10376 			goto err;
10377 		}
10378 	}
10379 
10380 	if (dp->dtdo_buf == NULL) {
10381 		/*
10382 		 * We can't have a DIF object without DIF text.
10383 		 */
10384 		dtrace_dof_error(dof, "missing DIF text");
10385 		goto err;
10386 	}
10387 
10388 	/*
10389 	 * Before we validate the DIF object, run through the variable table
10390 	 * looking for the strings -- if any of their size are under, we'll set
10391 	 * their size to be the system-wide default string size.  Note that
10392 	 * this should _not_ happen if the "strsize" option has been set --
10393 	 * in this case, the compiler should have set the size to reflect the
10394 	 * setting of the option.
10395 	 */
10396 	for (i = 0; i < dp->dtdo_varlen; i++) {
10397 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10398 		dtrace_diftype_t *t = &v->dtdv_type;
10399 
10400 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10401 			continue;
10402 
10403 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10404 			t->dtdt_size = dtrace_strsize_default;
10405 	}
10406 
10407 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10408 		goto err;
10409 
10410 	dtrace_difo_init(dp, vstate);
10411 	return (dp);
10412 
10413 err:
10414 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10415 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10416 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10417 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10418 
10419 	kmem_free(dp, sizeof (dtrace_difo_t));
10420 	return (NULL);
10421 }
10422 
10423 static dtrace_predicate_t *
10424 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10425     cred_t *cr)
10426 {
10427 	dtrace_difo_t *dp;
10428 
10429 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10430 		return (NULL);
10431 
10432 	return (dtrace_predicate_create(dp));
10433 }
10434 
10435 static dtrace_actdesc_t *
10436 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10437     cred_t *cr)
10438 {
10439 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10440 	dof_actdesc_t *desc;
10441 	dof_sec_t *difosec;
10442 	size_t offs;
10443 	uintptr_t daddr = (uintptr_t)dof;
10444 	uint64_t arg;
10445 	dtrace_actkind_t kind;
10446 
10447 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10448 		dtrace_dof_error(dof, "invalid action section");
10449 		return (NULL);
10450 	}
10451 
10452 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10453 		dtrace_dof_error(dof, "truncated action description");
10454 		return (NULL);
10455 	}
10456 
10457 	if (sec->dofs_align != sizeof (uint64_t)) {
10458 		dtrace_dof_error(dof, "bad alignment in action description");
10459 		return (NULL);
10460 	}
10461 
10462 	if (sec->dofs_size < sec->dofs_entsize) {
10463 		dtrace_dof_error(dof, "section entry size exceeds total size");
10464 		return (NULL);
10465 	}
10466 
10467 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10468 		dtrace_dof_error(dof, "bad entry size in action description");
10469 		return (NULL);
10470 	}
10471 
10472 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10473 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10474 		return (NULL);
10475 	}
10476 
10477 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10478 		desc = (dof_actdesc_t *)(daddr +
10479 		    (uintptr_t)sec->dofs_offset + offs);
10480 		kind = (dtrace_actkind_t)desc->dofa_kind;
10481 
10482 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10483 		    (kind != DTRACEACT_PRINTA ||
10484 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10485 			dof_sec_t *strtab;
10486 			char *str, *fmt;
10487 			uint64_t i;
10488 
10489 			/*
10490 			 * printf()-like actions must have a format string.
10491 			 */
10492 			if ((strtab = dtrace_dof_sect(dof,
10493 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10494 				goto err;
10495 
10496 			str = (char *)((uintptr_t)dof +
10497 			    (uintptr_t)strtab->dofs_offset);
10498 
10499 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10500 				if (str[i] == '\0')
10501 					break;
10502 			}
10503 
10504 			if (i >= strtab->dofs_size) {
10505 				dtrace_dof_error(dof, "bogus format string");
10506 				goto err;
10507 			}
10508 
10509 			if (i == desc->dofa_arg) {
10510 				dtrace_dof_error(dof, "empty format string");
10511 				goto err;
10512 			}
10513 
10514 			i -= desc->dofa_arg;
10515 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10516 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10517 			arg = (uint64_t)(uintptr_t)fmt;
10518 		} else {
10519 			if (kind == DTRACEACT_PRINTA) {
10520 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10521 				arg = 0;
10522 			} else {
10523 				arg = desc->dofa_arg;
10524 			}
10525 		}
10526 
10527 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10528 		    desc->dofa_uarg, arg);
10529 
10530 		if (last != NULL) {
10531 			last->dtad_next = act;
10532 		} else {
10533 			first = act;
10534 		}
10535 
10536 		last = act;
10537 
10538 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10539 			continue;
10540 
10541 		if ((difosec = dtrace_dof_sect(dof,
10542 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10543 			goto err;
10544 
10545 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10546 
10547 		if (act->dtad_difo == NULL)
10548 			goto err;
10549 	}
10550 
10551 	ASSERT(first != NULL);
10552 	return (first);
10553 
10554 err:
10555 	for (act = first; act != NULL; act = next) {
10556 		next = act->dtad_next;
10557 		dtrace_actdesc_release(act, vstate);
10558 	}
10559 
10560 	return (NULL);
10561 }
10562 
10563 static dtrace_ecbdesc_t *
10564 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10565     cred_t *cr)
10566 {
10567 	dtrace_ecbdesc_t *ep;
10568 	dof_ecbdesc_t *ecb;
10569 	dtrace_probedesc_t *desc;
10570 	dtrace_predicate_t *pred = NULL;
10571 
10572 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10573 		dtrace_dof_error(dof, "truncated ECB description");
10574 		return (NULL);
10575 	}
10576 
10577 	if (sec->dofs_align != sizeof (uint64_t)) {
10578 		dtrace_dof_error(dof, "bad alignment in ECB description");
10579 		return (NULL);
10580 	}
10581 
10582 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10583 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10584 
10585 	if (sec == NULL)
10586 		return (NULL);
10587 
10588 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10589 	ep->dted_uarg = ecb->dofe_uarg;
10590 	desc = &ep->dted_probe;
10591 
10592 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10593 		goto err;
10594 
10595 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10596 		if ((sec = dtrace_dof_sect(dof,
10597 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10598 			goto err;
10599 
10600 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10601 			goto err;
10602 
10603 		ep->dted_pred.dtpdd_predicate = pred;
10604 	}
10605 
10606 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10607 		if ((sec = dtrace_dof_sect(dof,
10608 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10609 			goto err;
10610 
10611 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10612 
10613 		if (ep->dted_action == NULL)
10614 			goto err;
10615 	}
10616 
10617 	return (ep);
10618 
10619 err:
10620 	if (pred != NULL)
10621 		dtrace_predicate_release(pred, vstate);
10622 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10623 	return (NULL);
10624 }
10625 
10626 /*
10627  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10628  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10629  * site of any user SETX relocations to account for load object base address.
10630  * In the future, if we need other relocations, this function can be extended.
10631  */
10632 static int
10633 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10634 {
10635 	uintptr_t daddr = (uintptr_t)dof;
10636 	dof_relohdr_t *dofr =
10637 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10638 	dof_sec_t *ss, *rs, *ts;
10639 	dof_relodesc_t *r;
10640 	uint_t i, n;
10641 
10642 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10643 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10644 		dtrace_dof_error(dof, "invalid relocation header");
10645 		return (-1);
10646 	}
10647 
10648 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10649 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10650 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10651 
10652 	if (ss == NULL || rs == NULL || ts == NULL)
10653 		return (-1); /* dtrace_dof_error() has been called already */
10654 
10655 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10656 	    rs->dofs_align != sizeof (uint64_t)) {
10657 		dtrace_dof_error(dof, "invalid relocation section");
10658 		return (-1);
10659 	}
10660 
10661 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
10662 	n = rs->dofs_size / rs->dofs_entsize;
10663 
10664 	for (i = 0; i < n; i++) {
10665 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10666 
10667 		switch (r->dofr_type) {
10668 		case DOF_RELO_NONE:
10669 			break;
10670 		case DOF_RELO_SETX:
10671 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10672 			    sizeof (uint64_t) > ts->dofs_size) {
10673 				dtrace_dof_error(dof, "bad relocation offset");
10674 				return (-1);
10675 			}
10676 
10677 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10678 				dtrace_dof_error(dof, "misaligned setx relo");
10679 				return (-1);
10680 			}
10681 
10682 			*(uint64_t *)taddr += ubase;
10683 			break;
10684 		default:
10685 			dtrace_dof_error(dof, "invalid relocation type");
10686 			return (-1);
10687 		}
10688 
10689 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10690 	}
10691 
10692 	return (0);
10693 }
10694 
10695 /*
10696  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10697  * header:  it should be at the front of a memory region that is at least
10698  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10699  * size.  It need not be validated in any other way.
10700  */
10701 static int
10702 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10703     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10704 {
10705 	uint64_t len = dof->dofh_loadsz, seclen;
10706 	uintptr_t daddr = (uintptr_t)dof;
10707 	dtrace_ecbdesc_t *ep;
10708 	dtrace_enabling_t *enab;
10709 	uint_t i;
10710 
10711 	ASSERT(MUTEX_HELD(&dtrace_lock));
10712 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10713 
10714 	/*
10715 	 * Check the DOF header identification bytes.  In addition to checking
10716 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10717 	 * we can use them later without fear of regressing existing binaries.
10718 	 */
10719 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10720 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10721 		dtrace_dof_error(dof, "DOF magic string mismatch");
10722 		return (-1);
10723 	}
10724 
10725 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10726 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10727 		dtrace_dof_error(dof, "DOF has invalid data model");
10728 		return (-1);
10729 	}
10730 
10731 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10732 		dtrace_dof_error(dof, "DOF encoding mismatch");
10733 		return (-1);
10734 	}
10735 
10736 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
10737 		dtrace_dof_error(dof, "DOF version mismatch");
10738 		return (-1);
10739 	}
10740 
10741 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10742 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10743 		return (-1);
10744 	}
10745 
10746 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10747 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10748 		return (-1);
10749 	}
10750 
10751 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10752 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10753 		return (-1);
10754 	}
10755 
10756 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10757 		if (dof->dofh_ident[i] != 0) {
10758 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10759 			return (-1);
10760 		}
10761 	}
10762 
10763 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10764 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10765 		return (-1);
10766 	}
10767 
10768 	if (dof->dofh_secsize == 0) {
10769 		dtrace_dof_error(dof, "zero section header size");
10770 		return (-1);
10771 	}
10772 
10773 	/*
10774 	 * Check that the section headers don't exceed the amount of DOF
10775 	 * data.  Note that we cast the section size and number of sections
10776 	 * to uint64_t's to prevent possible overflow in the multiplication.
10777 	 */
10778 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10779 
10780 	if (dof->dofh_secoff > len || seclen > len ||
10781 	    dof->dofh_secoff + seclen > len) {
10782 		dtrace_dof_error(dof, "truncated section headers");
10783 		return (-1);
10784 	}
10785 
10786 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10787 		dtrace_dof_error(dof, "misaligned section headers");
10788 		return (-1);
10789 	}
10790 
10791 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10792 		dtrace_dof_error(dof, "misaligned section size");
10793 		return (-1);
10794 	}
10795 
10796 	/*
10797 	 * Take an initial pass through the section headers to be sure that
10798 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10799 	 * set, do not permit sections relating to providers, probes, or args.
10800 	 */
10801 	for (i = 0; i < dof->dofh_secnum; i++) {
10802 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10803 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10804 
10805 		if (noprobes) {
10806 			switch (sec->dofs_type) {
10807 			case DOF_SECT_PROVIDER:
10808 			case DOF_SECT_PROBES:
10809 			case DOF_SECT_PRARGS:
10810 			case DOF_SECT_PROFFS:
10811 				dtrace_dof_error(dof, "illegal sections "
10812 				    "for enabling");
10813 				return (-1);
10814 			}
10815 		}
10816 
10817 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10818 			continue; /* just ignore non-loadable sections */
10819 
10820 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10821 			dtrace_dof_error(dof, "bad section alignment");
10822 			return (-1);
10823 		}
10824 
10825 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10826 			dtrace_dof_error(dof, "misaligned section");
10827 			return (-1);
10828 		}
10829 
10830 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10831 		    sec->dofs_offset + sec->dofs_size > len) {
10832 			dtrace_dof_error(dof, "corrupt section header");
10833 			return (-1);
10834 		}
10835 
10836 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10837 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10838 			dtrace_dof_error(dof, "non-terminating string table");
10839 			return (-1);
10840 		}
10841 	}
10842 
10843 	/*
10844 	 * Take a second pass through the sections and locate and perform any
10845 	 * relocations that are present.  We do this after the first pass to
10846 	 * be sure that all sections have had their headers validated.
10847 	 */
10848 	for (i = 0; i < dof->dofh_secnum; i++) {
10849 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10850 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10851 
10852 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10853 			continue; /* skip sections that are not loadable */
10854 
10855 		switch (sec->dofs_type) {
10856 		case DOF_SECT_URELHDR:
10857 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10858 				return (-1);
10859 			break;
10860 		}
10861 	}
10862 
10863 	if ((enab = *enabp) == NULL)
10864 		enab = *enabp = dtrace_enabling_create(vstate);
10865 
10866 	for (i = 0; i < dof->dofh_secnum; i++) {
10867 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10868 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10869 
10870 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10871 			continue;
10872 
10873 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10874 			dtrace_enabling_destroy(enab);
10875 			*enabp = NULL;
10876 			return (-1);
10877 		}
10878 
10879 		dtrace_enabling_add(enab, ep);
10880 	}
10881 
10882 	return (0);
10883 }
10884 
10885 /*
10886  * Process DOF for any options.  This routine assumes that the DOF has been
10887  * at least processed by dtrace_dof_slurp().
10888  */
10889 static int
10890 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10891 {
10892 	int i, rval;
10893 	uint32_t entsize;
10894 	size_t offs;
10895 	dof_optdesc_t *desc;
10896 
10897 	for (i = 0; i < dof->dofh_secnum; i++) {
10898 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10899 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10900 
10901 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10902 			continue;
10903 
10904 		if (sec->dofs_align != sizeof (uint64_t)) {
10905 			dtrace_dof_error(dof, "bad alignment in "
10906 			    "option description");
10907 			return (EINVAL);
10908 		}
10909 
10910 		if ((entsize = sec->dofs_entsize) == 0) {
10911 			dtrace_dof_error(dof, "zeroed option entry size");
10912 			return (EINVAL);
10913 		}
10914 
10915 		if (entsize < sizeof (dof_optdesc_t)) {
10916 			dtrace_dof_error(dof, "bad option entry size");
10917 			return (EINVAL);
10918 		}
10919 
10920 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10921 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10922 			    (uintptr_t)sec->dofs_offset + offs);
10923 
10924 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10925 				dtrace_dof_error(dof, "non-zero option string");
10926 				return (EINVAL);
10927 			}
10928 
10929 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10930 				dtrace_dof_error(dof, "unset option");
10931 				return (EINVAL);
10932 			}
10933 
10934 			if ((rval = dtrace_state_option(state,
10935 			    desc->dofo_option, desc->dofo_value)) != 0) {
10936 				dtrace_dof_error(dof, "rejected option");
10937 				return (rval);
10938 			}
10939 		}
10940 	}
10941 
10942 	return (0);
10943 }
10944 
10945 /*
10946  * DTrace Consumer State Functions
10947  */
10948 int
10949 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
10950 {
10951 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
10952 	void *base;
10953 	uintptr_t limit;
10954 	dtrace_dynvar_t *dvar, *next, *start;
10955 	int i;
10956 
10957 	ASSERT(MUTEX_HELD(&dtrace_lock));
10958 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
10959 
10960 	bzero(dstate, sizeof (dtrace_dstate_t));
10961 
10962 	if ((dstate->dtds_chunksize = chunksize) == 0)
10963 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
10964 
10965 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
10966 		size = min;
10967 
10968 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10969 		return (ENOMEM);
10970 
10971 	dstate->dtds_size = size;
10972 	dstate->dtds_base = base;
10973 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
10974 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
10975 
10976 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
10977 
10978 	if (hashsize != 1 && (hashsize & 1))
10979 		hashsize--;
10980 
10981 	dstate->dtds_hashsize = hashsize;
10982 	dstate->dtds_hash = dstate->dtds_base;
10983 
10984 	/*
10985 	 * Determine number of active CPUs.  Divide free list evenly among
10986 	 * active CPUs.
10987 	 */
10988 	start = (dtrace_dynvar_t *)
10989 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
10990 	limit = (uintptr_t)base + size;
10991 
10992 	maxper = (limit - (uintptr_t)start) / NCPU;
10993 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
10994 
10995 	for (i = 0; i < NCPU; i++) {
10996 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
10997 
10998 		/*
10999 		 * If we don't even have enough chunks to make it once through
11000 		 * NCPUs, we're just going to allocate everything to the first
11001 		 * CPU.  And if we're on the last CPU, we're going to allocate
11002 		 * whatever is left over.  In either case, we set the limit to
11003 		 * be the limit of the dynamic variable space.
11004 		 */
11005 		if (maxper == 0 || i == NCPU - 1) {
11006 			limit = (uintptr_t)base + size;
11007 			start = NULL;
11008 		} else {
11009 			limit = (uintptr_t)start + maxper;
11010 			start = (dtrace_dynvar_t *)limit;
11011 		}
11012 
11013 		ASSERT(limit <= (uintptr_t)base + size);
11014 
11015 		for (;;) {
11016 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11017 			    dstate->dtds_chunksize);
11018 
11019 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11020 				break;
11021 
11022 			dvar->dtdv_next = next;
11023 			dvar = next;
11024 		}
11025 
11026 		if (maxper == 0)
11027 			break;
11028 	}
11029 
11030 	return (0);
11031 }
11032 
11033 void
11034 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11035 {
11036 	ASSERT(MUTEX_HELD(&cpu_lock));
11037 
11038 	if (dstate->dtds_base == NULL)
11039 		return;
11040 
11041 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11042 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11043 }
11044 
11045 static void
11046 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11047 {
11048 	/*
11049 	 * Logical XOR, where are you?
11050 	 */
11051 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11052 
11053 	if (vstate->dtvs_nglobals > 0) {
11054 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11055 		    sizeof (dtrace_statvar_t *));
11056 	}
11057 
11058 	if (vstate->dtvs_ntlocals > 0) {
11059 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11060 		    sizeof (dtrace_difv_t));
11061 	}
11062 
11063 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11064 
11065 	if (vstate->dtvs_nlocals > 0) {
11066 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11067 		    sizeof (dtrace_statvar_t *));
11068 	}
11069 }
11070 
11071 static void
11072 dtrace_state_clean(dtrace_state_t *state)
11073 {
11074 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11075 		return;
11076 
11077 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11078 	dtrace_speculation_clean(state);
11079 }
11080 
11081 static void
11082 dtrace_state_deadman(dtrace_state_t *state)
11083 {
11084 	hrtime_t now;
11085 
11086 	dtrace_sync();
11087 
11088 	now = dtrace_gethrtime();
11089 
11090 	if (state != dtrace_anon.dta_state &&
11091 	    now - state->dts_laststatus >= dtrace_deadman_user)
11092 		return;
11093 
11094 	/*
11095 	 * We must be sure that dts_alive never appears to be less than the
11096 	 * value upon entry to dtrace_state_deadman(), and because we lack a
11097 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
11098 	 * store INT64_MAX to it, followed by a memory barrier, followed by
11099 	 * the new value.  This assures that dts_alive never appears to be
11100 	 * less than its true value, regardless of the order in which the
11101 	 * stores to the underlying storage are issued.
11102 	 */
11103 	state->dts_alive = INT64_MAX;
11104 	dtrace_membar_producer();
11105 	state->dts_alive = now;
11106 }
11107 
11108 dtrace_state_t *
11109 dtrace_state_create(dev_t *devp, cred_t *cr)
11110 {
11111 	minor_t minor;
11112 	major_t major;
11113 	char c[30];
11114 	dtrace_state_t *state;
11115 	dtrace_optval_t *opt;
11116 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
11117 
11118 	ASSERT(MUTEX_HELD(&dtrace_lock));
11119 	ASSERT(MUTEX_HELD(&cpu_lock));
11120 
11121 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
11122 	    VM_BESTFIT | VM_SLEEP);
11123 
11124 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
11125 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11126 		return (NULL);
11127 	}
11128 
11129 	state = ddi_get_soft_state(dtrace_softstate, minor);
11130 	state->dts_epid = DTRACE_EPIDNONE + 1;
11131 
11132 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
11133 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
11134 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
11135 
11136 	if (devp != NULL) {
11137 		major = getemajor(*devp);
11138 	} else {
11139 		major = ddi_driver_major(dtrace_devi);
11140 	}
11141 
11142 	state->dts_dev = makedevice(major, minor);
11143 
11144 	if (devp != NULL)
11145 		*devp = state->dts_dev;
11146 
11147 	/*
11148 	 * We allocate NCPU buffers.  On the one hand, this can be quite
11149 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
11150 	 * other hand, it saves an additional memory reference in the probe
11151 	 * path.
11152 	 */
11153 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
11154 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
11155 	state->dts_cleaner = CYCLIC_NONE;
11156 	state->dts_deadman = CYCLIC_NONE;
11157 	state->dts_vstate.dtvs_state = state;
11158 
11159 	for (i = 0; i < DTRACEOPT_MAX; i++)
11160 		state->dts_options[i] = DTRACEOPT_UNSET;
11161 
11162 	/*
11163 	 * Set the default options.
11164 	 */
11165 	opt = state->dts_options;
11166 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
11167 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
11168 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
11169 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
11170 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
11171 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
11172 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
11173 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
11174 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
11175 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
11176 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
11177 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
11178 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
11179 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
11180 
11181 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
11182 
11183 	/*
11184 	 * Depending on the user credentials, we set flag bits which alter probe
11185 	 * visibility or the amount of destructiveness allowed.  In the case of
11186 	 * actual anonymous tracing, or the possession of all privileges, all of
11187 	 * the normal checks are bypassed.
11188 	 */
11189 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
11190 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11191 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11192 	} else {
11193 		/*
11194 		 * Set up the credentials for this instantiation.  We take a
11195 		 * hold on the credential to prevent it from disappearing on
11196 		 * us; this in turn prevents the zone_t referenced by this
11197 		 * credential from disappearing.  This means that we can
11198 		 * examine the credential and the zone from probe context.
11199 		 */
11200 		crhold(cr);
11201 		state->dts_cred.dcr_cred = cr;
11202 
11203 		/*
11204 		 * CRA_PROC means "we have *some* privilege for dtrace" and
11205 		 * unlocks the use of variables like pid, zonename, etc.
11206 		 */
11207 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11208 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11209 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11210 		}
11211 
11212 		/*
11213 		 * dtrace_user allows use of syscall and profile providers.
11214 		 * If the user also has proc_owner and/or proc_zone, we
11215 		 * extend the scope to include additional visibility and
11216 		 * destructive power.
11217 		 */
11218 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
11219 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11220 				state->dts_cred.dcr_visible |=
11221 				    DTRACE_CRV_ALLPROC;
11222 
11223 				state->dts_cred.dcr_action |=
11224 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11225 			}
11226 
11227 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
11228 				state->dts_cred.dcr_visible |=
11229 				    DTRACE_CRV_ALLZONE;
11230 
11231 				state->dts_cred.dcr_action |=
11232 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11233 			}
11234 
11235 			/*
11236 			 * If we have all privs in whatever zone this is,
11237 			 * we can do destructive things to processes which
11238 			 * have altered credentials.
11239 			 */
11240 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11241 			    cr->cr_zone->zone_privset)) {
11242 				state->dts_cred.dcr_action |=
11243 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11244 			}
11245 		}
11246 
11247 		/*
11248 		 * Holding the dtrace_kernel privilege also implies that
11249 		 * the user has the dtrace_user privilege from a visibility
11250 		 * perspective.  But without further privileges, some
11251 		 * destructive actions are not available.
11252 		 */
11253 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11254 			/*
11255 			 * Make all probes in all zones visible.  However,
11256 			 * this doesn't mean that all actions become available
11257 			 * to all zones.
11258 			 */
11259 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11260 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
11261 
11262 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11263 			    DTRACE_CRA_PROC;
11264 			/*
11265 			 * Holding proc_owner means that destructive actions
11266 			 * for *this* zone are allowed.
11267 			 */
11268 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11269 				state->dts_cred.dcr_action |=
11270 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11271 
11272 			/*
11273 			 * Holding proc_zone means that destructive actions
11274 			 * for this user/group ID in all zones is allowed.
11275 			 */
11276 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11277 				state->dts_cred.dcr_action |=
11278 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11279 
11280 			/*
11281 			 * If we have all privs in whatever zone this is,
11282 			 * we can do destructive things to processes which
11283 			 * have altered credentials.
11284 			 */
11285 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11286 			    cr->cr_zone->zone_privset)) {
11287 				state->dts_cred.dcr_action |=
11288 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11289 			}
11290 		}
11291 
11292 		/*
11293 		 * Holding the dtrace_proc privilege gives control over fasttrap
11294 		 * and pid providers.  We need to grant wider destructive
11295 		 * privileges in the event that the user has proc_owner and/or
11296 		 * proc_zone.
11297 		 */
11298 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11299 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11300 				state->dts_cred.dcr_action |=
11301 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11302 
11303 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11304 				state->dts_cred.dcr_action |=
11305 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11306 		}
11307 	}
11308 
11309 	return (state);
11310 }
11311 
11312 static int
11313 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11314 {
11315 	dtrace_optval_t *opt = state->dts_options, size;
11316 	processorid_t cpu;
11317 	int flags = 0, rval;
11318 
11319 	ASSERT(MUTEX_HELD(&dtrace_lock));
11320 	ASSERT(MUTEX_HELD(&cpu_lock));
11321 	ASSERT(which < DTRACEOPT_MAX);
11322 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11323 	    (state == dtrace_anon.dta_state &&
11324 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11325 
11326 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11327 		return (0);
11328 
11329 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11330 		cpu = opt[DTRACEOPT_CPU];
11331 
11332 	if (which == DTRACEOPT_SPECSIZE)
11333 		flags |= DTRACEBUF_NOSWITCH;
11334 
11335 	if (which == DTRACEOPT_BUFSIZE) {
11336 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11337 			flags |= DTRACEBUF_RING;
11338 
11339 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11340 			flags |= DTRACEBUF_FILL;
11341 
11342 		flags |= DTRACEBUF_INACTIVE;
11343 	}
11344 
11345 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11346 		/*
11347 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11348 		 * aligned, drop it down by the difference.
11349 		 */
11350 		if (size & (sizeof (uint64_t) - 1))
11351 			size -= size & (sizeof (uint64_t) - 1);
11352 
11353 		if (size < state->dts_reserve) {
11354 			/*
11355 			 * Buffers always must be large enough to accommodate
11356 			 * their prereserved space.  We return E2BIG instead
11357 			 * of ENOMEM in this case to allow for user-level
11358 			 * software to differentiate the cases.
11359 			 */
11360 			return (E2BIG);
11361 		}
11362 
11363 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11364 
11365 		if (rval != ENOMEM) {
11366 			opt[which] = size;
11367 			return (rval);
11368 		}
11369 
11370 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11371 			return (rval);
11372 	}
11373 
11374 	return (ENOMEM);
11375 }
11376 
11377 static int
11378 dtrace_state_buffers(dtrace_state_t *state)
11379 {
11380 	dtrace_speculation_t *spec = state->dts_speculations;
11381 	int rval, i;
11382 
11383 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11384 	    DTRACEOPT_BUFSIZE)) != 0)
11385 		return (rval);
11386 
11387 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11388 	    DTRACEOPT_AGGSIZE)) != 0)
11389 		return (rval);
11390 
11391 	for (i = 0; i < state->dts_nspeculations; i++) {
11392 		if ((rval = dtrace_state_buffer(state,
11393 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11394 			return (rval);
11395 	}
11396 
11397 	return (0);
11398 }
11399 
11400 static void
11401 dtrace_state_prereserve(dtrace_state_t *state)
11402 {
11403 	dtrace_ecb_t *ecb;
11404 	dtrace_probe_t *probe;
11405 
11406 	state->dts_reserve = 0;
11407 
11408 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11409 		return;
11410 
11411 	/*
11412 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11413 	 * prereserved space to be the space required by the END probes.
11414 	 */
11415 	probe = dtrace_probes[dtrace_probeid_end - 1];
11416 	ASSERT(probe != NULL);
11417 
11418 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11419 		if (ecb->dte_state != state)
11420 			continue;
11421 
11422 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11423 	}
11424 }
11425 
11426 static int
11427 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11428 {
11429 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11430 	dtrace_speculation_t *spec;
11431 	dtrace_buffer_t *buf;
11432 	cyc_handler_t hdlr;
11433 	cyc_time_t when;
11434 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11435 	dtrace_icookie_t cookie;
11436 
11437 	mutex_enter(&cpu_lock);
11438 	mutex_enter(&dtrace_lock);
11439 
11440 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11441 		rval = EBUSY;
11442 		goto out;
11443 	}
11444 
11445 	/*
11446 	 * Before we can perform any checks, we must prime all of the
11447 	 * retained enablings that correspond to this state.
11448 	 */
11449 	dtrace_enabling_prime(state);
11450 
11451 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11452 		rval = EACCES;
11453 		goto out;
11454 	}
11455 
11456 	dtrace_state_prereserve(state);
11457 
11458 	/*
11459 	 * Now we want to do is try to allocate our speculations.
11460 	 * We do not automatically resize the number of speculations; if
11461 	 * this fails, we will fail the operation.
11462 	 */
11463 	nspec = opt[DTRACEOPT_NSPEC];
11464 	ASSERT(nspec != DTRACEOPT_UNSET);
11465 
11466 	if (nspec > INT_MAX) {
11467 		rval = ENOMEM;
11468 		goto out;
11469 	}
11470 
11471 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
11472 
11473 	if (spec == NULL) {
11474 		rval = ENOMEM;
11475 		goto out;
11476 	}
11477 
11478 	state->dts_speculations = spec;
11479 	state->dts_nspeculations = (int)nspec;
11480 
11481 	for (i = 0; i < nspec; i++) {
11482 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11483 			rval = ENOMEM;
11484 			goto err;
11485 		}
11486 
11487 		spec[i].dtsp_buffer = buf;
11488 	}
11489 
11490 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11491 		if (dtrace_anon.dta_state == NULL) {
11492 			rval = ENOENT;
11493 			goto out;
11494 		}
11495 
11496 		if (state->dts_necbs != 0) {
11497 			rval = EALREADY;
11498 			goto out;
11499 		}
11500 
11501 		state->dts_anon = dtrace_anon_grab();
11502 		ASSERT(state->dts_anon != NULL);
11503 		state = state->dts_anon;
11504 
11505 		/*
11506 		 * We want "grabanon" to be set in the grabbed state, so we'll
11507 		 * copy that option value from the grabbing state into the
11508 		 * grabbed state.
11509 		 */
11510 		state->dts_options[DTRACEOPT_GRABANON] =
11511 		    opt[DTRACEOPT_GRABANON];
11512 
11513 		*cpu = dtrace_anon.dta_beganon;
11514 
11515 		/*
11516 		 * If the anonymous state is active (as it almost certainly
11517 		 * is if the anonymous enabling ultimately matched anything),
11518 		 * we don't allow any further option processing -- but we
11519 		 * don't return failure.
11520 		 */
11521 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11522 			goto out;
11523 	}
11524 
11525 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11526 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11527 		if (state->dts_aggregations == NULL) {
11528 			/*
11529 			 * We're not going to create an aggregation buffer
11530 			 * because we don't have any ECBs that contain
11531 			 * aggregations -- set this option to 0.
11532 			 */
11533 			opt[DTRACEOPT_AGGSIZE] = 0;
11534 		} else {
11535 			/*
11536 			 * If we have an aggregation buffer, we must also have
11537 			 * a buffer to use as scratch.
11538 			 */
11539 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11540 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11541 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11542 			}
11543 		}
11544 	}
11545 
11546 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11547 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11548 		if (!state->dts_speculates) {
11549 			/*
11550 			 * We're not going to create speculation buffers
11551 			 * because we don't have any ECBs that actually
11552 			 * speculate -- set the speculation size to 0.
11553 			 */
11554 			opt[DTRACEOPT_SPECSIZE] = 0;
11555 		}
11556 	}
11557 
11558 	/*
11559 	 * The bare minimum size for any buffer that we're actually going to
11560 	 * do anything to is sizeof (uint64_t).
11561 	 */
11562 	sz = sizeof (uint64_t);
11563 
11564 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11565 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11566 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11567 		/*
11568 		 * A buffer size has been explicitly set to 0 (or to a size
11569 		 * that will be adjusted to 0) and we need the space -- we
11570 		 * need to return failure.  We return ENOSPC to differentiate
11571 		 * it from failing to allocate a buffer due to failure to meet
11572 		 * the reserve (for which we return E2BIG).
11573 		 */
11574 		rval = ENOSPC;
11575 		goto out;
11576 	}
11577 
11578 	if ((rval = dtrace_state_buffers(state)) != 0)
11579 		goto err;
11580 
11581 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11582 		sz = dtrace_dstate_defsize;
11583 
11584 	do {
11585 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11586 
11587 		if (rval == 0)
11588 			break;
11589 
11590 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11591 			goto err;
11592 	} while (sz >>= 1);
11593 
11594 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11595 
11596 	if (rval != 0)
11597 		goto err;
11598 
11599 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11600 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11601 
11602 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11603 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11604 
11605 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11606 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11607 
11608 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11609 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11610 
11611 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11612 	hdlr.cyh_arg = state;
11613 	hdlr.cyh_level = CY_LOW_LEVEL;
11614 
11615 	when.cyt_when = 0;
11616 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11617 
11618 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11619 
11620 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11621 	hdlr.cyh_arg = state;
11622 	hdlr.cyh_level = CY_LOW_LEVEL;
11623 
11624 	when.cyt_when = 0;
11625 	when.cyt_interval = dtrace_deadman_interval;
11626 
11627 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11628 	state->dts_deadman = cyclic_add(&hdlr, &when);
11629 
11630 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11631 
11632 	/*
11633 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11634 	 * interrupts here both to record the CPU on which we fired the BEGIN
11635 	 * probe (the data from this CPU will be processed first at user
11636 	 * level) and to manually activate the buffer for this CPU.
11637 	 */
11638 	cookie = dtrace_interrupt_disable();
11639 	*cpu = CPU->cpu_id;
11640 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11641 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11642 
11643 	dtrace_probe(dtrace_probeid_begin,
11644 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11645 	dtrace_interrupt_enable(cookie);
11646 	/*
11647 	 * We may have had an exit action from a BEGIN probe; only change our
11648 	 * state to ACTIVE if we're still in WARMUP.
11649 	 */
11650 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11651 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11652 
11653 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11654 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11655 
11656 	/*
11657 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11658 	 * want each CPU to transition its principal buffer out of the
11659 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11660 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11661 	 * atomically transition from processing none of a state's ECBs to
11662 	 * processing all of them.
11663 	 */
11664 	dtrace_xcall(DTRACE_CPUALL,
11665 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11666 	goto out;
11667 
11668 err:
11669 	dtrace_buffer_free(state->dts_buffer);
11670 	dtrace_buffer_free(state->dts_aggbuffer);
11671 
11672 	if ((nspec = state->dts_nspeculations) == 0) {
11673 		ASSERT(state->dts_speculations == NULL);
11674 		goto out;
11675 	}
11676 
11677 	spec = state->dts_speculations;
11678 	ASSERT(spec != NULL);
11679 
11680 	for (i = 0; i < state->dts_nspeculations; i++) {
11681 		if ((buf = spec[i].dtsp_buffer) == NULL)
11682 			break;
11683 
11684 		dtrace_buffer_free(buf);
11685 		kmem_free(buf, bufsize);
11686 	}
11687 
11688 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11689 	state->dts_nspeculations = 0;
11690 	state->dts_speculations = NULL;
11691 
11692 out:
11693 	mutex_exit(&dtrace_lock);
11694 	mutex_exit(&cpu_lock);
11695 
11696 	return (rval);
11697 }
11698 
11699 static int
11700 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11701 {
11702 	dtrace_icookie_t cookie;
11703 
11704 	ASSERT(MUTEX_HELD(&dtrace_lock));
11705 
11706 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11707 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11708 		return (EINVAL);
11709 
11710 	/*
11711 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11712 	 * to be sure that every CPU has seen it.  See below for the details
11713 	 * on why this is done.
11714 	 */
11715 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11716 	dtrace_sync();
11717 
11718 	/*
11719 	 * By this point, it is impossible for any CPU to be still processing
11720 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11721 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11722 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11723 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11724 	 * iff we're in the END probe.
11725 	 */
11726 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11727 	dtrace_sync();
11728 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11729 
11730 	/*
11731 	 * Finally, we can release the reserve and call the END probe.  We
11732 	 * disable interrupts across calling the END probe to allow us to
11733 	 * return the CPU on which we actually called the END probe.  This
11734 	 * allows user-land to be sure that this CPU's principal buffer is
11735 	 * processed last.
11736 	 */
11737 	state->dts_reserve = 0;
11738 
11739 	cookie = dtrace_interrupt_disable();
11740 	*cpu = CPU->cpu_id;
11741 	dtrace_probe(dtrace_probeid_end,
11742 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11743 	dtrace_interrupt_enable(cookie);
11744 
11745 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11746 	dtrace_sync();
11747 
11748 	return (0);
11749 }
11750 
11751 static int
11752 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11753     dtrace_optval_t val)
11754 {
11755 	ASSERT(MUTEX_HELD(&dtrace_lock));
11756 
11757 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11758 		return (EBUSY);
11759 
11760 	if (option >= DTRACEOPT_MAX)
11761 		return (EINVAL);
11762 
11763 	if (option != DTRACEOPT_CPU && val < 0)
11764 		return (EINVAL);
11765 
11766 	switch (option) {
11767 	case DTRACEOPT_DESTRUCTIVE:
11768 		if (dtrace_destructive_disallow)
11769 			return (EACCES);
11770 
11771 		state->dts_cred.dcr_destructive = 1;
11772 		break;
11773 
11774 	case DTRACEOPT_BUFSIZE:
11775 	case DTRACEOPT_DYNVARSIZE:
11776 	case DTRACEOPT_AGGSIZE:
11777 	case DTRACEOPT_SPECSIZE:
11778 	case DTRACEOPT_STRSIZE:
11779 		if (val < 0)
11780 			return (EINVAL);
11781 
11782 		if (val >= LONG_MAX) {
11783 			/*
11784 			 * If this is an otherwise negative value, set it to
11785 			 * the highest multiple of 128m less than LONG_MAX.
11786 			 * Technically, we're adjusting the size without
11787 			 * regard to the buffer resizing policy, but in fact,
11788 			 * this has no effect -- if we set the buffer size to
11789 			 * ~LONG_MAX and the buffer policy is ultimately set to
11790 			 * be "manual", the buffer allocation is guaranteed to
11791 			 * fail, if only because the allocation requires two
11792 			 * buffers.  (We set the the size to the highest
11793 			 * multiple of 128m because it ensures that the size
11794 			 * will remain a multiple of a megabyte when
11795 			 * repeatedly halved -- all the way down to 15m.)
11796 			 */
11797 			val = LONG_MAX - (1 << 27) + 1;
11798 		}
11799 	}
11800 
11801 	state->dts_options[option] = val;
11802 
11803 	return (0);
11804 }
11805 
11806 static void
11807 dtrace_state_destroy(dtrace_state_t *state)
11808 {
11809 	dtrace_ecb_t *ecb;
11810 	dtrace_vstate_t *vstate = &state->dts_vstate;
11811 	minor_t minor = getminor(state->dts_dev);
11812 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11813 	dtrace_speculation_t *spec = state->dts_speculations;
11814 	int nspec = state->dts_nspeculations;
11815 	uint32_t match;
11816 
11817 	ASSERT(MUTEX_HELD(&dtrace_lock));
11818 	ASSERT(MUTEX_HELD(&cpu_lock));
11819 
11820 	/*
11821 	 * First, retract any retained enablings for this state.
11822 	 */
11823 	dtrace_enabling_retract(state);
11824 	ASSERT(state->dts_nretained == 0);
11825 
11826 	/*
11827 	 * Release the credential hold we took in dtrace_state_create().
11828 	 */
11829 	if (state->dts_cred.dcr_cred != NULL)
11830 		crfree(state->dts_cred.dcr_cred);
11831 
11832 	/*
11833 	 * Now we need to disable and destroy any enabled probes.  Because any
11834 	 * DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11835 	 * (especially if they're all enabled), we take two passes through
11836 	 * the ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes,
11837 	 * and in the second we disable whatever is left over.
11838 	 */
11839 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11840 		for (i = 0; i < state->dts_necbs; i++) {
11841 			if ((ecb = state->dts_ecbs[i]) == NULL)
11842 				continue;
11843 
11844 			if (match && ecb->dte_probe != NULL) {
11845 				dtrace_probe_t *probe = ecb->dte_probe;
11846 				dtrace_provider_t *prov = probe->dtpr_provider;
11847 
11848 				if (!(prov->dtpv_priv.dtpp_flags & match))
11849 					continue;
11850 			}
11851 
11852 			dtrace_ecb_disable(ecb);
11853 			dtrace_ecb_destroy(ecb);
11854 		}
11855 
11856 		if (!match)
11857 			break;
11858 	}
11859 
11860 	/*
11861 	 * Before we free the buffers, perform one more sync to assure that
11862 	 * every CPU is out of probe context.
11863 	 */
11864 	dtrace_sync();
11865 
11866 	dtrace_buffer_free(state->dts_buffer);
11867 	dtrace_buffer_free(state->dts_aggbuffer);
11868 
11869 	for (i = 0; i < nspec; i++)
11870 		dtrace_buffer_free(spec[i].dtsp_buffer);
11871 
11872 	if (state->dts_cleaner != CYCLIC_NONE)
11873 		cyclic_remove(state->dts_cleaner);
11874 
11875 	if (state->dts_deadman != CYCLIC_NONE)
11876 		cyclic_remove(state->dts_deadman);
11877 
11878 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11879 	dtrace_vstate_fini(vstate);
11880 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11881 
11882 	if (state->dts_aggregations != NULL) {
11883 #ifdef DEBUG
11884 		for (i = 0; i < state->dts_naggregations; i++)
11885 			ASSERT(state->dts_aggregations[i] == NULL);
11886 #endif
11887 		ASSERT(state->dts_naggregations > 0);
11888 		kmem_free(state->dts_aggregations,
11889 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11890 	}
11891 
11892 	kmem_free(state->dts_buffer, bufsize);
11893 	kmem_free(state->dts_aggbuffer, bufsize);
11894 
11895 	for (i = 0; i < nspec; i++)
11896 		kmem_free(spec[i].dtsp_buffer, bufsize);
11897 
11898 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11899 
11900 	dtrace_format_destroy(state);
11901 
11902 	vmem_destroy(state->dts_aggid_arena);
11903 	ddi_soft_state_free(dtrace_softstate, minor);
11904 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11905 }
11906 
11907 /*
11908  * DTrace Anonymous Enabling Functions
11909  */
11910 static dtrace_state_t *
11911 dtrace_anon_grab(void)
11912 {
11913 	dtrace_state_t *state;
11914 
11915 	ASSERT(MUTEX_HELD(&dtrace_lock));
11916 
11917 	if ((state = dtrace_anon.dta_state) == NULL) {
11918 		ASSERT(dtrace_anon.dta_enabling == NULL);
11919 		return (NULL);
11920 	}
11921 
11922 	ASSERT(dtrace_anon.dta_enabling != NULL);
11923 	ASSERT(dtrace_retained != NULL);
11924 
11925 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
11926 	dtrace_anon.dta_enabling = NULL;
11927 	dtrace_anon.dta_state = NULL;
11928 
11929 	return (state);
11930 }
11931 
11932 static void
11933 dtrace_anon_property(void)
11934 {
11935 	int i, rv;
11936 	dtrace_state_t *state;
11937 	dof_hdr_t *dof;
11938 	char c[32];		/* enough for "dof-data-" + digits */
11939 
11940 	ASSERT(MUTEX_HELD(&dtrace_lock));
11941 	ASSERT(MUTEX_HELD(&cpu_lock));
11942 
11943 	for (i = 0; ; i++) {
11944 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
11945 
11946 		dtrace_err_verbose = 1;
11947 
11948 		if ((dof = dtrace_dof_property(c)) == NULL) {
11949 			dtrace_err_verbose = 0;
11950 			break;
11951 		}
11952 
11953 		/*
11954 		 * We want to create anonymous state, so we need to transition
11955 		 * the kernel debugger to indicate that DTrace is active.  If
11956 		 * this fails (e.g. because the debugger has modified text in
11957 		 * some way), we won't continue with the processing.
11958 		 */
11959 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
11960 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
11961 			    "enabling ignored.");
11962 			dtrace_dof_destroy(dof);
11963 			break;
11964 		}
11965 
11966 		/*
11967 		 * If we haven't allocated an anonymous state, we'll do so now.
11968 		 */
11969 		if ((state = dtrace_anon.dta_state) == NULL) {
11970 			state = dtrace_state_create(NULL, NULL);
11971 			dtrace_anon.dta_state = state;
11972 
11973 			if (state == NULL) {
11974 				/*
11975 				 * This basically shouldn't happen:  the only
11976 				 * failure mode from dtrace_state_create() is a
11977 				 * failure of ddi_soft_state_zalloc() that
11978 				 * itself should never happen.  Still, the
11979 				 * interface allows for a failure mode, and
11980 				 * we want to fail as gracefully as possible:
11981 				 * we'll emit an error message and cease
11982 				 * processing anonymous state in this case.
11983 				 */
11984 				cmn_err(CE_WARN, "failed to create "
11985 				    "anonymous state");
11986 				dtrace_dof_destroy(dof);
11987 				break;
11988 			}
11989 		}
11990 
11991 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
11992 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
11993 
11994 		if (rv == 0)
11995 			rv = dtrace_dof_options(dof, state);
11996 
11997 		dtrace_err_verbose = 0;
11998 		dtrace_dof_destroy(dof);
11999 
12000 		if (rv != 0) {
12001 			/*
12002 			 * This is malformed DOF; chuck any anonymous state
12003 			 * that we created.
12004 			 */
12005 			ASSERT(dtrace_anon.dta_enabling == NULL);
12006 			dtrace_state_destroy(state);
12007 			dtrace_anon.dta_state = NULL;
12008 			break;
12009 		}
12010 
12011 		ASSERT(dtrace_anon.dta_enabling != NULL);
12012 	}
12013 
12014 	if (dtrace_anon.dta_enabling != NULL) {
12015 		int rval;
12016 
12017 		/*
12018 		 * dtrace_enabling_retain() can only fail because we are
12019 		 * trying to retain more enablings than are allowed -- but
12020 		 * we only have one anonymous enabling, and we are guaranteed
12021 		 * to be allowed at least one retained enabling; we assert
12022 		 * that dtrace_enabling_retain() returns success.
12023 		 */
12024 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12025 		ASSERT(rval == 0);
12026 
12027 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12028 	}
12029 }
12030 
12031 /*
12032  * DTrace Helper Functions
12033  */
12034 static void
12035 dtrace_helper_trace(dtrace_helper_action_t *helper,
12036     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12037 {
12038 	uint32_t size, next, nnext, i;
12039 	dtrace_helptrace_t *ent;
12040 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12041 
12042 	if (!dtrace_helptrace_enabled)
12043 		return;
12044 
12045 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12046 
12047 	/*
12048 	 * What would a tracing framework be without its own tracing
12049 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12050 	 */
12051 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12052 	    sizeof (uint64_t) - sizeof (uint64_t);
12053 
12054 	/*
12055 	 * Iterate until we can allocate a slot in the trace buffer.
12056 	 */
12057 	do {
12058 		next = dtrace_helptrace_next;
12059 
12060 		if (next + size < dtrace_helptrace_bufsize) {
12061 			nnext = next + size;
12062 		} else {
12063 			nnext = size;
12064 		}
12065 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
12066 
12067 	/*
12068 	 * We have our slot; fill it in.
12069 	 */
12070 	if (nnext == size)
12071 		next = 0;
12072 
12073 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
12074 	ent->dtht_helper = helper;
12075 	ent->dtht_where = where;
12076 	ent->dtht_nlocals = vstate->dtvs_nlocals;
12077 
12078 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
12079 	    mstate->dtms_fltoffs : -1;
12080 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
12081 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
12082 
12083 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
12084 		dtrace_statvar_t *svar;
12085 
12086 		if ((svar = vstate->dtvs_locals[i]) == NULL)
12087 			continue;
12088 
12089 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
12090 		ent->dtht_locals[i] =
12091 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
12092 	}
12093 }
12094 
12095 static uint64_t
12096 dtrace_helper(int which, dtrace_mstate_t *mstate,
12097     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
12098 {
12099 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12100 	uint64_t sarg0 = mstate->dtms_arg[0];
12101 	uint64_t sarg1 = mstate->dtms_arg[1];
12102 	uint64_t rval;
12103 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
12104 	dtrace_helper_action_t *helper;
12105 	dtrace_vstate_t *vstate;
12106 	dtrace_difo_t *pred;
12107 	int i, trace = dtrace_helptrace_enabled;
12108 
12109 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
12110 
12111 	if (helpers == NULL)
12112 		return (0);
12113 
12114 	if ((helper = helpers->dthps_actions[which]) == NULL)
12115 		return (0);
12116 
12117 	vstate = &helpers->dthps_vstate;
12118 	mstate->dtms_arg[0] = arg0;
12119 	mstate->dtms_arg[1] = arg1;
12120 
12121 	/*
12122 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
12123 	 * we'll call the corresponding actions.  Note that the below calls
12124 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
12125 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
12126 	 * the stored DIF offset with its own (which is the desired behavior).
12127 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
12128 	 * from machine state; this is okay, too.
12129 	 */
12130 	for (; helper != NULL; helper = helper->dthp_next) {
12131 		if ((pred = helper->dthp_predicate) != NULL) {
12132 			if (trace)
12133 				dtrace_helper_trace(helper, mstate, vstate, 0);
12134 
12135 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
12136 				goto next;
12137 
12138 			if (*flags & CPU_DTRACE_FAULT)
12139 				goto err;
12140 		}
12141 
12142 		for (i = 0; i < helper->dthp_nactions; i++) {
12143 			if (trace)
12144 				dtrace_helper_trace(helper,
12145 				    mstate, vstate, i + 1);
12146 
12147 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
12148 			    mstate, vstate, state);
12149 
12150 			if (*flags & CPU_DTRACE_FAULT)
12151 				goto err;
12152 		}
12153 
12154 next:
12155 		if (trace)
12156 			dtrace_helper_trace(helper, mstate, vstate,
12157 			    DTRACE_HELPTRACE_NEXT);
12158 	}
12159 
12160 	if (trace)
12161 		dtrace_helper_trace(helper, mstate, vstate,
12162 		    DTRACE_HELPTRACE_DONE);
12163 
12164 	/*
12165 	 * Restore the arg0 that we saved upon entry.
12166 	 */
12167 	mstate->dtms_arg[0] = sarg0;
12168 	mstate->dtms_arg[1] = sarg1;
12169 
12170 	return (rval);
12171 
12172 err:
12173 	if (trace)
12174 		dtrace_helper_trace(helper, mstate, vstate,
12175 		    DTRACE_HELPTRACE_ERR);
12176 
12177 	/*
12178 	 * Restore the arg0 that we saved upon entry.
12179 	 */
12180 	mstate->dtms_arg[0] = sarg0;
12181 	mstate->dtms_arg[1] = sarg1;
12182 
12183 	return (NULL);
12184 }
12185 
12186 static void
12187 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
12188 {
12189 	int i;
12190 
12191 	if (helper->dthp_predicate != NULL)
12192 		dtrace_difo_release(helper->dthp_predicate, vstate);
12193 
12194 	for (i = 0; i < helper->dthp_nactions; i++) {
12195 		ASSERT(helper->dthp_actions[i] != NULL);
12196 		dtrace_difo_release(helper->dthp_actions[i], vstate);
12197 	}
12198 
12199 	kmem_free(helper->dthp_actions,
12200 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
12201 	kmem_free(helper, sizeof (dtrace_helper_action_t));
12202 }
12203 
12204 static int
12205 dtrace_helper_destroygen(int gen)
12206 {
12207 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
12208 	dtrace_vstate_t *vstate;
12209 	int i;
12210 
12211 	ASSERT(MUTEX_HELD(&dtrace_lock));
12212 
12213 	if (help == NULL || gen > help->dthps_generation)
12214 		return (EINVAL);
12215 
12216 	vstate = &help->dthps_vstate;
12217 
12218 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12219 		dtrace_helper_action_t *last = NULL, *h, *next;
12220 
12221 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12222 			next = h->dthp_next;
12223 
12224 			if (h->dthp_generation == gen) {
12225 				if (last != NULL) {
12226 					last->dthp_next = next;
12227 				} else {
12228 					help->dthps_actions[i] = next;
12229 				}
12230 
12231 				dtrace_helper_destroy(h, vstate);
12232 			} else {
12233 				last = h;
12234 			}
12235 		}
12236 	}
12237 
12238 	return (0);
12239 }
12240 
12241 static int
12242 dtrace_helper_validate(dtrace_helper_action_t *helper)
12243 {
12244 	int err = 0, i;
12245 	dtrace_difo_t *dp;
12246 
12247 	if ((dp = helper->dthp_predicate) != NULL)
12248 		err += dtrace_difo_validate_helper(dp);
12249 
12250 	for (i = 0; i < helper->dthp_nactions; i++)
12251 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
12252 
12253 	return (err == 0);
12254 }
12255 
12256 static int
12257 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
12258 {
12259 	dtrace_helpers_t *help;
12260 	dtrace_helper_action_t *helper, *last;
12261 	dtrace_actdesc_t *act;
12262 	dtrace_vstate_t *vstate;
12263 	dtrace_predicate_t *pred;
12264 	int count = 0, nactions = 0, i;
12265 
12266 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
12267 		return (EINVAL);
12268 
12269 	help = curproc->p_dtrace_helpers;
12270 	last = help->dthps_actions[which];
12271 	vstate = &help->dthps_vstate;
12272 
12273 	for (count = 0; last != NULL; last = last->dthp_next) {
12274 		count++;
12275 		if (last->dthp_next == NULL)
12276 			break;
12277 	}
12278 
12279 	/*
12280 	 * If we already have dtrace_helper_actions_max helper actions for this
12281 	 * helper action type, we'll refuse to add a new one.
12282 	 */
12283 	if (count >= dtrace_helper_actions_max)
12284 		return (ENOSPC);
12285 
12286 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
12287 	helper->dthp_generation = help->dthps_generation;
12288 
12289 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
12290 		ASSERT(pred->dtp_difo != NULL);
12291 		dtrace_difo_hold(pred->dtp_difo);
12292 		helper->dthp_predicate = pred->dtp_difo;
12293 	}
12294 
12295 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12296 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12297 			goto err;
12298 
12299 		if (act->dtad_difo == NULL)
12300 			goto err;
12301 
12302 		nactions++;
12303 	}
12304 
12305 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12306 	    (helper->dthp_nactions = nactions), KM_SLEEP);
12307 
12308 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12309 		dtrace_difo_hold(act->dtad_difo);
12310 		helper->dthp_actions[i++] = act->dtad_difo;
12311 	}
12312 
12313 	if (!dtrace_helper_validate(helper))
12314 		goto err;
12315 
12316 	if (last == NULL) {
12317 		help->dthps_actions[which] = helper;
12318 	} else {
12319 		last->dthp_next = helper;
12320 	}
12321 
12322 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12323 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12324 		dtrace_helptrace_next = 0;
12325 	}
12326 
12327 	return (0);
12328 err:
12329 	dtrace_helper_destroy(helper, vstate);
12330 	return (EINVAL);
12331 }
12332 
12333 static void
12334 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12335     dof_helper_t *dofhp)
12336 {
12337 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12338 
12339 	mutex_enter(&dtrace_meta_lock);
12340 	mutex_enter(&dtrace_lock);
12341 
12342 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12343 		/*
12344 		 * If the dtrace module is loaded but not attached, or if
12345 		 * there aren't isn't a meta provider registered to deal with
12346 		 * these provider descriptions, we need to postpone creating
12347 		 * the actual providers until later.
12348 		 */
12349 
12350 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12351 		    dtrace_deferred_pid != help) {
12352 			help->dthps_deferred = 1;
12353 			help->dthps_pid = p->p_pid;
12354 			help->dthps_next = dtrace_deferred_pid;
12355 			help->dthps_prev = NULL;
12356 			if (dtrace_deferred_pid != NULL)
12357 				dtrace_deferred_pid->dthps_prev = help;
12358 			dtrace_deferred_pid = help;
12359 		}
12360 
12361 		mutex_exit(&dtrace_lock);
12362 
12363 	} else if (dofhp != NULL) {
12364 		/*
12365 		 * If the dtrace module is loaded and we have a particular
12366 		 * helper provider description, pass that off to the
12367 		 * meta provider.
12368 		 */
12369 
12370 		mutex_exit(&dtrace_lock);
12371 
12372 		dtrace_helper_provide(dofhp, p->p_pid);
12373 
12374 	} else {
12375 		/*
12376 		 * Otherwise, just pass all the helper provider descriptions
12377 		 * off to the meta provider.
12378 		 */
12379 
12380 		int i;
12381 		mutex_exit(&dtrace_lock);
12382 
12383 		for (i = 0; i < help->dthps_nprovs; i++) {
12384 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12385 			    p->p_pid);
12386 		}
12387 	}
12388 
12389 	mutex_exit(&dtrace_meta_lock);
12390 }
12391 
12392 static int
12393 dtrace_helper_provider_add(dof_helper_t *dofhp)
12394 {
12395 	dtrace_helpers_t *help;
12396 	dtrace_helper_provider_t *hprov, **tmp_provs;
12397 	uint_t tmp_nprovs, i;
12398 
12399 	help = curproc->p_dtrace_helpers;
12400 	ASSERT(help != NULL);
12401 
12402 	/*
12403 	 * If we already have dtrace_helper_providers_max helper providers,
12404 	 * we're refuse to add a new one.
12405 	 */
12406 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
12407 		return (ENOSPC);
12408 
12409 	/*
12410 	 * Check to make sure this isn't a duplicate.
12411 	 */
12412 	for (i = 0; i < help->dthps_nprovs; i++) {
12413 		if (dofhp->dofhp_addr ==
12414 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
12415 			return (EALREADY);
12416 	}
12417 
12418 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
12419 	hprov->dthp_prov = *dofhp;
12420 	hprov->dthp_ref = 1;
12421 
12422 	tmp_nprovs = help->dthps_nprovs;
12423 	tmp_provs = help->dthps_provs;
12424 	help->dthps_nprovs++;
12425 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
12426 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12427 
12428 	help->dthps_provs[tmp_nprovs] = hprov;
12429 	if (tmp_provs != NULL) {
12430 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
12431 		    sizeof (dtrace_helper_provider_t *));
12432 		kmem_free(tmp_provs, tmp_nprovs *
12433 		    sizeof (dtrace_helper_provider_t *));
12434 	}
12435 
12436 	return (0);
12437 }
12438 
12439 static void
12440 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
12441 {
12442 	mutex_enter(&dtrace_lock);
12443 
12444 	if (--hprov->dthp_ref == 0) {
12445 		dof_hdr_t *dof;
12446 		mutex_exit(&dtrace_lock);
12447 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
12448 		dtrace_dof_destroy(dof);
12449 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
12450 	} else {
12451 		mutex_exit(&dtrace_lock);
12452 	}
12453 }
12454 
12455 static int
12456 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
12457 {
12458 	uintptr_t daddr = (uintptr_t)dof;
12459 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
12460 	dof_provider_t *provider;
12461 	dof_probe_t *probe;
12462 	uint8_t *arg;
12463 	char *strtab, *typestr;
12464 	dof_stridx_t typeidx;
12465 	size_t typesz;
12466 	uint_t nprobes, j, k;
12467 
12468 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
12469 
12470 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
12471 		dtrace_dof_error(dof, "misaligned section offset");
12472 		return (-1);
12473 	}
12474 
12475 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
12476 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
12477 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
12478 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
12479 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
12480 
12481 	if (str_sec == NULL || prb_sec == NULL ||
12482 	    arg_sec == NULL || off_sec == NULL)
12483 		return (-1);
12484 
12485 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
12486 
12487 	if (provider->dofpv_name >= str_sec->dofs_size ||
12488 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
12489 		dtrace_dof_error(dof, "invalid provider name");
12490 		return (-1);
12491 	}
12492 
12493 	if (prb_sec->dofs_entsize == 0 ||
12494 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
12495 		dtrace_dof_error(dof, "invalid entry size");
12496 		return (-1);
12497 	}
12498 
12499 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
12500 		dtrace_dof_error(dof, "misaligned entry size");
12501 		return (-1);
12502 	}
12503 
12504 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12505 		dtrace_dof_error(dof, "invalid entry size");
12506 		return (-1);
12507 	}
12508 
12509 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12510 		dtrace_dof_error(dof, "misaligned section offset");
12511 		return (-1);
12512 	}
12513 
12514 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12515 		dtrace_dof_error(dof, "invalid entry size");
12516 		return (-1);
12517 	}
12518 
12519 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
12520 
12521 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12522 
12523 	/*
12524 	 * Take a pass through the probes to check for errors.
12525 	 */
12526 	for (j = 0; j < nprobes; j++) {
12527 		probe = (dof_probe_t *)(uintptr_t)(daddr +
12528 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
12529 
12530 		if (probe->dofpr_func >= str_sec->dofs_size) {
12531 			dtrace_dof_error(dof, "invalid function name");
12532 			return (-1);
12533 		}
12534 
12535 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12536 			dtrace_dof_error(dof, "function name too long");
12537 			return (-1);
12538 		}
12539 
12540 		if (probe->dofpr_name >= str_sec->dofs_size ||
12541 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12542 			dtrace_dof_error(dof, "invalid probe name");
12543 			return (-1);
12544 		}
12545 
12546 
12547 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12548 		    probe->dofpr_offidx ||
12549 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12550 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12551 			dtrace_dof_error(dof, "invalid probe offset");
12552 			return (-1);
12553 		}
12554 
12555 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12556 		    probe->dofpr_argidx ||
12557 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12558 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12559 			dtrace_dof_error(dof, "invalid args");
12560 			return (-1);
12561 		}
12562 
12563 		typeidx = probe->dofpr_nargv;
12564 		typestr = strtab + probe->dofpr_nargv;
12565 		for (k = 0; k < probe->dofpr_nargc; k++) {
12566 			if (typeidx >= str_sec->dofs_size) {
12567 				dtrace_dof_error(dof, "bad "
12568 				    "native argument type");
12569 				return (-1);
12570 			}
12571 
12572 			typesz = strlen(typestr) + 1;
12573 			if (typesz > DTRACE_ARGTYPELEN) {
12574 				dtrace_dof_error(dof, "native "
12575 				    "argument type too long");
12576 				return (-1);
12577 			}
12578 			typeidx += typesz;
12579 			typestr += typesz;
12580 		}
12581 
12582 		typeidx = probe->dofpr_xargv;
12583 		typestr = strtab + probe->dofpr_xargv;
12584 		for (k = 0; k < probe->dofpr_xargc; k++) {
12585 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12586 				dtrace_dof_error(dof, "bad "
12587 				    "native argument index");
12588 				return (-1);
12589 			}
12590 
12591 			if (typeidx >= str_sec->dofs_size) {
12592 				dtrace_dof_error(dof, "bad "
12593 				    "translated argument type");
12594 				return (-1);
12595 			}
12596 
12597 			typesz = strlen(typestr) + 1;
12598 			if (typesz > DTRACE_ARGTYPELEN) {
12599 				dtrace_dof_error(dof, "translated argument "
12600 				    "type too long");
12601 				return (-1);
12602 			}
12603 
12604 			typeidx += typesz;
12605 			typestr += typesz;
12606 		}
12607 	}
12608 
12609 	return (0);
12610 }
12611 
12612 static int
12613 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12614 {
12615 	dtrace_helpers_t *help;
12616 	dtrace_vstate_t *vstate;
12617 	dtrace_enabling_t *enab = NULL;
12618 	int i, gen, rv, nhelpers = 0, destroy = 1;
12619 
12620 	ASSERT(MUTEX_HELD(&dtrace_lock));
12621 
12622 	if ((help = curproc->p_dtrace_helpers) == NULL)
12623 		help = dtrace_helpers_create(curproc);
12624 
12625 	vstate = &help->dthps_vstate;
12626 
12627 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12628 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12629 		dtrace_dof_destroy(dof);
12630 		return (rv);
12631 	}
12632 
12633 	/*
12634 	 * Now we need to walk through the ECB descriptions in the enabling.
12635 	 */
12636 	for (i = 0; i < enab->dten_ndesc; i++) {
12637 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12638 		dtrace_probedesc_t *desc = &ep->dted_probe;
12639 
12640 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12641 			continue;
12642 
12643 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12644 			continue;
12645 
12646 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12647 			continue;
12648 
12649 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12650 		    ep)) != 0) {
12651 			/*
12652 			 * Adding this helper action failed -- we are now going
12653 			 * to rip out the entire generation and return failure.
12654 			 */
12655 			(void) dtrace_helper_destroygen(help->dthps_generation);
12656 			dtrace_enabling_destroy(enab);
12657 			dtrace_dof_destroy(dof);
12658 			dtrace_err = rv;
12659 			return (-1);
12660 		}
12661 
12662 		nhelpers++;
12663 	}
12664 
12665 	if (nhelpers < enab->dten_ndesc)
12666 		dtrace_dof_error(dof, "unmatched helpers");
12667 
12668 	if (dhp != NULL) {
12669 		uintptr_t daddr = (uintptr_t)dof;
12670 		int err = 0, count = 0;
12671 
12672 		/*
12673 		 * Look for helper probes.
12674 		 */
12675 		for (i = 0; i < dof->dofh_secnum; i++) {
12676 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
12677 			    dof->dofh_secoff + i * dof->dofh_secsize);
12678 
12679 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12680 				continue;
12681 
12682 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12683 				err = 1;
12684 				break;
12685 			}
12686 
12687 			count++;
12688 		}
12689 
12690 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
12691 		if (err == 0 && count > 0 &&
12692 		    dtrace_helper_provider_add(dhp) == 0)
12693 			destroy = 0;
12694 		else
12695 			dhp = NULL;
12696 	}
12697 
12698 	gen = help->dthps_generation++;
12699 	dtrace_enabling_destroy(enab);
12700 
12701 	if (dhp != NULL) {
12702 		mutex_exit(&dtrace_lock);
12703 		dtrace_helper_provider_register(curproc, help, dhp);
12704 		mutex_enter(&dtrace_lock);
12705 	}
12706 
12707 	if (destroy)
12708 		dtrace_dof_destroy(dof);
12709 
12710 	return (gen);
12711 }
12712 
12713 static dtrace_helpers_t *
12714 dtrace_helpers_create(proc_t *p)
12715 {
12716 	dtrace_helpers_t *help;
12717 
12718 	ASSERT(MUTEX_HELD(&dtrace_lock));
12719 	ASSERT(p->p_dtrace_helpers == NULL);
12720 
12721 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12722 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12723 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12724 
12725 	p->p_dtrace_helpers = help;
12726 	dtrace_helpers++;
12727 
12728 	return (help);
12729 }
12730 
12731 static void
12732 dtrace_helpers_destroy(void)
12733 {
12734 	dtrace_helpers_t *help;
12735 	dtrace_vstate_t *vstate;
12736 	proc_t *p = curproc;
12737 	int i;
12738 
12739 	mutex_enter(&dtrace_lock);
12740 
12741 	ASSERT(p->p_dtrace_helpers != NULL);
12742 	ASSERT(dtrace_helpers > 0);
12743 
12744 	help = p->p_dtrace_helpers;
12745 	vstate = &help->dthps_vstate;
12746 
12747 	/*
12748 	 * We're now going to lose the help from this process.
12749 	 */
12750 	p->p_dtrace_helpers = NULL;
12751 	dtrace_sync();
12752 
12753 	/*
12754 	 * Destory the helper actions.
12755 	 */
12756 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12757 		dtrace_helper_action_t *h, *next;
12758 
12759 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12760 			next = h->dthp_next;
12761 			dtrace_helper_destroy(h, vstate);
12762 			h = next;
12763 		}
12764 	}
12765 
12766 	mutex_exit(&dtrace_lock);
12767 
12768 	/*
12769 	 * Destroy the helper providers.
12770 	 */
12771 	if (help->dthps_nprovs > 0) {
12772 		mutex_enter(&dtrace_meta_lock);
12773 		if (dtrace_meta_pid != NULL) {
12774 			ASSERT(dtrace_deferred_pid == NULL);
12775 
12776 			for (i = 0; i < help->dthps_nprovs; i++) {
12777 				dtrace_helper_remove(
12778 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12779 			}
12780 		} else {
12781 			mutex_enter(&dtrace_lock);
12782 			ASSERT(help->dthps_deferred == 0 ||
12783 			    help->dthps_next != NULL ||
12784 			    help->dthps_prev != NULL ||
12785 			    help == dtrace_deferred_pid);
12786 
12787 			/*
12788 			 * Remove the helper from the deferred list.
12789 			 */
12790 			if (help->dthps_next != NULL)
12791 				help->dthps_next->dthps_prev = help->dthps_prev;
12792 			if (help->dthps_prev != NULL)
12793 				help->dthps_prev->dthps_next = help->dthps_next;
12794 			if (dtrace_deferred_pid == help) {
12795 				dtrace_deferred_pid = help->dthps_next;
12796 				ASSERT(help->dthps_prev == NULL);
12797 			}
12798 
12799 			mutex_exit(&dtrace_lock);
12800 		}
12801 
12802 		mutex_exit(&dtrace_meta_lock);
12803 
12804 		for (i = 0; i < help->dthps_nprovs; i++) {
12805 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12806 		}
12807 
12808 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12809 		    sizeof (dtrace_helper_provider_t *));
12810 	}
12811 
12812 	mutex_enter(&dtrace_lock);
12813 
12814 	dtrace_vstate_fini(&help->dthps_vstate);
12815 	kmem_free(help->dthps_actions,
12816 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12817 	kmem_free(help, sizeof (dtrace_helpers_t));
12818 
12819 	--dtrace_helpers;
12820 	mutex_exit(&dtrace_lock);
12821 }
12822 
12823 static void
12824 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12825 {
12826 	dtrace_helpers_t *help, *newhelp;
12827 	dtrace_helper_action_t *helper, *new, *last;
12828 	dtrace_difo_t *dp;
12829 	dtrace_vstate_t *vstate;
12830 	int i, j, sz, hasprovs = 0;
12831 
12832 	mutex_enter(&dtrace_lock);
12833 	ASSERT(from->p_dtrace_helpers != NULL);
12834 	ASSERT(dtrace_helpers > 0);
12835 
12836 	help = from->p_dtrace_helpers;
12837 	newhelp = dtrace_helpers_create(to);
12838 	ASSERT(to->p_dtrace_helpers != NULL);
12839 
12840 	newhelp->dthps_generation = help->dthps_generation;
12841 	vstate = &newhelp->dthps_vstate;
12842 
12843 	/*
12844 	 * Duplicate the helper actions.
12845 	 */
12846 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12847 		if ((helper = help->dthps_actions[i]) == NULL)
12848 			continue;
12849 
12850 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12851 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12852 			    KM_SLEEP);
12853 			new->dthp_generation = helper->dthp_generation;
12854 
12855 			if ((dp = helper->dthp_predicate) != NULL) {
12856 				dp = dtrace_difo_duplicate(dp, vstate);
12857 				new->dthp_predicate = dp;
12858 			}
12859 
12860 			new->dthp_nactions = helper->dthp_nactions;
12861 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
12862 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
12863 
12864 			for (j = 0; j < new->dthp_nactions; j++) {
12865 				dtrace_difo_t *dp = helper->dthp_actions[j];
12866 
12867 				ASSERT(dp != NULL);
12868 				dp = dtrace_difo_duplicate(dp, vstate);
12869 				new->dthp_actions[j] = dp;
12870 			}
12871 
12872 			if (last != NULL) {
12873 				last->dthp_next = new;
12874 			} else {
12875 				newhelp->dthps_actions[i] = new;
12876 			}
12877 
12878 			last = new;
12879 		}
12880 	}
12881 
12882 	/*
12883 	 * Duplicate the helper providers and register them with the
12884 	 * DTrace framework.
12885 	 */
12886 	if (help->dthps_nprovs > 0) {
12887 		newhelp->dthps_nprovs = help->dthps_nprovs;
12888 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
12889 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12890 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
12891 			newhelp->dthps_provs[i] = help->dthps_provs[i];
12892 			newhelp->dthps_provs[i]->dthp_ref++;
12893 		}
12894 
12895 		hasprovs = 1;
12896 	}
12897 
12898 	mutex_exit(&dtrace_lock);
12899 
12900 	if (hasprovs)
12901 		dtrace_helper_provider_register(to, newhelp, NULL);
12902 }
12903 
12904 /*
12905  * DTrace Hook Functions
12906  */
12907 static void
12908 dtrace_module_loaded(struct modctl *ctl)
12909 {
12910 	dtrace_provider_t *prv;
12911 
12912 	mutex_enter(&dtrace_provider_lock);
12913 	mutex_enter(&mod_lock);
12914 
12915 	ASSERT(ctl->mod_busy);
12916 
12917 	/*
12918 	 * We're going to call each providers per-module provide operation
12919 	 * specifying only this module.
12920 	 */
12921 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
12922 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
12923 
12924 	mutex_exit(&mod_lock);
12925 	mutex_exit(&dtrace_provider_lock);
12926 
12927 	/*
12928 	 * If we have any retained enablings, we need to match against them.
12929 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
12930 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
12931 	 * module.  (In particular, this happens when loading scheduling
12932 	 * classes.)  So if we have any retained enablings, we need to dispatch
12933 	 * our task queue to do the match for us.
12934 	 */
12935 	mutex_enter(&dtrace_lock);
12936 
12937 	if (dtrace_retained == NULL) {
12938 		mutex_exit(&dtrace_lock);
12939 		return;
12940 	}
12941 
12942 	(void) taskq_dispatch(dtrace_taskq,
12943 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
12944 
12945 	mutex_exit(&dtrace_lock);
12946 
12947 	/*
12948 	 * And now, for a little heuristic sleaze:  in general, we want to
12949 	 * match modules as soon as they load.  However, we cannot guarantee
12950 	 * this, because it would lead us to the lock ordering violation
12951 	 * outlined above.  The common case, of course, is that cpu_lock is
12952 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
12953 	 * long enough for the task queue to do its work.  If it's not, it's
12954 	 * not a serious problem -- it just means that the module that we
12955 	 * just loaded may not be immediately instrumentable.
12956 	 */
12957 	delay(1);
12958 }
12959 
12960 static void
12961 dtrace_module_unloaded(struct modctl *ctl)
12962 {
12963 	dtrace_probe_t template, *probe, *first, *next;
12964 	dtrace_provider_t *prov;
12965 
12966 	template.dtpr_mod = ctl->mod_modname;
12967 
12968 	mutex_enter(&dtrace_provider_lock);
12969 	mutex_enter(&mod_lock);
12970 	mutex_enter(&dtrace_lock);
12971 
12972 	if (dtrace_bymod == NULL) {
12973 		/*
12974 		 * The DTrace module is loaded (obviously) but not attached;
12975 		 * we don't have any work to do.
12976 		 */
12977 		mutex_exit(&dtrace_provider_lock);
12978 		mutex_exit(&mod_lock);
12979 		mutex_exit(&dtrace_lock);
12980 		return;
12981 	}
12982 
12983 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
12984 	    probe != NULL; probe = probe->dtpr_nextmod) {
12985 		if (probe->dtpr_ecb != NULL) {
12986 			mutex_exit(&dtrace_provider_lock);
12987 			mutex_exit(&mod_lock);
12988 			mutex_exit(&dtrace_lock);
12989 
12990 			/*
12991 			 * This shouldn't _actually_ be possible -- we're
12992 			 * unloading a module that has an enabled probe in it.
12993 			 * (It's normally up to the provider to make sure that
12994 			 * this can't happen.)  However, because dtps_enable()
12995 			 * doesn't have a failure mode, there can be an
12996 			 * enable/unload race.  Upshot:  we don't want to
12997 			 * assert, but we're not going to disable the
12998 			 * probe, either.
12999 			 */
13000 			if (dtrace_err_verbose) {
13001 				cmn_err(CE_WARN, "unloaded module '%s' had "
13002 				    "enabled probes", ctl->mod_modname);
13003 			}
13004 
13005 			return;
13006 		}
13007 	}
13008 
13009 	probe = first;
13010 
13011 	for (first = NULL; probe != NULL; probe = next) {
13012 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
13013 
13014 		dtrace_probes[probe->dtpr_id - 1] = NULL;
13015 
13016 		next = probe->dtpr_nextmod;
13017 		dtrace_hash_remove(dtrace_bymod, probe);
13018 		dtrace_hash_remove(dtrace_byfunc, probe);
13019 		dtrace_hash_remove(dtrace_byname, probe);
13020 
13021 		if (first == NULL) {
13022 			first = probe;
13023 			probe->dtpr_nextmod = NULL;
13024 		} else {
13025 			probe->dtpr_nextmod = first;
13026 			first = probe;
13027 		}
13028 	}
13029 
13030 	/*
13031 	 * We've removed all of the module's probes from the hash chains and
13032 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
13033 	 * everyone has cleared out from any probe array processing.
13034 	 */
13035 	dtrace_sync();
13036 
13037 	for (probe = first; probe != NULL; probe = first) {
13038 		first = probe->dtpr_nextmod;
13039 		prov = probe->dtpr_provider;
13040 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
13041 		    probe->dtpr_arg);
13042 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
13043 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
13044 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
13045 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
13046 		kmem_free(probe, sizeof (dtrace_probe_t));
13047 	}
13048 
13049 	mutex_exit(&dtrace_lock);
13050 	mutex_exit(&mod_lock);
13051 	mutex_exit(&dtrace_provider_lock);
13052 }
13053 
13054 void
13055 dtrace_suspend(void)
13056 {
13057 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
13058 }
13059 
13060 void
13061 dtrace_resume(void)
13062 {
13063 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
13064 }
13065 
13066 static int
13067 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
13068 {
13069 	ASSERT(MUTEX_HELD(&cpu_lock));
13070 	mutex_enter(&dtrace_lock);
13071 
13072 	switch (what) {
13073 	case CPU_CONFIG: {
13074 		dtrace_state_t *state;
13075 		dtrace_optval_t *opt, rs, c;
13076 
13077 		/*
13078 		 * For now, we only allocate a new buffer for anonymous state.
13079 		 */
13080 		if ((state = dtrace_anon.dta_state) == NULL)
13081 			break;
13082 
13083 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13084 			break;
13085 
13086 		opt = state->dts_options;
13087 		c = opt[DTRACEOPT_CPU];
13088 
13089 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
13090 			break;
13091 
13092 		/*
13093 		 * Regardless of what the actual policy is, we're going to
13094 		 * temporarily set our resize policy to be manual.  We're
13095 		 * also going to temporarily set our CPU option to denote
13096 		 * the newly configured CPU.
13097 		 */
13098 		rs = opt[DTRACEOPT_BUFRESIZE];
13099 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
13100 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
13101 
13102 		(void) dtrace_state_buffers(state);
13103 
13104 		opt[DTRACEOPT_BUFRESIZE] = rs;
13105 		opt[DTRACEOPT_CPU] = c;
13106 
13107 		break;
13108 	}
13109 
13110 	case CPU_UNCONFIG:
13111 		/*
13112 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
13113 		 * buffer will be freed when the consumer exits.)
13114 		 */
13115 		break;
13116 
13117 	default:
13118 		break;
13119 	}
13120 
13121 	mutex_exit(&dtrace_lock);
13122 	return (0);
13123 }
13124 
13125 static void
13126 dtrace_cpu_setup_initial(processorid_t cpu)
13127 {
13128 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
13129 }
13130 
13131 static void
13132 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
13133 {
13134 	if (dtrace_toxranges >= dtrace_toxranges_max) {
13135 		int osize, nsize;
13136 		dtrace_toxrange_t *range;
13137 
13138 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13139 
13140 		if (osize == 0) {
13141 			ASSERT(dtrace_toxrange == NULL);
13142 			ASSERT(dtrace_toxranges_max == 0);
13143 			dtrace_toxranges_max = 1;
13144 		} else {
13145 			dtrace_toxranges_max <<= 1;
13146 		}
13147 
13148 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13149 		range = kmem_zalloc(nsize, KM_SLEEP);
13150 
13151 		if (dtrace_toxrange != NULL) {
13152 			ASSERT(osize != 0);
13153 			bcopy(dtrace_toxrange, range, osize);
13154 			kmem_free(dtrace_toxrange, osize);
13155 		}
13156 
13157 		dtrace_toxrange = range;
13158 	}
13159 
13160 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
13161 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
13162 
13163 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
13164 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
13165 	dtrace_toxranges++;
13166 }
13167 
13168 /*
13169  * DTrace Driver Cookbook Functions
13170  */
13171 /*ARGSUSED*/
13172 static int
13173 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
13174 {
13175 	dtrace_provider_id_t id;
13176 	dtrace_state_t *state = NULL;
13177 	dtrace_enabling_t *enab;
13178 
13179 	mutex_enter(&cpu_lock);
13180 	mutex_enter(&dtrace_provider_lock);
13181 	mutex_enter(&dtrace_lock);
13182 
13183 	if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t) +
13184 	    NCPU * sizeof (dtrace_buffer_t), 0) != 0) {
13185 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
13186 		mutex_exit(&cpu_lock);
13187 		mutex_exit(&dtrace_provider_lock);
13188 		mutex_exit(&dtrace_lock);
13189 		return (DDI_FAILURE);
13190 	}
13191 
13192 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
13193 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
13194 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
13195 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
13196 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
13197 		ddi_remove_minor_node(devi, NULL);
13198 		ddi_soft_state_fini(&dtrace_softstate);
13199 		mutex_exit(&cpu_lock);
13200 		mutex_exit(&dtrace_provider_lock);
13201 		mutex_exit(&dtrace_lock);
13202 		return (DDI_FAILURE);
13203 	}
13204 
13205 	ddi_report_dev(devi);
13206 	dtrace_devi = devi;
13207 
13208 	dtrace_modload = dtrace_module_loaded;
13209 	dtrace_modunload = dtrace_module_unloaded;
13210 	dtrace_cpu_init = dtrace_cpu_setup_initial;
13211 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
13212 	dtrace_helpers_fork = dtrace_helpers_duplicate;
13213 	dtrace_cpustart_init = dtrace_suspend;
13214 	dtrace_cpustart_fini = dtrace_resume;
13215 	dtrace_debugger_init = dtrace_suspend;
13216 	dtrace_debugger_fini = dtrace_resume;
13217 	dtrace_kreloc_init = dtrace_suspend;
13218 	dtrace_kreloc_fini = dtrace_resume;
13219 
13220 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13221 
13222 	ASSERT(MUTEX_HELD(&cpu_lock));
13223 
13224 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
13225 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13226 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
13227 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
13228 	    VM_SLEEP | VMC_IDENTIFIER);
13229 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
13230 	    1, INT_MAX, 0);
13231 
13232 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
13233 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
13234 	    NULL, NULL, NULL, NULL, NULL, 0);
13235 
13236 	ASSERT(MUTEX_HELD(&cpu_lock));
13237 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
13238 	    offsetof(dtrace_probe_t, dtpr_nextmod),
13239 	    offsetof(dtrace_probe_t, dtpr_prevmod));
13240 
13241 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
13242 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
13243 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
13244 
13245 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
13246 	    offsetof(dtrace_probe_t, dtpr_nextname),
13247 	    offsetof(dtrace_probe_t, dtpr_prevname));
13248 
13249 	if (dtrace_retain_max < 1) {
13250 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
13251 		    "setting to 1", dtrace_retain_max);
13252 		dtrace_retain_max = 1;
13253 	}
13254 
13255 	/*
13256 	 * Now discover our toxic ranges.
13257 	 */
13258 	dtrace_toxic_ranges(dtrace_toxrange_add);
13259 
13260 	/*
13261 	 * Before we register ourselves as a provider to our own framework,
13262 	 * we would like to assert that dtrace_provider is NULL -- but that's
13263 	 * not true if we were loaded as a dependency of a DTrace provider.
13264 	 * Once we've registered, we can assert that dtrace_provider is our
13265 	 * pseudo provider.
13266 	 */
13267 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
13268 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
13269 
13270 	ASSERT(dtrace_provider != NULL);
13271 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
13272 
13273 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
13274 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
13275 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
13276 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
13277 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
13278 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
13279 
13280 	dtrace_anon_property();
13281 	mutex_exit(&cpu_lock);
13282 
13283 	/*
13284 	 * If DTrace helper tracing is enabled, we need to allocate the
13285 	 * trace buffer and initialize the values.
13286 	 */
13287 	if (dtrace_helptrace_enabled) {
13288 		ASSERT(dtrace_helptrace_buffer == NULL);
13289 		dtrace_helptrace_buffer =
13290 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
13291 		dtrace_helptrace_next = 0;
13292 	}
13293 
13294 	/*
13295 	 * If there are already providers, we must ask them to provide their
13296 	 * probes, and then match any anonymous enabling against them.  Note
13297 	 * that there should be no other retained enablings at this time:
13298 	 * the only retained enablings at this time should be the anonymous
13299 	 * enabling.
13300 	 */
13301 	if (dtrace_anon.dta_enabling != NULL) {
13302 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13303 
13304 		dtrace_enabling_provide(NULL);
13305 		state = dtrace_anon.dta_state;
13306 
13307 		/*
13308 		 * We couldn't hold cpu_lock across the above call to
13309 		 * dtrace_enabling_provide(), but we must hold it to actually
13310 		 * enable the probes.  We have to drop all of our locks, pick
13311 		 * up cpu_lock, and regain our locks before matching the
13312 		 * retained anonymous enabling.
13313 		 */
13314 		mutex_exit(&dtrace_lock);
13315 		mutex_exit(&dtrace_provider_lock);
13316 
13317 		mutex_enter(&cpu_lock);
13318 		mutex_enter(&dtrace_provider_lock);
13319 		mutex_enter(&dtrace_lock);
13320 
13321 		if ((enab = dtrace_anon.dta_enabling) != NULL)
13322 			(void) dtrace_enabling_match(enab, NULL);
13323 
13324 		mutex_exit(&cpu_lock);
13325 	}
13326 
13327 	mutex_exit(&dtrace_lock);
13328 	mutex_exit(&dtrace_provider_lock);
13329 
13330 	if (state != NULL) {
13331 		/*
13332 		 * If we created any anonymous state, set it going now.
13333 		 */
13334 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
13335 	}
13336 
13337 	return (DDI_SUCCESS);
13338 }
13339 
13340 /*ARGSUSED*/
13341 static int
13342 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
13343 {
13344 	dtrace_state_t *state;
13345 	uint32_t priv;
13346 	uid_t uid;
13347 	zoneid_t zoneid;
13348 
13349 	if (getminor(*devp) == DTRACEMNRN_HELPER)
13350 		return (0);
13351 
13352 	/*
13353 	 * If this wasn't an open with the "helper" minor, then it must be
13354 	 * the "dtrace" minor.
13355 	 */
13356 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
13357 
13358 	/*
13359 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
13360 	 * caller lacks sufficient permission to do anything with DTrace.
13361 	 */
13362 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
13363 	if (priv == DTRACE_PRIV_NONE)
13364 		return (EACCES);
13365 
13366 	/*
13367 	 * Ask all providers to provide all their probes.
13368 	 */
13369 	mutex_enter(&dtrace_provider_lock);
13370 	dtrace_probe_provide(NULL, NULL);
13371 	mutex_exit(&dtrace_provider_lock);
13372 
13373 	mutex_enter(&cpu_lock);
13374 	mutex_enter(&dtrace_lock);
13375 	dtrace_opens++;
13376 	dtrace_membar_producer();
13377 
13378 	/*
13379 	 * If the kernel debugger is active (that is, if the kernel debugger
13380 	 * modified text in some way), we won't allow the open.
13381 	 */
13382 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13383 		dtrace_opens--;
13384 		mutex_exit(&cpu_lock);
13385 		mutex_exit(&dtrace_lock);
13386 		return (EBUSY);
13387 	}
13388 
13389 	state = dtrace_state_create(devp, cred_p);
13390 	mutex_exit(&cpu_lock);
13391 
13392 	if (state == NULL) {
13393 		if (--dtrace_opens == 0)
13394 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13395 		mutex_exit(&dtrace_lock);
13396 		return (EAGAIN);
13397 	}
13398 
13399 	mutex_exit(&dtrace_lock);
13400 
13401 	return (0);
13402 }
13403 
13404 /*ARGSUSED*/
13405 static int
13406 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
13407 {
13408 	minor_t minor = getminor(dev);
13409 	dtrace_state_t *state;
13410 
13411 	if (minor == DTRACEMNRN_HELPER)
13412 		return (0);
13413 
13414 	state = ddi_get_soft_state(dtrace_softstate, minor);
13415 
13416 	mutex_enter(&cpu_lock);
13417 	mutex_enter(&dtrace_lock);
13418 
13419 	if (state->dts_anon) {
13420 		/*
13421 		 * There is anonymous state. Destroy that first.
13422 		 */
13423 		ASSERT(dtrace_anon.dta_state == NULL);
13424 		dtrace_state_destroy(state->dts_anon);
13425 	}
13426 
13427 	dtrace_state_destroy(state);
13428 	ASSERT(dtrace_opens > 0);
13429 	if (--dtrace_opens == 0)
13430 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13431 
13432 	mutex_exit(&dtrace_lock);
13433 	mutex_exit(&cpu_lock);
13434 
13435 	return (0);
13436 }
13437 
13438 /*ARGSUSED*/
13439 static int
13440 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
13441 {
13442 	int rval;
13443 	dof_helper_t help, *dhp = NULL;
13444 
13445 	switch (cmd) {
13446 	case DTRACEHIOC_ADDDOF:
13447 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
13448 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
13449 			return (EFAULT);
13450 		}
13451 
13452 		dhp = &help;
13453 		arg = (intptr_t)help.dofhp_dof;
13454 		/*FALLTHROUGH*/
13455 
13456 	case DTRACEHIOC_ADD: {
13457 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
13458 
13459 		if (dof == NULL)
13460 			return (rval);
13461 
13462 		mutex_enter(&dtrace_lock);
13463 		dtrace_err = 0;
13464 
13465 		/*
13466 		 * dtrace_helper_slurp() takes responsibility for the dof --
13467 		 * it may free it now or it may save it and free it later.
13468 		 */
13469 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
13470 			*rv = rval;
13471 			rval = 0;
13472 		} else {
13473 			rval = EINVAL;
13474 		}
13475 
13476 		mutex_exit(&dtrace_lock);
13477 		return (rval);
13478 	}
13479 
13480 	case DTRACEHIOC_REMOVE: {
13481 		mutex_enter(&dtrace_lock);
13482 		rval = dtrace_helper_destroygen(arg);
13483 		mutex_exit(&dtrace_lock);
13484 
13485 		return (rval);
13486 	}
13487 
13488 	default:
13489 		break;
13490 	}
13491 
13492 	return (ENOTTY);
13493 }
13494 
13495 /*ARGSUSED*/
13496 static int
13497 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
13498 {
13499 	minor_t minor = getminor(dev);
13500 	dtrace_state_t *state;
13501 	int rval;
13502 
13503 	if (minor == DTRACEMNRN_HELPER)
13504 		return (dtrace_ioctl_helper(cmd, arg, rv));
13505 
13506 	state = ddi_get_soft_state(dtrace_softstate, minor);
13507 
13508 	if (state->dts_anon) {
13509 		ASSERT(dtrace_anon.dta_state == NULL);
13510 		state = state->dts_anon;
13511 	}
13512 
13513 	switch (cmd) {
13514 	case DTRACEIOC_PROVIDER: {
13515 		dtrace_providerdesc_t pvd;
13516 		dtrace_provider_t *pvp;
13517 
13518 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13519 			return (EFAULT);
13520 
13521 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13522 		mutex_enter(&dtrace_provider_lock);
13523 
13524 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13525 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13526 				break;
13527 		}
13528 
13529 		mutex_exit(&dtrace_provider_lock);
13530 
13531 		if (pvp == NULL)
13532 			return (ESRCH);
13533 
13534 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13535 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13536 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13537 			return (EFAULT);
13538 
13539 		return (0);
13540 	}
13541 
13542 	case DTRACEIOC_EPROBE: {
13543 		dtrace_eprobedesc_t epdesc;
13544 		dtrace_ecb_t *ecb;
13545 		dtrace_action_t *act;
13546 		void *buf;
13547 		size_t size;
13548 		uintptr_t dest;
13549 		int nrecs;
13550 
13551 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13552 			return (EFAULT);
13553 
13554 		mutex_enter(&dtrace_lock);
13555 
13556 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13557 			mutex_exit(&dtrace_lock);
13558 			return (EINVAL);
13559 		}
13560 
13561 		if (ecb->dte_probe == NULL) {
13562 			mutex_exit(&dtrace_lock);
13563 			return (EINVAL);
13564 		}
13565 
13566 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13567 		epdesc.dtepd_uarg = ecb->dte_uarg;
13568 		epdesc.dtepd_size = ecb->dte_size;
13569 
13570 		nrecs = epdesc.dtepd_nrecs;
13571 		epdesc.dtepd_nrecs = 0;
13572 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13573 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13574 				continue;
13575 
13576 			epdesc.dtepd_nrecs++;
13577 		}
13578 
13579 		/*
13580 		 * Now that we have the size, we need to allocate a temporary
13581 		 * buffer in which to store the complete description.  We need
13582 		 * the temporary buffer to be able to drop dtrace_lock()
13583 		 * across the copyout(), below.
13584 		 */
13585 		size = sizeof (dtrace_eprobedesc_t) +
13586 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13587 
13588 		buf = kmem_alloc(size, KM_SLEEP);
13589 		dest = (uintptr_t)buf;
13590 
13591 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13592 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13593 
13594 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13595 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13596 				continue;
13597 
13598 			if (nrecs-- == 0)
13599 				break;
13600 
13601 			bcopy(&act->dta_rec, (void *)dest,
13602 			    sizeof (dtrace_recdesc_t));
13603 			dest += sizeof (dtrace_recdesc_t);
13604 		}
13605 
13606 		mutex_exit(&dtrace_lock);
13607 
13608 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13609 			kmem_free(buf, size);
13610 			return (EFAULT);
13611 		}
13612 
13613 		kmem_free(buf, size);
13614 		return (0);
13615 	}
13616 
13617 	case DTRACEIOC_AGGDESC: {
13618 		dtrace_aggdesc_t aggdesc;
13619 		dtrace_action_t *act;
13620 		dtrace_aggregation_t *agg;
13621 		int nrecs;
13622 		uint32_t offs;
13623 		dtrace_recdesc_t *lrec;
13624 		void *buf;
13625 		size_t size;
13626 		uintptr_t dest;
13627 
13628 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13629 			return (EFAULT);
13630 
13631 		mutex_enter(&dtrace_lock);
13632 
13633 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13634 			mutex_exit(&dtrace_lock);
13635 			return (EINVAL);
13636 		}
13637 
13638 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13639 
13640 		nrecs = aggdesc.dtagd_nrecs;
13641 		aggdesc.dtagd_nrecs = 0;
13642 
13643 		offs = agg->dtag_base;
13644 		lrec = &agg->dtag_action.dta_rec;
13645 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13646 
13647 		for (act = agg->dtag_first; ; act = act->dta_next) {
13648 			ASSERT(act->dta_intuple ||
13649 			    DTRACEACT_ISAGG(act->dta_kind));
13650 
13651 			/*
13652 			 * If this action has a record size of zero, it
13653 			 * denotes an argument to the aggregating action.
13654 			 * Because the presence of this record doesn't (or
13655 			 * shouldn't) affect the way the data is interpreted,
13656 			 * we don't copy it out to save user-level the
13657 			 * confusion of dealing with a zero-length record.
13658 			 */
13659 			if (act->dta_rec.dtrd_size == 0) {
13660 				ASSERT(agg->dtag_hasarg);
13661 				continue;
13662 			}
13663 
13664 			aggdesc.dtagd_nrecs++;
13665 
13666 			if (act == &agg->dtag_action)
13667 				break;
13668 		}
13669 
13670 		/*
13671 		 * Now that we have the size, we need to allocate a temporary
13672 		 * buffer in which to store the complete description.  We need
13673 		 * the temporary buffer to be able to drop dtrace_lock()
13674 		 * across the copyout(), below.
13675 		 */
13676 		size = sizeof (dtrace_aggdesc_t) +
13677 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13678 
13679 		buf = kmem_alloc(size, KM_SLEEP);
13680 		dest = (uintptr_t)buf;
13681 
13682 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13683 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13684 
13685 		for (act = agg->dtag_first; ; act = act->dta_next) {
13686 			dtrace_recdesc_t rec = act->dta_rec;
13687 
13688 			/*
13689 			 * See the comment in the above loop for why we pass
13690 			 * over zero-length records.
13691 			 */
13692 			if (rec.dtrd_size == 0) {
13693 				ASSERT(agg->dtag_hasarg);
13694 				continue;
13695 			}
13696 
13697 			if (nrecs-- == 0)
13698 				break;
13699 
13700 			rec.dtrd_offset -= offs;
13701 			bcopy(&rec, (void *)dest, sizeof (rec));
13702 			dest += sizeof (dtrace_recdesc_t);
13703 
13704 			if (act == &agg->dtag_action)
13705 				break;
13706 		}
13707 
13708 		mutex_exit(&dtrace_lock);
13709 
13710 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13711 			kmem_free(buf, size);
13712 			return (EFAULT);
13713 		}
13714 
13715 		kmem_free(buf, size);
13716 		return (0);
13717 	}
13718 
13719 	case DTRACEIOC_ENABLE: {
13720 		dof_hdr_t *dof;
13721 		dtrace_enabling_t *enab = NULL;
13722 		dtrace_vstate_t *vstate;
13723 		int err = 0;
13724 
13725 		*rv = 0;
13726 
13727 		/*
13728 		 * If a NULL argument has been passed, we take this as our
13729 		 * cue to reevaluate our enablings.
13730 		 */
13731 		if (arg == NULL) {
13732 			mutex_enter(&cpu_lock);
13733 			mutex_enter(&dtrace_lock);
13734 			err = dtrace_enabling_matchstate(state, rv);
13735 			mutex_exit(&dtrace_lock);
13736 			mutex_exit(&cpu_lock);
13737 
13738 			return (err);
13739 		}
13740 
13741 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13742 			return (rval);
13743 
13744 		mutex_enter(&cpu_lock);
13745 		mutex_enter(&dtrace_lock);
13746 		vstate = &state->dts_vstate;
13747 
13748 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13749 			mutex_exit(&dtrace_lock);
13750 			mutex_exit(&cpu_lock);
13751 			dtrace_dof_destroy(dof);
13752 			return (EBUSY);
13753 		}
13754 
13755 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13756 			mutex_exit(&dtrace_lock);
13757 			mutex_exit(&cpu_lock);
13758 			dtrace_dof_destroy(dof);
13759 			return (EINVAL);
13760 		}
13761 
13762 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13763 			dtrace_enabling_destroy(enab);
13764 			mutex_exit(&dtrace_lock);
13765 			mutex_exit(&cpu_lock);
13766 			dtrace_dof_destroy(dof);
13767 			return (rval);
13768 		}
13769 
13770 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13771 			err = dtrace_enabling_retain(enab);
13772 		} else {
13773 			dtrace_enabling_destroy(enab);
13774 		}
13775 
13776 		mutex_exit(&cpu_lock);
13777 		mutex_exit(&dtrace_lock);
13778 		dtrace_dof_destroy(dof);
13779 
13780 		return (err);
13781 	}
13782 
13783 	case DTRACEIOC_REPLICATE: {
13784 		dtrace_repldesc_t desc;
13785 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13786 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13787 		int err;
13788 
13789 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13790 			return (EFAULT);
13791 
13792 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13793 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13794 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13795 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13796 
13797 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13798 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13799 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13800 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13801 
13802 		mutex_enter(&dtrace_lock);
13803 		err = dtrace_enabling_replicate(state, match, create);
13804 		mutex_exit(&dtrace_lock);
13805 
13806 		return (err);
13807 	}
13808 
13809 	case DTRACEIOC_PROBEMATCH:
13810 	case DTRACEIOC_PROBES: {
13811 		dtrace_probe_t *probe = NULL;
13812 		dtrace_probedesc_t desc;
13813 		dtrace_probekey_t pkey;
13814 		dtrace_id_t i;
13815 		int m = 0;
13816 		uint32_t priv;
13817 		uid_t uid;
13818 		zoneid_t zoneid;
13819 
13820 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13821 			return (EFAULT);
13822 
13823 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13824 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13825 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13826 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13827 
13828 		/*
13829 		 * Before we attempt to match this probe, we want to give
13830 		 * all providers the opportunity to provide it.
13831 		 */
13832 		if (desc.dtpd_id == DTRACE_IDNONE) {
13833 			mutex_enter(&dtrace_provider_lock);
13834 			dtrace_probe_provide(&desc, NULL);
13835 			mutex_exit(&dtrace_provider_lock);
13836 			desc.dtpd_id++;
13837 		}
13838 
13839 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13840 			dtrace_probekey(&desc, &pkey);
13841 			pkey.dtpk_id = DTRACE_IDNONE;
13842 		}
13843 
13844 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
13845 
13846 		mutex_enter(&dtrace_lock);
13847 
13848 		if (cmd == DTRACEIOC_PROBEMATCH) {
13849 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13850 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13851 				    (m = dtrace_match_probe(probe, &pkey,
13852 				    priv, uid, zoneid)) != 0)
13853 					break;
13854 			}
13855 
13856 			if (m < 0) {
13857 				mutex_exit(&dtrace_lock);
13858 				return (EINVAL);
13859 			}
13860 
13861 		} else {
13862 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13863 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13864 				    dtrace_match_priv(probe, priv, uid, zoneid))
13865 					break;
13866 			}
13867 		}
13868 
13869 		if (probe == NULL) {
13870 			mutex_exit(&dtrace_lock);
13871 			return (ESRCH);
13872 		}
13873 
13874 		dtrace_probe_description(probe, &desc);
13875 		mutex_exit(&dtrace_lock);
13876 
13877 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13878 			return (EFAULT);
13879 
13880 		return (0);
13881 	}
13882 
13883 	case DTRACEIOC_PROBEARG: {
13884 		dtrace_argdesc_t desc;
13885 		dtrace_probe_t *probe;
13886 		dtrace_provider_t *prov;
13887 
13888 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13889 			return (EFAULT);
13890 
13891 		if (desc.dtargd_id == DTRACE_IDNONE)
13892 			return (EINVAL);
13893 
13894 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
13895 			return (EINVAL);
13896 
13897 		mutex_enter(&dtrace_provider_lock);
13898 		mutex_enter(&mod_lock);
13899 		mutex_enter(&dtrace_lock);
13900 
13901 		if (desc.dtargd_id > dtrace_nprobes) {
13902 			mutex_exit(&dtrace_lock);
13903 			mutex_exit(&mod_lock);
13904 			mutex_exit(&dtrace_provider_lock);
13905 			return (EINVAL);
13906 		}
13907 
13908 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
13909 			mutex_exit(&dtrace_lock);
13910 			mutex_exit(&mod_lock);
13911 			mutex_exit(&dtrace_provider_lock);
13912 			return (EINVAL);
13913 		}
13914 
13915 		mutex_exit(&dtrace_lock);
13916 
13917 		prov = probe->dtpr_provider;
13918 
13919 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
13920 			/*
13921 			 * There isn't any typed information for this probe.
13922 			 * Set the argument number to DTRACE_ARGNONE.
13923 			 */
13924 			desc.dtargd_ndx = DTRACE_ARGNONE;
13925 		} else {
13926 			desc.dtargd_native[0] = '\0';
13927 			desc.dtargd_xlate[0] = '\0';
13928 			desc.dtargd_mapping = desc.dtargd_ndx;
13929 
13930 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
13931 			    probe->dtpr_id, probe->dtpr_arg, &desc);
13932 		}
13933 
13934 		mutex_exit(&mod_lock);
13935 		mutex_exit(&dtrace_provider_lock);
13936 
13937 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13938 			return (EFAULT);
13939 
13940 		return (0);
13941 	}
13942 
13943 	case DTRACEIOC_GO: {
13944 		processorid_t cpuid;
13945 		rval = dtrace_state_go(state, &cpuid);
13946 
13947 		if (rval != 0)
13948 			return (rval);
13949 
13950 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13951 			return (EFAULT);
13952 
13953 		return (0);
13954 	}
13955 
13956 	case DTRACEIOC_STOP: {
13957 		processorid_t cpuid;
13958 
13959 		mutex_enter(&dtrace_lock);
13960 		rval = dtrace_state_stop(state, &cpuid);
13961 		mutex_exit(&dtrace_lock);
13962 
13963 		if (rval != 0)
13964 			return (rval);
13965 
13966 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13967 			return (EFAULT);
13968 
13969 		return (0);
13970 	}
13971 
13972 	case DTRACEIOC_DOFGET: {
13973 		dof_hdr_t hdr, *dof;
13974 		uint64_t len;
13975 
13976 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
13977 			return (EFAULT);
13978 
13979 		mutex_enter(&dtrace_lock);
13980 		dof = dtrace_dof_create(state);
13981 		mutex_exit(&dtrace_lock);
13982 
13983 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
13984 		rval = copyout(dof, (void *)arg, len);
13985 		dtrace_dof_destroy(dof);
13986 
13987 		return (rval == 0 ? 0 : EFAULT);
13988 	}
13989 
13990 	case DTRACEIOC_AGGSNAP:
13991 	case DTRACEIOC_BUFSNAP: {
13992 		dtrace_bufdesc_t desc;
13993 		caddr_t cached;
13994 		dtrace_buffer_t *buf;
13995 
13996 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13997 			return (EFAULT);
13998 
13999 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
14000 			return (EINVAL);
14001 
14002 		mutex_enter(&dtrace_lock);
14003 
14004 		if (cmd == DTRACEIOC_BUFSNAP) {
14005 			buf = &state->dts_buffer[desc.dtbd_cpu];
14006 		} else {
14007 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
14008 		}
14009 
14010 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
14011 			size_t sz = buf->dtb_offset;
14012 
14013 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
14014 				mutex_exit(&dtrace_lock);
14015 				return (EBUSY);
14016 			}
14017 
14018 			/*
14019 			 * If this buffer has already been consumed, we're
14020 			 * going to indicate that there's nothing left here
14021 			 * to consume.
14022 			 */
14023 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
14024 				mutex_exit(&dtrace_lock);
14025 
14026 				desc.dtbd_size = 0;
14027 				desc.dtbd_drops = 0;
14028 				desc.dtbd_errors = 0;
14029 				desc.dtbd_oldest = 0;
14030 				sz = sizeof (desc);
14031 
14032 				if (copyout(&desc, (void *)arg, sz) != 0)
14033 					return (EFAULT);
14034 
14035 				return (0);
14036 			}
14037 
14038 			/*
14039 			 * If this is a ring buffer that has wrapped, we want
14040 			 * to copy the whole thing out.
14041 			 */
14042 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
14043 				dtrace_buffer_polish(buf);
14044 				sz = buf->dtb_size;
14045 			}
14046 
14047 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
14048 				mutex_exit(&dtrace_lock);
14049 				return (EFAULT);
14050 			}
14051 
14052 			desc.dtbd_size = sz;
14053 			desc.dtbd_drops = buf->dtb_drops;
14054 			desc.dtbd_errors = buf->dtb_errors;
14055 			desc.dtbd_oldest = buf->dtb_xamot_offset;
14056 
14057 			mutex_exit(&dtrace_lock);
14058 
14059 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14060 				return (EFAULT);
14061 
14062 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
14063 
14064 			return (0);
14065 		}
14066 
14067 		if (buf->dtb_tomax == NULL) {
14068 			ASSERT(buf->dtb_xamot == NULL);
14069 			mutex_exit(&dtrace_lock);
14070 			return (ENOENT);
14071 		}
14072 
14073 		cached = buf->dtb_tomax;
14074 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
14075 
14076 		dtrace_xcall(desc.dtbd_cpu,
14077 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
14078 
14079 		state->dts_errors += buf->dtb_xamot_errors;
14080 
14081 		/*
14082 		 * If the buffers did not actually switch, then the cross call
14083 		 * did not take place -- presumably because the given CPU is
14084 		 * not in the ready set.  If this is the case, we'll return
14085 		 * ENOENT.
14086 		 */
14087 		if (buf->dtb_tomax == cached) {
14088 			ASSERT(buf->dtb_xamot != cached);
14089 			mutex_exit(&dtrace_lock);
14090 			return (ENOENT);
14091 		}
14092 
14093 		ASSERT(cached == buf->dtb_xamot);
14094 
14095 		/*
14096 		 * We have our snapshot; now copy it out.
14097 		 */
14098 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
14099 		    buf->dtb_xamot_offset) != 0) {
14100 			mutex_exit(&dtrace_lock);
14101 			return (EFAULT);
14102 		}
14103 
14104 		desc.dtbd_size = buf->dtb_xamot_offset;
14105 		desc.dtbd_drops = buf->dtb_xamot_drops;
14106 		desc.dtbd_errors = buf->dtb_xamot_errors;
14107 		desc.dtbd_oldest = 0;
14108 
14109 		mutex_exit(&dtrace_lock);
14110 
14111 		/*
14112 		 * Finally, copy out the buffer description.
14113 		 */
14114 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14115 			return (EFAULT);
14116 
14117 		return (0);
14118 	}
14119 
14120 	case DTRACEIOC_CONF: {
14121 		dtrace_conf_t conf;
14122 
14123 		bzero(&conf, sizeof (conf));
14124 		conf.dtc_difversion = DIF_VERSION;
14125 		conf.dtc_difintregs = DIF_DIR_NREGS;
14126 		conf.dtc_diftupregs = DIF_DTR_NREGS;
14127 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
14128 
14129 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
14130 			return (EFAULT);
14131 
14132 		return (0);
14133 	}
14134 
14135 	case DTRACEIOC_STATUS: {
14136 		dtrace_status_t stat;
14137 		dtrace_dstate_t *dstate;
14138 		int i, j;
14139 		uint64_t nerrs;
14140 
14141 		/*
14142 		 * See the comment in dtrace_state_deadman() for the reason
14143 		 * for setting dts_laststatus to INT64_MAX before setting
14144 		 * it to the correct value.
14145 		 */
14146 		state->dts_laststatus = INT64_MAX;
14147 		dtrace_membar_producer();
14148 		state->dts_laststatus = dtrace_gethrtime();
14149 
14150 		bzero(&stat, sizeof (stat));
14151 
14152 		mutex_enter(&dtrace_lock);
14153 
14154 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
14155 			mutex_exit(&dtrace_lock);
14156 			return (ENOENT);
14157 		}
14158 
14159 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
14160 			stat.dtst_exiting = 1;
14161 
14162 		nerrs = state->dts_errors;
14163 		dstate = &state->dts_vstate.dtvs_dynvars;
14164 
14165 		for (i = 0; i < NCPU; i++) {
14166 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
14167 
14168 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
14169 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
14170 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
14171 
14172 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
14173 				stat.dtst_filled++;
14174 
14175 			nerrs += state->dts_buffer[i].dtb_errors;
14176 
14177 			for (j = 0; j < state->dts_nspeculations; j++) {
14178 				dtrace_speculation_t *spec;
14179 				dtrace_buffer_t *buf;
14180 
14181 				spec = &state->dts_speculations[j];
14182 				buf = &spec->dtsp_buffer[i];
14183 				stat.dtst_specdrops += buf->dtb_xamot_drops;
14184 			}
14185 		}
14186 
14187 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
14188 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
14189 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
14190 		stat.dtst_dblerrors = state->dts_dblerrors;
14191 		stat.dtst_killed =
14192 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
14193 		stat.dtst_errors = nerrs;
14194 
14195 		mutex_exit(&dtrace_lock);
14196 
14197 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
14198 			return (EFAULT);
14199 
14200 		return (0);
14201 	}
14202 
14203 	case DTRACEIOC_FORMAT: {
14204 		dtrace_fmtdesc_t fmt;
14205 		char *str;
14206 		int len;
14207 
14208 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
14209 			return (EFAULT);
14210 
14211 		mutex_enter(&dtrace_lock);
14212 
14213 		if (fmt.dtfd_format == 0 ||
14214 		    fmt.dtfd_format > state->dts_nformats) {
14215 			mutex_exit(&dtrace_lock);
14216 			return (EINVAL);
14217 		}
14218 
14219 		/*
14220 		 * Format strings are allocated contiguously and they are
14221 		 * never freed; if a format index is less than the number
14222 		 * of formats, we can assert that the format map is non-NULL
14223 		 * and that the format for the specified index is non-NULL.
14224 		 */
14225 		ASSERT(state->dts_formats != NULL);
14226 		str = state->dts_formats[fmt.dtfd_format - 1];
14227 		ASSERT(str != NULL);
14228 
14229 		len = strlen(str) + 1;
14230 
14231 		if (len > fmt.dtfd_length) {
14232 			fmt.dtfd_length = len;
14233 
14234 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
14235 				mutex_exit(&dtrace_lock);
14236 				return (EINVAL);
14237 			}
14238 		} else {
14239 			if (copyout(str, fmt.dtfd_string, len) != 0) {
14240 				mutex_exit(&dtrace_lock);
14241 				return (EINVAL);
14242 			}
14243 		}
14244 
14245 		mutex_exit(&dtrace_lock);
14246 		return (0);
14247 	}
14248 
14249 	default:
14250 		break;
14251 	}
14252 
14253 	return (ENOTTY);
14254 }
14255 
14256 /*ARGSUSED*/
14257 static int
14258 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
14259 {
14260 	dtrace_state_t *state;
14261 
14262 	switch (cmd) {
14263 	case DDI_DETACH:
14264 		break;
14265 
14266 	case DDI_SUSPEND:
14267 		return (DDI_SUCCESS);
14268 
14269 	default:
14270 		return (DDI_FAILURE);
14271 	}
14272 
14273 	mutex_enter(&cpu_lock);
14274 	mutex_enter(&dtrace_provider_lock);
14275 	mutex_enter(&dtrace_lock);
14276 
14277 	ASSERT(dtrace_opens == 0);
14278 
14279 	if (dtrace_helpers > 0) {
14280 		mutex_exit(&dtrace_provider_lock);
14281 		mutex_exit(&dtrace_lock);
14282 		mutex_exit(&cpu_lock);
14283 		return (DDI_FAILURE);
14284 	}
14285 
14286 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
14287 		mutex_exit(&dtrace_provider_lock);
14288 		mutex_exit(&dtrace_lock);
14289 		mutex_exit(&cpu_lock);
14290 		return (DDI_FAILURE);
14291 	}
14292 
14293 	dtrace_provider = NULL;
14294 
14295 	if ((state = dtrace_anon_grab()) != NULL) {
14296 		/*
14297 		 * If there were ECBs on this state, the provider should
14298 		 * have not been allowed to detach; assert that there is
14299 		 * none.
14300 		 */
14301 		ASSERT(state->dts_necbs == 0);
14302 		dtrace_state_destroy(state);
14303 
14304 		/*
14305 		 * If we're being detached with anonymous state, we need to
14306 		 * indicate to the kernel debugger that DTrace is now inactive.
14307 		 */
14308 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14309 	}
14310 
14311 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
14312 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14313 	dtrace_cpu_init = NULL;
14314 	dtrace_helpers_cleanup = NULL;
14315 	dtrace_helpers_fork = NULL;
14316 	dtrace_cpustart_init = NULL;
14317 	dtrace_cpustart_fini = NULL;
14318 	dtrace_debugger_init = NULL;
14319 	dtrace_debugger_fini = NULL;
14320 	dtrace_kreloc_init = NULL;
14321 	dtrace_kreloc_fini = NULL;
14322 	dtrace_modload = NULL;
14323 	dtrace_modunload = NULL;
14324 
14325 	mutex_exit(&cpu_lock);
14326 
14327 	if (dtrace_helptrace_enabled) {
14328 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
14329 		dtrace_helptrace_buffer = NULL;
14330 	}
14331 
14332 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
14333 	dtrace_probes = NULL;
14334 	dtrace_nprobes = 0;
14335 
14336 	dtrace_hash_destroy(dtrace_bymod);
14337 	dtrace_hash_destroy(dtrace_byfunc);
14338 	dtrace_hash_destroy(dtrace_byname);
14339 	dtrace_bymod = NULL;
14340 	dtrace_byfunc = NULL;
14341 	dtrace_byname = NULL;
14342 
14343 	kmem_cache_destroy(dtrace_state_cache);
14344 	vmem_destroy(dtrace_minor);
14345 	vmem_destroy(dtrace_arena);
14346 
14347 	if (dtrace_toxrange != NULL) {
14348 		kmem_free(dtrace_toxrange,
14349 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
14350 		dtrace_toxrange = NULL;
14351 		dtrace_toxranges = 0;
14352 		dtrace_toxranges_max = 0;
14353 	}
14354 
14355 	ddi_remove_minor_node(dtrace_devi, NULL);
14356 	dtrace_devi = NULL;
14357 
14358 	ddi_soft_state_fini(&dtrace_softstate);
14359 
14360 	ASSERT(dtrace_vtime_references == 0);
14361 	ASSERT(dtrace_opens == 0);
14362 	ASSERT(dtrace_retained == NULL);
14363 
14364 	mutex_exit(&dtrace_lock);
14365 	mutex_exit(&dtrace_provider_lock);
14366 
14367 	/*
14368 	 * We don't destroy the task queue until after we have dropped our
14369 	 * locks (taskq_destroy() may block on running tasks).  To prevent
14370 	 * attempting to do work after we have effectively detached but before
14371 	 * the task queue has been destroyed, all tasks dispatched via the
14372 	 * task queue must check that DTrace is still attached before
14373 	 * performing any operation.
14374 	 */
14375 	taskq_destroy(dtrace_taskq);
14376 	dtrace_taskq = NULL;
14377 
14378 	return (DDI_SUCCESS);
14379 }
14380 
14381 /*ARGSUSED*/
14382 static int
14383 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
14384 {
14385 	int error;
14386 
14387 	switch (infocmd) {
14388 	case DDI_INFO_DEVT2DEVINFO:
14389 		*result = (void *)dtrace_devi;
14390 		error = DDI_SUCCESS;
14391 		break;
14392 	case DDI_INFO_DEVT2INSTANCE:
14393 		*result = (void *)0;
14394 		error = DDI_SUCCESS;
14395 		break;
14396 	default:
14397 		error = DDI_FAILURE;
14398 	}
14399 	return (error);
14400 }
14401 
14402 static struct cb_ops dtrace_cb_ops = {
14403 	dtrace_open,		/* open */
14404 	dtrace_close,		/* close */
14405 	nulldev,		/* strategy */
14406 	nulldev,		/* print */
14407 	nodev,			/* dump */
14408 	nodev,			/* read */
14409 	nodev,			/* write */
14410 	dtrace_ioctl,		/* ioctl */
14411 	nodev,			/* devmap */
14412 	nodev,			/* mmap */
14413 	nodev,			/* segmap */
14414 	nochpoll,		/* poll */
14415 	ddi_prop_op,		/* cb_prop_op */
14416 	0,			/* streamtab  */
14417 	D_NEW | D_MP		/* Driver compatibility flag */
14418 };
14419 
14420 static struct dev_ops dtrace_ops = {
14421 	DEVO_REV,		/* devo_rev */
14422 	0,			/* refcnt */
14423 	dtrace_info,		/* get_dev_info */
14424 	nulldev,		/* identify */
14425 	nulldev,		/* probe */
14426 	dtrace_attach,		/* attach */
14427 	dtrace_detach,		/* detach */
14428 	nodev,			/* reset */
14429 	&dtrace_cb_ops,		/* driver operations */
14430 	NULL,			/* bus operations */
14431 	nodev			/* dev power */
14432 };
14433 
14434 static struct modldrv modldrv = {
14435 	&mod_driverops,		/* module type (this is a pseudo driver) */
14436 	"Dynamic Tracing",	/* name of module */
14437 	&dtrace_ops,		/* driver ops */
14438 };
14439 
14440 static struct modlinkage modlinkage = {
14441 	MODREV_1,
14442 	(void *)&modldrv,
14443 	NULL
14444 };
14445 
14446 int
14447 _init(void)
14448 {
14449 	return (mod_install(&modlinkage));
14450 }
14451 
14452 int
14453 _info(struct modinfo *modinfop)
14454 {
14455 	return (mod_info(&modlinkage, modinfop));
14456 }
14457 
14458 int
14459 _fini(void)
14460 {
14461 	return (mod_remove(&modlinkage));
14462 }
14463