1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 1024; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 148 149 /* 150 * DTrace External Variables 151 * 152 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 153 * available to DTrace consumers via the backtick (`) syntax. One of these, 154 * dtrace_zero, is made deliberately so: it is provided as a source of 155 * well-known, zero-filled memory. While this variable is not documented, 156 * it is used by some translators as an implementation detail. 157 */ 158 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 159 160 /* 161 * DTrace Internal Variables 162 */ 163 static dev_info_t *dtrace_devi; /* device info */ 164 static vmem_t *dtrace_arena; /* probe ID arena */ 165 static vmem_t *dtrace_minor; /* minor number arena */ 166 static taskq_t *dtrace_taskq; /* task queue */ 167 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 168 static int dtrace_nprobes; /* number of probes */ 169 static dtrace_provider_t *dtrace_provider; /* provider list */ 170 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 171 static int dtrace_opens; /* number of opens */ 172 static int dtrace_helpers; /* number of helpers */ 173 static void *dtrace_softstate; /* softstate pointer */ 174 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 175 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 176 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 177 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 178 static int dtrace_toxranges; /* number of toxic ranges */ 179 static int dtrace_toxranges_max; /* size of toxic range array */ 180 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 181 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 182 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 183 static kthread_t *dtrace_panicked; /* panicking thread */ 184 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 185 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 186 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 187 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 188 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 191 192 /* 193 * DTrace Locking 194 * DTrace is protected by three (relatively coarse-grained) locks: 195 * 196 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 197 * including enabling state, probes, ECBs, consumer state, helper state, 198 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 199 * probe context is lock-free -- synchronization is handled via the 200 * dtrace_sync() cross call mechanism. 201 * 202 * (2) dtrace_provider_lock is required when manipulating provider state, or 203 * when provider state must be held constant. 204 * 205 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 206 * when meta provider state must be held constant. 207 * 208 * The lock ordering between these three locks is dtrace_meta_lock before 209 * dtrace_provider_lock before dtrace_lock. (In particular, there are 210 * several places where dtrace_provider_lock is held by the framework as it 211 * calls into the providers -- which then call back into the framework, 212 * grabbing dtrace_lock.) 213 * 214 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 215 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 216 * role as a coarse-grained lock; it is acquired before both of these locks. 217 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 218 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 219 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 220 * acquired _between_ dtrace_provider_lock and dtrace_lock. 221 */ 222 static kmutex_t dtrace_lock; /* probe state lock */ 223 static kmutex_t dtrace_provider_lock; /* provider state lock */ 224 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 225 226 /* 227 * DTrace Provider Variables 228 * 229 * These are the variables relating to DTrace as a provider (that is, the 230 * provider of the BEGIN, END, and ERROR probes). 231 */ 232 static dtrace_pattr_t dtrace_provider_attr = { 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 }; 239 240 static void 241 dtrace_nullop(void) 242 {} 243 244 static int 245 dtrace_enable_nullop(void) 246 { 247 return (0); 248 } 249 250 static dtrace_pops_t dtrace_provider_ops = { 251 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 252 (void (*)(void *, struct modctl *))dtrace_nullop, 253 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 NULL, 258 NULL, 259 NULL, 260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 261 }; 262 263 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 264 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 265 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 266 267 /* 268 * DTrace Helper Tracing Variables 269 */ 270 uint32_t dtrace_helptrace_next = 0; 271 uint32_t dtrace_helptrace_nlocals; 272 char *dtrace_helptrace_buffer; 273 int dtrace_helptrace_bufsize = 512 * 1024; 274 275 #ifdef DEBUG 276 int dtrace_helptrace_enabled = 1; 277 #else 278 int dtrace_helptrace_enabled = 0; 279 #endif 280 281 /* 282 * DTrace Error Hashing 283 * 284 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 285 * table. This is very useful for checking coverage of tests that are 286 * expected to induce DIF or DOF processing errors, and may be useful for 287 * debugging problems in the DIF code generator or in DOF generation . The 288 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 289 */ 290 #ifdef DEBUG 291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 292 static const char *dtrace_errlast; 293 static kthread_t *dtrace_errthread; 294 static kmutex_t dtrace_errlock; 295 #endif 296 297 /* 298 * DTrace Macros and Constants 299 * 300 * These are various macros that are useful in various spots in the 301 * implementation, along with a few random constants that have no meaning 302 * outside of the implementation. There is no real structure to this cpp 303 * mishmash -- but is there ever? 304 */ 305 #define DTRACE_HASHSTR(hash, probe) \ 306 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 307 308 #define DTRACE_HASHNEXT(hash, probe) \ 309 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 310 311 #define DTRACE_HASHPREV(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 313 314 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 315 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 316 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 317 318 #define DTRACE_AGGHASHSIZE_SLEW 17 319 320 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 321 322 /* 323 * The key for a thread-local variable consists of the lower 61 bits of the 324 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 325 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 326 * equal to a variable identifier. This is necessary (but not sufficient) to 327 * assure that global associative arrays never collide with thread-local 328 * variables. To guarantee that they cannot collide, we must also define the 329 * order for keying dynamic variables. That order is: 330 * 331 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 332 * 333 * Because the variable-key and the tls-key are in orthogonal spaces, there is 334 * no way for a global variable key signature to match a thread-local key 335 * signature. 336 */ 337 #define DTRACE_TLS_THRKEY(where) { \ 338 uint_t intr = 0; \ 339 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 340 for (; actv; actv >>= 1) \ 341 intr++; \ 342 ASSERT(intr < (1 << 3)); \ 343 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 344 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 345 } 346 347 #define DT_BSWAP_8(x) ((x) & 0xff) 348 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 349 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 350 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 351 352 #define DT_MASK_LO 0x00000000FFFFFFFFULL 353 354 #define DTRACE_STORE(type, tomax, offset, what) \ 355 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 356 357 #ifndef __i386 358 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 359 if (addr & (size - 1)) { \ 360 *flags |= CPU_DTRACE_BADALIGN; \ 361 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 362 return (0); \ 363 } 364 #else 365 #define DTRACE_ALIGNCHECK(addr, size, flags) 366 #endif 367 368 /* 369 * Test whether a range of memory starting at testaddr of size testsz falls 370 * within the range of memory described by addr, sz. We take care to avoid 371 * problems with overflow and underflow of the unsigned quantities, and 372 * disallow all negative sizes. Ranges of size 0 are allowed. 373 */ 374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 375 ((testaddr) - (baseaddr) < (basesz) && \ 376 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 377 (testaddr) + (testsz) >= (testaddr)) 378 379 /* 380 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 381 * alloc_sz on the righthand side of the comparison in order to avoid overflow 382 * or underflow in the comparison with it. This is simpler than the INRANGE 383 * check above, because we know that the dtms_scratch_ptr is valid in the 384 * range. Allocations of size zero are allowed. 385 */ 386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 387 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 388 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 389 390 #define DTRACE_LOADFUNC(bits) \ 391 /*CSTYLED*/ \ 392 uint##bits##_t \ 393 dtrace_load##bits(uintptr_t addr) \ 394 { \ 395 size_t size = bits / NBBY; \ 396 /*CSTYLED*/ \ 397 uint##bits##_t rval; \ 398 int i; \ 399 volatile uint16_t *flags = (volatile uint16_t *) \ 400 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 401 \ 402 DTRACE_ALIGNCHECK(addr, size, flags); \ 403 \ 404 for (i = 0; i < dtrace_toxranges; i++) { \ 405 if (addr >= dtrace_toxrange[i].dtt_limit) \ 406 continue; \ 407 \ 408 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 409 continue; \ 410 \ 411 /* \ 412 * This address falls within a toxic region; return 0. \ 413 */ \ 414 *flags |= CPU_DTRACE_BADADDR; \ 415 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 416 return (0); \ 417 } \ 418 \ 419 *flags |= CPU_DTRACE_NOFAULT; \ 420 /*CSTYLED*/ \ 421 rval = *((volatile uint##bits##_t *)addr); \ 422 *flags &= ~CPU_DTRACE_NOFAULT; \ 423 \ 424 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 425 } 426 427 #ifdef _LP64 428 #define dtrace_loadptr dtrace_load64 429 #else 430 #define dtrace_loadptr dtrace_load32 431 #endif 432 433 #define DTRACE_DYNHASH_FREE 0 434 #define DTRACE_DYNHASH_SINK 1 435 #define DTRACE_DYNHASH_VALID 2 436 437 #define DTRACE_MATCH_FAIL -1 438 #define DTRACE_MATCH_NEXT 0 439 #define DTRACE_MATCH_DONE 1 440 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 441 #define DTRACE_STATE_ALIGN 64 442 443 #define DTRACE_FLAGS2FLT(flags) \ 444 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 445 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 446 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 447 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 448 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 449 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 450 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 451 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 452 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 453 DTRACEFLT_UNKNOWN) 454 455 #define DTRACEACT_ISSTRING(act) \ 456 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 457 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 458 459 static size_t dtrace_strlen(const char *, size_t); 460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 461 static void dtrace_enabling_provide(dtrace_provider_t *); 462 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 463 static void dtrace_enabling_matchall(void); 464 static void dtrace_enabling_reap(void); 465 static dtrace_state_t *dtrace_anon_grab(void); 466 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 467 dtrace_state_t *, uint64_t, uint64_t); 468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 469 static void dtrace_buffer_drop(dtrace_buffer_t *); 470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 472 dtrace_state_t *, dtrace_mstate_t *); 473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 474 dtrace_optval_t); 475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 477 478 /* 479 * DTrace Probe Context Functions 480 * 481 * These functions are called from probe context. Because probe context is 482 * any context in which C may be called, arbitrarily locks may be held, 483 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 484 * As a result, functions called from probe context may only call other DTrace 485 * support functions -- they may not interact at all with the system at large. 486 * (Note that the ASSERT macro is made probe-context safe by redefining it in 487 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 488 * loads are to be performed from probe context, they _must_ be in terms of 489 * the safe dtrace_load*() variants. 490 * 491 * Some functions in this block are not actually called from probe context; 492 * for these functions, there will be a comment above the function reading 493 * "Note: not called from probe context." 494 */ 495 void 496 dtrace_panic(const char *format, ...) 497 { 498 va_list alist; 499 500 va_start(alist, format); 501 dtrace_vpanic(format, alist); 502 va_end(alist); 503 } 504 505 int 506 dtrace_assfail(const char *a, const char *f, int l) 507 { 508 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 509 510 /* 511 * We just need something here that even the most clever compiler 512 * cannot optimize away. 513 */ 514 return (a[(uintptr_t)f]); 515 } 516 517 /* 518 * Atomically increment a specified error counter from probe context. 519 */ 520 static void 521 dtrace_error(uint32_t *counter) 522 { 523 /* 524 * Most counters stored to in probe context are per-CPU counters. 525 * However, there are some error conditions that are sufficiently 526 * arcane that they don't merit per-CPU storage. If these counters 527 * are incremented concurrently on different CPUs, scalability will be 528 * adversely affected -- but we don't expect them to be white-hot in a 529 * correctly constructed enabling... 530 */ 531 uint32_t oval, nval; 532 533 do { 534 oval = *counter; 535 536 if ((nval = oval + 1) == 0) { 537 /* 538 * If the counter would wrap, set it to 1 -- assuring 539 * that the counter is never zero when we have seen 540 * errors. (The counter must be 32-bits because we 541 * aren't guaranteed a 64-bit compare&swap operation.) 542 * To save this code both the infamy of being fingered 543 * by a priggish news story and the indignity of being 544 * the target of a neo-puritan witch trial, we're 545 * carefully avoiding any colorful description of the 546 * likelihood of this condition -- but suffice it to 547 * say that it is only slightly more likely than the 548 * overflow of predicate cache IDs, as discussed in 549 * dtrace_predicate_create(). 550 */ 551 nval = 1; 552 } 553 } while (dtrace_cas32(counter, oval, nval) != oval); 554 } 555 556 /* 557 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 558 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 559 */ 560 DTRACE_LOADFUNC(8) 561 DTRACE_LOADFUNC(16) 562 DTRACE_LOADFUNC(32) 563 DTRACE_LOADFUNC(64) 564 565 static int 566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 567 { 568 if (dest < mstate->dtms_scratch_base) 569 return (0); 570 571 if (dest + size < dest) 572 return (0); 573 574 if (dest + size > mstate->dtms_scratch_ptr) 575 return (0); 576 577 return (1); 578 } 579 580 static int 581 dtrace_canstore_statvar(uint64_t addr, size_t sz, 582 dtrace_statvar_t **svars, int nsvars) 583 { 584 int i; 585 586 for (i = 0; i < nsvars; i++) { 587 dtrace_statvar_t *svar = svars[i]; 588 589 if (svar == NULL || svar->dtsv_size == 0) 590 continue; 591 592 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 593 return (1); 594 } 595 596 return (0); 597 } 598 599 /* 600 * Check to see if the address is within a memory region to which a store may 601 * be issued. This includes the DTrace scratch areas, and any DTrace variable 602 * region. The caller of dtrace_canstore() is responsible for performing any 603 * alignment checks that are needed before stores are actually executed. 604 */ 605 static int 606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 607 dtrace_vstate_t *vstate) 608 { 609 /* 610 * First, check to see if the address is in scratch space... 611 */ 612 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 613 mstate->dtms_scratch_size)) 614 return (1); 615 616 /* 617 * Now check to see if it's a dynamic variable. This check will pick 618 * up both thread-local variables and any global dynamically-allocated 619 * variables. 620 */ 621 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 622 vstate->dtvs_dynvars.dtds_size)) { 623 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 624 uintptr_t base = (uintptr_t)dstate->dtds_base + 625 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 626 uintptr_t chunkoffs; 627 628 /* 629 * Before we assume that we can store here, we need to make 630 * sure that it isn't in our metadata -- storing to our 631 * dynamic variable metadata would corrupt our state. For 632 * the range to not include any dynamic variable metadata, 633 * it must: 634 * 635 * (1) Start above the hash table that is at the base of 636 * the dynamic variable space 637 * 638 * (2) Have a starting chunk offset that is beyond the 639 * dtrace_dynvar_t that is at the base of every chunk 640 * 641 * (3) Not span a chunk boundary 642 * 643 */ 644 if (addr < base) 645 return (0); 646 647 chunkoffs = (addr - base) % dstate->dtds_chunksize; 648 649 if (chunkoffs < sizeof (dtrace_dynvar_t)) 650 return (0); 651 652 if (chunkoffs + sz > dstate->dtds_chunksize) 653 return (0); 654 655 return (1); 656 } 657 658 /* 659 * Finally, check the static local and global variables. These checks 660 * take the longest, so we perform them last. 661 */ 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_locals, vstate->dtvs_nlocals)) 664 return (1); 665 666 if (dtrace_canstore_statvar(addr, sz, 667 vstate->dtvs_globals, vstate->dtvs_nglobals)) 668 return (1); 669 670 return (0); 671 } 672 673 674 /* 675 * Convenience routine to check to see if the address is within a memory 676 * region in which a load may be issued given the user's privilege level; 677 * if not, it sets the appropriate error flags and loads 'addr' into the 678 * illegal value slot. 679 * 680 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 681 * appropriate memory access protection. 682 */ 683 static int 684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 685 dtrace_vstate_t *vstate) 686 { 687 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 688 689 /* 690 * If we hold the privilege to read from kernel memory, then 691 * everything is readable. 692 */ 693 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 694 return (1); 695 696 /* 697 * You can obviously read that which you can store. 698 */ 699 if (dtrace_canstore(addr, sz, mstate, vstate)) 700 return (1); 701 702 /* 703 * We're allowed to read from our own string table. 704 */ 705 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 706 mstate->dtms_difo->dtdo_strlen)) 707 return (1); 708 709 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 710 *illval = addr; 711 return (0); 712 } 713 714 /* 715 * Convenience routine to check to see if a given string is within a memory 716 * region in which a load may be issued given the user's privilege level; 717 * this exists so that we don't need to issue unnecessary dtrace_strlen() 718 * calls in the event that the user has all privileges. 719 */ 720 static int 721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 722 dtrace_vstate_t *vstate) 723 { 724 size_t strsz; 725 726 /* 727 * If we hold the privilege to read from kernel memory, then 728 * everything is readable. 729 */ 730 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 731 return (1); 732 733 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 734 if (dtrace_canload(addr, strsz, mstate, vstate)) 735 return (1); 736 737 return (0); 738 } 739 740 /* 741 * Convenience routine to check to see if a given variable is within a memory 742 * region in which a load may be issued given the user's privilege level. 743 */ 744 static int 745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 746 dtrace_vstate_t *vstate) 747 { 748 size_t sz; 749 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 750 751 /* 752 * If we hold the privilege to read from kernel memory, then 753 * everything is readable. 754 */ 755 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 756 return (1); 757 758 if (type->dtdt_kind == DIF_TYPE_STRING) 759 sz = dtrace_strlen(src, 760 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 761 else 762 sz = type->dtdt_size; 763 764 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 765 } 766 767 /* 768 * Compare two strings using safe loads. 769 */ 770 static int 771 dtrace_strncmp(char *s1, char *s2, size_t limit) 772 { 773 uint8_t c1, c2; 774 volatile uint16_t *flags; 775 776 if (s1 == s2 || limit == 0) 777 return (0); 778 779 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 780 781 do { 782 if (s1 == NULL) { 783 c1 = '\0'; 784 } else { 785 c1 = dtrace_load8((uintptr_t)s1++); 786 } 787 788 if (s2 == NULL) { 789 c2 = '\0'; 790 } else { 791 c2 = dtrace_load8((uintptr_t)s2++); 792 } 793 794 if (c1 != c2) 795 return (c1 - c2); 796 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 797 798 return (0); 799 } 800 801 /* 802 * Compute strlen(s) for a string using safe memory accesses. The additional 803 * len parameter is used to specify a maximum length to ensure completion. 804 */ 805 static size_t 806 dtrace_strlen(const char *s, size_t lim) 807 { 808 uint_t len; 809 810 for (len = 0; len != lim; len++) { 811 if (dtrace_load8((uintptr_t)s++) == '\0') 812 break; 813 } 814 815 return (len); 816 } 817 818 /* 819 * Check if an address falls within a toxic region. 820 */ 821 static int 822 dtrace_istoxic(uintptr_t kaddr, size_t size) 823 { 824 uintptr_t taddr, tsize; 825 int i; 826 827 for (i = 0; i < dtrace_toxranges; i++) { 828 taddr = dtrace_toxrange[i].dtt_base; 829 tsize = dtrace_toxrange[i].dtt_limit - taddr; 830 831 if (kaddr - taddr < tsize) { 832 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 833 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 834 return (1); 835 } 836 837 if (taddr - kaddr < size) { 838 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 839 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 840 return (1); 841 } 842 } 843 844 return (0); 845 } 846 847 /* 848 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 849 * memory specified by the DIF program. The dst is assumed to be safe memory 850 * that we can store to directly because it is managed by DTrace. As with 851 * standard bcopy, overlapping copies are handled properly. 852 */ 853 static void 854 dtrace_bcopy(const void *src, void *dst, size_t len) 855 { 856 if (len != 0) { 857 uint8_t *s1 = dst; 858 const uint8_t *s2 = src; 859 860 if (s1 <= s2) { 861 do { 862 *s1++ = dtrace_load8((uintptr_t)s2++); 863 } while (--len != 0); 864 } else { 865 s2 += len; 866 s1 += len; 867 868 do { 869 *--s1 = dtrace_load8((uintptr_t)--s2); 870 } while (--len != 0); 871 } 872 } 873 } 874 875 /* 876 * Copy src to dst using safe memory accesses, up to either the specified 877 * length, or the point that a nul byte is encountered. The src is assumed to 878 * be unsafe memory specified by the DIF program. The dst is assumed to be 879 * safe memory that we can store to directly because it is managed by DTrace. 880 * Unlike dtrace_bcopy(), overlapping regions are not handled. 881 */ 882 static void 883 dtrace_strcpy(const void *src, void *dst, size_t len) 884 { 885 if (len != 0) { 886 uint8_t *s1 = dst, c; 887 const uint8_t *s2 = src; 888 889 do { 890 *s1++ = c = dtrace_load8((uintptr_t)s2++); 891 } while (--len != 0 && c != '\0'); 892 } 893 } 894 895 /* 896 * Copy src to dst, deriving the size and type from the specified (BYREF) 897 * variable type. The src is assumed to be unsafe memory specified by the DIF 898 * program. The dst is assumed to be DTrace variable memory that is of the 899 * specified type; we assume that we can store to directly. 900 */ 901 static void 902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 903 { 904 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 905 906 if (type->dtdt_kind == DIF_TYPE_STRING) { 907 dtrace_strcpy(src, dst, type->dtdt_size); 908 } else { 909 dtrace_bcopy(src, dst, type->dtdt_size); 910 } 911 } 912 913 /* 914 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 915 * unsafe memory specified by the DIF program. The s2 data is assumed to be 916 * safe memory that we can access directly because it is managed by DTrace. 917 */ 918 static int 919 dtrace_bcmp(const void *s1, const void *s2, size_t len) 920 { 921 volatile uint16_t *flags; 922 923 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 924 925 if (s1 == s2) 926 return (0); 927 928 if (s1 == NULL || s2 == NULL) 929 return (1); 930 931 if (s1 != s2 && len != 0) { 932 const uint8_t *ps1 = s1; 933 const uint8_t *ps2 = s2; 934 935 do { 936 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 937 return (1); 938 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 939 } 940 return (0); 941 } 942 943 /* 944 * Zero the specified region using a simple byte-by-byte loop. Note that this 945 * is for safe DTrace-managed memory only. 946 */ 947 static void 948 dtrace_bzero(void *dst, size_t len) 949 { 950 uchar_t *cp; 951 952 for (cp = dst; len != 0; len--) 953 *cp++ = 0; 954 } 955 956 static void 957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 958 { 959 uint64_t result[2]; 960 961 result[0] = addend1[0] + addend2[0]; 962 result[1] = addend1[1] + addend2[1] + 963 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 964 965 sum[0] = result[0]; 966 sum[1] = result[1]; 967 } 968 969 /* 970 * Shift the 128-bit value in a by b. If b is positive, shift left. 971 * If b is negative, shift right. 972 */ 973 static void 974 dtrace_shift_128(uint64_t *a, int b) 975 { 976 uint64_t mask; 977 978 if (b == 0) 979 return; 980 981 if (b < 0) { 982 b = -b; 983 if (b >= 64) { 984 a[0] = a[1] >> (b - 64); 985 a[1] = 0; 986 } else { 987 a[0] >>= b; 988 mask = 1LL << (64 - b); 989 mask -= 1; 990 a[0] |= ((a[1] & mask) << (64 - b)); 991 a[1] >>= b; 992 } 993 } else { 994 if (b >= 64) { 995 a[1] = a[0] << (b - 64); 996 a[0] = 0; 997 } else { 998 a[1] <<= b; 999 mask = a[0] >> (64 - b); 1000 a[1] |= mask; 1001 a[0] <<= b; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1008 * use native multiplication on those, and then re-combine into the 1009 * resulting 128-bit value. 1010 * 1011 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1012 * hi1 * hi2 << 64 + 1013 * hi1 * lo2 << 32 + 1014 * hi2 * lo1 << 32 + 1015 * lo1 * lo2 1016 */ 1017 static void 1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1019 { 1020 uint64_t hi1, hi2, lo1, lo2; 1021 uint64_t tmp[2]; 1022 1023 hi1 = factor1 >> 32; 1024 hi2 = factor2 >> 32; 1025 1026 lo1 = factor1 & DT_MASK_LO; 1027 lo2 = factor2 & DT_MASK_LO; 1028 1029 product[0] = lo1 * lo2; 1030 product[1] = hi1 * hi2; 1031 1032 tmp[0] = hi1 * lo2; 1033 tmp[1] = 0; 1034 dtrace_shift_128(tmp, 32); 1035 dtrace_add_128(product, tmp, product); 1036 1037 tmp[0] = hi2 * lo1; 1038 tmp[1] = 0; 1039 dtrace_shift_128(tmp, 32); 1040 dtrace_add_128(product, tmp, product); 1041 } 1042 1043 /* 1044 * This privilege check should be used by actions and subroutines to 1045 * verify that the user credentials of the process that enabled the 1046 * invoking ECB match the target credentials 1047 */ 1048 static int 1049 dtrace_priv_proc_common_user(dtrace_state_t *state) 1050 { 1051 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1052 1053 /* 1054 * We should always have a non-NULL state cred here, since if cred 1055 * is null (anonymous tracing), we fast-path bypass this routine. 1056 */ 1057 ASSERT(s_cr != NULL); 1058 1059 if ((cr = CRED()) != NULL && 1060 s_cr->cr_uid == cr->cr_uid && 1061 s_cr->cr_uid == cr->cr_ruid && 1062 s_cr->cr_uid == cr->cr_suid && 1063 s_cr->cr_gid == cr->cr_gid && 1064 s_cr->cr_gid == cr->cr_rgid && 1065 s_cr->cr_gid == cr->cr_sgid) 1066 return (1); 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * This privilege check should be used by actions and subroutines to 1073 * verify that the zone of the process that enabled the invoking ECB 1074 * matches the target credentials 1075 */ 1076 static int 1077 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1078 { 1079 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1080 1081 /* 1082 * We should always have a non-NULL state cred here, since if cred 1083 * is null (anonymous tracing), we fast-path bypass this routine. 1084 */ 1085 ASSERT(s_cr != NULL); 1086 1087 if ((cr = CRED()) != NULL && 1088 s_cr->cr_zone == cr->cr_zone) 1089 return (1); 1090 1091 return (0); 1092 } 1093 1094 /* 1095 * This privilege check should be used by actions and subroutines to 1096 * verify that the process has not setuid or changed credentials. 1097 */ 1098 static int 1099 dtrace_priv_proc_common_nocd() 1100 { 1101 proc_t *proc; 1102 1103 if ((proc = ttoproc(curthread)) != NULL && 1104 !(proc->p_flag & SNOCD)) 1105 return (1); 1106 1107 return (0); 1108 } 1109 1110 static int 1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1112 { 1113 int action = state->dts_cred.dcr_action; 1114 1115 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1116 goto bad; 1117 1118 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1119 dtrace_priv_proc_common_zone(state) == 0) 1120 goto bad; 1121 1122 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1123 dtrace_priv_proc_common_user(state) == 0) 1124 goto bad; 1125 1126 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1127 dtrace_priv_proc_common_nocd() == 0) 1128 goto bad; 1129 1130 return (1); 1131 1132 bad: 1133 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1134 1135 return (0); 1136 } 1137 1138 static int 1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1140 { 1141 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1142 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1143 return (1); 1144 1145 if (dtrace_priv_proc_common_zone(state) && 1146 dtrace_priv_proc_common_user(state) && 1147 dtrace_priv_proc_common_nocd()) 1148 return (1); 1149 } 1150 1151 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1152 1153 return (0); 1154 } 1155 1156 static int 1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1158 { 1159 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1160 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1161 return (1); 1162 1163 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1164 1165 return (0); 1166 } 1167 1168 static int 1169 dtrace_priv_kernel(dtrace_state_t *state) 1170 { 1171 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1172 return (1); 1173 1174 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1175 1176 return (0); 1177 } 1178 1179 static int 1180 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1181 { 1182 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1183 return (1); 1184 1185 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Determine if the dte_cond of the specified ECB allows for processing of 1192 * the current probe to continue. Note that this routine may allow continued 1193 * processing, but with access(es) stripped from the mstate's dtms_access 1194 * field. 1195 */ 1196 static int 1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1198 dtrace_ecb_t *ecb) 1199 { 1200 dtrace_probe_t *probe = ecb->dte_probe; 1201 dtrace_provider_t *prov = probe->dtpr_provider; 1202 dtrace_pops_t *pops = &prov->dtpv_pops; 1203 int mode = DTRACE_MODE_NOPRIV_DROP; 1204 1205 ASSERT(ecb->dte_cond); 1206 1207 if (pops->dtps_mode != NULL) { 1208 mode = pops->dtps_mode(prov->dtpv_arg, 1209 probe->dtpr_id, probe->dtpr_arg); 1210 1211 ASSERT((mode & DTRACE_MODE_USER) || 1212 (mode & DTRACE_MODE_KERNEL)); 1213 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1214 (mode & DTRACE_MODE_NOPRIV_DROP)); 1215 } 1216 1217 /* 1218 * If the dte_cond bits indicate that this consumer is only allowed to 1219 * see user-mode firings of this probe, call the provider's dtps_mode() 1220 * entry point to check that the probe was fired while in a user 1221 * context. If that's not the case, use the policy specified by the 1222 * provider to determine if we drop the probe or merely restrict 1223 * operation. 1224 */ 1225 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1226 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1227 1228 if (!(mode & DTRACE_MODE_USER)) { 1229 if (mode & DTRACE_MODE_NOPRIV_DROP) 1230 return (0); 1231 1232 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1233 } 1234 } 1235 1236 /* 1237 * This is more subtle than it looks. We have to be absolutely certain 1238 * that CRED() isn't going to change out from under us so it's only 1239 * legit to examine that structure if we're in constrained situations. 1240 * Currently, the only times we'll this check is if a non-super-user 1241 * has enabled the profile or syscall providers -- providers that 1242 * allow visibility of all processes. For the profile case, the check 1243 * above will ensure that we're examining a user context. 1244 */ 1245 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1246 cred_t *cr; 1247 cred_t *s_cr = state->dts_cred.dcr_cred; 1248 proc_t *proc; 1249 1250 ASSERT(s_cr != NULL); 1251 1252 if ((cr = CRED()) == NULL || 1253 s_cr->cr_uid != cr->cr_uid || 1254 s_cr->cr_uid != cr->cr_ruid || 1255 s_cr->cr_uid != cr->cr_suid || 1256 s_cr->cr_gid != cr->cr_gid || 1257 s_cr->cr_gid != cr->cr_rgid || 1258 s_cr->cr_gid != cr->cr_sgid || 1259 (proc = ttoproc(curthread)) == NULL || 1260 (proc->p_flag & SNOCD)) { 1261 if (mode & DTRACE_MODE_NOPRIV_DROP) 1262 return (0); 1263 1264 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1265 } 1266 } 1267 1268 /* 1269 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1270 * in our zone, check to see if our mode policy is to restrict rather 1271 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1272 * and DTRACE_ACCESS_ARGS 1273 */ 1274 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1275 cred_t *cr; 1276 cred_t *s_cr = state->dts_cred.dcr_cred; 1277 1278 ASSERT(s_cr != NULL); 1279 1280 if ((cr = CRED()) == NULL || 1281 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1282 if (mode & DTRACE_MODE_NOPRIV_DROP) 1283 return (0); 1284 1285 mstate->dtms_access &= 1286 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1287 } 1288 } 1289 1290 return (1); 1291 } 1292 1293 /* 1294 * Note: not called from probe context. This function is called 1295 * asynchronously (and at a regular interval) from outside of probe context to 1296 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1297 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1298 */ 1299 void 1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1301 { 1302 dtrace_dynvar_t *dirty; 1303 dtrace_dstate_percpu_t *dcpu; 1304 dtrace_dynvar_t **rinsep; 1305 int i, j, work = 0; 1306 1307 for (i = 0; i < NCPU; i++) { 1308 dcpu = &dstate->dtds_percpu[i]; 1309 rinsep = &dcpu->dtdsc_rinsing; 1310 1311 /* 1312 * If the dirty list is NULL, there is no dirty work to do. 1313 */ 1314 if (dcpu->dtdsc_dirty == NULL) 1315 continue; 1316 1317 if (dcpu->dtdsc_rinsing != NULL) { 1318 /* 1319 * If the rinsing list is non-NULL, then it is because 1320 * this CPU was selected to accept another CPU's 1321 * dirty list -- and since that time, dirty buffers 1322 * have accumulated. This is a highly unlikely 1323 * condition, but we choose to ignore the dirty 1324 * buffers -- they'll be picked up a future cleanse. 1325 */ 1326 continue; 1327 } 1328 1329 if (dcpu->dtdsc_clean != NULL) { 1330 /* 1331 * If the clean list is non-NULL, then we're in a 1332 * situation where a CPU has done deallocations (we 1333 * have a non-NULL dirty list) but no allocations (we 1334 * also have a non-NULL clean list). We can't simply 1335 * move the dirty list into the clean list on this 1336 * CPU, yet we also don't want to allow this condition 1337 * to persist, lest a short clean list prevent a 1338 * massive dirty list from being cleaned (which in 1339 * turn could lead to otherwise avoidable dynamic 1340 * drops). To deal with this, we look for some CPU 1341 * with a NULL clean list, NULL dirty list, and NULL 1342 * rinsing list -- and then we borrow this CPU to 1343 * rinse our dirty list. 1344 */ 1345 for (j = 0; j < NCPU; j++) { 1346 dtrace_dstate_percpu_t *rinser; 1347 1348 rinser = &dstate->dtds_percpu[j]; 1349 1350 if (rinser->dtdsc_rinsing != NULL) 1351 continue; 1352 1353 if (rinser->dtdsc_dirty != NULL) 1354 continue; 1355 1356 if (rinser->dtdsc_clean != NULL) 1357 continue; 1358 1359 rinsep = &rinser->dtdsc_rinsing; 1360 break; 1361 } 1362 1363 if (j == NCPU) { 1364 /* 1365 * We were unable to find another CPU that 1366 * could accept this dirty list -- we are 1367 * therefore unable to clean it now. 1368 */ 1369 dtrace_dynvar_failclean++; 1370 continue; 1371 } 1372 } 1373 1374 work = 1; 1375 1376 /* 1377 * Atomically move the dirty list aside. 1378 */ 1379 do { 1380 dirty = dcpu->dtdsc_dirty; 1381 1382 /* 1383 * Before we zap the dirty list, set the rinsing list. 1384 * (This allows for a potential assertion in 1385 * dtrace_dynvar(): if a free dynamic variable appears 1386 * on a hash chain, either the dirty list or the 1387 * rinsing list for some CPU must be non-NULL.) 1388 */ 1389 *rinsep = dirty; 1390 dtrace_membar_producer(); 1391 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1392 dirty, NULL) != dirty); 1393 } 1394 1395 if (!work) { 1396 /* 1397 * We have no work to do; we can simply return. 1398 */ 1399 return; 1400 } 1401 1402 dtrace_sync(); 1403 1404 for (i = 0; i < NCPU; i++) { 1405 dcpu = &dstate->dtds_percpu[i]; 1406 1407 if (dcpu->dtdsc_rinsing == NULL) 1408 continue; 1409 1410 /* 1411 * We are now guaranteed that no hash chain contains a pointer 1412 * into this dirty list; we can make it clean. 1413 */ 1414 ASSERT(dcpu->dtdsc_clean == NULL); 1415 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1416 dcpu->dtdsc_rinsing = NULL; 1417 } 1418 1419 /* 1420 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1421 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1422 * This prevents a race whereby a CPU incorrectly decides that 1423 * the state should be something other than DTRACE_DSTATE_CLEAN 1424 * after dtrace_dynvar_clean() has completed. 1425 */ 1426 dtrace_sync(); 1427 1428 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1429 } 1430 1431 /* 1432 * Depending on the value of the op parameter, this function looks-up, 1433 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1434 * allocation is requested, this function will return a pointer to a 1435 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1436 * variable can be allocated. If NULL is returned, the appropriate counter 1437 * will be incremented. 1438 */ 1439 dtrace_dynvar_t * 1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1441 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1442 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1443 { 1444 uint64_t hashval = DTRACE_DYNHASH_VALID; 1445 dtrace_dynhash_t *hash = dstate->dtds_hash; 1446 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1447 processorid_t me = CPU->cpu_id, cpu = me; 1448 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1449 size_t bucket, ksize; 1450 size_t chunksize = dstate->dtds_chunksize; 1451 uintptr_t kdata, lock, nstate; 1452 uint_t i; 1453 1454 ASSERT(nkeys != 0); 1455 1456 /* 1457 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1458 * algorithm. For the by-value portions, we perform the algorithm in 1459 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1460 * bit, and seems to have only a minute effect on distribution. For 1461 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1462 * over each referenced byte. It's painful to do this, but it's much 1463 * better than pathological hash distribution. The efficacy of the 1464 * hashing algorithm (and a comparison with other algorithms) may be 1465 * found by running the ::dtrace_dynstat MDB dcmd. 1466 */ 1467 for (i = 0; i < nkeys; i++) { 1468 if (key[i].dttk_size == 0) { 1469 uint64_t val = key[i].dttk_value; 1470 1471 hashval += (val >> 48) & 0xffff; 1472 hashval += (hashval << 10); 1473 hashval ^= (hashval >> 6); 1474 1475 hashval += (val >> 32) & 0xffff; 1476 hashval += (hashval << 10); 1477 hashval ^= (hashval >> 6); 1478 1479 hashval += (val >> 16) & 0xffff; 1480 hashval += (hashval << 10); 1481 hashval ^= (hashval >> 6); 1482 1483 hashval += val & 0xffff; 1484 hashval += (hashval << 10); 1485 hashval ^= (hashval >> 6); 1486 } else { 1487 /* 1488 * This is incredibly painful, but it beats the hell 1489 * out of the alternative. 1490 */ 1491 uint64_t j, size = key[i].dttk_size; 1492 uintptr_t base = (uintptr_t)key[i].dttk_value; 1493 1494 if (!dtrace_canload(base, size, mstate, vstate)) 1495 break; 1496 1497 for (j = 0; j < size; j++) { 1498 hashval += dtrace_load8(base + j); 1499 hashval += (hashval << 10); 1500 hashval ^= (hashval >> 6); 1501 } 1502 } 1503 } 1504 1505 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1506 return (NULL); 1507 1508 hashval += (hashval << 3); 1509 hashval ^= (hashval >> 11); 1510 hashval += (hashval << 15); 1511 1512 /* 1513 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1514 * comes out to be one of our two sentinel hash values. If this 1515 * actually happens, we set the hashval to be a value known to be a 1516 * non-sentinel value. 1517 */ 1518 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1519 hashval = DTRACE_DYNHASH_VALID; 1520 1521 /* 1522 * Yes, it's painful to do a divide here. If the cycle count becomes 1523 * important here, tricks can be pulled to reduce it. (However, it's 1524 * critical that hash collisions be kept to an absolute minimum; 1525 * they're much more painful than a divide.) It's better to have a 1526 * solution that generates few collisions and still keeps things 1527 * relatively simple. 1528 */ 1529 bucket = hashval % dstate->dtds_hashsize; 1530 1531 if (op == DTRACE_DYNVAR_DEALLOC) { 1532 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1533 1534 for (;;) { 1535 while ((lock = *lockp) & 1) 1536 continue; 1537 1538 if (dtrace_casptr((void *)lockp, 1539 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1540 break; 1541 } 1542 1543 dtrace_membar_producer(); 1544 } 1545 1546 top: 1547 prev = NULL; 1548 lock = hash[bucket].dtdh_lock; 1549 1550 dtrace_membar_consumer(); 1551 1552 start = hash[bucket].dtdh_chain; 1553 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1554 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1555 op != DTRACE_DYNVAR_DEALLOC)); 1556 1557 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1558 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1559 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1560 1561 if (dvar->dtdv_hashval != hashval) { 1562 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1563 /* 1564 * We've reached the sink, and therefore the 1565 * end of the hash chain; we can kick out of 1566 * the loop knowing that we have seen a valid 1567 * snapshot of state. 1568 */ 1569 ASSERT(dvar->dtdv_next == NULL); 1570 ASSERT(dvar == &dtrace_dynhash_sink); 1571 break; 1572 } 1573 1574 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1575 /* 1576 * We've gone off the rails: somewhere along 1577 * the line, one of the members of this hash 1578 * chain was deleted. Note that we could also 1579 * detect this by simply letting this loop run 1580 * to completion, as we would eventually hit 1581 * the end of the dirty list. However, we 1582 * want to avoid running the length of the 1583 * dirty list unnecessarily (it might be quite 1584 * long), so we catch this as early as 1585 * possible by detecting the hash marker. In 1586 * this case, we simply set dvar to NULL and 1587 * break; the conditional after the loop will 1588 * send us back to top. 1589 */ 1590 dvar = NULL; 1591 break; 1592 } 1593 1594 goto next; 1595 } 1596 1597 if (dtuple->dtt_nkeys != nkeys) 1598 goto next; 1599 1600 for (i = 0; i < nkeys; i++, dkey++) { 1601 if (dkey->dttk_size != key[i].dttk_size) 1602 goto next; /* size or type mismatch */ 1603 1604 if (dkey->dttk_size != 0) { 1605 if (dtrace_bcmp( 1606 (void *)(uintptr_t)key[i].dttk_value, 1607 (void *)(uintptr_t)dkey->dttk_value, 1608 dkey->dttk_size)) 1609 goto next; 1610 } else { 1611 if (dkey->dttk_value != key[i].dttk_value) 1612 goto next; 1613 } 1614 } 1615 1616 if (op != DTRACE_DYNVAR_DEALLOC) 1617 return (dvar); 1618 1619 ASSERT(dvar->dtdv_next == NULL || 1620 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1621 1622 if (prev != NULL) { 1623 ASSERT(hash[bucket].dtdh_chain != dvar); 1624 ASSERT(start != dvar); 1625 ASSERT(prev->dtdv_next == dvar); 1626 prev->dtdv_next = dvar->dtdv_next; 1627 } else { 1628 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1629 start, dvar->dtdv_next) != start) { 1630 /* 1631 * We have failed to atomically swing the 1632 * hash table head pointer, presumably because 1633 * of a conflicting allocation on another CPU. 1634 * We need to reread the hash chain and try 1635 * again. 1636 */ 1637 goto top; 1638 } 1639 } 1640 1641 dtrace_membar_producer(); 1642 1643 /* 1644 * Now set the hash value to indicate that it's free. 1645 */ 1646 ASSERT(hash[bucket].dtdh_chain != dvar); 1647 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1648 1649 dtrace_membar_producer(); 1650 1651 /* 1652 * Set the next pointer to point at the dirty list, and 1653 * atomically swing the dirty pointer to the newly freed dvar. 1654 */ 1655 do { 1656 next = dcpu->dtdsc_dirty; 1657 dvar->dtdv_next = next; 1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1659 1660 /* 1661 * Finally, unlock this hash bucket. 1662 */ 1663 ASSERT(hash[bucket].dtdh_lock == lock); 1664 ASSERT(lock & 1); 1665 hash[bucket].dtdh_lock++; 1666 1667 return (NULL); 1668 next: 1669 prev = dvar; 1670 continue; 1671 } 1672 1673 if (dvar == NULL) { 1674 /* 1675 * If dvar is NULL, it is because we went off the rails: 1676 * one of the elements that we traversed in the hash chain 1677 * was deleted while we were traversing it. In this case, 1678 * we assert that we aren't doing a dealloc (deallocs lock 1679 * the hash bucket to prevent themselves from racing with 1680 * one another), and retry the hash chain traversal. 1681 */ 1682 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1683 goto top; 1684 } 1685 1686 if (op != DTRACE_DYNVAR_ALLOC) { 1687 /* 1688 * If we are not to allocate a new variable, we want to 1689 * return NULL now. Before we return, check that the value 1690 * of the lock word hasn't changed. If it has, we may have 1691 * seen an inconsistent snapshot. 1692 */ 1693 if (op == DTRACE_DYNVAR_NOALLOC) { 1694 if (hash[bucket].dtdh_lock != lock) 1695 goto top; 1696 } else { 1697 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1698 ASSERT(hash[bucket].dtdh_lock == lock); 1699 ASSERT(lock & 1); 1700 hash[bucket].dtdh_lock++; 1701 } 1702 1703 return (NULL); 1704 } 1705 1706 /* 1707 * We need to allocate a new dynamic variable. The size we need is the 1708 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1709 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1710 * the size of any referred-to data (dsize). We then round the final 1711 * size up to the chunksize for allocation. 1712 */ 1713 for (ksize = 0, i = 0; i < nkeys; i++) 1714 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1715 1716 /* 1717 * This should be pretty much impossible, but could happen if, say, 1718 * strange DIF specified the tuple. Ideally, this should be an 1719 * assertion and not an error condition -- but that requires that the 1720 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1721 * bullet-proof. (That is, it must not be able to be fooled by 1722 * malicious DIF.) Given the lack of backwards branches in DIF, 1723 * solving this would presumably not amount to solving the Halting 1724 * Problem -- but it still seems awfully hard. 1725 */ 1726 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1727 ksize + dsize > chunksize) { 1728 dcpu->dtdsc_drops++; 1729 return (NULL); 1730 } 1731 1732 nstate = DTRACE_DSTATE_EMPTY; 1733 1734 do { 1735 retry: 1736 free = dcpu->dtdsc_free; 1737 1738 if (free == NULL) { 1739 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1740 void *rval; 1741 1742 if (clean == NULL) { 1743 /* 1744 * We're out of dynamic variable space on 1745 * this CPU. Unless we have tried all CPUs, 1746 * we'll try to allocate from a different 1747 * CPU. 1748 */ 1749 switch (dstate->dtds_state) { 1750 case DTRACE_DSTATE_CLEAN: { 1751 void *sp = &dstate->dtds_state; 1752 1753 if (++cpu >= NCPU) 1754 cpu = 0; 1755 1756 if (dcpu->dtdsc_dirty != NULL && 1757 nstate == DTRACE_DSTATE_EMPTY) 1758 nstate = DTRACE_DSTATE_DIRTY; 1759 1760 if (dcpu->dtdsc_rinsing != NULL) 1761 nstate = DTRACE_DSTATE_RINSING; 1762 1763 dcpu = &dstate->dtds_percpu[cpu]; 1764 1765 if (cpu != me) 1766 goto retry; 1767 1768 (void) dtrace_cas32(sp, 1769 DTRACE_DSTATE_CLEAN, nstate); 1770 1771 /* 1772 * To increment the correct bean 1773 * counter, take another lap. 1774 */ 1775 goto retry; 1776 } 1777 1778 case DTRACE_DSTATE_DIRTY: 1779 dcpu->dtdsc_dirty_drops++; 1780 break; 1781 1782 case DTRACE_DSTATE_RINSING: 1783 dcpu->dtdsc_rinsing_drops++; 1784 break; 1785 1786 case DTRACE_DSTATE_EMPTY: 1787 dcpu->dtdsc_drops++; 1788 break; 1789 } 1790 1791 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1792 return (NULL); 1793 } 1794 1795 /* 1796 * The clean list appears to be non-empty. We want to 1797 * move the clean list to the free list; we start by 1798 * moving the clean pointer aside. 1799 */ 1800 if (dtrace_casptr(&dcpu->dtdsc_clean, 1801 clean, NULL) != clean) { 1802 /* 1803 * We are in one of two situations: 1804 * 1805 * (a) The clean list was switched to the 1806 * free list by another CPU. 1807 * 1808 * (b) The clean list was added to by the 1809 * cleansing cyclic. 1810 * 1811 * In either of these situations, we can 1812 * just reattempt the free list allocation. 1813 */ 1814 goto retry; 1815 } 1816 1817 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1818 1819 /* 1820 * Now we'll move the clean list to our free list. 1821 * It's impossible for this to fail: the only way 1822 * the free list can be updated is through this 1823 * code path, and only one CPU can own the clean list. 1824 * Thus, it would only be possible for this to fail if 1825 * this code were racing with dtrace_dynvar_clean(). 1826 * (That is, if dtrace_dynvar_clean() updated the clean 1827 * list, and we ended up racing to update the free 1828 * list.) This race is prevented by the dtrace_sync() 1829 * in dtrace_dynvar_clean() -- which flushes the 1830 * owners of the clean lists out before resetting 1831 * the clean lists. 1832 */ 1833 dcpu = &dstate->dtds_percpu[me]; 1834 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1835 ASSERT(rval == NULL); 1836 goto retry; 1837 } 1838 1839 dvar = free; 1840 new_free = dvar->dtdv_next; 1841 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1842 1843 /* 1844 * We have now allocated a new chunk. We copy the tuple keys into the 1845 * tuple array and copy any referenced key data into the data space 1846 * following the tuple array. As we do this, we relocate dttk_value 1847 * in the final tuple to point to the key data address in the chunk. 1848 */ 1849 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1850 dvar->dtdv_data = (void *)(kdata + ksize); 1851 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1852 1853 for (i = 0; i < nkeys; i++) { 1854 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1855 size_t kesize = key[i].dttk_size; 1856 1857 if (kesize != 0) { 1858 dtrace_bcopy( 1859 (const void *)(uintptr_t)key[i].dttk_value, 1860 (void *)kdata, kesize); 1861 dkey->dttk_value = kdata; 1862 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1863 } else { 1864 dkey->dttk_value = key[i].dttk_value; 1865 } 1866 1867 dkey->dttk_size = kesize; 1868 } 1869 1870 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1871 dvar->dtdv_hashval = hashval; 1872 dvar->dtdv_next = start; 1873 1874 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1875 return (dvar); 1876 1877 /* 1878 * The cas has failed. Either another CPU is adding an element to 1879 * this hash chain, or another CPU is deleting an element from this 1880 * hash chain. The simplest way to deal with both of these cases 1881 * (though not necessarily the most efficient) is to free our 1882 * allocated block and tail-call ourselves. Note that the free is 1883 * to the dirty list and _not_ to the free list. This is to prevent 1884 * races with allocators, above. 1885 */ 1886 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1887 1888 dtrace_membar_producer(); 1889 1890 do { 1891 free = dcpu->dtdsc_dirty; 1892 dvar->dtdv_next = free; 1893 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1894 1895 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1896 } 1897 1898 /*ARGSUSED*/ 1899 static void 1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1901 { 1902 if ((int64_t)nval < (int64_t)*oval) 1903 *oval = nval; 1904 } 1905 1906 /*ARGSUSED*/ 1907 static void 1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1909 { 1910 if ((int64_t)nval > (int64_t)*oval) 1911 *oval = nval; 1912 } 1913 1914 static void 1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1916 { 1917 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1918 int64_t val = (int64_t)nval; 1919 1920 if (val < 0) { 1921 for (i = 0; i < zero; i++) { 1922 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1923 quanta[i] += incr; 1924 return; 1925 } 1926 } 1927 } else { 1928 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1929 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1930 quanta[i - 1] += incr; 1931 return; 1932 } 1933 } 1934 1935 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1936 return; 1937 } 1938 1939 ASSERT(0); 1940 } 1941 1942 static void 1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1944 { 1945 uint64_t arg = *lquanta++; 1946 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1947 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1948 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1949 int32_t val = (int32_t)nval, level; 1950 1951 ASSERT(step != 0); 1952 ASSERT(levels != 0); 1953 1954 if (val < base) { 1955 /* 1956 * This is an underflow. 1957 */ 1958 lquanta[0] += incr; 1959 return; 1960 } 1961 1962 level = (val - base) / step; 1963 1964 if (level < levels) { 1965 lquanta[level + 1] += incr; 1966 return; 1967 } 1968 1969 /* 1970 * This is an overflow. 1971 */ 1972 lquanta[levels + 1] += incr; 1973 } 1974 1975 static int 1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 1977 uint16_t high, uint16_t nsteps, int64_t value) 1978 { 1979 int64_t this = 1, last, next; 1980 int base = 1, order; 1981 1982 ASSERT(factor <= nsteps); 1983 ASSERT(nsteps % factor == 0); 1984 1985 for (order = 0; order < low; order++) 1986 this *= factor; 1987 1988 /* 1989 * If our value is less than our factor taken to the power of the 1990 * low order of magnitude, it goes into the zeroth bucket. 1991 */ 1992 if (value < (last = this)) 1993 return (0); 1994 1995 for (this *= factor; order <= high; order++) { 1996 int nbuckets = this > nsteps ? nsteps : this; 1997 1998 if ((next = this * factor) < this) { 1999 /* 2000 * We should not generally get log/linear quantizations 2001 * with a high magnitude that allows 64-bits to 2002 * overflow, but we nonetheless protect against this 2003 * by explicitly checking for overflow, and clamping 2004 * our value accordingly. 2005 */ 2006 value = this - 1; 2007 } 2008 2009 if (value < this) { 2010 /* 2011 * If our value lies within this order of magnitude, 2012 * determine its position by taking the offset within 2013 * the order of magnitude, dividing by the bucket 2014 * width, and adding to our (accumulated) base. 2015 */ 2016 return (base + (value - last) / (this / nbuckets)); 2017 } 2018 2019 base += nbuckets - (nbuckets / factor); 2020 last = this; 2021 this = next; 2022 } 2023 2024 /* 2025 * Our value is greater than or equal to our factor taken to the 2026 * power of one plus the high magnitude -- return the top bucket. 2027 */ 2028 return (base); 2029 } 2030 2031 static void 2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2033 { 2034 uint64_t arg = *llquanta++; 2035 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2036 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2037 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2038 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2039 2040 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2041 low, high, nsteps, nval)] += incr; 2042 } 2043 2044 /*ARGSUSED*/ 2045 static void 2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2047 { 2048 data[0]++; 2049 data[1] += nval; 2050 } 2051 2052 /*ARGSUSED*/ 2053 static void 2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2055 { 2056 int64_t snval = (int64_t)nval; 2057 uint64_t tmp[2]; 2058 2059 data[0]++; 2060 data[1] += nval; 2061 2062 /* 2063 * What we want to say here is: 2064 * 2065 * data[2] += nval * nval; 2066 * 2067 * But given that nval is 64-bit, we could easily overflow, so 2068 * we do this as 128-bit arithmetic. 2069 */ 2070 if (snval < 0) 2071 snval = -snval; 2072 2073 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2074 dtrace_add_128(data + 2, tmp, data + 2); 2075 } 2076 2077 /*ARGSUSED*/ 2078 static void 2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2080 { 2081 *oval = *oval + 1; 2082 } 2083 2084 /*ARGSUSED*/ 2085 static void 2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2087 { 2088 *oval += nval; 2089 } 2090 2091 /* 2092 * Aggregate given the tuple in the principal data buffer, and the aggregating 2093 * action denoted by the specified dtrace_aggregation_t. The aggregation 2094 * buffer is specified as the buf parameter. This routine does not return 2095 * failure; if there is no space in the aggregation buffer, the data will be 2096 * dropped, and a corresponding counter incremented. 2097 */ 2098 static void 2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2100 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2101 { 2102 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2103 uint32_t i, ndx, size, fsize; 2104 uint32_t align = sizeof (uint64_t) - 1; 2105 dtrace_aggbuffer_t *agb; 2106 dtrace_aggkey_t *key; 2107 uint32_t hashval = 0, limit, isstr; 2108 caddr_t tomax, data, kdata; 2109 dtrace_actkind_t action; 2110 dtrace_action_t *act; 2111 uintptr_t offs; 2112 2113 if (buf == NULL) 2114 return; 2115 2116 if (!agg->dtag_hasarg) { 2117 /* 2118 * Currently, only quantize() and lquantize() take additional 2119 * arguments, and they have the same semantics: an increment 2120 * value that defaults to 1 when not present. If additional 2121 * aggregating actions take arguments, the setting of the 2122 * default argument value will presumably have to become more 2123 * sophisticated... 2124 */ 2125 arg = 1; 2126 } 2127 2128 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2129 size = rec->dtrd_offset - agg->dtag_base; 2130 fsize = size + rec->dtrd_size; 2131 2132 ASSERT(dbuf->dtb_tomax != NULL); 2133 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2134 2135 if ((tomax = buf->dtb_tomax) == NULL) { 2136 dtrace_buffer_drop(buf); 2137 return; 2138 } 2139 2140 /* 2141 * The metastructure is always at the bottom of the buffer. 2142 */ 2143 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2144 sizeof (dtrace_aggbuffer_t)); 2145 2146 if (buf->dtb_offset == 0) { 2147 /* 2148 * We just kludge up approximately 1/8th of the size to be 2149 * buckets. If this guess ends up being routinely 2150 * off-the-mark, we may need to dynamically readjust this 2151 * based on past performance. 2152 */ 2153 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2154 2155 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2156 (uintptr_t)tomax || hashsize == 0) { 2157 /* 2158 * We've been given a ludicrously small buffer; 2159 * increment our drop count and leave. 2160 */ 2161 dtrace_buffer_drop(buf); 2162 return; 2163 } 2164 2165 /* 2166 * And now, a pathetic attempt to try to get a an odd (or 2167 * perchance, a prime) hash size for better hash distribution. 2168 */ 2169 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2170 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2171 2172 agb->dtagb_hashsize = hashsize; 2173 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2174 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2175 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2176 2177 for (i = 0; i < agb->dtagb_hashsize; i++) 2178 agb->dtagb_hash[i] = NULL; 2179 } 2180 2181 ASSERT(agg->dtag_first != NULL); 2182 ASSERT(agg->dtag_first->dta_intuple); 2183 2184 /* 2185 * Calculate the hash value based on the key. Note that we _don't_ 2186 * include the aggid in the hashing (but we will store it as part of 2187 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2188 * algorithm: a simple, quick algorithm that has no known funnels, and 2189 * gets good distribution in practice. The efficacy of the hashing 2190 * algorithm (and a comparison with other algorithms) may be found by 2191 * running the ::dtrace_aggstat MDB dcmd. 2192 */ 2193 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2194 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2195 limit = i + act->dta_rec.dtrd_size; 2196 ASSERT(limit <= size); 2197 isstr = DTRACEACT_ISSTRING(act); 2198 2199 for (; i < limit; i++) { 2200 hashval += data[i]; 2201 hashval += (hashval << 10); 2202 hashval ^= (hashval >> 6); 2203 2204 if (isstr && data[i] == '\0') 2205 break; 2206 } 2207 } 2208 2209 hashval += (hashval << 3); 2210 hashval ^= (hashval >> 11); 2211 hashval += (hashval << 15); 2212 2213 /* 2214 * Yes, the divide here is expensive -- but it's generally the least 2215 * of the performance issues given the amount of data that we iterate 2216 * over to compute hash values, compare data, etc. 2217 */ 2218 ndx = hashval % agb->dtagb_hashsize; 2219 2220 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2221 ASSERT((caddr_t)key >= tomax); 2222 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2223 2224 if (hashval != key->dtak_hashval || key->dtak_size != size) 2225 continue; 2226 2227 kdata = key->dtak_data; 2228 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2229 2230 for (act = agg->dtag_first; act->dta_intuple; 2231 act = act->dta_next) { 2232 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2233 limit = i + act->dta_rec.dtrd_size; 2234 ASSERT(limit <= size); 2235 isstr = DTRACEACT_ISSTRING(act); 2236 2237 for (; i < limit; i++) { 2238 if (kdata[i] != data[i]) 2239 goto next; 2240 2241 if (isstr && data[i] == '\0') 2242 break; 2243 } 2244 } 2245 2246 if (action != key->dtak_action) { 2247 /* 2248 * We are aggregating on the same value in the same 2249 * aggregation with two different aggregating actions. 2250 * (This should have been picked up in the compiler, 2251 * so we may be dealing with errant or devious DIF.) 2252 * This is an error condition; we indicate as much, 2253 * and return. 2254 */ 2255 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2256 return; 2257 } 2258 2259 /* 2260 * This is a hit: we need to apply the aggregator to 2261 * the value at this key. 2262 */ 2263 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2264 return; 2265 next: 2266 continue; 2267 } 2268 2269 /* 2270 * We didn't find it. We need to allocate some zero-filled space, 2271 * link it into the hash table appropriately, and apply the aggregator 2272 * to the (zero-filled) value. 2273 */ 2274 offs = buf->dtb_offset; 2275 while (offs & (align - 1)) 2276 offs += sizeof (uint32_t); 2277 2278 /* 2279 * If we don't have enough room to both allocate a new key _and_ 2280 * its associated data, increment the drop count and return. 2281 */ 2282 if ((uintptr_t)tomax + offs + fsize > 2283 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2284 dtrace_buffer_drop(buf); 2285 return; 2286 } 2287 2288 /*CONSTCOND*/ 2289 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2290 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2291 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2292 2293 key->dtak_data = kdata = tomax + offs; 2294 buf->dtb_offset = offs + fsize; 2295 2296 /* 2297 * Now copy the data across. 2298 */ 2299 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2300 2301 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2302 kdata[i] = data[i]; 2303 2304 /* 2305 * Because strings are not zeroed out by default, we need to iterate 2306 * looking for actions that store strings, and we need to explicitly 2307 * pad these strings out with zeroes. 2308 */ 2309 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2310 int nul; 2311 2312 if (!DTRACEACT_ISSTRING(act)) 2313 continue; 2314 2315 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2316 limit = i + act->dta_rec.dtrd_size; 2317 ASSERT(limit <= size); 2318 2319 for (nul = 0; i < limit; i++) { 2320 if (nul) { 2321 kdata[i] = '\0'; 2322 continue; 2323 } 2324 2325 if (data[i] != '\0') 2326 continue; 2327 2328 nul = 1; 2329 } 2330 } 2331 2332 for (i = size; i < fsize; i++) 2333 kdata[i] = 0; 2334 2335 key->dtak_hashval = hashval; 2336 key->dtak_size = size; 2337 key->dtak_action = action; 2338 key->dtak_next = agb->dtagb_hash[ndx]; 2339 agb->dtagb_hash[ndx] = key; 2340 2341 /* 2342 * Finally, apply the aggregator. 2343 */ 2344 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2345 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2346 } 2347 2348 /* 2349 * Given consumer state, this routine finds a speculation in the INACTIVE 2350 * state and transitions it into the ACTIVE state. If there is no speculation 2351 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2352 * incremented -- it is up to the caller to take appropriate action. 2353 */ 2354 static int 2355 dtrace_speculation(dtrace_state_t *state) 2356 { 2357 int i = 0; 2358 dtrace_speculation_state_t current; 2359 uint32_t *stat = &state->dts_speculations_unavail, count; 2360 2361 while (i < state->dts_nspeculations) { 2362 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2363 2364 current = spec->dtsp_state; 2365 2366 if (current != DTRACESPEC_INACTIVE) { 2367 if (current == DTRACESPEC_COMMITTINGMANY || 2368 current == DTRACESPEC_COMMITTING || 2369 current == DTRACESPEC_DISCARDING) 2370 stat = &state->dts_speculations_busy; 2371 i++; 2372 continue; 2373 } 2374 2375 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2376 current, DTRACESPEC_ACTIVE) == current) 2377 return (i + 1); 2378 } 2379 2380 /* 2381 * We couldn't find a speculation. If we found as much as a single 2382 * busy speculation buffer, we'll attribute this failure as "busy" 2383 * instead of "unavail". 2384 */ 2385 do { 2386 count = *stat; 2387 } while (dtrace_cas32(stat, count, count + 1) != count); 2388 2389 return (0); 2390 } 2391 2392 /* 2393 * This routine commits an active speculation. If the specified speculation 2394 * is not in a valid state to perform a commit(), this routine will silently do 2395 * nothing. The state of the specified speculation is transitioned according 2396 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2397 */ 2398 static void 2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2400 dtrace_specid_t which) 2401 { 2402 dtrace_speculation_t *spec; 2403 dtrace_buffer_t *src, *dest; 2404 uintptr_t daddr, saddr, dlimit; 2405 dtrace_speculation_state_t current, new; 2406 intptr_t offs; 2407 2408 if (which == 0) 2409 return; 2410 2411 if (which > state->dts_nspeculations) { 2412 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2413 return; 2414 } 2415 2416 spec = &state->dts_speculations[which - 1]; 2417 src = &spec->dtsp_buffer[cpu]; 2418 dest = &state->dts_buffer[cpu]; 2419 2420 do { 2421 current = spec->dtsp_state; 2422 2423 if (current == DTRACESPEC_COMMITTINGMANY) 2424 break; 2425 2426 switch (current) { 2427 case DTRACESPEC_INACTIVE: 2428 case DTRACESPEC_DISCARDING: 2429 return; 2430 2431 case DTRACESPEC_COMMITTING: 2432 /* 2433 * This is only possible if we are (a) commit()'ing 2434 * without having done a prior speculate() on this CPU 2435 * and (b) racing with another commit() on a different 2436 * CPU. There's nothing to do -- we just assert that 2437 * our offset is 0. 2438 */ 2439 ASSERT(src->dtb_offset == 0); 2440 return; 2441 2442 case DTRACESPEC_ACTIVE: 2443 new = DTRACESPEC_COMMITTING; 2444 break; 2445 2446 case DTRACESPEC_ACTIVEONE: 2447 /* 2448 * This speculation is active on one CPU. If our 2449 * buffer offset is non-zero, we know that the one CPU 2450 * must be us. Otherwise, we are committing on a 2451 * different CPU from the speculate(), and we must 2452 * rely on being asynchronously cleaned. 2453 */ 2454 if (src->dtb_offset != 0) { 2455 new = DTRACESPEC_COMMITTING; 2456 break; 2457 } 2458 /*FALLTHROUGH*/ 2459 2460 case DTRACESPEC_ACTIVEMANY: 2461 new = DTRACESPEC_COMMITTINGMANY; 2462 break; 2463 2464 default: 2465 ASSERT(0); 2466 } 2467 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2468 current, new) != current); 2469 2470 /* 2471 * We have set the state to indicate that we are committing this 2472 * speculation. Now reserve the necessary space in the destination 2473 * buffer. 2474 */ 2475 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2476 sizeof (uint64_t), state, NULL)) < 0) { 2477 dtrace_buffer_drop(dest); 2478 goto out; 2479 } 2480 2481 /* 2482 * We have the space; copy the buffer across. (Note that this is a 2483 * highly subobtimal bcopy(); in the unlikely event that this becomes 2484 * a serious performance issue, a high-performance DTrace-specific 2485 * bcopy() should obviously be invented.) 2486 */ 2487 daddr = (uintptr_t)dest->dtb_tomax + offs; 2488 dlimit = daddr + src->dtb_offset; 2489 saddr = (uintptr_t)src->dtb_tomax; 2490 2491 /* 2492 * First, the aligned portion. 2493 */ 2494 while (dlimit - daddr >= sizeof (uint64_t)) { 2495 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2496 2497 daddr += sizeof (uint64_t); 2498 saddr += sizeof (uint64_t); 2499 } 2500 2501 /* 2502 * Now any left-over bit... 2503 */ 2504 while (dlimit - daddr) 2505 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2506 2507 /* 2508 * Finally, commit the reserved space in the destination buffer. 2509 */ 2510 dest->dtb_offset = offs + src->dtb_offset; 2511 2512 out: 2513 /* 2514 * If we're lucky enough to be the only active CPU on this speculation 2515 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2516 */ 2517 if (current == DTRACESPEC_ACTIVE || 2518 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2519 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2520 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2521 2522 ASSERT(rval == DTRACESPEC_COMMITTING); 2523 } 2524 2525 src->dtb_offset = 0; 2526 src->dtb_xamot_drops += src->dtb_drops; 2527 src->dtb_drops = 0; 2528 } 2529 2530 /* 2531 * This routine discards an active speculation. If the specified speculation 2532 * is not in a valid state to perform a discard(), this routine will silently 2533 * do nothing. The state of the specified speculation is transitioned 2534 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2535 */ 2536 static void 2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2538 dtrace_specid_t which) 2539 { 2540 dtrace_speculation_t *spec; 2541 dtrace_speculation_state_t current, new; 2542 dtrace_buffer_t *buf; 2543 2544 if (which == 0) 2545 return; 2546 2547 if (which > state->dts_nspeculations) { 2548 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2549 return; 2550 } 2551 2552 spec = &state->dts_speculations[which - 1]; 2553 buf = &spec->dtsp_buffer[cpu]; 2554 2555 do { 2556 current = spec->dtsp_state; 2557 2558 switch (current) { 2559 case DTRACESPEC_INACTIVE: 2560 case DTRACESPEC_COMMITTINGMANY: 2561 case DTRACESPEC_COMMITTING: 2562 case DTRACESPEC_DISCARDING: 2563 return; 2564 2565 case DTRACESPEC_ACTIVE: 2566 case DTRACESPEC_ACTIVEMANY: 2567 new = DTRACESPEC_DISCARDING; 2568 break; 2569 2570 case DTRACESPEC_ACTIVEONE: 2571 if (buf->dtb_offset != 0) { 2572 new = DTRACESPEC_INACTIVE; 2573 } else { 2574 new = DTRACESPEC_DISCARDING; 2575 } 2576 break; 2577 2578 default: 2579 ASSERT(0); 2580 } 2581 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2582 current, new) != current); 2583 2584 buf->dtb_offset = 0; 2585 buf->dtb_drops = 0; 2586 } 2587 2588 /* 2589 * Note: not called from probe context. This function is called 2590 * asynchronously from cross call context to clean any speculations that are 2591 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2592 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2593 * speculation. 2594 */ 2595 static void 2596 dtrace_speculation_clean_here(dtrace_state_t *state) 2597 { 2598 dtrace_icookie_t cookie; 2599 processorid_t cpu = CPU->cpu_id; 2600 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2601 dtrace_specid_t i; 2602 2603 cookie = dtrace_interrupt_disable(); 2604 2605 if (dest->dtb_tomax == NULL) { 2606 dtrace_interrupt_enable(cookie); 2607 return; 2608 } 2609 2610 for (i = 0; i < state->dts_nspeculations; i++) { 2611 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2612 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2613 2614 if (src->dtb_tomax == NULL) 2615 continue; 2616 2617 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2618 src->dtb_offset = 0; 2619 continue; 2620 } 2621 2622 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2623 continue; 2624 2625 if (src->dtb_offset == 0) 2626 continue; 2627 2628 dtrace_speculation_commit(state, cpu, i + 1); 2629 } 2630 2631 dtrace_interrupt_enable(cookie); 2632 } 2633 2634 /* 2635 * Note: not called from probe context. This function is called 2636 * asynchronously (and at a regular interval) to clean any speculations that 2637 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2638 * is work to be done, it cross calls all CPUs to perform that work; 2639 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2640 * INACTIVE state until they have been cleaned by all CPUs. 2641 */ 2642 static void 2643 dtrace_speculation_clean(dtrace_state_t *state) 2644 { 2645 int work = 0, rv; 2646 dtrace_specid_t i; 2647 2648 for (i = 0; i < state->dts_nspeculations; i++) { 2649 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2650 2651 ASSERT(!spec->dtsp_cleaning); 2652 2653 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2654 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2655 continue; 2656 2657 work++; 2658 spec->dtsp_cleaning = 1; 2659 } 2660 2661 if (!work) 2662 return; 2663 2664 dtrace_xcall(DTRACE_CPUALL, 2665 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2666 2667 /* 2668 * We now know that all CPUs have committed or discarded their 2669 * speculation buffers, as appropriate. We can now set the state 2670 * to inactive. 2671 */ 2672 for (i = 0; i < state->dts_nspeculations; i++) { 2673 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2674 dtrace_speculation_state_t current, new; 2675 2676 if (!spec->dtsp_cleaning) 2677 continue; 2678 2679 current = spec->dtsp_state; 2680 ASSERT(current == DTRACESPEC_DISCARDING || 2681 current == DTRACESPEC_COMMITTINGMANY); 2682 2683 new = DTRACESPEC_INACTIVE; 2684 2685 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2686 ASSERT(rv == current); 2687 spec->dtsp_cleaning = 0; 2688 } 2689 } 2690 2691 /* 2692 * Called as part of a speculate() to get the speculative buffer associated 2693 * with a given speculation. Returns NULL if the specified speculation is not 2694 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2695 * the active CPU is not the specified CPU -- the speculation will be 2696 * atomically transitioned into the ACTIVEMANY state. 2697 */ 2698 static dtrace_buffer_t * 2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2700 dtrace_specid_t which) 2701 { 2702 dtrace_speculation_t *spec; 2703 dtrace_speculation_state_t current, new; 2704 dtrace_buffer_t *buf; 2705 2706 if (which == 0) 2707 return (NULL); 2708 2709 if (which > state->dts_nspeculations) { 2710 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2711 return (NULL); 2712 } 2713 2714 spec = &state->dts_speculations[which - 1]; 2715 buf = &spec->dtsp_buffer[cpuid]; 2716 2717 do { 2718 current = spec->dtsp_state; 2719 2720 switch (current) { 2721 case DTRACESPEC_INACTIVE: 2722 case DTRACESPEC_COMMITTINGMANY: 2723 case DTRACESPEC_DISCARDING: 2724 return (NULL); 2725 2726 case DTRACESPEC_COMMITTING: 2727 ASSERT(buf->dtb_offset == 0); 2728 return (NULL); 2729 2730 case DTRACESPEC_ACTIVEONE: 2731 /* 2732 * This speculation is currently active on one CPU. 2733 * Check the offset in the buffer; if it's non-zero, 2734 * that CPU must be us (and we leave the state alone). 2735 * If it's zero, assume that we're starting on a new 2736 * CPU -- and change the state to indicate that the 2737 * speculation is active on more than one CPU. 2738 */ 2739 if (buf->dtb_offset != 0) 2740 return (buf); 2741 2742 new = DTRACESPEC_ACTIVEMANY; 2743 break; 2744 2745 case DTRACESPEC_ACTIVEMANY: 2746 return (buf); 2747 2748 case DTRACESPEC_ACTIVE: 2749 new = DTRACESPEC_ACTIVEONE; 2750 break; 2751 2752 default: 2753 ASSERT(0); 2754 } 2755 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2756 current, new) != current); 2757 2758 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2759 return (buf); 2760 } 2761 2762 /* 2763 * Return a string. In the event that the user lacks the privilege to access 2764 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2765 * don't fail access checking. 2766 * 2767 * dtrace_dif_variable() uses this routine as a helper for various 2768 * builtin values such as 'execname' and 'probefunc.' 2769 */ 2770 uintptr_t 2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2772 dtrace_mstate_t *mstate) 2773 { 2774 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2775 uintptr_t ret; 2776 size_t strsz; 2777 2778 /* 2779 * The easy case: this probe is allowed to read all of memory, so 2780 * we can just return this as a vanilla pointer. 2781 */ 2782 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2783 return (addr); 2784 2785 /* 2786 * This is the tougher case: we copy the string in question from 2787 * kernel memory into scratch memory and return it that way: this 2788 * ensures that we won't trip up when access checking tests the 2789 * BYREF return value. 2790 */ 2791 strsz = dtrace_strlen((char *)addr, size) + 1; 2792 2793 if (mstate->dtms_scratch_ptr + strsz > 2794 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2796 return (NULL); 2797 } 2798 2799 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2800 strsz); 2801 ret = mstate->dtms_scratch_ptr; 2802 mstate->dtms_scratch_ptr += strsz; 2803 return (ret); 2804 } 2805 2806 /* 2807 * This function implements the DIF emulator's variable lookups. The emulator 2808 * passes a reserved variable identifier and optional built-in array index. 2809 */ 2810 static uint64_t 2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2812 uint64_t ndx) 2813 { 2814 /* 2815 * If we're accessing one of the uncached arguments, we'll turn this 2816 * into a reference in the args array. 2817 */ 2818 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2819 ndx = v - DIF_VAR_ARG0; 2820 v = DIF_VAR_ARGS; 2821 } 2822 2823 switch (v) { 2824 case DIF_VAR_ARGS: 2825 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2826 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2827 CPU_DTRACE_KPRIV; 2828 return (0); 2829 } 2830 2831 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2832 if (ndx >= sizeof (mstate->dtms_arg) / 2833 sizeof (mstate->dtms_arg[0])) { 2834 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2835 dtrace_provider_t *pv; 2836 uint64_t val; 2837 2838 pv = mstate->dtms_probe->dtpr_provider; 2839 if (pv->dtpv_pops.dtps_getargval != NULL) 2840 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2841 mstate->dtms_probe->dtpr_id, 2842 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2843 else 2844 val = dtrace_getarg(ndx, aframes); 2845 2846 /* 2847 * This is regrettably required to keep the compiler 2848 * from tail-optimizing the call to dtrace_getarg(). 2849 * The condition always evaluates to true, but the 2850 * compiler has no way of figuring that out a priori. 2851 * (None of this would be necessary if the compiler 2852 * could be relied upon to _always_ tail-optimize 2853 * the call to dtrace_getarg() -- but it can't.) 2854 */ 2855 if (mstate->dtms_probe != NULL) 2856 return (val); 2857 2858 ASSERT(0); 2859 } 2860 2861 return (mstate->dtms_arg[ndx]); 2862 2863 case DIF_VAR_UREGS: { 2864 klwp_t *lwp; 2865 2866 if (!dtrace_priv_proc(state, mstate)) 2867 return (0); 2868 2869 if ((lwp = curthread->t_lwp) == NULL) { 2870 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2871 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2872 return (0); 2873 } 2874 2875 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2876 } 2877 2878 case DIF_VAR_VMREGS: { 2879 uint64_t rval; 2880 2881 if (!dtrace_priv_kernel(state)) 2882 return (0); 2883 2884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2885 2886 rval = dtrace_getvmreg(ndx, 2887 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 2888 2889 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2890 2891 return (rval); 2892 } 2893 2894 case DIF_VAR_CURTHREAD: 2895 if (!dtrace_priv_kernel(state)) 2896 return (0); 2897 return ((uint64_t)(uintptr_t)curthread); 2898 2899 case DIF_VAR_TIMESTAMP: 2900 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2901 mstate->dtms_timestamp = dtrace_gethrtime(); 2902 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2903 } 2904 return (mstate->dtms_timestamp); 2905 2906 case DIF_VAR_VTIMESTAMP: 2907 ASSERT(dtrace_vtime_references != 0); 2908 return (curthread->t_dtrace_vtime); 2909 2910 case DIF_VAR_WALLTIMESTAMP: 2911 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2912 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2913 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2914 } 2915 return (mstate->dtms_walltimestamp); 2916 2917 case DIF_VAR_IPL: 2918 if (!dtrace_priv_kernel(state)) 2919 return (0); 2920 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2921 mstate->dtms_ipl = dtrace_getipl(); 2922 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2923 } 2924 return (mstate->dtms_ipl); 2925 2926 case DIF_VAR_EPID: 2927 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2928 return (mstate->dtms_epid); 2929 2930 case DIF_VAR_ID: 2931 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2932 return (mstate->dtms_probe->dtpr_id); 2933 2934 case DIF_VAR_STACKDEPTH: 2935 if (!dtrace_priv_kernel(state)) 2936 return (0); 2937 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2938 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2939 2940 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2941 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2942 } 2943 return (mstate->dtms_stackdepth); 2944 2945 case DIF_VAR_USTACKDEPTH: 2946 if (!dtrace_priv_proc(state, mstate)) 2947 return (0); 2948 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2949 /* 2950 * See comment in DIF_VAR_PID. 2951 */ 2952 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2953 CPU_ON_INTR(CPU)) { 2954 mstate->dtms_ustackdepth = 0; 2955 } else { 2956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2957 mstate->dtms_ustackdepth = 2958 dtrace_getustackdepth(); 2959 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2960 } 2961 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2962 } 2963 return (mstate->dtms_ustackdepth); 2964 2965 case DIF_VAR_CALLER: 2966 if (!dtrace_priv_kernel(state)) 2967 return (0); 2968 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2969 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2970 2971 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2972 /* 2973 * If this is an unanchored probe, we are 2974 * required to go through the slow path: 2975 * dtrace_caller() only guarantees correct 2976 * results for anchored probes. 2977 */ 2978 pc_t caller[2]; 2979 2980 dtrace_getpcstack(caller, 2, aframes, 2981 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2982 mstate->dtms_caller = caller[1]; 2983 } else if ((mstate->dtms_caller = 2984 dtrace_caller(aframes)) == -1) { 2985 /* 2986 * We have failed to do this the quick way; 2987 * we must resort to the slower approach of 2988 * calling dtrace_getpcstack(). 2989 */ 2990 pc_t caller; 2991 2992 dtrace_getpcstack(&caller, 1, aframes, NULL); 2993 mstate->dtms_caller = caller; 2994 } 2995 2996 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2997 } 2998 return (mstate->dtms_caller); 2999 3000 case DIF_VAR_UCALLER: 3001 if (!dtrace_priv_proc(state, mstate)) 3002 return (0); 3003 3004 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3005 uint64_t ustack[3]; 3006 3007 /* 3008 * dtrace_getupcstack() fills in the first uint64_t 3009 * with the current PID. The second uint64_t will 3010 * be the program counter at user-level. The third 3011 * uint64_t will contain the caller, which is what 3012 * we're after. 3013 */ 3014 ustack[2] = NULL; 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 dtrace_getupcstack(ustack, 3); 3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3018 mstate->dtms_ucaller = ustack[2]; 3019 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3020 } 3021 3022 return (mstate->dtms_ucaller); 3023 3024 case DIF_VAR_PROBEPROV: 3025 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3026 return (dtrace_dif_varstr( 3027 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3028 state, mstate)); 3029 3030 case DIF_VAR_PROBEMOD: 3031 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3032 return (dtrace_dif_varstr( 3033 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3034 state, mstate)); 3035 3036 case DIF_VAR_PROBEFUNC: 3037 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3038 return (dtrace_dif_varstr( 3039 (uintptr_t)mstate->dtms_probe->dtpr_func, 3040 state, mstate)); 3041 3042 case DIF_VAR_PROBENAME: 3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3044 return (dtrace_dif_varstr( 3045 (uintptr_t)mstate->dtms_probe->dtpr_name, 3046 state, mstate)); 3047 3048 case DIF_VAR_PID: 3049 if (!dtrace_priv_proc(state, mstate)) 3050 return (0); 3051 3052 /* 3053 * Note that we are assuming that an unanchored probe is 3054 * always due to a high-level interrupt. (And we're assuming 3055 * that there is only a single high level interrupt.) 3056 */ 3057 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3058 return (pid0.pid_id); 3059 3060 /* 3061 * It is always safe to dereference one's own t_procp pointer: 3062 * it always points to a valid, allocated proc structure. 3063 * Further, it is always safe to dereference the p_pidp member 3064 * of one's own proc structure. (These are truisms becuase 3065 * threads and processes don't clean up their own state -- 3066 * they leave that task to whomever reaps them.) 3067 */ 3068 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3069 3070 case DIF_VAR_PPID: 3071 if (!dtrace_priv_proc(state, mstate)) 3072 return (0); 3073 3074 /* 3075 * See comment in DIF_VAR_PID. 3076 */ 3077 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3078 return (pid0.pid_id); 3079 3080 /* 3081 * It is always safe to dereference one's own t_procp pointer: 3082 * it always points to a valid, allocated proc structure. 3083 * (This is true because threads don't clean up their own 3084 * state -- they leave that task to whomever reaps them.) 3085 */ 3086 return ((uint64_t)curthread->t_procp->p_ppid); 3087 3088 case DIF_VAR_TID: 3089 /* 3090 * See comment in DIF_VAR_PID. 3091 */ 3092 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3093 return (0); 3094 3095 return ((uint64_t)curthread->t_tid); 3096 3097 case DIF_VAR_EXECNAME: 3098 if (!dtrace_priv_proc(state, mstate)) 3099 return (0); 3100 3101 /* 3102 * See comment in DIF_VAR_PID. 3103 */ 3104 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3105 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3106 3107 /* 3108 * It is always safe to dereference one's own t_procp pointer: 3109 * it always points to a valid, allocated proc structure. 3110 * (This is true because threads don't clean up their own 3111 * state -- they leave that task to whomever reaps them.) 3112 */ 3113 return (dtrace_dif_varstr( 3114 (uintptr_t)curthread->t_procp->p_user.u_comm, 3115 state, mstate)); 3116 3117 case DIF_VAR_ZONENAME: 3118 if (!dtrace_priv_proc(state, mstate)) 3119 return (0); 3120 3121 /* 3122 * See comment in DIF_VAR_PID. 3123 */ 3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3125 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3126 3127 /* 3128 * It is always safe to dereference one's own t_procp pointer: 3129 * it always points to a valid, allocated proc structure. 3130 * (This is true because threads don't clean up their own 3131 * state -- they leave that task to whomever reaps them.) 3132 */ 3133 return (dtrace_dif_varstr( 3134 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3135 state, mstate)); 3136 3137 case DIF_VAR_UID: 3138 if (!dtrace_priv_proc(state, mstate)) 3139 return (0); 3140 3141 /* 3142 * See comment in DIF_VAR_PID. 3143 */ 3144 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3145 return ((uint64_t)p0.p_cred->cr_uid); 3146 3147 /* 3148 * It is always safe to dereference one's own t_procp pointer: 3149 * it always points to a valid, allocated proc structure. 3150 * (This is true because threads don't clean up their own 3151 * state -- they leave that task to whomever reaps them.) 3152 * 3153 * Additionally, it is safe to dereference one's own process 3154 * credential, since this is never NULL after process birth. 3155 */ 3156 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3157 3158 case DIF_VAR_GID: 3159 if (!dtrace_priv_proc(state, mstate)) 3160 return (0); 3161 3162 /* 3163 * See comment in DIF_VAR_PID. 3164 */ 3165 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3166 return ((uint64_t)p0.p_cred->cr_gid); 3167 3168 /* 3169 * It is always safe to dereference one's own t_procp pointer: 3170 * it always points to a valid, allocated proc structure. 3171 * (This is true because threads don't clean up their own 3172 * state -- they leave that task to whomever reaps them.) 3173 * 3174 * Additionally, it is safe to dereference one's own process 3175 * credential, since this is never NULL after process birth. 3176 */ 3177 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3178 3179 case DIF_VAR_ERRNO: { 3180 klwp_t *lwp; 3181 if (!dtrace_priv_proc(state, mstate)) 3182 return (0); 3183 3184 /* 3185 * See comment in DIF_VAR_PID. 3186 */ 3187 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3188 return (0); 3189 3190 /* 3191 * It is always safe to dereference one's own t_lwp pointer in 3192 * the event that this pointer is non-NULL. (This is true 3193 * because threads and lwps don't clean up their own state -- 3194 * they leave that task to whomever reaps them.) 3195 */ 3196 if ((lwp = curthread->t_lwp) == NULL) 3197 return (0); 3198 3199 return ((uint64_t)lwp->lwp_errno); 3200 } 3201 default: 3202 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3203 return (0); 3204 } 3205 } 3206 3207 /* 3208 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3209 * Notice that we don't bother validating the proper number of arguments or 3210 * their types in the tuple stack. This isn't needed because all argument 3211 * interpretation is safe because of our load safety -- the worst that can 3212 * happen is that a bogus program can obtain bogus results. 3213 */ 3214 static void 3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3216 dtrace_key_t *tupregs, int nargs, 3217 dtrace_mstate_t *mstate, dtrace_state_t *state) 3218 { 3219 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3220 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3221 dtrace_vstate_t *vstate = &state->dts_vstate; 3222 3223 union { 3224 mutex_impl_t mi; 3225 uint64_t mx; 3226 } m; 3227 3228 union { 3229 krwlock_t ri; 3230 uintptr_t rw; 3231 } r; 3232 3233 switch (subr) { 3234 case DIF_SUBR_RAND: 3235 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3236 break; 3237 3238 case DIF_SUBR_MUTEX_OWNED: 3239 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3240 mstate, vstate)) { 3241 regs[rd] = NULL; 3242 break; 3243 } 3244 3245 m.mx = dtrace_load64(tupregs[0].dttk_value); 3246 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3247 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3248 else 3249 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3250 break; 3251 3252 case DIF_SUBR_MUTEX_OWNER: 3253 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3254 mstate, vstate)) { 3255 regs[rd] = NULL; 3256 break; 3257 } 3258 3259 m.mx = dtrace_load64(tupregs[0].dttk_value); 3260 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3261 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3262 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3263 else 3264 regs[rd] = 0; 3265 break; 3266 3267 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3269 mstate, vstate)) { 3270 regs[rd] = NULL; 3271 break; 3272 } 3273 3274 m.mx = dtrace_load64(tupregs[0].dttk_value); 3275 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3276 break; 3277 3278 case DIF_SUBR_MUTEX_TYPE_SPIN: 3279 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3280 mstate, vstate)) { 3281 regs[rd] = NULL; 3282 break; 3283 } 3284 3285 m.mx = dtrace_load64(tupregs[0].dttk_value); 3286 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3287 break; 3288 3289 case DIF_SUBR_RW_READ_HELD: { 3290 uintptr_t tmp; 3291 3292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3293 mstate, vstate)) { 3294 regs[rd] = NULL; 3295 break; 3296 } 3297 3298 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3299 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3300 break; 3301 } 3302 3303 case DIF_SUBR_RW_WRITE_HELD: 3304 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3305 mstate, vstate)) { 3306 regs[rd] = NULL; 3307 break; 3308 } 3309 3310 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3311 regs[rd] = _RW_WRITE_HELD(&r.ri); 3312 break; 3313 3314 case DIF_SUBR_RW_ISWRITER: 3315 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3316 mstate, vstate)) { 3317 regs[rd] = NULL; 3318 break; 3319 } 3320 3321 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3322 regs[rd] = _RW_ISWRITER(&r.ri); 3323 break; 3324 3325 case DIF_SUBR_BCOPY: { 3326 /* 3327 * We need to be sure that the destination is in the scratch 3328 * region -- no other region is allowed. 3329 */ 3330 uintptr_t src = tupregs[0].dttk_value; 3331 uintptr_t dest = tupregs[1].dttk_value; 3332 size_t size = tupregs[2].dttk_value; 3333 3334 if (!dtrace_inscratch(dest, size, mstate)) { 3335 *flags |= CPU_DTRACE_BADADDR; 3336 *illval = regs[rd]; 3337 break; 3338 } 3339 3340 if (!dtrace_canload(src, size, mstate, vstate)) { 3341 regs[rd] = NULL; 3342 break; 3343 } 3344 3345 dtrace_bcopy((void *)src, (void *)dest, size); 3346 break; 3347 } 3348 3349 case DIF_SUBR_ALLOCA: 3350 case DIF_SUBR_COPYIN: { 3351 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3352 uint64_t size = 3353 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3354 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3355 3356 /* 3357 * This action doesn't require any credential checks since 3358 * probes will not activate in user contexts to which the 3359 * enabling user does not have permissions. 3360 */ 3361 3362 /* 3363 * Rounding up the user allocation size could have overflowed 3364 * a large, bogus allocation (like -1ULL) to 0. 3365 */ 3366 if (scratch_size < size || 3367 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3369 regs[rd] = NULL; 3370 break; 3371 } 3372 3373 if (subr == DIF_SUBR_COPYIN) { 3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3375 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3377 } 3378 3379 mstate->dtms_scratch_ptr += scratch_size; 3380 regs[rd] = dest; 3381 break; 3382 } 3383 3384 case DIF_SUBR_COPYINTO: { 3385 uint64_t size = tupregs[1].dttk_value; 3386 uintptr_t dest = tupregs[2].dttk_value; 3387 3388 /* 3389 * This action doesn't require any credential checks since 3390 * probes will not activate in user contexts to which the 3391 * enabling user does not have permissions. 3392 */ 3393 if (!dtrace_inscratch(dest, size, mstate)) { 3394 *flags |= CPU_DTRACE_BADADDR; 3395 *illval = regs[rd]; 3396 break; 3397 } 3398 3399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3400 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3402 break; 3403 } 3404 3405 case DIF_SUBR_COPYINSTR: { 3406 uintptr_t dest = mstate->dtms_scratch_ptr; 3407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3408 3409 if (nargs > 1 && tupregs[1].dttk_value < size) 3410 size = tupregs[1].dttk_value + 1; 3411 3412 /* 3413 * This action doesn't require any credential checks since 3414 * probes will not activate in user contexts to which the 3415 * enabling user does not have permissions. 3416 */ 3417 if (!DTRACE_INSCRATCH(mstate, size)) { 3418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3419 regs[rd] = NULL; 3420 break; 3421 } 3422 3423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3424 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3425 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3426 3427 ((char *)dest)[size - 1] = '\0'; 3428 mstate->dtms_scratch_ptr += size; 3429 regs[rd] = dest; 3430 break; 3431 } 3432 3433 case DIF_SUBR_MSGSIZE: 3434 case DIF_SUBR_MSGDSIZE: { 3435 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3436 uintptr_t wptr, rptr; 3437 size_t count = 0; 3438 int cont = 0; 3439 3440 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3441 3442 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3443 vstate)) { 3444 regs[rd] = NULL; 3445 break; 3446 } 3447 3448 wptr = dtrace_loadptr(baddr + 3449 offsetof(mblk_t, b_wptr)); 3450 3451 rptr = dtrace_loadptr(baddr + 3452 offsetof(mblk_t, b_rptr)); 3453 3454 if (wptr < rptr) { 3455 *flags |= CPU_DTRACE_BADADDR; 3456 *illval = tupregs[0].dttk_value; 3457 break; 3458 } 3459 3460 daddr = dtrace_loadptr(baddr + 3461 offsetof(mblk_t, b_datap)); 3462 3463 baddr = dtrace_loadptr(baddr + 3464 offsetof(mblk_t, b_cont)); 3465 3466 /* 3467 * We want to prevent against denial-of-service here, 3468 * so we're only going to search the list for 3469 * dtrace_msgdsize_max mblks. 3470 */ 3471 if (cont++ > dtrace_msgdsize_max) { 3472 *flags |= CPU_DTRACE_ILLOP; 3473 break; 3474 } 3475 3476 if (subr == DIF_SUBR_MSGDSIZE) { 3477 if (dtrace_load8(daddr + 3478 offsetof(dblk_t, db_type)) != M_DATA) 3479 continue; 3480 } 3481 3482 count += wptr - rptr; 3483 } 3484 3485 if (!(*flags & CPU_DTRACE_FAULT)) 3486 regs[rd] = count; 3487 3488 break; 3489 } 3490 3491 case DIF_SUBR_PROGENYOF: { 3492 pid_t pid = tupregs[0].dttk_value; 3493 proc_t *p; 3494 int rval = 0; 3495 3496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3497 3498 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3499 if (p->p_pidp->pid_id == pid) { 3500 rval = 1; 3501 break; 3502 } 3503 } 3504 3505 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3506 3507 regs[rd] = rval; 3508 break; 3509 } 3510 3511 case DIF_SUBR_SPECULATION: 3512 regs[rd] = dtrace_speculation(state); 3513 break; 3514 3515 case DIF_SUBR_COPYOUT: { 3516 uintptr_t kaddr = tupregs[0].dttk_value; 3517 uintptr_t uaddr = tupregs[1].dttk_value; 3518 uint64_t size = tupregs[2].dttk_value; 3519 3520 if (!dtrace_destructive_disallow && 3521 dtrace_priv_proc_control(state, mstate) && 3522 !dtrace_istoxic(kaddr, size)) { 3523 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3524 dtrace_copyout(kaddr, uaddr, size, flags); 3525 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3526 } 3527 break; 3528 } 3529 3530 case DIF_SUBR_COPYOUTSTR: { 3531 uintptr_t kaddr = tupregs[0].dttk_value; 3532 uintptr_t uaddr = tupregs[1].dttk_value; 3533 uint64_t size = tupregs[2].dttk_value; 3534 3535 if (!dtrace_destructive_disallow && 3536 dtrace_priv_proc_control(state, mstate) && 3537 !dtrace_istoxic(kaddr, size)) { 3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3539 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3541 } 3542 break; 3543 } 3544 3545 case DIF_SUBR_STRLEN: { 3546 size_t sz; 3547 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3548 sz = dtrace_strlen((char *)addr, 3549 state->dts_options[DTRACEOPT_STRSIZE]); 3550 3551 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3552 regs[rd] = NULL; 3553 break; 3554 } 3555 3556 regs[rd] = sz; 3557 3558 break; 3559 } 3560 3561 case DIF_SUBR_STRCHR: 3562 case DIF_SUBR_STRRCHR: { 3563 /* 3564 * We're going to iterate over the string looking for the 3565 * specified character. We will iterate until we have reached 3566 * the string length or we have found the character. If this 3567 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3568 * of the specified character instead of the first. 3569 */ 3570 uintptr_t saddr = tupregs[0].dttk_value; 3571 uintptr_t addr = tupregs[0].dttk_value; 3572 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3573 char c, target = (char)tupregs[1].dttk_value; 3574 3575 for (regs[rd] = NULL; addr < limit; addr++) { 3576 if ((c = dtrace_load8(addr)) == target) { 3577 regs[rd] = addr; 3578 3579 if (subr == DIF_SUBR_STRCHR) 3580 break; 3581 } 3582 3583 if (c == '\0') 3584 break; 3585 } 3586 3587 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3588 regs[rd] = NULL; 3589 break; 3590 } 3591 3592 break; 3593 } 3594 3595 case DIF_SUBR_STRSTR: 3596 case DIF_SUBR_INDEX: 3597 case DIF_SUBR_RINDEX: { 3598 /* 3599 * We're going to iterate over the string looking for the 3600 * specified string. We will iterate until we have reached 3601 * the string length or we have found the string. (Yes, this 3602 * is done in the most naive way possible -- but considering 3603 * that the string we're searching for is likely to be 3604 * relatively short, the complexity of Rabin-Karp or similar 3605 * hardly seems merited.) 3606 */ 3607 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3608 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3610 size_t len = dtrace_strlen(addr, size); 3611 size_t sublen = dtrace_strlen(substr, size); 3612 char *limit = addr + len, *orig = addr; 3613 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3614 int inc = 1; 3615 3616 regs[rd] = notfound; 3617 3618 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3619 regs[rd] = NULL; 3620 break; 3621 } 3622 3623 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3624 vstate)) { 3625 regs[rd] = NULL; 3626 break; 3627 } 3628 3629 /* 3630 * strstr() and index()/rindex() have similar semantics if 3631 * both strings are the empty string: strstr() returns a 3632 * pointer to the (empty) string, and index() and rindex() 3633 * both return index 0 (regardless of any position argument). 3634 */ 3635 if (sublen == 0 && len == 0) { 3636 if (subr == DIF_SUBR_STRSTR) 3637 regs[rd] = (uintptr_t)addr; 3638 else 3639 regs[rd] = 0; 3640 break; 3641 } 3642 3643 if (subr != DIF_SUBR_STRSTR) { 3644 if (subr == DIF_SUBR_RINDEX) { 3645 limit = orig - 1; 3646 addr += len; 3647 inc = -1; 3648 } 3649 3650 /* 3651 * Both index() and rindex() take an optional position 3652 * argument that denotes the starting position. 3653 */ 3654 if (nargs == 3) { 3655 int64_t pos = (int64_t)tupregs[2].dttk_value; 3656 3657 /* 3658 * If the position argument to index() is 3659 * negative, Perl implicitly clamps it at 3660 * zero. This semantic is a little surprising 3661 * given the special meaning of negative 3662 * positions to similar Perl functions like 3663 * substr(), but it appears to reflect a 3664 * notion that index() can start from a 3665 * negative index and increment its way up to 3666 * the string. Given this notion, Perl's 3667 * rindex() is at least self-consistent in 3668 * that it implicitly clamps positions greater 3669 * than the string length to be the string 3670 * length. Where Perl completely loses 3671 * coherence, however, is when the specified 3672 * substring is the empty string (""). In 3673 * this case, even if the position is 3674 * negative, rindex() returns 0 -- and even if 3675 * the position is greater than the length, 3676 * index() returns the string length. These 3677 * semantics violate the notion that index() 3678 * should never return a value less than the 3679 * specified position and that rindex() should 3680 * never return a value greater than the 3681 * specified position. (One assumes that 3682 * these semantics are artifacts of Perl's 3683 * implementation and not the results of 3684 * deliberate design -- it beggars belief that 3685 * even Larry Wall could desire such oddness.) 3686 * While in the abstract one would wish for 3687 * consistent position semantics across 3688 * substr(), index() and rindex() -- or at the 3689 * very least self-consistent position 3690 * semantics for index() and rindex() -- we 3691 * instead opt to keep with the extant Perl 3692 * semantics, in all their broken glory. (Do 3693 * we have more desire to maintain Perl's 3694 * semantics than Perl does? Probably.) 3695 */ 3696 if (subr == DIF_SUBR_RINDEX) { 3697 if (pos < 0) { 3698 if (sublen == 0) 3699 regs[rd] = 0; 3700 break; 3701 } 3702 3703 if (pos > len) 3704 pos = len; 3705 } else { 3706 if (pos < 0) 3707 pos = 0; 3708 3709 if (pos >= len) { 3710 if (sublen == 0) 3711 regs[rd] = len; 3712 break; 3713 } 3714 } 3715 3716 addr = orig + pos; 3717 } 3718 } 3719 3720 for (regs[rd] = notfound; addr != limit; addr += inc) { 3721 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3722 if (subr != DIF_SUBR_STRSTR) { 3723 /* 3724 * As D index() and rindex() are 3725 * modeled on Perl (and not on awk), 3726 * we return a zero-based (and not a 3727 * one-based) index. (For you Perl 3728 * weenies: no, we're not going to add 3729 * $[ -- and shouldn't you be at a con 3730 * or something?) 3731 */ 3732 regs[rd] = (uintptr_t)(addr - orig); 3733 break; 3734 } 3735 3736 ASSERT(subr == DIF_SUBR_STRSTR); 3737 regs[rd] = (uintptr_t)addr; 3738 break; 3739 } 3740 } 3741 3742 break; 3743 } 3744 3745 case DIF_SUBR_STRTOK: { 3746 uintptr_t addr = tupregs[0].dttk_value; 3747 uintptr_t tokaddr = tupregs[1].dttk_value; 3748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3749 uintptr_t limit, toklimit = tokaddr + size; 3750 uint8_t c, tokmap[32]; /* 256 / 8 */ 3751 char *dest = (char *)mstate->dtms_scratch_ptr; 3752 int i; 3753 3754 /* 3755 * Check both the token buffer and (later) the input buffer, 3756 * since both could be non-scratch addresses. 3757 */ 3758 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3759 regs[rd] = NULL; 3760 break; 3761 } 3762 3763 if (!DTRACE_INSCRATCH(mstate, size)) { 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3765 regs[rd] = NULL; 3766 break; 3767 } 3768 3769 if (addr == NULL) { 3770 /* 3771 * If the address specified is NULL, we use our saved 3772 * strtok pointer from the mstate. Note that this 3773 * means that the saved strtok pointer is _only_ 3774 * valid within multiple enablings of the same probe -- 3775 * it behaves like an implicit clause-local variable. 3776 */ 3777 addr = mstate->dtms_strtok; 3778 } else { 3779 /* 3780 * If the user-specified address is non-NULL we must 3781 * access check it. This is the only time we have 3782 * a chance to do so, since this address may reside 3783 * in the string table of this clause-- future calls 3784 * (when we fetch addr from mstate->dtms_strtok) 3785 * would fail this access check. 3786 */ 3787 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3788 regs[rd] = NULL; 3789 break; 3790 } 3791 } 3792 3793 /* 3794 * First, zero the token map, and then process the token 3795 * string -- setting a bit in the map for every character 3796 * found in the token string. 3797 */ 3798 for (i = 0; i < sizeof (tokmap); i++) 3799 tokmap[i] = 0; 3800 3801 for (; tokaddr < toklimit; tokaddr++) { 3802 if ((c = dtrace_load8(tokaddr)) == '\0') 3803 break; 3804 3805 ASSERT((c >> 3) < sizeof (tokmap)); 3806 tokmap[c >> 3] |= (1 << (c & 0x7)); 3807 } 3808 3809 for (limit = addr + size; addr < limit; addr++) { 3810 /* 3811 * We're looking for a character that is _not_ contained 3812 * in the token string. 3813 */ 3814 if ((c = dtrace_load8(addr)) == '\0') 3815 break; 3816 3817 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3818 break; 3819 } 3820 3821 if (c == '\0') { 3822 /* 3823 * We reached the end of the string without finding 3824 * any character that was not in the token string. 3825 * We return NULL in this case, and we set the saved 3826 * address to NULL as well. 3827 */ 3828 regs[rd] = NULL; 3829 mstate->dtms_strtok = NULL; 3830 break; 3831 } 3832 3833 /* 3834 * From here on, we're copying into the destination string. 3835 */ 3836 for (i = 0; addr < limit && i < size - 1; addr++) { 3837 if ((c = dtrace_load8(addr)) == '\0') 3838 break; 3839 3840 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3841 break; 3842 3843 ASSERT(i < size); 3844 dest[i++] = c; 3845 } 3846 3847 ASSERT(i < size); 3848 dest[i] = '\0'; 3849 regs[rd] = (uintptr_t)dest; 3850 mstate->dtms_scratch_ptr += size; 3851 mstate->dtms_strtok = addr; 3852 break; 3853 } 3854 3855 case DIF_SUBR_SUBSTR: { 3856 uintptr_t s = tupregs[0].dttk_value; 3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3858 char *d = (char *)mstate->dtms_scratch_ptr; 3859 int64_t index = (int64_t)tupregs[1].dttk_value; 3860 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3861 size_t len = dtrace_strlen((char *)s, size); 3862 int64_t i; 3863 3864 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 if (!DTRACE_INSCRATCH(mstate, size)) { 3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3871 regs[rd] = NULL; 3872 break; 3873 } 3874 3875 if (nargs <= 2) 3876 remaining = (int64_t)size; 3877 3878 if (index < 0) { 3879 index += len; 3880 3881 if (index < 0 && index + remaining > 0) { 3882 remaining += index; 3883 index = 0; 3884 } 3885 } 3886 3887 if (index >= len || index < 0) { 3888 remaining = 0; 3889 } else if (remaining < 0) { 3890 remaining += len - index; 3891 } else if (index + remaining > size) { 3892 remaining = size - index; 3893 } 3894 3895 for (i = 0; i < remaining; i++) { 3896 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3897 break; 3898 } 3899 3900 d[i] = '\0'; 3901 3902 mstate->dtms_scratch_ptr += size; 3903 regs[rd] = (uintptr_t)d; 3904 break; 3905 } 3906 3907 case DIF_SUBR_TOUPPER: 3908 case DIF_SUBR_TOLOWER: { 3909 uintptr_t s = tupregs[0].dttk_value; 3910 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3911 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3912 size_t len = dtrace_strlen((char *)s, size); 3913 char lower, upper, convert; 3914 int64_t i; 3915 3916 if (subr == DIF_SUBR_TOUPPER) { 3917 lower = 'a'; 3918 upper = 'z'; 3919 convert = 'A'; 3920 } else { 3921 lower = 'A'; 3922 upper = 'Z'; 3923 convert = 'a'; 3924 } 3925 3926 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3927 regs[rd] = NULL; 3928 break; 3929 } 3930 3931 if (!DTRACE_INSCRATCH(mstate, size)) { 3932 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3933 regs[rd] = NULL; 3934 break; 3935 } 3936 3937 for (i = 0; i < size - 1; i++) { 3938 if ((c = dtrace_load8(s + i)) == '\0') 3939 break; 3940 3941 if (c >= lower && c <= upper) 3942 c = convert + (c - lower); 3943 3944 dest[i] = c; 3945 } 3946 3947 ASSERT(i < size); 3948 dest[i] = '\0'; 3949 regs[rd] = (uintptr_t)dest; 3950 mstate->dtms_scratch_ptr += size; 3951 break; 3952 } 3953 3954 case DIF_SUBR_GETMAJOR: 3955 #ifdef _LP64 3956 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3957 #else 3958 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3959 #endif 3960 break; 3961 3962 case DIF_SUBR_GETMINOR: 3963 #ifdef _LP64 3964 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3965 #else 3966 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3967 #endif 3968 break; 3969 3970 case DIF_SUBR_DDI_PATHNAME: { 3971 /* 3972 * This one is a galactic mess. We are going to roughly 3973 * emulate ddi_pathname(), but it's made more complicated 3974 * by the fact that we (a) want to include the minor name and 3975 * (b) must proceed iteratively instead of recursively. 3976 */ 3977 uintptr_t dest = mstate->dtms_scratch_ptr; 3978 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3979 char *start = (char *)dest, *end = start + size - 1; 3980 uintptr_t daddr = tupregs[0].dttk_value; 3981 int64_t minor = (int64_t)tupregs[1].dttk_value; 3982 char *s; 3983 int i, len, depth = 0; 3984 3985 /* 3986 * Due to all the pointer jumping we do and context we must 3987 * rely upon, we just mandate that the user must have kernel 3988 * read privileges to use this routine. 3989 */ 3990 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3991 *flags |= CPU_DTRACE_KPRIV; 3992 *illval = daddr; 3993 regs[rd] = NULL; 3994 } 3995 3996 if (!DTRACE_INSCRATCH(mstate, size)) { 3997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3998 regs[rd] = NULL; 3999 break; 4000 } 4001 4002 *end = '\0'; 4003 4004 /* 4005 * We want to have a name for the minor. In order to do this, 4006 * we need to walk the minor list from the devinfo. We want 4007 * to be sure that we don't infinitely walk a circular list, 4008 * so we check for circularity by sending a scout pointer 4009 * ahead two elements for every element that we iterate over; 4010 * if the list is circular, these will ultimately point to the 4011 * same element. You may recognize this little trick as the 4012 * answer to a stupid interview question -- one that always 4013 * seems to be asked by those who had to have it laboriously 4014 * explained to them, and who can't even concisely describe 4015 * the conditions under which one would be forced to resort to 4016 * this technique. Needless to say, those conditions are 4017 * found here -- and probably only here. Is this the only use 4018 * of this infamous trick in shipping, production code? If it 4019 * isn't, it probably should be... 4020 */ 4021 if (minor != -1) { 4022 uintptr_t maddr = dtrace_loadptr(daddr + 4023 offsetof(struct dev_info, devi_minor)); 4024 4025 uintptr_t next = offsetof(struct ddi_minor_data, next); 4026 uintptr_t name = offsetof(struct ddi_minor_data, 4027 d_minor) + offsetof(struct ddi_minor, name); 4028 uintptr_t dev = offsetof(struct ddi_minor_data, 4029 d_minor) + offsetof(struct ddi_minor, dev); 4030 uintptr_t scout; 4031 4032 if (maddr != NULL) 4033 scout = dtrace_loadptr(maddr + next); 4034 4035 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4036 uint64_t m; 4037 #ifdef _LP64 4038 m = dtrace_load64(maddr + dev) & MAXMIN64; 4039 #else 4040 m = dtrace_load32(maddr + dev) & MAXMIN; 4041 #endif 4042 if (m != minor) { 4043 maddr = dtrace_loadptr(maddr + next); 4044 4045 if (scout == NULL) 4046 continue; 4047 4048 scout = dtrace_loadptr(scout + next); 4049 4050 if (scout == NULL) 4051 continue; 4052 4053 scout = dtrace_loadptr(scout + next); 4054 4055 if (scout == NULL) 4056 continue; 4057 4058 if (scout == maddr) { 4059 *flags |= CPU_DTRACE_ILLOP; 4060 break; 4061 } 4062 4063 continue; 4064 } 4065 4066 /* 4067 * We have the minor data. Now we need to 4068 * copy the minor's name into the end of the 4069 * pathname. 4070 */ 4071 s = (char *)dtrace_loadptr(maddr + name); 4072 len = dtrace_strlen(s, size); 4073 4074 if (*flags & CPU_DTRACE_FAULT) 4075 break; 4076 4077 if (len != 0) { 4078 if ((end -= (len + 1)) < start) 4079 break; 4080 4081 *end = ':'; 4082 } 4083 4084 for (i = 1; i <= len; i++) 4085 end[i] = dtrace_load8((uintptr_t)s++); 4086 break; 4087 } 4088 } 4089 4090 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4091 ddi_node_state_t devi_state; 4092 4093 devi_state = dtrace_load32(daddr + 4094 offsetof(struct dev_info, devi_node_state)); 4095 4096 if (*flags & CPU_DTRACE_FAULT) 4097 break; 4098 4099 if (devi_state >= DS_INITIALIZED) { 4100 s = (char *)dtrace_loadptr(daddr + 4101 offsetof(struct dev_info, devi_addr)); 4102 len = dtrace_strlen(s, size); 4103 4104 if (*flags & CPU_DTRACE_FAULT) 4105 break; 4106 4107 if (len != 0) { 4108 if ((end -= (len + 1)) < start) 4109 break; 4110 4111 *end = '@'; 4112 } 4113 4114 for (i = 1; i <= len; i++) 4115 end[i] = dtrace_load8((uintptr_t)s++); 4116 } 4117 4118 /* 4119 * Now for the node name... 4120 */ 4121 s = (char *)dtrace_loadptr(daddr + 4122 offsetof(struct dev_info, devi_node_name)); 4123 4124 daddr = dtrace_loadptr(daddr + 4125 offsetof(struct dev_info, devi_parent)); 4126 4127 /* 4128 * If our parent is NULL (that is, if we're the root 4129 * node), we're going to use the special path 4130 * "devices". 4131 */ 4132 if (daddr == NULL) 4133 s = "devices"; 4134 4135 len = dtrace_strlen(s, size); 4136 if (*flags & CPU_DTRACE_FAULT) 4137 break; 4138 4139 if ((end -= (len + 1)) < start) 4140 break; 4141 4142 for (i = 1; i <= len; i++) 4143 end[i] = dtrace_load8((uintptr_t)s++); 4144 *end = '/'; 4145 4146 if (depth++ > dtrace_devdepth_max) { 4147 *flags |= CPU_DTRACE_ILLOP; 4148 break; 4149 } 4150 } 4151 4152 if (end < start) 4153 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4154 4155 if (daddr == NULL) { 4156 regs[rd] = (uintptr_t)end; 4157 mstate->dtms_scratch_ptr += size; 4158 } 4159 4160 break; 4161 } 4162 4163 case DIF_SUBR_STRJOIN: { 4164 char *d = (char *)mstate->dtms_scratch_ptr; 4165 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4166 uintptr_t s1 = tupregs[0].dttk_value; 4167 uintptr_t s2 = tupregs[1].dttk_value; 4168 int i = 0; 4169 4170 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4171 !dtrace_strcanload(s2, size, mstate, vstate)) { 4172 regs[rd] = NULL; 4173 break; 4174 } 4175 4176 if (!DTRACE_INSCRATCH(mstate, size)) { 4177 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4178 regs[rd] = NULL; 4179 break; 4180 } 4181 4182 for (;;) { 4183 if (i >= size) { 4184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4185 regs[rd] = NULL; 4186 break; 4187 } 4188 4189 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4190 i--; 4191 break; 4192 } 4193 } 4194 4195 for (;;) { 4196 if (i >= size) { 4197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4198 regs[rd] = NULL; 4199 break; 4200 } 4201 4202 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4203 break; 4204 } 4205 4206 if (i < size) { 4207 mstate->dtms_scratch_ptr += i; 4208 regs[rd] = (uintptr_t)d; 4209 } 4210 4211 break; 4212 } 4213 4214 case DIF_SUBR_LLTOSTR: { 4215 int64_t i = (int64_t)tupregs[0].dttk_value; 4216 uint64_t val, digit; 4217 uint64_t size = 65; /* enough room for 2^64 in binary */ 4218 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4219 int base = 10; 4220 4221 if (nargs > 1) { 4222 if ((base = tupregs[1].dttk_value) <= 1 || 4223 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4224 *flags |= CPU_DTRACE_ILLOP; 4225 break; 4226 } 4227 } 4228 4229 val = (base == 10 && i < 0) ? i * -1 : i; 4230 4231 if (!DTRACE_INSCRATCH(mstate, size)) { 4232 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4233 regs[rd] = NULL; 4234 break; 4235 } 4236 4237 for (*end-- = '\0'; val; val /= base) { 4238 if ((digit = val % base) <= '9' - '0') { 4239 *end-- = '0' + digit; 4240 } else { 4241 *end-- = 'a' + (digit - ('9' - '0') - 1); 4242 } 4243 } 4244 4245 if (i == 0 && base == 16) 4246 *end-- = '0'; 4247 4248 if (base == 16) 4249 *end-- = 'x'; 4250 4251 if (i == 0 || base == 8 || base == 16) 4252 *end-- = '0'; 4253 4254 if (i < 0 && base == 10) 4255 *end-- = '-'; 4256 4257 regs[rd] = (uintptr_t)end + 1; 4258 mstate->dtms_scratch_ptr += size; 4259 break; 4260 } 4261 4262 case DIF_SUBR_HTONS: 4263 case DIF_SUBR_NTOHS: 4264 #ifdef _BIG_ENDIAN 4265 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4266 #else 4267 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4268 #endif 4269 break; 4270 4271 4272 case DIF_SUBR_HTONL: 4273 case DIF_SUBR_NTOHL: 4274 #ifdef _BIG_ENDIAN 4275 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4276 #else 4277 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4278 #endif 4279 break; 4280 4281 4282 case DIF_SUBR_HTONLL: 4283 case DIF_SUBR_NTOHLL: 4284 #ifdef _BIG_ENDIAN 4285 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4286 #else 4287 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4288 #endif 4289 break; 4290 4291 4292 case DIF_SUBR_DIRNAME: 4293 case DIF_SUBR_BASENAME: { 4294 char *dest = (char *)mstate->dtms_scratch_ptr; 4295 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4296 uintptr_t src = tupregs[0].dttk_value; 4297 int i, j, len = dtrace_strlen((char *)src, size); 4298 int lastbase = -1, firstbase = -1, lastdir = -1; 4299 int start, end; 4300 4301 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4302 regs[rd] = NULL; 4303 break; 4304 } 4305 4306 if (!DTRACE_INSCRATCH(mstate, size)) { 4307 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4308 regs[rd] = NULL; 4309 break; 4310 } 4311 4312 /* 4313 * The basename and dirname for a zero-length string is 4314 * defined to be "." 4315 */ 4316 if (len == 0) { 4317 len = 1; 4318 src = (uintptr_t)"."; 4319 } 4320 4321 /* 4322 * Start from the back of the string, moving back toward the 4323 * front until we see a character that isn't a slash. That 4324 * character is the last character in the basename. 4325 */ 4326 for (i = len - 1; i >= 0; i--) { 4327 if (dtrace_load8(src + i) != '/') 4328 break; 4329 } 4330 4331 if (i >= 0) 4332 lastbase = i; 4333 4334 /* 4335 * Starting from the last character in the basename, move 4336 * towards the front until we find a slash. The character 4337 * that we processed immediately before that is the first 4338 * character in the basename. 4339 */ 4340 for (; i >= 0; i--) { 4341 if (dtrace_load8(src + i) == '/') 4342 break; 4343 } 4344 4345 if (i >= 0) 4346 firstbase = i + 1; 4347 4348 /* 4349 * Now keep going until we find a non-slash character. That 4350 * character is the last character in the dirname. 4351 */ 4352 for (; i >= 0; i--) { 4353 if (dtrace_load8(src + i) != '/') 4354 break; 4355 } 4356 4357 if (i >= 0) 4358 lastdir = i; 4359 4360 ASSERT(!(lastbase == -1 && firstbase != -1)); 4361 ASSERT(!(firstbase == -1 && lastdir != -1)); 4362 4363 if (lastbase == -1) { 4364 /* 4365 * We didn't find a non-slash character. We know that 4366 * the length is non-zero, so the whole string must be 4367 * slashes. In either the dirname or the basename 4368 * case, we return '/'. 4369 */ 4370 ASSERT(firstbase == -1); 4371 firstbase = lastbase = lastdir = 0; 4372 } 4373 4374 if (firstbase == -1) { 4375 /* 4376 * The entire string consists only of a basename 4377 * component. If we're looking for dirname, we need 4378 * to change our string to be just "."; if we're 4379 * looking for a basename, we'll just set the first 4380 * character of the basename to be 0. 4381 */ 4382 if (subr == DIF_SUBR_DIRNAME) { 4383 ASSERT(lastdir == -1); 4384 src = (uintptr_t)"."; 4385 lastdir = 0; 4386 } else { 4387 firstbase = 0; 4388 } 4389 } 4390 4391 if (subr == DIF_SUBR_DIRNAME) { 4392 if (lastdir == -1) { 4393 /* 4394 * We know that we have a slash in the name -- 4395 * or lastdir would be set to 0, above. And 4396 * because lastdir is -1, we know that this 4397 * slash must be the first character. (That 4398 * is, the full string must be of the form 4399 * "/basename".) In this case, the last 4400 * character of the directory name is 0. 4401 */ 4402 lastdir = 0; 4403 } 4404 4405 start = 0; 4406 end = lastdir; 4407 } else { 4408 ASSERT(subr == DIF_SUBR_BASENAME); 4409 ASSERT(firstbase != -1 && lastbase != -1); 4410 start = firstbase; 4411 end = lastbase; 4412 } 4413 4414 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4415 dest[j] = dtrace_load8(src + i); 4416 4417 dest[j] = '\0'; 4418 regs[rd] = (uintptr_t)dest; 4419 mstate->dtms_scratch_ptr += size; 4420 break; 4421 } 4422 4423 case DIF_SUBR_CLEANPATH: { 4424 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4425 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4426 uintptr_t src = tupregs[0].dttk_value; 4427 int i = 0, j = 0; 4428 4429 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4430 regs[rd] = NULL; 4431 break; 4432 } 4433 4434 if (!DTRACE_INSCRATCH(mstate, size)) { 4435 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4436 regs[rd] = NULL; 4437 break; 4438 } 4439 4440 /* 4441 * Move forward, loading each character. 4442 */ 4443 do { 4444 c = dtrace_load8(src + i++); 4445 next: 4446 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4447 break; 4448 4449 if (c != '/') { 4450 dest[j++] = c; 4451 continue; 4452 } 4453 4454 c = dtrace_load8(src + i++); 4455 4456 if (c == '/') { 4457 /* 4458 * We have two slashes -- we can just advance 4459 * to the next character. 4460 */ 4461 goto next; 4462 } 4463 4464 if (c != '.') { 4465 /* 4466 * This is not "." and it's not ".." -- we can 4467 * just store the "/" and this character and 4468 * drive on. 4469 */ 4470 dest[j++] = '/'; 4471 dest[j++] = c; 4472 continue; 4473 } 4474 4475 c = dtrace_load8(src + i++); 4476 4477 if (c == '/') { 4478 /* 4479 * This is a "/./" component. We're not going 4480 * to store anything in the destination buffer; 4481 * we're just going to go to the next component. 4482 */ 4483 goto next; 4484 } 4485 4486 if (c != '.') { 4487 /* 4488 * This is not ".." -- we can just store the 4489 * "/." and this character and continue 4490 * processing. 4491 */ 4492 dest[j++] = '/'; 4493 dest[j++] = '.'; 4494 dest[j++] = c; 4495 continue; 4496 } 4497 4498 c = dtrace_load8(src + i++); 4499 4500 if (c != '/' && c != '\0') { 4501 /* 4502 * This is not ".." -- it's "..[mumble]". 4503 * We'll store the "/.." and this character 4504 * and continue processing. 4505 */ 4506 dest[j++] = '/'; 4507 dest[j++] = '.'; 4508 dest[j++] = '.'; 4509 dest[j++] = c; 4510 continue; 4511 } 4512 4513 /* 4514 * This is "/../" or "/..\0". We need to back up 4515 * our destination pointer until we find a "/". 4516 */ 4517 i--; 4518 while (j != 0 && dest[--j] != '/') 4519 continue; 4520 4521 if (c == '\0') 4522 dest[++j] = '/'; 4523 } while (c != '\0'); 4524 4525 dest[j] = '\0'; 4526 regs[rd] = (uintptr_t)dest; 4527 mstate->dtms_scratch_ptr += size; 4528 break; 4529 } 4530 4531 case DIF_SUBR_INET_NTOA: 4532 case DIF_SUBR_INET_NTOA6: 4533 case DIF_SUBR_INET_NTOP: { 4534 size_t size; 4535 int af, argi, i; 4536 char *base, *end; 4537 4538 if (subr == DIF_SUBR_INET_NTOP) { 4539 af = (int)tupregs[0].dttk_value; 4540 argi = 1; 4541 } else { 4542 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4543 argi = 0; 4544 } 4545 4546 if (af == AF_INET) { 4547 ipaddr_t ip4; 4548 uint8_t *ptr8, val; 4549 4550 /* 4551 * Safely load the IPv4 address. 4552 */ 4553 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4554 4555 /* 4556 * Check an IPv4 string will fit in scratch. 4557 */ 4558 size = INET_ADDRSTRLEN; 4559 if (!DTRACE_INSCRATCH(mstate, size)) { 4560 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4561 regs[rd] = NULL; 4562 break; 4563 } 4564 base = (char *)mstate->dtms_scratch_ptr; 4565 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4566 4567 /* 4568 * Stringify as a dotted decimal quad. 4569 */ 4570 *end-- = '\0'; 4571 ptr8 = (uint8_t *)&ip4; 4572 for (i = 3; i >= 0; i--) { 4573 val = ptr8[i]; 4574 4575 if (val == 0) { 4576 *end-- = '0'; 4577 } else { 4578 for (; val; val /= 10) { 4579 *end-- = '0' + (val % 10); 4580 } 4581 } 4582 4583 if (i > 0) 4584 *end-- = '.'; 4585 } 4586 ASSERT(end + 1 >= base); 4587 4588 } else if (af == AF_INET6) { 4589 struct in6_addr ip6; 4590 int firstzero, tryzero, numzero, v6end; 4591 uint16_t val; 4592 const char digits[] = "0123456789abcdef"; 4593 4594 /* 4595 * Stringify using RFC 1884 convention 2 - 16 bit 4596 * hexadecimal values with a zero-run compression. 4597 * Lower case hexadecimal digits are used. 4598 * eg, fe80::214:4fff:fe0b:76c8. 4599 * The IPv4 embedded form is returned for inet_ntop, 4600 * just the IPv4 string is returned for inet_ntoa6. 4601 */ 4602 4603 /* 4604 * Safely load the IPv6 address. 4605 */ 4606 dtrace_bcopy( 4607 (void *)(uintptr_t)tupregs[argi].dttk_value, 4608 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4609 4610 /* 4611 * Check an IPv6 string will fit in scratch. 4612 */ 4613 size = INET6_ADDRSTRLEN; 4614 if (!DTRACE_INSCRATCH(mstate, size)) { 4615 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4616 regs[rd] = NULL; 4617 break; 4618 } 4619 base = (char *)mstate->dtms_scratch_ptr; 4620 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4621 *end-- = '\0'; 4622 4623 /* 4624 * Find the longest run of 16 bit zero values 4625 * for the single allowed zero compression - "::". 4626 */ 4627 firstzero = -1; 4628 tryzero = -1; 4629 numzero = 1; 4630 for (i = 0; i < sizeof (struct in6_addr); i++) { 4631 if (ip6._S6_un._S6_u8[i] == 0 && 4632 tryzero == -1 && i % 2 == 0) { 4633 tryzero = i; 4634 continue; 4635 } 4636 4637 if (tryzero != -1 && 4638 (ip6._S6_un._S6_u8[i] != 0 || 4639 i == sizeof (struct in6_addr) - 1)) { 4640 4641 if (i - tryzero <= numzero) { 4642 tryzero = -1; 4643 continue; 4644 } 4645 4646 firstzero = tryzero; 4647 numzero = i - i % 2 - tryzero; 4648 tryzero = -1; 4649 4650 if (ip6._S6_un._S6_u8[i] == 0 && 4651 i == sizeof (struct in6_addr) - 1) 4652 numzero += 2; 4653 } 4654 } 4655 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4656 4657 /* 4658 * Check for an IPv4 embedded address. 4659 */ 4660 v6end = sizeof (struct in6_addr) - 2; 4661 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4662 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4663 for (i = sizeof (struct in6_addr) - 1; 4664 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4665 ASSERT(end >= base); 4666 4667 val = ip6._S6_un._S6_u8[i]; 4668 4669 if (val == 0) { 4670 *end-- = '0'; 4671 } else { 4672 for (; val; val /= 10) { 4673 *end-- = '0' + val % 10; 4674 } 4675 } 4676 4677 if (i > DTRACE_V4MAPPED_OFFSET) 4678 *end-- = '.'; 4679 } 4680 4681 if (subr == DIF_SUBR_INET_NTOA6) 4682 goto inetout; 4683 4684 /* 4685 * Set v6end to skip the IPv4 address that 4686 * we have already stringified. 4687 */ 4688 v6end = 10; 4689 } 4690 4691 /* 4692 * Build the IPv6 string by working through the 4693 * address in reverse. 4694 */ 4695 for (i = v6end; i >= 0; i -= 2) { 4696 ASSERT(end >= base); 4697 4698 if (i == firstzero + numzero - 2) { 4699 *end-- = ':'; 4700 *end-- = ':'; 4701 i -= numzero - 2; 4702 continue; 4703 } 4704 4705 if (i < 14 && i != firstzero - 2) 4706 *end-- = ':'; 4707 4708 val = (ip6._S6_un._S6_u8[i] << 8) + 4709 ip6._S6_un._S6_u8[i + 1]; 4710 4711 if (val == 0) { 4712 *end-- = '0'; 4713 } else { 4714 for (; val; val /= 16) { 4715 *end-- = digits[val % 16]; 4716 } 4717 } 4718 } 4719 ASSERT(end + 1 >= base); 4720 4721 } else { 4722 /* 4723 * The user didn't use AH_INET or AH_INET6. 4724 */ 4725 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4726 regs[rd] = NULL; 4727 break; 4728 } 4729 4730 inetout: regs[rd] = (uintptr_t)end + 1; 4731 mstate->dtms_scratch_ptr += size; 4732 break; 4733 } 4734 4735 } 4736 } 4737 4738 /* 4739 * Emulate the execution of DTrace IR instructions specified by the given 4740 * DIF object. This function is deliberately void of assertions as all of 4741 * the necessary checks are handled by a call to dtrace_difo_validate(). 4742 */ 4743 static uint64_t 4744 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4745 dtrace_vstate_t *vstate, dtrace_state_t *state) 4746 { 4747 const dif_instr_t *text = difo->dtdo_buf; 4748 const uint_t textlen = difo->dtdo_len; 4749 const char *strtab = difo->dtdo_strtab; 4750 const uint64_t *inttab = difo->dtdo_inttab; 4751 4752 uint64_t rval = 0; 4753 dtrace_statvar_t *svar; 4754 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4755 dtrace_difv_t *v; 4756 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4757 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4758 4759 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4760 uint64_t regs[DIF_DIR_NREGS]; 4761 uint64_t *tmp; 4762 4763 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4764 int64_t cc_r; 4765 uint_t pc = 0, id, opc; 4766 uint8_t ttop = 0; 4767 dif_instr_t instr; 4768 uint_t r1, r2, rd; 4769 4770 /* 4771 * We stash the current DIF object into the machine state: we need it 4772 * for subsequent access checking. 4773 */ 4774 mstate->dtms_difo = difo; 4775 4776 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4777 4778 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4779 opc = pc; 4780 4781 instr = text[pc++]; 4782 r1 = DIF_INSTR_R1(instr); 4783 r2 = DIF_INSTR_R2(instr); 4784 rd = DIF_INSTR_RD(instr); 4785 4786 switch (DIF_INSTR_OP(instr)) { 4787 case DIF_OP_OR: 4788 regs[rd] = regs[r1] | regs[r2]; 4789 break; 4790 case DIF_OP_XOR: 4791 regs[rd] = regs[r1] ^ regs[r2]; 4792 break; 4793 case DIF_OP_AND: 4794 regs[rd] = regs[r1] & regs[r2]; 4795 break; 4796 case DIF_OP_SLL: 4797 regs[rd] = regs[r1] << regs[r2]; 4798 break; 4799 case DIF_OP_SRL: 4800 regs[rd] = regs[r1] >> regs[r2]; 4801 break; 4802 case DIF_OP_SUB: 4803 regs[rd] = regs[r1] - regs[r2]; 4804 break; 4805 case DIF_OP_ADD: 4806 regs[rd] = regs[r1] + regs[r2]; 4807 break; 4808 case DIF_OP_MUL: 4809 regs[rd] = regs[r1] * regs[r2]; 4810 break; 4811 case DIF_OP_SDIV: 4812 if (regs[r2] == 0) { 4813 regs[rd] = 0; 4814 *flags |= CPU_DTRACE_DIVZERO; 4815 } else { 4816 regs[rd] = (int64_t)regs[r1] / 4817 (int64_t)regs[r2]; 4818 } 4819 break; 4820 4821 case DIF_OP_UDIV: 4822 if (regs[r2] == 0) { 4823 regs[rd] = 0; 4824 *flags |= CPU_DTRACE_DIVZERO; 4825 } else { 4826 regs[rd] = regs[r1] / regs[r2]; 4827 } 4828 break; 4829 4830 case DIF_OP_SREM: 4831 if (regs[r2] == 0) { 4832 regs[rd] = 0; 4833 *flags |= CPU_DTRACE_DIVZERO; 4834 } else { 4835 regs[rd] = (int64_t)regs[r1] % 4836 (int64_t)regs[r2]; 4837 } 4838 break; 4839 4840 case DIF_OP_UREM: 4841 if (regs[r2] == 0) { 4842 regs[rd] = 0; 4843 *flags |= CPU_DTRACE_DIVZERO; 4844 } else { 4845 regs[rd] = regs[r1] % regs[r2]; 4846 } 4847 break; 4848 4849 case DIF_OP_NOT: 4850 regs[rd] = ~regs[r1]; 4851 break; 4852 case DIF_OP_MOV: 4853 regs[rd] = regs[r1]; 4854 break; 4855 case DIF_OP_CMP: 4856 cc_r = regs[r1] - regs[r2]; 4857 cc_n = cc_r < 0; 4858 cc_z = cc_r == 0; 4859 cc_v = 0; 4860 cc_c = regs[r1] < regs[r2]; 4861 break; 4862 case DIF_OP_TST: 4863 cc_n = cc_v = cc_c = 0; 4864 cc_z = regs[r1] == 0; 4865 break; 4866 case DIF_OP_BA: 4867 pc = DIF_INSTR_LABEL(instr); 4868 break; 4869 case DIF_OP_BE: 4870 if (cc_z) 4871 pc = DIF_INSTR_LABEL(instr); 4872 break; 4873 case DIF_OP_BNE: 4874 if (cc_z == 0) 4875 pc = DIF_INSTR_LABEL(instr); 4876 break; 4877 case DIF_OP_BG: 4878 if ((cc_z | (cc_n ^ cc_v)) == 0) 4879 pc = DIF_INSTR_LABEL(instr); 4880 break; 4881 case DIF_OP_BGU: 4882 if ((cc_c | cc_z) == 0) 4883 pc = DIF_INSTR_LABEL(instr); 4884 break; 4885 case DIF_OP_BGE: 4886 if ((cc_n ^ cc_v) == 0) 4887 pc = DIF_INSTR_LABEL(instr); 4888 break; 4889 case DIF_OP_BGEU: 4890 if (cc_c == 0) 4891 pc = DIF_INSTR_LABEL(instr); 4892 break; 4893 case DIF_OP_BL: 4894 if (cc_n ^ cc_v) 4895 pc = DIF_INSTR_LABEL(instr); 4896 break; 4897 case DIF_OP_BLU: 4898 if (cc_c) 4899 pc = DIF_INSTR_LABEL(instr); 4900 break; 4901 case DIF_OP_BLE: 4902 if (cc_z | (cc_n ^ cc_v)) 4903 pc = DIF_INSTR_LABEL(instr); 4904 break; 4905 case DIF_OP_BLEU: 4906 if (cc_c | cc_z) 4907 pc = DIF_INSTR_LABEL(instr); 4908 break; 4909 case DIF_OP_RLDSB: 4910 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4911 *flags |= CPU_DTRACE_KPRIV; 4912 *illval = regs[r1]; 4913 break; 4914 } 4915 /*FALLTHROUGH*/ 4916 case DIF_OP_LDSB: 4917 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4918 break; 4919 case DIF_OP_RLDSH: 4920 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4921 *flags |= CPU_DTRACE_KPRIV; 4922 *illval = regs[r1]; 4923 break; 4924 } 4925 /*FALLTHROUGH*/ 4926 case DIF_OP_LDSH: 4927 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4928 break; 4929 case DIF_OP_RLDSW: 4930 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4931 *flags |= CPU_DTRACE_KPRIV; 4932 *illval = regs[r1]; 4933 break; 4934 } 4935 /*FALLTHROUGH*/ 4936 case DIF_OP_LDSW: 4937 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4938 break; 4939 case DIF_OP_RLDUB: 4940 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4941 *flags |= CPU_DTRACE_KPRIV; 4942 *illval = regs[r1]; 4943 break; 4944 } 4945 /*FALLTHROUGH*/ 4946 case DIF_OP_LDUB: 4947 regs[rd] = dtrace_load8(regs[r1]); 4948 break; 4949 case DIF_OP_RLDUH: 4950 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4951 *flags |= CPU_DTRACE_KPRIV; 4952 *illval = regs[r1]; 4953 break; 4954 } 4955 /*FALLTHROUGH*/ 4956 case DIF_OP_LDUH: 4957 regs[rd] = dtrace_load16(regs[r1]); 4958 break; 4959 case DIF_OP_RLDUW: 4960 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4961 *flags |= CPU_DTRACE_KPRIV; 4962 *illval = regs[r1]; 4963 break; 4964 } 4965 /*FALLTHROUGH*/ 4966 case DIF_OP_LDUW: 4967 regs[rd] = dtrace_load32(regs[r1]); 4968 break; 4969 case DIF_OP_RLDX: 4970 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4971 *flags |= CPU_DTRACE_KPRIV; 4972 *illval = regs[r1]; 4973 break; 4974 } 4975 /*FALLTHROUGH*/ 4976 case DIF_OP_LDX: 4977 regs[rd] = dtrace_load64(regs[r1]); 4978 break; 4979 case DIF_OP_ULDSB: 4980 regs[rd] = (int8_t) 4981 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4982 break; 4983 case DIF_OP_ULDSH: 4984 regs[rd] = (int16_t) 4985 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4986 break; 4987 case DIF_OP_ULDSW: 4988 regs[rd] = (int32_t) 4989 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4990 break; 4991 case DIF_OP_ULDUB: 4992 regs[rd] = 4993 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4994 break; 4995 case DIF_OP_ULDUH: 4996 regs[rd] = 4997 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4998 break; 4999 case DIF_OP_ULDUW: 5000 regs[rd] = 5001 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5002 break; 5003 case DIF_OP_ULDX: 5004 regs[rd] = 5005 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5006 break; 5007 case DIF_OP_RET: 5008 rval = regs[rd]; 5009 pc = textlen; 5010 break; 5011 case DIF_OP_NOP: 5012 break; 5013 case DIF_OP_SETX: 5014 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5015 break; 5016 case DIF_OP_SETS: 5017 regs[rd] = (uint64_t)(uintptr_t) 5018 (strtab + DIF_INSTR_STRING(instr)); 5019 break; 5020 case DIF_OP_SCMP: { 5021 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5022 uintptr_t s1 = regs[r1]; 5023 uintptr_t s2 = regs[r2]; 5024 5025 if (s1 != NULL && 5026 !dtrace_strcanload(s1, sz, mstate, vstate)) 5027 break; 5028 if (s2 != NULL && 5029 !dtrace_strcanload(s2, sz, mstate, vstate)) 5030 break; 5031 5032 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5033 5034 cc_n = cc_r < 0; 5035 cc_z = cc_r == 0; 5036 cc_v = cc_c = 0; 5037 break; 5038 } 5039 case DIF_OP_LDGA: 5040 regs[rd] = dtrace_dif_variable(mstate, state, 5041 r1, regs[r2]); 5042 break; 5043 case DIF_OP_LDGS: 5044 id = DIF_INSTR_VAR(instr); 5045 5046 if (id >= DIF_VAR_OTHER_UBASE) { 5047 uintptr_t a; 5048 5049 id -= DIF_VAR_OTHER_UBASE; 5050 svar = vstate->dtvs_globals[id]; 5051 ASSERT(svar != NULL); 5052 v = &svar->dtsv_var; 5053 5054 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5055 regs[rd] = svar->dtsv_data; 5056 break; 5057 } 5058 5059 a = (uintptr_t)svar->dtsv_data; 5060 5061 if (*(uint8_t *)a == UINT8_MAX) { 5062 /* 5063 * If the 0th byte is set to UINT8_MAX 5064 * then this is to be treated as a 5065 * reference to a NULL variable. 5066 */ 5067 regs[rd] = NULL; 5068 } else { 5069 regs[rd] = a + sizeof (uint64_t); 5070 } 5071 5072 break; 5073 } 5074 5075 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5076 break; 5077 5078 case DIF_OP_STGS: 5079 id = DIF_INSTR_VAR(instr); 5080 5081 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5082 id -= DIF_VAR_OTHER_UBASE; 5083 5084 svar = vstate->dtvs_globals[id]; 5085 ASSERT(svar != NULL); 5086 v = &svar->dtsv_var; 5087 5088 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5089 uintptr_t a = (uintptr_t)svar->dtsv_data; 5090 5091 ASSERT(a != NULL); 5092 ASSERT(svar->dtsv_size != 0); 5093 5094 if (regs[rd] == NULL) { 5095 *(uint8_t *)a = UINT8_MAX; 5096 break; 5097 } else { 5098 *(uint8_t *)a = 0; 5099 a += sizeof (uint64_t); 5100 } 5101 if (!dtrace_vcanload( 5102 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5103 mstate, vstate)) 5104 break; 5105 5106 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5107 (void *)a, &v->dtdv_type); 5108 break; 5109 } 5110 5111 svar->dtsv_data = regs[rd]; 5112 break; 5113 5114 case DIF_OP_LDTA: 5115 /* 5116 * There are no DTrace built-in thread-local arrays at 5117 * present. This opcode is saved for future work. 5118 */ 5119 *flags |= CPU_DTRACE_ILLOP; 5120 regs[rd] = 0; 5121 break; 5122 5123 case DIF_OP_LDLS: 5124 id = DIF_INSTR_VAR(instr); 5125 5126 if (id < DIF_VAR_OTHER_UBASE) { 5127 /* 5128 * For now, this has no meaning. 5129 */ 5130 regs[rd] = 0; 5131 break; 5132 } 5133 5134 id -= DIF_VAR_OTHER_UBASE; 5135 5136 ASSERT(id < vstate->dtvs_nlocals); 5137 ASSERT(vstate->dtvs_locals != NULL); 5138 5139 svar = vstate->dtvs_locals[id]; 5140 ASSERT(svar != NULL); 5141 v = &svar->dtsv_var; 5142 5143 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5144 uintptr_t a = (uintptr_t)svar->dtsv_data; 5145 size_t sz = v->dtdv_type.dtdt_size; 5146 5147 sz += sizeof (uint64_t); 5148 ASSERT(svar->dtsv_size == NCPU * sz); 5149 a += CPU->cpu_id * sz; 5150 5151 if (*(uint8_t *)a == UINT8_MAX) { 5152 /* 5153 * If the 0th byte is set to UINT8_MAX 5154 * then this is to be treated as a 5155 * reference to a NULL variable. 5156 */ 5157 regs[rd] = NULL; 5158 } else { 5159 regs[rd] = a + sizeof (uint64_t); 5160 } 5161 5162 break; 5163 } 5164 5165 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5166 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5167 regs[rd] = tmp[CPU->cpu_id]; 5168 break; 5169 5170 case DIF_OP_STLS: 5171 id = DIF_INSTR_VAR(instr); 5172 5173 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5174 id -= DIF_VAR_OTHER_UBASE; 5175 ASSERT(id < vstate->dtvs_nlocals); 5176 5177 ASSERT(vstate->dtvs_locals != NULL); 5178 svar = vstate->dtvs_locals[id]; 5179 ASSERT(svar != NULL); 5180 v = &svar->dtsv_var; 5181 5182 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5183 uintptr_t a = (uintptr_t)svar->dtsv_data; 5184 size_t sz = v->dtdv_type.dtdt_size; 5185 5186 sz += sizeof (uint64_t); 5187 ASSERT(svar->dtsv_size == NCPU * sz); 5188 a += CPU->cpu_id * sz; 5189 5190 if (regs[rd] == NULL) { 5191 *(uint8_t *)a = UINT8_MAX; 5192 break; 5193 } else { 5194 *(uint8_t *)a = 0; 5195 a += sizeof (uint64_t); 5196 } 5197 5198 if (!dtrace_vcanload( 5199 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5200 mstate, vstate)) 5201 break; 5202 5203 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5204 (void *)a, &v->dtdv_type); 5205 break; 5206 } 5207 5208 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5209 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5210 tmp[CPU->cpu_id] = regs[rd]; 5211 break; 5212 5213 case DIF_OP_LDTS: { 5214 dtrace_dynvar_t *dvar; 5215 dtrace_key_t *key; 5216 5217 id = DIF_INSTR_VAR(instr); 5218 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5219 id -= DIF_VAR_OTHER_UBASE; 5220 v = &vstate->dtvs_tlocals[id]; 5221 5222 key = &tupregs[DIF_DTR_NREGS]; 5223 key[0].dttk_value = (uint64_t)id; 5224 key[0].dttk_size = 0; 5225 DTRACE_TLS_THRKEY(key[1].dttk_value); 5226 key[1].dttk_size = 0; 5227 5228 dvar = dtrace_dynvar(dstate, 2, key, 5229 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5230 mstate, vstate); 5231 5232 if (dvar == NULL) { 5233 regs[rd] = 0; 5234 break; 5235 } 5236 5237 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5238 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5239 } else { 5240 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5241 } 5242 5243 break; 5244 } 5245 5246 case DIF_OP_STTS: { 5247 dtrace_dynvar_t *dvar; 5248 dtrace_key_t *key; 5249 5250 id = DIF_INSTR_VAR(instr); 5251 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5252 id -= DIF_VAR_OTHER_UBASE; 5253 5254 key = &tupregs[DIF_DTR_NREGS]; 5255 key[0].dttk_value = (uint64_t)id; 5256 key[0].dttk_size = 0; 5257 DTRACE_TLS_THRKEY(key[1].dttk_value); 5258 key[1].dttk_size = 0; 5259 v = &vstate->dtvs_tlocals[id]; 5260 5261 dvar = dtrace_dynvar(dstate, 2, key, 5262 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5263 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5264 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5265 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5266 5267 /* 5268 * Given that we're storing to thread-local data, 5269 * we need to flush our predicate cache. 5270 */ 5271 curthread->t_predcache = NULL; 5272 5273 if (dvar == NULL) 5274 break; 5275 5276 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5277 if (!dtrace_vcanload( 5278 (void *)(uintptr_t)regs[rd], 5279 &v->dtdv_type, mstate, vstate)) 5280 break; 5281 5282 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5283 dvar->dtdv_data, &v->dtdv_type); 5284 } else { 5285 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5286 } 5287 5288 break; 5289 } 5290 5291 case DIF_OP_SRA: 5292 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5293 break; 5294 5295 case DIF_OP_CALL: 5296 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5297 regs, tupregs, ttop, mstate, state); 5298 break; 5299 5300 case DIF_OP_PUSHTR: 5301 if (ttop == DIF_DTR_NREGS) { 5302 *flags |= CPU_DTRACE_TUPOFLOW; 5303 break; 5304 } 5305 5306 if (r1 == DIF_TYPE_STRING) { 5307 /* 5308 * If this is a string type and the size is 0, 5309 * we'll use the system-wide default string 5310 * size. Note that we are _not_ looking at 5311 * the value of the DTRACEOPT_STRSIZE option; 5312 * had this been set, we would expect to have 5313 * a non-zero size value in the "pushtr". 5314 */ 5315 tupregs[ttop].dttk_size = 5316 dtrace_strlen((char *)(uintptr_t)regs[rd], 5317 regs[r2] ? regs[r2] : 5318 dtrace_strsize_default) + 1; 5319 } else { 5320 tupregs[ttop].dttk_size = regs[r2]; 5321 } 5322 5323 tupregs[ttop++].dttk_value = regs[rd]; 5324 break; 5325 5326 case DIF_OP_PUSHTV: 5327 if (ttop == DIF_DTR_NREGS) { 5328 *flags |= CPU_DTRACE_TUPOFLOW; 5329 break; 5330 } 5331 5332 tupregs[ttop].dttk_value = regs[rd]; 5333 tupregs[ttop++].dttk_size = 0; 5334 break; 5335 5336 case DIF_OP_POPTS: 5337 if (ttop != 0) 5338 ttop--; 5339 break; 5340 5341 case DIF_OP_FLUSHTS: 5342 ttop = 0; 5343 break; 5344 5345 case DIF_OP_LDGAA: 5346 case DIF_OP_LDTAA: { 5347 dtrace_dynvar_t *dvar; 5348 dtrace_key_t *key = tupregs; 5349 uint_t nkeys = ttop; 5350 5351 id = DIF_INSTR_VAR(instr); 5352 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5353 id -= DIF_VAR_OTHER_UBASE; 5354 5355 key[nkeys].dttk_value = (uint64_t)id; 5356 key[nkeys++].dttk_size = 0; 5357 5358 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5359 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5360 key[nkeys++].dttk_size = 0; 5361 v = &vstate->dtvs_tlocals[id]; 5362 } else { 5363 v = &vstate->dtvs_globals[id]->dtsv_var; 5364 } 5365 5366 dvar = dtrace_dynvar(dstate, nkeys, key, 5367 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5368 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5369 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5370 5371 if (dvar == NULL) { 5372 regs[rd] = 0; 5373 break; 5374 } 5375 5376 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5377 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5378 } else { 5379 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5380 } 5381 5382 break; 5383 } 5384 5385 case DIF_OP_STGAA: 5386 case DIF_OP_STTAA: { 5387 dtrace_dynvar_t *dvar; 5388 dtrace_key_t *key = tupregs; 5389 uint_t nkeys = ttop; 5390 5391 id = DIF_INSTR_VAR(instr); 5392 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5393 id -= DIF_VAR_OTHER_UBASE; 5394 5395 key[nkeys].dttk_value = (uint64_t)id; 5396 key[nkeys++].dttk_size = 0; 5397 5398 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5399 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5400 key[nkeys++].dttk_size = 0; 5401 v = &vstate->dtvs_tlocals[id]; 5402 } else { 5403 v = &vstate->dtvs_globals[id]->dtsv_var; 5404 } 5405 5406 dvar = dtrace_dynvar(dstate, nkeys, key, 5407 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5408 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5409 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5410 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5411 5412 if (dvar == NULL) 5413 break; 5414 5415 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5416 if (!dtrace_vcanload( 5417 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5418 mstate, vstate)) 5419 break; 5420 5421 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5422 dvar->dtdv_data, &v->dtdv_type); 5423 } else { 5424 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5425 } 5426 5427 break; 5428 } 5429 5430 case DIF_OP_ALLOCS: { 5431 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5432 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5433 5434 /* 5435 * Rounding up the user allocation size could have 5436 * overflowed large, bogus allocations (like -1ULL) to 5437 * 0. 5438 */ 5439 if (size < regs[r1] || 5440 !DTRACE_INSCRATCH(mstate, size)) { 5441 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5442 regs[rd] = NULL; 5443 break; 5444 } 5445 5446 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5447 mstate->dtms_scratch_ptr += size; 5448 regs[rd] = ptr; 5449 break; 5450 } 5451 5452 case DIF_OP_COPYS: 5453 if (!dtrace_canstore(regs[rd], regs[r2], 5454 mstate, vstate)) { 5455 *flags |= CPU_DTRACE_BADADDR; 5456 *illval = regs[rd]; 5457 break; 5458 } 5459 5460 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5461 break; 5462 5463 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5464 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5465 break; 5466 5467 case DIF_OP_STB: 5468 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5469 *flags |= CPU_DTRACE_BADADDR; 5470 *illval = regs[rd]; 5471 break; 5472 } 5473 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5474 break; 5475 5476 case DIF_OP_STH: 5477 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5478 *flags |= CPU_DTRACE_BADADDR; 5479 *illval = regs[rd]; 5480 break; 5481 } 5482 if (regs[rd] & 1) { 5483 *flags |= CPU_DTRACE_BADALIGN; 5484 *illval = regs[rd]; 5485 break; 5486 } 5487 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5488 break; 5489 5490 case DIF_OP_STW: 5491 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5492 *flags |= CPU_DTRACE_BADADDR; 5493 *illval = regs[rd]; 5494 break; 5495 } 5496 if (regs[rd] & 3) { 5497 *flags |= CPU_DTRACE_BADALIGN; 5498 *illval = regs[rd]; 5499 break; 5500 } 5501 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5502 break; 5503 5504 case DIF_OP_STX: 5505 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5506 *flags |= CPU_DTRACE_BADADDR; 5507 *illval = regs[rd]; 5508 break; 5509 } 5510 if (regs[rd] & 7) { 5511 *flags |= CPU_DTRACE_BADALIGN; 5512 *illval = regs[rd]; 5513 break; 5514 } 5515 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5516 break; 5517 } 5518 } 5519 5520 if (!(*flags & CPU_DTRACE_FAULT)) 5521 return (rval); 5522 5523 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5524 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5525 5526 return (0); 5527 } 5528 5529 static void 5530 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5531 { 5532 dtrace_probe_t *probe = ecb->dte_probe; 5533 dtrace_provider_t *prov = probe->dtpr_provider; 5534 char c[DTRACE_FULLNAMELEN + 80], *str; 5535 char *msg = "dtrace: breakpoint action at probe "; 5536 char *ecbmsg = " (ecb "; 5537 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5538 uintptr_t val = (uintptr_t)ecb; 5539 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5540 5541 if (dtrace_destructive_disallow) 5542 return; 5543 5544 /* 5545 * It's impossible to be taking action on the NULL probe. 5546 */ 5547 ASSERT(probe != NULL); 5548 5549 /* 5550 * This is a poor man's (destitute man's?) sprintf(): we want to 5551 * print the provider name, module name, function name and name of 5552 * the probe, along with the hex address of the ECB with the breakpoint 5553 * action -- all of which we must place in the character buffer by 5554 * hand. 5555 */ 5556 while (*msg != '\0') 5557 c[i++] = *msg++; 5558 5559 for (str = prov->dtpv_name; *str != '\0'; str++) 5560 c[i++] = *str; 5561 c[i++] = ':'; 5562 5563 for (str = probe->dtpr_mod; *str != '\0'; str++) 5564 c[i++] = *str; 5565 c[i++] = ':'; 5566 5567 for (str = probe->dtpr_func; *str != '\0'; str++) 5568 c[i++] = *str; 5569 c[i++] = ':'; 5570 5571 for (str = probe->dtpr_name; *str != '\0'; str++) 5572 c[i++] = *str; 5573 5574 while (*ecbmsg != '\0') 5575 c[i++] = *ecbmsg++; 5576 5577 while (shift >= 0) { 5578 mask = (uintptr_t)0xf << shift; 5579 5580 if (val >= ((uintptr_t)1 << shift)) 5581 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5582 shift -= 4; 5583 } 5584 5585 c[i++] = ')'; 5586 c[i] = '\0'; 5587 5588 debug_enter(c); 5589 } 5590 5591 static void 5592 dtrace_action_panic(dtrace_ecb_t *ecb) 5593 { 5594 dtrace_probe_t *probe = ecb->dte_probe; 5595 5596 /* 5597 * It's impossible to be taking action on the NULL probe. 5598 */ 5599 ASSERT(probe != NULL); 5600 5601 if (dtrace_destructive_disallow) 5602 return; 5603 5604 if (dtrace_panicked != NULL) 5605 return; 5606 5607 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5608 return; 5609 5610 /* 5611 * We won the right to panic. (We want to be sure that only one 5612 * thread calls panic() from dtrace_probe(), and that panic() is 5613 * called exactly once.) 5614 */ 5615 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5616 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5617 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5618 } 5619 5620 static void 5621 dtrace_action_raise(uint64_t sig) 5622 { 5623 if (dtrace_destructive_disallow) 5624 return; 5625 5626 if (sig >= NSIG) { 5627 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5628 return; 5629 } 5630 5631 /* 5632 * raise() has a queue depth of 1 -- we ignore all subsequent 5633 * invocations of the raise() action. 5634 */ 5635 if (curthread->t_dtrace_sig == 0) 5636 curthread->t_dtrace_sig = (uint8_t)sig; 5637 5638 curthread->t_sig_check = 1; 5639 aston(curthread); 5640 } 5641 5642 static void 5643 dtrace_action_stop(void) 5644 { 5645 if (dtrace_destructive_disallow) 5646 return; 5647 5648 if (!curthread->t_dtrace_stop) { 5649 curthread->t_dtrace_stop = 1; 5650 curthread->t_sig_check = 1; 5651 aston(curthread); 5652 } 5653 } 5654 5655 static void 5656 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5657 { 5658 hrtime_t now; 5659 volatile uint16_t *flags; 5660 cpu_t *cpu = CPU; 5661 5662 if (dtrace_destructive_disallow) 5663 return; 5664 5665 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5666 5667 now = dtrace_gethrtime(); 5668 5669 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5670 /* 5671 * We need to advance the mark to the current time. 5672 */ 5673 cpu->cpu_dtrace_chillmark = now; 5674 cpu->cpu_dtrace_chilled = 0; 5675 } 5676 5677 /* 5678 * Now check to see if the requested chill time would take us over 5679 * the maximum amount of time allowed in the chill interval. (Or 5680 * worse, if the calculation itself induces overflow.) 5681 */ 5682 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5683 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5684 *flags |= CPU_DTRACE_ILLOP; 5685 return; 5686 } 5687 5688 while (dtrace_gethrtime() - now < val) 5689 continue; 5690 5691 /* 5692 * Normally, we assure that the value of the variable "timestamp" does 5693 * not change within an ECB. The presence of chill() represents an 5694 * exception to this rule, however. 5695 */ 5696 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5697 cpu->cpu_dtrace_chilled += val; 5698 } 5699 5700 static void 5701 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5702 uint64_t *buf, uint64_t arg) 5703 { 5704 int nframes = DTRACE_USTACK_NFRAMES(arg); 5705 int strsize = DTRACE_USTACK_STRSIZE(arg); 5706 uint64_t *pcs = &buf[1], *fps; 5707 char *str = (char *)&pcs[nframes]; 5708 int size, offs = 0, i, j; 5709 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5710 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5711 char *sym; 5712 5713 /* 5714 * Should be taking a faster path if string space has not been 5715 * allocated. 5716 */ 5717 ASSERT(strsize != 0); 5718 5719 /* 5720 * We will first allocate some temporary space for the frame pointers. 5721 */ 5722 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5723 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5724 (nframes * sizeof (uint64_t)); 5725 5726 if (!DTRACE_INSCRATCH(mstate, size)) { 5727 /* 5728 * Not enough room for our frame pointers -- need to indicate 5729 * that we ran out of scratch space. 5730 */ 5731 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5732 return; 5733 } 5734 5735 mstate->dtms_scratch_ptr += size; 5736 saved = mstate->dtms_scratch_ptr; 5737 5738 /* 5739 * Now get a stack with both program counters and frame pointers. 5740 */ 5741 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5742 dtrace_getufpstack(buf, fps, nframes + 1); 5743 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5744 5745 /* 5746 * If that faulted, we're cooked. 5747 */ 5748 if (*flags & CPU_DTRACE_FAULT) 5749 goto out; 5750 5751 /* 5752 * Now we want to walk up the stack, calling the USTACK helper. For 5753 * each iteration, we restore the scratch pointer. 5754 */ 5755 for (i = 0; i < nframes; i++) { 5756 mstate->dtms_scratch_ptr = saved; 5757 5758 if (offs >= strsize) 5759 break; 5760 5761 sym = (char *)(uintptr_t)dtrace_helper( 5762 DTRACE_HELPER_ACTION_USTACK, 5763 mstate, state, pcs[i], fps[i]); 5764 5765 /* 5766 * If we faulted while running the helper, we're going to 5767 * clear the fault and null out the corresponding string. 5768 */ 5769 if (*flags & CPU_DTRACE_FAULT) { 5770 *flags &= ~CPU_DTRACE_FAULT; 5771 str[offs++] = '\0'; 5772 continue; 5773 } 5774 5775 if (sym == NULL) { 5776 str[offs++] = '\0'; 5777 continue; 5778 } 5779 5780 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5781 5782 /* 5783 * Now copy in the string that the helper returned to us. 5784 */ 5785 for (j = 0; offs + j < strsize; j++) { 5786 if ((str[offs + j] = sym[j]) == '\0') 5787 break; 5788 } 5789 5790 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5791 5792 offs += j + 1; 5793 } 5794 5795 if (offs >= strsize) { 5796 /* 5797 * If we didn't have room for all of the strings, we don't 5798 * abort processing -- this needn't be a fatal error -- but we 5799 * still want to increment a counter (dts_stkstroverflows) to 5800 * allow this condition to be warned about. (If this is from 5801 * a jstack() action, it is easily tuned via jstackstrsize.) 5802 */ 5803 dtrace_error(&state->dts_stkstroverflows); 5804 } 5805 5806 while (offs < strsize) 5807 str[offs++] = '\0'; 5808 5809 out: 5810 mstate->dtms_scratch_ptr = old; 5811 } 5812 5813 /* 5814 * If you're looking for the epicenter of DTrace, you just found it. This 5815 * is the function called by the provider to fire a probe -- from which all 5816 * subsequent probe-context DTrace activity emanates. 5817 */ 5818 void 5819 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5820 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5821 { 5822 processorid_t cpuid; 5823 dtrace_icookie_t cookie; 5824 dtrace_probe_t *probe; 5825 dtrace_mstate_t mstate; 5826 dtrace_ecb_t *ecb; 5827 dtrace_action_t *act; 5828 intptr_t offs; 5829 size_t size; 5830 int vtime, onintr; 5831 volatile uint16_t *flags; 5832 hrtime_t now; 5833 5834 /* 5835 * Kick out immediately if this CPU is still being born (in which case 5836 * curthread will be set to -1) or the current thread can't allow 5837 * probes in its current context. 5838 */ 5839 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5840 return; 5841 5842 cookie = dtrace_interrupt_disable(); 5843 probe = dtrace_probes[id - 1]; 5844 cpuid = CPU->cpu_id; 5845 onintr = CPU_ON_INTR(CPU); 5846 5847 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5848 probe->dtpr_predcache == curthread->t_predcache) { 5849 /* 5850 * We have hit in the predicate cache; we know that 5851 * this predicate would evaluate to be false. 5852 */ 5853 dtrace_interrupt_enable(cookie); 5854 return; 5855 } 5856 5857 if (panic_quiesce) { 5858 /* 5859 * We don't trace anything if we're panicking. 5860 */ 5861 dtrace_interrupt_enable(cookie); 5862 return; 5863 } 5864 5865 now = dtrace_gethrtime(); 5866 vtime = dtrace_vtime_references != 0; 5867 5868 if (vtime && curthread->t_dtrace_start) 5869 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5870 5871 mstate.dtms_difo = NULL; 5872 mstate.dtms_probe = probe; 5873 mstate.dtms_strtok = NULL; 5874 mstate.dtms_arg[0] = arg0; 5875 mstate.dtms_arg[1] = arg1; 5876 mstate.dtms_arg[2] = arg2; 5877 mstate.dtms_arg[3] = arg3; 5878 mstate.dtms_arg[4] = arg4; 5879 5880 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5881 5882 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5883 dtrace_predicate_t *pred = ecb->dte_predicate; 5884 dtrace_state_t *state = ecb->dte_state; 5885 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5886 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5887 dtrace_vstate_t *vstate = &state->dts_vstate; 5888 dtrace_provider_t *prov = probe->dtpr_provider; 5889 uint64_t tracememsize = 0; 5890 int committed = 0; 5891 caddr_t tomax; 5892 5893 /* 5894 * A little subtlety with the following (seemingly innocuous) 5895 * declaration of the automatic 'val': by looking at the 5896 * code, you might think that it could be declared in the 5897 * action processing loop, below. (That is, it's only used in 5898 * the action processing loop.) However, it must be declared 5899 * out of that scope because in the case of DIF expression 5900 * arguments to aggregating actions, one iteration of the 5901 * action loop will use the last iteration's value. 5902 */ 5903 #ifdef lint 5904 uint64_t val = 0; 5905 #else 5906 uint64_t val; 5907 #endif 5908 5909 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5910 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 5911 *flags &= ~CPU_DTRACE_ERROR; 5912 5913 if (prov == dtrace_provider) { 5914 /* 5915 * If dtrace itself is the provider of this probe, 5916 * we're only going to continue processing the ECB if 5917 * arg0 (the dtrace_state_t) is equal to the ECB's 5918 * creating state. (This prevents disjoint consumers 5919 * from seeing one another's metaprobes.) 5920 */ 5921 if (arg0 != (uint64_t)(uintptr_t)state) 5922 continue; 5923 } 5924 5925 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5926 /* 5927 * We're not currently active. If our provider isn't 5928 * the dtrace pseudo provider, we're not interested. 5929 */ 5930 if (prov != dtrace_provider) 5931 continue; 5932 5933 /* 5934 * Now we must further check if we are in the BEGIN 5935 * probe. If we are, we will only continue processing 5936 * if we're still in WARMUP -- if one BEGIN enabling 5937 * has invoked the exit() action, we don't want to 5938 * evaluate subsequent BEGIN enablings. 5939 */ 5940 if (probe->dtpr_id == dtrace_probeid_begin && 5941 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5942 ASSERT(state->dts_activity == 5943 DTRACE_ACTIVITY_DRAINING); 5944 continue; 5945 } 5946 } 5947 5948 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 5949 continue; 5950 5951 if (now - state->dts_alive > dtrace_deadman_timeout) { 5952 /* 5953 * We seem to be dead. Unless we (a) have kernel 5954 * destructive permissions (b) have expicitly enabled 5955 * destructive actions and (c) destructive actions have 5956 * not been disabled, we're going to transition into 5957 * the KILLED state, from which no further processing 5958 * on this state will be performed. 5959 */ 5960 if (!dtrace_priv_kernel_destructive(state) || 5961 !state->dts_cred.dcr_destructive || 5962 dtrace_destructive_disallow) { 5963 void *activity = &state->dts_activity; 5964 dtrace_activity_t current; 5965 5966 do { 5967 current = state->dts_activity; 5968 } while (dtrace_cas32(activity, current, 5969 DTRACE_ACTIVITY_KILLED) != current); 5970 5971 continue; 5972 } 5973 } 5974 5975 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5976 ecb->dte_alignment, state, &mstate)) < 0) 5977 continue; 5978 5979 tomax = buf->dtb_tomax; 5980 ASSERT(tomax != NULL); 5981 5982 if (ecb->dte_size != 0) 5983 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5984 5985 mstate.dtms_epid = ecb->dte_epid; 5986 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5987 5988 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5989 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 5990 5991 if (pred != NULL) { 5992 dtrace_difo_t *dp = pred->dtp_difo; 5993 int rval; 5994 5995 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5996 5997 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5998 dtrace_cacheid_t cid = probe->dtpr_predcache; 5999 6000 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6001 /* 6002 * Update the predicate cache... 6003 */ 6004 ASSERT(cid == pred->dtp_cacheid); 6005 curthread->t_predcache = cid; 6006 } 6007 6008 continue; 6009 } 6010 } 6011 6012 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6013 act != NULL; act = act->dta_next) { 6014 size_t valoffs; 6015 dtrace_difo_t *dp; 6016 dtrace_recdesc_t *rec = &act->dta_rec; 6017 6018 size = rec->dtrd_size; 6019 valoffs = offs + rec->dtrd_offset; 6020 6021 if (DTRACEACT_ISAGG(act->dta_kind)) { 6022 uint64_t v = 0xbad; 6023 dtrace_aggregation_t *agg; 6024 6025 agg = (dtrace_aggregation_t *)act; 6026 6027 if ((dp = act->dta_difo) != NULL) 6028 v = dtrace_dif_emulate(dp, 6029 &mstate, vstate, state); 6030 6031 if (*flags & CPU_DTRACE_ERROR) 6032 continue; 6033 6034 /* 6035 * Note that we always pass the expression 6036 * value from the previous iteration of the 6037 * action loop. This value will only be used 6038 * if there is an expression argument to the 6039 * aggregating action, denoted by the 6040 * dtag_hasarg field. 6041 */ 6042 dtrace_aggregate(agg, buf, 6043 offs, aggbuf, v, val); 6044 continue; 6045 } 6046 6047 switch (act->dta_kind) { 6048 case DTRACEACT_STOP: 6049 if (dtrace_priv_proc_destructive(state, 6050 &mstate)) 6051 dtrace_action_stop(); 6052 continue; 6053 6054 case DTRACEACT_BREAKPOINT: 6055 if (dtrace_priv_kernel_destructive(state)) 6056 dtrace_action_breakpoint(ecb); 6057 continue; 6058 6059 case DTRACEACT_PANIC: 6060 if (dtrace_priv_kernel_destructive(state)) 6061 dtrace_action_panic(ecb); 6062 continue; 6063 6064 case DTRACEACT_STACK: 6065 if (!dtrace_priv_kernel(state)) 6066 continue; 6067 6068 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6069 size / sizeof (pc_t), probe->dtpr_aframes, 6070 DTRACE_ANCHORED(probe) ? NULL : 6071 (uint32_t *)arg0); 6072 6073 continue; 6074 6075 case DTRACEACT_JSTACK: 6076 case DTRACEACT_USTACK: 6077 if (!dtrace_priv_proc(state, &mstate)) 6078 continue; 6079 6080 /* 6081 * See comment in DIF_VAR_PID. 6082 */ 6083 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6084 CPU_ON_INTR(CPU)) { 6085 int depth = DTRACE_USTACK_NFRAMES( 6086 rec->dtrd_arg) + 1; 6087 6088 dtrace_bzero((void *)(tomax + valoffs), 6089 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6090 + depth * sizeof (uint64_t)); 6091 6092 continue; 6093 } 6094 6095 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6096 curproc->p_dtrace_helpers != NULL) { 6097 /* 6098 * This is the slow path -- we have 6099 * allocated string space, and we're 6100 * getting the stack of a process that 6101 * has helpers. Call into a separate 6102 * routine to perform this processing. 6103 */ 6104 dtrace_action_ustack(&mstate, state, 6105 (uint64_t *)(tomax + valoffs), 6106 rec->dtrd_arg); 6107 continue; 6108 } 6109 6110 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6111 dtrace_getupcstack((uint64_t *) 6112 (tomax + valoffs), 6113 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6114 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6115 continue; 6116 6117 default: 6118 break; 6119 } 6120 6121 dp = act->dta_difo; 6122 ASSERT(dp != NULL); 6123 6124 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6125 6126 if (*flags & CPU_DTRACE_ERROR) 6127 continue; 6128 6129 switch (act->dta_kind) { 6130 case DTRACEACT_SPECULATE: 6131 ASSERT(buf == &state->dts_buffer[cpuid]); 6132 buf = dtrace_speculation_buffer(state, 6133 cpuid, val); 6134 6135 if (buf == NULL) { 6136 *flags |= CPU_DTRACE_DROP; 6137 continue; 6138 } 6139 6140 offs = dtrace_buffer_reserve(buf, 6141 ecb->dte_needed, ecb->dte_alignment, 6142 state, NULL); 6143 6144 if (offs < 0) { 6145 *flags |= CPU_DTRACE_DROP; 6146 continue; 6147 } 6148 6149 tomax = buf->dtb_tomax; 6150 ASSERT(tomax != NULL); 6151 6152 if (ecb->dte_size != 0) 6153 DTRACE_STORE(uint32_t, tomax, offs, 6154 ecb->dte_epid); 6155 continue; 6156 6157 case DTRACEACT_CHILL: 6158 if (dtrace_priv_kernel_destructive(state)) 6159 dtrace_action_chill(&mstate, val); 6160 continue; 6161 6162 case DTRACEACT_RAISE: 6163 if (dtrace_priv_proc_destructive(state, 6164 &mstate)) 6165 dtrace_action_raise(val); 6166 continue; 6167 6168 case DTRACEACT_COMMIT: 6169 ASSERT(!committed); 6170 6171 /* 6172 * We need to commit our buffer state. 6173 */ 6174 if (ecb->dte_size) 6175 buf->dtb_offset = offs + ecb->dte_size; 6176 buf = &state->dts_buffer[cpuid]; 6177 dtrace_speculation_commit(state, cpuid, val); 6178 committed = 1; 6179 continue; 6180 6181 case DTRACEACT_DISCARD: 6182 dtrace_speculation_discard(state, cpuid, val); 6183 continue; 6184 6185 case DTRACEACT_DIFEXPR: 6186 case DTRACEACT_LIBACT: 6187 case DTRACEACT_PRINTF: 6188 case DTRACEACT_PRINTA: 6189 case DTRACEACT_SYSTEM: 6190 case DTRACEACT_FREOPEN: 6191 case DTRACEACT_TRACEMEM: 6192 break; 6193 6194 case DTRACEACT_TRACEMEM_DYNSIZE: 6195 tracememsize = val; 6196 break; 6197 6198 case DTRACEACT_SYM: 6199 case DTRACEACT_MOD: 6200 if (!dtrace_priv_kernel(state)) 6201 continue; 6202 break; 6203 6204 case DTRACEACT_USYM: 6205 case DTRACEACT_UMOD: 6206 case DTRACEACT_UADDR: { 6207 struct pid *pid = curthread->t_procp->p_pidp; 6208 6209 if (!dtrace_priv_proc(state, &mstate)) 6210 continue; 6211 6212 DTRACE_STORE(uint64_t, tomax, 6213 valoffs, (uint64_t)pid->pid_id); 6214 DTRACE_STORE(uint64_t, tomax, 6215 valoffs + sizeof (uint64_t), val); 6216 6217 continue; 6218 } 6219 6220 case DTRACEACT_EXIT: { 6221 /* 6222 * For the exit action, we are going to attempt 6223 * to atomically set our activity to be 6224 * draining. If this fails (either because 6225 * another CPU has beat us to the exit action, 6226 * or because our current activity is something 6227 * other than ACTIVE or WARMUP), we will 6228 * continue. This assures that the exit action 6229 * can be successfully recorded at most once 6230 * when we're in the ACTIVE state. If we're 6231 * encountering the exit() action while in 6232 * COOLDOWN, however, we want to honor the new 6233 * status code. (We know that we're the only 6234 * thread in COOLDOWN, so there is no race.) 6235 */ 6236 void *activity = &state->dts_activity; 6237 dtrace_activity_t current = state->dts_activity; 6238 6239 if (current == DTRACE_ACTIVITY_COOLDOWN) 6240 break; 6241 6242 if (current != DTRACE_ACTIVITY_WARMUP) 6243 current = DTRACE_ACTIVITY_ACTIVE; 6244 6245 if (dtrace_cas32(activity, current, 6246 DTRACE_ACTIVITY_DRAINING) != current) { 6247 *flags |= CPU_DTRACE_DROP; 6248 continue; 6249 } 6250 6251 break; 6252 } 6253 6254 default: 6255 ASSERT(0); 6256 } 6257 6258 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6259 uintptr_t end = valoffs + size; 6260 6261 if (tracememsize != 0 && 6262 valoffs + tracememsize < end) { 6263 end = valoffs + tracememsize; 6264 tracememsize = 0; 6265 } 6266 6267 if (!dtrace_vcanload((void *)(uintptr_t)val, 6268 &dp->dtdo_rtype, &mstate, vstate)) 6269 continue; 6270 6271 /* 6272 * If this is a string, we're going to only 6273 * load until we find the zero byte -- after 6274 * which we'll store zero bytes. 6275 */ 6276 if (dp->dtdo_rtype.dtdt_kind == 6277 DIF_TYPE_STRING) { 6278 char c = '\0' + 1; 6279 int intuple = act->dta_intuple; 6280 size_t s; 6281 6282 for (s = 0; s < size; s++) { 6283 if (c != '\0') 6284 c = dtrace_load8(val++); 6285 6286 DTRACE_STORE(uint8_t, tomax, 6287 valoffs++, c); 6288 6289 if (c == '\0' && intuple) 6290 break; 6291 } 6292 6293 continue; 6294 } 6295 6296 while (valoffs < end) { 6297 DTRACE_STORE(uint8_t, tomax, valoffs++, 6298 dtrace_load8(val++)); 6299 } 6300 6301 continue; 6302 } 6303 6304 switch (size) { 6305 case 0: 6306 break; 6307 6308 case sizeof (uint8_t): 6309 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6310 break; 6311 case sizeof (uint16_t): 6312 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6313 break; 6314 case sizeof (uint32_t): 6315 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6316 break; 6317 case sizeof (uint64_t): 6318 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6319 break; 6320 default: 6321 /* 6322 * Any other size should have been returned by 6323 * reference, not by value. 6324 */ 6325 ASSERT(0); 6326 break; 6327 } 6328 } 6329 6330 if (*flags & CPU_DTRACE_DROP) 6331 continue; 6332 6333 if (*flags & CPU_DTRACE_FAULT) { 6334 int ndx; 6335 dtrace_action_t *err; 6336 6337 buf->dtb_errors++; 6338 6339 if (probe->dtpr_id == dtrace_probeid_error) { 6340 /* 6341 * There's nothing we can do -- we had an 6342 * error on the error probe. We bump an 6343 * error counter to at least indicate that 6344 * this condition happened. 6345 */ 6346 dtrace_error(&state->dts_dblerrors); 6347 continue; 6348 } 6349 6350 if (vtime) { 6351 /* 6352 * Before recursing on dtrace_probe(), we 6353 * need to explicitly clear out our start 6354 * time to prevent it from being accumulated 6355 * into t_dtrace_vtime. 6356 */ 6357 curthread->t_dtrace_start = 0; 6358 } 6359 6360 /* 6361 * Iterate over the actions to figure out which action 6362 * we were processing when we experienced the error. 6363 * Note that act points _past_ the faulting action; if 6364 * act is ecb->dte_action, the fault was in the 6365 * predicate, if it's ecb->dte_action->dta_next it's 6366 * in action #1, and so on. 6367 */ 6368 for (err = ecb->dte_action, ndx = 0; 6369 err != act; err = err->dta_next, ndx++) 6370 continue; 6371 6372 dtrace_probe_error(state, ecb->dte_epid, ndx, 6373 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6374 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6375 cpu_core[cpuid].cpuc_dtrace_illval); 6376 6377 continue; 6378 } 6379 6380 if (!committed) 6381 buf->dtb_offset = offs + ecb->dte_size; 6382 } 6383 6384 if (vtime) 6385 curthread->t_dtrace_start = dtrace_gethrtime(); 6386 6387 dtrace_interrupt_enable(cookie); 6388 } 6389 6390 /* 6391 * DTrace Probe Hashing Functions 6392 * 6393 * The functions in this section (and indeed, the functions in remaining 6394 * sections) are not _called_ from probe context. (Any exceptions to this are 6395 * marked with a "Note:".) Rather, they are called from elsewhere in the 6396 * DTrace framework to look-up probes in, add probes to and remove probes from 6397 * the DTrace probe hashes. (Each probe is hashed by each element of the 6398 * probe tuple -- allowing for fast lookups, regardless of what was 6399 * specified.) 6400 */ 6401 static uint_t 6402 dtrace_hash_str(char *p) 6403 { 6404 unsigned int g; 6405 uint_t hval = 0; 6406 6407 while (*p) { 6408 hval = (hval << 4) + *p++; 6409 if ((g = (hval & 0xf0000000)) != 0) 6410 hval ^= g >> 24; 6411 hval &= ~g; 6412 } 6413 return (hval); 6414 } 6415 6416 static dtrace_hash_t * 6417 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6418 { 6419 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6420 6421 hash->dth_stroffs = stroffs; 6422 hash->dth_nextoffs = nextoffs; 6423 hash->dth_prevoffs = prevoffs; 6424 6425 hash->dth_size = 1; 6426 hash->dth_mask = hash->dth_size - 1; 6427 6428 hash->dth_tab = kmem_zalloc(hash->dth_size * 6429 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6430 6431 return (hash); 6432 } 6433 6434 static void 6435 dtrace_hash_destroy(dtrace_hash_t *hash) 6436 { 6437 #ifdef DEBUG 6438 int i; 6439 6440 for (i = 0; i < hash->dth_size; i++) 6441 ASSERT(hash->dth_tab[i] == NULL); 6442 #endif 6443 6444 kmem_free(hash->dth_tab, 6445 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6446 kmem_free(hash, sizeof (dtrace_hash_t)); 6447 } 6448 6449 static void 6450 dtrace_hash_resize(dtrace_hash_t *hash) 6451 { 6452 int size = hash->dth_size, i, ndx; 6453 int new_size = hash->dth_size << 1; 6454 int new_mask = new_size - 1; 6455 dtrace_hashbucket_t **new_tab, *bucket, *next; 6456 6457 ASSERT((new_size & new_mask) == 0); 6458 6459 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6460 6461 for (i = 0; i < size; i++) { 6462 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6463 dtrace_probe_t *probe = bucket->dthb_chain; 6464 6465 ASSERT(probe != NULL); 6466 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6467 6468 next = bucket->dthb_next; 6469 bucket->dthb_next = new_tab[ndx]; 6470 new_tab[ndx] = bucket; 6471 } 6472 } 6473 6474 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6475 hash->dth_tab = new_tab; 6476 hash->dth_size = new_size; 6477 hash->dth_mask = new_mask; 6478 } 6479 6480 static void 6481 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6482 { 6483 int hashval = DTRACE_HASHSTR(hash, new); 6484 int ndx = hashval & hash->dth_mask; 6485 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6486 dtrace_probe_t **nextp, **prevp; 6487 6488 for (; bucket != NULL; bucket = bucket->dthb_next) { 6489 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6490 goto add; 6491 } 6492 6493 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6494 dtrace_hash_resize(hash); 6495 dtrace_hash_add(hash, new); 6496 return; 6497 } 6498 6499 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6500 bucket->dthb_next = hash->dth_tab[ndx]; 6501 hash->dth_tab[ndx] = bucket; 6502 hash->dth_nbuckets++; 6503 6504 add: 6505 nextp = DTRACE_HASHNEXT(hash, new); 6506 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6507 *nextp = bucket->dthb_chain; 6508 6509 if (bucket->dthb_chain != NULL) { 6510 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6511 ASSERT(*prevp == NULL); 6512 *prevp = new; 6513 } 6514 6515 bucket->dthb_chain = new; 6516 bucket->dthb_len++; 6517 } 6518 6519 static dtrace_probe_t * 6520 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6521 { 6522 int hashval = DTRACE_HASHSTR(hash, template); 6523 int ndx = hashval & hash->dth_mask; 6524 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6525 6526 for (; bucket != NULL; bucket = bucket->dthb_next) { 6527 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6528 return (bucket->dthb_chain); 6529 } 6530 6531 return (NULL); 6532 } 6533 6534 static int 6535 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6536 { 6537 int hashval = DTRACE_HASHSTR(hash, template); 6538 int ndx = hashval & hash->dth_mask; 6539 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6540 6541 for (; bucket != NULL; bucket = bucket->dthb_next) { 6542 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6543 return (bucket->dthb_len); 6544 } 6545 6546 return (NULL); 6547 } 6548 6549 static void 6550 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6551 { 6552 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6553 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6554 6555 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6556 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6557 6558 /* 6559 * Find the bucket that we're removing this probe from. 6560 */ 6561 for (; bucket != NULL; bucket = bucket->dthb_next) { 6562 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6563 break; 6564 } 6565 6566 ASSERT(bucket != NULL); 6567 6568 if (*prevp == NULL) { 6569 if (*nextp == NULL) { 6570 /* 6571 * The removed probe was the only probe on this 6572 * bucket; we need to remove the bucket. 6573 */ 6574 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6575 6576 ASSERT(bucket->dthb_chain == probe); 6577 ASSERT(b != NULL); 6578 6579 if (b == bucket) { 6580 hash->dth_tab[ndx] = bucket->dthb_next; 6581 } else { 6582 while (b->dthb_next != bucket) 6583 b = b->dthb_next; 6584 b->dthb_next = bucket->dthb_next; 6585 } 6586 6587 ASSERT(hash->dth_nbuckets > 0); 6588 hash->dth_nbuckets--; 6589 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6590 return; 6591 } 6592 6593 bucket->dthb_chain = *nextp; 6594 } else { 6595 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6596 } 6597 6598 if (*nextp != NULL) 6599 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6600 } 6601 6602 /* 6603 * DTrace Utility Functions 6604 * 6605 * These are random utility functions that are _not_ called from probe context. 6606 */ 6607 static int 6608 dtrace_badattr(const dtrace_attribute_t *a) 6609 { 6610 return (a->dtat_name > DTRACE_STABILITY_MAX || 6611 a->dtat_data > DTRACE_STABILITY_MAX || 6612 a->dtat_class > DTRACE_CLASS_MAX); 6613 } 6614 6615 /* 6616 * Return a duplicate copy of a string. If the specified string is NULL, 6617 * this function returns a zero-length string. 6618 */ 6619 static char * 6620 dtrace_strdup(const char *str) 6621 { 6622 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6623 6624 if (str != NULL) 6625 (void) strcpy(new, str); 6626 6627 return (new); 6628 } 6629 6630 #define DTRACE_ISALPHA(c) \ 6631 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6632 6633 static int 6634 dtrace_badname(const char *s) 6635 { 6636 char c; 6637 6638 if (s == NULL || (c = *s++) == '\0') 6639 return (0); 6640 6641 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6642 return (1); 6643 6644 while ((c = *s++) != '\0') { 6645 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6646 c != '-' && c != '_' && c != '.' && c != '`') 6647 return (1); 6648 } 6649 6650 return (0); 6651 } 6652 6653 static void 6654 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6655 { 6656 uint32_t priv; 6657 6658 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6659 /* 6660 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6661 */ 6662 priv = DTRACE_PRIV_ALL; 6663 } else { 6664 *uidp = crgetuid(cr); 6665 *zoneidp = crgetzoneid(cr); 6666 6667 priv = 0; 6668 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6669 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6670 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6671 priv |= DTRACE_PRIV_USER; 6672 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6673 priv |= DTRACE_PRIV_PROC; 6674 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6675 priv |= DTRACE_PRIV_OWNER; 6676 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6677 priv |= DTRACE_PRIV_ZONEOWNER; 6678 } 6679 6680 *privp = priv; 6681 } 6682 6683 #ifdef DTRACE_ERRDEBUG 6684 static void 6685 dtrace_errdebug(const char *str) 6686 { 6687 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6688 int occupied = 0; 6689 6690 mutex_enter(&dtrace_errlock); 6691 dtrace_errlast = str; 6692 dtrace_errthread = curthread; 6693 6694 while (occupied++ < DTRACE_ERRHASHSZ) { 6695 if (dtrace_errhash[hval].dter_msg == str) { 6696 dtrace_errhash[hval].dter_count++; 6697 goto out; 6698 } 6699 6700 if (dtrace_errhash[hval].dter_msg != NULL) { 6701 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6702 continue; 6703 } 6704 6705 dtrace_errhash[hval].dter_msg = str; 6706 dtrace_errhash[hval].dter_count = 1; 6707 goto out; 6708 } 6709 6710 panic("dtrace: undersized error hash"); 6711 out: 6712 mutex_exit(&dtrace_errlock); 6713 } 6714 #endif 6715 6716 /* 6717 * DTrace Matching Functions 6718 * 6719 * These functions are used to match groups of probes, given some elements of 6720 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6721 */ 6722 static int 6723 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6724 zoneid_t zoneid) 6725 { 6726 if (priv != DTRACE_PRIV_ALL) { 6727 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6728 uint32_t match = priv & ppriv; 6729 6730 /* 6731 * No PRIV_DTRACE_* privileges... 6732 */ 6733 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6734 DTRACE_PRIV_KERNEL)) == 0) 6735 return (0); 6736 6737 /* 6738 * No matching bits, but there were bits to match... 6739 */ 6740 if (match == 0 && ppriv != 0) 6741 return (0); 6742 6743 /* 6744 * Need to have permissions to the process, but don't... 6745 */ 6746 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6747 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6748 return (0); 6749 } 6750 6751 /* 6752 * Need to be in the same zone unless we possess the 6753 * privilege to examine all zones. 6754 */ 6755 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6756 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6757 return (0); 6758 } 6759 } 6760 6761 return (1); 6762 } 6763 6764 /* 6765 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6766 * consists of input pattern strings and an ops-vector to evaluate them. 6767 * This function returns >0 for match, 0 for no match, and <0 for error. 6768 */ 6769 static int 6770 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6771 uint32_t priv, uid_t uid, zoneid_t zoneid) 6772 { 6773 dtrace_provider_t *pvp = prp->dtpr_provider; 6774 int rv; 6775 6776 if (pvp->dtpv_defunct) 6777 return (0); 6778 6779 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6780 return (rv); 6781 6782 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6783 return (rv); 6784 6785 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6786 return (rv); 6787 6788 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6789 return (rv); 6790 6791 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6792 return (0); 6793 6794 return (rv); 6795 } 6796 6797 /* 6798 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6799 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6800 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6801 * In addition, all of the recursion cases except for '*' matching have been 6802 * unwound. For '*', we still implement recursive evaluation, but a depth 6803 * counter is maintained and matching is aborted if we recurse too deep. 6804 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6805 */ 6806 static int 6807 dtrace_match_glob(const char *s, const char *p, int depth) 6808 { 6809 const char *olds; 6810 char s1, c; 6811 int gs; 6812 6813 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6814 return (-1); 6815 6816 if (s == NULL) 6817 s = ""; /* treat NULL as empty string */ 6818 6819 top: 6820 olds = s; 6821 s1 = *s++; 6822 6823 if (p == NULL) 6824 return (0); 6825 6826 if ((c = *p++) == '\0') 6827 return (s1 == '\0'); 6828 6829 switch (c) { 6830 case '[': { 6831 int ok = 0, notflag = 0; 6832 char lc = '\0'; 6833 6834 if (s1 == '\0') 6835 return (0); 6836 6837 if (*p == '!') { 6838 notflag = 1; 6839 p++; 6840 } 6841 6842 if ((c = *p++) == '\0') 6843 return (0); 6844 6845 do { 6846 if (c == '-' && lc != '\0' && *p != ']') { 6847 if ((c = *p++) == '\0') 6848 return (0); 6849 if (c == '\\' && (c = *p++) == '\0') 6850 return (0); 6851 6852 if (notflag) { 6853 if (s1 < lc || s1 > c) 6854 ok++; 6855 else 6856 return (0); 6857 } else if (lc <= s1 && s1 <= c) 6858 ok++; 6859 6860 } else if (c == '\\' && (c = *p++) == '\0') 6861 return (0); 6862 6863 lc = c; /* save left-hand 'c' for next iteration */ 6864 6865 if (notflag) { 6866 if (s1 != c) 6867 ok++; 6868 else 6869 return (0); 6870 } else if (s1 == c) 6871 ok++; 6872 6873 if ((c = *p++) == '\0') 6874 return (0); 6875 6876 } while (c != ']'); 6877 6878 if (ok) 6879 goto top; 6880 6881 return (0); 6882 } 6883 6884 case '\\': 6885 if ((c = *p++) == '\0') 6886 return (0); 6887 /*FALLTHRU*/ 6888 6889 default: 6890 if (c != s1) 6891 return (0); 6892 /*FALLTHRU*/ 6893 6894 case '?': 6895 if (s1 != '\0') 6896 goto top; 6897 return (0); 6898 6899 case '*': 6900 while (*p == '*') 6901 p++; /* consecutive *'s are identical to a single one */ 6902 6903 if (*p == '\0') 6904 return (1); 6905 6906 for (s = olds; *s != '\0'; s++) { 6907 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6908 return (gs); 6909 } 6910 6911 return (0); 6912 } 6913 } 6914 6915 /*ARGSUSED*/ 6916 static int 6917 dtrace_match_string(const char *s, const char *p, int depth) 6918 { 6919 return (s != NULL && strcmp(s, p) == 0); 6920 } 6921 6922 /*ARGSUSED*/ 6923 static int 6924 dtrace_match_nul(const char *s, const char *p, int depth) 6925 { 6926 return (1); /* always match the empty pattern */ 6927 } 6928 6929 /*ARGSUSED*/ 6930 static int 6931 dtrace_match_nonzero(const char *s, const char *p, int depth) 6932 { 6933 return (s != NULL && s[0] != '\0'); 6934 } 6935 6936 static int 6937 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6938 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6939 { 6940 dtrace_probe_t template, *probe; 6941 dtrace_hash_t *hash = NULL; 6942 int len, rc, best = INT_MAX, nmatched = 0; 6943 dtrace_id_t i; 6944 6945 ASSERT(MUTEX_HELD(&dtrace_lock)); 6946 6947 /* 6948 * If the probe ID is specified in the key, just lookup by ID and 6949 * invoke the match callback once if a matching probe is found. 6950 */ 6951 if (pkp->dtpk_id != DTRACE_IDNONE) { 6952 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6953 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6954 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6955 return (DTRACE_MATCH_FAIL); 6956 nmatched++; 6957 } 6958 return (nmatched); 6959 } 6960 6961 template.dtpr_mod = (char *)pkp->dtpk_mod; 6962 template.dtpr_func = (char *)pkp->dtpk_func; 6963 template.dtpr_name = (char *)pkp->dtpk_name; 6964 6965 /* 6966 * We want to find the most distinct of the module name, function 6967 * name, and name. So for each one that is not a glob pattern or 6968 * empty string, we perform a lookup in the corresponding hash and 6969 * use the hash table with the fewest collisions to do our search. 6970 */ 6971 if (pkp->dtpk_mmatch == &dtrace_match_string && 6972 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6973 best = len; 6974 hash = dtrace_bymod; 6975 } 6976 6977 if (pkp->dtpk_fmatch == &dtrace_match_string && 6978 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6979 best = len; 6980 hash = dtrace_byfunc; 6981 } 6982 6983 if (pkp->dtpk_nmatch == &dtrace_match_string && 6984 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6985 best = len; 6986 hash = dtrace_byname; 6987 } 6988 6989 /* 6990 * If we did not select a hash table, iterate over every probe and 6991 * invoke our callback for each one that matches our input probe key. 6992 */ 6993 if (hash == NULL) { 6994 for (i = 0; i < dtrace_nprobes; i++) { 6995 if ((probe = dtrace_probes[i]) == NULL || 6996 dtrace_match_probe(probe, pkp, priv, uid, 6997 zoneid) <= 0) 6998 continue; 6999 7000 nmatched++; 7001 7002 if ((rc = (*matched)(probe, arg)) != 7003 DTRACE_MATCH_NEXT) { 7004 if (rc == DTRACE_MATCH_FAIL) 7005 return (DTRACE_MATCH_FAIL); 7006 break; 7007 } 7008 } 7009 7010 return (nmatched); 7011 } 7012 7013 /* 7014 * If we selected a hash table, iterate over each probe of the same key 7015 * name and invoke the callback for every probe that matches the other 7016 * attributes of our input probe key. 7017 */ 7018 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7019 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7020 7021 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7022 continue; 7023 7024 nmatched++; 7025 7026 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7027 if (rc == DTRACE_MATCH_FAIL) 7028 return (DTRACE_MATCH_FAIL); 7029 break; 7030 } 7031 } 7032 7033 return (nmatched); 7034 } 7035 7036 /* 7037 * Return the function pointer dtrace_probecmp() should use to compare the 7038 * specified pattern with a string. For NULL or empty patterns, we select 7039 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7040 * For non-empty non-glob strings, we use dtrace_match_string(). 7041 */ 7042 static dtrace_probekey_f * 7043 dtrace_probekey_func(const char *p) 7044 { 7045 char c; 7046 7047 if (p == NULL || *p == '\0') 7048 return (&dtrace_match_nul); 7049 7050 while ((c = *p++) != '\0') { 7051 if (c == '[' || c == '?' || c == '*' || c == '\\') 7052 return (&dtrace_match_glob); 7053 } 7054 7055 return (&dtrace_match_string); 7056 } 7057 7058 /* 7059 * Build a probe comparison key for use with dtrace_match_probe() from the 7060 * given probe description. By convention, a null key only matches anchored 7061 * probes: if each field is the empty string, reset dtpk_fmatch to 7062 * dtrace_match_nonzero(). 7063 */ 7064 static void 7065 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7066 { 7067 pkp->dtpk_prov = pdp->dtpd_provider; 7068 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7069 7070 pkp->dtpk_mod = pdp->dtpd_mod; 7071 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7072 7073 pkp->dtpk_func = pdp->dtpd_func; 7074 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7075 7076 pkp->dtpk_name = pdp->dtpd_name; 7077 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7078 7079 pkp->dtpk_id = pdp->dtpd_id; 7080 7081 if (pkp->dtpk_id == DTRACE_IDNONE && 7082 pkp->dtpk_pmatch == &dtrace_match_nul && 7083 pkp->dtpk_mmatch == &dtrace_match_nul && 7084 pkp->dtpk_fmatch == &dtrace_match_nul && 7085 pkp->dtpk_nmatch == &dtrace_match_nul) 7086 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7087 } 7088 7089 /* 7090 * DTrace Provider-to-Framework API Functions 7091 * 7092 * These functions implement much of the Provider-to-Framework API, as 7093 * described in <sys/dtrace.h>. The parts of the API not in this section are 7094 * the functions in the API for probe management (found below), and 7095 * dtrace_probe() itself (found above). 7096 */ 7097 7098 /* 7099 * Register the calling provider with the DTrace framework. This should 7100 * generally be called by DTrace providers in their attach(9E) entry point. 7101 */ 7102 int 7103 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7104 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7105 { 7106 dtrace_provider_t *provider; 7107 7108 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7109 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7110 "arguments", name ? name : "<NULL>"); 7111 return (EINVAL); 7112 } 7113 7114 if (name[0] == '\0' || dtrace_badname(name)) { 7115 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7116 "provider name", name); 7117 return (EINVAL); 7118 } 7119 7120 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7121 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7122 pops->dtps_destroy == NULL || 7123 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7124 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7125 "provider ops", name); 7126 return (EINVAL); 7127 } 7128 7129 if (dtrace_badattr(&pap->dtpa_provider) || 7130 dtrace_badattr(&pap->dtpa_mod) || 7131 dtrace_badattr(&pap->dtpa_func) || 7132 dtrace_badattr(&pap->dtpa_name) || 7133 dtrace_badattr(&pap->dtpa_args)) { 7134 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7135 "provider attributes", name); 7136 return (EINVAL); 7137 } 7138 7139 if (priv & ~DTRACE_PRIV_ALL) { 7140 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7141 "privilege attributes", name); 7142 return (EINVAL); 7143 } 7144 7145 if ((priv & DTRACE_PRIV_KERNEL) && 7146 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7147 pops->dtps_mode == NULL) { 7148 cmn_err(CE_WARN, "failed to register provider '%s': need " 7149 "dtps_mode() op for given privilege attributes", name); 7150 return (EINVAL); 7151 } 7152 7153 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7154 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7155 (void) strcpy(provider->dtpv_name, name); 7156 7157 provider->dtpv_attr = *pap; 7158 provider->dtpv_priv.dtpp_flags = priv; 7159 if (cr != NULL) { 7160 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7161 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7162 } 7163 provider->dtpv_pops = *pops; 7164 7165 if (pops->dtps_provide == NULL) { 7166 ASSERT(pops->dtps_provide_module != NULL); 7167 provider->dtpv_pops.dtps_provide = 7168 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7169 } 7170 7171 if (pops->dtps_provide_module == NULL) { 7172 ASSERT(pops->dtps_provide != NULL); 7173 provider->dtpv_pops.dtps_provide_module = 7174 (void (*)(void *, struct modctl *))dtrace_nullop; 7175 } 7176 7177 if (pops->dtps_suspend == NULL) { 7178 ASSERT(pops->dtps_resume == NULL); 7179 provider->dtpv_pops.dtps_suspend = 7180 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7181 provider->dtpv_pops.dtps_resume = 7182 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7183 } 7184 7185 provider->dtpv_arg = arg; 7186 *idp = (dtrace_provider_id_t)provider; 7187 7188 if (pops == &dtrace_provider_ops) { 7189 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7190 ASSERT(MUTEX_HELD(&dtrace_lock)); 7191 ASSERT(dtrace_anon.dta_enabling == NULL); 7192 7193 /* 7194 * We make sure that the DTrace provider is at the head of 7195 * the provider chain. 7196 */ 7197 provider->dtpv_next = dtrace_provider; 7198 dtrace_provider = provider; 7199 return (0); 7200 } 7201 7202 mutex_enter(&dtrace_provider_lock); 7203 mutex_enter(&dtrace_lock); 7204 7205 /* 7206 * If there is at least one provider registered, we'll add this 7207 * provider after the first provider. 7208 */ 7209 if (dtrace_provider != NULL) { 7210 provider->dtpv_next = dtrace_provider->dtpv_next; 7211 dtrace_provider->dtpv_next = provider; 7212 } else { 7213 dtrace_provider = provider; 7214 } 7215 7216 if (dtrace_retained != NULL) { 7217 dtrace_enabling_provide(provider); 7218 7219 /* 7220 * Now we need to call dtrace_enabling_matchall() -- which 7221 * will acquire cpu_lock and dtrace_lock. We therefore need 7222 * to drop all of our locks before calling into it... 7223 */ 7224 mutex_exit(&dtrace_lock); 7225 mutex_exit(&dtrace_provider_lock); 7226 dtrace_enabling_matchall(); 7227 7228 return (0); 7229 } 7230 7231 mutex_exit(&dtrace_lock); 7232 mutex_exit(&dtrace_provider_lock); 7233 7234 return (0); 7235 } 7236 7237 /* 7238 * Unregister the specified provider from the DTrace framework. This should 7239 * generally be called by DTrace providers in their detach(9E) entry point. 7240 */ 7241 int 7242 dtrace_unregister(dtrace_provider_id_t id) 7243 { 7244 dtrace_provider_t *old = (dtrace_provider_t *)id; 7245 dtrace_provider_t *prev = NULL; 7246 int i, self = 0, noreap = 0; 7247 dtrace_probe_t *probe, *first = NULL; 7248 7249 if (old->dtpv_pops.dtps_enable == 7250 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7251 /* 7252 * If DTrace itself is the provider, we're called with locks 7253 * already held. 7254 */ 7255 ASSERT(old == dtrace_provider); 7256 ASSERT(dtrace_devi != NULL); 7257 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7258 ASSERT(MUTEX_HELD(&dtrace_lock)); 7259 self = 1; 7260 7261 if (dtrace_provider->dtpv_next != NULL) { 7262 /* 7263 * There's another provider here; return failure. 7264 */ 7265 return (EBUSY); 7266 } 7267 } else { 7268 mutex_enter(&dtrace_provider_lock); 7269 mutex_enter(&mod_lock); 7270 mutex_enter(&dtrace_lock); 7271 } 7272 7273 /* 7274 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7275 * probes, we refuse to let providers slither away, unless this 7276 * provider has already been explicitly invalidated. 7277 */ 7278 if (!old->dtpv_defunct && 7279 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7280 dtrace_anon.dta_state->dts_necbs > 0))) { 7281 if (!self) { 7282 mutex_exit(&dtrace_lock); 7283 mutex_exit(&mod_lock); 7284 mutex_exit(&dtrace_provider_lock); 7285 } 7286 return (EBUSY); 7287 } 7288 7289 /* 7290 * Attempt to destroy the probes associated with this provider. 7291 */ 7292 for (i = 0; i < dtrace_nprobes; i++) { 7293 if ((probe = dtrace_probes[i]) == NULL) 7294 continue; 7295 7296 if (probe->dtpr_provider != old) 7297 continue; 7298 7299 if (probe->dtpr_ecb == NULL) 7300 continue; 7301 7302 /* 7303 * If we are trying to unregister a defunct provider, and the 7304 * provider was made defunct within the interval dictated by 7305 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7306 * attempt to reap our enablings. To denote that the provider 7307 * should reattempt to unregister itself at some point in the 7308 * future, we will return a differentiable error code (EAGAIN 7309 * instead of EBUSY) in this case. 7310 */ 7311 if (dtrace_gethrtime() - old->dtpv_defunct > 7312 dtrace_unregister_defunct_reap) 7313 noreap = 1; 7314 7315 if (!self) { 7316 mutex_exit(&dtrace_lock); 7317 mutex_exit(&mod_lock); 7318 mutex_exit(&dtrace_provider_lock); 7319 } 7320 7321 if (noreap) 7322 return (EBUSY); 7323 7324 (void) taskq_dispatch(dtrace_taskq, 7325 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7326 7327 return (EAGAIN); 7328 } 7329 7330 /* 7331 * All of the probes for this provider are disabled; we can safely 7332 * remove all of them from their hash chains and from the probe array. 7333 */ 7334 for (i = 0; i < dtrace_nprobes; i++) { 7335 if ((probe = dtrace_probes[i]) == NULL) 7336 continue; 7337 7338 if (probe->dtpr_provider != old) 7339 continue; 7340 7341 dtrace_probes[i] = NULL; 7342 7343 dtrace_hash_remove(dtrace_bymod, probe); 7344 dtrace_hash_remove(dtrace_byfunc, probe); 7345 dtrace_hash_remove(dtrace_byname, probe); 7346 7347 if (first == NULL) { 7348 first = probe; 7349 probe->dtpr_nextmod = NULL; 7350 } else { 7351 probe->dtpr_nextmod = first; 7352 first = probe; 7353 } 7354 } 7355 7356 /* 7357 * The provider's probes have been removed from the hash chains and 7358 * from the probe array. Now issue a dtrace_sync() to be sure that 7359 * everyone has cleared out from any probe array processing. 7360 */ 7361 dtrace_sync(); 7362 7363 for (probe = first; probe != NULL; probe = first) { 7364 first = probe->dtpr_nextmod; 7365 7366 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7367 probe->dtpr_arg); 7368 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7369 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7370 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7371 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7372 kmem_free(probe, sizeof (dtrace_probe_t)); 7373 } 7374 7375 if ((prev = dtrace_provider) == old) { 7376 ASSERT(self || dtrace_devi == NULL); 7377 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7378 dtrace_provider = old->dtpv_next; 7379 } else { 7380 while (prev != NULL && prev->dtpv_next != old) 7381 prev = prev->dtpv_next; 7382 7383 if (prev == NULL) { 7384 panic("attempt to unregister non-existent " 7385 "dtrace provider %p\n", (void *)id); 7386 } 7387 7388 prev->dtpv_next = old->dtpv_next; 7389 } 7390 7391 if (!self) { 7392 mutex_exit(&dtrace_lock); 7393 mutex_exit(&mod_lock); 7394 mutex_exit(&dtrace_provider_lock); 7395 } 7396 7397 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7398 kmem_free(old, sizeof (dtrace_provider_t)); 7399 7400 return (0); 7401 } 7402 7403 /* 7404 * Invalidate the specified provider. All subsequent probe lookups for the 7405 * specified provider will fail, but its probes will not be removed. 7406 */ 7407 void 7408 dtrace_invalidate(dtrace_provider_id_t id) 7409 { 7410 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7411 7412 ASSERT(pvp->dtpv_pops.dtps_enable != 7413 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7414 7415 mutex_enter(&dtrace_provider_lock); 7416 mutex_enter(&dtrace_lock); 7417 7418 pvp->dtpv_defunct = dtrace_gethrtime(); 7419 7420 mutex_exit(&dtrace_lock); 7421 mutex_exit(&dtrace_provider_lock); 7422 } 7423 7424 /* 7425 * Indicate whether or not DTrace has attached. 7426 */ 7427 int 7428 dtrace_attached(void) 7429 { 7430 /* 7431 * dtrace_provider will be non-NULL iff the DTrace driver has 7432 * attached. (It's non-NULL because DTrace is always itself a 7433 * provider.) 7434 */ 7435 return (dtrace_provider != NULL); 7436 } 7437 7438 /* 7439 * Remove all the unenabled probes for the given provider. This function is 7440 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7441 * -- just as many of its associated probes as it can. 7442 */ 7443 int 7444 dtrace_condense(dtrace_provider_id_t id) 7445 { 7446 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7447 int i; 7448 dtrace_probe_t *probe; 7449 7450 /* 7451 * Make sure this isn't the dtrace provider itself. 7452 */ 7453 ASSERT(prov->dtpv_pops.dtps_enable != 7454 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7455 7456 mutex_enter(&dtrace_provider_lock); 7457 mutex_enter(&dtrace_lock); 7458 7459 /* 7460 * Attempt to destroy the probes associated with this provider. 7461 */ 7462 for (i = 0; i < dtrace_nprobes; i++) { 7463 if ((probe = dtrace_probes[i]) == NULL) 7464 continue; 7465 7466 if (probe->dtpr_provider != prov) 7467 continue; 7468 7469 if (probe->dtpr_ecb != NULL) 7470 continue; 7471 7472 dtrace_probes[i] = NULL; 7473 7474 dtrace_hash_remove(dtrace_bymod, probe); 7475 dtrace_hash_remove(dtrace_byfunc, probe); 7476 dtrace_hash_remove(dtrace_byname, probe); 7477 7478 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7479 probe->dtpr_arg); 7480 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7481 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7482 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7483 kmem_free(probe, sizeof (dtrace_probe_t)); 7484 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7485 } 7486 7487 mutex_exit(&dtrace_lock); 7488 mutex_exit(&dtrace_provider_lock); 7489 7490 return (0); 7491 } 7492 7493 /* 7494 * DTrace Probe Management Functions 7495 * 7496 * The functions in this section perform the DTrace probe management, 7497 * including functions to create probes, look-up probes, and call into the 7498 * providers to request that probes be provided. Some of these functions are 7499 * in the Provider-to-Framework API; these functions can be identified by the 7500 * fact that they are not declared "static". 7501 */ 7502 7503 /* 7504 * Create a probe with the specified module name, function name, and name. 7505 */ 7506 dtrace_id_t 7507 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7508 const char *func, const char *name, int aframes, void *arg) 7509 { 7510 dtrace_probe_t *probe, **probes; 7511 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7512 dtrace_id_t id; 7513 7514 if (provider == dtrace_provider) { 7515 ASSERT(MUTEX_HELD(&dtrace_lock)); 7516 } else { 7517 mutex_enter(&dtrace_lock); 7518 } 7519 7520 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7521 VM_BESTFIT | VM_SLEEP); 7522 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7523 7524 probe->dtpr_id = id; 7525 probe->dtpr_gen = dtrace_probegen++; 7526 probe->dtpr_mod = dtrace_strdup(mod); 7527 probe->dtpr_func = dtrace_strdup(func); 7528 probe->dtpr_name = dtrace_strdup(name); 7529 probe->dtpr_arg = arg; 7530 probe->dtpr_aframes = aframes; 7531 probe->dtpr_provider = provider; 7532 7533 dtrace_hash_add(dtrace_bymod, probe); 7534 dtrace_hash_add(dtrace_byfunc, probe); 7535 dtrace_hash_add(dtrace_byname, probe); 7536 7537 if (id - 1 >= dtrace_nprobes) { 7538 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7539 size_t nsize = osize << 1; 7540 7541 if (nsize == 0) { 7542 ASSERT(osize == 0); 7543 ASSERT(dtrace_probes == NULL); 7544 nsize = sizeof (dtrace_probe_t *); 7545 } 7546 7547 probes = kmem_zalloc(nsize, KM_SLEEP); 7548 7549 if (dtrace_probes == NULL) { 7550 ASSERT(osize == 0); 7551 dtrace_probes = probes; 7552 dtrace_nprobes = 1; 7553 } else { 7554 dtrace_probe_t **oprobes = dtrace_probes; 7555 7556 bcopy(oprobes, probes, osize); 7557 dtrace_membar_producer(); 7558 dtrace_probes = probes; 7559 7560 dtrace_sync(); 7561 7562 /* 7563 * All CPUs are now seeing the new probes array; we can 7564 * safely free the old array. 7565 */ 7566 kmem_free(oprobes, osize); 7567 dtrace_nprobes <<= 1; 7568 } 7569 7570 ASSERT(id - 1 < dtrace_nprobes); 7571 } 7572 7573 ASSERT(dtrace_probes[id - 1] == NULL); 7574 dtrace_probes[id - 1] = probe; 7575 7576 if (provider != dtrace_provider) 7577 mutex_exit(&dtrace_lock); 7578 7579 return (id); 7580 } 7581 7582 static dtrace_probe_t * 7583 dtrace_probe_lookup_id(dtrace_id_t id) 7584 { 7585 ASSERT(MUTEX_HELD(&dtrace_lock)); 7586 7587 if (id == 0 || id > dtrace_nprobes) 7588 return (NULL); 7589 7590 return (dtrace_probes[id - 1]); 7591 } 7592 7593 static int 7594 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7595 { 7596 *((dtrace_id_t *)arg) = probe->dtpr_id; 7597 7598 return (DTRACE_MATCH_DONE); 7599 } 7600 7601 /* 7602 * Look up a probe based on provider and one or more of module name, function 7603 * name and probe name. 7604 */ 7605 dtrace_id_t 7606 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7607 const char *func, const char *name) 7608 { 7609 dtrace_probekey_t pkey; 7610 dtrace_id_t id; 7611 int match; 7612 7613 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7614 pkey.dtpk_pmatch = &dtrace_match_string; 7615 pkey.dtpk_mod = mod; 7616 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7617 pkey.dtpk_func = func; 7618 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7619 pkey.dtpk_name = name; 7620 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7621 pkey.dtpk_id = DTRACE_IDNONE; 7622 7623 mutex_enter(&dtrace_lock); 7624 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7625 dtrace_probe_lookup_match, &id); 7626 mutex_exit(&dtrace_lock); 7627 7628 ASSERT(match == 1 || match == 0); 7629 return (match ? id : 0); 7630 } 7631 7632 /* 7633 * Returns the probe argument associated with the specified probe. 7634 */ 7635 void * 7636 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7637 { 7638 dtrace_probe_t *probe; 7639 void *rval = NULL; 7640 7641 mutex_enter(&dtrace_lock); 7642 7643 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7644 probe->dtpr_provider == (dtrace_provider_t *)id) 7645 rval = probe->dtpr_arg; 7646 7647 mutex_exit(&dtrace_lock); 7648 7649 return (rval); 7650 } 7651 7652 /* 7653 * Copy a probe into a probe description. 7654 */ 7655 static void 7656 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7657 { 7658 bzero(pdp, sizeof (dtrace_probedesc_t)); 7659 pdp->dtpd_id = prp->dtpr_id; 7660 7661 (void) strncpy(pdp->dtpd_provider, 7662 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7663 7664 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7665 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7666 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7667 } 7668 7669 /* 7670 * Called to indicate that a probe -- or probes -- should be provided by a 7671 * specfied provider. If the specified description is NULL, the provider will 7672 * be told to provide all of its probes. (This is done whenever a new 7673 * consumer comes along, or whenever a retained enabling is to be matched.) If 7674 * the specified description is non-NULL, the provider is given the 7675 * opportunity to dynamically provide the specified probe, allowing providers 7676 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7677 * probes.) If the provider is NULL, the operations will be applied to all 7678 * providers; if the provider is non-NULL the operations will only be applied 7679 * to the specified provider. The dtrace_provider_lock must be held, and the 7680 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7681 * will need to grab the dtrace_lock when it reenters the framework through 7682 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7683 */ 7684 static void 7685 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7686 { 7687 struct modctl *ctl; 7688 int all = 0; 7689 7690 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7691 7692 if (prv == NULL) { 7693 all = 1; 7694 prv = dtrace_provider; 7695 } 7696 7697 do { 7698 /* 7699 * First, call the blanket provide operation. 7700 */ 7701 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7702 7703 /* 7704 * Now call the per-module provide operation. We will grab 7705 * mod_lock to prevent the list from being modified. Note 7706 * that this also prevents the mod_busy bits from changing. 7707 * (mod_busy can only be changed with mod_lock held.) 7708 */ 7709 mutex_enter(&mod_lock); 7710 7711 ctl = &modules; 7712 do { 7713 if (ctl->mod_busy || ctl->mod_mp == NULL) 7714 continue; 7715 7716 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7717 7718 } while ((ctl = ctl->mod_next) != &modules); 7719 7720 mutex_exit(&mod_lock); 7721 } while (all && (prv = prv->dtpv_next) != NULL); 7722 } 7723 7724 /* 7725 * Iterate over each probe, and call the Framework-to-Provider API function 7726 * denoted by offs. 7727 */ 7728 static void 7729 dtrace_probe_foreach(uintptr_t offs) 7730 { 7731 dtrace_provider_t *prov; 7732 void (*func)(void *, dtrace_id_t, void *); 7733 dtrace_probe_t *probe; 7734 dtrace_icookie_t cookie; 7735 int i; 7736 7737 /* 7738 * We disable interrupts to walk through the probe array. This is 7739 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7740 * won't see stale data. 7741 */ 7742 cookie = dtrace_interrupt_disable(); 7743 7744 for (i = 0; i < dtrace_nprobes; i++) { 7745 if ((probe = dtrace_probes[i]) == NULL) 7746 continue; 7747 7748 if (probe->dtpr_ecb == NULL) { 7749 /* 7750 * This probe isn't enabled -- don't call the function. 7751 */ 7752 continue; 7753 } 7754 7755 prov = probe->dtpr_provider; 7756 func = *((void(**)(void *, dtrace_id_t, void *)) 7757 ((uintptr_t)&prov->dtpv_pops + offs)); 7758 7759 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7760 } 7761 7762 dtrace_interrupt_enable(cookie); 7763 } 7764 7765 static int 7766 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7767 { 7768 dtrace_probekey_t pkey; 7769 uint32_t priv; 7770 uid_t uid; 7771 zoneid_t zoneid; 7772 7773 ASSERT(MUTEX_HELD(&dtrace_lock)); 7774 dtrace_ecb_create_cache = NULL; 7775 7776 if (desc == NULL) { 7777 /* 7778 * If we're passed a NULL description, we're being asked to 7779 * create an ECB with a NULL probe. 7780 */ 7781 (void) dtrace_ecb_create_enable(NULL, enab); 7782 return (0); 7783 } 7784 7785 dtrace_probekey(desc, &pkey); 7786 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7787 &priv, &uid, &zoneid); 7788 7789 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7790 enab)); 7791 } 7792 7793 /* 7794 * DTrace Helper Provider Functions 7795 */ 7796 static void 7797 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7798 { 7799 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7800 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7801 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7802 } 7803 7804 static void 7805 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7806 const dof_provider_t *dofprov, char *strtab) 7807 { 7808 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7809 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7810 dofprov->dofpv_provattr); 7811 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7812 dofprov->dofpv_modattr); 7813 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7814 dofprov->dofpv_funcattr); 7815 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7816 dofprov->dofpv_nameattr); 7817 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7818 dofprov->dofpv_argsattr); 7819 } 7820 7821 static void 7822 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7823 { 7824 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7825 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7826 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7827 dof_provider_t *provider; 7828 dof_probe_t *probe; 7829 uint32_t *off, *enoff; 7830 uint8_t *arg; 7831 char *strtab; 7832 uint_t i, nprobes; 7833 dtrace_helper_provdesc_t dhpv; 7834 dtrace_helper_probedesc_t dhpb; 7835 dtrace_meta_t *meta = dtrace_meta_pid; 7836 dtrace_mops_t *mops = &meta->dtm_mops; 7837 void *parg; 7838 7839 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7840 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7841 provider->dofpv_strtab * dof->dofh_secsize); 7842 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7843 provider->dofpv_probes * dof->dofh_secsize); 7844 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7845 provider->dofpv_prargs * dof->dofh_secsize); 7846 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7847 provider->dofpv_proffs * dof->dofh_secsize); 7848 7849 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7850 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7851 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7852 enoff = NULL; 7853 7854 /* 7855 * See dtrace_helper_provider_validate(). 7856 */ 7857 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7858 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7859 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7860 provider->dofpv_prenoffs * dof->dofh_secsize); 7861 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7862 } 7863 7864 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7865 7866 /* 7867 * Create the provider. 7868 */ 7869 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7870 7871 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7872 return; 7873 7874 meta->dtm_count++; 7875 7876 /* 7877 * Create the probes. 7878 */ 7879 for (i = 0; i < nprobes; i++) { 7880 probe = (dof_probe_t *)(uintptr_t)(daddr + 7881 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7882 7883 dhpb.dthpb_mod = dhp->dofhp_mod; 7884 dhpb.dthpb_func = strtab + probe->dofpr_func; 7885 dhpb.dthpb_name = strtab + probe->dofpr_name; 7886 dhpb.dthpb_base = probe->dofpr_addr; 7887 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7888 dhpb.dthpb_noffs = probe->dofpr_noffs; 7889 if (enoff != NULL) { 7890 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7891 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7892 } else { 7893 dhpb.dthpb_enoffs = NULL; 7894 dhpb.dthpb_nenoffs = 0; 7895 } 7896 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7897 dhpb.dthpb_nargc = probe->dofpr_nargc; 7898 dhpb.dthpb_xargc = probe->dofpr_xargc; 7899 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7900 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7901 7902 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7903 } 7904 } 7905 7906 static void 7907 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7908 { 7909 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7910 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7911 int i; 7912 7913 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7914 7915 for (i = 0; i < dof->dofh_secnum; i++) { 7916 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7917 dof->dofh_secoff + i * dof->dofh_secsize); 7918 7919 if (sec->dofs_type != DOF_SECT_PROVIDER) 7920 continue; 7921 7922 dtrace_helper_provide_one(dhp, sec, pid); 7923 } 7924 7925 /* 7926 * We may have just created probes, so we must now rematch against 7927 * any retained enablings. Note that this call will acquire both 7928 * cpu_lock and dtrace_lock; the fact that we are holding 7929 * dtrace_meta_lock now is what defines the ordering with respect to 7930 * these three locks. 7931 */ 7932 dtrace_enabling_matchall(); 7933 } 7934 7935 static void 7936 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7937 { 7938 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7939 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7940 dof_sec_t *str_sec; 7941 dof_provider_t *provider; 7942 char *strtab; 7943 dtrace_helper_provdesc_t dhpv; 7944 dtrace_meta_t *meta = dtrace_meta_pid; 7945 dtrace_mops_t *mops = &meta->dtm_mops; 7946 7947 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7948 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7949 provider->dofpv_strtab * dof->dofh_secsize); 7950 7951 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7952 7953 /* 7954 * Create the provider. 7955 */ 7956 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7957 7958 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7959 7960 meta->dtm_count--; 7961 } 7962 7963 static void 7964 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7965 { 7966 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7967 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7968 int i; 7969 7970 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7971 7972 for (i = 0; i < dof->dofh_secnum; i++) { 7973 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7974 dof->dofh_secoff + i * dof->dofh_secsize); 7975 7976 if (sec->dofs_type != DOF_SECT_PROVIDER) 7977 continue; 7978 7979 dtrace_helper_provider_remove_one(dhp, sec, pid); 7980 } 7981 } 7982 7983 /* 7984 * DTrace Meta Provider-to-Framework API Functions 7985 * 7986 * These functions implement the Meta Provider-to-Framework API, as described 7987 * in <sys/dtrace.h>. 7988 */ 7989 int 7990 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7991 dtrace_meta_provider_id_t *idp) 7992 { 7993 dtrace_meta_t *meta; 7994 dtrace_helpers_t *help, *next; 7995 int i; 7996 7997 *idp = DTRACE_METAPROVNONE; 7998 7999 /* 8000 * We strictly don't need the name, but we hold onto it for 8001 * debuggability. All hail error queues! 8002 */ 8003 if (name == NULL) { 8004 cmn_err(CE_WARN, "failed to register meta-provider: " 8005 "invalid name"); 8006 return (EINVAL); 8007 } 8008 8009 if (mops == NULL || 8010 mops->dtms_create_probe == NULL || 8011 mops->dtms_provide_pid == NULL || 8012 mops->dtms_remove_pid == NULL) { 8013 cmn_err(CE_WARN, "failed to register meta-register %s: " 8014 "invalid ops", name); 8015 return (EINVAL); 8016 } 8017 8018 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8019 meta->dtm_mops = *mops; 8020 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8021 (void) strcpy(meta->dtm_name, name); 8022 meta->dtm_arg = arg; 8023 8024 mutex_enter(&dtrace_meta_lock); 8025 mutex_enter(&dtrace_lock); 8026 8027 if (dtrace_meta_pid != NULL) { 8028 mutex_exit(&dtrace_lock); 8029 mutex_exit(&dtrace_meta_lock); 8030 cmn_err(CE_WARN, "failed to register meta-register %s: " 8031 "user-land meta-provider exists", name); 8032 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8033 kmem_free(meta, sizeof (dtrace_meta_t)); 8034 return (EINVAL); 8035 } 8036 8037 dtrace_meta_pid = meta; 8038 *idp = (dtrace_meta_provider_id_t)meta; 8039 8040 /* 8041 * If there are providers and probes ready to go, pass them 8042 * off to the new meta provider now. 8043 */ 8044 8045 help = dtrace_deferred_pid; 8046 dtrace_deferred_pid = NULL; 8047 8048 mutex_exit(&dtrace_lock); 8049 8050 while (help != NULL) { 8051 for (i = 0; i < help->dthps_nprovs; i++) { 8052 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8053 help->dthps_pid); 8054 } 8055 8056 next = help->dthps_next; 8057 help->dthps_next = NULL; 8058 help->dthps_prev = NULL; 8059 help->dthps_deferred = 0; 8060 help = next; 8061 } 8062 8063 mutex_exit(&dtrace_meta_lock); 8064 8065 return (0); 8066 } 8067 8068 int 8069 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8070 { 8071 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8072 8073 mutex_enter(&dtrace_meta_lock); 8074 mutex_enter(&dtrace_lock); 8075 8076 if (old == dtrace_meta_pid) { 8077 pp = &dtrace_meta_pid; 8078 } else { 8079 panic("attempt to unregister non-existent " 8080 "dtrace meta-provider %p\n", (void *)old); 8081 } 8082 8083 if (old->dtm_count != 0) { 8084 mutex_exit(&dtrace_lock); 8085 mutex_exit(&dtrace_meta_lock); 8086 return (EBUSY); 8087 } 8088 8089 *pp = NULL; 8090 8091 mutex_exit(&dtrace_lock); 8092 mutex_exit(&dtrace_meta_lock); 8093 8094 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8095 kmem_free(old, sizeof (dtrace_meta_t)); 8096 8097 return (0); 8098 } 8099 8100 8101 /* 8102 * DTrace DIF Object Functions 8103 */ 8104 static int 8105 dtrace_difo_err(uint_t pc, const char *format, ...) 8106 { 8107 if (dtrace_err_verbose) { 8108 va_list alist; 8109 8110 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8111 va_start(alist, format); 8112 (void) vuprintf(format, alist); 8113 va_end(alist); 8114 } 8115 8116 #ifdef DTRACE_ERRDEBUG 8117 dtrace_errdebug(format); 8118 #endif 8119 return (1); 8120 } 8121 8122 /* 8123 * Validate a DTrace DIF object by checking the IR instructions. The following 8124 * rules are currently enforced by dtrace_difo_validate(): 8125 * 8126 * 1. Each instruction must have a valid opcode 8127 * 2. Each register, string, variable, or subroutine reference must be valid 8128 * 3. No instruction can modify register %r0 (must be zero) 8129 * 4. All instruction reserved bits must be set to zero 8130 * 5. The last instruction must be a "ret" instruction 8131 * 6. All branch targets must reference a valid instruction _after_ the branch 8132 */ 8133 static int 8134 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8135 cred_t *cr) 8136 { 8137 int err = 0, i; 8138 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8139 int kcheckload; 8140 uint_t pc; 8141 8142 kcheckload = cr == NULL || 8143 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8144 8145 dp->dtdo_destructive = 0; 8146 8147 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8148 dif_instr_t instr = dp->dtdo_buf[pc]; 8149 8150 uint_t r1 = DIF_INSTR_R1(instr); 8151 uint_t r2 = DIF_INSTR_R2(instr); 8152 uint_t rd = DIF_INSTR_RD(instr); 8153 uint_t rs = DIF_INSTR_RS(instr); 8154 uint_t label = DIF_INSTR_LABEL(instr); 8155 uint_t v = DIF_INSTR_VAR(instr); 8156 uint_t subr = DIF_INSTR_SUBR(instr); 8157 uint_t type = DIF_INSTR_TYPE(instr); 8158 uint_t op = DIF_INSTR_OP(instr); 8159 8160 switch (op) { 8161 case DIF_OP_OR: 8162 case DIF_OP_XOR: 8163 case DIF_OP_AND: 8164 case DIF_OP_SLL: 8165 case DIF_OP_SRL: 8166 case DIF_OP_SRA: 8167 case DIF_OP_SUB: 8168 case DIF_OP_ADD: 8169 case DIF_OP_MUL: 8170 case DIF_OP_SDIV: 8171 case DIF_OP_UDIV: 8172 case DIF_OP_SREM: 8173 case DIF_OP_UREM: 8174 case DIF_OP_COPYS: 8175 if (r1 >= nregs) 8176 err += efunc(pc, "invalid register %u\n", r1); 8177 if (r2 >= nregs) 8178 err += efunc(pc, "invalid register %u\n", r2); 8179 if (rd >= nregs) 8180 err += efunc(pc, "invalid register %u\n", rd); 8181 if (rd == 0) 8182 err += efunc(pc, "cannot write to %r0\n"); 8183 break; 8184 case DIF_OP_NOT: 8185 case DIF_OP_MOV: 8186 case DIF_OP_ALLOCS: 8187 if (r1 >= nregs) 8188 err += efunc(pc, "invalid register %u\n", r1); 8189 if (r2 != 0) 8190 err += efunc(pc, "non-zero reserved bits\n"); 8191 if (rd >= nregs) 8192 err += efunc(pc, "invalid register %u\n", rd); 8193 if (rd == 0) 8194 err += efunc(pc, "cannot write to %r0\n"); 8195 break; 8196 case DIF_OP_LDSB: 8197 case DIF_OP_LDSH: 8198 case DIF_OP_LDSW: 8199 case DIF_OP_LDUB: 8200 case DIF_OP_LDUH: 8201 case DIF_OP_LDUW: 8202 case DIF_OP_LDX: 8203 if (r1 >= nregs) 8204 err += efunc(pc, "invalid register %u\n", r1); 8205 if (r2 != 0) 8206 err += efunc(pc, "non-zero reserved bits\n"); 8207 if (rd >= nregs) 8208 err += efunc(pc, "invalid register %u\n", rd); 8209 if (rd == 0) 8210 err += efunc(pc, "cannot write to %r0\n"); 8211 if (kcheckload) 8212 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8213 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8214 break; 8215 case DIF_OP_RLDSB: 8216 case DIF_OP_RLDSH: 8217 case DIF_OP_RLDSW: 8218 case DIF_OP_RLDUB: 8219 case DIF_OP_RLDUH: 8220 case DIF_OP_RLDUW: 8221 case DIF_OP_RLDX: 8222 if (r1 >= nregs) 8223 err += efunc(pc, "invalid register %u\n", r1); 8224 if (r2 != 0) 8225 err += efunc(pc, "non-zero reserved bits\n"); 8226 if (rd >= nregs) 8227 err += efunc(pc, "invalid register %u\n", rd); 8228 if (rd == 0) 8229 err += efunc(pc, "cannot write to %r0\n"); 8230 break; 8231 case DIF_OP_ULDSB: 8232 case DIF_OP_ULDSH: 8233 case DIF_OP_ULDSW: 8234 case DIF_OP_ULDUB: 8235 case DIF_OP_ULDUH: 8236 case DIF_OP_ULDUW: 8237 case DIF_OP_ULDX: 8238 if (r1 >= nregs) 8239 err += efunc(pc, "invalid register %u\n", r1); 8240 if (r2 != 0) 8241 err += efunc(pc, "non-zero reserved bits\n"); 8242 if (rd >= nregs) 8243 err += efunc(pc, "invalid register %u\n", rd); 8244 if (rd == 0) 8245 err += efunc(pc, "cannot write to %r0\n"); 8246 break; 8247 case DIF_OP_STB: 8248 case DIF_OP_STH: 8249 case DIF_OP_STW: 8250 case DIF_OP_STX: 8251 if (r1 >= nregs) 8252 err += efunc(pc, "invalid register %u\n", r1); 8253 if (r2 != 0) 8254 err += efunc(pc, "non-zero reserved bits\n"); 8255 if (rd >= nregs) 8256 err += efunc(pc, "invalid register %u\n", rd); 8257 if (rd == 0) 8258 err += efunc(pc, "cannot write to 0 address\n"); 8259 break; 8260 case DIF_OP_CMP: 8261 case DIF_OP_SCMP: 8262 if (r1 >= nregs) 8263 err += efunc(pc, "invalid register %u\n", r1); 8264 if (r2 >= nregs) 8265 err += efunc(pc, "invalid register %u\n", r2); 8266 if (rd != 0) 8267 err += efunc(pc, "non-zero reserved bits\n"); 8268 break; 8269 case DIF_OP_TST: 8270 if (r1 >= nregs) 8271 err += efunc(pc, "invalid register %u\n", r1); 8272 if (r2 != 0 || rd != 0) 8273 err += efunc(pc, "non-zero reserved bits\n"); 8274 break; 8275 case DIF_OP_BA: 8276 case DIF_OP_BE: 8277 case DIF_OP_BNE: 8278 case DIF_OP_BG: 8279 case DIF_OP_BGU: 8280 case DIF_OP_BGE: 8281 case DIF_OP_BGEU: 8282 case DIF_OP_BL: 8283 case DIF_OP_BLU: 8284 case DIF_OP_BLE: 8285 case DIF_OP_BLEU: 8286 if (label >= dp->dtdo_len) { 8287 err += efunc(pc, "invalid branch target %u\n", 8288 label); 8289 } 8290 if (label <= pc) { 8291 err += efunc(pc, "backward branch to %u\n", 8292 label); 8293 } 8294 break; 8295 case DIF_OP_RET: 8296 if (r1 != 0 || r2 != 0) 8297 err += efunc(pc, "non-zero reserved bits\n"); 8298 if (rd >= nregs) 8299 err += efunc(pc, "invalid register %u\n", rd); 8300 break; 8301 case DIF_OP_NOP: 8302 case DIF_OP_POPTS: 8303 case DIF_OP_FLUSHTS: 8304 if (r1 != 0 || r2 != 0 || rd != 0) 8305 err += efunc(pc, "non-zero reserved bits\n"); 8306 break; 8307 case DIF_OP_SETX: 8308 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8309 err += efunc(pc, "invalid integer ref %u\n", 8310 DIF_INSTR_INTEGER(instr)); 8311 } 8312 if (rd >= nregs) 8313 err += efunc(pc, "invalid register %u\n", rd); 8314 if (rd == 0) 8315 err += efunc(pc, "cannot write to %r0\n"); 8316 break; 8317 case DIF_OP_SETS: 8318 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8319 err += efunc(pc, "invalid string ref %u\n", 8320 DIF_INSTR_STRING(instr)); 8321 } 8322 if (rd >= nregs) 8323 err += efunc(pc, "invalid register %u\n", rd); 8324 if (rd == 0) 8325 err += efunc(pc, "cannot write to %r0\n"); 8326 break; 8327 case DIF_OP_LDGA: 8328 case DIF_OP_LDTA: 8329 if (r1 > DIF_VAR_ARRAY_MAX) 8330 err += efunc(pc, "invalid array %u\n", r1); 8331 if (r2 >= nregs) 8332 err += efunc(pc, "invalid register %u\n", r2); 8333 if (rd >= nregs) 8334 err += efunc(pc, "invalid register %u\n", rd); 8335 if (rd == 0) 8336 err += efunc(pc, "cannot write to %r0\n"); 8337 break; 8338 case DIF_OP_LDGS: 8339 case DIF_OP_LDTS: 8340 case DIF_OP_LDLS: 8341 case DIF_OP_LDGAA: 8342 case DIF_OP_LDTAA: 8343 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8344 err += efunc(pc, "invalid variable %u\n", v); 8345 if (rd >= nregs) 8346 err += efunc(pc, "invalid register %u\n", rd); 8347 if (rd == 0) 8348 err += efunc(pc, "cannot write to %r0\n"); 8349 break; 8350 case DIF_OP_STGS: 8351 case DIF_OP_STTS: 8352 case DIF_OP_STLS: 8353 case DIF_OP_STGAA: 8354 case DIF_OP_STTAA: 8355 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8356 err += efunc(pc, "invalid variable %u\n", v); 8357 if (rs >= nregs) 8358 err += efunc(pc, "invalid register %u\n", rd); 8359 break; 8360 case DIF_OP_CALL: 8361 if (subr > DIF_SUBR_MAX) 8362 err += efunc(pc, "invalid subr %u\n", subr); 8363 if (rd >= nregs) 8364 err += efunc(pc, "invalid register %u\n", rd); 8365 if (rd == 0) 8366 err += efunc(pc, "cannot write to %r0\n"); 8367 8368 if (subr == DIF_SUBR_COPYOUT || 8369 subr == DIF_SUBR_COPYOUTSTR) { 8370 dp->dtdo_destructive = 1; 8371 } 8372 break; 8373 case DIF_OP_PUSHTR: 8374 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8375 err += efunc(pc, "invalid ref type %u\n", type); 8376 if (r2 >= nregs) 8377 err += efunc(pc, "invalid register %u\n", r2); 8378 if (rs >= nregs) 8379 err += efunc(pc, "invalid register %u\n", rs); 8380 break; 8381 case DIF_OP_PUSHTV: 8382 if (type != DIF_TYPE_CTF) 8383 err += efunc(pc, "invalid val type %u\n", type); 8384 if (r2 >= nregs) 8385 err += efunc(pc, "invalid register %u\n", r2); 8386 if (rs >= nregs) 8387 err += efunc(pc, "invalid register %u\n", rs); 8388 break; 8389 default: 8390 err += efunc(pc, "invalid opcode %u\n", 8391 DIF_INSTR_OP(instr)); 8392 } 8393 } 8394 8395 if (dp->dtdo_len != 0 && 8396 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8397 err += efunc(dp->dtdo_len - 1, 8398 "expected 'ret' as last DIF instruction\n"); 8399 } 8400 8401 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8402 /* 8403 * If we're not returning by reference, the size must be either 8404 * 0 or the size of one of the base types. 8405 */ 8406 switch (dp->dtdo_rtype.dtdt_size) { 8407 case 0: 8408 case sizeof (uint8_t): 8409 case sizeof (uint16_t): 8410 case sizeof (uint32_t): 8411 case sizeof (uint64_t): 8412 break; 8413 8414 default: 8415 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8416 } 8417 } 8418 8419 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8420 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8421 dtrace_diftype_t *vt, *et; 8422 uint_t id, ndx; 8423 8424 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8425 v->dtdv_scope != DIFV_SCOPE_THREAD && 8426 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8427 err += efunc(i, "unrecognized variable scope %d\n", 8428 v->dtdv_scope); 8429 break; 8430 } 8431 8432 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8433 v->dtdv_kind != DIFV_KIND_SCALAR) { 8434 err += efunc(i, "unrecognized variable type %d\n", 8435 v->dtdv_kind); 8436 break; 8437 } 8438 8439 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8440 err += efunc(i, "%d exceeds variable id limit\n", id); 8441 break; 8442 } 8443 8444 if (id < DIF_VAR_OTHER_UBASE) 8445 continue; 8446 8447 /* 8448 * For user-defined variables, we need to check that this 8449 * definition is identical to any previous definition that we 8450 * encountered. 8451 */ 8452 ndx = id - DIF_VAR_OTHER_UBASE; 8453 8454 switch (v->dtdv_scope) { 8455 case DIFV_SCOPE_GLOBAL: 8456 if (ndx < vstate->dtvs_nglobals) { 8457 dtrace_statvar_t *svar; 8458 8459 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8460 existing = &svar->dtsv_var; 8461 } 8462 8463 break; 8464 8465 case DIFV_SCOPE_THREAD: 8466 if (ndx < vstate->dtvs_ntlocals) 8467 existing = &vstate->dtvs_tlocals[ndx]; 8468 break; 8469 8470 case DIFV_SCOPE_LOCAL: 8471 if (ndx < vstate->dtvs_nlocals) { 8472 dtrace_statvar_t *svar; 8473 8474 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8475 existing = &svar->dtsv_var; 8476 } 8477 8478 break; 8479 } 8480 8481 vt = &v->dtdv_type; 8482 8483 if (vt->dtdt_flags & DIF_TF_BYREF) { 8484 if (vt->dtdt_size == 0) { 8485 err += efunc(i, "zero-sized variable\n"); 8486 break; 8487 } 8488 8489 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8490 vt->dtdt_size > dtrace_global_maxsize) { 8491 err += efunc(i, "oversized by-ref global\n"); 8492 break; 8493 } 8494 } 8495 8496 if (existing == NULL || existing->dtdv_id == 0) 8497 continue; 8498 8499 ASSERT(existing->dtdv_id == v->dtdv_id); 8500 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8501 8502 if (existing->dtdv_kind != v->dtdv_kind) 8503 err += efunc(i, "%d changed variable kind\n", id); 8504 8505 et = &existing->dtdv_type; 8506 8507 if (vt->dtdt_flags != et->dtdt_flags) { 8508 err += efunc(i, "%d changed variable type flags\n", id); 8509 break; 8510 } 8511 8512 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8513 err += efunc(i, "%d changed variable type size\n", id); 8514 break; 8515 } 8516 } 8517 8518 return (err); 8519 } 8520 8521 /* 8522 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8523 * are much more constrained than normal DIFOs. Specifically, they may 8524 * not: 8525 * 8526 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8527 * miscellaneous string routines 8528 * 2. Access DTrace variables other than the args[] array, and the 8529 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8530 * 3. Have thread-local variables. 8531 * 4. Have dynamic variables. 8532 */ 8533 static int 8534 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8535 { 8536 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8537 int err = 0; 8538 uint_t pc; 8539 8540 for (pc = 0; pc < dp->dtdo_len; pc++) { 8541 dif_instr_t instr = dp->dtdo_buf[pc]; 8542 8543 uint_t v = DIF_INSTR_VAR(instr); 8544 uint_t subr = DIF_INSTR_SUBR(instr); 8545 uint_t op = DIF_INSTR_OP(instr); 8546 8547 switch (op) { 8548 case DIF_OP_OR: 8549 case DIF_OP_XOR: 8550 case DIF_OP_AND: 8551 case DIF_OP_SLL: 8552 case DIF_OP_SRL: 8553 case DIF_OP_SRA: 8554 case DIF_OP_SUB: 8555 case DIF_OP_ADD: 8556 case DIF_OP_MUL: 8557 case DIF_OP_SDIV: 8558 case DIF_OP_UDIV: 8559 case DIF_OP_SREM: 8560 case DIF_OP_UREM: 8561 case DIF_OP_COPYS: 8562 case DIF_OP_NOT: 8563 case DIF_OP_MOV: 8564 case DIF_OP_RLDSB: 8565 case DIF_OP_RLDSH: 8566 case DIF_OP_RLDSW: 8567 case DIF_OP_RLDUB: 8568 case DIF_OP_RLDUH: 8569 case DIF_OP_RLDUW: 8570 case DIF_OP_RLDX: 8571 case DIF_OP_ULDSB: 8572 case DIF_OP_ULDSH: 8573 case DIF_OP_ULDSW: 8574 case DIF_OP_ULDUB: 8575 case DIF_OP_ULDUH: 8576 case DIF_OP_ULDUW: 8577 case DIF_OP_ULDX: 8578 case DIF_OP_STB: 8579 case DIF_OP_STH: 8580 case DIF_OP_STW: 8581 case DIF_OP_STX: 8582 case DIF_OP_ALLOCS: 8583 case DIF_OP_CMP: 8584 case DIF_OP_SCMP: 8585 case DIF_OP_TST: 8586 case DIF_OP_BA: 8587 case DIF_OP_BE: 8588 case DIF_OP_BNE: 8589 case DIF_OP_BG: 8590 case DIF_OP_BGU: 8591 case DIF_OP_BGE: 8592 case DIF_OP_BGEU: 8593 case DIF_OP_BL: 8594 case DIF_OP_BLU: 8595 case DIF_OP_BLE: 8596 case DIF_OP_BLEU: 8597 case DIF_OP_RET: 8598 case DIF_OP_NOP: 8599 case DIF_OP_POPTS: 8600 case DIF_OP_FLUSHTS: 8601 case DIF_OP_SETX: 8602 case DIF_OP_SETS: 8603 case DIF_OP_LDGA: 8604 case DIF_OP_LDLS: 8605 case DIF_OP_STGS: 8606 case DIF_OP_STLS: 8607 case DIF_OP_PUSHTR: 8608 case DIF_OP_PUSHTV: 8609 break; 8610 8611 case DIF_OP_LDGS: 8612 if (v >= DIF_VAR_OTHER_UBASE) 8613 break; 8614 8615 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8616 break; 8617 8618 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8619 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8620 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8621 v == DIF_VAR_UID || v == DIF_VAR_GID) 8622 break; 8623 8624 err += efunc(pc, "illegal variable %u\n", v); 8625 break; 8626 8627 case DIF_OP_LDTA: 8628 case DIF_OP_LDTS: 8629 case DIF_OP_LDGAA: 8630 case DIF_OP_LDTAA: 8631 err += efunc(pc, "illegal dynamic variable load\n"); 8632 break; 8633 8634 case DIF_OP_STTS: 8635 case DIF_OP_STGAA: 8636 case DIF_OP_STTAA: 8637 err += efunc(pc, "illegal dynamic variable store\n"); 8638 break; 8639 8640 case DIF_OP_CALL: 8641 if (subr == DIF_SUBR_ALLOCA || 8642 subr == DIF_SUBR_BCOPY || 8643 subr == DIF_SUBR_COPYIN || 8644 subr == DIF_SUBR_COPYINTO || 8645 subr == DIF_SUBR_COPYINSTR || 8646 subr == DIF_SUBR_INDEX || 8647 subr == DIF_SUBR_INET_NTOA || 8648 subr == DIF_SUBR_INET_NTOA6 || 8649 subr == DIF_SUBR_INET_NTOP || 8650 subr == DIF_SUBR_LLTOSTR || 8651 subr == DIF_SUBR_RINDEX || 8652 subr == DIF_SUBR_STRCHR || 8653 subr == DIF_SUBR_STRJOIN || 8654 subr == DIF_SUBR_STRRCHR || 8655 subr == DIF_SUBR_STRSTR || 8656 subr == DIF_SUBR_HTONS || 8657 subr == DIF_SUBR_HTONL || 8658 subr == DIF_SUBR_HTONLL || 8659 subr == DIF_SUBR_NTOHS || 8660 subr == DIF_SUBR_NTOHL || 8661 subr == DIF_SUBR_NTOHLL) 8662 break; 8663 8664 err += efunc(pc, "invalid subr %u\n", subr); 8665 break; 8666 8667 default: 8668 err += efunc(pc, "invalid opcode %u\n", 8669 DIF_INSTR_OP(instr)); 8670 } 8671 } 8672 8673 return (err); 8674 } 8675 8676 /* 8677 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8678 * basis; 0 if not. 8679 */ 8680 static int 8681 dtrace_difo_cacheable(dtrace_difo_t *dp) 8682 { 8683 int i; 8684 8685 if (dp == NULL) 8686 return (0); 8687 8688 for (i = 0; i < dp->dtdo_varlen; i++) { 8689 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8690 8691 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8692 continue; 8693 8694 switch (v->dtdv_id) { 8695 case DIF_VAR_CURTHREAD: 8696 case DIF_VAR_PID: 8697 case DIF_VAR_TID: 8698 case DIF_VAR_EXECNAME: 8699 case DIF_VAR_ZONENAME: 8700 break; 8701 8702 default: 8703 return (0); 8704 } 8705 } 8706 8707 /* 8708 * This DIF object may be cacheable. Now we need to look for any 8709 * array loading instructions, any memory loading instructions, or 8710 * any stores to thread-local variables. 8711 */ 8712 for (i = 0; i < dp->dtdo_len; i++) { 8713 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8714 8715 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8716 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8717 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8718 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8719 return (0); 8720 } 8721 8722 return (1); 8723 } 8724 8725 static void 8726 dtrace_difo_hold(dtrace_difo_t *dp) 8727 { 8728 int i; 8729 8730 ASSERT(MUTEX_HELD(&dtrace_lock)); 8731 8732 dp->dtdo_refcnt++; 8733 ASSERT(dp->dtdo_refcnt != 0); 8734 8735 /* 8736 * We need to check this DIF object for references to the variable 8737 * DIF_VAR_VTIMESTAMP. 8738 */ 8739 for (i = 0; i < dp->dtdo_varlen; i++) { 8740 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8741 8742 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8743 continue; 8744 8745 if (dtrace_vtime_references++ == 0) 8746 dtrace_vtime_enable(); 8747 } 8748 } 8749 8750 /* 8751 * This routine calculates the dynamic variable chunksize for a given DIF 8752 * object. The calculation is not fool-proof, and can probably be tricked by 8753 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8754 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8755 * if a dynamic variable size exceeds the chunksize. 8756 */ 8757 static void 8758 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8759 { 8760 uint64_t sval; 8761 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8762 const dif_instr_t *text = dp->dtdo_buf; 8763 uint_t pc, srd = 0; 8764 uint_t ttop = 0; 8765 size_t size, ksize; 8766 uint_t id, i; 8767 8768 for (pc = 0; pc < dp->dtdo_len; pc++) { 8769 dif_instr_t instr = text[pc]; 8770 uint_t op = DIF_INSTR_OP(instr); 8771 uint_t rd = DIF_INSTR_RD(instr); 8772 uint_t r1 = DIF_INSTR_R1(instr); 8773 uint_t nkeys = 0; 8774 uchar_t scope; 8775 8776 dtrace_key_t *key = tupregs; 8777 8778 switch (op) { 8779 case DIF_OP_SETX: 8780 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8781 srd = rd; 8782 continue; 8783 8784 case DIF_OP_STTS: 8785 key = &tupregs[DIF_DTR_NREGS]; 8786 key[0].dttk_size = 0; 8787 key[1].dttk_size = 0; 8788 nkeys = 2; 8789 scope = DIFV_SCOPE_THREAD; 8790 break; 8791 8792 case DIF_OP_STGAA: 8793 case DIF_OP_STTAA: 8794 nkeys = ttop; 8795 8796 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8797 key[nkeys++].dttk_size = 0; 8798 8799 key[nkeys++].dttk_size = 0; 8800 8801 if (op == DIF_OP_STTAA) { 8802 scope = DIFV_SCOPE_THREAD; 8803 } else { 8804 scope = DIFV_SCOPE_GLOBAL; 8805 } 8806 8807 break; 8808 8809 case DIF_OP_PUSHTR: 8810 if (ttop == DIF_DTR_NREGS) 8811 return; 8812 8813 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8814 /* 8815 * If the register for the size of the "pushtr" 8816 * is %r0 (or the value is 0) and the type is 8817 * a string, we'll use the system-wide default 8818 * string size. 8819 */ 8820 tupregs[ttop++].dttk_size = 8821 dtrace_strsize_default; 8822 } else { 8823 if (srd == 0) 8824 return; 8825 8826 tupregs[ttop++].dttk_size = sval; 8827 } 8828 8829 break; 8830 8831 case DIF_OP_PUSHTV: 8832 if (ttop == DIF_DTR_NREGS) 8833 return; 8834 8835 tupregs[ttop++].dttk_size = 0; 8836 break; 8837 8838 case DIF_OP_FLUSHTS: 8839 ttop = 0; 8840 break; 8841 8842 case DIF_OP_POPTS: 8843 if (ttop != 0) 8844 ttop--; 8845 break; 8846 } 8847 8848 sval = 0; 8849 srd = 0; 8850 8851 if (nkeys == 0) 8852 continue; 8853 8854 /* 8855 * We have a dynamic variable allocation; calculate its size. 8856 */ 8857 for (ksize = 0, i = 0; i < nkeys; i++) 8858 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8859 8860 size = sizeof (dtrace_dynvar_t); 8861 size += sizeof (dtrace_key_t) * (nkeys - 1); 8862 size += ksize; 8863 8864 /* 8865 * Now we need to determine the size of the stored data. 8866 */ 8867 id = DIF_INSTR_VAR(instr); 8868 8869 for (i = 0; i < dp->dtdo_varlen; i++) { 8870 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8871 8872 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8873 size += v->dtdv_type.dtdt_size; 8874 break; 8875 } 8876 } 8877 8878 if (i == dp->dtdo_varlen) 8879 return; 8880 8881 /* 8882 * We have the size. If this is larger than the chunk size 8883 * for our dynamic variable state, reset the chunk size. 8884 */ 8885 size = P2ROUNDUP(size, sizeof (uint64_t)); 8886 8887 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8888 vstate->dtvs_dynvars.dtds_chunksize = size; 8889 } 8890 } 8891 8892 static void 8893 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8894 { 8895 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8896 uint_t id; 8897 8898 ASSERT(MUTEX_HELD(&dtrace_lock)); 8899 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8900 8901 for (i = 0; i < dp->dtdo_varlen; i++) { 8902 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8903 dtrace_statvar_t *svar, ***svarp; 8904 size_t dsize = 0; 8905 uint8_t scope = v->dtdv_scope; 8906 int *np; 8907 8908 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8909 continue; 8910 8911 id -= DIF_VAR_OTHER_UBASE; 8912 8913 switch (scope) { 8914 case DIFV_SCOPE_THREAD: 8915 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8916 dtrace_difv_t *tlocals; 8917 8918 if ((ntlocals = (otlocals << 1)) == 0) 8919 ntlocals = 1; 8920 8921 osz = otlocals * sizeof (dtrace_difv_t); 8922 nsz = ntlocals * sizeof (dtrace_difv_t); 8923 8924 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8925 8926 if (osz != 0) { 8927 bcopy(vstate->dtvs_tlocals, 8928 tlocals, osz); 8929 kmem_free(vstate->dtvs_tlocals, osz); 8930 } 8931 8932 vstate->dtvs_tlocals = tlocals; 8933 vstate->dtvs_ntlocals = ntlocals; 8934 } 8935 8936 vstate->dtvs_tlocals[id] = *v; 8937 continue; 8938 8939 case DIFV_SCOPE_LOCAL: 8940 np = &vstate->dtvs_nlocals; 8941 svarp = &vstate->dtvs_locals; 8942 8943 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8944 dsize = NCPU * (v->dtdv_type.dtdt_size + 8945 sizeof (uint64_t)); 8946 else 8947 dsize = NCPU * sizeof (uint64_t); 8948 8949 break; 8950 8951 case DIFV_SCOPE_GLOBAL: 8952 np = &vstate->dtvs_nglobals; 8953 svarp = &vstate->dtvs_globals; 8954 8955 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8956 dsize = v->dtdv_type.dtdt_size + 8957 sizeof (uint64_t); 8958 8959 break; 8960 8961 default: 8962 ASSERT(0); 8963 } 8964 8965 while (id >= (oldsvars = *np)) { 8966 dtrace_statvar_t **statics; 8967 int newsvars, oldsize, newsize; 8968 8969 if ((newsvars = (oldsvars << 1)) == 0) 8970 newsvars = 1; 8971 8972 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8973 newsize = newsvars * sizeof (dtrace_statvar_t *); 8974 8975 statics = kmem_zalloc(newsize, KM_SLEEP); 8976 8977 if (oldsize != 0) { 8978 bcopy(*svarp, statics, oldsize); 8979 kmem_free(*svarp, oldsize); 8980 } 8981 8982 *svarp = statics; 8983 *np = newsvars; 8984 } 8985 8986 if ((svar = (*svarp)[id]) == NULL) { 8987 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8988 svar->dtsv_var = *v; 8989 8990 if ((svar->dtsv_size = dsize) != 0) { 8991 svar->dtsv_data = (uint64_t)(uintptr_t) 8992 kmem_zalloc(dsize, KM_SLEEP); 8993 } 8994 8995 (*svarp)[id] = svar; 8996 } 8997 8998 svar->dtsv_refcnt++; 8999 } 9000 9001 dtrace_difo_chunksize(dp, vstate); 9002 dtrace_difo_hold(dp); 9003 } 9004 9005 static dtrace_difo_t * 9006 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9007 { 9008 dtrace_difo_t *new; 9009 size_t sz; 9010 9011 ASSERT(dp->dtdo_buf != NULL); 9012 ASSERT(dp->dtdo_refcnt != 0); 9013 9014 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9015 9016 ASSERT(dp->dtdo_buf != NULL); 9017 sz = dp->dtdo_len * sizeof (dif_instr_t); 9018 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9019 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9020 new->dtdo_len = dp->dtdo_len; 9021 9022 if (dp->dtdo_strtab != NULL) { 9023 ASSERT(dp->dtdo_strlen != 0); 9024 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9025 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9026 new->dtdo_strlen = dp->dtdo_strlen; 9027 } 9028 9029 if (dp->dtdo_inttab != NULL) { 9030 ASSERT(dp->dtdo_intlen != 0); 9031 sz = dp->dtdo_intlen * sizeof (uint64_t); 9032 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9033 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9034 new->dtdo_intlen = dp->dtdo_intlen; 9035 } 9036 9037 if (dp->dtdo_vartab != NULL) { 9038 ASSERT(dp->dtdo_varlen != 0); 9039 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9040 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9041 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9042 new->dtdo_varlen = dp->dtdo_varlen; 9043 } 9044 9045 dtrace_difo_init(new, vstate); 9046 return (new); 9047 } 9048 9049 static void 9050 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9051 { 9052 int i; 9053 9054 ASSERT(dp->dtdo_refcnt == 0); 9055 9056 for (i = 0; i < dp->dtdo_varlen; i++) { 9057 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9058 dtrace_statvar_t *svar, **svarp; 9059 uint_t id; 9060 uint8_t scope = v->dtdv_scope; 9061 int *np; 9062 9063 switch (scope) { 9064 case DIFV_SCOPE_THREAD: 9065 continue; 9066 9067 case DIFV_SCOPE_LOCAL: 9068 np = &vstate->dtvs_nlocals; 9069 svarp = vstate->dtvs_locals; 9070 break; 9071 9072 case DIFV_SCOPE_GLOBAL: 9073 np = &vstate->dtvs_nglobals; 9074 svarp = vstate->dtvs_globals; 9075 break; 9076 9077 default: 9078 ASSERT(0); 9079 } 9080 9081 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9082 continue; 9083 9084 id -= DIF_VAR_OTHER_UBASE; 9085 ASSERT(id < *np); 9086 9087 svar = svarp[id]; 9088 ASSERT(svar != NULL); 9089 ASSERT(svar->dtsv_refcnt > 0); 9090 9091 if (--svar->dtsv_refcnt > 0) 9092 continue; 9093 9094 if (svar->dtsv_size != 0) { 9095 ASSERT(svar->dtsv_data != NULL); 9096 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9097 svar->dtsv_size); 9098 } 9099 9100 kmem_free(svar, sizeof (dtrace_statvar_t)); 9101 svarp[id] = NULL; 9102 } 9103 9104 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9105 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9106 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9107 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9108 9109 kmem_free(dp, sizeof (dtrace_difo_t)); 9110 } 9111 9112 static void 9113 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9114 { 9115 int i; 9116 9117 ASSERT(MUTEX_HELD(&dtrace_lock)); 9118 ASSERT(dp->dtdo_refcnt != 0); 9119 9120 for (i = 0; i < dp->dtdo_varlen; i++) { 9121 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9122 9123 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9124 continue; 9125 9126 ASSERT(dtrace_vtime_references > 0); 9127 if (--dtrace_vtime_references == 0) 9128 dtrace_vtime_disable(); 9129 } 9130 9131 if (--dp->dtdo_refcnt == 0) 9132 dtrace_difo_destroy(dp, vstate); 9133 } 9134 9135 /* 9136 * DTrace Format Functions 9137 */ 9138 static uint16_t 9139 dtrace_format_add(dtrace_state_t *state, char *str) 9140 { 9141 char *fmt, **new; 9142 uint16_t ndx, len = strlen(str) + 1; 9143 9144 fmt = kmem_zalloc(len, KM_SLEEP); 9145 bcopy(str, fmt, len); 9146 9147 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9148 if (state->dts_formats[ndx] == NULL) { 9149 state->dts_formats[ndx] = fmt; 9150 return (ndx + 1); 9151 } 9152 } 9153 9154 if (state->dts_nformats == USHRT_MAX) { 9155 /* 9156 * This is only likely if a denial-of-service attack is being 9157 * attempted. As such, it's okay to fail silently here. 9158 */ 9159 kmem_free(fmt, len); 9160 return (0); 9161 } 9162 9163 /* 9164 * For simplicity, we always resize the formats array to be exactly the 9165 * number of formats. 9166 */ 9167 ndx = state->dts_nformats++; 9168 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9169 9170 if (state->dts_formats != NULL) { 9171 ASSERT(ndx != 0); 9172 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9173 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9174 } 9175 9176 state->dts_formats = new; 9177 state->dts_formats[ndx] = fmt; 9178 9179 return (ndx + 1); 9180 } 9181 9182 static void 9183 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9184 { 9185 char *fmt; 9186 9187 ASSERT(state->dts_formats != NULL); 9188 ASSERT(format <= state->dts_nformats); 9189 ASSERT(state->dts_formats[format - 1] != NULL); 9190 9191 fmt = state->dts_formats[format - 1]; 9192 kmem_free(fmt, strlen(fmt) + 1); 9193 state->dts_formats[format - 1] = NULL; 9194 } 9195 9196 static void 9197 dtrace_format_destroy(dtrace_state_t *state) 9198 { 9199 int i; 9200 9201 if (state->dts_nformats == 0) { 9202 ASSERT(state->dts_formats == NULL); 9203 return; 9204 } 9205 9206 ASSERT(state->dts_formats != NULL); 9207 9208 for (i = 0; i < state->dts_nformats; i++) { 9209 char *fmt = state->dts_formats[i]; 9210 9211 if (fmt == NULL) 9212 continue; 9213 9214 kmem_free(fmt, strlen(fmt) + 1); 9215 } 9216 9217 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9218 state->dts_nformats = 0; 9219 state->dts_formats = NULL; 9220 } 9221 9222 /* 9223 * DTrace Predicate Functions 9224 */ 9225 static dtrace_predicate_t * 9226 dtrace_predicate_create(dtrace_difo_t *dp) 9227 { 9228 dtrace_predicate_t *pred; 9229 9230 ASSERT(MUTEX_HELD(&dtrace_lock)); 9231 ASSERT(dp->dtdo_refcnt != 0); 9232 9233 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9234 pred->dtp_difo = dp; 9235 pred->dtp_refcnt = 1; 9236 9237 if (!dtrace_difo_cacheable(dp)) 9238 return (pred); 9239 9240 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9241 /* 9242 * This is only theoretically possible -- we have had 2^32 9243 * cacheable predicates on this machine. We cannot allow any 9244 * more predicates to become cacheable: as unlikely as it is, 9245 * there may be a thread caching a (now stale) predicate cache 9246 * ID. (N.B.: the temptation is being successfully resisted to 9247 * have this cmn_err() "Holy shit -- we executed this code!") 9248 */ 9249 return (pred); 9250 } 9251 9252 pred->dtp_cacheid = dtrace_predcache_id++; 9253 9254 return (pred); 9255 } 9256 9257 static void 9258 dtrace_predicate_hold(dtrace_predicate_t *pred) 9259 { 9260 ASSERT(MUTEX_HELD(&dtrace_lock)); 9261 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9262 ASSERT(pred->dtp_refcnt > 0); 9263 9264 pred->dtp_refcnt++; 9265 } 9266 9267 static void 9268 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9269 { 9270 dtrace_difo_t *dp = pred->dtp_difo; 9271 9272 ASSERT(MUTEX_HELD(&dtrace_lock)); 9273 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9274 ASSERT(pred->dtp_refcnt > 0); 9275 9276 if (--pred->dtp_refcnt == 0) { 9277 dtrace_difo_release(pred->dtp_difo, vstate); 9278 kmem_free(pred, sizeof (dtrace_predicate_t)); 9279 } 9280 } 9281 9282 /* 9283 * DTrace Action Description Functions 9284 */ 9285 static dtrace_actdesc_t * 9286 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9287 uint64_t uarg, uint64_t arg) 9288 { 9289 dtrace_actdesc_t *act; 9290 9291 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9292 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9293 9294 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9295 act->dtad_kind = kind; 9296 act->dtad_ntuple = ntuple; 9297 act->dtad_uarg = uarg; 9298 act->dtad_arg = arg; 9299 act->dtad_refcnt = 1; 9300 9301 return (act); 9302 } 9303 9304 static void 9305 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9306 { 9307 ASSERT(act->dtad_refcnt >= 1); 9308 act->dtad_refcnt++; 9309 } 9310 9311 static void 9312 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9313 { 9314 dtrace_actkind_t kind = act->dtad_kind; 9315 dtrace_difo_t *dp; 9316 9317 ASSERT(act->dtad_refcnt >= 1); 9318 9319 if (--act->dtad_refcnt != 0) 9320 return; 9321 9322 if ((dp = act->dtad_difo) != NULL) 9323 dtrace_difo_release(dp, vstate); 9324 9325 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9326 char *str = (char *)(uintptr_t)act->dtad_arg; 9327 9328 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9329 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9330 9331 if (str != NULL) 9332 kmem_free(str, strlen(str) + 1); 9333 } 9334 9335 kmem_free(act, sizeof (dtrace_actdesc_t)); 9336 } 9337 9338 /* 9339 * DTrace ECB Functions 9340 */ 9341 static dtrace_ecb_t * 9342 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9343 { 9344 dtrace_ecb_t *ecb; 9345 dtrace_epid_t epid; 9346 9347 ASSERT(MUTEX_HELD(&dtrace_lock)); 9348 9349 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9350 ecb->dte_predicate = NULL; 9351 ecb->dte_probe = probe; 9352 9353 /* 9354 * The default size is the size of the default action: recording 9355 * the epid. 9356 */ 9357 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9358 ecb->dte_alignment = sizeof (dtrace_epid_t); 9359 9360 epid = state->dts_epid++; 9361 9362 if (epid - 1 >= state->dts_necbs) { 9363 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9364 int necbs = state->dts_necbs << 1; 9365 9366 ASSERT(epid == state->dts_necbs + 1); 9367 9368 if (necbs == 0) { 9369 ASSERT(oecbs == NULL); 9370 necbs = 1; 9371 } 9372 9373 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9374 9375 if (oecbs != NULL) 9376 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9377 9378 dtrace_membar_producer(); 9379 state->dts_ecbs = ecbs; 9380 9381 if (oecbs != NULL) { 9382 /* 9383 * If this state is active, we must dtrace_sync() 9384 * before we can free the old dts_ecbs array: we're 9385 * coming in hot, and there may be active ring 9386 * buffer processing (which indexes into the dts_ecbs 9387 * array) on another CPU. 9388 */ 9389 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9390 dtrace_sync(); 9391 9392 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9393 } 9394 9395 dtrace_membar_producer(); 9396 state->dts_necbs = necbs; 9397 } 9398 9399 ecb->dte_state = state; 9400 9401 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9402 dtrace_membar_producer(); 9403 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9404 9405 return (ecb); 9406 } 9407 9408 static int 9409 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9410 { 9411 dtrace_probe_t *probe = ecb->dte_probe; 9412 9413 ASSERT(MUTEX_HELD(&cpu_lock)); 9414 ASSERT(MUTEX_HELD(&dtrace_lock)); 9415 ASSERT(ecb->dte_next == NULL); 9416 9417 if (probe == NULL) { 9418 /* 9419 * This is the NULL probe -- there's nothing to do. 9420 */ 9421 return (0); 9422 } 9423 9424 if (probe->dtpr_ecb == NULL) { 9425 dtrace_provider_t *prov = probe->dtpr_provider; 9426 9427 /* 9428 * We're the first ECB on this probe. 9429 */ 9430 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9431 9432 if (ecb->dte_predicate != NULL) 9433 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9434 9435 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9436 probe->dtpr_id, probe->dtpr_arg)); 9437 } else { 9438 /* 9439 * This probe is already active. Swing the last pointer to 9440 * point to the new ECB, and issue a dtrace_sync() to assure 9441 * that all CPUs have seen the change. 9442 */ 9443 ASSERT(probe->dtpr_ecb_last != NULL); 9444 probe->dtpr_ecb_last->dte_next = ecb; 9445 probe->dtpr_ecb_last = ecb; 9446 probe->dtpr_predcache = 0; 9447 9448 dtrace_sync(); 9449 return (0); 9450 } 9451 } 9452 9453 static void 9454 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9455 { 9456 uint32_t maxalign = sizeof (dtrace_epid_t); 9457 uint32_t align = sizeof (uint8_t), offs, diff; 9458 dtrace_action_t *act; 9459 int wastuple = 0; 9460 uint32_t aggbase = UINT32_MAX; 9461 dtrace_state_t *state = ecb->dte_state; 9462 9463 /* 9464 * If we record anything, we always record the epid. (And we always 9465 * record it first.) 9466 */ 9467 offs = sizeof (dtrace_epid_t); 9468 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9469 9470 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9471 dtrace_recdesc_t *rec = &act->dta_rec; 9472 9473 if ((align = rec->dtrd_alignment) > maxalign) 9474 maxalign = align; 9475 9476 if (!wastuple && act->dta_intuple) { 9477 /* 9478 * This is the first record in a tuple. Align the 9479 * offset to be at offset 4 in an 8-byte aligned 9480 * block. 9481 */ 9482 diff = offs + sizeof (dtrace_aggid_t); 9483 9484 if (diff = (diff & (sizeof (uint64_t) - 1))) 9485 offs += sizeof (uint64_t) - diff; 9486 9487 aggbase = offs - sizeof (dtrace_aggid_t); 9488 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9489 } 9490 9491 /*LINTED*/ 9492 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9493 /* 9494 * The current offset is not properly aligned; align it. 9495 */ 9496 offs += align - diff; 9497 } 9498 9499 rec->dtrd_offset = offs; 9500 9501 if (offs + rec->dtrd_size > ecb->dte_needed) { 9502 ecb->dte_needed = offs + rec->dtrd_size; 9503 9504 if (ecb->dte_needed > state->dts_needed) 9505 state->dts_needed = ecb->dte_needed; 9506 } 9507 9508 if (DTRACEACT_ISAGG(act->dta_kind)) { 9509 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9510 dtrace_action_t *first = agg->dtag_first, *prev; 9511 9512 ASSERT(rec->dtrd_size != 0 && first != NULL); 9513 ASSERT(wastuple); 9514 ASSERT(aggbase != UINT32_MAX); 9515 9516 agg->dtag_base = aggbase; 9517 9518 while ((prev = first->dta_prev) != NULL && 9519 DTRACEACT_ISAGG(prev->dta_kind)) { 9520 agg = (dtrace_aggregation_t *)prev; 9521 first = agg->dtag_first; 9522 } 9523 9524 if (prev != NULL) { 9525 offs = prev->dta_rec.dtrd_offset + 9526 prev->dta_rec.dtrd_size; 9527 } else { 9528 offs = sizeof (dtrace_epid_t); 9529 } 9530 wastuple = 0; 9531 } else { 9532 if (!act->dta_intuple) 9533 ecb->dte_size = offs + rec->dtrd_size; 9534 9535 offs += rec->dtrd_size; 9536 } 9537 9538 wastuple = act->dta_intuple; 9539 } 9540 9541 if ((act = ecb->dte_action) != NULL && 9542 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9543 ecb->dte_size == sizeof (dtrace_epid_t)) { 9544 /* 9545 * If the size is still sizeof (dtrace_epid_t), then all 9546 * actions store no data; set the size to 0. 9547 */ 9548 ecb->dte_alignment = maxalign; 9549 ecb->dte_size = 0; 9550 9551 /* 9552 * If the needed space is still sizeof (dtrace_epid_t), then 9553 * all actions need no additional space; set the needed 9554 * size to 0. 9555 */ 9556 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9557 ecb->dte_needed = 0; 9558 9559 return; 9560 } 9561 9562 /* 9563 * Set our alignment, and make sure that the dte_size and dte_needed 9564 * are aligned to the size of an EPID. 9565 */ 9566 ecb->dte_alignment = maxalign; 9567 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9568 ~(sizeof (dtrace_epid_t) - 1); 9569 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9570 ~(sizeof (dtrace_epid_t) - 1); 9571 ASSERT(ecb->dte_size <= ecb->dte_needed); 9572 } 9573 9574 static dtrace_action_t * 9575 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9576 { 9577 dtrace_aggregation_t *agg; 9578 size_t size = sizeof (uint64_t); 9579 int ntuple = desc->dtad_ntuple; 9580 dtrace_action_t *act; 9581 dtrace_recdesc_t *frec; 9582 dtrace_aggid_t aggid; 9583 dtrace_state_t *state = ecb->dte_state; 9584 9585 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9586 agg->dtag_ecb = ecb; 9587 9588 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9589 9590 switch (desc->dtad_kind) { 9591 case DTRACEAGG_MIN: 9592 agg->dtag_initial = INT64_MAX; 9593 agg->dtag_aggregate = dtrace_aggregate_min; 9594 break; 9595 9596 case DTRACEAGG_MAX: 9597 agg->dtag_initial = INT64_MIN; 9598 agg->dtag_aggregate = dtrace_aggregate_max; 9599 break; 9600 9601 case DTRACEAGG_COUNT: 9602 agg->dtag_aggregate = dtrace_aggregate_count; 9603 break; 9604 9605 case DTRACEAGG_QUANTIZE: 9606 agg->dtag_aggregate = dtrace_aggregate_quantize; 9607 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9608 sizeof (uint64_t); 9609 break; 9610 9611 case DTRACEAGG_LQUANTIZE: { 9612 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9613 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9614 9615 agg->dtag_initial = desc->dtad_arg; 9616 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9617 9618 if (step == 0 || levels == 0) 9619 goto err; 9620 9621 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9622 break; 9623 } 9624 9625 case DTRACEAGG_LLQUANTIZE: { 9626 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9627 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9628 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9629 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9630 int64_t v; 9631 9632 agg->dtag_initial = desc->dtad_arg; 9633 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9634 9635 if (factor < 2 || low >= high || nsteps < factor) 9636 goto err; 9637 9638 /* 9639 * Now check that the number of steps evenly divides a power 9640 * of the factor. (This assures both integer bucket size and 9641 * linearity within each magnitude.) 9642 */ 9643 for (v = factor; v < nsteps; v *= factor) 9644 continue; 9645 9646 if ((v % nsteps) || (nsteps % factor)) 9647 goto err; 9648 9649 size = (dtrace_aggregate_llquantize_bucket(factor, 9650 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9651 break; 9652 } 9653 9654 case DTRACEAGG_AVG: 9655 agg->dtag_aggregate = dtrace_aggregate_avg; 9656 size = sizeof (uint64_t) * 2; 9657 break; 9658 9659 case DTRACEAGG_STDDEV: 9660 agg->dtag_aggregate = dtrace_aggregate_stddev; 9661 size = sizeof (uint64_t) * 4; 9662 break; 9663 9664 case DTRACEAGG_SUM: 9665 agg->dtag_aggregate = dtrace_aggregate_sum; 9666 break; 9667 9668 default: 9669 goto err; 9670 } 9671 9672 agg->dtag_action.dta_rec.dtrd_size = size; 9673 9674 if (ntuple == 0) 9675 goto err; 9676 9677 /* 9678 * We must make sure that we have enough actions for the n-tuple. 9679 */ 9680 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9681 if (DTRACEACT_ISAGG(act->dta_kind)) 9682 break; 9683 9684 if (--ntuple == 0) { 9685 /* 9686 * This is the action with which our n-tuple begins. 9687 */ 9688 agg->dtag_first = act; 9689 goto success; 9690 } 9691 } 9692 9693 /* 9694 * This n-tuple is short by ntuple elements. Return failure. 9695 */ 9696 ASSERT(ntuple != 0); 9697 err: 9698 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9699 return (NULL); 9700 9701 success: 9702 /* 9703 * If the last action in the tuple has a size of zero, it's actually 9704 * an expression argument for the aggregating action. 9705 */ 9706 ASSERT(ecb->dte_action_last != NULL); 9707 act = ecb->dte_action_last; 9708 9709 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9710 ASSERT(act->dta_difo != NULL); 9711 9712 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9713 agg->dtag_hasarg = 1; 9714 } 9715 9716 /* 9717 * We need to allocate an id for this aggregation. 9718 */ 9719 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9720 VM_BESTFIT | VM_SLEEP); 9721 9722 if (aggid - 1 >= state->dts_naggregations) { 9723 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9724 dtrace_aggregation_t **aggs; 9725 int naggs = state->dts_naggregations << 1; 9726 int onaggs = state->dts_naggregations; 9727 9728 ASSERT(aggid == state->dts_naggregations + 1); 9729 9730 if (naggs == 0) { 9731 ASSERT(oaggs == NULL); 9732 naggs = 1; 9733 } 9734 9735 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9736 9737 if (oaggs != NULL) { 9738 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9739 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9740 } 9741 9742 state->dts_aggregations = aggs; 9743 state->dts_naggregations = naggs; 9744 } 9745 9746 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9747 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9748 9749 frec = &agg->dtag_first->dta_rec; 9750 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9751 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9752 9753 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9754 ASSERT(!act->dta_intuple); 9755 act->dta_intuple = 1; 9756 } 9757 9758 return (&agg->dtag_action); 9759 } 9760 9761 static void 9762 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9763 { 9764 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9765 dtrace_state_t *state = ecb->dte_state; 9766 dtrace_aggid_t aggid = agg->dtag_id; 9767 9768 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9769 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9770 9771 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9772 state->dts_aggregations[aggid - 1] = NULL; 9773 9774 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9775 } 9776 9777 static int 9778 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9779 { 9780 dtrace_action_t *action, *last; 9781 dtrace_difo_t *dp = desc->dtad_difo; 9782 uint32_t size = 0, align = sizeof (uint8_t), mask; 9783 uint16_t format = 0; 9784 dtrace_recdesc_t *rec; 9785 dtrace_state_t *state = ecb->dte_state; 9786 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9787 uint64_t arg = desc->dtad_arg; 9788 9789 ASSERT(MUTEX_HELD(&dtrace_lock)); 9790 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9791 9792 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9793 /* 9794 * If this is an aggregating action, there must be neither 9795 * a speculate nor a commit on the action chain. 9796 */ 9797 dtrace_action_t *act; 9798 9799 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9800 if (act->dta_kind == DTRACEACT_COMMIT) 9801 return (EINVAL); 9802 9803 if (act->dta_kind == DTRACEACT_SPECULATE) 9804 return (EINVAL); 9805 } 9806 9807 action = dtrace_ecb_aggregation_create(ecb, desc); 9808 9809 if (action == NULL) 9810 return (EINVAL); 9811 } else { 9812 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9813 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9814 dp != NULL && dp->dtdo_destructive)) { 9815 state->dts_destructive = 1; 9816 } 9817 9818 switch (desc->dtad_kind) { 9819 case DTRACEACT_PRINTF: 9820 case DTRACEACT_PRINTA: 9821 case DTRACEACT_SYSTEM: 9822 case DTRACEACT_FREOPEN: 9823 case DTRACEACT_DIFEXPR: 9824 /* 9825 * We know that our arg is a string -- turn it into a 9826 * format. 9827 */ 9828 if (arg == NULL) { 9829 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 9830 desc->dtad_kind == DTRACEACT_DIFEXPR); 9831 format = 0; 9832 } else { 9833 ASSERT(arg != NULL); 9834 ASSERT(arg > KERNELBASE); 9835 format = dtrace_format_add(state, 9836 (char *)(uintptr_t)arg); 9837 } 9838 9839 /*FALLTHROUGH*/ 9840 case DTRACEACT_LIBACT: 9841 case DTRACEACT_TRACEMEM: 9842 case DTRACEACT_TRACEMEM_DYNSIZE: 9843 if (dp == NULL) 9844 return (EINVAL); 9845 9846 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9847 break; 9848 9849 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9850 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9851 return (EINVAL); 9852 9853 size = opt[DTRACEOPT_STRSIZE]; 9854 } 9855 9856 break; 9857 9858 case DTRACEACT_STACK: 9859 if ((nframes = arg) == 0) { 9860 nframes = opt[DTRACEOPT_STACKFRAMES]; 9861 ASSERT(nframes > 0); 9862 arg = nframes; 9863 } 9864 9865 size = nframes * sizeof (pc_t); 9866 break; 9867 9868 case DTRACEACT_JSTACK: 9869 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9870 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9871 9872 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9873 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9874 9875 arg = DTRACE_USTACK_ARG(nframes, strsize); 9876 9877 /*FALLTHROUGH*/ 9878 case DTRACEACT_USTACK: 9879 if (desc->dtad_kind != DTRACEACT_JSTACK && 9880 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9881 strsize = DTRACE_USTACK_STRSIZE(arg); 9882 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9883 ASSERT(nframes > 0); 9884 arg = DTRACE_USTACK_ARG(nframes, strsize); 9885 } 9886 9887 /* 9888 * Save a slot for the pid. 9889 */ 9890 size = (nframes + 1) * sizeof (uint64_t); 9891 size += DTRACE_USTACK_STRSIZE(arg); 9892 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9893 9894 break; 9895 9896 case DTRACEACT_SYM: 9897 case DTRACEACT_MOD: 9898 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9899 sizeof (uint64_t)) || 9900 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9901 return (EINVAL); 9902 break; 9903 9904 case DTRACEACT_USYM: 9905 case DTRACEACT_UMOD: 9906 case DTRACEACT_UADDR: 9907 if (dp == NULL || 9908 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9909 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9910 return (EINVAL); 9911 9912 /* 9913 * We have a slot for the pid, plus a slot for the 9914 * argument. To keep things simple (aligned with 9915 * bitness-neutral sizing), we store each as a 64-bit 9916 * quantity. 9917 */ 9918 size = 2 * sizeof (uint64_t); 9919 break; 9920 9921 case DTRACEACT_STOP: 9922 case DTRACEACT_BREAKPOINT: 9923 case DTRACEACT_PANIC: 9924 break; 9925 9926 case DTRACEACT_CHILL: 9927 case DTRACEACT_DISCARD: 9928 case DTRACEACT_RAISE: 9929 if (dp == NULL) 9930 return (EINVAL); 9931 break; 9932 9933 case DTRACEACT_EXIT: 9934 if (dp == NULL || 9935 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9936 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9937 return (EINVAL); 9938 break; 9939 9940 case DTRACEACT_SPECULATE: 9941 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9942 return (EINVAL); 9943 9944 if (dp == NULL) 9945 return (EINVAL); 9946 9947 state->dts_speculates = 1; 9948 break; 9949 9950 case DTRACEACT_COMMIT: { 9951 dtrace_action_t *act = ecb->dte_action; 9952 9953 for (; act != NULL; act = act->dta_next) { 9954 if (act->dta_kind == DTRACEACT_COMMIT) 9955 return (EINVAL); 9956 } 9957 9958 if (dp == NULL) 9959 return (EINVAL); 9960 break; 9961 } 9962 9963 default: 9964 return (EINVAL); 9965 } 9966 9967 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9968 /* 9969 * If this is a data-storing action or a speculate, 9970 * we must be sure that there isn't a commit on the 9971 * action chain. 9972 */ 9973 dtrace_action_t *act = ecb->dte_action; 9974 9975 for (; act != NULL; act = act->dta_next) { 9976 if (act->dta_kind == DTRACEACT_COMMIT) 9977 return (EINVAL); 9978 } 9979 } 9980 9981 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9982 action->dta_rec.dtrd_size = size; 9983 } 9984 9985 action->dta_refcnt = 1; 9986 rec = &action->dta_rec; 9987 size = rec->dtrd_size; 9988 9989 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9990 if (!(size & mask)) { 9991 align = mask + 1; 9992 break; 9993 } 9994 } 9995 9996 action->dta_kind = desc->dtad_kind; 9997 9998 if ((action->dta_difo = dp) != NULL) 9999 dtrace_difo_hold(dp); 10000 10001 rec->dtrd_action = action->dta_kind; 10002 rec->dtrd_arg = arg; 10003 rec->dtrd_uarg = desc->dtad_uarg; 10004 rec->dtrd_alignment = (uint16_t)align; 10005 rec->dtrd_format = format; 10006 10007 if ((last = ecb->dte_action_last) != NULL) { 10008 ASSERT(ecb->dte_action != NULL); 10009 action->dta_prev = last; 10010 last->dta_next = action; 10011 } else { 10012 ASSERT(ecb->dte_action == NULL); 10013 ecb->dte_action = action; 10014 } 10015 10016 ecb->dte_action_last = action; 10017 10018 return (0); 10019 } 10020 10021 static void 10022 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10023 { 10024 dtrace_action_t *act = ecb->dte_action, *next; 10025 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10026 dtrace_difo_t *dp; 10027 uint16_t format; 10028 10029 if (act != NULL && act->dta_refcnt > 1) { 10030 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10031 act->dta_refcnt--; 10032 } else { 10033 for (; act != NULL; act = next) { 10034 next = act->dta_next; 10035 ASSERT(next != NULL || act == ecb->dte_action_last); 10036 ASSERT(act->dta_refcnt == 1); 10037 10038 if ((format = act->dta_rec.dtrd_format) != 0) 10039 dtrace_format_remove(ecb->dte_state, format); 10040 10041 if ((dp = act->dta_difo) != NULL) 10042 dtrace_difo_release(dp, vstate); 10043 10044 if (DTRACEACT_ISAGG(act->dta_kind)) { 10045 dtrace_ecb_aggregation_destroy(ecb, act); 10046 } else { 10047 kmem_free(act, sizeof (dtrace_action_t)); 10048 } 10049 } 10050 } 10051 10052 ecb->dte_action = NULL; 10053 ecb->dte_action_last = NULL; 10054 ecb->dte_size = sizeof (dtrace_epid_t); 10055 } 10056 10057 static void 10058 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10059 { 10060 /* 10061 * We disable the ECB by removing it from its probe. 10062 */ 10063 dtrace_ecb_t *pecb, *prev = NULL; 10064 dtrace_probe_t *probe = ecb->dte_probe; 10065 10066 ASSERT(MUTEX_HELD(&dtrace_lock)); 10067 10068 if (probe == NULL) { 10069 /* 10070 * This is the NULL probe; there is nothing to disable. 10071 */ 10072 return; 10073 } 10074 10075 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10076 if (pecb == ecb) 10077 break; 10078 prev = pecb; 10079 } 10080 10081 ASSERT(pecb != NULL); 10082 10083 if (prev == NULL) { 10084 probe->dtpr_ecb = ecb->dte_next; 10085 } else { 10086 prev->dte_next = ecb->dte_next; 10087 } 10088 10089 if (ecb == probe->dtpr_ecb_last) { 10090 ASSERT(ecb->dte_next == NULL); 10091 probe->dtpr_ecb_last = prev; 10092 } 10093 10094 /* 10095 * The ECB has been disconnected from the probe; now sync to assure 10096 * that all CPUs have seen the change before returning. 10097 */ 10098 dtrace_sync(); 10099 10100 if (probe->dtpr_ecb == NULL) { 10101 /* 10102 * That was the last ECB on the probe; clear the predicate 10103 * cache ID for the probe, disable it and sync one more time 10104 * to assure that we'll never hit it again. 10105 */ 10106 dtrace_provider_t *prov = probe->dtpr_provider; 10107 10108 ASSERT(ecb->dte_next == NULL); 10109 ASSERT(probe->dtpr_ecb_last == NULL); 10110 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10111 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10112 probe->dtpr_id, probe->dtpr_arg); 10113 dtrace_sync(); 10114 } else { 10115 /* 10116 * There is at least one ECB remaining on the probe. If there 10117 * is _exactly_ one, set the probe's predicate cache ID to be 10118 * the predicate cache ID of the remaining ECB. 10119 */ 10120 ASSERT(probe->dtpr_ecb_last != NULL); 10121 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10122 10123 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10124 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10125 10126 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10127 10128 if (p != NULL) 10129 probe->dtpr_predcache = p->dtp_cacheid; 10130 } 10131 10132 ecb->dte_next = NULL; 10133 } 10134 } 10135 10136 static void 10137 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10138 { 10139 dtrace_state_t *state = ecb->dte_state; 10140 dtrace_vstate_t *vstate = &state->dts_vstate; 10141 dtrace_predicate_t *pred; 10142 dtrace_epid_t epid = ecb->dte_epid; 10143 10144 ASSERT(MUTEX_HELD(&dtrace_lock)); 10145 ASSERT(ecb->dte_next == NULL); 10146 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10147 10148 if ((pred = ecb->dte_predicate) != NULL) 10149 dtrace_predicate_release(pred, vstate); 10150 10151 dtrace_ecb_action_remove(ecb); 10152 10153 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10154 state->dts_ecbs[epid - 1] = NULL; 10155 10156 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10157 } 10158 10159 static dtrace_ecb_t * 10160 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10161 dtrace_enabling_t *enab) 10162 { 10163 dtrace_ecb_t *ecb; 10164 dtrace_predicate_t *pred; 10165 dtrace_actdesc_t *act; 10166 dtrace_provider_t *prov; 10167 dtrace_ecbdesc_t *desc = enab->dten_current; 10168 10169 ASSERT(MUTEX_HELD(&dtrace_lock)); 10170 ASSERT(state != NULL); 10171 10172 ecb = dtrace_ecb_add(state, probe); 10173 ecb->dte_uarg = desc->dted_uarg; 10174 10175 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10176 dtrace_predicate_hold(pred); 10177 ecb->dte_predicate = pred; 10178 } 10179 10180 if (probe != NULL) { 10181 /* 10182 * If the provider shows more leg than the consumer is old 10183 * enough to see, we need to enable the appropriate implicit 10184 * predicate bits to prevent the ecb from activating at 10185 * revealing times. 10186 * 10187 * Providers specifying DTRACE_PRIV_USER at register time 10188 * are stating that they need the /proc-style privilege 10189 * model to be enforced, and this is what DTRACE_COND_OWNER 10190 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10191 */ 10192 prov = probe->dtpr_provider; 10193 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10194 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10195 ecb->dte_cond |= DTRACE_COND_OWNER; 10196 10197 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10198 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10199 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10200 10201 /* 10202 * If the provider shows us kernel innards and the user 10203 * is lacking sufficient privilege, enable the 10204 * DTRACE_COND_USERMODE implicit predicate. 10205 */ 10206 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10207 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10208 ecb->dte_cond |= DTRACE_COND_USERMODE; 10209 } 10210 10211 if (dtrace_ecb_create_cache != NULL) { 10212 /* 10213 * If we have a cached ecb, we'll use its action list instead 10214 * of creating our own (saving both time and space). 10215 */ 10216 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10217 dtrace_action_t *act = cached->dte_action; 10218 10219 if (act != NULL) { 10220 ASSERT(act->dta_refcnt > 0); 10221 act->dta_refcnt++; 10222 ecb->dte_action = act; 10223 ecb->dte_action_last = cached->dte_action_last; 10224 ecb->dte_needed = cached->dte_needed; 10225 ecb->dte_size = cached->dte_size; 10226 ecb->dte_alignment = cached->dte_alignment; 10227 } 10228 10229 return (ecb); 10230 } 10231 10232 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10233 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10234 dtrace_ecb_destroy(ecb); 10235 return (NULL); 10236 } 10237 } 10238 10239 dtrace_ecb_resize(ecb); 10240 10241 return (dtrace_ecb_create_cache = ecb); 10242 } 10243 10244 static int 10245 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10246 { 10247 dtrace_ecb_t *ecb; 10248 dtrace_enabling_t *enab = arg; 10249 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10250 10251 ASSERT(state != NULL); 10252 10253 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10254 /* 10255 * This probe was created in a generation for which this 10256 * enabling has previously created ECBs; we don't want to 10257 * enable it again, so just kick out. 10258 */ 10259 return (DTRACE_MATCH_NEXT); 10260 } 10261 10262 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10263 return (DTRACE_MATCH_DONE); 10264 10265 if (dtrace_ecb_enable(ecb) < 0) 10266 return (DTRACE_MATCH_FAIL); 10267 10268 return (DTRACE_MATCH_NEXT); 10269 } 10270 10271 static dtrace_ecb_t * 10272 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10273 { 10274 dtrace_ecb_t *ecb; 10275 10276 ASSERT(MUTEX_HELD(&dtrace_lock)); 10277 10278 if (id == 0 || id > state->dts_necbs) 10279 return (NULL); 10280 10281 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10282 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10283 10284 return (state->dts_ecbs[id - 1]); 10285 } 10286 10287 static dtrace_aggregation_t * 10288 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10289 { 10290 dtrace_aggregation_t *agg; 10291 10292 ASSERT(MUTEX_HELD(&dtrace_lock)); 10293 10294 if (id == 0 || id > state->dts_naggregations) 10295 return (NULL); 10296 10297 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10298 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10299 agg->dtag_id == id); 10300 10301 return (state->dts_aggregations[id - 1]); 10302 } 10303 10304 /* 10305 * DTrace Buffer Functions 10306 * 10307 * The following functions manipulate DTrace buffers. Most of these functions 10308 * are called in the context of establishing or processing consumer state; 10309 * exceptions are explicitly noted. 10310 */ 10311 10312 /* 10313 * Note: called from cross call context. This function switches the two 10314 * buffers on a given CPU. The atomicity of this operation is assured by 10315 * disabling interrupts while the actual switch takes place; the disabling of 10316 * interrupts serializes the execution with any execution of dtrace_probe() on 10317 * the same CPU. 10318 */ 10319 static void 10320 dtrace_buffer_switch(dtrace_buffer_t *buf) 10321 { 10322 caddr_t tomax = buf->dtb_tomax; 10323 caddr_t xamot = buf->dtb_xamot; 10324 dtrace_icookie_t cookie; 10325 hrtime_t now = dtrace_gethrtime(); 10326 10327 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10328 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10329 10330 cookie = dtrace_interrupt_disable(); 10331 buf->dtb_tomax = xamot; 10332 buf->dtb_xamot = tomax; 10333 buf->dtb_xamot_drops = buf->dtb_drops; 10334 buf->dtb_xamot_offset = buf->dtb_offset; 10335 buf->dtb_xamot_errors = buf->dtb_errors; 10336 buf->dtb_xamot_flags = buf->dtb_flags; 10337 buf->dtb_offset = 0; 10338 buf->dtb_drops = 0; 10339 buf->dtb_errors = 0; 10340 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10341 buf->dtb_interval = now - buf->dtb_switched; 10342 buf->dtb_switched = now; 10343 dtrace_interrupt_enable(cookie); 10344 } 10345 10346 /* 10347 * Note: called from cross call context. This function activates a buffer 10348 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10349 * is guaranteed by the disabling of interrupts. 10350 */ 10351 static void 10352 dtrace_buffer_activate(dtrace_state_t *state) 10353 { 10354 dtrace_buffer_t *buf; 10355 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10356 10357 buf = &state->dts_buffer[CPU->cpu_id]; 10358 10359 if (buf->dtb_tomax != NULL) { 10360 /* 10361 * We might like to assert that the buffer is marked inactive, 10362 * but this isn't necessarily true: the buffer for the CPU 10363 * that processes the BEGIN probe has its buffer activated 10364 * manually. In this case, we take the (harmless) action 10365 * re-clearing the bit INACTIVE bit. 10366 */ 10367 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10368 } 10369 10370 dtrace_interrupt_enable(cookie); 10371 } 10372 10373 static int 10374 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10375 processorid_t cpu, int *factor) 10376 { 10377 cpu_t *cp; 10378 dtrace_buffer_t *buf; 10379 int allocated = 0, desired = 0; 10380 10381 ASSERT(MUTEX_HELD(&cpu_lock)); 10382 ASSERT(MUTEX_HELD(&dtrace_lock)); 10383 10384 *factor = 1; 10385 10386 if (size > dtrace_nonroot_maxsize && 10387 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10388 return (EFBIG); 10389 10390 cp = cpu_list; 10391 10392 do { 10393 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10394 continue; 10395 10396 buf = &bufs[cp->cpu_id]; 10397 10398 /* 10399 * If there is already a buffer allocated for this CPU, it 10400 * is only possible that this is a DR event. In this case, 10401 * the buffer size must match our specified size. 10402 */ 10403 if (buf->dtb_tomax != NULL) { 10404 ASSERT(buf->dtb_size == size); 10405 continue; 10406 } 10407 10408 ASSERT(buf->dtb_xamot == NULL); 10409 10410 if ((buf->dtb_tomax = kmem_zalloc(size, 10411 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10412 goto err; 10413 10414 buf->dtb_size = size; 10415 buf->dtb_flags = flags; 10416 buf->dtb_offset = 0; 10417 buf->dtb_drops = 0; 10418 10419 if (flags & DTRACEBUF_NOSWITCH) 10420 continue; 10421 10422 if ((buf->dtb_xamot = kmem_zalloc(size, 10423 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10424 goto err; 10425 } while ((cp = cp->cpu_next) != cpu_list); 10426 10427 return (0); 10428 10429 err: 10430 cp = cpu_list; 10431 10432 do { 10433 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10434 continue; 10435 10436 buf = &bufs[cp->cpu_id]; 10437 desired += 2; 10438 10439 if (buf->dtb_xamot != NULL) { 10440 ASSERT(buf->dtb_tomax != NULL); 10441 ASSERT(buf->dtb_size == size); 10442 kmem_free(buf->dtb_xamot, size); 10443 allocated++; 10444 } 10445 10446 if (buf->dtb_tomax != NULL) { 10447 ASSERT(buf->dtb_size == size); 10448 kmem_free(buf->dtb_tomax, size); 10449 allocated++; 10450 } 10451 10452 buf->dtb_tomax = NULL; 10453 buf->dtb_xamot = NULL; 10454 buf->dtb_size = 0; 10455 } while ((cp = cp->cpu_next) != cpu_list); 10456 10457 *factor = desired / (allocated > 0 ? allocated : 1); 10458 10459 return (ENOMEM); 10460 } 10461 10462 /* 10463 * Note: called from probe context. This function just increments the drop 10464 * count on a buffer. It has been made a function to allow for the 10465 * possibility of understanding the source of mysterious drop counts. (A 10466 * problem for which one may be particularly disappointed that DTrace cannot 10467 * be used to understand DTrace.) 10468 */ 10469 static void 10470 dtrace_buffer_drop(dtrace_buffer_t *buf) 10471 { 10472 buf->dtb_drops++; 10473 } 10474 10475 /* 10476 * Note: called from probe context. This function is called to reserve space 10477 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10478 * mstate. Returns the new offset in the buffer, or a negative value if an 10479 * error has occurred. 10480 */ 10481 static intptr_t 10482 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10483 dtrace_state_t *state, dtrace_mstate_t *mstate) 10484 { 10485 intptr_t offs = buf->dtb_offset, soffs; 10486 intptr_t woffs; 10487 caddr_t tomax; 10488 size_t total; 10489 10490 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10491 return (-1); 10492 10493 if ((tomax = buf->dtb_tomax) == NULL) { 10494 dtrace_buffer_drop(buf); 10495 return (-1); 10496 } 10497 10498 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10499 while (offs & (align - 1)) { 10500 /* 10501 * Assert that our alignment is off by a number which 10502 * is itself sizeof (uint32_t) aligned. 10503 */ 10504 ASSERT(!((align - (offs & (align - 1))) & 10505 (sizeof (uint32_t) - 1))); 10506 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10507 offs += sizeof (uint32_t); 10508 } 10509 10510 if ((soffs = offs + needed) > buf->dtb_size) { 10511 dtrace_buffer_drop(buf); 10512 return (-1); 10513 } 10514 10515 if (mstate == NULL) 10516 return (offs); 10517 10518 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10519 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10520 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10521 10522 return (offs); 10523 } 10524 10525 if (buf->dtb_flags & DTRACEBUF_FILL) { 10526 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10527 (buf->dtb_flags & DTRACEBUF_FULL)) 10528 return (-1); 10529 goto out; 10530 } 10531 10532 total = needed + (offs & (align - 1)); 10533 10534 /* 10535 * For a ring buffer, life is quite a bit more complicated. Before 10536 * we can store any padding, we need to adjust our wrapping offset. 10537 * (If we've never before wrapped or we're not about to, no adjustment 10538 * is required.) 10539 */ 10540 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10541 offs + total > buf->dtb_size) { 10542 woffs = buf->dtb_xamot_offset; 10543 10544 if (offs + total > buf->dtb_size) { 10545 /* 10546 * We can't fit in the end of the buffer. First, a 10547 * sanity check that we can fit in the buffer at all. 10548 */ 10549 if (total > buf->dtb_size) { 10550 dtrace_buffer_drop(buf); 10551 return (-1); 10552 } 10553 10554 /* 10555 * We're going to be storing at the top of the buffer, 10556 * so now we need to deal with the wrapped offset. We 10557 * only reset our wrapped offset to 0 if it is 10558 * currently greater than the current offset. If it 10559 * is less than the current offset, it is because a 10560 * previous allocation induced a wrap -- but the 10561 * allocation didn't subsequently take the space due 10562 * to an error or false predicate evaluation. In this 10563 * case, we'll just leave the wrapped offset alone: if 10564 * the wrapped offset hasn't been advanced far enough 10565 * for this allocation, it will be adjusted in the 10566 * lower loop. 10567 */ 10568 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10569 if (woffs >= offs) 10570 woffs = 0; 10571 } else { 10572 woffs = 0; 10573 } 10574 10575 /* 10576 * Now we know that we're going to be storing to the 10577 * top of the buffer and that there is room for us 10578 * there. We need to clear the buffer from the current 10579 * offset to the end (there may be old gunk there). 10580 */ 10581 while (offs < buf->dtb_size) 10582 tomax[offs++] = 0; 10583 10584 /* 10585 * We need to set our offset to zero. And because we 10586 * are wrapping, we need to set the bit indicating as 10587 * much. We can also adjust our needed space back 10588 * down to the space required by the ECB -- we know 10589 * that the top of the buffer is aligned. 10590 */ 10591 offs = 0; 10592 total = needed; 10593 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10594 } else { 10595 /* 10596 * There is room for us in the buffer, so we simply 10597 * need to check the wrapped offset. 10598 */ 10599 if (woffs < offs) { 10600 /* 10601 * The wrapped offset is less than the offset. 10602 * This can happen if we allocated buffer space 10603 * that induced a wrap, but then we didn't 10604 * subsequently take the space due to an error 10605 * or false predicate evaluation. This is 10606 * okay; we know that _this_ allocation isn't 10607 * going to induce a wrap. We still can't 10608 * reset the wrapped offset to be zero, 10609 * however: the space may have been trashed in 10610 * the previous failed probe attempt. But at 10611 * least the wrapped offset doesn't need to 10612 * be adjusted at all... 10613 */ 10614 goto out; 10615 } 10616 } 10617 10618 while (offs + total > woffs) { 10619 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10620 size_t size; 10621 10622 if (epid == DTRACE_EPIDNONE) { 10623 size = sizeof (uint32_t); 10624 } else { 10625 ASSERT(epid <= state->dts_necbs); 10626 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10627 10628 size = state->dts_ecbs[epid - 1]->dte_size; 10629 } 10630 10631 ASSERT(woffs + size <= buf->dtb_size); 10632 ASSERT(size != 0); 10633 10634 if (woffs + size == buf->dtb_size) { 10635 /* 10636 * We've reached the end of the buffer; we want 10637 * to set the wrapped offset to 0 and break 10638 * out. However, if the offs is 0, then we're 10639 * in a strange edge-condition: the amount of 10640 * space that we want to reserve plus the size 10641 * of the record that we're overwriting is 10642 * greater than the size of the buffer. This 10643 * is problematic because if we reserve the 10644 * space but subsequently don't consume it (due 10645 * to a failed predicate or error) the wrapped 10646 * offset will be 0 -- yet the EPID at offset 0 10647 * will not be committed. This situation is 10648 * relatively easy to deal with: if we're in 10649 * this case, the buffer is indistinguishable 10650 * from one that hasn't wrapped; we need only 10651 * finish the job by clearing the wrapped bit, 10652 * explicitly setting the offset to be 0, and 10653 * zero'ing out the old data in the buffer. 10654 */ 10655 if (offs == 0) { 10656 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10657 buf->dtb_offset = 0; 10658 woffs = total; 10659 10660 while (woffs < buf->dtb_size) 10661 tomax[woffs++] = 0; 10662 } 10663 10664 woffs = 0; 10665 break; 10666 } 10667 10668 woffs += size; 10669 } 10670 10671 /* 10672 * We have a wrapped offset. It may be that the wrapped offset 10673 * has become zero -- that's okay. 10674 */ 10675 buf->dtb_xamot_offset = woffs; 10676 } 10677 10678 out: 10679 /* 10680 * Now we can plow the buffer with any necessary padding. 10681 */ 10682 while (offs & (align - 1)) { 10683 /* 10684 * Assert that our alignment is off by a number which 10685 * is itself sizeof (uint32_t) aligned. 10686 */ 10687 ASSERT(!((align - (offs & (align - 1))) & 10688 (sizeof (uint32_t) - 1))); 10689 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10690 offs += sizeof (uint32_t); 10691 } 10692 10693 if (buf->dtb_flags & DTRACEBUF_FILL) { 10694 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10695 buf->dtb_flags |= DTRACEBUF_FULL; 10696 return (-1); 10697 } 10698 } 10699 10700 if (mstate == NULL) 10701 return (offs); 10702 10703 /* 10704 * For ring buffers and fill buffers, the scratch space is always 10705 * the inactive buffer. 10706 */ 10707 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10708 mstate->dtms_scratch_size = buf->dtb_size; 10709 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10710 10711 return (offs); 10712 } 10713 10714 static void 10715 dtrace_buffer_polish(dtrace_buffer_t *buf) 10716 { 10717 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10718 ASSERT(MUTEX_HELD(&dtrace_lock)); 10719 10720 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10721 return; 10722 10723 /* 10724 * We need to polish the ring buffer. There are three cases: 10725 * 10726 * - The first (and presumably most common) is that there is no gap 10727 * between the buffer offset and the wrapped offset. In this case, 10728 * there is nothing in the buffer that isn't valid data; we can 10729 * mark the buffer as polished and return. 10730 * 10731 * - The second (less common than the first but still more common 10732 * than the third) is that there is a gap between the buffer offset 10733 * and the wrapped offset, and the wrapped offset is larger than the 10734 * buffer offset. This can happen because of an alignment issue, or 10735 * can happen because of a call to dtrace_buffer_reserve() that 10736 * didn't subsequently consume the buffer space. In this case, 10737 * we need to zero the data from the buffer offset to the wrapped 10738 * offset. 10739 * 10740 * - The third (and least common) is that there is a gap between the 10741 * buffer offset and the wrapped offset, but the wrapped offset is 10742 * _less_ than the buffer offset. This can only happen because a 10743 * call to dtrace_buffer_reserve() induced a wrap, but the space 10744 * was not subsequently consumed. In this case, we need to zero the 10745 * space from the offset to the end of the buffer _and_ from the 10746 * top of the buffer to the wrapped offset. 10747 */ 10748 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10749 bzero(buf->dtb_tomax + buf->dtb_offset, 10750 buf->dtb_xamot_offset - buf->dtb_offset); 10751 } 10752 10753 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10754 bzero(buf->dtb_tomax + buf->dtb_offset, 10755 buf->dtb_size - buf->dtb_offset); 10756 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10757 } 10758 } 10759 10760 /* 10761 * This routine determines if data generated at the specified time has likely 10762 * been entirely consumed at user-level. This routine is called to determine 10763 * if an ECB on a defunct probe (but for an active enabling) can be safely 10764 * disabled and destroyed. 10765 */ 10766 static int 10767 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10768 { 10769 int i; 10770 10771 for (i = 0; i < NCPU; i++) { 10772 dtrace_buffer_t *buf = &bufs[i]; 10773 10774 if (buf->dtb_size == 0) 10775 continue; 10776 10777 if (buf->dtb_flags & DTRACEBUF_RING) 10778 return (0); 10779 10780 if (!buf->dtb_switched && buf->dtb_offset != 0) 10781 return (0); 10782 10783 if (buf->dtb_switched - buf->dtb_interval < when) 10784 return (0); 10785 } 10786 10787 return (1); 10788 } 10789 10790 static void 10791 dtrace_buffer_free(dtrace_buffer_t *bufs) 10792 { 10793 int i; 10794 10795 for (i = 0; i < NCPU; i++) { 10796 dtrace_buffer_t *buf = &bufs[i]; 10797 10798 if (buf->dtb_tomax == NULL) { 10799 ASSERT(buf->dtb_xamot == NULL); 10800 ASSERT(buf->dtb_size == 0); 10801 continue; 10802 } 10803 10804 if (buf->dtb_xamot != NULL) { 10805 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10806 kmem_free(buf->dtb_xamot, buf->dtb_size); 10807 } 10808 10809 kmem_free(buf->dtb_tomax, buf->dtb_size); 10810 buf->dtb_size = 0; 10811 buf->dtb_tomax = NULL; 10812 buf->dtb_xamot = NULL; 10813 } 10814 } 10815 10816 /* 10817 * DTrace Enabling Functions 10818 */ 10819 static dtrace_enabling_t * 10820 dtrace_enabling_create(dtrace_vstate_t *vstate) 10821 { 10822 dtrace_enabling_t *enab; 10823 10824 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10825 enab->dten_vstate = vstate; 10826 10827 return (enab); 10828 } 10829 10830 static void 10831 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10832 { 10833 dtrace_ecbdesc_t **ndesc; 10834 size_t osize, nsize; 10835 10836 /* 10837 * We can't add to enablings after we've enabled them, or after we've 10838 * retained them. 10839 */ 10840 ASSERT(enab->dten_probegen == 0); 10841 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10842 10843 if (enab->dten_ndesc < enab->dten_maxdesc) { 10844 enab->dten_desc[enab->dten_ndesc++] = ecb; 10845 return; 10846 } 10847 10848 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10849 10850 if (enab->dten_maxdesc == 0) { 10851 enab->dten_maxdesc = 1; 10852 } else { 10853 enab->dten_maxdesc <<= 1; 10854 } 10855 10856 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10857 10858 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10859 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10860 bcopy(enab->dten_desc, ndesc, osize); 10861 kmem_free(enab->dten_desc, osize); 10862 10863 enab->dten_desc = ndesc; 10864 enab->dten_desc[enab->dten_ndesc++] = ecb; 10865 } 10866 10867 static void 10868 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10869 dtrace_probedesc_t *pd) 10870 { 10871 dtrace_ecbdesc_t *new; 10872 dtrace_predicate_t *pred; 10873 dtrace_actdesc_t *act; 10874 10875 /* 10876 * We're going to create a new ECB description that matches the 10877 * specified ECB in every way, but has the specified probe description. 10878 */ 10879 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10880 10881 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10882 dtrace_predicate_hold(pred); 10883 10884 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10885 dtrace_actdesc_hold(act); 10886 10887 new->dted_action = ecb->dted_action; 10888 new->dted_pred = ecb->dted_pred; 10889 new->dted_probe = *pd; 10890 new->dted_uarg = ecb->dted_uarg; 10891 10892 dtrace_enabling_add(enab, new); 10893 } 10894 10895 static void 10896 dtrace_enabling_dump(dtrace_enabling_t *enab) 10897 { 10898 int i; 10899 10900 for (i = 0; i < enab->dten_ndesc; i++) { 10901 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10902 10903 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10904 desc->dtpd_provider, desc->dtpd_mod, 10905 desc->dtpd_func, desc->dtpd_name); 10906 } 10907 } 10908 10909 static void 10910 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10911 { 10912 int i; 10913 dtrace_ecbdesc_t *ep; 10914 dtrace_vstate_t *vstate = enab->dten_vstate; 10915 10916 ASSERT(MUTEX_HELD(&dtrace_lock)); 10917 10918 for (i = 0; i < enab->dten_ndesc; i++) { 10919 dtrace_actdesc_t *act, *next; 10920 dtrace_predicate_t *pred; 10921 10922 ep = enab->dten_desc[i]; 10923 10924 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10925 dtrace_predicate_release(pred, vstate); 10926 10927 for (act = ep->dted_action; act != NULL; act = next) { 10928 next = act->dtad_next; 10929 dtrace_actdesc_release(act, vstate); 10930 } 10931 10932 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10933 } 10934 10935 kmem_free(enab->dten_desc, 10936 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10937 10938 /* 10939 * If this was a retained enabling, decrement the dts_nretained count 10940 * and take it off of the dtrace_retained list. 10941 */ 10942 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10943 dtrace_retained == enab) { 10944 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10945 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10946 enab->dten_vstate->dtvs_state->dts_nretained--; 10947 dtrace_retained_gen++; 10948 } 10949 10950 if (enab->dten_prev == NULL) { 10951 if (dtrace_retained == enab) { 10952 dtrace_retained = enab->dten_next; 10953 10954 if (dtrace_retained != NULL) 10955 dtrace_retained->dten_prev = NULL; 10956 } 10957 } else { 10958 ASSERT(enab != dtrace_retained); 10959 ASSERT(dtrace_retained != NULL); 10960 enab->dten_prev->dten_next = enab->dten_next; 10961 } 10962 10963 if (enab->dten_next != NULL) { 10964 ASSERT(dtrace_retained != NULL); 10965 enab->dten_next->dten_prev = enab->dten_prev; 10966 } 10967 10968 kmem_free(enab, sizeof (dtrace_enabling_t)); 10969 } 10970 10971 static int 10972 dtrace_enabling_retain(dtrace_enabling_t *enab) 10973 { 10974 dtrace_state_t *state; 10975 10976 ASSERT(MUTEX_HELD(&dtrace_lock)); 10977 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10978 ASSERT(enab->dten_vstate != NULL); 10979 10980 state = enab->dten_vstate->dtvs_state; 10981 ASSERT(state != NULL); 10982 10983 /* 10984 * We only allow each state to retain dtrace_retain_max enablings. 10985 */ 10986 if (state->dts_nretained >= dtrace_retain_max) 10987 return (ENOSPC); 10988 10989 state->dts_nretained++; 10990 dtrace_retained_gen++; 10991 10992 if (dtrace_retained == NULL) { 10993 dtrace_retained = enab; 10994 return (0); 10995 } 10996 10997 enab->dten_next = dtrace_retained; 10998 dtrace_retained->dten_prev = enab; 10999 dtrace_retained = enab; 11000 11001 return (0); 11002 } 11003 11004 static int 11005 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11006 dtrace_probedesc_t *create) 11007 { 11008 dtrace_enabling_t *new, *enab; 11009 int found = 0, err = ENOENT; 11010 11011 ASSERT(MUTEX_HELD(&dtrace_lock)); 11012 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11013 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11014 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11015 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11016 11017 new = dtrace_enabling_create(&state->dts_vstate); 11018 11019 /* 11020 * Iterate over all retained enablings, looking for enablings that 11021 * match the specified state. 11022 */ 11023 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11024 int i; 11025 11026 /* 11027 * dtvs_state can only be NULL for helper enablings -- and 11028 * helper enablings can't be retained. 11029 */ 11030 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11031 11032 if (enab->dten_vstate->dtvs_state != state) 11033 continue; 11034 11035 /* 11036 * Now iterate over each probe description; we're looking for 11037 * an exact match to the specified probe description. 11038 */ 11039 for (i = 0; i < enab->dten_ndesc; i++) { 11040 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11041 dtrace_probedesc_t *pd = &ep->dted_probe; 11042 11043 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11044 continue; 11045 11046 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11047 continue; 11048 11049 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11050 continue; 11051 11052 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11053 continue; 11054 11055 /* 11056 * We have a winning probe! Add it to our growing 11057 * enabling. 11058 */ 11059 found = 1; 11060 dtrace_enabling_addlike(new, ep, create); 11061 } 11062 } 11063 11064 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11065 dtrace_enabling_destroy(new); 11066 return (err); 11067 } 11068 11069 return (0); 11070 } 11071 11072 static void 11073 dtrace_enabling_retract(dtrace_state_t *state) 11074 { 11075 dtrace_enabling_t *enab, *next; 11076 11077 ASSERT(MUTEX_HELD(&dtrace_lock)); 11078 11079 /* 11080 * Iterate over all retained enablings, destroy the enablings retained 11081 * for the specified state. 11082 */ 11083 for (enab = dtrace_retained; enab != NULL; enab = next) { 11084 next = enab->dten_next; 11085 11086 /* 11087 * dtvs_state can only be NULL for helper enablings -- and 11088 * helper enablings can't be retained. 11089 */ 11090 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11091 11092 if (enab->dten_vstate->dtvs_state == state) { 11093 ASSERT(state->dts_nretained > 0); 11094 dtrace_enabling_destroy(enab); 11095 } 11096 } 11097 11098 ASSERT(state->dts_nretained == 0); 11099 } 11100 11101 static int 11102 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11103 { 11104 int i = 0; 11105 int total_matched = 0, matched = 0; 11106 11107 ASSERT(MUTEX_HELD(&cpu_lock)); 11108 ASSERT(MUTEX_HELD(&dtrace_lock)); 11109 11110 for (i = 0; i < enab->dten_ndesc; i++) { 11111 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11112 11113 enab->dten_current = ep; 11114 enab->dten_error = 0; 11115 11116 /* 11117 * If a provider failed to enable a probe then get out and 11118 * let the consumer know we failed. 11119 */ 11120 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11121 return (EBUSY); 11122 11123 total_matched += matched; 11124 11125 if (enab->dten_error != 0) { 11126 /* 11127 * If we get an error half-way through enabling the 11128 * probes, we kick out -- perhaps with some number of 11129 * them enabled. Leaving enabled probes enabled may 11130 * be slightly confusing for user-level, but we expect 11131 * that no one will attempt to actually drive on in 11132 * the face of such errors. If this is an anonymous 11133 * enabling (indicated with a NULL nmatched pointer), 11134 * we cmn_err() a message. We aren't expecting to 11135 * get such an error -- such as it can exist at all, 11136 * it would be a result of corrupted DOF in the driver 11137 * properties. 11138 */ 11139 if (nmatched == NULL) { 11140 cmn_err(CE_WARN, "dtrace_enabling_match() " 11141 "error on %p: %d", (void *)ep, 11142 enab->dten_error); 11143 } 11144 11145 return (enab->dten_error); 11146 } 11147 } 11148 11149 enab->dten_probegen = dtrace_probegen; 11150 if (nmatched != NULL) 11151 *nmatched = total_matched; 11152 11153 return (0); 11154 } 11155 11156 static void 11157 dtrace_enabling_matchall(void) 11158 { 11159 dtrace_enabling_t *enab; 11160 11161 mutex_enter(&cpu_lock); 11162 mutex_enter(&dtrace_lock); 11163 11164 /* 11165 * Iterate over all retained enablings to see if any probes match 11166 * against them. We only perform this operation on enablings for which 11167 * we have sufficient permissions by virtue of being in the global zone 11168 * or in the same zone as the DTrace client. Because we can be called 11169 * after dtrace_detach() has been called, we cannot assert that there 11170 * are retained enablings. We can safely load from dtrace_retained, 11171 * however: the taskq_destroy() at the end of dtrace_detach() will 11172 * block pending our completion. 11173 */ 11174 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11175 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11176 cred_t *cr = dcr->dcr_cred; 11177 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11178 11179 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11180 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11181 (void) dtrace_enabling_match(enab, NULL); 11182 } 11183 11184 mutex_exit(&dtrace_lock); 11185 mutex_exit(&cpu_lock); 11186 } 11187 11188 /* 11189 * If an enabling is to be enabled without having matched probes (that is, if 11190 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11191 * enabling must be _primed_ by creating an ECB for every ECB description. 11192 * This must be done to assure that we know the number of speculations, the 11193 * number of aggregations, the minimum buffer size needed, etc. before we 11194 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11195 * enabling any probes, we create ECBs for every ECB decription, but with a 11196 * NULL probe -- which is exactly what this function does. 11197 */ 11198 static void 11199 dtrace_enabling_prime(dtrace_state_t *state) 11200 { 11201 dtrace_enabling_t *enab; 11202 int i; 11203 11204 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11205 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11206 11207 if (enab->dten_vstate->dtvs_state != state) 11208 continue; 11209 11210 /* 11211 * We don't want to prime an enabling more than once, lest 11212 * we allow a malicious user to induce resource exhaustion. 11213 * (The ECBs that result from priming an enabling aren't 11214 * leaked -- but they also aren't deallocated until the 11215 * consumer state is destroyed.) 11216 */ 11217 if (enab->dten_primed) 11218 continue; 11219 11220 for (i = 0; i < enab->dten_ndesc; i++) { 11221 enab->dten_current = enab->dten_desc[i]; 11222 (void) dtrace_probe_enable(NULL, enab); 11223 } 11224 11225 enab->dten_primed = 1; 11226 } 11227 } 11228 11229 /* 11230 * Called to indicate that probes should be provided due to retained 11231 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11232 * must take an initial lap through the enabling calling the dtps_provide() 11233 * entry point explicitly to allow for autocreated probes. 11234 */ 11235 static void 11236 dtrace_enabling_provide(dtrace_provider_t *prv) 11237 { 11238 int i, all = 0; 11239 dtrace_probedesc_t desc; 11240 dtrace_genid_t gen; 11241 11242 ASSERT(MUTEX_HELD(&dtrace_lock)); 11243 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11244 11245 if (prv == NULL) { 11246 all = 1; 11247 prv = dtrace_provider; 11248 } 11249 11250 do { 11251 dtrace_enabling_t *enab; 11252 void *parg = prv->dtpv_arg; 11253 11254 retry: 11255 gen = dtrace_retained_gen; 11256 for (enab = dtrace_retained; enab != NULL; 11257 enab = enab->dten_next) { 11258 for (i = 0; i < enab->dten_ndesc; i++) { 11259 desc = enab->dten_desc[i]->dted_probe; 11260 mutex_exit(&dtrace_lock); 11261 prv->dtpv_pops.dtps_provide(parg, &desc); 11262 mutex_enter(&dtrace_lock); 11263 /* 11264 * Process the retained enablings again if 11265 * they have changed while we weren't holding 11266 * dtrace_lock. 11267 */ 11268 if (gen != dtrace_retained_gen) 11269 goto retry; 11270 } 11271 } 11272 } while (all && (prv = prv->dtpv_next) != NULL); 11273 11274 mutex_exit(&dtrace_lock); 11275 dtrace_probe_provide(NULL, all ? NULL : prv); 11276 mutex_enter(&dtrace_lock); 11277 } 11278 11279 /* 11280 * Called to reap ECBs that are attached to probes from defunct providers. 11281 */ 11282 static void 11283 dtrace_enabling_reap(void) 11284 { 11285 dtrace_provider_t *prov; 11286 dtrace_probe_t *probe; 11287 dtrace_ecb_t *ecb; 11288 hrtime_t when; 11289 int i; 11290 11291 mutex_enter(&cpu_lock); 11292 mutex_enter(&dtrace_lock); 11293 11294 for (i = 0; i < dtrace_nprobes; i++) { 11295 if ((probe = dtrace_probes[i]) == NULL) 11296 continue; 11297 11298 if (probe->dtpr_ecb == NULL) 11299 continue; 11300 11301 prov = probe->dtpr_provider; 11302 11303 if ((when = prov->dtpv_defunct) == 0) 11304 continue; 11305 11306 /* 11307 * We have ECBs on a defunct provider: we want to reap these 11308 * ECBs to allow the provider to unregister. The destruction 11309 * of these ECBs must be done carefully: if we destroy the ECB 11310 * and the consumer later wishes to consume an EPID that 11311 * corresponds to the destroyed ECB (and if the EPID metadata 11312 * has not been previously consumed), the consumer will abort 11313 * processing on the unknown EPID. To reduce (but not, sadly, 11314 * eliminate) the possibility of this, we will only destroy an 11315 * ECB for a defunct provider if, for the state that 11316 * corresponds to the ECB: 11317 * 11318 * (a) There is no speculative tracing (which can effectively 11319 * cache an EPID for an arbitrary amount of time). 11320 * 11321 * (b) The principal buffers have been switched twice since the 11322 * provider became defunct. 11323 * 11324 * (c) The aggregation buffers are of zero size or have been 11325 * switched twice since the provider became defunct. 11326 * 11327 * We use dts_speculates to determine (a) and call a function 11328 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11329 * that as soon as we've been unable to destroy one of the ECBs 11330 * associated with the probe, we quit trying -- reaping is only 11331 * fruitful in as much as we can destroy all ECBs associated 11332 * with the defunct provider's probes. 11333 */ 11334 while ((ecb = probe->dtpr_ecb) != NULL) { 11335 dtrace_state_t *state = ecb->dte_state; 11336 dtrace_buffer_t *buf = state->dts_buffer; 11337 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11338 11339 if (state->dts_speculates) 11340 break; 11341 11342 if (!dtrace_buffer_consumed(buf, when)) 11343 break; 11344 11345 if (!dtrace_buffer_consumed(aggbuf, when)) 11346 break; 11347 11348 dtrace_ecb_disable(ecb); 11349 ASSERT(probe->dtpr_ecb != ecb); 11350 dtrace_ecb_destroy(ecb); 11351 } 11352 } 11353 11354 mutex_exit(&dtrace_lock); 11355 mutex_exit(&cpu_lock); 11356 } 11357 11358 /* 11359 * DTrace DOF Functions 11360 */ 11361 /*ARGSUSED*/ 11362 static void 11363 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11364 { 11365 if (dtrace_err_verbose) 11366 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11367 11368 #ifdef DTRACE_ERRDEBUG 11369 dtrace_errdebug(str); 11370 #endif 11371 } 11372 11373 /* 11374 * Create DOF out of a currently enabled state. Right now, we only create 11375 * DOF containing the run-time options -- but this could be expanded to create 11376 * complete DOF representing the enabled state. 11377 */ 11378 static dof_hdr_t * 11379 dtrace_dof_create(dtrace_state_t *state) 11380 { 11381 dof_hdr_t *dof; 11382 dof_sec_t *sec; 11383 dof_optdesc_t *opt; 11384 int i, len = sizeof (dof_hdr_t) + 11385 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11386 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11387 11388 ASSERT(MUTEX_HELD(&dtrace_lock)); 11389 11390 dof = kmem_zalloc(len, KM_SLEEP); 11391 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11392 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11393 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11394 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11395 11396 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11397 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11398 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11399 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11400 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11401 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11402 11403 dof->dofh_flags = 0; 11404 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11405 dof->dofh_secsize = sizeof (dof_sec_t); 11406 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11407 dof->dofh_secoff = sizeof (dof_hdr_t); 11408 dof->dofh_loadsz = len; 11409 dof->dofh_filesz = len; 11410 dof->dofh_pad = 0; 11411 11412 /* 11413 * Fill in the option section header... 11414 */ 11415 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11416 sec->dofs_type = DOF_SECT_OPTDESC; 11417 sec->dofs_align = sizeof (uint64_t); 11418 sec->dofs_flags = DOF_SECF_LOAD; 11419 sec->dofs_entsize = sizeof (dof_optdesc_t); 11420 11421 opt = (dof_optdesc_t *)((uintptr_t)sec + 11422 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11423 11424 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11425 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11426 11427 for (i = 0; i < DTRACEOPT_MAX; i++) { 11428 opt[i].dofo_option = i; 11429 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11430 opt[i].dofo_value = state->dts_options[i]; 11431 } 11432 11433 return (dof); 11434 } 11435 11436 static dof_hdr_t * 11437 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11438 { 11439 dof_hdr_t hdr, *dof; 11440 11441 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11442 11443 /* 11444 * First, we're going to copyin() the sizeof (dof_hdr_t). 11445 */ 11446 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11447 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11448 *errp = EFAULT; 11449 return (NULL); 11450 } 11451 11452 /* 11453 * Now we'll allocate the entire DOF and copy it in -- provided 11454 * that the length isn't outrageous. 11455 */ 11456 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11457 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11458 *errp = E2BIG; 11459 return (NULL); 11460 } 11461 11462 if (hdr.dofh_loadsz < sizeof (hdr)) { 11463 dtrace_dof_error(&hdr, "invalid load size"); 11464 *errp = EINVAL; 11465 return (NULL); 11466 } 11467 11468 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11469 11470 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11471 dof->dofh_loadsz != hdr.dofh_loadsz) { 11472 kmem_free(dof, hdr.dofh_loadsz); 11473 *errp = EFAULT; 11474 return (NULL); 11475 } 11476 11477 return (dof); 11478 } 11479 11480 static dof_hdr_t * 11481 dtrace_dof_property(const char *name) 11482 { 11483 uchar_t *buf; 11484 uint64_t loadsz; 11485 unsigned int len, i; 11486 dof_hdr_t *dof; 11487 11488 /* 11489 * Unfortunately, array of values in .conf files are always (and 11490 * only) interpreted to be integer arrays. We must read our DOF 11491 * as an integer array, and then squeeze it into a byte array. 11492 */ 11493 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11494 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11495 return (NULL); 11496 11497 for (i = 0; i < len; i++) 11498 buf[i] = (uchar_t)(((int *)buf)[i]); 11499 11500 if (len < sizeof (dof_hdr_t)) { 11501 ddi_prop_free(buf); 11502 dtrace_dof_error(NULL, "truncated header"); 11503 return (NULL); 11504 } 11505 11506 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11507 ddi_prop_free(buf); 11508 dtrace_dof_error(NULL, "truncated DOF"); 11509 return (NULL); 11510 } 11511 11512 if (loadsz >= dtrace_dof_maxsize) { 11513 ddi_prop_free(buf); 11514 dtrace_dof_error(NULL, "oversized DOF"); 11515 return (NULL); 11516 } 11517 11518 dof = kmem_alloc(loadsz, KM_SLEEP); 11519 bcopy(buf, dof, loadsz); 11520 ddi_prop_free(buf); 11521 11522 return (dof); 11523 } 11524 11525 static void 11526 dtrace_dof_destroy(dof_hdr_t *dof) 11527 { 11528 kmem_free(dof, dof->dofh_loadsz); 11529 } 11530 11531 /* 11532 * Return the dof_sec_t pointer corresponding to a given section index. If the 11533 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11534 * a type other than DOF_SECT_NONE is specified, the header is checked against 11535 * this type and NULL is returned if the types do not match. 11536 */ 11537 static dof_sec_t * 11538 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11539 { 11540 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11541 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11542 11543 if (i >= dof->dofh_secnum) { 11544 dtrace_dof_error(dof, "referenced section index is invalid"); 11545 return (NULL); 11546 } 11547 11548 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11549 dtrace_dof_error(dof, "referenced section is not loadable"); 11550 return (NULL); 11551 } 11552 11553 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11554 dtrace_dof_error(dof, "referenced section is the wrong type"); 11555 return (NULL); 11556 } 11557 11558 return (sec); 11559 } 11560 11561 static dtrace_probedesc_t * 11562 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11563 { 11564 dof_probedesc_t *probe; 11565 dof_sec_t *strtab; 11566 uintptr_t daddr = (uintptr_t)dof; 11567 uintptr_t str; 11568 size_t size; 11569 11570 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11571 dtrace_dof_error(dof, "invalid probe section"); 11572 return (NULL); 11573 } 11574 11575 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11576 dtrace_dof_error(dof, "bad alignment in probe description"); 11577 return (NULL); 11578 } 11579 11580 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11581 dtrace_dof_error(dof, "truncated probe description"); 11582 return (NULL); 11583 } 11584 11585 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11586 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11587 11588 if (strtab == NULL) 11589 return (NULL); 11590 11591 str = daddr + strtab->dofs_offset; 11592 size = strtab->dofs_size; 11593 11594 if (probe->dofp_provider >= strtab->dofs_size) { 11595 dtrace_dof_error(dof, "corrupt probe provider"); 11596 return (NULL); 11597 } 11598 11599 (void) strncpy(desc->dtpd_provider, 11600 (char *)(str + probe->dofp_provider), 11601 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11602 11603 if (probe->dofp_mod >= strtab->dofs_size) { 11604 dtrace_dof_error(dof, "corrupt probe module"); 11605 return (NULL); 11606 } 11607 11608 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11609 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11610 11611 if (probe->dofp_func >= strtab->dofs_size) { 11612 dtrace_dof_error(dof, "corrupt probe function"); 11613 return (NULL); 11614 } 11615 11616 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11617 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11618 11619 if (probe->dofp_name >= strtab->dofs_size) { 11620 dtrace_dof_error(dof, "corrupt probe name"); 11621 return (NULL); 11622 } 11623 11624 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11625 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11626 11627 return (desc); 11628 } 11629 11630 static dtrace_difo_t * 11631 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11632 cred_t *cr) 11633 { 11634 dtrace_difo_t *dp; 11635 size_t ttl = 0; 11636 dof_difohdr_t *dofd; 11637 uintptr_t daddr = (uintptr_t)dof; 11638 size_t max = dtrace_difo_maxsize; 11639 int i, l, n; 11640 11641 static const struct { 11642 int section; 11643 int bufoffs; 11644 int lenoffs; 11645 int entsize; 11646 int align; 11647 const char *msg; 11648 } difo[] = { 11649 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11650 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11651 sizeof (dif_instr_t), "multiple DIF sections" }, 11652 11653 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11654 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11655 sizeof (uint64_t), "multiple integer tables" }, 11656 11657 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11658 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11659 sizeof (char), "multiple string tables" }, 11660 11661 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11662 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11663 sizeof (uint_t), "multiple variable tables" }, 11664 11665 { DOF_SECT_NONE, 0, 0, 0, NULL } 11666 }; 11667 11668 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11669 dtrace_dof_error(dof, "invalid DIFO header section"); 11670 return (NULL); 11671 } 11672 11673 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11674 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11675 return (NULL); 11676 } 11677 11678 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11679 sec->dofs_size % sizeof (dof_secidx_t)) { 11680 dtrace_dof_error(dof, "bad size in DIFO header"); 11681 return (NULL); 11682 } 11683 11684 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11685 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11686 11687 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11688 dp->dtdo_rtype = dofd->dofd_rtype; 11689 11690 for (l = 0; l < n; l++) { 11691 dof_sec_t *subsec; 11692 void **bufp; 11693 uint32_t *lenp; 11694 11695 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11696 dofd->dofd_links[l])) == NULL) 11697 goto err; /* invalid section link */ 11698 11699 if (ttl + subsec->dofs_size > max) { 11700 dtrace_dof_error(dof, "exceeds maximum size"); 11701 goto err; 11702 } 11703 11704 ttl += subsec->dofs_size; 11705 11706 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11707 if (subsec->dofs_type != difo[i].section) 11708 continue; 11709 11710 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11711 dtrace_dof_error(dof, "section not loaded"); 11712 goto err; 11713 } 11714 11715 if (subsec->dofs_align != difo[i].align) { 11716 dtrace_dof_error(dof, "bad alignment"); 11717 goto err; 11718 } 11719 11720 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11721 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11722 11723 if (*bufp != NULL) { 11724 dtrace_dof_error(dof, difo[i].msg); 11725 goto err; 11726 } 11727 11728 if (difo[i].entsize != subsec->dofs_entsize) { 11729 dtrace_dof_error(dof, "entry size mismatch"); 11730 goto err; 11731 } 11732 11733 if (subsec->dofs_entsize != 0 && 11734 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11735 dtrace_dof_error(dof, "corrupt entry size"); 11736 goto err; 11737 } 11738 11739 *lenp = subsec->dofs_size; 11740 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11741 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11742 *bufp, subsec->dofs_size); 11743 11744 if (subsec->dofs_entsize != 0) 11745 *lenp /= subsec->dofs_entsize; 11746 11747 break; 11748 } 11749 11750 /* 11751 * If we encounter a loadable DIFO sub-section that is not 11752 * known to us, assume this is a broken program and fail. 11753 */ 11754 if (difo[i].section == DOF_SECT_NONE && 11755 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11756 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11757 goto err; 11758 } 11759 } 11760 11761 if (dp->dtdo_buf == NULL) { 11762 /* 11763 * We can't have a DIF object without DIF text. 11764 */ 11765 dtrace_dof_error(dof, "missing DIF text"); 11766 goto err; 11767 } 11768 11769 /* 11770 * Before we validate the DIF object, run through the variable table 11771 * looking for the strings -- if any of their size are under, we'll set 11772 * their size to be the system-wide default string size. Note that 11773 * this should _not_ happen if the "strsize" option has been set -- 11774 * in this case, the compiler should have set the size to reflect the 11775 * setting of the option. 11776 */ 11777 for (i = 0; i < dp->dtdo_varlen; i++) { 11778 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11779 dtrace_diftype_t *t = &v->dtdv_type; 11780 11781 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11782 continue; 11783 11784 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11785 t->dtdt_size = dtrace_strsize_default; 11786 } 11787 11788 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11789 goto err; 11790 11791 dtrace_difo_init(dp, vstate); 11792 return (dp); 11793 11794 err: 11795 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11796 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11797 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11798 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11799 11800 kmem_free(dp, sizeof (dtrace_difo_t)); 11801 return (NULL); 11802 } 11803 11804 static dtrace_predicate_t * 11805 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11806 cred_t *cr) 11807 { 11808 dtrace_difo_t *dp; 11809 11810 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11811 return (NULL); 11812 11813 return (dtrace_predicate_create(dp)); 11814 } 11815 11816 static dtrace_actdesc_t * 11817 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11818 cred_t *cr) 11819 { 11820 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11821 dof_actdesc_t *desc; 11822 dof_sec_t *difosec; 11823 size_t offs; 11824 uintptr_t daddr = (uintptr_t)dof; 11825 uint64_t arg; 11826 dtrace_actkind_t kind; 11827 11828 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11829 dtrace_dof_error(dof, "invalid action section"); 11830 return (NULL); 11831 } 11832 11833 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11834 dtrace_dof_error(dof, "truncated action description"); 11835 return (NULL); 11836 } 11837 11838 if (sec->dofs_align != sizeof (uint64_t)) { 11839 dtrace_dof_error(dof, "bad alignment in action description"); 11840 return (NULL); 11841 } 11842 11843 if (sec->dofs_size < sec->dofs_entsize) { 11844 dtrace_dof_error(dof, "section entry size exceeds total size"); 11845 return (NULL); 11846 } 11847 11848 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11849 dtrace_dof_error(dof, "bad entry size in action description"); 11850 return (NULL); 11851 } 11852 11853 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11854 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11855 return (NULL); 11856 } 11857 11858 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11859 desc = (dof_actdesc_t *)(daddr + 11860 (uintptr_t)sec->dofs_offset + offs); 11861 kind = (dtrace_actkind_t)desc->dofa_kind; 11862 11863 if ((DTRACEACT_ISPRINTFLIKE(kind) && 11864 (kind != DTRACEACT_PRINTA || 11865 desc->dofa_strtab != DOF_SECIDX_NONE)) || 11866 (kind == DTRACEACT_DIFEXPR && 11867 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11868 dof_sec_t *strtab; 11869 char *str, *fmt; 11870 uint64_t i; 11871 11872 /* 11873 * The argument to these actions is an index into the 11874 * DOF string table. For printf()-like actions, this 11875 * is the format string. For print(), this is the 11876 * CTF type of the expression result. 11877 */ 11878 if ((strtab = dtrace_dof_sect(dof, 11879 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11880 goto err; 11881 11882 str = (char *)((uintptr_t)dof + 11883 (uintptr_t)strtab->dofs_offset); 11884 11885 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11886 if (str[i] == '\0') 11887 break; 11888 } 11889 11890 if (i >= strtab->dofs_size) { 11891 dtrace_dof_error(dof, "bogus format string"); 11892 goto err; 11893 } 11894 11895 if (i == desc->dofa_arg) { 11896 dtrace_dof_error(dof, "empty format string"); 11897 goto err; 11898 } 11899 11900 i -= desc->dofa_arg; 11901 fmt = kmem_alloc(i + 1, KM_SLEEP); 11902 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11903 arg = (uint64_t)(uintptr_t)fmt; 11904 } else { 11905 if (kind == DTRACEACT_PRINTA) { 11906 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11907 arg = 0; 11908 } else { 11909 arg = desc->dofa_arg; 11910 } 11911 } 11912 11913 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11914 desc->dofa_uarg, arg); 11915 11916 if (last != NULL) { 11917 last->dtad_next = act; 11918 } else { 11919 first = act; 11920 } 11921 11922 last = act; 11923 11924 if (desc->dofa_difo == DOF_SECIDX_NONE) 11925 continue; 11926 11927 if ((difosec = dtrace_dof_sect(dof, 11928 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11929 goto err; 11930 11931 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11932 11933 if (act->dtad_difo == NULL) 11934 goto err; 11935 } 11936 11937 ASSERT(first != NULL); 11938 return (first); 11939 11940 err: 11941 for (act = first; act != NULL; act = next) { 11942 next = act->dtad_next; 11943 dtrace_actdesc_release(act, vstate); 11944 } 11945 11946 return (NULL); 11947 } 11948 11949 static dtrace_ecbdesc_t * 11950 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11951 cred_t *cr) 11952 { 11953 dtrace_ecbdesc_t *ep; 11954 dof_ecbdesc_t *ecb; 11955 dtrace_probedesc_t *desc; 11956 dtrace_predicate_t *pred = NULL; 11957 11958 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11959 dtrace_dof_error(dof, "truncated ECB description"); 11960 return (NULL); 11961 } 11962 11963 if (sec->dofs_align != sizeof (uint64_t)) { 11964 dtrace_dof_error(dof, "bad alignment in ECB description"); 11965 return (NULL); 11966 } 11967 11968 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11969 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11970 11971 if (sec == NULL) 11972 return (NULL); 11973 11974 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11975 ep->dted_uarg = ecb->dofe_uarg; 11976 desc = &ep->dted_probe; 11977 11978 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11979 goto err; 11980 11981 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11982 if ((sec = dtrace_dof_sect(dof, 11983 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11984 goto err; 11985 11986 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11987 goto err; 11988 11989 ep->dted_pred.dtpdd_predicate = pred; 11990 } 11991 11992 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11993 if ((sec = dtrace_dof_sect(dof, 11994 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11995 goto err; 11996 11997 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11998 11999 if (ep->dted_action == NULL) 12000 goto err; 12001 } 12002 12003 return (ep); 12004 12005 err: 12006 if (pred != NULL) 12007 dtrace_predicate_release(pred, vstate); 12008 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12009 return (NULL); 12010 } 12011 12012 /* 12013 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12014 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12015 * site of any user SETX relocations to account for load object base address. 12016 * In the future, if we need other relocations, this function can be extended. 12017 */ 12018 static int 12019 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12020 { 12021 uintptr_t daddr = (uintptr_t)dof; 12022 dof_relohdr_t *dofr = 12023 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12024 dof_sec_t *ss, *rs, *ts; 12025 dof_relodesc_t *r; 12026 uint_t i, n; 12027 12028 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12029 sec->dofs_align != sizeof (dof_secidx_t)) { 12030 dtrace_dof_error(dof, "invalid relocation header"); 12031 return (-1); 12032 } 12033 12034 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12035 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12036 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12037 12038 if (ss == NULL || rs == NULL || ts == NULL) 12039 return (-1); /* dtrace_dof_error() has been called already */ 12040 12041 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12042 rs->dofs_align != sizeof (uint64_t)) { 12043 dtrace_dof_error(dof, "invalid relocation section"); 12044 return (-1); 12045 } 12046 12047 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12048 n = rs->dofs_size / rs->dofs_entsize; 12049 12050 for (i = 0; i < n; i++) { 12051 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12052 12053 switch (r->dofr_type) { 12054 case DOF_RELO_NONE: 12055 break; 12056 case DOF_RELO_SETX: 12057 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12058 sizeof (uint64_t) > ts->dofs_size) { 12059 dtrace_dof_error(dof, "bad relocation offset"); 12060 return (-1); 12061 } 12062 12063 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12064 dtrace_dof_error(dof, "misaligned setx relo"); 12065 return (-1); 12066 } 12067 12068 *(uint64_t *)taddr += ubase; 12069 break; 12070 default: 12071 dtrace_dof_error(dof, "invalid relocation type"); 12072 return (-1); 12073 } 12074 12075 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12076 } 12077 12078 return (0); 12079 } 12080 12081 /* 12082 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12083 * header: it should be at the front of a memory region that is at least 12084 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12085 * size. It need not be validated in any other way. 12086 */ 12087 static int 12088 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12089 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12090 { 12091 uint64_t len = dof->dofh_loadsz, seclen; 12092 uintptr_t daddr = (uintptr_t)dof; 12093 dtrace_ecbdesc_t *ep; 12094 dtrace_enabling_t *enab; 12095 uint_t i; 12096 12097 ASSERT(MUTEX_HELD(&dtrace_lock)); 12098 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12099 12100 /* 12101 * Check the DOF header identification bytes. In addition to checking 12102 * valid settings, we also verify that unused bits/bytes are zeroed so 12103 * we can use them later without fear of regressing existing binaries. 12104 */ 12105 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12106 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12107 dtrace_dof_error(dof, "DOF magic string mismatch"); 12108 return (-1); 12109 } 12110 12111 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12112 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12113 dtrace_dof_error(dof, "DOF has invalid data model"); 12114 return (-1); 12115 } 12116 12117 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12118 dtrace_dof_error(dof, "DOF encoding mismatch"); 12119 return (-1); 12120 } 12121 12122 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12123 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12124 dtrace_dof_error(dof, "DOF version mismatch"); 12125 return (-1); 12126 } 12127 12128 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12129 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12130 return (-1); 12131 } 12132 12133 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12134 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12135 return (-1); 12136 } 12137 12138 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12139 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12140 return (-1); 12141 } 12142 12143 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12144 if (dof->dofh_ident[i] != 0) { 12145 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12146 return (-1); 12147 } 12148 } 12149 12150 if (dof->dofh_flags & ~DOF_FL_VALID) { 12151 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12152 return (-1); 12153 } 12154 12155 if (dof->dofh_secsize == 0) { 12156 dtrace_dof_error(dof, "zero section header size"); 12157 return (-1); 12158 } 12159 12160 /* 12161 * Check that the section headers don't exceed the amount of DOF 12162 * data. Note that we cast the section size and number of sections 12163 * to uint64_t's to prevent possible overflow in the multiplication. 12164 */ 12165 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12166 12167 if (dof->dofh_secoff > len || seclen > len || 12168 dof->dofh_secoff + seclen > len) { 12169 dtrace_dof_error(dof, "truncated section headers"); 12170 return (-1); 12171 } 12172 12173 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12174 dtrace_dof_error(dof, "misaligned section headers"); 12175 return (-1); 12176 } 12177 12178 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12179 dtrace_dof_error(dof, "misaligned section size"); 12180 return (-1); 12181 } 12182 12183 /* 12184 * Take an initial pass through the section headers to be sure that 12185 * the headers don't have stray offsets. If the 'noprobes' flag is 12186 * set, do not permit sections relating to providers, probes, or args. 12187 */ 12188 for (i = 0; i < dof->dofh_secnum; i++) { 12189 dof_sec_t *sec = (dof_sec_t *)(daddr + 12190 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12191 12192 if (noprobes) { 12193 switch (sec->dofs_type) { 12194 case DOF_SECT_PROVIDER: 12195 case DOF_SECT_PROBES: 12196 case DOF_SECT_PRARGS: 12197 case DOF_SECT_PROFFS: 12198 dtrace_dof_error(dof, "illegal sections " 12199 "for enabling"); 12200 return (-1); 12201 } 12202 } 12203 12204 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12205 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12206 dtrace_dof_error(dof, "loadable section with load " 12207 "flag unset"); 12208 return (-1); 12209 } 12210 12211 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12212 continue; /* just ignore non-loadable sections */ 12213 12214 if (sec->dofs_align & (sec->dofs_align - 1)) { 12215 dtrace_dof_error(dof, "bad section alignment"); 12216 return (-1); 12217 } 12218 12219 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12220 dtrace_dof_error(dof, "misaligned section"); 12221 return (-1); 12222 } 12223 12224 if (sec->dofs_offset > len || sec->dofs_size > len || 12225 sec->dofs_offset + sec->dofs_size > len) { 12226 dtrace_dof_error(dof, "corrupt section header"); 12227 return (-1); 12228 } 12229 12230 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12231 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12232 dtrace_dof_error(dof, "non-terminating string table"); 12233 return (-1); 12234 } 12235 } 12236 12237 /* 12238 * Take a second pass through the sections and locate and perform any 12239 * relocations that are present. We do this after the first pass to 12240 * be sure that all sections have had their headers validated. 12241 */ 12242 for (i = 0; i < dof->dofh_secnum; i++) { 12243 dof_sec_t *sec = (dof_sec_t *)(daddr + 12244 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12245 12246 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12247 continue; /* skip sections that are not loadable */ 12248 12249 switch (sec->dofs_type) { 12250 case DOF_SECT_URELHDR: 12251 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12252 return (-1); 12253 break; 12254 } 12255 } 12256 12257 if ((enab = *enabp) == NULL) 12258 enab = *enabp = dtrace_enabling_create(vstate); 12259 12260 for (i = 0; i < dof->dofh_secnum; i++) { 12261 dof_sec_t *sec = (dof_sec_t *)(daddr + 12262 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12263 12264 if (sec->dofs_type != DOF_SECT_ECBDESC) 12265 continue; 12266 12267 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12268 dtrace_enabling_destroy(enab); 12269 *enabp = NULL; 12270 return (-1); 12271 } 12272 12273 dtrace_enabling_add(enab, ep); 12274 } 12275 12276 return (0); 12277 } 12278 12279 /* 12280 * Process DOF for any options. This routine assumes that the DOF has been 12281 * at least processed by dtrace_dof_slurp(). 12282 */ 12283 static int 12284 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12285 { 12286 int i, rval; 12287 uint32_t entsize; 12288 size_t offs; 12289 dof_optdesc_t *desc; 12290 12291 for (i = 0; i < dof->dofh_secnum; i++) { 12292 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12293 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12294 12295 if (sec->dofs_type != DOF_SECT_OPTDESC) 12296 continue; 12297 12298 if (sec->dofs_align != sizeof (uint64_t)) { 12299 dtrace_dof_error(dof, "bad alignment in " 12300 "option description"); 12301 return (EINVAL); 12302 } 12303 12304 if ((entsize = sec->dofs_entsize) == 0) { 12305 dtrace_dof_error(dof, "zeroed option entry size"); 12306 return (EINVAL); 12307 } 12308 12309 if (entsize < sizeof (dof_optdesc_t)) { 12310 dtrace_dof_error(dof, "bad option entry size"); 12311 return (EINVAL); 12312 } 12313 12314 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12315 desc = (dof_optdesc_t *)((uintptr_t)dof + 12316 (uintptr_t)sec->dofs_offset + offs); 12317 12318 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12319 dtrace_dof_error(dof, "non-zero option string"); 12320 return (EINVAL); 12321 } 12322 12323 if (desc->dofo_value == DTRACEOPT_UNSET) { 12324 dtrace_dof_error(dof, "unset option"); 12325 return (EINVAL); 12326 } 12327 12328 if ((rval = dtrace_state_option(state, 12329 desc->dofo_option, desc->dofo_value)) != 0) { 12330 dtrace_dof_error(dof, "rejected option"); 12331 return (rval); 12332 } 12333 } 12334 } 12335 12336 return (0); 12337 } 12338 12339 /* 12340 * DTrace Consumer State Functions 12341 */ 12342 int 12343 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12344 { 12345 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12346 void *base; 12347 uintptr_t limit; 12348 dtrace_dynvar_t *dvar, *next, *start; 12349 int i; 12350 12351 ASSERT(MUTEX_HELD(&dtrace_lock)); 12352 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12353 12354 bzero(dstate, sizeof (dtrace_dstate_t)); 12355 12356 if ((dstate->dtds_chunksize = chunksize) == 0) 12357 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12358 12359 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12360 size = min; 12361 12362 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12363 return (ENOMEM); 12364 12365 dstate->dtds_size = size; 12366 dstate->dtds_base = base; 12367 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12368 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12369 12370 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12371 12372 if (hashsize != 1 && (hashsize & 1)) 12373 hashsize--; 12374 12375 dstate->dtds_hashsize = hashsize; 12376 dstate->dtds_hash = dstate->dtds_base; 12377 12378 /* 12379 * Set all of our hash buckets to point to the single sink, and (if 12380 * it hasn't already been set), set the sink's hash value to be the 12381 * sink sentinel value. The sink is needed for dynamic variable 12382 * lookups to know that they have iterated over an entire, valid hash 12383 * chain. 12384 */ 12385 for (i = 0; i < hashsize; i++) 12386 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12387 12388 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12389 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12390 12391 /* 12392 * Determine number of active CPUs. Divide free list evenly among 12393 * active CPUs. 12394 */ 12395 start = (dtrace_dynvar_t *) 12396 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12397 limit = (uintptr_t)base + size; 12398 12399 maxper = (limit - (uintptr_t)start) / NCPU; 12400 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12401 12402 for (i = 0; i < NCPU; i++) { 12403 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12404 12405 /* 12406 * If we don't even have enough chunks to make it once through 12407 * NCPUs, we're just going to allocate everything to the first 12408 * CPU. And if we're on the last CPU, we're going to allocate 12409 * whatever is left over. In either case, we set the limit to 12410 * be the limit of the dynamic variable space. 12411 */ 12412 if (maxper == 0 || i == NCPU - 1) { 12413 limit = (uintptr_t)base + size; 12414 start = NULL; 12415 } else { 12416 limit = (uintptr_t)start + maxper; 12417 start = (dtrace_dynvar_t *)limit; 12418 } 12419 12420 ASSERT(limit <= (uintptr_t)base + size); 12421 12422 for (;;) { 12423 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12424 dstate->dtds_chunksize); 12425 12426 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12427 break; 12428 12429 dvar->dtdv_next = next; 12430 dvar = next; 12431 } 12432 12433 if (maxper == 0) 12434 break; 12435 } 12436 12437 return (0); 12438 } 12439 12440 void 12441 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12442 { 12443 ASSERT(MUTEX_HELD(&cpu_lock)); 12444 12445 if (dstate->dtds_base == NULL) 12446 return; 12447 12448 kmem_free(dstate->dtds_base, dstate->dtds_size); 12449 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12450 } 12451 12452 static void 12453 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12454 { 12455 /* 12456 * Logical XOR, where are you? 12457 */ 12458 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12459 12460 if (vstate->dtvs_nglobals > 0) { 12461 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12462 sizeof (dtrace_statvar_t *)); 12463 } 12464 12465 if (vstate->dtvs_ntlocals > 0) { 12466 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12467 sizeof (dtrace_difv_t)); 12468 } 12469 12470 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12471 12472 if (vstate->dtvs_nlocals > 0) { 12473 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12474 sizeof (dtrace_statvar_t *)); 12475 } 12476 } 12477 12478 static void 12479 dtrace_state_clean(dtrace_state_t *state) 12480 { 12481 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12482 return; 12483 12484 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12485 dtrace_speculation_clean(state); 12486 } 12487 12488 static void 12489 dtrace_state_deadman(dtrace_state_t *state) 12490 { 12491 hrtime_t now; 12492 12493 dtrace_sync(); 12494 12495 now = dtrace_gethrtime(); 12496 12497 if (state != dtrace_anon.dta_state && 12498 now - state->dts_laststatus >= dtrace_deadman_user) 12499 return; 12500 12501 /* 12502 * We must be sure that dts_alive never appears to be less than the 12503 * value upon entry to dtrace_state_deadman(), and because we lack a 12504 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12505 * store INT64_MAX to it, followed by a memory barrier, followed by 12506 * the new value. This assures that dts_alive never appears to be 12507 * less than its true value, regardless of the order in which the 12508 * stores to the underlying storage are issued. 12509 */ 12510 state->dts_alive = INT64_MAX; 12511 dtrace_membar_producer(); 12512 state->dts_alive = now; 12513 } 12514 12515 dtrace_state_t * 12516 dtrace_state_create(dev_t *devp, cred_t *cr) 12517 { 12518 minor_t minor; 12519 major_t major; 12520 char c[30]; 12521 dtrace_state_t *state; 12522 dtrace_optval_t *opt; 12523 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12524 12525 ASSERT(MUTEX_HELD(&dtrace_lock)); 12526 ASSERT(MUTEX_HELD(&cpu_lock)); 12527 12528 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12529 VM_BESTFIT | VM_SLEEP); 12530 12531 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12532 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12533 return (NULL); 12534 } 12535 12536 state = ddi_get_soft_state(dtrace_softstate, minor); 12537 state->dts_epid = DTRACE_EPIDNONE + 1; 12538 12539 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12540 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12541 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12542 12543 if (devp != NULL) { 12544 major = getemajor(*devp); 12545 } else { 12546 major = ddi_driver_major(dtrace_devi); 12547 } 12548 12549 state->dts_dev = makedevice(major, minor); 12550 12551 if (devp != NULL) 12552 *devp = state->dts_dev; 12553 12554 /* 12555 * We allocate NCPU buffers. On the one hand, this can be quite 12556 * a bit of memory per instance (nearly 36K on a Starcat). On the 12557 * other hand, it saves an additional memory reference in the probe 12558 * path. 12559 */ 12560 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12561 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12562 state->dts_cleaner = CYCLIC_NONE; 12563 state->dts_deadman = CYCLIC_NONE; 12564 state->dts_vstate.dtvs_state = state; 12565 12566 for (i = 0; i < DTRACEOPT_MAX; i++) 12567 state->dts_options[i] = DTRACEOPT_UNSET; 12568 12569 /* 12570 * Set the default options. 12571 */ 12572 opt = state->dts_options; 12573 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12574 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12575 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12576 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12577 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12578 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12579 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12580 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12581 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12582 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12583 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12584 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12585 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12586 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12587 12588 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12589 12590 /* 12591 * Depending on the user credentials, we set flag bits which alter probe 12592 * visibility or the amount of destructiveness allowed. In the case of 12593 * actual anonymous tracing, or the possession of all privileges, all of 12594 * the normal checks are bypassed. 12595 */ 12596 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12597 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12598 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12599 } else { 12600 /* 12601 * Set up the credentials for this instantiation. We take a 12602 * hold on the credential to prevent it from disappearing on 12603 * us; this in turn prevents the zone_t referenced by this 12604 * credential from disappearing. This means that we can 12605 * examine the credential and the zone from probe context. 12606 */ 12607 crhold(cr); 12608 state->dts_cred.dcr_cred = cr; 12609 12610 /* 12611 * CRA_PROC means "we have *some* privilege for dtrace" and 12612 * unlocks the use of variables like pid, zonename, etc. 12613 */ 12614 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12615 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12616 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12617 } 12618 12619 /* 12620 * dtrace_user allows use of syscall and profile providers. 12621 * If the user also has proc_owner and/or proc_zone, we 12622 * extend the scope to include additional visibility and 12623 * destructive power. 12624 */ 12625 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12626 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12627 state->dts_cred.dcr_visible |= 12628 DTRACE_CRV_ALLPROC; 12629 12630 state->dts_cred.dcr_action |= 12631 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12632 } 12633 12634 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12635 state->dts_cred.dcr_visible |= 12636 DTRACE_CRV_ALLZONE; 12637 12638 state->dts_cred.dcr_action |= 12639 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12640 } 12641 12642 /* 12643 * If we have all privs in whatever zone this is, 12644 * we can do destructive things to processes which 12645 * have altered credentials. 12646 */ 12647 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12648 cr->cr_zone->zone_privset)) { 12649 state->dts_cred.dcr_action |= 12650 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12651 } 12652 } 12653 12654 /* 12655 * Holding the dtrace_kernel privilege also implies that 12656 * the user has the dtrace_user privilege from a visibility 12657 * perspective. But without further privileges, some 12658 * destructive actions are not available. 12659 */ 12660 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12661 /* 12662 * Make all probes in all zones visible. However, 12663 * this doesn't mean that all actions become available 12664 * to all zones. 12665 */ 12666 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12667 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12668 12669 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12670 DTRACE_CRA_PROC; 12671 /* 12672 * Holding proc_owner means that destructive actions 12673 * for *this* zone are allowed. 12674 */ 12675 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12676 state->dts_cred.dcr_action |= 12677 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12678 12679 /* 12680 * Holding proc_zone means that destructive actions 12681 * for this user/group ID in all zones is allowed. 12682 */ 12683 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12684 state->dts_cred.dcr_action |= 12685 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12686 12687 /* 12688 * If we have all privs in whatever zone this is, 12689 * we can do destructive things to processes which 12690 * have altered credentials. 12691 */ 12692 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12693 cr->cr_zone->zone_privset)) { 12694 state->dts_cred.dcr_action |= 12695 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12696 } 12697 } 12698 12699 /* 12700 * Holding the dtrace_proc privilege gives control over fasttrap 12701 * and pid providers. We need to grant wider destructive 12702 * privileges in the event that the user has proc_owner and/or 12703 * proc_zone. 12704 */ 12705 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12706 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12707 state->dts_cred.dcr_action |= 12708 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12709 12710 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12711 state->dts_cred.dcr_action |= 12712 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12713 } 12714 } 12715 12716 return (state); 12717 } 12718 12719 static int 12720 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12721 { 12722 dtrace_optval_t *opt = state->dts_options, size; 12723 processorid_t cpu; 12724 int flags = 0, rval, factor, divisor = 1; 12725 12726 ASSERT(MUTEX_HELD(&dtrace_lock)); 12727 ASSERT(MUTEX_HELD(&cpu_lock)); 12728 ASSERT(which < DTRACEOPT_MAX); 12729 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12730 (state == dtrace_anon.dta_state && 12731 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12732 12733 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12734 return (0); 12735 12736 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12737 cpu = opt[DTRACEOPT_CPU]; 12738 12739 if (which == DTRACEOPT_SPECSIZE) 12740 flags |= DTRACEBUF_NOSWITCH; 12741 12742 if (which == DTRACEOPT_BUFSIZE) { 12743 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12744 flags |= DTRACEBUF_RING; 12745 12746 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12747 flags |= DTRACEBUF_FILL; 12748 12749 if (state != dtrace_anon.dta_state || 12750 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12751 flags |= DTRACEBUF_INACTIVE; 12752 } 12753 12754 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12755 /* 12756 * The size must be 8-byte aligned. If the size is not 8-byte 12757 * aligned, drop it down by the difference. 12758 */ 12759 if (size & (sizeof (uint64_t) - 1)) 12760 size -= size & (sizeof (uint64_t) - 1); 12761 12762 if (size < state->dts_reserve) { 12763 /* 12764 * Buffers always must be large enough to accommodate 12765 * their prereserved space. We return E2BIG instead 12766 * of ENOMEM in this case to allow for user-level 12767 * software to differentiate the cases. 12768 */ 12769 return (E2BIG); 12770 } 12771 12772 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12773 12774 if (rval != ENOMEM) { 12775 opt[which] = size; 12776 return (rval); 12777 } 12778 12779 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12780 return (rval); 12781 12782 for (divisor = 2; divisor < factor; divisor <<= 1) 12783 continue; 12784 } 12785 12786 return (ENOMEM); 12787 } 12788 12789 static int 12790 dtrace_state_buffers(dtrace_state_t *state) 12791 { 12792 dtrace_speculation_t *spec = state->dts_speculations; 12793 int rval, i; 12794 12795 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12796 DTRACEOPT_BUFSIZE)) != 0) 12797 return (rval); 12798 12799 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12800 DTRACEOPT_AGGSIZE)) != 0) 12801 return (rval); 12802 12803 for (i = 0; i < state->dts_nspeculations; i++) { 12804 if ((rval = dtrace_state_buffer(state, 12805 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12806 return (rval); 12807 } 12808 12809 return (0); 12810 } 12811 12812 static void 12813 dtrace_state_prereserve(dtrace_state_t *state) 12814 { 12815 dtrace_ecb_t *ecb; 12816 dtrace_probe_t *probe; 12817 12818 state->dts_reserve = 0; 12819 12820 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12821 return; 12822 12823 /* 12824 * If our buffer policy is a "fill" buffer policy, we need to set the 12825 * prereserved space to be the space required by the END probes. 12826 */ 12827 probe = dtrace_probes[dtrace_probeid_end - 1]; 12828 ASSERT(probe != NULL); 12829 12830 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12831 if (ecb->dte_state != state) 12832 continue; 12833 12834 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12835 } 12836 } 12837 12838 static int 12839 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12840 { 12841 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12842 dtrace_speculation_t *spec; 12843 dtrace_buffer_t *buf; 12844 cyc_handler_t hdlr; 12845 cyc_time_t when; 12846 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12847 dtrace_icookie_t cookie; 12848 12849 mutex_enter(&cpu_lock); 12850 mutex_enter(&dtrace_lock); 12851 12852 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12853 rval = EBUSY; 12854 goto out; 12855 } 12856 12857 /* 12858 * Before we can perform any checks, we must prime all of the 12859 * retained enablings that correspond to this state. 12860 */ 12861 dtrace_enabling_prime(state); 12862 12863 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12864 rval = EACCES; 12865 goto out; 12866 } 12867 12868 dtrace_state_prereserve(state); 12869 12870 /* 12871 * Now we want to do is try to allocate our speculations. 12872 * We do not automatically resize the number of speculations; if 12873 * this fails, we will fail the operation. 12874 */ 12875 nspec = opt[DTRACEOPT_NSPEC]; 12876 ASSERT(nspec != DTRACEOPT_UNSET); 12877 12878 if (nspec > INT_MAX) { 12879 rval = ENOMEM; 12880 goto out; 12881 } 12882 12883 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 12884 KM_NOSLEEP | KM_NORMALPRI); 12885 12886 if (spec == NULL) { 12887 rval = ENOMEM; 12888 goto out; 12889 } 12890 12891 state->dts_speculations = spec; 12892 state->dts_nspeculations = (int)nspec; 12893 12894 for (i = 0; i < nspec; i++) { 12895 if ((buf = kmem_zalloc(bufsize, 12896 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 12897 rval = ENOMEM; 12898 goto err; 12899 } 12900 12901 spec[i].dtsp_buffer = buf; 12902 } 12903 12904 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12905 if (dtrace_anon.dta_state == NULL) { 12906 rval = ENOENT; 12907 goto out; 12908 } 12909 12910 if (state->dts_necbs != 0) { 12911 rval = EALREADY; 12912 goto out; 12913 } 12914 12915 state->dts_anon = dtrace_anon_grab(); 12916 ASSERT(state->dts_anon != NULL); 12917 state = state->dts_anon; 12918 12919 /* 12920 * We want "grabanon" to be set in the grabbed state, so we'll 12921 * copy that option value from the grabbing state into the 12922 * grabbed state. 12923 */ 12924 state->dts_options[DTRACEOPT_GRABANON] = 12925 opt[DTRACEOPT_GRABANON]; 12926 12927 *cpu = dtrace_anon.dta_beganon; 12928 12929 /* 12930 * If the anonymous state is active (as it almost certainly 12931 * is if the anonymous enabling ultimately matched anything), 12932 * we don't allow any further option processing -- but we 12933 * don't return failure. 12934 */ 12935 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12936 goto out; 12937 } 12938 12939 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12940 opt[DTRACEOPT_AGGSIZE] != 0) { 12941 if (state->dts_aggregations == NULL) { 12942 /* 12943 * We're not going to create an aggregation buffer 12944 * because we don't have any ECBs that contain 12945 * aggregations -- set this option to 0. 12946 */ 12947 opt[DTRACEOPT_AGGSIZE] = 0; 12948 } else { 12949 /* 12950 * If we have an aggregation buffer, we must also have 12951 * a buffer to use as scratch. 12952 */ 12953 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12954 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12955 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12956 } 12957 } 12958 } 12959 12960 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12961 opt[DTRACEOPT_SPECSIZE] != 0) { 12962 if (!state->dts_speculates) { 12963 /* 12964 * We're not going to create speculation buffers 12965 * because we don't have any ECBs that actually 12966 * speculate -- set the speculation size to 0. 12967 */ 12968 opt[DTRACEOPT_SPECSIZE] = 0; 12969 } 12970 } 12971 12972 /* 12973 * The bare minimum size for any buffer that we're actually going to 12974 * do anything to is sizeof (uint64_t). 12975 */ 12976 sz = sizeof (uint64_t); 12977 12978 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12979 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12980 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12981 /* 12982 * A buffer size has been explicitly set to 0 (or to a size 12983 * that will be adjusted to 0) and we need the space -- we 12984 * need to return failure. We return ENOSPC to differentiate 12985 * it from failing to allocate a buffer due to failure to meet 12986 * the reserve (for which we return E2BIG). 12987 */ 12988 rval = ENOSPC; 12989 goto out; 12990 } 12991 12992 if ((rval = dtrace_state_buffers(state)) != 0) 12993 goto err; 12994 12995 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12996 sz = dtrace_dstate_defsize; 12997 12998 do { 12999 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13000 13001 if (rval == 0) 13002 break; 13003 13004 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13005 goto err; 13006 } while (sz >>= 1); 13007 13008 opt[DTRACEOPT_DYNVARSIZE] = sz; 13009 13010 if (rval != 0) 13011 goto err; 13012 13013 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13014 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13015 13016 if (opt[DTRACEOPT_CLEANRATE] == 0) 13017 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13018 13019 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13020 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13021 13022 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13023 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13024 13025 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13026 hdlr.cyh_arg = state; 13027 hdlr.cyh_level = CY_LOW_LEVEL; 13028 13029 when.cyt_when = 0; 13030 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13031 13032 state->dts_cleaner = cyclic_add(&hdlr, &when); 13033 13034 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13035 hdlr.cyh_arg = state; 13036 hdlr.cyh_level = CY_LOW_LEVEL; 13037 13038 when.cyt_when = 0; 13039 when.cyt_interval = dtrace_deadman_interval; 13040 13041 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13042 state->dts_deadman = cyclic_add(&hdlr, &when); 13043 13044 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13045 13046 /* 13047 * Now it's time to actually fire the BEGIN probe. We need to disable 13048 * interrupts here both to record the CPU on which we fired the BEGIN 13049 * probe (the data from this CPU will be processed first at user 13050 * level) and to manually activate the buffer for this CPU. 13051 */ 13052 cookie = dtrace_interrupt_disable(); 13053 *cpu = CPU->cpu_id; 13054 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13055 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13056 13057 dtrace_probe(dtrace_probeid_begin, 13058 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13059 dtrace_interrupt_enable(cookie); 13060 /* 13061 * We may have had an exit action from a BEGIN probe; only change our 13062 * state to ACTIVE if we're still in WARMUP. 13063 */ 13064 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13065 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13066 13067 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13068 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13069 13070 /* 13071 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13072 * want each CPU to transition its principal buffer out of the 13073 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13074 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13075 * atomically transition from processing none of a state's ECBs to 13076 * processing all of them. 13077 */ 13078 dtrace_xcall(DTRACE_CPUALL, 13079 (dtrace_xcall_t)dtrace_buffer_activate, state); 13080 goto out; 13081 13082 err: 13083 dtrace_buffer_free(state->dts_buffer); 13084 dtrace_buffer_free(state->dts_aggbuffer); 13085 13086 if ((nspec = state->dts_nspeculations) == 0) { 13087 ASSERT(state->dts_speculations == NULL); 13088 goto out; 13089 } 13090 13091 spec = state->dts_speculations; 13092 ASSERT(spec != NULL); 13093 13094 for (i = 0; i < state->dts_nspeculations; i++) { 13095 if ((buf = spec[i].dtsp_buffer) == NULL) 13096 break; 13097 13098 dtrace_buffer_free(buf); 13099 kmem_free(buf, bufsize); 13100 } 13101 13102 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13103 state->dts_nspeculations = 0; 13104 state->dts_speculations = NULL; 13105 13106 out: 13107 mutex_exit(&dtrace_lock); 13108 mutex_exit(&cpu_lock); 13109 13110 return (rval); 13111 } 13112 13113 static int 13114 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13115 { 13116 dtrace_icookie_t cookie; 13117 13118 ASSERT(MUTEX_HELD(&dtrace_lock)); 13119 13120 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13121 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13122 return (EINVAL); 13123 13124 /* 13125 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13126 * to be sure that every CPU has seen it. See below for the details 13127 * on why this is done. 13128 */ 13129 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13130 dtrace_sync(); 13131 13132 /* 13133 * By this point, it is impossible for any CPU to be still processing 13134 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13135 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13136 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13137 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13138 * iff we're in the END probe. 13139 */ 13140 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13141 dtrace_sync(); 13142 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13143 13144 /* 13145 * Finally, we can release the reserve and call the END probe. We 13146 * disable interrupts across calling the END probe to allow us to 13147 * return the CPU on which we actually called the END probe. This 13148 * allows user-land to be sure that this CPU's principal buffer is 13149 * processed last. 13150 */ 13151 state->dts_reserve = 0; 13152 13153 cookie = dtrace_interrupt_disable(); 13154 *cpu = CPU->cpu_id; 13155 dtrace_probe(dtrace_probeid_end, 13156 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13157 dtrace_interrupt_enable(cookie); 13158 13159 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13160 dtrace_sync(); 13161 13162 return (0); 13163 } 13164 13165 static int 13166 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13167 dtrace_optval_t val) 13168 { 13169 ASSERT(MUTEX_HELD(&dtrace_lock)); 13170 13171 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13172 return (EBUSY); 13173 13174 if (option >= DTRACEOPT_MAX) 13175 return (EINVAL); 13176 13177 if (option != DTRACEOPT_CPU && val < 0) 13178 return (EINVAL); 13179 13180 switch (option) { 13181 case DTRACEOPT_DESTRUCTIVE: 13182 if (dtrace_destructive_disallow) 13183 return (EACCES); 13184 13185 state->dts_cred.dcr_destructive = 1; 13186 break; 13187 13188 case DTRACEOPT_BUFSIZE: 13189 case DTRACEOPT_DYNVARSIZE: 13190 case DTRACEOPT_AGGSIZE: 13191 case DTRACEOPT_SPECSIZE: 13192 case DTRACEOPT_STRSIZE: 13193 if (val < 0) 13194 return (EINVAL); 13195 13196 if (val >= LONG_MAX) { 13197 /* 13198 * If this is an otherwise negative value, set it to 13199 * the highest multiple of 128m less than LONG_MAX. 13200 * Technically, we're adjusting the size without 13201 * regard to the buffer resizing policy, but in fact, 13202 * this has no effect -- if we set the buffer size to 13203 * ~LONG_MAX and the buffer policy is ultimately set to 13204 * be "manual", the buffer allocation is guaranteed to 13205 * fail, if only because the allocation requires two 13206 * buffers. (We set the the size to the highest 13207 * multiple of 128m because it ensures that the size 13208 * will remain a multiple of a megabyte when 13209 * repeatedly halved -- all the way down to 15m.) 13210 */ 13211 val = LONG_MAX - (1 << 27) + 1; 13212 } 13213 } 13214 13215 state->dts_options[option] = val; 13216 13217 return (0); 13218 } 13219 13220 static void 13221 dtrace_state_destroy(dtrace_state_t *state) 13222 { 13223 dtrace_ecb_t *ecb; 13224 dtrace_vstate_t *vstate = &state->dts_vstate; 13225 minor_t minor = getminor(state->dts_dev); 13226 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13227 dtrace_speculation_t *spec = state->dts_speculations; 13228 int nspec = state->dts_nspeculations; 13229 uint32_t match; 13230 13231 ASSERT(MUTEX_HELD(&dtrace_lock)); 13232 ASSERT(MUTEX_HELD(&cpu_lock)); 13233 13234 /* 13235 * First, retract any retained enablings for this state. 13236 */ 13237 dtrace_enabling_retract(state); 13238 ASSERT(state->dts_nretained == 0); 13239 13240 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13241 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13242 /* 13243 * We have managed to come into dtrace_state_destroy() on a 13244 * hot enabling -- almost certainly because of a disorderly 13245 * shutdown of a consumer. (That is, a consumer that is 13246 * exiting without having called dtrace_stop().) In this case, 13247 * we're going to set our activity to be KILLED, and then 13248 * issue a sync to be sure that everyone is out of probe 13249 * context before we start blowing away ECBs. 13250 */ 13251 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13252 dtrace_sync(); 13253 } 13254 13255 /* 13256 * Release the credential hold we took in dtrace_state_create(). 13257 */ 13258 if (state->dts_cred.dcr_cred != NULL) 13259 crfree(state->dts_cred.dcr_cred); 13260 13261 /* 13262 * Now we can safely disable and destroy any enabled probes. Because 13263 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13264 * (especially if they're all enabled), we take two passes through the 13265 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13266 * in the second we disable whatever is left over. 13267 */ 13268 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13269 for (i = 0; i < state->dts_necbs; i++) { 13270 if ((ecb = state->dts_ecbs[i]) == NULL) 13271 continue; 13272 13273 if (match && ecb->dte_probe != NULL) { 13274 dtrace_probe_t *probe = ecb->dte_probe; 13275 dtrace_provider_t *prov = probe->dtpr_provider; 13276 13277 if (!(prov->dtpv_priv.dtpp_flags & match)) 13278 continue; 13279 } 13280 13281 dtrace_ecb_disable(ecb); 13282 dtrace_ecb_destroy(ecb); 13283 } 13284 13285 if (!match) 13286 break; 13287 } 13288 13289 /* 13290 * Before we free the buffers, perform one more sync to assure that 13291 * every CPU is out of probe context. 13292 */ 13293 dtrace_sync(); 13294 13295 dtrace_buffer_free(state->dts_buffer); 13296 dtrace_buffer_free(state->dts_aggbuffer); 13297 13298 for (i = 0; i < nspec; i++) 13299 dtrace_buffer_free(spec[i].dtsp_buffer); 13300 13301 if (state->dts_cleaner != CYCLIC_NONE) 13302 cyclic_remove(state->dts_cleaner); 13303 13304 if (state->dts_deadman != CYCLIC_NONE) 13305 cyclic_remove(state->dts_deadman); 13306 13307 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13308 dtrace_vstate_fini(vstate); 13309 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13310 13311 if (state->dts_aggregations != NULL) { 13312 #ifdef DEBUG 13313 for (i = 0; i < state->dts_naggregations; i++) 13314 ASSERT(state->dts_aggregations[i] == NULL); 13315 #endif 13316 ASSERT(state->dts_naggregations > 0); 13317 kmem_free(state->dts_aggregations, 13318 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13319 } 13320 13321 kmem_free(state->dts_buffer, bufsize); 13322 kmem_free(state->dts_aggbuffer, bufsize); 13323 13324 for (i = 0; i < nspec; i++) 13325 kmem_free(spec[i].dtsp_buffer, bufsize); 13326 13327 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13328 13329 dtrace_format_destroy(state); 13330 13331 vmem_destroy(state->dts_aggid_arena); 13332 ddi_soft_state_free(dtrace_softstate, minor); 13333 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13334 } 13335 13336 /* 13337 * DTrace Anonymous Enabling Functions 13338 */ 13339 static dtrace_state_t * 13340 dtrace_anon_grab(void) 13341 { 13342 dtrace_state_t *state; 13343 13344 ASSERT(MUTEX_HELD(&dtrace_lock)); 13345 13346 if ((state = dtrace_anon.dta_state) == NULL) { 13347 ASSERT(dtrace_anon.dta_enabling == NULL); 13348 return (NULL); 13349 } 13350 13351 ASSERT(dtrace_anon.dta_enabling != NULL); 13352 ASSERT(dtrace_retained != NULL); 13353 13354 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13355 dtrace_anon.dta_enabling = NULL; 13356 dtrace_anon.dta_state = NULL; 13357 13358 return (state); 13359 } 13360 13361 static void 13362 dtrace_anon_property(void) 13363 { 13364 int i, rv; 13365 dtrace_state_t *state; 13366 dof_hdr_t *dof; 13367 char c[32]; /* enough for "dof-data-" + digits */ 13368 13369 ASSERT(MUTEX_HELD(&dtrace_lock)); 13370 ASSERT(MUTEX_HELD(&cpu_lock)); 13371 13372 for (i = 0; ; i++) { 13373 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13374 13375 dtrace_err_verbose = 1; 13376 13377 if ((dof = dtrace_dof_property(c)) == NULL) { 13378 dtrace_err_verbose = 0; 13379 break; 13380 } 13381 13382 /* 13383 * We want to create anonymous state, so we need to transition 13384 * the kernel debugger to indicate that DTrace is active. If 13385 * this fails (e.g. because the debugger has modified text in 13386 * some way), we won't continue with the processing. 13387 */ 13388 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13389 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13390 "enabling ignored."); 13391 dtrace_dof_destroy(dof); 13392 break; 13393 } 13394 13395 /* 13396 * If we haven't allocated an anonymous state, we'll do so now. 13397 */ 13398 if ((state = dtrace_anon.dta_state) == NULL) { 13399 state = dtrace_state_create(NULL, NULL); 13400 dtrace_anon.dta_state = state; 13401 13402 if (state == NULL) { 13403 /* 13404 * This basically shouldn't happen: the only 13405 * failure mode from dtrace_state_create() is a 13406 * failure of ddi_soft_state_zalloc() that 13407 * itself should never happen. Still, the 13408 * interface allows for a failure mode, and 13409 * we want to fail as gracefully as possible: 13410 * we'll emit an error message and cease 13411 * processing anonymous state in this case. 13412 */ 13413 cmn_err(CE_WARN, "failed to create " 13414 "anonymous state"); 13415 dtrace_dof_destroy(dof); 13416 break; 13417 } 13418 } 13419 13420 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13421 &dtrace_anon.dta_enabling, 0, B_TRUE); 13422 13423 if (rv == 0) 13424 rv = dtrace_dof_options(dof, state); 13425 13426 dtrace_err_verbose = 0; 13427 dtrace_dof_destroy(dof); 13428 13429 if (rv != 0) { 13430 /* 13431 * This is malformed DOF; chuck any anonymous state 13432 * that we created. 13433 */ 13434 ASSERT(dtrace_anon.dta_enabling == NULL); 13435 dtrace_state_destroy(state); 13436 dtrace_anon.dta_state = NULL; 13437 break; 13438 } 13439 13440 ASSERT(dtrace_anon.dta_enabling != NULL); 13441 } 13442 13443 if (dtrace_anon.dta_enabling != NULL) { 13444 int rval; 13445 13446 /* 13447 * dtrace_enabling_retain() can only fail because we are 13448 * trying to retain more enablings than are allowed -- but 13449 * we only have one anonymous enabling, and we are guaranteed 13450 * to be allowed at least one retained enabling; we assert 13451 * that dtrace_enabling_retain() returns success. 13452 */ 13453 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13454 ASSERT(rval == 0); 13455 13456 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13457 } 13458 } 13459 13460 /* 13461 * DTrace Helper Functions 13462 */ 13463 static void 13464 dtrace_helper_trace(dtrace_helper_action_t *helper, 13465 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13466 { 13467 uint32_t size, next, nnext, i; 13468 dtrace_helptrace_t *ent; 13469 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13470 13471 if (!dtrace_helptrace_enabled) 13472 return; 13473 13474 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13475 13476 /* 13477 * What would a tracing framework be without its own tracing 13478 * framework? (Well, a hell of a lot simpler, for starters...) 13479 */ 13480 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13481 sizeof (uint64_t) - sizeof (uint64_t); 13482 13483 /* 13484 * Iterate until we can allocate a slot in the trace buffer. 13485 */ 13486 do { 13487 next = dtrace_helptrace_next; 13488 13489 if (next + size < dtrace_helptrace_bufsize) { 13490 nnext = next + size; 13491 } else { 13492 nnext = size; 13493 } 13494 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13495 13496 /* 13497 * We have our slot; fill it in. 13498 */ 13499 if (nnext == size) 13500 next = 0; 13501 13502 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13503 ent->dtht_helper = helper; 13504 ent->dtht_where = where; 13505 ent->dtht_nlocals = vstate->dtvs_nlocals; 13506 13507 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13508 mstate->dtms_fltoffs : -1; 13509 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13510 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13511 13512 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13513 dtrace_statvar_t *svar; 13514 13515 if ((svar = vstate->dtvs_locals[i]) == NULL) 13516 continue; 13517 13518 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13519 ent->dtht_locals[i] = 13520 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13521 } 13522 } 13523 13524 static uint64_t 13525 dtrace_helper(int which, dtrace_mstate_t *mstate, 13526 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13527 { 13528 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13529 uint64_t sarg0 = mstate->dtms_arg[0]; 13530 uint64_t sarg1 = mstate->dtms_arg[1]; 13531 uint64_t rval; 13532 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13533 dtrace_helper_action_t *helper; 13534 dtrace_vstate_t *vstate; 13535 dtrace_difo_t *pred; 13536 int i, trace = dtrace_helptrace_enabled; 13537 13538 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13539 13540 if (helpers == NULL) 13541 return (0); 13542 13543 if ((helper = helpers->dthps_actions[which]) == NULL) 13544 return (0); 13545 13546 vstate = &helpers->dthps_vstate; 13547 mstate->dtms_arg[0] = arg0; 13548 mstate->dtms_arg[1] = arg1; 13549 13550 /* 13551 * Now iterate over each helper. If its predicate evaluates to 'true', 13552 * we'll call the corresponding actions. Note that the below calls 13553 * to dtrace_dif_emulate() may set faults in machine state. This is 13554 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13555 * the stored DIF offset with its own (which is the desired behavior). 13556 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13557 * from machine state; this is okay, too. 13558 */ 13559 for (; helper != NULL; helper = helper->dtha_next) { 13560 if ((pred = helper->dtha_predicate) != NULL) { 13561 if (trace) 13562 dtrace_helper_trace(helper, mstate, vstate, 0); 13563 13564 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13565 goto next; 13566 13567 if (*flags & CPU_DTRACE_FAULT) 13568 goto err; 13569 } 13570 13571 for (i = 0; i < helper->dtha_nactions; i++) { 13572 if (trace) 13573 dtrace_helper_trace(helper, 13574 mstate, vstate, i + 1); 13575 13576 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13577 mstate, vstate, state); 13578 13579 if (*flags & CPU_DTRACE_FAULT) 13580 goto err; 13581 } 13582 13583 next: 13584 if (trace) 13585 dtrace_helper_trace(helper, mstate, vstate, 13586 DTRACE_HELPTRACE_NEXT); 13587 } 13588 13589 if (trace) 13590 dtrace_helper_trace(helper, mstate, vstate, 13591 DTRACE_HELPTRACE_DONE); 13592 13593 /* 13594 * Restore the arg0 that we saved upon entry. 13595 */ 13596 mstate->dtms_arg[0] = sarg0; 13597 mstate->dtms_arg[1] = sarg1; 13598 13599 return (rval); 13600 13601 err: 13602 if (trace) 13603 dtrace_helper_trace(helper, mstate, vstate, 13604 DTRACE_HELPTRACE_ERR); 13605 13606 /* 13607 * Restore the arg0 that we saved upon entry. 13608 */ 13609 mstate->dtms_arg[0] = sarg0; 13610 mstate->dtms_arg[1] = sarg1; 13611 13612 return (NULL); 13613 } 13614 13615 static void 13616 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13617 dtrace_vstate_t *vstate) 13618 { 13619 int i; 13620 13621 if (helper->dtha_predicate != NULL) 13622 dtrace_difo_release(helper->dtha_predicate, vstate); 13623 13624 for (i = 0; i < helper->dtha_nactions; i++) { 13625 ASSERT(helper->dtha_actions[i] != NULL); 13626 dtrace_difo_release(helper->dtha_actions[i], vstate); 13627 } 13628 13629 kmem_free(helper->dtha_actions, 13630 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13631 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13632 } 13633 13634 static int 13635 dtrace_helper_destroygen(int gen) 13636 { 13637 proc_t *p = curproc; 13638 dtrace_helpers_t *help = p->p_dtrace_helpers; 13639 dtrace_vstate_t *vstate; 13640 int i; 13641 13642 ASSERT(MUTEX_HELD(&dtrace_lock)); 13643 13644 if (help == NULL || gen > help->dthps_generation) 13645 return (EINVAL); 13646 13647 vstate = &help->dthps_vstate; 13648 13649 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13650 dtrace_helper_action_t *last = NULL, *h, *next; 13651 13652 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13653 next = h->dtha_next; 13654 13655 if (h->dtha_generation == gen) { 13656 if (last != NULL) { 13657 last->dtha_next = next; 13658 } else { 13659 help->dthps_actions[i] = next; 13660 } 13661 13662 dtrace_helper_action_destroy(h, vstate); 13663 } else { 13664 last = h; 13665 } 13666 } 13667 } 13668 13669 /* 13670 * Interate until we've cleared out all helper providers with the 13671 * given generation number. 13672 */ 13673 for (;;) { 13674 dtrace_helper_provider_t *prov; 13675 13676 /* 13677 * Look for a helper provider with the right generation. We 13678 * have to start back at the beginning of the list each time 13679 * because we drop dtrace_lock. It's unlikely that we'll make 13680 * more than two passes. 13681 */ 13682 for (i = 0; i < help->dthps_nprovs; i++) { 13683 prov = help->dthps_provs[i]; 13684 13685 if (prov->dthp_generation == gen) 13686 break; 13687 } 13688 13689 /* 13690 * If there were no matches, we're done. 13691 */ 13692 if (i == help->dthps_nprovs) 13693 break; 13694 13695 /* 13696 * Move the last helper provider into this slot. 13697 */ 13698 help->dthps_nprovs--; 13699 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13700 help->dthps_provs[help->dthps_nprovs] = NULL; 13701 13702 mutex_exit(&dtrace_lock); 13703 13704 /* 13705 * If we have a meta provider, remove this helper provider. 13706 */ 13707 mutex_enter(&dtrace_meta_lock); 13708 if (dtrace_meta_pid != NULL) { 13709 ASSERT(dtrace_deferred_pid == NULL); 13710 dtrace_helper_provider_remove(&prov->dthp_prov, 13711 p->p_pid); 13712 } 13713 mutex_exit(&dtrace_meta_lock); 13714 13715 dtrace_helper_provider_destroy(prov); 13716 13717 mutex_enter(&dtrace_lock); 13718 } 13719 13720 return (0); 13721 } 13722 13723 static int 13724 dtrace_helper_validate(dtrace_helper_action_t *helper) 13725 { 13726 int err = 0, i; 13727 dtrace_difo_t *dp; 13728 13729 if ((dp = helper->dtha_predicate) != NULL) 13730 err += dtrace_difo_validate_helper(dp); 13731 13732 for (i = 0; i < helper->dtha_nactions; i++) 13733 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13734 13735 return (err == 0); 13736 } 13737 13738 static int 13739 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13740 { 13741 dtrace_helpers_t *help; 13742 dtrace_helper_action_t *helper, *last; 13743 dtrace_actdesc_t *act; 13744 dtrace_vstate_t *vstate; 13745 dtrace_predicate_t *pred; 13746 int count = 0, nactions = 0, i; 13747 13748 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13749 return (EINVAL); 13750 13751 help = curproc->p_dtrace_helpers; 13752 last = help->dthps_actions[which]; 13753 vstate = &help->dthps_vstate; 13754 13755 for (count = 0; last != NULL; last = last->dtha_next) { 13756 count++; 13757 if (last->dtha_next == NULL) 13758 break; 13759 } 13760 13761 /* 13762 * If we already have dtrace_helper_actions_max helper actions for this 13763 * helper action type, we'll refuse to add a new one. 13764 */ 13765 if (count >= dtrace_helper_actions_max) 13766 return (ENOSPC); 13767 13768 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13769 helper->dtha_generation = help->dthps_generation; 13770 13771 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13772 ASSERT(pred->dtp_difo != NULL); 13773 dtrace_difo_hold(pred->dtp_difo); 13774 helper->dtha_predicate = pred->dtp_difo; 13775 } 13776 13777 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13778 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13779 goto err; 13780 13781 if (act->dtad_difo == NULL) 13782 goto err; 13783 13784 nactions++; 13785 } 13786 13787 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13788 (helper->dtha_nactions = nactions), KM_SLEEP); 13789 13790 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13791 dtrace_difo_hold(act->dtad_difo); 13792 helper->dtha_actions[i++] = act->dtad_difo; 13793 } 13794 13795 if (!dtrace_helper_validate(helper)) 13796 goto err; 13797 13798 if (last == NULL) { 13799 help->dthps_actions[which] = helper; 13800 } else { 13801 last->dtha_next = helper; 13802 } 13803 13804 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13805 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13806 dtrace_helptrace_next = 0; 13807 } 13808 13809 return (0); 13810 err: 13811 dtrace_helper_action_destroy(helper, vstate); 13812 return (EINVAL); 13813 } 13814 13815 static void 13816 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13817 dof_helper_t *dofhp) 13818 { 13819 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13820 13821 mutex_enter(&dtrace_meta_lock); 13822 mutex_enter(&dtrace_lock); 13823 13824 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13825 /* 13826 * If the dtrace module is loaded but not attached, or if 13827 * there aren't isn't a meta provider registered to deal with 13828 * these provider descriptions, we need to postpone creating 13829 * the actual providers until later. 13830 */ 13831 13832 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13833 dtrace_deferred_pid != help) { 13834 help->dthps_deferred = 1; 13835 help->dthps_pid = p->p_pid; 13836 help->dthps_next = dtrace_deferred_pid; 13837 help->dthps_prev = NULL; 13838 if (dtrace_deferred_pid != NULL) 13839 dtrace_deferred_pid->dthps_prev = help; 13840 dtrace_deferred_pid = help; 13841 } 13842 13843 mutex_exit(&dtrace_lock); 13844 13845 } else if (dofhp != NULL) { 13846 /* 13847 * If the dtrace module is loaded and we have a particular 13848 * helper provider description, pass that off to the 13849 * meta provider. 13850 */ 13851 13852 mutex_exit(&dtrace_lock); 13853 13854 dtrace_helper_provide(dofhp, p->p_pid); 13855 13856 } else { 13857 /* 13858 * Otherwise, just pass all the helper provider descriptions 13859 * off to the meta provider. 13860 */ 13861 13862 int i; 13863 mutex_exit(&dtrace_lock); 13864 13865 for (i = 0; i < help->dthps_nprovs; i++) { 13866 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13867 p->p_pid); 13868 } 13869 } 13870 13871 mutex_exit(&dtrace_meta_lock); 13872 } 13873 13874 static int 13875 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13876 { 13877 dtrace_helpers_t *help; 13878 dtrace_helper_provider_t *hprov, **tmp_provs; 13879 uint_t tmp_maxprovs, i; 13880 13881 ASSERT(MUTEX_HELD(&dtrace_lock)); 13882 13883 help = curproc->p_dtrace_helpers; 13884 ASSERT(help != NULL); 13885 13886 /* 13887 * If we already have dtrace_helper_providers_max helper providers, 13888 * we're refuse to add a new one. 13889 */ 13890 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13891 return (ENOSPC); 13892 13893 /* 13894 * Check to make sure this isn't a duplicate. 13895 */ 13896 for (i = 0; i < help->dthps_nprovs; i++) { 13897 if (dofhp->dofhp_addr == 13898 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13899 return (EALREADY); 13900 } 13901 13902 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13903 hprov->dthp_prov = *dofhp; 13904 hprov->dthp_ref = 1; 13905 hprov->dthp_generation = gen; 13906 13907 /* 13908 * Allocate a bigger table for helper providers if it's already full. 13909 */ 13910 if (help->dthps_maxprovs == help->dthps_nprovs) { 13911 tmp_maxprovs = help->dthps_maxprovs; 13912 tmp_provs = help->dthps_provs; 13913 13914 if (help->dthps_maxprovs == 0) 13915 help->dthps_maxprovs = 2; 13916 else 13917 help->dthps_maxprovs *= 2; 13918 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13919 help->dthps_maxprovs = dtrace_helper_providers_max; 13920 13921 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13922 13923 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13924 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13925 13926 if (tmp_provs != NULL) { 13927 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13928 sizeof (dtrace_helper_provider_t *)); 13929 kmem_free(tmp_provs, tmp_maxprovs * 13930 sizeof (dtrace_helper_provider_t *)); 13931 } 13932 } 13933 13934 help->dthps_provs[help->dthps_nprovs] = hprov; 13935 help->dthps_nprovs++; 13936 13937 return (0); 13938 } 13939 13940 static void 13941 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13942 { 13943 mutex_enter(&dtrace_lock); 13944 13945 if (--hprov->dthp_ref == 0) { 13946 dof_hdr_t *dof; 13947 mutex_exit(&dtrace_lock); 13948 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13949 dtrace_dof_destroy(dof); 13950 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13951 } else { 13952 mutex_exit(&dtrace_lock); 13953 } 13954 } 13955 13956 static int 13957 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13958 { 13959 uintptr_t daddr = (uintptr_t)dof; 13960 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13961 dof_provider_t *provider; 13962 dof_probe_t *probe; 13963 uint8_t *arg; 13964 char *strtab, *typestr; 13965 dof_stridx_t typeidx; 13966 size_t typesz; 13967 uint_t nprobes, j, k; 13968 13969 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13970 13971 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13972 dtrace_dof_error(dof, "misaligned section offset"); 13973 return (-1); 13974 } 13975 13976 /* 13977 * The section needs to be large enough to contain the DOF provider 13978 * structure appropriate for the given version. 13979 */ 13980 if (sec->dofs_size < 13981 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13982 offsetof(dof_provider_t, dofpv_prenoffs) : 13983 sizeof (dof_provider_t))) { 13984 dtrace_dof_error(dof, "provider section too small"); 13985 return (-1); 13986 } 13987 13988 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13989 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13990 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13991 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13992 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13993 13994 if (str_sec == NULL || prb_sec == NULL || 13995 arg_sec == NULL || off_sec == NULL) 13996 return (-1); 13997 13998 enoff_sec = NULL; 13999 14000 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14001 provider->dofpv_prenoffs != DOF_SECT_NONE && 14002 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14003 provider->dofpv_prenoffs)) == NULL) 14004 return (-1); 14005 14006 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14007 14008 if (provider->dofpv_name >= str_sec->dofs_size || 14009 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14010 dtrace_dof_error(dof, "invalid provider name"); 14011 return (-1); 14012 } 14013 14014 if (prb_sec->dofs_entsize == 0 || 14015 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14016 dtrace_dof_error(dof, "invalid entry size"); 14017 return (-1); 14018 } 14019 14020 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14021 dtrace_dof_error(dof, "misaligned entry size"); 14022 return (-1); 14023 } 14024 14025 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14026 dtrace_dof_error(dof, "invalid entry size"); 14027 return (-1); 14028 } 14029 14030 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14031 dtrace_dof_error(dof, "misaligned section offset"); 14032 return (-1); 14033 } 14034 14035 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14036 dtrace_dof_error(dof, "invalid entry size"); 14037 return (-1); 14038 } 14039 14040 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14041 14042 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14043 14044 /* 14045 * Take a pass through the probes to check for errors. 14046 */ 14047 for (j = 0; j < nprobes; j++) { 14048 probe = (dof_probe_t *)(uintptr_t)(daddr + 14049 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14050 14051 if (probe->dofpr_func >= str_sec->dofs_size) { 14052 dtrace_dof_error(dof, "invalid function name"); 14053 return (-1); 14054 } 14055 14056 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14057 dtrace_dof_error(dof, "function name too long"); 14058 return (-1); 14059 } 14060 14061 if (probe->dofpr_name >= str_sec->dofs_size || 14062 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14063 dtrace_dof_error(dof, "invalid probe name"); 14064 return (-1); 14065 } 14066 14067 /* 14068 * The offset count must not wrap the index, and the offsets 14069 * must also not overflow the section's data. 14070 */ 14071 if (probe->dofpr_offidx + probe->dofpr_noffs < 14072 probe->dofpr_offidx || 14073 (probe->dofpr_offidx + probe->dofpr_noffs) * 14074 off_sec->dofs_entsize > off_sec->dofs_size) { 14075 dtrace_dof_error(dof, "invalid probe offset"); 14076 return (-1); 14077 } 14078 14079 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14080 /* 14081 * If there's no is-enabled offset section, make sure 14082 * there aren't any is-enabled offsets. Otherwise 14083 * perform the same checks as for probe offsets 14084 * (immediately above). 14085 */ 14086 if (enoff_sec == NULL) { 14087 if (probe->dofpr_enoffidx != 0 || 14088 probe->dofpr_nenoffs != 0) { 14089 dtrace_dof_error(dof, "is-enabled " 14090 "offsets with null section"); 14091 return (-1); 14092 } 14093 } else if (probe->dofpr_enoffidx + 14094 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14095 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14096 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14097 dtrace_dof_error(dof, "invalid is-enabled " 14098 "offset"); 14099 return (-1); 14100 } 14101 14102 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14103 dtrace_dof_error(dof, "zero probe and " 14104 "is-enabled offsets"); 14105 return (-1); 14106 } 14107 } else if (probe->dofpr_noffs == 0) { 14108 dtrace_dof_error(dof, "zero probe offsets"); 14109 return (-1); 14110 } 14111 14112 if (probe->dofpr_argidx + probe->dofpr_xargc < 14113 probe->dofpr_argidx || 14114 (probe->dofpr_argidx + probe->dofpr_xargc) * 14115 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14116 dtrace_dof_error(dof, "invalid args"); 14117 return (-1); 14118 } 14119 14120 typeidx = probe->dofpr_nargv; 14121 typestr = strtab + probe->dofpr_nargv; 14122 for (k = 0; k < probe->dofpr_nargc; k++) { 14123 if (typeidx >= str_sec->dofs_size) { 14124 dtrace_dof_error(dof, "bad " 14125 "native argument type"); 14126 return (-1); 14127 } 14128 14129 typesz = strlen(typestr) + 1; 14130 if (typesz > DTRACE_ARGTYPELEN) { 14131 dtrace_dof_error(dof, "native " 14132 "argument type too long"); 14133 return (-1); 14134 } 14135 typeidx += typesz; 14136 typestr += typesz; 14137 } 14138 14139 typeidx = probe->dofpr_xargv; 14140 typestr = strtab + probe->dofpr_xargv; 14141 for (k = 0; k < probe->dofpr_xargc; k++) { 14142 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14143 dtrace_dof_error(dof, "bad " 14144 "native argument index"); 14145 return (-1); 14146 } 14147 14148 if (typeidx >= str_sec->dofs_size) { 14149 dtrace_dof_error(dof, "bad " 14150 "translated argument type"); 14151 return (-1); 14152 } 14153 14154 typesz = strlen(typestr) + 1; 14155 if (typesz > DTRACE_ARGTYPELEN) { 14156 dtrace_dof_error(dof, "translated argument " 14157 "type too long"); 14158 return (-1); 14159 } 14160 14161 typeidx += typesz; 14162 typestr += typesz; 14163 } 14164 } 14165 14166 return (0); 14167 } 14168 14169 static int 14170 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14171 { 14172 dtrace_helpers_t *help; 14173 dtrace_vstate_t *vstate; 14174 dtrace_enabling_t *enab = NULL; 14175 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14176 uintptr_t daddr = (uintptr_t)dof; 14177 14178 ASSERT(MUTEX_HELD(&dtrace_lock)); 14179 14180 if ((help = curproc->p_dtrace_helpers) == NULL) 14181 help = dtrace_helpers_create(curproc); 14182 14183 vstate = &help->dthps_vstate; 14184 14185 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14186 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14187 dtrace_dof_destroy(dof); 14188 return (rv); 14189 } 14190 14191 /* 14192 * Look for helper providers and validate their descriptions. 14193 */ 14194 if (dhp != NULL) { 14195 for (i = 0; i < dof->dofh_secnum; i++) { 14196 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14197 dof->dofh_secoff + i * dof->dofh_secsize); 14198 14199 if (sec->dofs_type != DOF_SECT_PROVIDER) 14200 continue; 14201 14202 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14203 dtrace_enabling_destroy(enab); 14204 dtrace_dof_destroy(dof); 14205 return (-1); 14206 } 14207 14208 nprovs++; 14209 } 14210 } 14211 14212 /* 14213 * Now we need to walk through the ECB descriptions in the enabling. 14214 */ 14215 for (i = 0; i < enab->dten_ndesc; i++) { 14216 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14217 dtrace_probedesc_t *desc = &ep->dted_probe; 14218 14219 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14220 continue; 14221 14222 if (strcmp(desc->dtpd_mod, "helper") != 0) 14223 continue; 14224 14225 if (strcmp(desc->dtpd_func, "ustack") != 0) 14226 continue; 14227 14228 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14229 ep)) != 0) { 14230 /* 14231 * Adding this helper action failed -- we are now going 14232 * to rip out the entire generation and return failure. 14233 */ 14234 (void) dtrace_helper_destroygen(help->dthps_generation); 14235 dtrace_enabling_destroy(enab); 14236 dtrace_dof_destroy(dof); 14237 return (-1); 14238 } 14239 14240 nhelpers++; 14241 } 14242 14243 if (nhelpers < enab->dten_ndesc) 14244 dtrace_dof_error(dof, "unmatched helpers"); 14245 14246 gen = help->dthps_generation++; 14247 dtrace_enabling_destroy(enab); 14248 14249 if (dhp != NULL && nprovs > 0) { 14250 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14251 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14252 mutex_exit(&dtrace_lock); 14253 dtrace_helper_provider_register(curproc, help, dhp); 14254 mutex_enter(&dtrace_lock); 14255 14256 destroy = 0; 14257 } 14258 } 14259 14260 if (destroy) 14261 dtrace_dof_destroy(dof); 14262 14263 return (gen); 14264 } 14265 14266 static dtrace_helpers_t * 14267 dtrace_helpers_create(proc_t *p) 14268 { 14269 dtrace_helpers_t *help; 14270 14271 ASSERT(MUTEX_HELD(&dtrace_lock)); 14272 ASSERT(p->p_dtrace_helpers == NULL); 14273 14274 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14275 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14276 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14277 14278 p->p_dtrace_helpers = help; 14279 dtrace_helpers++; 14280 14281 return (help); 14282 } 14283 14284 static void 14285 dtrace_helpers_destroy(void) 14286 { 14287 dtrace_helpers_t *help; 14288 dtrace_vstate_t *vstate; 14289 proc_t *p = curproc; 14290 int i; 14291 14292 mutex_enter(&dtrace_lock); 14293 14294 ASSERT(p->p_dtrace_helpers != NULL); 14295 ASSERT(dtrace_helpers > 0); 14296 14297 help = p->p_dtrace_helpers; 14298 vstate = &help->dthps_vstate; 14299 14300 /* 14301 * We're now going to lose the help from this process. 14302 */ 14303 p->p_dtrace_helpers = NULL; 14304 dtrace_sync(); 14305 14306 /* 14307 * Destory the helper actions. 14308 */ 14309 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14310 dtrace_helper_action_t *h, *next; 14311 14312 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14313 next = h->dtha_next; 14314 dtrace_helper_action_destroy(h, vstate); 14315 h = next; 14316 } 14317 } 14318 14319 mutex_exit(&dtrace_lock); 14320 14321 /* 14322 * Destroy the helper providers. 14323 */ 14324 if (help->dthps_maxprovs > 0) { 14325 mutex_enter(&dtrace_meta_lock); 14326 if (dtrace_meta_pid != NULL) { 14327 ASSERT(dtrace_deferred_pid == NULL); 14328 14329 for (i = 0; i < help->dthps_nprovs; i++) { 14330 dtrace_helper_provider_remove( 14331 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14332 } 14333 } else { 14334 mutex_enter(&dtrace_lock); 14335 ASSERT(help->dthps_deferred == 0 || 14336 help->dthps_next != NULL || 14337 help->dthps_prev != NULL || 14338 help == dtrace_deferred_pid); 14339 14340 /* 14341 * Remove the helper from the deferred list. 14342 */ 14343 if (help->dthps_next != NULL) 14344 help->dthps_next->dthps_prev = help->dthps_prev; 14345 if (help->dthps_prev != NULL) 14346 help->dthps_prev->dthps_next = help->dthps_next; 14347 if (dtrace_deferred_pid == help) { 14348 dtrace_deferred_pid = help->dthps_next; 14349 ASSERT(help->dthps_prev == NULL); 14350 } 14351 14352 mutex_exit(&dtrace_lock); 14353 } 14354 14355 mutex_exit(&dtrace_meta_lock); 14356 14357 for (i = 0; i < help->dthps_nprovs; i++) { 14358 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14359 } 14360 14361 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14362 sizeof (dtrace_helper_provider_t *)); 14363 } 14364 14365 mutex_enter(&dtrace_lock); 14366 14367 dtrace_vstate_fini(&help->dthps_vstate); 14368 kmem_free(help->dthps_actions, 14369 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14370 kmem_free(help, sizeof (dtrace_helpers_t)); 14371 14372 --dtrace_helpers; 14373 mutex_exit(&dtrace_lock); 14374 } 14375 14376 static void 14377 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14378 { 14379 dtrace_helpers_t *help, *newhelp; 14380 dtrace_helper_action_t *helper, *new, *last; 14381 dtrace_difo_t *dp; 14382 dtrace_vstate_t *vstate; 14383 int i, j, sz, hasprovs = 0; 14384 14385 mutex_enter(&dtrace_lock); 14386 ASSERT(from->p_dtrace_helpers != NULL); 14387 ASSERT(dtrace_helpers > 0); 14388 14389 help = from->p_dtrace_helpers; 14390 newhelp = dtrace_helpers_create(to); 14391 ASSERT(to->p_dtrace_helpers != NULL); 14392 14393 newhelp->dthps_generation = help->dthps_generation; 14394 vstate = &newhelp->dthps_vstate; 14395 14396 /* 14397 * Duplicate the helper actions. 14398 */ 14399 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14400 if ((helper = help->dthps_actions[i]) == NULL) 14401 continue; 14402 14403 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14404 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14405 KM_SLEEP); 14406 new->dtha_generation = helper->dtha_generation; 14407 14408 if ((dp = helper->dtha_predicate) != NULL) { 14409 dp = dtrace_difo_duplicate(dp, vstate); 14410 new->dtha_predicate = dp; 14411 } 14412 14413 new->dtha_nactions = helper->dtha_nactions; 14414 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14415 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14416 14417 for (j = 0; j < new->dtha_nactions; j++) { 14418 dtrace_difo_t *dp = helper->dtha_actions[j]; 14419 14420 ASSERT(dp != NULL); 14421 dp = dtrace_difo_duplicate(dp, vstate); 14422 new->dtha_actions[j] = dp; 14423 } 14424 14425 if (last != NULL) { 14426 last->dtha_next = new; 14427 } else { 14428 newhelp->dthps_actions[i] = new; 14429 } 14430 14431 last = new; 14432 } 14433 } 14434 14435 /* 14436 * Duplicate the helper providers and register them with the 14437 * DTrace framework. 14438 */ 14439 if (help->dthps_nprovs > 0) { 14440 newhelp->dthps_nprovs = help->dthps_nprovs; 14441 newhelp->dthps_maxprovs = help->dthps_nprovs; 14442 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14443 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14444 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14445 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14446 newhelp->dthps_provs[i]->dthp_ref++; 14447 } 14448 14449 hasprovs = 1; 14450 } 14451 14452 mutex_exit(&dtrace_lock); 14453 14454 if (hasprovs) 14455 dtrace_helper_provider_register(to, newhelp, NULL); 14456 } 14457 14458 /* 14459 * DTrace Hook Functions 14460 */ 14461 static void 14462 dtrace_module_loaded(struct modctl *ctl) 14463 { 14464 dtrace_provider_t *prv; 14465 14466 mutex_enter(&dtrace_provider_lock); 14467 mutex_enter(&mod_lock); 14468 14469 ASSERT(ctl->mod_busy); 14470 14471 /* 14472 * We're going to call each providers per-module provide operation 14473 * specifying only this module. 14474 */ 14475 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14476 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14477 14478 mutex_exit(&mod_lock); 14479 mutex_exit(&dtrace_provider_lock); 14480 14481 /* 14482 * If we have any retained enablings, we need to match against them. 14483 * Enabling probes requires that cpu_lock be held, and we cannot hold 14484 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14485 * module. (In particular, this happens when loading scheduling 14486 * classes.) So if we have any retained enablings, we need to dispatch 14487 * our task queue to do the match for us. 14488 */ 14489 mutex_enter(&dtrace_lock); 14490 14491 if (dtrace_retained == NULL) { 14492 mutex_exit(&dtrace_lock); 14493 return; 14494 } 14495 14496 (void) taskq_dispatch(dtrace_taskq, 14497 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14498 14499 mutex_exit(&dtrace_lock); 14500 14501 /* 14502 * And now, for a little heuristic sleaze: in general, we want to 14503 * match modules as soon as they load. However, we cannot guarantee 14504 * this, because it would lead us to the lock ordering violation 14505 * outlined above. The common case, of course, is that cpu_lock is 14506 * _not_ held -- so we delay here for a clock tick, hoping that that's 14507 * long enough for the task queue to do its work. If it's not, it's 14508 * not a serious problem -- it just means that the module that we 14509 * just loaded may not be immediately instrumentable. 14510 */ 14511 delay(1); 14512 } 14513 14514 static void 14515 dtrace_module_unloaded(struct modctl *ctl) 14516 { 14517 dtrace_probe_t template, *probe, *first, *next; 14518 dtrace_provider_t *prov; 14519 14520 template.dtpr_mod = ctl->mod_modname; 14521 14522 mutex_enter(&dtrace_provider_lock); 14523 mutex_enter(&mod_lock); 14524 mutex_enter(&dtrace_lock); 14525 14526 if (dtrace_bymod == NULL) { 14527 /* 14528 * The DTrace module is loaded (obviously) but not attached; 14529 * we don't have any work to do. 14530 */ 14531 mutex_exit(&dtrace_provider_lock); 14532 mutex_exit(&mod_lock); 14533 mutex_exit(&dtrace_lock); 14534 return; 14535 } 14536 14537 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14538 probe != NULL; probe = probe->dtpr_nextmod) { 14539 if (probe->dtpr_ecb != NULL) { 14540 mutex_exit(&dtrace_provider_lock); 14541 mutex_exit(&mod_lock); 14542 mutex_exit(&dtrace_lock); 14543 14544 /* 14545 * This shouldn't _actually_ be possible -- we're 14546 * unloading a module that has an enabled probe in it. 14547 * (It's normally up to the provider to make sure that 14548 * this can't happen.) However, because dtps_enable() 14549 * doesn't have a failure mode, there can be an 14550 * enable/unload race. Upshot: we don't want to 14551 * assert, but we're not going to disable the 14552 * probe, either. 14553 */ 14554 if (dtrace_err_verbose) { 14555 cmn_err(CE_WARN, "unloaded module '%s' had " 14556 "enabled probes", ctl->mod_modname); 14557 } 14558 14559 return; 14560 } 14561 } 14562 14563 probe = first; 14564 14565 for (first = NULL; probe != NULL; probe = next) { 14566 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14567 14568 dtrace_probes[probe->dtpr_id - 1] = NULL; 14569 14570 next = probe->dtpr_nextmod; 14571 dtrace_hash_remove(dtrace_bymod, probe); 14572 dtrace_hash_remove(dtrace_byfunc, probe); 14573 dtrace_hash_remove(dtrace_byname, probe); 14574 14575 if (first == NULL) { 14576 first = probe; 14577 probe->dtpr_nextmod = NULL; 14578 } else { 14579 probe->dtpr_nextmod = first; 14580 first = probe; 14581 } 14582 } 14583 14584 /* 14585 * We've removed all of the module's probes from the hash chains and 14586 * from the probe array. Now issue a dtrace_sync() to be sure that 14587 * everyone has cleared out from any probe array processing. 14588 */ 14589 dtrace_sync(); 14590 14591 for (probe = first; probe != NULL; probe = first) { 14592 first = probe->dtpr_nextmod; 14593 prov = probe->dtpr_provider; 14594 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14595 probe->dtpr_arg); 14596 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14597 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14598 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14599 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14600 kmem_free(probe, sizeof (dtrace_probe_t)); 14601 } 14602 14603 mutex_exit(&dtrace_lock); 14604 mutex_exit(&mod_lock); 14605 mutex_exit(&dtrace_provider_lock); 14606 } 14607 14608 void 14609 dtrace_suspend(void) 14610 { 14611 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14612 } 14613 14614 void 14615 dtrace_resume(void) 14616 { 14617 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14618 } 14619 14620 static int 14621 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14622 { 14623 ASSERT(MUTEX_HELD(&cpu_lock)); 14624 mutex_enter(&dtrace_lock); 14625 14626 switch (what) { 14627 case CPU_CONFIG: { 14628 dtrace_state_t *state; 14629 dtrace_optval_t *opt, rs, c; 14630 14631 /* 14632 * For now, we only allocate a new buffer for anonymous state. 14633 */ 14634 if ((state = dtrace_anon.dta_state) == NULL) 14635 break; 14636 14637 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14638 break; 14639 14640 opt = state->dts_options; 14641 c = opt[DTRACEOPT_CPU]; 14642 14643 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14644 break; 14645 14646 /* 14647 * Regardless of what the actual policy is, we're going to 14648 * temporarily set our resize policy to be manual. We're 14649 * also going to temporarily set our CPU option to denote 14650 * the newly configured CPU. 14651 */ 14652 rs = opt[DTRACEOPT_BUFRESIZE]; 14653 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14654 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14655 14656 (void) dtrace_state_buffers(state); 14657 14658 opt[DTRACEOPT_BUFRESIZE] = rs; 14659 opt[DTRACEOPT_CPU] = c; 14660 14661 break; 14662 } 14663 14664 case CPU_UNCONFIG: 14665 /* 14666 * We don't free the buffer in the CPU_UNCONFIG case. (The 14667 * buffer will be freed when the consumer exits.) 14668 */ 14669 break; 14670 14671 default: 14672 break; 14673 } 14674 14675 mutex_exit(&dtrace_lock); 14676 return (0); 14677 } 14678 14679 static void 14680 dtrace_cpu_setup_initial(processorid_t cpu) 14681 { 14682 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14683 } 14684 14685 static void 14686 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14687 { 14688 if (dtrace_toxranges >= dtrace_toxranges_max) { 14689 int osize, nsize; 14690 dtrace_toxrange_t *range; 14691 14692 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14693 14694 if (osize == 0) { 14695 ASSERT(dtrace_toxrange == NULL); 14696 ASSERT(dtrace_toxranges_max == 0); 14697 dtrace_toxranges_max = 1; 14698 } else { 14699 dtrace_toxranges_max <<= 1; 14700 } 14701 14702 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14703 range = kmem_zalloc(nsize, KM_SLEEP); 14704 14705 if (dtrace_toxrange != NULL) { 14706 ASSERT(osize != 0); 14707 bcopy(dtrace_toxrange, range, osize); 14708 kmem_free(dtrace_toxrange, osize); 14709 } 14710 14711 dtrace_toxrange = range; 14712 } 14713 14714 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14715 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14716 14717 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14718 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14719 dtrace_toxranges++; 14720 } 14721 14722 /* 14723 * DTrace Driver Cookbook Functions 14724 */ 14725 /*ARGSUSED*/ 14726 static int 14727 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14728 { 14729 dtrace_provider_id_t id; 14730 dtrace_state_t *state = NULL; 14731 dtrace_enabling_t *enab; 14732 14733 mutex_enter(&cpu_lock); 14734 mutex_enter(&dtrace_provider_lock); 14735 mutex_enter(&dtrace_lock); 14736 14737 if (ddi_soft_state_init(&dtrace_softstate, 14738 sizeof (dtrace_state_t), 0) != 0) { 14739 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14740 mutex_exit(&cpu_lock); 14741 mutex_exit(&dtrace_provider_lock); 14742 mutex_exit(&dtrace_lock); 14743 return (DDI_FAILURE); 14744 } 14745 14746 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14747 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14748 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14749 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14750 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14751 ddi_remove_minor_node(devi, NULL); 14752 ddi_soft_state_fini(&dtrace_softstate); 14753 mutex_exit(&cpu_lock); 14754 mutex_exit(&dtrace_provider_lock); 14755 mutex_exit(&dtrace_lock); 14756 return (DDI_FAILURE); 14757 } 14758 14759 ddi_report_dev(devi); 14760 dtrace_devi = devi; 14761 14762 dtrace_modload = dtrace_module_loaded; 14763 dtrace_modunload = dtrace_module_unloaded; 14764 dtrace_cpu_init = dtrace_cpu_setup_initial; 14765 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14766 dtrace_helpers_fork = dtrace_helpers_duplicate; 14767 dtrace_cpustart_init = dtrace_suspend; 14768 dtrace_cpustart_fini = dtrace_resume; 14769 dtrace_debugger_init = dtrace_suspend; 14770 dtrace_debugger_fini = dtrace_resume; 14771 14772 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14773 14774 ASSERT(MUTEX_HELD(&cpu_lock)); 14775 14776 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14777 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14778 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14779 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14780 VM_SLEEP | VMC_IDENTIFIER); 14781 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14782 1, INT_MAX, 0); 14783 14784 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14785 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14786 NULL, NULL, NULL, NULL, NULL, 0); 14787 14788 ASSERT(MUTEX_HELD(&cpu_lock)); 14789 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14790 offsetof(dtrace_probe_t, dtpr_nextmod), 14791 offsetof(dtrace_probe_t, dtpr_prevmod)); 14792 14793 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14794 offsetof(dtrace_probe_t, dtpr_nextfunc), 14795 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14796 14797 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14798 offsetof(dtrace_probe_t, dtpr_nextname), 14799 offsetof(dtrace_probe_t, dtpr_prevname)); 14800 14801 if (dtrace_retain_max < 1) { 14802 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14803 "setting to 1", dtrace_retain_max); 14804 dtrace_retain_max = 1; 14805 } 14806 14807 /* 14808 * Now discover our toxic ranges. 14809 */ 14810 dtrace_toxic_ranges(dtrace_toxrange_add); 14811 14812 /* 14813 * Before we register ourselves as a provider to our own framework, 14814 * we would like to assert that dtrace_provider is NULL -- but that's 14815 * not true if we were loaded as a dependency of a DTrace provider. 14816 * Once we've registered, we can assert that dtrace_provider is our 14817 * pseudo provider. 14818 */ 14819 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14820 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14821 14822 ASSERT(dtrace_provider != NULL); 14823 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14824 14825 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14826 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14827 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14828 dtrace_provider, NULL, NULL, "END", 0, NULL); 14829 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14830 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14831 14832 dtrace_anon_property(); 14833 mutex_exit(&cpu_lock); 14834 14835 /* 14836 * If DTrace helper tracing is enabled, we need to allocate the 14837 * trace buffer and initialize the values. 14838 */ 14839 if (dtrace_helptrace_enabled) { 14840 ASSERT(dtrace_helptrace_buffer == NULL); 14841 dtrace_helptrace_buffer = 14842 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14843 dtrace_helptrace_next = 0; 14844 } 14845 14846 /* 14847 * If there are already providers, we must ask them to provide their 14848 * probes, and then match any anonymous enabling against them. Note 14849 * that there should be no other retained enablings at this time: 14850 * the only retained enablings at this time should be the anonymous 14851 * enabling. 14852 */ 14853 if (dtrace_anon.dta_enabling != NULL) { 14854 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14855 14856 dtrace_enabling_provide(NULL); 14857 state = dtrace_anon.dta_state; 14858 14859 /* 14860 * We couldn't hold cpu_lock across the above call to 14861 * dtrace_enabling_provide(), but we must hold it to actually 14862 * enable the probes. We have to drop all of our locks, pick 14863 * up cpu_lock, and regain our locks before matching the 14864 * retained anonymous enabling. 14865 */ 14866 mutex_exit(&dtrace_lock); 14867 mutex_exit(&dtrace_provider_lock); 14868 14869 mutex_enter(&cpu_lock); 14870 mutex_enter(&dtrace_provider_lock); 14871 mutex_enter(&dtrace_lock); 14872 14873 if ((enab = dtrace_anon.dta_enabling) != NULL) 14874 (void) dtrace_enabling_match(enab, NULL); 14875 14876 mutex_exit(&cpu_lock); 14877 } 14878 14879 mutex_exit(&dtrace_lock); 14880 mutex_exit(&dtrace_provider_lock); 14881 14882 if (state != NULL) { 14883 /* 14884 * If we created any anonymous state, set it going now. 14885 */ 14886 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14887 } 14888 14889 return (DDI_SUCCESS); 14890 } 14891 14892 /*ARGSUSED*/ 14893 static int 14894 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14895 { 14896 dtrace_state_t *state; 14897 uint32_t priv; 14898 uid_t uid; 14899 zoneid_t zoneid; 14900 14901 if (getminor(*devp) == DTRACEMNRN_HELPER) 14902 return (0); 14903 14904 /* 14905 * If this wasn't an open with the "helper" minor, then it must be 14906 * the "dtrace" minor. 14907 */ 14908 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14909 return (ENXIO); 14910 14911 /* 14912 * If no DTRACE_PRIV_* bits are set in the credential, then the 14913 * caller lacks sufficient permission to do anything with DTrace. 14914 */ 14915 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14916 if (priv == DTRACE_PRIV_NONE) 14917 return (EACCES); 14918 14919 /* 14920 * Ask all providers to provide all their probes. 14921 */ 14922 mutex_enter(&dtrace_provider_lock); 14923 dtrace_probe_provide(NULL, NULL); 14924 mutex_exit(&dtrace_provider_lock); 14925 14926 mutex_enter(&cpu_lock); 14927 mutex_enter(&dtrace_lock); 14928 dtrace_opens++; 14929 dtrace_membar_producer(); 14930 14931 /* 14932 * If the kernel debugger is active (that is, if the kernel debugger 14933 * modified text in some way), we won't allow the open. 14934 */ 14935 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14936 dtrace_opens--; 14937 mutex_exit(&cpu_lock); 14938 mutex_exit(&dtrace_lock); 14939 return (EBUSY); 14940 } 14941 14942 state = dtrace_state_create(devp, cred_p); 14943 mutex_exit(&cpu_lock); 14944 14945 if (state == NULL) { 14946 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14947 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14948 mutex_exit(&dtrace_lock); 14949 return (EAGAIN); 14950 } 14951 14952 mutex_exit(&dtrace_lock); 14953 14954 return (0); 14955 } 14956 14957 /*ARGSUSED*/ 14958 static int 14959 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14960 { 14961 minor_t minor = getminor(dev); 14962 dtrace_state_t *state; 14963 14964 if (minor == DTRACEMNRN_HELPER) 14965 return (0); 14966 14967 state = ddi_get_soft_state(dtrace_softstate, minor); 14968 14969 mutex_enter(&cpu_lock); 14970 mutex_enter(&dtrace_lock); 14971 14972 if (state->dts_anon) { 14973 /* 14974 * There is anonymous state. Destroy that first. 14975 */ 14976 ASSERT(dtrace_anon.dta_state == NULL); 14977 dtrace_state_destroy(state->dts_anon); 14978 } 14979 14980 dtrace_state_destroy(state); 14981 ASSERT(dtrace_opens > 0); 14982 14983 /* 14984 * Only relinquish control of the kernel debugger interface when there 14985 * are no consumers and no anonymous enablings. 14986 */ 14987 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14988 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14989 14990 mutex_exit(&dtrace_lock); 14991 mutex_exit(&cpu_lock); 14992 14993 return (0); 14994 } 14995 14996 /*ARGSUSED*/ 14997 static int 14998 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14999 { 15000 int rval; 15001 dof_helper_t help, *dhp = NULL; 15002 15003 switch (cmd) { 15004 case DTRACEHIOC_ADDDOF: 15005 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15006 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15007 return (EFAULT); 15008 } 15009 15010 dhp = &help; 15011 arg = (intptr_t)help.dofhp_dof; 15012 /*FALLTHROUGH*/ 15013 15014 case DTRACEHIOC_ADD: { 15015 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15016 15017 if (dof == NULL) 15018 return (rval); 15019 15020 mutex_enter(&dtrace_lock); 15021 15022 /* 15023 * dtrace_helper_slurp() takes responsibility for the dof -- 15024 * it may free it now or it may save it and free it later. 15025 */ 15026 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15027 *rv = rval; 15028 rval = 0; 15029 } else { 15030 rval = EINVAL; 15031 } 15032 15033 mutex_exit(&dtrace_lock); 15034 return (rval); 15035 } 15036 15037 case DTRACEHIOC_REMOVE: { 15038 mutex_enter(&dtrace_lock); 15039 rval = dtrace_helper_destroygen(arg); 15040 mutex_exit(&dtrace_lock); 15041 15042 return (rval); 15043 } 15044 15045 default: 15046 break; 15047 } 15048 15049 return (ENOTTY); 15050 } 15051 15052 /*ARGSUSED*/ 15053 static int 15054 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15055 { 15056 minor_t minor = getminor(dev); 15057 dtrace_state_t *state; 15058 int rval; 15059 15060 if (minor == DTRACEMNRN_HELPER) 15061 return (dtrace_ioctl_helper(cmd, arg, rv)); 15062 15063 state = ddi_get_soft_state(dtrace_softstate, minor); 15064 15065 if (state->dts_anon) { 15066 ASSERT(dtrace_anon.dta_state == NULL); 15067 state = state->dts_anon; 15068 } 15069 15070 switch (cmd) { 15071 case DTRACEIOC_PROVIDER: { 15072 dtrace_providerdesc_t pvd; 15073 dtrace_provider_t *pvp; 15074 15075 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15076 return (EFAULT); 15077 15078 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15079 mutex_enter(&dtrace_provider_lock); 15080 15081 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15082 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15083 break; 15084 } 15085 15086 mutex_exit(&dtrace_provider_lock); 15087 15088 if (pvp == NULL) 15089 return (ESRCH); 15090 15091 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15092 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15093 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15094 return (EFAULT); 15095 15096 return (0); 15097 } 15098 15099 case DTRACEIOC_EPROBE: { 15100 dtrace_eprobedesc_t epdesc; 15101 dtrace_ecb_t *ecb; 15102 dtrace_action_t *act; 15103 void *buf; 15104 size_t size; 15105 uintptr_t dest; 15106 int nrecs; 15107 15108 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15109 return (EFAULT); 15110 15111 mutex_enter(&dtrace_lock); 15112 15113 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15114 mutex_exit(&dtrace_lock); 15115 return (EINVAL); 15116 } 15117 15118 if (ecb->dte_probe == NULL) { 15119 mutex_exit(&dtrace_lock); 15120 return (EINVAL); 15121 } 15122 15123 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15124 epdesc.dtepd_uarg = ecb->dte_uarg; 15125 epdesc.dtepd_size = ecb->dte_size; 15126 15127 nrecs = epdesc.dtepd_nrecs; 15128 epdesc.dtepd_nrecs = 0; 15129 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15130 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15131 continue; 15132 15133 epdesc.dtepd_nrecs++; 15134 } 15135 15136 /* 15137 * Now that we have the size, we need to allocate a temporary 15138 * buffer in which to store the complete description. We need 15139 * the temporary buffer to be able to drop dtrace_lock() 15140 * across the copyout(), below. 15141 */ 15142 size = sizeof (dtrace_eprobedesc_t) + 15143 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15144 15145 buf = kmem_alloc(size, KM_SLEEP); 15146 dest = (uintptr_t)buf; 15147 15148 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15149 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15150 15151 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15152 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15153 continue; 15154 15155 if (nrecs-- == 0) 15156 break; 15157 15158 bcopy(&act->dta_rec, (void *)dest, 15159 sizeof (dtrace_recdesc_t)); 15160 dest += sizeof (dtrace_recdesc_t); 15161 } 15162 15163 mutex_exit(&dtrace_lock); 15164 15165 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15166 kmem_free(buf, size); 15167 return (EFAULT); 15168 } 15169 15170 kmem_free(buf, size); 15171 return (0); 15172 } 15173 15174 case DTRACEIOC_AGGDESC: { 15175 dtrace_aggdesc_t aggdesc; 15176 dtrace_action_t *act; 15177 dtrace_aggregation_t *agg; 15178 int nrecs; 15179 uint32_t offs; 15180 dtrace_recdesc_t *lrec; 15181 void *buf; 15182 size_t size; 15183 uintptr_t dest; 15184 15185 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15186 return (EFAULT); 15187 15188 mutex_enter(&dtrace_lock); 15189 15190 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15191 mutex_exit(&dtrace_lock); 15192 return (EINVAL); 15193 } 15194 15195 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15196 15197 nrecs = aggdesc.dtagd_nrecs; 15198 aggdesc.dtagd_nrecs = 0; 15199 15200 offs = agg->dtag_base; 15201 lrec = &agg->dtag_action.dta_rec; 15202 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15203 15204 for (act = agg->dtag_first; ; act = act->dta_next) { 15205 ASSERT(act->dta_intuple || 15206 DTRACEACT_ISAGG(act->dta_kind)); 15207 15208 /* 15209 * If this action has a record size of zero, it 15210 * denotes an argument to the aggregating action. 15211 * Because the presence of this record doesn't (or 15212 * shouldn't) affect the way the data is interpreted, 15213 * we don't copy it out to save user-level the 15214 * confusion of dealing with a zero-length record. 15215 */ 15216 if (act->dta_rec.dtrd_size == 0) { 15217 ASSERT(agg->dtag_hasarg); 15218 continue; 15219 } 15220 15221 aggdesc.dtagd_nrecs++; 15222 15223 if (act == &agg->dtag_action) 15224 break; 15225 } 15226 15227 /* 15228 * Now that we have the size, we need to allocate a temporary 15229 * buffer in which to store the complete description. We need 15230 * the temporary buffer to be able to drop dtrace_lock() 15231 * across the copyout(), below. 15232 */ 15233 size = sizeof (dtrace_aggdesc_t) + 15234 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15235 15236 buf = kmem_alloc(size, KM_SLEEP); 15237 dest = (uintptr_t)buf; 15238 15239 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15240 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15241 15242 for (act = agg->dtag_first; ; act = act->dta_next) { 15243 dtrace_recdesc_t rec = act->dta_rec; 15244 15245 /* 15246 * See the comment in the above loop for why we pass 15247 * over zero-length records. 15248 */ 15249 if (rec.dtrd_size == 0) { 15250 ASSERT(agg->dtag_hasarg); 15251 continue; 15252 } 15253 15254 if (nrecs-- == 0) 15255 break; 15256 15257 rec.dtrd_offset -= offs; 15258 bcopy(&rec, (void *)dest, sizeof (rec)); 15259 dest += sizeof (dtrace_recdesc_t); 15260 15261 if (act == &agg->dtag_action) 15262 break; 15263 } 15264 15265 mutex_exit(&dtrace_lock); 15266 15267 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15268 kmem_free(buf, size); 15269 return (EFAULT); 15270 } 15271 15272 kmem_free(buf, size); 15273 return (0); 15274 } 15275 15276 case DTRACEIOC_ENABLE: { 15277 dof_hdr_t *dof; 15278 dtrace_enabling_t *enab = NULL; 15279 dtrace_vstate_t *vstate; 15280 int err = 0; 15281 15282 *rv = 0; 15283 15284 /* 15285 * If a NULL argument has been passed, we take this as our 15286 * cue to reevaluate our enablings. 15287 */ 15288 if (arg == NULL) { 15289 dtrace_enabling_matchall(); 15290 15291 return (0); 15292 } 15293 15294 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15295 return (rval); 15296 15297 mutex_enter(&cpu_lock); 15298 mutex_enter(&dtrace_lock); 15299 vstate = &state->dts_vstate; 15300 15301 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15302 mutex_exit(&dtrace_lock); 15303 mutex_exit(&cpu_lock); 15304 dtrace_dof_destroy(dof); 15305 return (EBUSY); 15306 } 15307 15308 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15309 mutex_exit(&dtrace_lock); 15310 mutex_exit(&cpu_lock); 15311 dtrace_dof_destroy(dof); 15312 return (EINVAL); 15313 } 15314 15315 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15316 dtrace_enabling_destroy(enab); 15317 mutex_exit(&dtrace_lock); 15318 mutex_exit(&cpu_lock); 15319 dtrace_dof_destroy(dof); 15320 return (rval); 15321 } 15322 15323 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15324 err = dtrace_enabling_retain(enab); 15325 } else { 15326 dtrace_enabling_destroy(enab); 15327 } 15328 15329 mutex_exit(&cpu_lock); 15330 mutex_exit(&dtrace_lock); 15331 dtrace_dof_destroy(dof); 15332 15333 return (err); 15334 } 15335 15336 case DTRACEIOC_REPLICATE: { 15337 dtrace_repldesc_t desc; 15338 dtrace_probedesc_t *match = &desc.dtrpd_match; 15339 dtrace_probedesc_t *create = &desc.dtrpd_create; 15340 int err; 15341 15342 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15343 return (EFAULT); 15344 15345 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15346 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15347 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15348 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15349 15350 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15351 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15352 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15353 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15354 15355 mutex_enter(&dtrace_lock); 15356 err = dtrace_enabling_replicate(state, match, create); 15357 mutex_exit(&dtrace_lock); 15358 15359 return (err); 15360 } 15361 15362 case DTRACEIOC_PROBEMATCH: 15363 case DTRACEIOC_PROBES: { 15364 dtrace_probe_t *probe = NULL; 15365 dtrace_probedesc_t desc; 15366 dtrace_probekey_t pkey; 15367 dtrace_id_t i; 15368 int m = 0; 15369 uint32_t priv; 15370 uid_t uid; 15371 zoneid_t zoneid; 15372 15373 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15374 return (EFAULT); 15375 15376 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15377 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15378 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15379 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15380 15381 /* 15382 * Before we attempt to match this probe, we want to give 15383 * all providers the opportunity to provide it. 15384 */ 15385 if (desc.dtpd_id == DTRACE_IDNONE) { 15386 mutex_enter(&dtrace_provider_lock); 15387 dtrace_probe_provide(&desc, NULL); 15388 mutex_exit(&dtrace_provider_lock); 15389 desc.dtpd_id++; 15390 } 15391 15392 if (cmd == DTRACEIOC_PROBEMATCH) { 15393 dtrace_probekey(&desc, &pkey); 15394 pkey.dtpk_id = DTRACE_IDNONE; 15395 } 15396 15397 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15398 15399 mutex_enter(&dtrace_lock); 15400 15401 if (cmd == DTRACEIOC_PROBEMATCH) { 15402 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15403 if ((probe = dtrace_probes[i - 1]) != NULL && 15404 (m = dtrace_match_probe(probe, &pkey, 15405 priv, uid, zoneid)) != 0) 15406 break; 15407 } 15408 15409 if (m < 0) { 15410 mutex_exit(&dtrace_lock); 15411 return (EINVAL); 15412 } 15413 15414 } else { 15415 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15416 if ((probe = dtrace_probes[i - 1]) != NULL && 15417 dtrace_match_priv(probe, priv, uid, zoneid)) 15418 break; 15419 } 15420 } 15421 15422 if (probe == NULL) { 15423 mutex_exit(&dtrace_lock); 15424 return (ESRCH); 15425 } 15426 15427 dtrace_probe_description(probe, &desc); 15428 mutex_exit(&dtrace_lock); 15429 15430 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15431 return (EFAULT); 15432 15433 return (0); 15434 } 15435 15436 case DTRACEIOC_PROBEARG: { 15437 dtrace_argdesc_t desc; 15438 dtrace_probe_t *probe; 15439 dtrace_provider_t *prov; 15440 15441 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15442 return (EFAULT); 15443 15444 if (desc.dtargd_id == DTRACE_IDNONE) 15445 return (EINVAL); 15446 15447 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15448 return (EINVAL); 15449 15450 mutex_enter(&dtrace_provider_lock); 15451 mutex_enter(&mod_lock); 15452 mutex_enter(&dtrace_lock); 15453 15454 if (desc.dtargd_id > dtrace_nprobes) { 15455 mutex_exit(&dtrace_lock); 15456 mutex_exit(&mod_lock); 15457 mutex_exit(&dtrace_provider_lock); 15458 return (EINVAL); 15459 } 15460 15461 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15462 mutex_exit(&dtrace_lock); 15463 mutex_exit(&mod_lock); 15464 mutex_exit(&dtrace_provider_lock); 15465 return (EINVAL); 15466 } 15467 15468 mutex_exit(&dtrace_lock); 15469 15470 prov = probe->dtpr_provider; 15471 15472 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15473 /* 15474 * There isn't any typed information for this probe. 15475 * Set the argument number to DTRACE_ARGNONE. 15476 */ 15477 desc.dtargd_ndx = DTRACE_ARGNONE; 15478 } else { 15479 desc.dtargd_native[0] = '\0'; 15480 desc.dtargd_xlate[0] = '\0'; 15481 desc.dtargd_mapping = desc.dtargd_ndx; 15482 15483 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15484 probe->dtpr_id, probe->dtpr_arg, &desc); 15485 } 15486 15487 mutex_exit(&mod_lock); 15488 mutex_exit(&dtrace_provider_lock); 15489 15490 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15491 return (EFAULT); 15492 15493 return (0); 15494 } 15495 15496 case DTRACEIOC_GO: { 15497 processorid_t cpuid; 15498 rval = dtrace_state_go(state, &cpuid); 15499 15500 if (rval != 0) 15501 return (rval); 15502 15503 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15504 return (EFAULT); 15505 15506 return (0); 15507 } 15508 15509 case DTRACEIOC_STOP: { 15510 processorid_t cpuid; 15511 15512 mutex_enter(&dtrace_lock); 15513 rval = dtrace_state_stop(state, &cpuid); 15514 mutex_exit(&dtrace_lock); 15515 15516 if (rval != 0) 15517 return (rval); 15518 15519 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15520 return (EFAULT); 15521 15522 return (0); 15523 } 15524 15525 case DTRACEIOC_DOFGET: { 15526 dof_hdr_t hdr, *dof; 15527 uint64_t len; 15528 15529 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15530 return (EFAULT); 15531 15532 mutex_enter(&dtrace_lock); 15533 dof = dtrace_dof_create(state); 15534 mutex_exit(&dtrace_lock); 15535 15536 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15537 rval = copyout(dof, (void *)arg, len); 15538 dtrace_dof_destroy(dof); 15539 15540 return (rval == 0 ? 0 : EFAULT); 15541 } 15542 15543 case DTRACEIOC_AGGSNAP: 15544 case DTRACEIOC_BUFSNAP: { 15545 dtrace_bufdesc_t desc; 15546 caddr_t cached; 15547 dtrace_buffer_t *buf; 15548 15549 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15550 return (EFAULT); 15551 15552 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15553 return (EINVAL); 15554 15555 mutex_enter(&dtrace_lock); 15556 15557 if (cmd == DTRACEIOC_BUFSNAP) { 15558 buf = &state->dts_buffer[desc.dtbd_cpu]; 15559 } else { 15560 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15561 } 15562 15563 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15564 size_t sz = buf->dtb_offset; 15565 15566 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15567 mutex_exit(&dtrace_lock); 15568 return (EBUSY); 15569 } 15570 15571 /* 15572 * If this buffer has already been consumed, we're 15573 * going to indicate that there's nothing left here 15574 * to consume. 15575 */ 15576 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15577 mutex_exit(&dtrace_lock); 15578 15579 desc.dtbd_size = 0; 15580 desc.dtbd_drops = 0; 15581 desc.dtbd_errors = 0; 15582 desc.dtbd_oldest = 0; 15583 sz = sizeof (desc); 15584 15585 if (copyout(&desc, (void *)arg, sz) != 0) 15586 return (EFAULT); 15587 15588 return (0); 15589 } 15590 15591 /* 15592 * If this is a ring buffer that has wrapped, we want 15593 * to copy the whole thing out. 15594 */ 15595 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15596 dtrace_buffer_polish(buf); 15597 sz = buf->dtb_size; 15598 } 15599 15600 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15601 mutex_exit(&dtrace_lock); 15602 return (EFAULT); 15603 } 15604 15605 desc.dtbd_size = sz; 15606 desc.dtbd_drops = buf->dtb_drops; 15607 desc.dtbd_errors = buf->dtb_errors; 15608 desc.dtbd_oldest = buf->dtb_xamot_offset; 15609 15610 mutex_exit(&dtrace_lock); 15611 15612 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15613 return (EFAULT); 15614 15615 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15616 15617 return (0); 15618 } 15619 15620 if (buf->dtb_tomax == NULL) { 15621 ASSERT(buf->dtb_xamot == NULL); 15622 mutex_exit(&dtrace_lock); 15623 return (ENOENT); 15624 } 15625 15626 cached = buf->dtb_tomax; 15627 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15628 15629 dtrace_xcall(desc.dtbd_cpu, 15630 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15631 15632 state->dts_errors += buf->dtb_xamot_errors; 15633 15634 /* 15635 * If the buffers did not actually switch, then the cross call 15636 * did not take place -- presumably because the given CPU is 15637 * not in the ready set. If this is the case, we'll return 15638 * ENOENT. 15639 */ 15640 if (buf->dtb_tomax == cached) { 15641 ASSERT(buf->dtb_xamot != cached); 15642 mutex_exit(&dtrace_lock); 15643 return (ENOENT); 15644 } 15645 15646 ASSERT(cached == buf->dtb_xamot); 15647 15648 /* 15649 * We have our snapshot; now copy it out. 15650 */ 15651 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15652 buf->dtb_xamot_offset) != 0) { 15653 mutex_exit(&dtrace_lock); 15654 return (EFAULT); 15655 } 15656 15657 desc.dtbd_size = buf->dtb_xamot_offset; 15658 desc.dtbd_drops = buf->dtb_xamot_drops; 15659 desc.dtbd_errors = buf->dtb_xamot_errors; 15660 desc.dtbd_oldest = 0; 15661 15662 mutex_exit(&dtrace_lock); 15663 15664 /* 15665 * Finally, copy out the buffer description. 15666 */ 15667 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15668 return (EFAULT); 15669 15670 return (0); 15671 } 15672 15673 case DTRACEIOC_CONF: { 15674 dtrace_conf_t conf; 15675 15676 bzero(&conf, sizeof (conf)); 15677 conf.dtc_difversion = DIF_VERSION; 15678 conf.dtc_difintregs = DIF_DIR_NREGS; 15679 conf.dtc_diftupregs = DIF_DTR_NREGS; 15680 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15681 15682 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15683 return (EFAULT); 15684 15685 return (0); 15686 } 15687 15688 case DTRACEIOC_STATUS: { 15689 dtrace_status_t stat; 15690 dtrace_dstate_t *dstate; 15691 int i, j; 15692 uint64_t nerrs; 15693 15694 /* 15695 * See the comment in dtrace_state_deadman() for the reason 15696 * for setting dts_laststatus to INT64_MAX before setting 15697 * it to the correct value. 15698 */ 15699 state->dts_laststatus = INT64_MAX; 15700 dtrace_membar_producer(); 15701 state->dts_laststatus = dtrace_gethrtime(); 15702 15703 bzero(&stat, sizeof (stat)); 15704 15705 mutex_enter(&dtrace_lock); 15706 15707 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15708 mutex_exit(&dtrace_lock); 15709 return (ENOENT); 15710 } 15711 15712 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15713 stat.dtst_exiting = 1; 15714 15715 nerrs = state->dts_errors; 15716 dstate = &state->dts_vstate.dtvs_dynvars; 15717 15718 for (i = 0; i < NCPU; i++) { 15719 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15720 15721 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15722 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15723 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15724 15725 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15726 stat.dtst_filled++; 15727 15728 nerrs += state->dts_buffer[i].dtb_errors; 15729 15730 for (j = 0; j < state->dts_nspeculations; j++) { 15731 dtrace_speculation_t *spec; 15732 dtrace_buffer_t *buf; 15733 15734 spec = &state->dts_speculations[j]; 15735 buf = &spec->dtsp_buffer[i]; 15736 stat.dtst_specdrops += buf->dtb_xamot_drops; 15737 } 15738 } 15739 15740 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15741 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15742 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15743 stat.dtst_dblerrors = state->dts_dblerrors; 15744 stat.dtst_killed = 15745 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15746 stat.dtst_errors = nerrs; 15747 15748 mutex_exit(&dtrace_lock); 15749 15750 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15751 return (EFAULT); 15752 15753 return (0); 15754 } 15755 15756 case DTRACEIOC_FORMAT: { 15757 dtrace_fmtdesc_t fmt; 15758 char *str; 15759 int len; 15760 15761 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15762 return (EFAULT); 15763 15764 mutex_enter(&dtrace_lock); 15765 15766 if (fmt.dtfd_format == 0 || 15767 fmt.dtfd_format > state->dts_nformats) { 15768 mutex_exit(&dtrace_lock); 15769 return (EINVAL); 15770 } 15771 15772 /* 15773 * Format strings are allocated contiguously and they are 15774 * never freed; if a format index is less than the number 15775 * of formats, we can assert that the format map is non-NULL 15776 * and that the format for the specified index is non-NULL. 15777 */ 15778 ASSERT(state->dts_formats != NULL); 15779 str = state->dts_formats[fmt.dtfd_format - 1]; 15780 ASSERT(str != NULL); 15781 15782 len = strlen(str) + 1; 15783 15784 if (len > fmt.dtfd_length) { 15785 fmt.dtfd_length = len; 15786 15787 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15788 mutex_exit(&dtrace_lock); 15789 return (EINVAL); 15790 } 15791 } else { 15792 if (copyout(str, fmt.dtfd_string, len) != 0) { 15793 mutex_exit(&dtrace_lock); 15794 return (EINVAL); 15795 } 15796 } 15797 15798 mutex_exit(&dtrace_lock); 15799 return (0); 15800 } 15801 15802 default: 15803 break; 15804 } 15805 15806 return (ENOTTY); 15807 } 15808 15809 /*ARGSUSED*/ 15810 static int 15811 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15812 { 15813 dtrace_state_t *state; 15814 15815 switch (cmd) { 15816 case DDI_DETACH: 15817 break; 15818 15819 case DDI_SUSPEND: 15820 return (DDI_SUCCESS); 15821 15822 default: 15823 return (DDI_FAILURE); 15824 } 15825 15826 mutex_enter(&cpu_lock); 15827 mutex_enter(&dtrace_provider_lock); 15828 mutex_enter(&dtrace_lock); 15829 15830 ASSERT(dtrace_opens == 0); 15831 15832 if (dtrace_helpers > 0) { 15833 mutex_exit(&dtrace_provider_lock); 15834 mutex_exit(&dtrace_lock); 15835 mutex_exit(&cpu_lock); 15836 return (DDI_FAILURE); 15837 } 15838 15839 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15840 mutex_exit(&dtrace_provider_lock); 15841 mutex_exit(&dtrace_lock); 15842 mutex_exit(&cpu_lock); 15843 return (DDI_FAILURE); 15844 } 15845 15846 dtrace_provider = NULL; 15847 15848 if ((state = dtrace_anon_grab()) != NULL) { 15849 /* 15850 * If there were ECBs on this state, the provider should 15851 * have not been allowed to detach; assert that there is 15852 * none. 15853 */ 15854 ASSERT(state->dts_necbs == 0); 15855 dtrace_state_destroy(state); 15856 15857 /* 15858 * If we're being detached with anonymous state, we need to 15859 * indicate to the kernel debugger that DTrace is now inactive. 15860 */ 15861 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15862 } 15863 15864 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15865 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15866 dtrace_cpu_init = NULL; 15867 dtrace_helpers_cleanup = NULL; 15868 dtrace_helpers_fork = NULL; 15869 dtrace_cpustart_init = NULL; 15870 dtrace_cpustart_fini = NULL; 15871 dtrace_debugger_init = NULL; 15872 dtrace_debugger_fini = NULL; 15873 dtrace_modload = NULL; 15874 dtrace_modunload = NULL; 15875 15876 mutex_exit(&cpu_lock); 15877 15878 if (dtrace_helptrace_enabled) { 15879 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15880 dtrace_helptrace_buffer = NULL; 15881 } 15882 15883 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15884 dtrace_probes = NULL; 15885 dtrace_nprobes = 0; 15886 15887 dtrace_hash_destroy(dtrace_bymod); 15888 dtrace_hash_destroy(dtrace_byfunc); 15889 dtrace_hash_destroy(dtrace_byname); 15890 dtrace_bymod = NULL; 15891 dtrace_byfunc = NULL; 15892 dtrace_byname = NULL; 15893 15894 kmem_cache_destroy(dtrace_state_cache); 15895 vmem_destroy(dtrace_minor); 15896 vmem_destroy(dtrace_arena); 15897 15898 if (dtrace_toxrange != NULL) { 15899 kmem_free(dtrace_toxrange, 15900 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15901 dtrace_toxrange = NULL; 15902 dtrace_toxranges = 0; 15903 dtrace_toxranges_max = 0; 15904 } 15905 15906 ddi_remove_minor_node(dtrace_devi, NULL); 15907 dtrace_devi = NULL; 15908 15909 ddi_soft_state_fini(&dtrace_softstate); 15910 15911 ASSERT(dtrace_vtime_references == 0); 15912 ASSERT(dtrace_opens == 0); 15913 ASSERT(dtrace_retained == NULL); 15914 15915 mutex_exit(&dtrace_lock); 15916 mutex_exit(&dtrace_provider_lock); 15917 15918 /* 15919 * We don't destroy the task queue until after we have dropped our 15920 * locks (taskq_destroy() may block on running tasks). To prevent 15921 * attempting to do work after we have effectively detached but before 15922 * the task queue has been destroyed, all tasks dispatched via the 15923 * task queue must check that DTrace is still attached before 15924 * performing any operation. 15925 */ 15926 taskq_destroy(dtrace_taskq); 15927 dtrace_taskq = NULL; 15928 15929 return (DDI_SUCCESS); 15930 } 15931 15932 /*ARGSUSED*/ 15933 static int 15934 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15935 { 15936 int error; 15937 15938 switch (infocmd) { 15939 case DDI_INFO_DEVT2DEVINFO: 15940 *result = (void *)dtrace_devi; 15941 error = DDI_SUCCESS; 15942 break; 15943 case DDI_INFO_DEVT2INSTANCE: 15944 *result = (void *)0; 15945 error = DDI_SUCCESS; 15946 break; 15947 default: 15948 error = DDI_FAILURE; 15949 } 15950 return (error); 15951 } 15952 15953 static struct cb_ops dtrace_cb_ops = { 15954 dtrace_open, /* open */ 15955 dtrace_close, /* close */ 15956 nulldev, /* strategy */ 15957 nulldev, /* print */ 15958 nodev, /* dump */ 15959 nodev, /* read */ 15960 nodev, /* write */ 15961 dtrace_ioctl, /* ioctl */ 15962 nodev, /* devmap */ 15963 nodev, /* mmap */ 15964 nodev, /* segmap */ 15965 nochpoll, /* poll */ 15966 ddi_prop_op, /* cb_prop_op */ 15967 0, /* streamtab */ 15968 D_NEW | D_MP /* Driver compatibility flag */ 15969 }; 15970 15971 static struct dev_ops dtrace_ops = { 15972 DEVO_REV, /* devo_rev */ 15973 0, /* refcnt */ 15974 dtrace_info, /* get_dev_info */ 15975 nulldev, /* identify */ 15976 nulldev, /* probe */ 15977 dtrace_attach, /* attach */ 15978 dtrace_detach, /* detach */ 15979 nodev, /* reset */ 15980 &dtrace_cb_ops, /* driver operations */ 15981 NULL, /* bus operations */ 15982 nodev, /* dev power */ 15983 ddi_quiesce_not_needed, /* quiesce */ 15984 }; 15985 15986 static struct modldrv modldrv = { 15987 &mod_driverops, /* module type (this is a pseudo driver) */ 15988 "Dynamic Tracing", /* name of module */ 15989 &dtrace_ops, /* driver ops */ 15990 }; 15991 15992 static struct modlinkage modlinkage = { 15993 MODREV_1, 15994 (void *)&modldrv, 15995 NULL 15996 }; 15997 15998 int 15999 _init(void) 16000 { 16001 return (mod_install(&modlinkage)); 16002 } 16003 16004 int 16005 _info(struct modinfo *modinfop) 16006 { 16007 return (mod_info(&modlinkage, modinfop)); 16008 } 16009 16010 int 16011 _fini(void) 16012 { 16013 return (mod_remove(&modlinkage)); 16014 } 16015