xref: /titanic_50/usr/src/uts/common/dtrace/dtrace.c (revision 4e5b757fbcf21077677360be274461dcd9064106)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
188 
189 /*
190  * DTrace Locking
191  * DTrace is protected by three (relatively coarse-grained) locks:
192  *
193  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
194  *     including enabling state, probes, ECBs, consumer state, helper state,
195  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
196  *     probe context is lock-free -- synchronization is handled via the
197  *     dtrace_sync() cross call mechanism.
198  *
199  * (2) dtrace_provider_lock is required when manipulating provider state, or
200  *     when provider state must be held constant.
201  *
202  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
203  *     when meta provider state must be held constant.
204  *
205  * The lock ordering between these three locks is dtrace_meta_lock before
206  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
207  * several places where dtrace_provider_lock is held by the framework as it
208  * calls into the providers -- which then call back into the framework,
209  * grabbing dtrace_lock.)
210  *
211  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
212  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
213  * role as a coarse-grained lock; it is acquired before both of these locks.
214  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
215  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
216  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
217  * acquired _between_ dtrace_provider_lock and dtrace_lock.
218  */
219 static kmutex_t		dtrace_lock;		/* probe state lock */
220 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
221 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
222 
223 /*
224  * DTrace Provider Variables
225  *
226  * These are the variables relating to DTrace as a provider (that is, the
227  * provider of the BEGIN, END, and ERROR probes).
228  */
229 static dtrace_pattr_t	dtrace_provider_attr = {
230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 };
236 
237 static void
238 dtrace_nullop(void)
239 {}
240 
241 static dtrace_pops_t	dtrace_provider_ops = {
242 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
243 	(void (*)(void *, struct modctl *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	NULL,
249 	NULL,
250 	NULL,
251 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
252 };
253 
254 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
255 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
256 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
257 
258 /*
259  * DTrace Helper Tracing Variables
260  */
261 uint32_t dtrace_helptrace_next = 0;
262 uint32_t dtrace_helptrace_nlocals;
263 char	*dtrace_helptrace_buffer;
264 int	dtrace_helptrace_bufsize = 512 * 1024;
265 
266 #ifdef DEBUG
267 int	dtrace_helptrace_enabled = 1;
268 #else
269 int	dtrace_helptrace_enabled = 0;
270 #endif
271 
272 /*
273  * DTrace Error Hashing
274  *
275  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
276  * table.  This is very useful for checking coverage of tests that are
277  * expected to induce DIF or DOF processing errors, and may be useful for
278  * debugging problems in the DIF code generator or in DOF generation .  The
279  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
280  */
281 #ifdef DEBUG
282 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
283 static const char *dtrace_errlast;
284 static kthread_t *dtrace_errthread;
285 static kmutex_t dtrace_errlock;
286 #endif
287 
288 /*
289  * DTrace Macros and Constants
290  *
291  * These are various macros that are useful in various spots in the
292  * implementation, along with a few random constants that have no meaning
293  * outside of the implementation.  There is no real structure to this cpp
294  * mishmash -- but is there ever?
295  */
296 #define	DTRACE_HASHSTR(hash, probe)	\
297 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
298 
299 #define	DTRACE_HASHNEXT(hash, probe)	\
300 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
301 
302 #define	DTRACE_HASHPREV(hash, probe)	\
303 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
304 
305 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
306 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
307 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
308 
309 #define	DTRACE_AGGHASHSIZE_SLEW		17
310 
311 /*
312  * The key for a thread-local variable consists of the lower 61 bits of the
313  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
314  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
315  * equal to a variable identifier.  This is necessary (but not sufficient) to
316  * assure that global associative arrays never collide with thread-local
317  * variables.  To guarantee that they cannot collide, we must also define the
318  * order for keying dynamic variables.  That order is:
319  *
320  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
321  *
322  * Because the variable-key and the tls-key are in orthogonal spaces, there is
323  * no way for a global variable key signature to match a thread-local key
324  * signature.
325  */
326 #define	DTRACE_TLS_THRKEY(where) { \
327 	uint_t intr = 0; \
328 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
329 	for (; actv; actv >>= 1) \
330 		intr++; \
331 	ASSERT(intr < (1 << 3)); \
332 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
333 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
334 }
335 
336 #define	DT_BSWAP_8(x)	((x) & 0xff)
337 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
338 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
339 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
340 
341 #define	DTRACE_STORE(type, tomax, offset, what) \
342 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
343 
344 #ifndef __i386
345 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
346 	if (addr & (size - 1)) {					\
347 		*flags |= CPU_DTRACE_BADALIGN;				\
348 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
349 		return (0);						\
350 	}
351 #else
352 #define	DTRACE_ALIGNCHECK(addr, size, flags)
353 #endif
354 
355 /*
356  * Test whether a range of memory starting at testaddr of size testsz falls
357  * within the range of memory described by addr, sz.  We take care to avoid
358  * problems with overflow and underflow of the unsigned quantities, and
359  * disallow all negative sizes.  Ranges of size 0 are allowed.
360  */
361 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
362 	((testaddr) - (baseaddr) < (basesz) && \
363 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
364 	(testaddr) + (testsz) >= (testaddr))
365 
366 /*
367  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
368  * alloc_sz on the righthand side of the comparison in order to avoid overflow
369  * or underflow in the comparison with it.  This is simpler than the INRANGE
370  * check above, because we know that the dtms_scratch_ptr is valid in the
371  * range.  Allocations of size zero are allowed.
372  */
373 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
374 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
375 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
376 
377 #define	DTRACE_LOADFUNC(bits)						\
378 /*CSTYLED*/								\
379 uint##bits##_t								\
380 dtrace_load##bits(uintptr_t addr)					\
381 {									\
382 	size_t size = bits / NBBY;					\
383 	/*CSTYLED*/							\
384 	uint##bits##_t rval;						\
385 	int i;								\
386 	volatile uint16_t *flags = (volatile uint16_t *)		\
387 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
388 									\
389 	DTRACE_ALIGNCHECK(addr, size, flags);				\
390 									\
391 	for (i = 0; i < dtrace_toxranges; i++) {			\
392 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
393 			continue;					\
394 									\
395 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
396 			continue;					\
397 									\
398 		/*							\
399 		 * This address falls within a toxic region; return 0.	\
400 		 */							\
401 		*flags |= CPU_DTRACE_BADADDR;				\
402 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
403 		return (0);						\
404 	}								\
405 									\
406 	*flags |= CPU_DTRACE_NOFAULT;					\
407 	/*CSTYLED*/							\
408 	rval = *((volatile uint##bits##_t *)addr);			\
409 	*flags &= ~CPU_DTRACE_NOFAULT;					\
410 									\
411 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
412 }
413 
414 #ifdef _LP64
415 #define	dtrace_loadptr	dtrace_load64
416 #else
417 #define	dtrace_loadptr	dtrace_load32
418 #endif
419 
420 #define	DTRACE_DYNHASH_FREE	0
421 #define	DTRACE_DYNHASH_SINK	1
422 #define	DTRACE_DYNHASH_VALID	2
423 
424 #define	DTRACE_MATCH_NEXT	0
425 #define	DTRACE_MATCH_DONE	1
426 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
427 #define	DTRACE_STATE_ALIGN	64
428 
429 #define	DTRACE_FLAGS2FLT(flags)						\
430 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
431 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
432 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
433 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
434 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
435 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
436 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
437 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
438 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
439 	DTRACEFLT_UNKNOWN)
440 
441 #define	DTRACEACT_ISSTRING(act)						\
442 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
443 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
444 
445 static size_t dtrace_strlen(const char *, size_t);
446 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
447 static void dtrace_enabling_provide(dtrace_provider_t *);
448 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
449 static void dtrace_enabling_matchall(void);
450 static dtrace_state_t *dtrace_anon_grab(void);
451 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
452     dtrace_state_t *, uint64_t, uint64_t);
453 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
454 static void dtrace_buffer_drop(dtrace_buffer_t *);
455 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
456     dtrace_state_t *, dtrace_mstate_t *);
457 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
458     dtrace_optval_t);
459 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
460 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
461 
462 /*
463  * DTrace Probe Context Functions
464  *
465  * These functions are called from probe context.  Because probe context is
466  * any context in which C may be called, arbitrarily locks may be held,
467  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
468  * As a result, functions called from probe context may only call other DTrace
469  * support functions -- they may not interact at all with the system at large.
470  * (Note that the ASSERT macro is made probe-context safe by redefining it in
471  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
472  * loads are to be performed from probe context, they _must_ be in terms of
473  * the safe dtrace_load*() variants.
474  *
475  * Some functions in this block are not actually called from probe context;
476  * for these functions, there will be a comment above the function reading
477  * "Note:  not called from probe context."
478  */
479 void
480 dtrace_panic(const char *format, ...)
481 {
482 	va_list alist;
483 
484 	va_start(alist, format);
485 	dtrace_vpanic(format, alist);
486 	va_end(alist);
487 }
488 
489 int
490 dtrace_assfail(const char *a, const char *f, int l)
491 {
492 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
493 
494 	/*
495 	 * We just need something here that even the most clever compiler
496 	 * cannot optimize away.
497 	 */
498 	return (a[(uintptr_t)f]);
499 }
500 
501 /*
502  * Atomically increment a specified error counter from probe context.
503  */
504 static void
505 dtrace_error(uint32_t *counter)
506 {
507 	/*
508 	 * Most counters stored to in probe context are per-CPU counters.
509 	 * However, there are some error conditions that are sufficiently
510 	 * arcane that they don't merit per-CPU storage.  If these counters
511 	 * are incremented concurrently on different CPUs, scalability will be
512 	 * adversely affected -- but we don't expect them to be white-hot in a
513 	 * correctly constructed enabling...
514 	 */
515 	uint32_t oval, nval;
516 
517 	do {
518 		oval = *counter;
519 
520 		if ((nval = oval + 1) == 0) {
521 			/*
522 			 * If the counter would wrap, set it to 1 -- assuring
523 			 * that the counter is never zero when we have seen
524 			 * errors.  (The counter must be 32-bits because we
525 			 * aren't guaranteed a 64-bit compare&swap operation.)
526 			 * To save this code both the infamy of being fingered
527 			 * by a priggish news story and the indignity of being
528 			 * the target of a neo-puritan witch trial, we're
529 			 * carefully avoiding any colorful description of the
530 			 * likelihood of this condition -- but suffice it to
531 			 * say that it is only slightly more likely than the
532 			 * overflow of predicate cache IDs, as discussed in
533 			 * dtrace_predicate_create().
534 			 */
535 			nval = 1;
536 		}
537 	} while (dtrace_cas32(counter, oval, nval) != oval);
538 }
539 
540 /*
541  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
542  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
543  */
544 DTRACE_LOADFUNC(8)
545 DTRACE_LOADFUNC(16)
546 DTRACE_LOADFUNC(32)
547 DTRACE_LOADFUNC(64)
548 
549 static int
550 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
551 {
552 	if (dest < mstate->dtms_scratch_base)
553 		return (0);
554 
555 	if (dest + size < dest)
556 		return (0);
557 
558 	if (dest + size > mstate->dtms_scratch_ptr)
559 		return (0);
560 
561 	return (1);
562 }
563 
564 static int
565 dtrace_canstore_statvar(uint64_t addr, size_t sz,
566     dtrace_statvar_t **svars, int nsvars)
567 {
568 	int i;
569 
570 	for (i = 0; i < nsvars; i++) {
571 		dtrace_statvar_t *svar = svars[i];
572 
573 		if (svar == NULL || svar->dtsv_size == 0)
574 			continue;
575 
576 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
577 			return (1);
578 	}
579 
580 	return (0);
581 }
582 
583 /*
584  * Check to see if the address is within a memory region to which a store may
585  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
586  * region.  The caller of dtrace_canstore() is responsible for performing any
587  * alignment checks that are needed before stores are actually executed.
588  */
589 static int
590 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
591     dtrace_vstate_t *vstate)
592 {
593 	/*
594 	 * First, check to see if the address is in scratch space...
595 	 */
596 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
597 	    mstate->dtms_scratch_size))
598 		return (1);
599 
600 	/*
601 	 * Now check to see if it's a dynamic variable.  This check will pick
602 	 * up both thread-local variables and any global dynamically-allocated
603 	 * variables.
604 	 */
605 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
606 	    vstate->dtvs_dynvars.dtds_size))
607 		return (1);
608 
609 	/*
610 	 * Finally, check the static local and global variables.  These checks
611 	 * take the longest, so we perform them last.
612 	 */
613 	if (dtrace_canstore_statvar(addr, sz,
614 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
615 		return (1);
616 
617 	if (dtrace_canstore_statvar(addr, sz,
618 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
619 		return (1);
620 
621 	return (0);
622 }
623 
624 
625 /*
626  * Convenience routine to check to see if the address is within a memory
627  * region in which a load may be issued given the user's privilege level;
628  * if not, it sets the appropriate error flags and loads 'addr' into the
629  * illegal value slot.
630  *
631  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
632  * appropriate memory access protection.
633  */
634 static int
635 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
636     dtrace_vstate_t *vstate)
637 {
638 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
639 
640 	/*
641 	 * If we hold the privilege to read from kernel memory, then
642 	 * everything is readable.
643 	 */
644 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
645 		return (1);
646 
647 	/*
648 	 * You can obviously read that which you can store.
649 	 */
650 	if (dtrace_canstore(addr, sz, mstate, vstate))
651 		return (1);
652 
653 	/*
654 	 * We're allowed to read from our own string table.
655 	 */
656 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
657 	    mstate->dtms_difo->dtdo_strlen))
658 		return (1);
659 
660 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
661 	*illval = addr;
662 	return (0);
663 }
664 
665 /*
666  * Convenience routine to check to see if a given string is within a memory
667  * region in which a load may be issued given the user's privilege level;
668  * this exists so that we don't need to issue unnecessary dtrace_strlen()
669  * calls in the event that the user has all privileges.
670  */
671 static int
672 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
673     dtrace_vstate_t *vstate)
674 {
675 	size_t strsz;
676 
677 	/*
678 	 * If we hold the privilege to read from kernel memory, then
679 	 * everything is readable.
680 	 */
681 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
682 		return (1);
683 
684 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
685 	if (dtrace_canload(addr, strsz, mstate, vstate))
686 		return (1);
687 
688 	return (0);
689 }
690 
691 /*
692  * Convenience routine to check to see if a given variable is within a memory
693  * region in which a load may be issued given the user's privilege level.
694  */
695 static int
696 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
697     dtrace_vstate_t *vstate)
698 {
699 	size_t sz;
700 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
701 
702 	/*
703 	 * If we hold the privilege to read from kernel memory, then
704 	 * everything is readable.
705 	 */
706 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
707 		return (1);
708 
709 	if (type->dtdt_kind == DIF_TYPE_STRING)
710 		sz = dtrace_strlen(src,
711 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
712 	else
713 		sz = type->dtdt_size;
714 
715 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
716 }
717 
718 /*
719  * Compare two strings using safe loads.
720  */
721 static int
722 dtrace_strncmp(char *s1, char *s2, size_t limit)
723 {
724 	uint8_t c1, c2;
725 	volatile uint16_t *flags;
726 
727 	if (s1 == s2 || limit == 0)
728 		return (0);
729 
730 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
731 
732 	do {
733 		if (s1 == NULL) {
734 			c1 = '\0';
735 		} else {
736 			c1 = dtrace_load8((uintptr_t)s1++);
737 		}
738 
739 		if (s2 == NULL) {
740 			c2 = '\0';
741 		} else {
742 			c2 = dtrace_load8((uintptr_t)s2++);
743 		}
744 
745 		if (c1 != c2)
746 			return (c1 - c2);
747 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
748 
749 	return (0);
750 }
751 
752 /*
753  * Compute strlen(s) for a string using safe memory accesses.  The additional
754  * len parameter is used to specify a maximum length to ensure completion.
755  */
756 static size_t
757 dtrace_strlen(const char *s, size_t lim)
758 {
759 	uint_t len;
760 
761 	for (len = 0; len != lim; len++) {
762 		if (dtrace_load8((uintptr_t)s++) == '\0')
763 			break;
764 	}
765 
766 	return (len);
767 }
768 
769 /*
770  * Check if an address falls within a toxic region.
771  */
772 static int
773 dtrace_istoxic(uintptr_t kaddr, size_t size)
774 {
775 	uintptr_t taddr, tsize;
776 	int i;
777 
778 	for (i = 0; i < dtrace_toxranges; i++) {
779 		taddr = dtrace_toxrange[i].dtt_base;
780 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
781 
782 		if (kaddr - taddr < tsize) {
783 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
784 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
785 			return (1);
786 		}
787 
788 		if (taddr - kaddr < size) {
789 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
790 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
791 			return (1);
792 		}
793 	}
794 
795 	return (0);
796 }
797 
798 /*
799  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
800  * memory specified by the DIF program.  The dst is assumed to be safe memory
801  * that we can store to directly because it is managed by DTrace.  As with
802  * standard bcopy, overlapping copies are handled properly.
803  */
804 static void
805 dtrace_bcopy(const void *src, void *dst, size_t len)
806 {
807 	if (len != 0) {
808 		uint8_t *s1 = dst;
809 		const uint8_t *s2 = src;
810 
811 		if (s1 <= s2) {
812 			do {
813 				*s1++ = dtrace_load8((uintptr_t)s2++);
814 			} while (--len != 0);
815 		} else {
816 			s2 += len;
817 			s1 += len;
818 
819 			do {
820 				*--s1 = dtrace_load8((uintptr_t)--s2);
821 			} while (--len != 0);
822 		}
823 	}
824 }
825 
826 /*
827  * Copy src to dst using safe memory accesses, up to either the specified
828  * length, or the point that a nul byte is encountered.  The src is assumed to
829  * be unsafe memory specified by the DIF program.  The dst is assumed to be
830  * safe memory that we can store to directly because it is managed by DTrace.
831  * Unlike dtrace_bcopy(), overlapping regions are not handled.
832  */
833 static void
834 dtrace_strcpy(const void *src, void *dst, size_t len)
835 {
836 	if (len != 0) {
837 		uint8_t *s1 = dst, c;
838 		const uint8_t *s2 = src;
839 
840 		do {
841 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
842 		} while (--len != 0 && c != '\0');
843 	}
844 }
845 
846 /*
847  * Copy src to dst, deriving the size and type from the specified (BYREF)
848  * variable type.  The src is assumed to be unsafe memory specified by the DIF
849  * program.  The dst is assumed to be DTrace variable memory that is of the
850  * specified type; we assume that we can store to directly.
851  */
852 static void
853 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
854 {
855 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
856 
857 	if (type->dtdt_kind == DIF_TYPE_STRING) {
858 		dtrace_strcpy(src, dst, type->dtdt_size);
859 	} else {
860 		dtrace_bcopy(src, dst, type->dtdt_size);
861 	}
862 }
863 
864 /*
865  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
866  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
867  * safe memory that we can access directly because it is managed by DTrace.
868  */
869 static int
870 dtrace_bcmp(const void *s1, const void *s2, size_t len)
871 {
872 	volatile uint16_t *flags;
873 
874 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
875 
876 	if (s1 == s2)
877 		return (0);
878 
879 	if (s1 == NULL || s2 == NULL)
880 		return (1);
881 
882 	if (s1 != s2 && len != 0) {
883 		const uint8_t *ps1 = s1;
884 		const uint8_t *ps2 = s2;
885 
886 		do {
887 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
888 				return (1);
889 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
890 	}
891 	return (0);
892 }
893 
894 /*
895  * Zero the specified region using a simple byte-by-byte loop.  Note that this
896  * is for safe DTrace-managed memory only.
897  */
898 static void
899 dtrace_bzero(void *dst, size_t len)
900 {
901 	uchar_t *cp;
902 
903 	for (cp = dst; len != 0; len--)
904 		*cp++ = 0;
905 }
906 
907 /*
908  * This privilege check should be used by actions and subroutines to
909  * verify that the user credentials of the process that enabled the
910  * invoking ECB match the target credentials
911  */
912 static int
913 dtrace_priv_proc_common_user(dtrace_state_t *state)
914 {
915 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
916 
917 	/*
918 	 * We should always have a non-NULL state cred here, since if cred
919 	 * is null (anonymous tracing), we fast-path bypass this routine.
920 	 */
921 	ASSERT(s_cr != NULL);
922 
923 	if ((cr = CRED()) != NULL &&
924 	    s_cr->cr_uid == cr->cr_uid &&
925 	    s_cr->cr_uid == cr->cr_ruid &&
926 	    s_cr->cr_uid == cr->cr_suid &&
927 	    s_cr->cr_gid == cr->cr_gid &&
928 	    s_cr->cr_gid == cr->cr_rgid &&
929 	    s_cr->cr_gid == cr->cr_sgid)
930 		return (1);
931 
932 	return (0);
933 }
934 
935 /*
936  * This privilege check should be used by actions and subroutines to
937  * verify that the zone of the process that enabled the invoking ECB
938  * matches the target credentials
939  */
940 static int
941 dtrace_priv_proc_common_zone(dtrace_state_t *state)
942 {
943 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
944 
945 	/*
946 	 * We should always have a non-NULL state cred here, since if cred
947 	 * is null (anonymous tracing), we fast-path bypass this routine.
948 	 */
949 	ASSERT(s_cr != NULL);
950 
951 	if ((cr = CRED()) != NULL &&
952 	    s_cr->cr_zone == cr->cr_zone)
953 		return (1);
954 
955 	return (0);
956 }
957 
958 /*
959  * This privilege check should be used by actions and subroutines to
960  * verify that the process has not setuid or changed credentials.
961  */
962 static int
963 dtrace_priv_proc_common_nocd()
964 {
965 	proc_t *proc;
966 
967 	if ((proc = ttoproc(curthread)) != NULL &&
968 	    !(proc->p_flag & SNOCD))
969 		return (1);
970 
971 	return (0);
972 }
973 
974 static int
975 dtrace_priv_proc_destructive(dtrace_state_t *state)
976 {
977 	int action = state->dts_cred.dcr_action;
978 
979 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
980 	    dtrace_priv_proc_common_zone(state) == 0)
981 		goto bad;
982 
983 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
984 	    dtrace_priv_proc_common_user(state) == 0)
985 		goto bad;
986 
987 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
988 	    dtrace_priv_proc_common_nocd() == 0)
989 		goto bad;
990 
991 	return (1);
992 
993 bad:
994 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
995 
996 	return (0);
997 }
998 
999 static int
1000 dtrace_priv_proc_control(dtrace_state_t *state)
1001 {
1002 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1003 		return (1);
1004 
1005 	if (dtrace_priv_proc_common_zone(state) &&
1006 	    dtrace_priv_proc_common_user(state) &&
1007 	    dtrace_priv_proc_common_nocd())
1008 		return (1);
1009 
1010 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1011 
1012 	return (0);
1013 }
1014 
1015 static int
1016 dtrace_priv_proc(dtrace_state_t *state)
1017 {
1018 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1019 		return (1);
1020 
1021 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1022 
1023 	return (0);
1024 }
1025 
1026 static int
1027 dtrace_priv_kernel(dtrace_state_t *state)
1028 {
1029 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1030 		return (1);
1031 
1032 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1033 
1034 	return (0);
1035 }
1036 
1037 static int
1038 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1039 {
1040 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1041 		return (1);
1042 
1043 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Note:  not called from probe context.  This function is called
1050  * asynchronously (and at a regular interval) from outside of probe context to
1051  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1052  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1053  */
1054 void
1055 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1056 {
1057 	dtrace_dynvar_t *dirty;
1058 	dtrace_dstate_percpu_t *dcpu;
1059 	int i, work = 0;
1060 
1061 	for (i = 0; i < NCPU; i++) {
1062 		dcpu = &dstate->dtds_percpu[i];
1063 
1064 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1065 
1066 		/*
1067 		 * If the dirty list is NULL, there is no dirty work to do.
1068 		 */
1069 		if (dcpu->dtdsc_dirty == NULL)
1070 			continue;
1071 
1072 		/*
1073 		 * If the clean list is non-NULL, then we're not going to do
1074 		 * any work for this CPU -- it means that there has not been
1075 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1076 		 * since the last time we cleaned house.
1077 		 */
1078 		if (dcpu->dtdsc_clean != NULL)
1079 			continue;
1080 
1081 		work = 1;
1082 
1083 		/*
1084 		 * Atomically move the dirty list aside.
1085 		 */
1086 		do {
1087 			dirty = dcpu->dtdsc_dirty;
1088 
1089 			/*
1090 			 * Before we zap the dirty list, set the rinsing list.
1091 			 * (This allows for a potential assertion in
1092 			 * dtrace_dynvar():  if a free dynamic variable appears
1093 			 * on a hash chain, either the dirty list or the
1094 			 * rinsing list for some CPU must be non-NULL.)
1095 			 */
1096 			dcpu->dtdsc_rinsing = dirty;
1097 			dtrace_membar_producer();
1098 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1099 		    dirty, NULL) != dirty);
1100 	}
1101 
1102 	if (!work) {
1103 		/*
1104 		 * We have no work to do; we can simply return.
1105 		 */
1106 		return;
1107 	}
1108 
1109 	dtrace_sync();
1110 
1111 	for (i = 0; i < NCPU; i++) {
1112 		dcpu = &dstate->dtds_percpu[i];
1113 
1114 		if (dcpu->dtdsc_rinsing == NULL)
1115 			continue;
1116 
1117 		/*
1118 		 * We are now guaranteed that no hash chain contains a pointer
1119 		 * into this dirty list; we can make it clean.
1120 		 */
1121 		ASSERT(dcpu->dtdsc_clean == NULL);
1122 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1123 		dcpu->dtdsc_rinsing = NULL;
1124 	}
1125 
1126 	/*
1127 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1128 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1129 	 * This prevents a race whereby a CPU incorrectly decides that
1130 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1131 	 * after dtrace_dynvar_clean() has completed.
1132 	 */
1133 	dtrace_sync();
1134 
1135 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1136 }
1137 
1138 /*
1139  * Depending on the value of the op parameter, this function looks-up,
1140  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1141  * allocation is requested, this function will return a pointer to a
1142  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1143  * variable can be allocated.  If NULL is returned, the appropriate counter
1144  * will be incremented.
1145  */
1146 dtrace_dynvar_t *
1147 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1148     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1149     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1150 {
1151 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1152 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1153 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1154 	processorid_t me = CPU->cpu_id, cpu = me;
1155 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1156 	size_t bucket, ksize;
1157 	size_t chunksize = dstate->dtds_chunksize;
1158 	uintptr_t kdata, lock, nstate;
1159 	uint_t i;
1160 
1161 	ASSERT(nkeys != 0);
1162 
1163 	/*
1164 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1165 	 * algorithm.  For the by-value portions, we perform the algorithm in
1166 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1167 	 * bit, and seems to have only a minute effect on distribution.  For
1168 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1169 	 * over each referenced byte.  It's painful to do this, but it's much
1170 	 * better than pathological hash distribution.  The efficacy of the
1171 	 * hashing algorithm (and a comparison with other algorithms) may be
1172 	 * found by running the ::dtrace_dynstat MDB dcmd.
1173 	 */
1174 	for (i = 0; i < nkeys; i++) {
1175 		if (key[i].dttk_size == 0) {
1176 			uint64_t val = key[i].dttk_value;
1177 
1178 			hashval += (val >> 48) & 0xffff;
1179 			hashval += (hashval << 10);
1180 			hashval ^= (hashval >> 6);
1181 
1182 			hashval += (val >> 32) & 0xffff;
1183 			hashval += (hashval << 10);
1184 			hashval ^= (hashval >> 6);
1185 
1186 			hashval += (val >> 16) & 0xffff;
1187 			hashval += (hashval << 10);
1188 			hashval ^= (hashval >> 6);
1189 
1190 			hashval += val & 0xffff;
1191 			hashval += (hashval << 10);
1192 			hashval ^= (hashval >> 6);
1193 		} else {
1194 			/*
1195 			 * This is incredibly painful, but it beats the hell
1196 			 * out of the alternative.
1197 			 */
1198 			uint64_t j, size = key[i].dttk_size;
1199 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1200 
1201 			if (!dtrace_canload(base, size, mstate, vstate))
1202 				break;
1203 
1204 			for (j = 0; j < size; j++) {
1205 				hashval += dtrace_load8(base + j);
1206 				hashval += (hashval << 10);
1207 				hashval ^= (hashval >> 6);
1208 			}
1209 		}
1210 	}
1211 
1212 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1213 		return (NULL);
1214 
1215 	hashval += (hashval << 3);
1216 	hashval ^= (hashval >> 11);
1217 	hashval += (hashval << 15);
1218 
1219 	/*
1220 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1221 	 * comes out to be one of our two sentinel hash values.  If this
1222 	 * actually happens, we set the hashval to be a value known to be a
1223 	 * non-sentinel value.
1224 	 */
1225 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1226 		hashval = DTRACE_DYNHASH_VALID;
1227 
1228 	/*
1229 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1230 	 * important here, tricks can be pulled to reduce it.  (However, it's
1231 	 * critical that hash collisions be kept to an absolute minimum;
1232 	 * they're much more painful than a divide.)  It's better to have a
1233 	 * solution that generates few collisions and still keeps things
1234 	 * relatively simple.
1235 	 */
1236 	bucket = hashval % dstate->dtds_hashsize;
1237 
1238 	if (op == DTRACE_DYNVAR_DEALLOC) {
1239 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1240 
1241 		for (;;) {
1242 			while ((lock = *lockp) & 1)
1243 				continue;
1244 
1245 			if (dtrace_casptr((void *)lockp,
1246 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1247 				break;
1248 		}
1249 
1250 		dtrace_membar_producer();
1251 	}
1252 
1253 top:
1254 	prev = NULL;
1255 	lock = hash[bucket].dtdh_lock;
1256 
1257 	dtrace_membar_consumer();
1258 
1259 	start = hash[bucket].dtdh_chain;
1260 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1261 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1262 	    op != DTRACE_DYNVAR_DEALLOC));
1263 
1264 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1265 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1266 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1267 
1268 		if (dvar->dtdv_hashval != hashval) {
1269 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1270 				/*
1271 				 * We've reached the sink, and therefore the
1272 				 * end of the hash chain; we can kick out of
1273 				 * the loop knowing that we have seen a valid
1274 				 * snapshot of state.
1275 				 */
1276 				ASSERT(dvar->dtdv_next == NULL);
1277 				ASSERT(dvar == &dtrace_dynhash_sink);
1278 				break;
1279 			}
1280 
1281 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1282 				/*
1283 				 * We've gone off the rails:  somewhere along
1284 				 * the line, one of the members of this hash
1285 				 * chain was deleted.  Note that we could also
1286 				 * detect this by simply letting this loop run
1287 				 * to completion, as we would eventually hit
1288 				 * the end of the dirty list.  However, we
1289 				 * want to avoid running the length of the
1290 				 * dirty list unnecessarily (it might be quite
1291 				 * long), so we catch this as early as
1292 				 * possible by detecting the hash marker.  In
1293 				 * this case, we simply set dvar to NULL and
1294 				 * break; the conditional after the loop will
1295 				 * send us back to top.
1296 				 */
1297 				dvar = NULL;
1298 				break;
1299 			}
1300 
1301 			goto next;
1302 		}
1303 
1304 		if (dtuple->dtt_nkeys != nkeys)
1305 			goto next;
1306 
1307 		for (i = 0; i < nkeys; i++, dkey++) {
1308 			if (dkey->dttk_size != key[i].dttk_size)
1309 				goto next; /* size or type mismatch */
1310 
1311 			if (dkey->dttk_size != 0) {
1312 				if (dtrace_bcmp(
1313 				    (void *)(uintptr_t)key[i].dttk_value,
1314 				    (void *)(uintptr_t)dkey->dttk_value,
1315 				    dkey->dttk_size))
1316 					goto next;
1317 			} else {
1318 				if (dkey->dttk_value != key[i].dttk_value)
1319 					goto next;
1320 			}
1321 		}
1322 
1323 		if (op != DTRACE_DYNVAR_DEALLOC)
1324 			return (dvar);
1325 
1326 		ASSERT(dvar->dtdv_next == NULL ||
1327 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1328 
1329 		if (prev != NULL) {
1330 			ASSERT(hash[bucket].dtdh_chain != dvar);
1331 			ASSERT(start != dvar);
1332 			ASSERT(prev->dtdv_next == dvar);
1333 			prev->dtdv_next = dvar->dtdv_next;
1334 		} else {
1335 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1336 			    start, dvar->dtdv_next) != start) {
1337 				/*
1338 				 * We have failed to atomically swing the
1339 				 * hash table head pointer, presumably because
1340 				 * of a conflicting allocation on another CPU.
1341 				 * We need to reread the hash chain and try
1342 				 * again.
1343 				 */
1344 				goto top;
1345 			}
1346 		}
1347 
1348 		dtrace_membar_producer();
1349 
1350 		/*
1351 		 * Now set the hash value to indicate that it's free.
1352 		 */
1353 		ASSERT(hash[bucket].dtdh_chain != dvar);
1354 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1355 
1356 		dtrace_membar_producer();
1357 
1358 		/*
1359 		 * Set the next pointer to point at the dirty list, and
1360 		 * atomically swing the dirty pointer to the newly freed dvar.
1361 		 */
1362 		do {
1363 			next = dcpu->dtdsc_dirty;
1364 			dvar->dtdv_next = next;
1365 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1366 
1367 		/*
1368 		 * Finally, unlock this hash bucket.
1369 		 */
1370 		ASSERT(hash[bucket].dtdh_lock == lock);
1371 		ASSERT(lock & 1);
1372 		hash[bucket].dtdh_lock++;
1373 
1374 		return (NULL);
1375 next:
1376 		prev = dvar;
1377 		continue;
1378 	}
1379 
1380 	if (dvar == NULL) {
1381 		/*
1382 		 * If dvar is NULL, it is because we went off the rails:
1383 		 * one of the elements that we traversed in the hash chain
1384 		 * was deleted while we were traversing it.  In this case,
1385 		 * we assert that we aren't doing a dealloc (deallocs lock
1386 		 * the hash bucket to prevent themselves from racing with
1387 		 * one another), and retry the hash chain traversal.
1388 		 */
1389 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1390 		goto top;
1391 	}
1392 
1393 	if (op != DTRACE_DYNVAR_ALLOC) {
1394 		/*
1395 		 * If we are not to allocate a new variable, we want to
1396 		 * return NULL now.  Before we return, check that the value
1397 		 * of the lock word hasn't changed.  If it has, we may have
1398 		 * seen an inconsistent snapshot.
1399 		 */
1400 		if (op == DTRACE_DYNVAR_NOALLOC) {
1401 			if (hash[bucket].dtdh_lock != lock)
1402 				goto top;
1403 		} else {
1404 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1405 			ASSERT(hash[bucket].dtdh_lock == lock);
1406 			ASSERT(lock & 1);
1407 			hash[bucket].dtdh_lock++;
1408 		}
1409 
1410 		return (NULL);
1411 	}
1412 
1413 	/*
1414 	 * We need to allocate a new dynamic variable.  The size we need is the
1415 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1416 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1417 	 * the size of any referred-to data (dsize).  We then round the final
1418 	 * size up to the chunksize for allocation.
1419 	 */
1420 	for (ksize = 0, i = 0; i < nkeys; i++)
1421 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1422 
1423 	/*
1424 	 * This should be pretty much impossible, but could happen if, say,
1425 	 * strange DIF specified the tuple.  Ideally, this should be an
1426 	 * assertion and not an error condition -- but that requires that the
1427 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1428 	 * bullet-proof.  (That is, it must not be able to be fooled by
1429 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1430 	 * solving this would presumably not amount to solving the Halting
1431 	 * Problem -- but it still seems awfully hard.
1432 	 */
1433 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1434 	    ksize + dsize > chunksize) {
1435 		dcpu->dtdsc_drops++;
1436 		return (NULL);
1437 	}
1438 
1439 	nstate = DTRACE_DSTATE_EMPTY;
1440 
1441 	do {
1442 retry:
1443 		free = dcpu->dtdsc_free;
1444 
1445 		if (free == NULL) {
1446 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1447 			void *rval;
1448 
1449 			if (clean == NULL) {
1450 				/*
1451 				 * We're out of dynamic variable space on
1452 				 * this CPU.  Unless we have tried all CPUs,
1453 				 * we'll try to allocate from a different
1454 				 * CPU.
1455 				 */
1456 				switch (dstate->dtds_state) {
1457 				case DTRACE_DSTATE_CLEAN: {
1458 					void *sp = &dstate->dtds_state;
1459 
1460 					if (++cpu >= NCPU)
1461 						cpu = 0;
1462 
1463 					if (dcpu->dtdsc_dirty != NULL &&
1464 					    nstate == DTRACE_DSTATE_EMPTY)
1465 						nstate = DTRACE_DSTATE_DIRTY;
1466 
1467 					if (dcpu->dtdsc_rinsing != NULL)
1468 						nstate = DTRACE_DSTATE_RINSING;
1469 
1470 					dcpu = &dstate->dtds_percpu[cpu];
1471 
1472 					if (cpu != me)
1473 						goto retry;
1474 
1475 					(void) dtrace_cas32(sp,
1476 					    DTRACE_DSTATE_CLEAN, nstate);
1477 
1478 					/*
1479 					 * To increment the correct bean
1480 					 * counter, take another lap.
1481 					 */
1482 					goto retry;
1483 				}
1484 
1485 				case DTRACE_DSTATE_DIRTY:
1486 					dcpu->dtdsc_dirty_drops++;
1487 					break;
1488 
1489 				case DTRACE_DSTATE_RINSING:
1490 					dcpu->dtdsc_rinsing_drops++;
1491 					break;
1492 
1493 				case DTRACE_DSTATE_EMPTY:
1494 					dcpu->dtdsc_drops++;
1495 					break;
1496 				}
1497 
1498 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1499 				return (NULL);
1500 			}
1501 
1502 			/*
1503 			 * The clean list appears to be non-empty.  We want to
1504 			 * move the clean list to the free list; we start by
1505 			 * moving the clean pointer aside.
1506 			 */
1507 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1508 			    clean, NULL) != clean) {
1509 				/*
1510 				 * We are in one of two situations:
1511 				 *
1512 				 *  (a)	The clean list was switched to the
1513 				 *	free list by another CPU.
1514 				 *
1515 				 *  (b)	The clean list was added to by the
1516 				 *	cleansing cyclic.
1517 				 *
1518 				 * In either of these situations, we can
1519 				 * just reattempt the free list allocation.
1520 				 */
1521 				goto retry;
1522 			}
1523 
1524 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1525 
1526 			/*
1527 			 * Now we'll move the clean list to the free list.
1528 			 * It's impossible for this to fail:  the only way
1529 			 * the free list can be updated is through this
1530 			 * code path, and only one CPU can own the clean list.
1531 			 * Thus, it would only be possible for this to fail if
1532 			 * this code were racing with dtrace_dynvar_clean().
1533 			 * (That is, if dtrace_dynvar_clean() updated the clean
1534 			 * list, and we ended up racing to update the free
1535 			 * list.)  This race is prevented by the dtrace_sync()
1536 			 * in dtrace_dynvar_clean() -- which flushes the
1537 			 * owners of the clean lists out before resetting
1538 			 * the clean lists.
1539 			 */
1540 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1541 			ASSERT(rval == NULL);
1542 			goto retry;
1543 		}
1544 
1545 		dvar = free;
1546 		new_free = dvar->dtdv_next;
1547 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1548 
1549 	/*
1550 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1551 	 * tuple array and copy any referenced key data into the data space
1552 	 * following the tuple array.  As we do this, we relocate dttk_value
1553 	 * in the final tuple to point to the key data address in the chunk.
1554 	 */
1555 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1556 	dvar->dtdv_data = (void *)(kdata + ksize);
1557 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1558 
1559 	for (i = 0; i < nkeys; i++) {
1560 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1561 		size_t kesize = key[i].dttk_size;
1562 
1563 		if (kesize != 0) {
1564 			dtrace_bcopy(
1565 			    (const void *)(uintptr_t)key[i].dttk_value,
1566 			    (void *)kdata, kesize);
1567 			dkey->dttk_value = kdata;
1568 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1569 		} else {
1570 			dkey->dttk_value = key[i].dttk_value;
1571 		}
1572 
1573 		dkey->dttk_size = kesize;
1574 	}
1575 
1576 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1577 	dvar->dtdv_hashval = hashval;
1578 	dvar->dtdv_next = start;
1579 
1580 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1581 		return (dvar);
1582 
1583 	/*
1584 	 * The cas has failed.  Either another CPU is adding an element to
1585 	 * this hash chain, or another CPU is deleting an element from this
1586 	 * hash chain.  The simplest way to deal with both of these cases
1587 	 * (though not necessarily the most efficient) is to free our
1588 	 * allocated block and tail-call ourselves.  Note that the free is
1589 	 * to the dirty list and _not_ to the free list.  This is to prevent
1590 	 * races with allocators, above.
1591 	 */
1592 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1593 
1594 	dtrace_membar_producer();
1595 
1596 	do {
1597 		free = dcpu->dtdsc_dirty;
1598 		dvar->dtdv_next = free;
1599 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1600 
1601 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1602 }
1603 
1604 /*ARGSUSED*/
1605 static void
1606 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1607 {
1608 	if (nval < *oval)
1609 		*oval = nval;
1610 }
1611 
1612 /*ARGSUSED*/
1613 static void
1614 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1615 {
1616 	if (nval > *oval)
1617 		*oval = nval;
1618 }
1619 
1620 static void
1621 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1622 {
1623 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1624 	int64_t val = (int64_t)nval;
1625 
1626 	if (val < 0) {
1627 		for (i = 0; i < zero; i++) {
1628 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1629 				quanta[i] += incr;
1630 				return;
1631 			}
1632 		}
1633 	} else {
1634 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1635 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1636 				quanta[i - 1] += incr;
1637 				return;
1638 			}
1639 		}
1640 
1641 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1642 		return;
1643 	}
1644 
1645 	ASSERT(0);
1646 }
1647 
1648 static void
1649 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1650 {
1651 	uint64_t arg = *lquanta++;
1652 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1653 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1654 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1655 	int32_t val = (int32_t)nval, level;
1656 
1657 	ASSERT(step != 0);
1658 	ASSERT(levels != 0);
1659 
1660 	if (val < base) {
1661 		/*
1662 		 * This is an underflow.
1663 		 */
1664 		lquanta[0] += incr;
1665 		return;
1666 	}
1667 
1668 	level = (val - base) / step;
1669 
1670 	if (level < levels) {
1671 		lquanta[level + 1] += incr;
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * This is an overflow.
1677 	 */
1678 	lquanta[levels + 1] += incr;
1679 }
1680 
1681 /*ARGSUSED*/
1682 static void
1683 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1684 {
1685 	data[0]++;
1686 	data[1] += nval;
1687 }
1688 
1689 /*ARGSUSED*/
1690 static void
1691 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1692 {
1693 	*oval = *oval + 1;
1694 }
1695 
1696 /*ARGSUSED*/
1697 static void
1698 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1699 {
1700 	*oval += nval;
1701 }
1702 
1703 /*
1704  * Aggregate given the tuple in the principal data buffer, and the aggregating
1705  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1706  * buffer is specified as the buf parameter.  This routine does not return
1707  * failure; if there is no space in the aggregation buffer, the data will be
1708  * dropped, and a corresponding counter incremented.
1709  */
1710 static void
1711 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1712     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1713 {
1714 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1715 	uint32_t i, ndx, size, fsize;
1716 	uint32_t align = sizeof (uint64_t) - 1;
1717 	dtrace_aggbuffer_t *agb;
1718 	dtrace_aggkey_t *key;
1719 	uint32_t hashval = 0, limit, isstr;
1720 	caddr_t tomax, data, kdata;
1721 	dtrace_actkind_t action;
1722 	dtrace_action_t *act;
1723 	uintptr_t offs;
1724 
1725 	if (buf == NULL)
1726 		return;
1727 
1728 	if (!agg->dtag_hasarg) {
1729 		/*
1730 		 * Currently, only quantize() and lquantize() take additional
1731 		 * arguments, and they have the same semantics:  an increment
1732 		 * value that defaults to 1 when not present.  If additional
1733 		 * aggregating actions take arguments, the setting of the
1734 		 * default argument value will presumably have to become more
1735 		 * sophisticated...
1736 		 */
1737 		arg = 1;
1738 	}
1739 
1740 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1741 	size = rec->dtrd_offset - agg->dtag_base;
1742 	fsize = size + rec->dtrd_size;
1743 
1744 	ASSERT(dbuf->dtb_tomax != NULL);
1745 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1746 
1747 	if ((tomax = buf->dtb_tomax) == NULL) {
1748 		dtrace_buffer_drop(buf);
1749 		return;
1750 	}
1751 
1752 	/*
1753 	 * The metastructure is always at the bottom of the buffer.
1754 	 */
1755 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1756 	    sizeof (dtrace_aggbuffer_t));
1757 
1758 	if (buf->dtb_offset == 0) {
1759 		/*
1760 		 * We just kludge up approximately 1/8th of the size to be
1761 		 * buckets.  If this guess ends up being routinely
1762 		 * off-the-mark, we may need to dynamically readjust this
1763 		 * based on past performance.
1764 		 */
1765 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1766 
1767 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1768 		    (uintptr_t)tomax || hashsize == 0) {
1769 			/*
1770 			 * We've been given a ludicrously small buffer;
1771 			 * increment our drop count and leave.
1772 			 */
1773 			dtrace_buffer_drop(buf);
1774 			return;
1775 		}
1776 
1777 		/*
1778 		 * And now, a pathetic attempt to try to get a an odd (or
1779 		 * perchance, a prime) hash size for better hash distribution.
1780 		 */
1781 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1782 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1783 
1784 		agb->dtagb_hashsize = hashsize;
1785 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1786 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1787 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1788 
1789 		for (i = 0; i < agb->dtagb_hashsize; i++)
1790 			agb->dtagb_hash[i] = NULL;
1791 	}
1792 
1793 	ASSERT(agg->dtag_first != NULL);
1794 	ASSERT(agg->dtag_first->dta_intuple);
1795 
1796 	/*
1797 	 * Calculate the hash value based on the key.  Note that we _don't_
1798 	 * include the aggid in the hashing (but we will store it as part of
1799 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1800 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1801 	 * gets good distribution in practice.  The efficacy of the hashing
1802 	 * algorithm (and a comparison with other algorithms) may be found by
1803 	 * running the ::dtrace_aggstat MDB dcmd.
1804 	 */
1805 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1806 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1807 		limit = i + act->dta_rec.dtrd_size;
1808 		ASSERT(limit <= size);
1809 		isstr = DTRACEACT_ISSTRING(act);
1810 
1811 		for (; i < limit; i++) {
1812 			hashval += data[i];
1813 			hashval += (hashval << 10);
1814 			hashval ^= (hashval >> 6);
1815 
1816 			if (isstr && data[i] == '\0')
1817 				break;
1818 		}
1819 	}
1820 
1821 	hashval += (hashval << 3);
1822 	hashval ^= (hashval >> 11);
1823 	hashval += (hashval << 15);
1824 
1825 	/*
1826 	 * Yes, the divide here is expensive -- but it's generally the least
1827 	 * of the performance issues given the amount of data that we iterate
1828 	 * over to compute hash values, compare data, etc.
1829 	 */
1830 	ndx = hashval % agb->dtagb_hashsize;
1831 
1832 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1833 		ASSERT((caddr_t)key >= tomax);
1834 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1835 
1836 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1837 			continue;
1838 
1839 		kdata = key->dtak_data;
1840 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1841 
1842 		for (act = agg->dtag_first; act->dta_intuple;
1843 		    act = act->dta_next) {
1844 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1845 			limit = i + act->dta_rec.dtrd_size;
1846 			ASSERT(limit <= size);
1847 			isstr = DTRACEACT_ISSTRING(act);
1848 
1849 			for (; i < limit; i++) {
1850 				if (kdata[i] != data[i])
1851 					goto next;
1852 
1853 				if (isstr && data[i] == '\0')
1854 					break;
1855 			}
1856 		}
1857 
1858 		if (action != key->dtak_action) {
1859 			/*
1860 			 * We are aggregating on the same value in the same
1861 			 * aggregation with two different aggregating actions.
1862 			 * (This should have been picked up in the compiler,
1863 			 * so we may be dealing with errant or devious DIF.)
1864 			 * This is an error condition; we indicate as much,
1865 			 * and return.
1866 			 */
1867 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1868 			return;
1869 		}
1870 
1871 		/*
1872 		 * This is a hit:  we need to apply the aggregator to
1873 		 * the value at this key.
1874 		 */
1875 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1876 		return;
1877 next:
1878 		continue;
1879 	}
1880 
1881 	/*
1882 	 * We didn't find it.  We need to allocate some zero-filled space,
1883 	 * link it into the hash table appropriately, and apply the aggregator
1884 	 * to the (zero-filled) value.
1885 	 */
1886 	offs = buf->dtb_offset;
1887 	while (offs & (align - 1))
1888 		offs += sizeof (uint32_t);
1889 
1890 	/*
1891 	 * If we don't have enough room to both allocate a new key _and_
1892 	 * its associated data, increment the drop count and return.
1893 	 */
1894 	if ((uintptr_t)tomax + offs + fsize >
1895 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1896 		dtrace_buffer_drop(buf);
1897 		return;
1898 	}
1899 
1900 	/*CONSTCOND*/
1901 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1902 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1903 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1904 
1905 	key->dtak_data = kdata = tomax + offs;
1906 	buf->dtb_offset = offs + fsize;
1907 
1908 	/*
1909 	 * Now copy the data across.
1910 	 */
1911 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1912 
1913 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1914 		kdata[i] = data[i];
1915 
1916 	/*
1917 	 * Because strings are not zeroed out by default, we need to iterate
1918 	 * looking for actions that store strings, and we need to explicitly
1919 	 * pad these strings out with zeroes.
1920 	 */
1921 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1922 		int nul;
1923 
1924 		if (!DTRACEACT_ISSTRING(act))
1925 			continue;
1926 
1927 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1928 		limit = i + act->dta_rec.dtrd_size;
1929 		ASSERT(limit <= size);
1930 
1931 		for (nul = 0; i < limit; i++) {
1932 			if (nul) {
1933 				kdata[i] = '\0';
1934 				continue;
1935 			}
1936 
1937 			if (data[i] != '\0')
1938 				continue;
1939 
1940 			nul = 1;
1941 		}
1942 	}
1943 
1944 	for (i = size; i < fsize; i++)
1945 		kdata[i] = 0;
1946 
1947 	key->dtak_hashval = hashval;
1948 	key->dtak_size = size;
1949 	key->dtak_action = action;
1950 	key->dtak_next = agb->dtagb_hash[ndx];
1951 	agb->dtagb_hash[ndx] = key;
1952 
1953 	/*
1954 	 * Finally, apply the aggregator.
1955 	 */
1956 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1957 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1958 }
1959 
1960 /*
1961  * Given consumer state, this routine finds a speculation in the INACTIVE
1962  * state and transitions it into the ACTIVE state.  If there is no speculation
1963  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1964  * incremented -- it is up to the caller to take appropriate action.
1965  */
1966 static int
1967 dtrace_speculation(dtrace_state_t *state)
1968 {
1969 	int i = 0;
1970 	dtrace_speculation_state_t current;
1971 	uint32_t *stat = &state->dts_speculations_unavail, count;
1972 
1973 	while (i < state->dts_nspeculations) {
1974 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1975 
1976 		current = spec->dtsp_state;
1977 
1978 		if (current != DTRACESPEC_INACTIVE) {
1979 			if (current == DTRACESPEC_COMMITTINGMANY ||
1980 			    current == DTRACESPEC_COMMITTING ||
1981 			    current == DTRACESPEC_DISCARDING)
1982 				stat = &state->dts_speculations_busy;
1983 			i++;
1984 			continue;
1985 		}
1986 
1987 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1988 		    current, DTRACESPEC_ACTIVE) == current)
1989 			return (i + 1);
1990 	}
1991 
1992 	/*
1993 	 * We couldn't find a speculation.  If we found as much as a single
1994 	 * busy speculation buffer, we'll attribute this failure as "busy"
1995 	 * instead of "unavail".
1996 	 */
1997 	do {
1998 		count = *stat;
1999 	} while (dtrace_cas32(stat, count, count + 1) != count);
2000 
2001 	return (0);
2002 }
2003 
2004 /*
2005  * This routine commits an active speculation.  If the specified speculation
2006  * is not in a valid state to perform a commit(), this routine will silently do
2007  * nothing.  The state of the specified speculation is transitioned according
2008  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2009  */
2010 static void
2011 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2012     dtrace_specid_t which)
2013 {
2014 	dtrace_speculation_t *spec;
2015 	dtrace_buffer_t *src, *dest;
2016 	uintptr_t daddr, saddr, dlimit;
2017 	dtrace_speculation_state_t current, new;
2018 	intptr_t offs;
2019 
2020 	if (which == 0)
2021 		return;
2022 
2023 	if (which > state->dts_nspeculations) {
2024 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2025 		return;
2026 	}
2027 
2028 	spec = &state->dts_speculations[which - 1];
2029 	src = &spec->dtsp_buffer[cpu];
2030 	dest = &state->dts_buffer[cpu];
2031 
2032 	do {
2033 		current = spec->dtsp_state;
2034 
2035 		if (current == DTRACESPEC_COMMITTINGMANY)
2036 			break;
2037 
2038 		switch (current) {
2039 		case DTRACESPEC_INACTIVE:
2040 		case DTRACESPEC_DISCARDING:
2041 			return;
2042 
2043 		case DTRACESPEC_COMMITTING:
2044 			/*
2045 			 * This is only possible if we are (a) commit()'ing
2046 			 * without having done a prior speculate() on this CPU
2047 			 * and (b) racing with another commit() on a different
2048 			 * CPU.  There's nothing to do -- we just assert that
2049 			 * our offset is 0.
2050 			 */
2051 			ASSERT(src->dtb_offset == 0);
2052 			return;
2053 
2054 		case DTRACESPEC_ACTIVE:
2055 			new = DTRACESPEC_COMMITTING;
2056 			break;
2057 
2058 		case DTRACESPEC_ACTIVEONE:
2059 			/*
2060 			 * This speculation is active on one CPU.  If our
2061 			 * buffer offset is non-zero, we know that the one CPU
2062 			 * must be us.  Otherwise, we are committing on a
2063 			 * different CPU from the speculate(), and we must
2064 			 * rely on being asynchronously cleaned.
2065 			 */
2066 			if (src->dtb_offset != 0) {
2067 				new = DTRACESPEC_COMMITTING;
2068 				break;
2069 			}
2070 			/*FALLTHROUGH*/
2071 
2072 		case DTRACESPEC_ACTIVEMANY:
2073 			new = DTRACESPEC_COMMITTINGMANY;
2074 			break;
2075 
2076 		default:
2077 			ASSERT(0);
2078 		}
2079 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2080 	    current, new) != current);
2081 
2082 	/*
2083 	 * We have set the state to indicate that we are committing this
2084 	 * speculation.  Now reserve the necessary space in the destination
2085 	 * buffer.
2086 	 */
2087 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2088 	    sizeof (uint64_t), state, NULL)) < 0) {
2089 		dtrace_buffer_drop(dest);
2090 		goto out;
2091 	}
2092 
2093 	/*
2094 	 * We have the space; copy the buffer across.  (Note that this is a
2095 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2096 	 * a serious performance issue, a high-performance DTrace-specific
2097 	 * bcopy() should obviously be invented.)
2098 	 */
2099 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2100 	dlimit = daddr + src->dtb_offset;
2101 	saddr = (uintptr_t)src->dtb_tomax;
2102 
2103 	/*
2104 	 * First, the aligned portion.
2105 	 */
2106 	while (dlimit - daddr >= sizeof (uint64_t)) {
2107 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2108 
2109 		daddr += sizeof (uint64_t);
2110 		saddr += sizeof (uint64_t);
2111 	}
2112 
2113 	/*
2114 	 * Now any left-over bit...
2115 	 */
2116 	while (dlimit - daddr)
2117 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2118 
2119 	/*
2120 	 * Finally, commit the reserved space in the destination buffer.
2121 	 */
2122 	dest->dtb_offset = offs + src->dtb_offset;
2123 
2124 out:
2125 	/*
2126 	 * If we're lucky enough to be the only active CPU on this speculation
2127 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2128 	 */
2129 	if (current == DTRACESPEC_ACTIVE ||
2130 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2131 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2132 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2133 
2134 		ASSERT(rval == DTRACESPEC_COMMITTING);
2135 	}
2136 
2137 	src->dtb_offset = 0;
2138 	src->dtb_xamot_drops += src->dtb_drops;
2139 	src->dtb_drops = 0;
2140 }
2141 
2142 /*
2143  * This routine discards an active speculation.  If the specified speculation
2144  * is not in a valid state to perform a discard(), this routine will silently
2145  * do nothing.  The state of the specified speculation is transitioned
2146  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2147  */
2148 static void
2149 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2150     dtrace_specid_t which)
2151 {
2152 	dtrace_speculation_t *spec;
2153 	dtrace_speculation_state_t current, new;
2154 	dtrace_buffer_t *buf;
2155 
2156 	if (which == 0)
2157 		return;
2158 
2159 	if (which > state->dts_nspeculations) {
2160 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2161 		return;
2162 	}
2163 
2164 	spec = &state->dts_speculations[which - 1];
2165 	buf = &spec->dtsp_buffer[cpu];
2166 
2167 	do {
2168 		current = spec->dtsp_state;
2169 
2170 		switch (current) {
2171 		case DTRACESPEC_INACTIVE:
2172 		case DTRACESPEC_COMMITTINGMANY:
2173 		case DTRACESPEC_COMMITTING:
2174 		case DTRACESPEC_DISCARDING:
2175 			return;
2176 
2177 		case DTRACESPEC_ACTIVE:
2178 		case DTRACESPEC_ACTIVEMANY:
2179 			new = DTRACESPEC_DISCARDING;
2180 			break;
2181 
2182 		case DTRACESPEC_ACTIVEONE:
2183 			if (buf->dtb_offset != 0) {
2184 				new = DTRACESPEC_INACTIVE;
2185 			} else {
2186 				new = DTRACESPEC_DISCARDING;
2187 			}
2188 			break;
2189 
2190 		default:
2191 			ASSERT(0);
2192 		}
2193 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2194 	    current, new) != current);
2195 
2196 	buf->dtb_offset = 0;
2197 	buf->dtb_drops = 0;
2198 }
2199 
2200 /*
2201  * Note:  not called from probe context.  This function is called
2202  * asynchronously from cross call context to clean any speculations that are
2203  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2204  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2205  * speculation.
2206  */
2207 static void
2208 dtrace_speculation_clean_here(dtrace_state_t *state)
2209 {
2210 	dtrace_icookie_t cookie;
2211 	processorid_t cpu = CPU->cpu_id;
2212 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2213 	dtrace_specid_t i;
2214 
2215 	cookie = dtrace_interrupt_disable();
2216 
2217 	if (dest->dtb_tomax == NULL) {
2218 		dtrace_interrupt_enable(cookie);
2219 		return;
2220 	}
2221 
2222 	for (i = 0; i < state->dts_nspeculations; i++) {
2223 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2224 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2225 
2226 		if (src->dtb_tomax == NULL)
2227 			continue;
2228 
2229 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2230 			src->dtb_offset = 0;
2231 			continue;
2232 		}
2233 
2234 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2235 			continue;
2236 
2237 		if (src->dtb_offset == 0)
2238 			continue;
2239 
2240 		dtrace_speculation_commit(state, cpu, i + 1);
2241 	}
2242 
2243 	dtrace_interrupt_enable(cookie);
2244 }
2245 
2246 /*
2247  * Note:  not called from probe context.  This function is called
2248  * asynchronously (and at a regular interval) to clean any speculations that
2249  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2250  * is work to be done, it cross calls all CPUs to perform that work;
2251  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2252  * INACTIVE state until they have been cleaned by all CPUs.
2253  */
2254 static void
2255 dtrace_speculation_clean(dtrace_state_t *state)
2256 {
2257 	int work = 0, rv;
2258 	dtrace_specid_t i;
2259 
2260 	for (i = 0; i < state->dts_nspeculations; i++) {
2261 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2262 
2263 		ASSERT(!spec->dtsp_cleaning);
2264 
2265 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2266 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2267 			continue;
2268 
2269 		work++;
2270 		spec->dtsp_cleaning = 1;
2271 	}
2272 
2273 	if (!work)
2274 		return;
2275 
2276 	dtrace_xcall(DTRACE_CPUALL,
2277 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2278 
2279 	/*
2280 	 * We now know that all CPUs have committed or discarded their
2281 	 * speculation buffers, as appropriate.  We can now set the state
2282 	 * to inactive.
2283 	 */
2284 	for (i = 0; i < state->dts_nspeculations; i++) {
2285 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2286 		dtrace_speculation_state_t current, new;
2287 
2288 		if (!spec->dtsp_cleaning)
2289 			continue;
2290 
2291 		current = spec->dtsp_state;
2292 		ASSERT(current == DTRACESPEC_DISCARDING ||
2293 		    current == DTRACESPEC_COMMITTINGMANY);
2294 
2295 		new = DTRACESPEC_INACTIVE;
2296 
2297 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2298 		ASSERT(rv == current);
2299 		spec->dtsp_cleaning = 0;
2300 	}
2301 }
2302 
2303 /*
2304  * Called as part of a speculate() to get the speculative buffer associated
2305  * with a given speculation.  Returns NULL if the specified speculation is not
2306  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2307  * the active CPU is not the specified CPU -- the speculation will be
2308  * atomically transitioned into the ACTIVEMANY state.
2309  */
2310 static dtrace_buffer_t *
2311 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2312     dtrace_specid_t which)
2313 {
2314 	dtrace_speculation_t *spec;
2315 	dtrace_speculation_state_t current, new;
2316 	dtrace_buffer_t *buf;
2317 
2318 	if (which == 0)
2319 		return (NULL);
2320 
2321 	if (which > state->dts_nspeculations) {
2322 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2323 		return (NULL);
2324 	}
2325 
2326 	spec = &state->dts_speculations[which - 1];
2327 	buf = &spec->dtsp_buffer[cpuid];
2328 
2329 	do {
2330 		current = spec->dtsp_state;
2331 
2332 		switch (current) {
2333 		case DTRACESPEC_INACTIVE:
2334 		case DTRACESPEC_COMMITTINGMANY:
2335 		case DTRACESPEC_DISCARDING:
2336 			return (NULL);
2337 
2338 		case DTRACESPEC_COMMITTING:
2339 			ASSERT(buf->dtb_offset == 0);
2340 			return (NULL);
2341 
2342 		case DTRACESPEC_ACTIVEONE:
2343 			/*
2344 			 * This speculation is currently active on one CPU.
2345 			 * Check the offset in the buffer; if it's non-zero,
2346 			 * that CPU must be us (and we leave the state alone).
2347 			 * If it's zero, assume that we're starting on a new
2348 			 * CPU -- and change the state to indicate that the
2349 			 * speculation is active on more than one CPU.
2350 			 */
2351 			if (buf->dtb_offset != 0)
2352 				return (buf);
2353 
2354 			new = DTRACESPEC_ACTIVEMANY;
2355 			break;
2356 
2357 		case DTRACESPEC_ACTIVEMANY:
2358 			return (buf);
2359 
2360 		case DTRACESPEC_ACTIVE:
2361 			new = DTRACESPEC_ACTIVEONE;
2362 			break;
2363 
2364 		default:
2365 			ASSERT(0);
2366 		}
2367 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2368 	    current, new) != current);
2369 
2370 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2371 	return (buf);
2372 }
2373 
2374 /*
2375  * Return a string.  In the event that the user lacks the privilege to access
2376  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2377  * don't fail access checking.
2378  *
2379  * dtrace_dif_variable() uses this routine as a helper for various
2380  * builtin values such as 'execname' and 'probefunc.'
2381  */
2382 uintptr_t
2383 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2384     dtrace_mstate_t *mstate)
2385 {
2386 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2387 	uintptr_t ret;
2388 	size_t strsz;
2389 
2390 	/*
2391 	 * The easy case: this probe is allowed to read all of memory, so
2392 	 * we can just return this as a vanilla pointer.
2393 	 */
2394 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2395 		return (addr);
2396 
2397 	/*
2398 	 * This is the tougher case: we copy the string in question from
2399 	 * kernel memory into scratch memory and return it that way: this
2400 	 * ensures that we won't trip up when access checking tests the
2401 	 * BYREF return value.
2402 	 */
2403 	strsz = dtrace_strlen((char *)addr, size) + 1;
2404 
2405 	if (mstate->dtms_scratch_ptr + strsz >
2406 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2407 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2408 		return (NULL);
2409 	}
2410 
2411 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2412 	    strsz);
2413 	ret = mstate->dtms_scratch_ptr;
2414 	mstate->dtms_scratch_ptr += strsz;
2415 	return (ret);
2416 }
2417 
2418 /*
2419  * This function implements the DIF emulator's variable lookups.  The emulator
2420  * passes a reserved variable identifier and optional built-in array index.
2421  */
2422 static uint64_t
2423 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2424     uint64_t ndx)
2425 {
2426 	/*
2427 	 * If we're accessing one of the uncached arguments, we'll turn this
2428 	 * into a reference in the args array.
2429 	 */
2430 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2431 		ndx = v - DIF_VAR_ARG0;
2432 		v = DIF_VAR_ARGS;
2433 	}
2434 
2435 	switch (v) {
2436 	case DIF_VAR_ARGS:
2437 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2438 		if (ndx >= sizeof (mstate->dtms_arg) /
2439 		    sizeof (mstate->dtms_arg[0])) {
2440 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2441 			dtrace_provider_t *pv;
2442 			uint64_t val;
2443 
2444 			pv = mstate->dtms_probe->dtpr_provider;
2445 			if (pv->dtpv_pops.dtps_getargval != NULL)
2446 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2447 				    mstate->dtms_probe->dtpr_id,
2448 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2449 			else
2450 				val = dtrace_getarg(ndx, aframes);
2451 
2452 			/*
2453 			 * This is regrettably required to keep the compiler
2454 			 * from tail-optimizing the call to dtrace_getarg().
2455 			 * The condition always evaluates to true, but the
2456 			 * compiler has no way of figuring that out a priori.
2457 			 * (None of this would be necessary if the compiler
2458 			 * could be relied upon to _always_ tail-optimize
2459 			 * the call to dtrace_getarg() -- but it can't.)
2460 			 */
2461 			if (mstate->dtms_probe != NULL)
2462 				return (val);
2463 
2464 			ASSERT(0);
2465 		}
2466 
2467 		return (mstate->dtms_arg[ndx]);
2468 
2469 	case DIF_VAR_UREGS: {
2470 		klwp_t *lwp;
2471 
2472 		if (!dtrace_priv_proc(state))
2473 			return (0);
2474 
2475 		if ((lwp = curthread->t_lwp) == NULL) {
2476 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2477 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2478 			return (0);
2479 		}
2480 
2481 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2482 	}
2483 
2484 	case DIF_VAR_CURTHREAD:
2485 		if (!dtrace_priv_kernel(state))
2486 			return (0);
2487 		return ((uint64_t)(uintptr_t)curthread);
2488 
2489 	case DIF_VAR_TIMESTAMP:
2490 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2491 			mstate->dtms_timestamp = dtrace_gethrtime();
2492 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2493 		}
2494 		return (mstate->dtms_timestamp);
2495 
2496 	case DIF_VAR_VTIMESTAMP:
2497 		ASSERT(dtrace_vtime_references != 0);
2498 		return (curthread->t_dtrace_vtime);
2499 
2500 	case DIF_VAR_WALLTIMESTAMP:
2501 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2502 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2503 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2504 		}
2505 		return (mstate->dtms_walltimestamp);
2506 
2507 	case DIF_VAR_IPL:
2508 		if (!dtrace_priv_kernel(state))
2509 			return (0);
2510 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2511 			mstate->dtms_ipl = dtrace_getipl();
2512 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2513 		}
2514 		return (mstate->dtms_ipl);
2515 
2516 	case DIF_VAR_EPID:
2517 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2518 		return (mstate->dtms_epid);
2519 
2520 	case DIF_VAR_ID:
2521 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2522 		return (mstate->dtms_probe->dtpr_id);
2523 
2524 	case DIF_VAR_STACKDEPTH:
2525 		if (!dtrace_priv_kernel(state))
2526 			return (0);
2527 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2528 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2529 
2530 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2531 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2532 		}
2533 		return (mstate->dtms_stackdepth);
2534 
2535 	case DIF_VAR_USTACKDEPTH:
2536 		if (!dtrace_priv_proc(state))
2537 			return (0);
2538 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2539 			/*
2540 			 * See comment in DIF_VAR_PID.
2541 			 */
2542 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2543 			    CPU_ON_INTR(CPU)) {
2544 				mstate->dtms_ustackdepth = 0;
2545 			} else {
2546 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2547 				mstate->dtms_ustackdepth =
2548 				    dtrace_getustackdepth();
2549 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2550 			}
2551 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2552 		}
2553 		return (mstate->dtms_ustackdepth);
2554 
2555 	case DIF_VAR_CALLER:
2556 		if (!dtrace_priv_kernel(state))
2557 			return (0);
2558 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2559 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2560 
2561 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2562 				/*
2563 				 * If this is an unanchored probe, we are
2564 				 * required to go through the slow path:
2565 				 * dtrace_caller() only guarantees correct
2566 				 * results for anchored probes.
2567 				 */
2568 				pc_t caller[2];
2569 
2570 				dtrace_getpcstack(caller, 2, aframes,
2571 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2572 				mstate->dtms_caller = caller[1];
2573 			} else if ((mstate->dtms_caller =
2574 			    dtrace_caller(aframes)) == -1) {
2575 				/*
2576 				 * We have failed to do this the quick way;
2577 				 * we must resort to the slower approach of
2578 				 * calling dtrace_getpcstack().
2579 				 */
2580 				pc_t caller;
2581 
2582 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2583 				mstate->dtms_caller = caller;
2584 			}
2585 
2586 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2587 		}
2588 		return (mstate->dtms_caller);
2589 
2590 	case DIF_VAR_UCALLER:
2591 		if (!dtrace_priv_proc(state))
2592 			return (0);
2593 
2594 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2595 			uint64_t ustack[3];
2596 
2597 			/*
2598 			 * dtrace_getupcstack() fills in the first uint64_t
2599 			 * with the current PID.  The second uint64_t will
2600 			 * be the program counter at user-level.  The third
2601 			 * uint64_t will contain the caller, which is what
2602 			 * we're after.
2603 			 */
2604 			ustack[2] = NULL;
2605 			dtrace_getupcstack(ustack, 3);
2606 			mstate->dtms_ucaller = ustack[2];
2607 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2608 		}
2609 
2610 		return (mstate->dtms_ucaller);
2611 
2612 	case DIF_VAR_PROBEPROV:
2613 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2614 		return (dtrace_dif_varstr(
2615 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2616 		    state, mstate));
2617 
2618 	case DIF_VAR_PROBEMOD:
2619 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2620 		return (dtrace_dif_varstr(
2621 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2622 		    state, mstate));
2623 
2624 	case DIF_VAR_PROBEFUNC:
2625 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2626 		return (dtrace_dif_varstr(
2627 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2628 		    state, mstate));
2629 
2630 	case DIF_VAR_PROBENAME:
2631 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2632 		return (dtrace_dif_varstr(
2633 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2634 		    state, mstate));
2635 
2636 	case DIF_VAR_PID:
2637 		if (!dtrace_priv_proc(state))
2638 			return (0);
2639 
2640 		/*
2641 		 * Note that we are assuming that an unanchored probe is
2642 		 * always due to a high-level interrupt.  (And we're assuming
2643 		 * that there is only a single high level interrupt.)
2644 		 */
2645 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2646 			return (pid0.pid_id);
2647 
2648 		/*
2649 		 * It is always safe to dereference one's own t_procp pointer:
2650 		 * it always points to a valid, allocated proc structure.
2651 		 * Further, it is always safe to dereference the p_pidp member
2652 		 * of one's own proc structure.  (These are truisms becuase
2653 		 * threads and processes don't clean up their own state --
2654 		 * they leave that task to whomever reaps them.)
2655 		 */
2656 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2657 
2658 	case DIF_VAR_PPID:
2659 		if (!dtrace_priv_proc(state))
2660 			return (0);
2661 
2662 		/*
2663 		 * See comment in DIF_VAR_PID.
2664 		 */
2665 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2666 			return (pid0.pid_id);
2667 
2668 		/*
2669 		 * It is always safe to dereference one's own t_procp pointer:
2670 		 * it always points to a valid, allocated proc structure.
2671 		 * (This is true because threads don't clean up their own
2672 		 * state -- they leave that task to whomever reaps them.)
2673 		 */
2674 		return ((uint64_t)curthread->t_procp->p_ppid);
2675 
2676 	case DIF_VAR_TID:
2677 		/*
2678 		 * See comment in DIF_VAR_PID.
2679 		 */
2680 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2681 			return (0);
2682 
2683 		return ((uint64_t)curthread->t_tid);
2684 
2685 	case DIF_VAR_EXECNAME:
2686 		if (!dtrace_priv_proc(state))
2687 			return (0);
2688 
2689 		/*
2690 		 * See comment in DIF_VAR_PID.
2691 		 */
2692 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2693 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2694 
2695 		/*
2696 		 * It is always safe to dereference one's own t_procp pointer:
2697 		 * it always points to a valid, allocated proc structure.
2698 		 * (This is true because threads don't clean up their own
2699 		 * state -- they leave that task to whomever reaps them.)
2700 		 */
2701 		return (dtrace_dif_varstr(
2702 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2703 		    state, mstate));
2704 
2705 	case DIF_VAR_ZONENAME:
2706 		if (!dtrace_priv_proc(state))
2707 			return (0);
2708 
2709 		/*
2710 		 * See comment in DIF_VAR_PID.
2711 		 */
2712 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2713 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2714 
2715 		/*
2716 		 * It is always safe to dereference one's own t_procp pointer:
2717 		 * it always points to a valid, allocated proc structure.
2718 		 * (This is true because threads don't clean up their own
2719 		 * state -- they leave that task to whomever reaps them.)
2720 		 */
2721 		return (dtrace_dif_varstr(
2722 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2723 		    state, mstate));
2724 
2725 	case DIF_VAR_UID:
2726 		if (!dtrace_priv_proc(state))
2727 			return (0);
2728 
2729 		/*
2730 		 * See comment in DIF_VAR_PID.
2731 		 */
2732 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2733 			return ((uint64_t)p0.p_cred->cr_uid);
2734 
2735 		/*
2736 		 * It is always safe to dereference one's own t_procp pointer:
2737 		 * it always points to a valid, allocated proc structure.
2738 		 * (This is true because threads don't clean up their own
2739 		 * state -- they leave that task to whomever reaps them.)
2740 		 *
2741 		 * Additionally, it is safe to dereference one's own process
2742 		 * credential, since this is never NULL after process birth.
2743 		 */
2744 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2745 
2746 	case DIF_VAR_GID:
2747 		if (!dtrace_priv_proc(state))
2748 			return (0);
2749 
2750 		/*
2751 		 * See comment in DIF_VAR_PID.
2752 		 */
2753 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2754 			return ((uint64_t)p0.p_cred->cr_gid);
2755 
2756 		/*
2757 		 * It is always safe to dereference one's own t_procp pointer:
2758 		 * it always points to a valid, allocated proc structure.
2759 		 * (This is true because threads don't clean up their own
2760 		 * state -- they leave that task to whomever reaps them.)
2761 		 *
2762 		 * Additionally, it is safe to dereference one's own process
2763 		 * credential, since this is never NULL after process birth.
2764 		 */
2765 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2766 
2767 	case DIF_VAR_ERRNO: {
2768 		klwp_t *lwp;
2769 		if (!dtrace_priv_proc(state))
2770 			return (0);
2771 
2772 		/*
2773 		 * See comment in DIF_VAR_PID.
2774 		 */
2775 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2776 			return (0);
2777 
2778 		/*
2779 		 * It is always safe to dereference one's own t_lwp pointer in
2780 		 * the event that this pointer is non-NULL.  (This is true
2781 		 * because threads and lwps don't clean up their own state --
2782 		 * they leave that task to whomever reaps them.)
2783 		 */
2784 		if ((lwp = curthread->t_lwp) == NULL)
2785 			return (0);
2786 
2787 		return ((uint64_t)lwp->lwp_errno);
2788 	}
2789 	default:
2790 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2791 		return (0);
2792 	}
2793 }
2794 
2795 /*
2796  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2797  * Notice that we don't bother validating the proper number of arguments or
2798  * their types in the tuple stack.  This isn't needed because all argument
2799  * interpretation is safe because of our load safety -- the worst that can
2800  * happen is that a bogus program can obtain bogus results.
2801  */
2802 static void
2803 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2804     dtrace_key_t *tupregs, int nargs,
2805     dtrace_mstate_t *mstate, dtrace_state_t *state)
2806 {
2807 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2808 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2809 	dtrace_vstate_t *vstate = &state->dts_vstate;
2810 
2811 	union {
2812 		mutex_impl_t mi;
2813 		uint64_t mx;
2814 	} m;
2815 
2816 	union {
2817 		krwlock_t ri;
2818 		uintptr_t rw;
2819 	} r;
2820 
2821 	switch (subr) {
2822 	case DIF_SUBR_RAND:
2823 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2824 		break;
2825 
2826 	case DIF_SUBR_MUTEX_OWNED:
2827 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2828 		    mstate, vstate)) {
2829 			regs[rd] = NULL;
2830 			break;
2831 		}
2832 
2833 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2834 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2835 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2836 		else
2837 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2838 		break;
2839 
2840 	case DIF_SUBR_MUTEX_OWNER:
2841 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2842 		    mstate, vstate)) {
2843 			regs[rd] = NULL;
2844 			break;
2845 		}
2846 
2847 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2848 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2849 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2850 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2851 		else
2852 			regs[rd] = 0;
2853 		break;
2854 
2855 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2856 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2857 		    mstate, vstate)) {
2858 			regs[rd] = NULL;
2859 			break;
2860 		}
2861 
2862 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2863 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2864 		break;
2865 
2866 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2867 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2868 		    mstate, vstate)) {
2869 			regs[rd] = NULL;
2870 			break;
2871 		}
2872 
2873 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2874 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2875 		break;
2876 
2877 	case DIF_SUBR_RW_READ_HELD: {
2878 		uintptr_t tmp;
2879 
2880 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
2881 		    mstate, vstate)) {
2882 			regs[rd] = NULL;
2883 			break;
2884 		}
2885 
2886 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2887 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2888 		break;
2889 	}
2890 
2891 	case DIF_SUBR_RW_WRITE_HELD:
2892 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2893 		    mstate, vstate)) {
2894 			regs[rd] = NULL;
2895 			break;
2896 		}
2897 
2898 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2899 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2900 		break;
2901 
2902 	case DIF_SUBR_RW_ISWRITER:
2903 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
2904 		    mstate, vstate)) {
2905 			regs[rd] = NULL;
2906 			break;
2907 		}
2908 
2909 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2910 		regs[rd] = _RW_ISWRITER(&r.ri);
2911 		break;
2912 
2913 	case DIF_SUBR_BCOPY: {
2914 		/*
2915 		 * We need to be sure that the destination is in the scratch
2916 		 * region -- no other region is allowed.
2917 		 */
2918 		uintptr_t src = tupregs[0].dttk_value;
2919 		uintptr_t dest = tupregs[1].dttk_value;
2920 		size_t size = tupregs[2].dttk_value;
2921 
2922 		if (!dtrace_inscratch(dest, size, mstate)) {
2923 			*flags |= CPU_DTRACE_BADADDR;
2924 			*illval = regs[rd];
2925 			break;
2926 		}
2927 
2928 		if (!dtrace_canload(src, size, mstate, vstate)) {
2929 			regs[rd] = NULL;
2930 			break;
2931 		}
2932 
2933 		dtrace_bcopy((void *)src, (void *)dest, size);
2934 		break;
2935 	}
2936 
2937 	case DIF_SUBR_ALLOCA:
2938 	case DIF_SUBR_COPYIN: {
2939 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2940 		uint64_t size =
2941 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2942 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2943 
2944 		/*
2945 		 * This action doesn't require any credential checks since
2946 		 * probes will not activate in user contexts to which the
2947 		 * enabling user does not have permissions.
2948 		 */
2949 
2950 		/*
2951 		 * Rounding up the user allocation size could have overflowed
2952 		 * a large, bogus allocation (like -1ULL) to 0.
2953 		 */
2954 		if (scratch_size < size ||
2955 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
2956 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2957 			regs[rd] = NULL;
2958 			break;
2959 		}
2960 
2961 		if (subr == DIF_SUBR_COPYIN) {
2962 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2963 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
2964 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2965 		}
2966 
2967 		mstate->dtms_scratch_ptr += scratch_size;
2968 		regs[rd] = dest;
2969 		break;
2970 	}
2971 
2972 	case DIF_SUBR_COPYINTO: {
2973 		uint64_t size = tupregs[1].dttk_value;
2974 		uintptr_t dest = tupregs[2].dttk_value;
2975 
2976 		/*
2977 		 * This action doesn't require any credential checks since
2978 		 * probes will not activate in user contexts to which the
2979 		 * enabling user does not have permissions.
2980 		 */
2981 		if (!dtrace_inscratch(dest, size, mstate)) {
2982 			*flags |= CPU_DTRACE_BADADDR;
2983 			*illval = regs[rd];
2984 			break;
2985 		}
2986 
2987 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2988 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
2989 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2990 		break;
2991 	}
2992 
2993 	case DIF_SUBR_COPYINSTR: {
2994 		uintptr_t dest = mstate->dtms_scratch_ptr;
2995 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2996 
2997 		if (nargs > 1 && tupregs[1].dttk_value < size)
2998 			size = tupregs[1].dttk_value + 1;
2999 
3000 		/*
3001 		 * This action doesn't require any credential checks since
3002 		 * probes will not activate in user contexts to which the
3003 		 * enabling user does not have permissions.
3004 		 */
3005 		if (!DTRACE_INSCRATCH(mstate, size)) {
3006 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3007 			regs[rd] = NULL;
3008 			break;
3009 		}
3010 
3011 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3012 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3013 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3014 
3015 		((char *)dest)[size - 1] = '\0';
3016 		mstate->dtms_scratch_ptr += size;
3017 		regs[rd] = dest;
3018 		break;
3019 	}
3020 
3021 	case DIF_SUBR_MSGSIZE:
3022 	case DIF_SUBR_MSGDSIZE: {
3023 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3024 		uintptr_t wptr, rptr;
3025 		size_t count = 0;
3026 		int cont = 0;
3027 
3028 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3029 
3030 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3031 			    vstate)) {
3032 				regs[rd] = NULL;
3033 				break;
3034 			}
3035 
3036 			wptr = dtrace_loadptr(baddr +
3037 			    offsetof(mblk_t, b_wptr));
3038 
3039 			rptr = dtrace_loadptr(baddr +
3040 			    offsetof(mblk_t, b_rptr));
3041 
3042 			if (wptr < rptr) {
3043 				*flags |= CPU_DTRACE_BADADDR;
3044 				*illval = tupregs[0].dttk_value;
3045 				break;
3046 			}
3047 
3048 			daddr = dtrace_loadptr(baddr +
3049 			    offsetof(mblk_t, b_datap));
3050 
3051 			baddr = dtrace_loadptr(baddr +
3052 			    offsetof(mblk_t, b_cont));
3053 
3054 			/*
3055 			 * We want to prevent against denial-of-service here,
3056 			 * so we're only going to search the list for
3057 			 * dtrace_msgdsize_max mblks.
3058 			 */
3059 			if (cont++ > dtrace_msgdsize_max) {
3060 				*flags |= CPU_DTRACE_ILLOP;
3061 				break;
3062 			}
3063 
3064 			if (subr == DIF_SUBR_MSGDSIZE) {
3065 				if (dtrace_load8(daddr +
3066 				    offsetof(dblk_t, db_type)) != M_DATA)
3067 					continue;
3068 			}
3069 
3070 			count += wptr - rptr;
3071 		}
3072 
3073 		if (!(*flags & CPU_DTRACE_FAULT))
3074 			regs[rd] = count;
3075 
3076 		break;
3077 	}
3078 
3079 	case DIF_SUBR_PROGENYOF: {
3080 		pid_t pid = tupregs[0].dttk_value;
3081 		proc_t *p;
3082 		int rval = 0;
3083 
3084 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3085 
3086 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3087 			if (p->p_pidp->pid_id == pid) {
3088 				rval = 1;
3089 				break;
3090 			}
3091 		}
3092 
3093 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3094 
3095 		regs[rd] = rval;
3096 		break;
3097 	}
3098 
3099 	case DIF_SUBR_SPECULATION:
3100 		regs[rd] = dtrace_speculation(state);
3101 		break;
3102 
3103 	case DIF_SUBR_COPYOUT: {
3104 		uintptr_t kaddr = tupregs[0].dttk_value;
3105 		uintptr_t uaddr = tupregs[1].dttk_value;
3106 		uint64_t size = tupregs[2].dttk_value;
3107 
3108 		if (!dtrace_destructive_disallow &&
3109 		    dtrace_priv_proc_control(state) &&
3110 		    !dtrace_istoxic(kaddr, size)) {
3111 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3112 			dtrace_copyout(kaddr, uaddr, size, flags);
3113 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3114 		}
3115 		break;
3116 	}
3117 
3118 	case DIF_SUBR_COPYOUTSTR: {
3119 		uintptr_t kaddr = tupregs[0].dttk_value;
3120 		uintptr_t uaddr = tupregs[1].dttk_value;
3121 		uint64_t size = tupregs[2].dttk_value;
3122 
3123 		if (!dtrace_destructive_disallow &&
3124 		    dtrace_priv_proc_control(state) &&
3125 		    !dtrace_istoxic(kaddr, size)) {
3126 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3127 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3128 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3129 		}
3130 		break;
3131 	}
3132 
3133 	case DIF_SUBR_STRLEN: {
3134 		size_t sz;
3135 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3136 		sz = dtrace_strlen((char *)addr,
3137 		    state->dts_options[DTRACEOPT_STRSIZE]);
3138 
3139 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3140 			regs[rd] = NULL;
3141 			break;
3142 		}
3143 
3144 		regs[rd] = sz;
3145 
3146 		break;
3147 	}
3148 
3149 	case DIF_SUBR_STRCHR:
3150 	case DIF_SUBR_STRRCHR: {
3151 		/*
3152 		 * We're going to iterate over the string looking for the
3153 		 * specified character.  We will iterate until we have reached
3154 		 * the string length or we have found the character.  If this
3155 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3156 		 * of the specified character instead of the first.
3157 		 */
3158 		uintptr_t saddr = tupregs[0].dttk_value;
3159 		uintptr_t addr = tupregs[0].dttk_value;
3160 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3161 		char c, target = (char)tupregs[1].dttk_value;
3162 
3163 		for (regs[rd] = NULL; addr < limit; addr++) {
3164 			if ((c = dtrace_load8(addr)) == target) {
3165 				regs[rd] = addr;
3166 
3167 				if (subr == DIF_SUBR_STRCHR)
3168 					break;
3169 			}
3170 
3171 			if (c == '\0')
3172 				break;
3173 		}
3174 
3175 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3176 			regs[rd] = NULL;
3177 			break;
3178 		}
3179 
3180 		break;
3181 	}
3182 
3183 	case DIF_SUBR_STRSTR:
3184 	case DIF_SUBR_INDEX:
3185 	case DIF_SUBR_RINDEX: {
3186 		/*
3187 		 * We're going to iterate over the string looking for the
3188 		 * specified string.  We will iterate until we have reached
3189 		 * the string length or we have found the string.  (Yes, this
3190 		 * is done in the most naive way possible -- but considering
3191 		 * that the string we're searching for is likely to be
3192 		 * relatively short, the complexity of Rabin-Karp or similar
3193 		 * hardly seems merited.)
3194 		 */
3195 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3196 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3197 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3198 		size_t len = dtrace_strlen(addr, size);
3199 		size_t sublen = dtrace_strlen(substr, size);
3200 		char *limit = addr + len, *orig = addr;
3201 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3202 		int inc = 1;
3203 
3204 		regs[rd] = notfound;
3205 
3206 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3207 			regs[rd] = NULL;
3208 			break;
3209 		}
3210 
3211 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3212 		    vstate)) {
3213 			regs[rd] = NULL;
3214 			break;
3215 		}
3216 
3217 		/*
3218 		 * strstr() and index()/rindex() have similar semantics if
3219 		 * both strings are the empty string: strstr() returns a
3220 		 * pointer to the (empty) string, and index() and rindex()
3221 		 * both return index 0 (regardless of any position argument).
3222 		 */
3223 		if (sublen == 0 && len == 0) {
3224 			if (subr == DIF_SUBR_STRSTR)
3225 				regs[rd] = (uintptr_t)addr;
3226 			else
3227 				regs[rd] = 0;
3228 			break;
3229 		}
3230 
3231 		if (subr != DIF_SUBR_STRSTR) {
3232 			if (subr == DIF_SUBR_RINDEX) {
3233 				limit = orig - 1;
3234 				addr += len;
3235 				inc = -1;
3236 			}
3237 
3238 			/*
3239 			 * Both index() and rindex() take an optional position
3240 			 * argument that denotes the starting position.
3241 			 */
3242 			if (nargs == 3) {
3243 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3244 
3245 				/*
3246 				 * If the position argument to index() is
3247 				 * negative, Perl implicitly clamps it at
3248 				 * zero.  This semantic is a little surprising
3249 				 * given the special meaning of negative
3250 				 * positions to similar Perl functions like
3251 				 * substr(), but it appears to reflect a
3252 				 * notion that index() can start from a
3253 				 * negative index and increment its way up to
3254 				 * the string.  Given this notion, Perl's
3255 				 * rindex() is at least self-consistent in
3256 				 * that it implicitly clamps positions greater
3257 				 * than the string length to be the string
3258 				 * length.  Where Perl completely loses
3259 				 * coherence, however, is when the specified
3260 				 * substring is the empty string ("").  In
3261 				 * this case, even if the position is
3262 				 * negative, rindex() returns 0 -- and even if
3263 				 * the position is greater than the length,
3264 				 * index() returns the string length.  These
3265 				 * semantics violate the notion that index()
3266 				 * should never return a value less than the
3267 				 * specified position and that rindex() should
3268 				 * never return a value greater than the
3269 				 * specified position.  (One assumes that
3270 				 * these semantics are artifacts of Perl's
3271 				 * implementation and not the results of
3272 				 * deliberate design -- it beggars belief that
3273 				 * even Larry Wall could desire such oddness.)
3274 				 * While in the abstract one would wish for
3275 				 * consistent position semantics across
3276 				 * substr(), index() and rindex() -- or at the
3277 				 * very least self-consistent position
3278 				 * semantics for index() and rindex() -- we
3279 				 * instead opt to keep with the extant Perl
3280 				 * semantics, in all their broken glory.  (Do
3281 				 * we have more desire to maintain Perl's
3282 				 * semantics than Perl does?  Probably.)
3283 				 */
3284 				if (subr == DIF_SUBR_RINDEX) {
3285 					if (pos < 0) {
3286 						if (sublen == 0)
3287 							regs[rd] = 0;
3288 						break;
3289 					}
3290 
3291 					if (pos > len)
3292 						pos = len;
3293 				} else {
3294 					if (pos < 0)
3295 						pos = 0;
3296 
3297 					if (pos >= len) {
3298 						if (sublen == 0)
3299 							regs[rd] = len;
3300 						break;
3301 					}
3302 				}
3303 
3304 				addr = orig + pos;
3305 			}
3306 		}
3307 
3308 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3309 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3310 				if (subr != DIF_SUBR_STRSTR) {
3311 					/*
3312 					 * As D index() and rindex() are
3313 					 * modeled on Perl (and not on awk),
3314 					 * we return a zero-based (and not a
3315 					 * one-based) index.  (For you Perl
3316 					 * weenies: no, we're not going to add
3317 					 * $[ -- and shouldn't you be at a con
3318 					 * or something?)
3319 					 */
3320 					regs[rd] = (uintptr_t)(addr - orig);
3321 					break;
3322 				}
3323 
3324 				ASSERT(subr == DIF_SUBR_STRSTR);
3325 				regs[rd] = (uintptr_t)addr;
3326 				break;
3327 			}
3328 		}
3329 
3330 		break;
3331 	}
3332 
3333 	case DIF_SUBR_STRTOK: {
3334 		uintptr_t addr = tupregs[0].dttk_value;
3335 		uintptr_t tokaddr = tupregs[1].dttk_value;
3336 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3337 		uintptr_t limit, toklimit = tokaddr + size;
3338 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3339 		char *dest = (char *)mstate->dtms_scratch_ptr;
3340 		int i;
3341 
3342 		/*
3343 		 * Check both the token buffer and (later) the input buffer,
3344 		 * since both could be non-scratch addresses.
3345 		 */
3346 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3347 			regs[rd] = NULL;
3348 			break;
3349 		}
3350 
3351 		if (!DTRACE_INSCRATCH(mstate, size)) {
3352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3353 			regs[rd] = NULL;
3354 			break;
3355 		}
3356 
3357 		if (addr == NULL) {
3358 			/*
3359 			 * If the address specified is NULL, we use our saved
3360 			 * strtok pointer from the mstate.  Note that this
3361 			 * means that the saved strtok pointer is _only_
3362 			 * valid within multiple enablings of the same probe --
3363 			 * it behaves like an implicit clause-local variable.
3364 			 */
3365 			addr = mstate->dtms_strtok;
3366 		} else {
3367 			/*
3368 			 * If the user-specified address is non-NULL we must
3369 			 * access check it.  This is the only time we have
3370 			 * a chance to do so, since this address may reside
3371 			 * in the string table of this clause-- future calls
3372 			 * (when we fetch addr from mstate->dtms_strtok)
3373 			 * would fail this access check.
3374 			 */
3375 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3376 				regs[rd] = NULL;
3377 				break;
3378 			}
3379 		}
3380 
3381 		/*
3382 		 * First, zero the token map, and then process the token
3383 		 * string -- setting a bit in the map for every character
3384 		 * found in the token string.
3385 		 */
3386 		for (i = 0; i < sizeof (tokmap); i++)
3387 			tokmap[i] = 0;
3388 
3389 		for (; tokaddr < toklimit; tokaddr++) {
3390 			if ((c = dtrace_load8(tokaddr)) == '\0')
3391 				break;
3392 
3393 			ASSERT((c >> 3) < sizeof (tokmap));
3394 			tokmap[c >> 3] |= (1 << (c & 0x7));
3395 		}
3396 
3397 		for (limit = addr + size; addr < limit; addr++) {
3398 			/*
3399 			 * We're looking for a character that is _not_ contained
3400 			 * in the token string.
3401 			 */
3402 			if ((c = dtrace_load8(addr)) == '\0')
3403 				break;
3404 
3405 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3406 				break;
3407 		}
3408 
3409 		if (c == '\0') {
3410 			/*
3411 			 * We reached the end of the string without finding
3412 			 * any character that was not in the token string.
3413 			 * We return NULL in this case, and we set the saved
3414 			 * address to NULL as well.
3415 			 */
3416 			regs[rd] = NULL;
3417 			mstate->dtms_strtok = NULL;
3418 			break;
3419 		}
3420 
3421 		/*
3422 		 * From here on, we're copying into the destination string.
3423 		 */
3424 		for (i = 0; addr < limit && i < size - 1; addr++) {
3425 			if ((c = dtrace_load8(addr)) == '\0')
3426 				break;
3427 
3428 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3429 				break;
3430 
3431 			ASSERT(i < size);
3432 			dest[i++] = c;
3433 		}
3434 
3435 		ASSERT(i < size);
3436 		dest[i] = '\0';
3437 		regs[rd] = (uintptr_t)dest;
3438 		mstate->dtms_scratch_ptr += size;
3439 		mstate->dtms_strtok = addr;
3440 		break;
3441 	}
3442 
3443 	case DIF_SUBR_SUBSTR: {
3444 		uintptr_t s = tupregs[0].dttk_value;
3445 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3446 		char *d = (char *)mstate->dtms_scratch_ptr;
3447 		int64_t index = (int64_t)tupregs[1].dttk_value;
3448 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3449 		size_t len = dtrace_strlen((char *)s, size);
3450 		int64_t i = 0;
3451 
3452 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3453 			regs[rd] = NULL;
3454 			break;
3455 		}
3456 
3457 		if (nargs <= 2)
3458 			remaining = (int64_t)size;
3459 
3460 		if (!DTRACE_INSCRATCH(mstate, size)) {
3461 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3462 			regs[rd] = NULL;
3463 			break;
3464 		}
3465 
3466 		if (index < 0) {
3467 			index += len;
3468 
3469 			if (index < 0 && index + remaining > 0) {
3470 				remaining += index;
3471 				index = 0;
3472 			}
3473 		}
3474 
3475 		if (index >= len || index < 0)
3476 			index = len;
3477 
3478 		for (d[0] = '\0'; remaining > 0; remaining--) {
3479 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3480 				break;
3481 
3482 			if (i == size) {
3483 				d[i - 1] = '\0';
3484 				break;
3485 			}
3486 		}
3487 
3488 		mstate->dtms_scratch_ptr += size;
3489 		regs[rd] = (uintptr_t)d;
3490 		break;
3491 	}
3492 
3493 	case DIF_SUBR_GETMAJOR:
3494 #ifdef _LP64
3495 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3496 #else
3497 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3498 #endif
3499 		break;
3500 
3501 	case DIF_SUBR_GETMINOR:
3502 #ifdef _LP64
3503 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3504 #else
3505 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3506 #endif
3507 		break;
3508 
3509 	case DIF_SUBR_DDI_PATHNAME: {
3510 		/*
3511 		 * This one is a galactic mess.  We are going to roughly
3512 		 * emulate ddi_pathname(), but it's made more complicated
3513 		 * by the fact that we (a) want to include the minor name and
3514 		 * (b) must proceed iteratively instead of recursively.
3515 		 */
3516 		uintptr_t dest = mstate->dtms_scratch_ptr;
3517 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3518 		char *start = (char *)dest, *end = start + size - 1;
3519 		uintptr_t daddr = tupregs[0].dttk_value;
3520 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3521 		char *s;
3522 		int i, len, depth = 0;
3523 
3524 		/*
3525 		 * Due to all the pointer jumping we do and context we must
3526 		 * rely upon, we just mandate that the user must have kernel
3527 		 * read privileges to use this routine.
3528 		 */
3529 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3530 			*flags |= CPU_DTRACE_KPRIV;
3531 			*illval = daddr;
3532 			regs[rd] = NULL;
3533 		}
3534 
3535 		if (!DTRACE_INSCRATCH(mstate, size)) {
3536 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3537 			regs[rd] = NULL;
3538 			break;
3539 		}
3540 
3541 		*end = '\0';
3542 
3543 		/*
3544 		 * We want to have a name for the minor.  In order to do this,
3545 		 * we need to walk the minor list from the devinfo.  We want
3546 		 * to be sure that we don't infinitely walk a circular list,
3547 		 * so we check for circularity by sending a scout pointer
3548 		 * ahead two elements for every element that we iterate over;
3549 		 * if the list is circular, these will ultimately point to the
3550 		 * same element.  You may recognize this little trick as the
3551 		 * answer to a stupid interview question -- one that always
3552 		 * seems to be asked by those who had to have it laboriously
3553 		 * explained to them, and who can't even concisely describe
3554 		 * the conditions under which one would be forced to resort to
3555 		 * this technique.  Needless to say, those conditions are
3556 		 * found here -- and probably only here.  Is this is the only
3557 		 * use of this infamous trick in shipping, production code?
3558 		 * If it isn't, it probably should be...
3559 		 */
3560 		if (minor != -1) {
3561 			uintptr_t maddr = dtrace_loadptr(daddr +
3562 			    offsetof(struct dev_info, devi_minor));
3563 
3564 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3565 			uintptr_t name = offsetof(struct ddi_minor_data,
3566 			    d_minor) + offsetof(struct ddi_minor, name);
3567 			uintptr_t dev = offsetof(struct ddi_minor_data,
3568 			    d_minor) + offsetof(struct ddi_minor, dev);
3569 			uintptr_t scout;
3570 
3571 			if (maddr != NULL)
3572 				scout = dtrace_loadptr(maddr + next);
3573 
3574 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3575 				uint64_t m;
3576 #ifdef _LP64
3577 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3578 #else
3579 				m = dtrace_load32(maddr + dev) & MAXMIN;
3580 #endif
3581 				if (m != minor) {
3582 					maddr = dtrace_loadptr(maddr + next);
3583 
3584 					if (scout == NULL)
3585 						continue;
3586 
3587 					scout = dtrace_loadptr(scout + next);
3588 
3589 					if (scout == NULL)
3590 						continue;
3591 
3592 					scout = dtrace_loadptr(scout + next);
3593 
3594 					if (scout == NULL)
3595 						continue;
3596 
3597 					if (scout == maddr) {
3598 						*flags |= CPU_DTRACE_ILLOP;
3599 						break;
3600 					}
3601 
3602 					continue;
3603 				}
3604 
3605 				/*
3606 				 * We have the minor data.  Now we need to
3607 				 * copy the minor's name into the end of the
3608 				 * pathname.
3609 				 */
3610 				s = (char *)dtrace_loadptr(maddr + name);
3611 				len = dtrace_strlen(s, size);
3612 
3613 				if (*flags & CPU_DTRACE_FAULT)
3614 					break;
3615 
3616 				if (len != 0) {
3617 					if ((end -= (len + 1)) < start)
3618 						break;
3619 
3620 					*end = ':';
3621 				}
3622 
3623 				for (i = 1; i <= len; i++)
3624 					end[i] = dtrace_load8((uintptr_t)s++);
3625 				break;
3626 			}
3627 		}
3628 
3629 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3630 			ddi_node_state_t devi_state;
3631 
3632 			devi_state = dtrace_load32(daddr +
3633 			    offsetof(struct dev_info, devi_node_state));
3634 
3635 			if (*flags & CPU_DTRACE_FAULT)
3636 				break;
3637 
3638 			if (devi_state >= DS_INITIALIZED) {
3639 				s = (char *)dtrace_loadptr(daddr +
3640 				    offsetof(struct dev_info, devi_addr));
3641 				len = dtrace_strlen(s, size);
3642 
3643 				if (*flags & CPU_DTRACE_FAULT)
3644 					break;
3645 
3646 				if (len != 0) {
3647 					if ((end -= (len + 1)) < start)
3648 						break;
3649 
3650 					*end = '@';
3651 				}
3652 
3653 				for (i = 1; i <= len; i++)
3654 					end[i] = dtrace_load8((uintptr_t)s++);
3655 			}
3656 
3657 			/*
3658 			 * Now for the node name...
3659 			 */
3660 			s = (char *)dtrace_loadptr(daddr +
3661 			    offsetof(struct dev_info, devi_node_name));
3662 
3663 			daddr = dtrace_loadptr(daddr +
3664 			    offsetof(struct dev_info, devi_parent));
3665 
3666 			/*
3667 			 * If our parent is NULL (that is, if we're the root
3668 			 * node), we're going to use the special path
3669 			 * "devices".
3670 			 */
3671 			if (daddr == NULL)
3672 				s = "devices";
3673 
3674 			len = dtrace_strlen(s, size);
3675 			if (*flags & CPU_DTRACE_FAULT)
3676 				break;
3677 
3678 			if ((end -= (len + 1)) < start)
3679 				break;
3680 
3681 			for (i = 1; i <= len; i++)
3682 				end[i] = dtrace_load8((uintptr_t)s++);
3683 			*end = '/';
3684 
3685 			if (depth++ > dtrace_devdepth_max) {
3686 				*flags |= CPU_DTRACE_ILLOP;
3687 				break;
3688 			}
3689 		}
3690 
3691 		if (end < start)
3692 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3693 
3694 		if (daddr == NULL) {
3695 			regs[rd] = (uintptr_t)end;
3696 			mstate->dtms_scratch_ptr += size;
3697 		}
3698 
3699 		break;
3700 	}
3701 
3702 	case DIF_SUBR_STRJOIN: {
3703 		char *d = (char *)mstate->dtms_scratch_ptr;
3704 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3705 		uintptr_t s1 = tupregs[0].dttk_value;
3706 		uintptr_t s2 = tupregs[1].dttk_value;
3707 		int i = 0;
3708 
3709 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3710 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3711 			regs[rd] = NULL;
3712 			break;
3713 		}
3714 
3715 		if (!DTRACE_INSCRATCH(mstate, size)) {
3716 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3717 			regs[rd] = NULL;
3718 			break;
3719 		}
3720 
3721 		for (;;) {
3722 			if (i >= size) {
3723 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3724 				regs[rd] = NULL;
3725 				break;
3726 			}
3727 
3728 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3729 				i--;
3730 				break;
3731 			}
3732 		}
3733 
3734 		for (;;) {
3735 			if (i >= size) {
3736 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3737 				regs[rd] = NULL;
3738 				break;
3739 			}
3740 
3741 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3742 				break;
3743 		}
3744 
3745 		if (i < size) {
3746 			mstate->dtms_scratch_ptr += i;
3747 			regs[rd] = (uintptr_t)d;
3748 		}
3749 
3750 		break;
3751 	}
3752 
3753 	case DIF_SUBR_LLTOSTR: {
3754 		int64_t i = (int64_t)tupregs[0].dttk_value;
3755 		int64_t val = i < 0 ? i * -1 : i;
3756 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3757 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3758 
3759 		if (!DTRACE_INSCRATCH(mstate, size)) {
3760 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3761 			regs[rd] = NULL;
3762 			break;
3763 		}
3764 
3765 		for (*end-- = '\0'; val; val /= 10)
3766 			*end-- = '0' + (val % 10);
3767 
3768 		if (i == 0)
3769 			*end-- = '0';
3770 
3771 		if (i < 0)
3772 			*end-- = '-';
3773 
3774 		regs[rd] = (uintptr_t)end + 1;
3775 		mstate->dtms_scratch_ptr += size;
3776 		break;
3777 	}
3778 
3779 	case DIF_SUBR_HTONS:
3780 	case DIF_SUBR_NTOHS:
3781 #ifdef _BIG_ENDIAN
3782 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3783 #else
3784 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3785 #endif
3786 		break;
3787 
3788 
3789 	case DIF_SUBR_HTONL:
3790 	case DIF_SUBR_NTOHL:
3791 #ifdef _BIG_ENDIAN
3792 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
3793 #else
3794 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
3795 #endif
3796 		break;
3797 
3798 
3799 	case DIF_SUBR_HTONLL:
3800 	case DIF_SUBR_NTOHLL:
3801 #ifdef _BIG_ENDIAN
3802 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
3803 #else
3804 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
3805 #endif
3806 		break;
3807 
3808 
3809 	case DIF_SUBR_DIRNAME:
3810 	case DIF_SUBR_BASENAME: {
3811 		char *dest = (char *)mstate->dtms_scratch_ptr;
3812 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3813 		uintptr_t src = tupregs[0].dttk_value;
3814 		int i, j, len = dtrace_strlen((char *)src, size);
3815 		int lastbase = -1, firstbase = -1, lastdir = -1;
3816 		int start, end;
3817 
3818 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
3819 			regs[rd] = NULL;
3820 			break;
3821 		}
3822 
3823 		if (!DTRACE_INSCRATCH(mstate, size)) {
3824 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3825 			regs[rd] = NULL;
3826 			break;
3827 		}
3828 
3829 		/*
3830 		 * The basename and dirname for a zero-length string is
3831 		 * defined to be "."
3832 		 */
3833 		if (len == 0) {
3834 			len = 1;
3835 			src = (uintptr_t)".";
3836 		}
3837 
3838 		/*
3839 		 * Start from the back of the string, moving back toward the
3840 		 * front until we see a character that isn't a slash.  That
3841 		 * character is the last character in the basename.
3842 		 */
3843 		for (i = len - 1; i >= 0; i--) {
3844 			if (dtrace_load8(src + i) != '/')
3845 				break;
3846 		}
3847 
3848 		if (i >= 0)
3849 			lastbase = i;
3850 
3851 		/*
3852 		 * Starting from the last character in the basename, move
3853 		 * towards the front until we find a slash.  The character
3854 		 * that we processed immediately before that is the first
3855 		 * character in the basename.
3856 		 */
3857 		for (; i >= 0; i--) {
3858 			if (dtrace_load8(src + i) == '/')
3859 				break;
3860 		}
3861 
3862 		if (i >= 0)
3863 			firstbase = i + 1;
3864 
3865 		/*
3866 		 * Now keep going until we find a non-slash character.  That
3867 		 * character is the last character in the dirname.
3868 		 */
3869 		for (; i >= 0; i--) {
3870 			if (dtrace_load8(src + i) != '/')
3871 				break;
3872 		}
3873 
3874 		if (i >= 0)
3875 			lastdir = i;
3876 
3877 		ASSERT(!(lastbase == -1 && firstbase != -1));
3878 		ASSERT(!(firstbase == -1 && lastdir != -1));
3879 
3880 		if (lastbase == -1) {
3881 			/*
3882 			 * We didn't find a non-slash character.  We know that
3883 			 * the length is non-zero, so the whole string must be
3884 			 * slashes.  In either the dirname or the basename
3885 			 * case, we return '/'.
3886 			 */
3887 			ASSERT(firstbase == -1);
3888 			firstbase = lastbase = lastdir = 0;
3889 		}
3890 
3891 		if (firstbase == -1) {
3892 			/*
3893 			 * The entire string consists only of a basename
3894 			 * component.  If we're looking for dirname, we need
3895 			 * to change our string to be just "."; if we're
3896 			 * looking for a basename, we'll just set the first
3897 			 * character of the basename to be 0.
3898 			 */
3899 			if (subr == DIF_SUBR_DIRNAME) {
3900 				ASSERT(lastdir == -1);
3901 				src = (uintptr_t)".";
3902 				lastdir = 0;
3903 			} else {
3904 				firstbase = 0;
3905 			}
3906 		}
3907 
3908 		if (subr == DIF_SUBR_DIRNAME) {
3909 			if (lastdir == -1) {
3910 				/*
3911 				 * We know that we have a slash in the name --
3912 				 * or lastdir would be set to 0, above.  And
3913 				 * because lastdir is -1, we know that this
3914 				 * slash must be the first character.  (That
3915 				 * is, the full string must be of the form
3916 				 * "/basename".)  In this case, the last
3917 				 * character of the directory name is 0.
3918 				 */
3919 				lastdir = 0;
3920 			}
3921 
3922 			start = 0;
3923 			end = lastdir;
3924 		} else {
3925 			ASSERT(subr == DIF_SUBR_BASENAME);
3926 			ASSERT(firstbase != -1 && lastbase != -1);
3927 			start = firstbase;
3928 			end = lastbase;
3929 		}
3930 
3931 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3932 			dest[j] = dtrace_load8(src + i);
3933 
3934 		dest[j] = '\0';
3935 		regs[rd] = (uintptr_t)dest;
3936 		mstate->dtms_scratch_ptr += size;
3937 		break;
3938 	}
3939 
3940 	case DIF_SUBR_CLEANPATH: {
3941 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3942 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3943 		uintptr_t src = tupregs[0].dttk_value;
3944 		int i = 0, j = 0;
3945 
3946 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
3947 			regs[rd] = NULL;
3948 			break;
3949 		}
3950 
3951 		if (!DTRACE_INSCRATCH(mstate, size)) {
3952 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3953 			regs[rd] = NULL;
3954 			break;
3955 		}
3956 
3957 		/*
3958 		 * Move forward, loading each character.
3959 		 */
3960 		do {
3961 			c = dtrace_load8(src + i++);
3962 next:
3963 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3964 				break;
3965 
3966 			if (c != '/') {
3967 				dest[j++] = c;
3968 				continue;
3969 			}
3970 
3971 			c = dtrace_load8(src + i++);
3972 
3973 			if (c == '/') {
3974 				/*
3975 				 * We have two slashes -- we can just advance
3976 				 * to the next character.
3977 				 */
3978 				goto next;
3979 			}
3980 
3981 			if (c != '.') {
3982 				/*
3983 				 * This is not "." and it's not ".." -- we can
3984 				 * just store the "/" and this character and
3985 				 * drive on.
3986 				 */
3987 				dest[j++] = '/';
3988 				dest[j++] = c;
3989 				continue;
3990 			}
3991 
3992 			c = dtrace_load8(src + i++);
3993 
3994 			if (c == '/') {
3995 				/*
3996 				 * This is a "/./" component.  We're not going
3997 				 * to store anything in the destination buffer;
3998 				 * we're just going to go to the next component.
3999 				 */
4000 				goto next;
4001 			}
4002 
4003 			if (c != '.') {
4004 				/*
4005 				 * This is not ".." -- we can just store the
4006 				 * "/." and this character and continue
4007 				 * processing.
4008 				 */
4009 				dest[j++] = '/';
4010 				dest[j++] = '.';
4011 				dest[j++] = c;
4012 				continue;
4013 			}
4014 
4015 			c = dtrace_load8(src + i++);
4016 
4017 			if (c != '/' && c != '\0') {
4018 				/*
4019 				 * This is not ".." -- it's "..[mumble]".
4020 				 * We'll store the "/.." and this character
4021 				 * and continue processing.
4022 				 */
4023 				dest[j++] = '/';
4024 				dest[j++] = '.';
4025 				dest[j++] = '.';
4026 				dest[j++] = c;
4027 				continue;
4028 			}
4029 
4030 			/*
4031 			 * This is "/../" or "/..\0".  We need to back up
4032 			 * our destination pointer until we find a "/".
4033 			 */
4034 			i--;
4035 			while (j != 0 && dest[--j] != '/')
4036 				continue;
4037 
4038 			if (c == '\0')
4039 				dest[++j] = '/';
4040 		} while (c != '\0');
4041 
4042 		dest[j] = '\0';
4043 		regs[rd] = (uintptr_t)dest;
4044 		mstate->dtms_scratch_ptr += size;
4045 		break;
4046 	}
4047 	}
4048 }
4049 
4050 /*
4051  * Emulate the execution of DTrace IR instructions specified by the given
4052  * DIF object.  This function is deliberately void of assertions as all of
4053  * the necessary checks are handled by a call to dtrace_difo_validate().
4054  */
4055 static uint64_t
4056 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4057     dtrace_vstate_t *vstate, dtrace_state_t *state)
4058 {
4059 	const dif_instr_t *text = difo->dtdo_buf;
4060 	const uint_t textlen = difo->dtdo_len;
4061 	const char *strtab = difo->dtdo_strtab;
4062 	const uint64_t *inttab = difo->dtdo_inttab;
4063 
4064 	uint64_t rval = 0;
4065 	dtrace_statvar_t *svar;
4066 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4067 	dtrace_difv_t *v;
4068 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4069 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4070 
4071 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4072 	uint64_t regs[DIF_DIR_NREGS];
4073 	uint64_t *tmp;
4074 
4075 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4076 	int64_t cc_r;
4077 	uint_t pc = 0, id, opc;
4078 	uint8_t ttop = 0;
4079 	dif_instr_t instr;
4080 	uint_t r1, r2, rd;
4081 
4082 	/*
4083 	 * We stash the current DIF object into the machine state: we need it
4084 	 * for subsequent access checking.
4085 	 */
4086 	mstate->dtms_difo = difo;
4087 
4088 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4089 
4090 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4091 		opc = pc;
4092 
4093 		instr = text[pc++];
4094 		r1 = DIF_INSTR_R1(instr);
4095 		r2 = DIF_INSTR_R2(instr);
4096 		rd = DIF_INSTR_RD(instr);
4097 
4098 		switch (DIF_INSTR_OP(instr)) {
4099 		case DIF_OP_OR:
4100 			regs[rd] = regs[r1] | regs[r2];
4101 			break;
4102 		case DIF_OP_XOR:
4103 			regs[rd] = regs[r1] ^ regs[r2];
4104 			break;
4105 		case DIF_OP_AND:
4106 			regs[rd] = regs[r1] & regs[r2];
4107 			break;
4108 		case DIF_OP_SLL:
4109 			regs[rd] = regs[r1] << regs[r2];
4110 			break;
4111 		case DIF_OP_SRL:
4112 			regs[rd] = regs[r1] >> regs[r2];
4113 			break;
4114 		case DIF_OP_SUB:
4115 			regs[rd] = regs[r1] - regs[r2];
4116 			break;
4117 		case DIF_OP_ADD:
4118 			regs[rd] = regs[r1] + regs[r2];
4119 			break;
4120 		case DIF_OP_MUL:
4121 			regs[rd] = regs[r1] * regs[r2];
4122 			break;
4123 		case DIF_OP_SDIV:
4124 			if (regs[r2] == 0) {
4125 				regs[rd] = 0;
4126 				*flags |= CPU_DTRACE_DIVZERO;
4127 			} else {
4128 				regs[rd] = (int64_t)regs[r1] /
4129 				    (int64_t)regs[r2];
4130 			}
4131 			break;
4132 
4133 		case DIF_OP_UDIV:
4134 			if (regs[r2] == 0) {
4135 				regs[rd] = 0;
4136 				*flags |= CPU_DTRACE_DIVZERO;
4137 			} else {
4138 				regs[rd] = regs[r1] / regs[r2];
4139 			}
4140 			break;
4141 
4142 		case DIF_OP_SREM:
4143 			if (regs[r2] == 0) {
4144 				regs[rd] = 0;
4145 				*flags |= CPU_DTRACE_DIVZERO;
4146 			} else {
4147 				regs[rd] = (int64_t)regs[r1] %
4148 				    (int64_t)regs[r2];
4149 			}
4150 			break;
4151 
4152 		case DIF_OP_UREM:
4153 			if (regs[r2] == 0) {
4154 				regs[rd] = 0;
4155 				*flags |= CPU_DTRACE_DIVZERO;
4156 			} else {
4157 				regs[rd] = regs[r1] % regs[r2];
4158 			}
4159 			break;
4160 
4161 		case DIF_OP_NOT:
4162 			regs[rd] = ~regs[r1];
4163 			break;
4164 		case DIF_OP_MOV:
4165 			regs[rd] = regs[r1];
4166 			break;
4167 		case DIF_OP_CMP:
4168 			cc_r = regs[r1] - regs[r2];
4169 			cc_n = cc_r < 0;
4170 			cc_z = cc_r == 0;
4171 			cc_v = 0;
4172 			cc_c = regs[r1] < regs[r2];
4173 			break;
4174 		case DIF_OP_TST:
4175 			cc_n = cc_v = cc_c = 0;
4176 			cc_z = regs[r1] == 0;
4177 			break;
4178 		case DIF_OP_BA:
4179 			pc = DIF_INSTR_LABEL(instr);
4180 			break;
4181 		case DIF_OP_BE:
4182 			if (cc_z)
4183 				pc = DIF_INSTR_LABEL(instr);
4184 			break;
4185 		case DIF_OP_BNE:
4186 			if (cc_z == 0)
4187 				pc = DIF_INSTR_LABEL(instr);
4188 			break;
4189 		case DIF_OP_BG:
4190 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4191 				pc = DIF_INSTR_LABEL(instr);
4192 			break;
4193 		case DIF_OP_BGU:
4194 			if ((cc_c | cc_z) == 0)
4195 				pc = DIF_INSTR_LABEL(instr);
4196 			break;
4197 		case DIF_OP_BGE:
4198 			if ((cc_n ^ cc_v) == 0)
4199 				pc = DIF_INSTR_LABEL(instr);
4200 			break;
4201 		case DIF_OP_BGEU:
4202 			if (cc_c == 0)
4203 				pc = DIF_INSTR_LABEL(instr);
4204 			break;
4205 		case DIF_OP_BL:
4206 			if (cc_n ^ cc_v)
4207 				pc = DIF_INSTR_LABEL(instr);
4208 			break;
4209 		case DIF_OP_BLU:
4210 			if (cc_c)
4211 				pc = DIF_INSTR_LABEL(instr);
4212 			break;
4213 		case DIF_OP_BLE:
4214 			if (cc_z | (cc_n ^ cc_v))
4215 				pc = DIF_INSTR_LABEL(instr);
4216 			break;
4217 		case DIF_OP_BLEU:
4218 			if (cc_c | cc_z)
4219 				pc = DIF_INSTR_LABEL(instr);
4220 			break;
4221 		case DIF_OP_RLDSB:
4222 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4223 				*flags |= CPU_DTRACE_KPRIV;
4224 				*illval = regs[r1];
4225 				break;
4226 			}
4227 			/*FALLTHROUGH*/
4228 		case DIF_OP_LDSB:
4229 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4230 			break;
4231 		case DIF_OP_RLDSH:
4232 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4233 				*flags |= CPU_DTRACE_KPRIV;
4234 				*illval = regs[r1];
4235 				break;
4236 			}
4237 			/*FALLTHROUGH*/
4238 		case DIF_OP_LDSH:
4239 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4240 			break;
4241 		case DIF_OP_RLDSW:
4242 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4243 				*flags |= CPU_DTRACE_KPRIV;
4244 				*illval = regs[r1];
4245 				break;
4246 			}
4247 			/*FALLTHROUGH*/
4248 		case DIF_OP_LDSW:
4249 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4250 			break;
4251 		case DIF_OP_RLDUB:
4252 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4253 				*flags |= CPU_DTRACE_KPRIV;
4254 				*illval = regs[r1];
4255 				break;
4256 			}
4257 			/*FALLTHROUGH*/
4258 		case DIF_OP_LDUB:
4259 			regs[rd] = dtrace_load8(regs[r1]);
4260 			break;
4261 		case DIF_OP_RLDUH:
4262 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4263 				*flags |= CPU_DTRACE_KPRIV;
4264 				*illval = regs[r1];
4265 				break;
4266 			}
4267 			/*FALLTHROUGH*/
4268 		case DIF_OP_LDUH:
4269 			regs[rd] = dtrace_load16(regs[r1]);
4270 			break;
4271 		case DIF_OP_RLDUW:
4272 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4273 				*flags |= CPU_DTRACE_KPRIV;
4274 				*illval = regs[r1];
4275 				break;
4276 			}
4277 			/*FALLTHROUGH*/
4278 		case DIF_OP_LDUW:
4279 			regs[rd] = dtrace_load32(regs[r1]);
4280 			break;
4281 		case DIF_OP_RLDX:
4282 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4283 				*flags |= CPU_DTRACE_KPRIV;
4284 				*illval = regs[r1];
4285 				break;
4286 			}
4287 			/*FALLTHROUGH*/
4288 		case DIF_OP_LDX:
4289 			regs[rd] = dtrace_load64(regs[r1]);
4290 			break;
4291 		case DIF_OP_ULDSB:
4292 			regs[rd] = (int8_t)
4293 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4294 			break;
4295 		case DIF_OP_ULDSH:
4296 			regs[rd] = (int16_t)
4297 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4298 			break;
4299 		case DIF_OP_ULDSW:
4300 			regs[rd] = (int32_t)
4301 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4302 			break;
4303 		case DIF_OP_ULDUB:
4304 			regs[rd] =
4305 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4306 			break;
4307 		case DIF_OP_ULDUH:
4308 			regs[rd] =
4309 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4310 			break;
4311 		case DIF_OP_ULDUW:
4312 			regs[rd] =
4313 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4314 			break;
4315 		case DIF_OP_ULDX:
4316 			regs[rd] =
4317 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4318 			break;
4319 		case DIF_OP_RET:
4320 			rval = regs[rd];
4321 			break;
4322 		case DIF_OP_NOP:
4323 			break;
4324 		case DIF_OP_SETX:
4325 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4326 			break;
4327 		case DIF_OP_SETS:
4328 			regs[rd] = (uint64_t)(uintptr_t)
4329 			    (strtab + DIF_INSTR_STRING(instr));
4330 			break;
4331 		case DIF_OP_SCMP: {
4332 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4333 			uintptr_t s1 = regs[r1];
4334 			uintptr_t s2 = regs[r2];
4335 
4336 			if (s1 != NULL &&
4337 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4338 				break;
4339 			if (s2 != NULL &&
4340 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4341 				break;
4342 
4343 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4344 
4345 			cc_n = cc_r < 0;
4346 			cc_z = cc_r == 0;
4347 			cc_v = cc_c = 0;
4348 			break;
4349 		}
4350 		case DIF_OP_LDGA:
4351 			regs[rd] = dtrace_dif_variable(mstate, state,
4352 			    r1, regs[r2]);
4353 			break;
4354 		case DIF_OP_LDGS:
4355 			id = DIF_INSTR_VAR(instr);
4356 
4357 			if (id >= DIF_VAR_OTHER_UBASE) {
4358 				uintptr_t a;
4359 
4360 				id -= DIF_VAR_OTHER_UBASE;
4361 				svar = vstate->dtvs_globals[id];
4362 				ASSERT(svar != NULL);
4363 				v = &svar->dtsv_var;
4364 
4365 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4366 					regs[rd] = svar->dtsv_data;
4367 					break;
4368 				}
4369 
4370 				a = (uintptr_t)svar->dtsv_data;
4371 
4372 				if (*(uint8_t *)a == UINT8_MAX) {
4373 					/*
4374 					 * If the 0th byte is set to UINT8_MAX
4375 					 * then this is to be treated as a
4376 					 * reference to a NULL variable.
4377 					 */
4378 					regs[rd] = NULL;
4379 				} else {
4380 					regs[rd] = a + sizeof (uint64_t);
4381 				}
4382 
4383 				break;
4384 			}
4385 
4386 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4387 			break;
4388 
4389 		case DIF_OP_STGS:
4390 			id = DIF_INSTR_VAR(instr);
4391 
4392 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4393 			id -= DIF_VAR_OTHER_UBASE;
4394 
4395 			svar = vstate->dtvs_globals[id];
4396 			ASSERT(svar != NULL);
4397 			v = &svar->dtsv_var;
4398 
4399 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4400 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4401 
4402 				ASSERT(a != NULL);
4403 				ASSERT(svar->dtsv_size != 0);
4404 
4405 				if (regs[rd] == NULL) {
4406 					*(uint8_t *)a = UINT8_MAX;
4407 					break;
4408 				} else {
4409 					*(uint8_t *)a = 0;
4410 					a += sizeof (uint64_t);
4411 				}
4412 				if (!dtrace_vcanload(
4413 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4414 				    mstate, vstate))
4415 					break;
4416 
4417 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4418 				    (void *)a, &v->dtdv_type);
4419 				break;
4420 			}
4421 
4422 			svar->dtsv_data = regs[rd];
4423 			break;
4424 
4425 		case DIF_OP_LDTA:
4426 			/*
4427 			 * There are no DTrace built-in thread-local arrays at
4428 			 * present.  This opcode is saved for future work.
4429 			 */
4430 			*flags |= CPU_DTRACE_ILLOP;
4431 			regs[rd] = 0;
4432 			break;
4433 
4434 		case DIF_OP_LDLS:
4435 			id = DIF_INSTR_VAR(instr);
4436 
4437 			if (id < DIF_VAR_OTHER_UBASE) {
4438 				/*
4439 				 * For now, this has no meaning.
4440 				 */
4441 				regs[rd] = 0;
4442 				break;
4443 			}
4444 
4445 			id -= DIF_VAR_OTHER_UBASE;
4446 
4447 			ASSERT(id < vstate->dtvs_nlocals);
4448 			ASSERT(vstate->dtvs_locals != NULL);
4449 
4450 			svar = vstate->dtvs_locals[id];
4451 			ASSERT(svar != NULL);
4452 			v = &svar->dtsv_var;
4453 
4454 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4455 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4456 				size_t sz = v->dtdv_type.dtdt_size;
4457 
4458 				sz += sizeof (uint64_t);
4459 				ASSERT(svar->dtsv_size == NCPU * sz);
4460 				a += CPU->cpu_id * sz;
4461 
4462 				if (*(uint8_t *)a == UINT8_MAX) {
4463 					/*
4464 					 * If the 0th byte is set to UINT8_MAX
4465 					 * then this is to be treated as a
4466 					 * reference to a NULL variable.
4467 					 */
4468 					regs[rd] = NULL;
4469 				} else {
4470 					regs[rd] = a + sizeof (uint64_t);
4471 				}
4472 
4473 				break;
4474 			}
4475 
4476 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4477 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4478 			regs[rd] = tmp[CPU->cpu_id];
4479 			break;
4480 
4481 		case DIF_OP_STLS:
4482 			id = DIF_INSTR_VAR(instr);
4483 
4484 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4485 			id -= DIF_VAR_OTHER_UBASE;
4486 			ASSERT(id < vstate->dtvs_nlocals);
4487 
4488 			ASSERT(vstate->dtvs_locals != NULL);
4489 			svar = vstate->dtvs_locals[id];
4490 			ASSERT(svar != NULL);
4491 			v = &svar->dtsv_var;
4492 
4493 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4494 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4495 				size_t sz = v->dtdv_type.dtdt_size;
4496 
4497 				sz += sizeof (uint64_t);
4498 				ASSERT(svar->dtsv_size == NCPU * sz);
4499 				a += CPU->cpu_id * sz;
4500 
4501 				if (regs[rd] == NULL) {
4502 					*(uint8_t *)a = UINT8_MAX;
4503 					break;
4504 				} else {
4505 					*(uint8_t *)a = 0;
4506 					a += sizeof (uint64_t);
4507 				}
4508 
4509 				if (!dtrace_vcanload(
4510 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4511 				    mstate, vstate))
4512 					break;
4513 
4514 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4515 				    (void *)a, &v->dtdv_type);
4516 				break;
4517 			}
4518 
4519 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4520 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4521 			tmp[CPU->cpu_id] = regs[rd];
4522 			break;
4523 
4524 		case DIF_OP_LDTS: {
4525 			dtrace_dynvar_t *dvar;
4526 			dtrace_key_t *key;
4527 
4528 			id = DIF_INSTR_VAR(instr);
4529 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4530 			id -= DIF_VAR_OTHER_UBASE;
4531 			v = &vstate->dtvs_tlocals[id];
4532 
4533 			key = &tupregs[DIF_DTR_NREGS];
4534 			key[0].dttk_value = (uint64_t)id;
4535 			key[0].dttk_size = 0;
4536 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4537 			key[1].dttk_size = 0;
4538 
4539 			dvar = dtrace_dynvar(dstate, 2, key,
4540 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4541 			    mstate, vstate);
4542 
4543 			if (dvar == NULL) {
4544 				regs[rd] = 0;
4545 				break;
4546 			}
4547 
4548 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4549 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4550 			} else {
4551 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4552 			}
4553 
4554 			break;
4555 		}
4556 
4557 		case DIF_OP_STTS: {
4558 			dtrace_dynvar_t *dvar;
4559 			dtrace_key_t *key;
4560 
4561 			id = DIF_INSTR_VAR(instr);
4562 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4563 			id -= DIF_VAR_OTHER_UBASE;
4564 
4565 			key = &tupregs[DIF_DTR_NREGS];
4566 			key[0].dttk_value = (uint64_t)id;
4567 			key[0].dttk_size = 0;
4568 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4569 			key[1].dttk_size = 0;
4570 			v = &vstate->dtvs_tlocals[id];
4571 
4572 			dvar = dtrace_dynvar(dstate, 2, key,
4573 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4574 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4575 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4576 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4577 
4578 			/*
4579 			 * Given that we're storing to thread-local data,
4580 			 * we need to flush our predicate cache.
4581 			 */
4582 			curthread->t_predcache = NULL;
4583 
4584 			if (dvar == NULL)
4585 				break;
4586 
4587 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4588 				if (!dtrace_vcanload(
4589 				    (void *)(uintptr_t)regs[rd],
4590 				    &v->dtdv_type, mstate, vstate))
4591 					break;
4592 
4593 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4594 				    dvar->dtdv_data, &v->dtdv_type);
4595 			} else {
4596 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4597 			}
4598 
4599 			break;
4600 		}
4601 
4602 		case DIF_OP_SRA:
4603 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4604 			break;
4605 
4606 		case DIF_OP_CALL:
4607 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4608 			    regs, tupregs, ttop, mstate, state);
4609 			break;
4610 
4611 		case DIF_OP_PUSHTR:
4612 			if (ttop == DIF_DTR_NREGS) {
4613 				*flags |= CPU_DTRACE_TUPOFLOW;
4614 				break;
4615 			}
4616 
4617 			if (r1 == DIF_TYPE_STRING) {
4618 				/*
4619 				 * If this is a string type and the size is 0,
4620 				 * we'll use the system-wide default string
4621 				 * size.  Note that we are _not_ looking at
4622 				 * the value of the DTRACEOPT_STRSIZE option;
4623 				 * had this been set, we would expect to have
4624 				 * a non-zero size value in the "pushtr".
4625 				 */
4626 				tupregs[ttop].dttk_size =
4627 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4628 				    regs[r2] ? regs[r2] :
4629 				    dtrace_strsize_default) + 1;
4630 			} else {
4631 				tupregs[ttop].dttk_size = regs[r2];
4632 			}
4633 
4634 			tupregs[ttop++].dttk_value = regs[rd];
4635 			break;
4636 
4637 		case DIF_OP_PUSHTV:
4638 			if (ttop == DIF_DTR_NREGS) {
4639 				*flags |= CPU_DTRACE_TUPOFLOW;
4640 				break;
4641 			}
4642 
4643 			tupregs[ttop].dttk_value = regs[rd];
4644 			tupregs[ttop++].dttk_size = 0;
4645 			break;
4646 
4647 		case DIF_OP_POPTS:
4648 			if (ttop != 0)
4649 				ttop--;
4650 			break;
4651 
4652 		case DIF_OP_FLUSHTS:
4653 			ttop = 0;
4654 			break;
4655 
4656 		case DIF_OP_LDGAA:
4657 		case DIF_OP_LDTAA: {
4658 			dtrace_dynvar_t *dvar;
4659 			dtrace_key_t *key = tupregs;
4660 			uint_t nkeys = ttop;
4661 
4662 			id = DIF_INSTR_VAR(instr);
4663 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4664 			id -= DIF_VAR_OTHER_UBASE;
4665 
4666 			key[nkeys].dttk_value = (uint64_t)id;
4667 			key[nkeys++].dttk_size = 0;
4668 
4669 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4670 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4671 				key[nkeys++].dttk_size = 0;
4672 				v = &vstate->dtvs_tlocals[id];
4673 			} else {
4674 				v = &vstate->dtvs_globals[id]->dtsv_var;
4675 			}
4676 
4677 			dvar = dtrace_dynvar(dstate, nkeys, key,
4678 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4679 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4680 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
4681 
4682 			if (dvar == NULL) {
4683 				regs[rd] = 0;
4684 				break;
4685 			}
4686 
4687 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4688 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4689 			} else {
4690 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4691 			}
4692 
4693 			break;
4694 		}
4695 
4696 		case DIF_OP_STGAA:
4697 		case DIF_OP_STTAA: {
4698 			dtrace_dynvar_t *dvar;
4699 			dtrace_key_t *key = tupregs;
4700 			uint_t nkeys = ttop;
4701 
4702 			id = DIF_INSTR_VAR(instr);
4703 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4704 			id -= DIF_VAR_OTHER_UBASE;
4705 
4706 			key[nkeys].dttk_value = (uint64_t)id;
4707 			key[nkeys++].dttk_size = 0;
4708 
4709 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4710 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4711 				key[nkeys++].dttk_size = 0;
4712 				v = &vstate->dtvs_tlocals[id];
4713 			} else {
4714 				v = &vstate->dtvs_globals[id]->dtsv_var;
4715 			}
4716 
4717 			dvar = dtrace_dynvar(dstate, nkeys, key,
4718 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4719 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4720 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4721 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4722 
4723 			if (dvar == NULL)
4724 				break;
4725 
4726 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4727 				if (!dtrace_vcanload(
4728 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4729 				    mstate, vstate))
4730 					break;
4731 
4732 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4733 				    dvar->dtdv_data, &v->dtdv_type);
4734 			} else {
4735 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4736 			}
4737 
4738 			break;
4739 		}
4740 
4741 		case DIF_OP_ALLOCS: {
4742 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4743 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4744 
4745 			/*
4746 			 * Rounding up the user allocation size could have
4747 			 * overflowed large, bogus allocations (like -1ULL) to
4748 			 * 0.
4749 			 */
4750 			if (size < regs[r1] ||
4751 			    !DTRACE_INSCRATCH(mstate, size)) {
4752 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4753 				regs[rd] = NULL;
4754 				break;
4755 			}
4756 
4757 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
4758 			mstate->dtms_scratch_ptr += size;
4759 			regs[rd] = ptr;
4760 			break;
4761 		}
4762 
4763 		case DIF_OP_COPYS:
4764 			if (!dtrace_canstore(regs[rd], regs[r2],
4765 			    mstate, vstate)) {
4766 				*flags |= CPU_DTRACE_BADADDR;
4767 				*illval = regs[rd];
4768 				break;
4769 			}
4770 
4771 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
4772 				break;
4773 
4774 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4775 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4776 			break;
4777 
4778 		case DIF_OP_STB:
4779 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4780 				*flags |= CPU_DTRACE_BADADDR;
4781 				*illval = regs[rd];
4782 				break;
4783 			}
4784 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4785 			break;
4786 
4787 		case DIF_OP_STH:
4788 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4789 				*flags |= CPU_DTRACE_BADADDR;
4790 				*illval = regs[rd];
4791 				break;
4792 			}
4793 			if (regs[rd] & 1) {
4794 				*flags |= CPU_DTRACE_BADALIGN;
4795 				*illval = regs[rd];
4796 				break;
4797 			}
4798 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4799 			break;
4800 
4801 		case DIF_OP_STW:
4802 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4803 				*flags |= CPU_DTRACE_BADADDR;
4804 				*illval = regs[rd];
4805 				break;
4806 			}
4807 			if (regs[rd] & 3) {
4808 				*flags |= CPU_DTRACE_BADALIGN;
4809 				*illval = regs[rd];
4810 				break;
4811 			}
4812 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4813 			break;
4814 
4815 		case DIF_OP_STX:
4816 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4817 				*flags |= CPU_DTRACE_BADADDR;
4818 				*illval = regs[rd];
4819 				break;
4820 			}
4821 			if (regs[rd] & 7) {
4822 				*flags |= CPU_DTRACE_BADALIGN;
4823 				*illval = regs[rd];
4824 				break;
4825 			}
4826 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4827 			break;
4828 		}
4829 	}
4830 
4831 	if (!(*flags & CPU_DTRACE_FAULT))
4832 		return (rval);
4833 
4834 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4835 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4836 
4837 	return (0);
4838 }
4839 
4840 static void
4841 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4842 {
4843 	dtrace_probe_t *probe = ecb->dte_probe;
4844 	dtrace_provider_t *prov = probe->dtpr_provider;
4845 	char c[DTRACE_FULLNAMELEN + 80], *str;
4846 	char *msg = "dtrace: breakpoint action at probe ";
4847 	char *ecbmsg = " (ecb ";
4848 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4849 	uintptr_t val = (uintptr_t)ecb;
4850 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4851 
4852 	if (dtrace_destructive_disallow)
4853 		return;
4854 
4855 	/*
4856 	 * It's impossible to be taking action on the NULL probe.
4857 	 */
4858 	ASSERT(probe != NULL);
4859 
4860 	/*
4861 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4862 	 * print the provider name, module name, function name and name of
4863 	 * the probe, along with the hex address of the ECB with the breakpoint
4864 	 * action -- all of which we must place in the character buffer by
4865 	 * hand.
4866 	 */
4867 	while (*msg != '\0')
4868 		c[i++] = *msg++;
4869 
4870 	for (str = prov->dtpv_name; *str != '\0'; str++)
4871 		c[i++] = *str;
4872 	c[i++] = ':';
4873 
4874 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4875 		c[i++] = *str;
4876 	c[i++] = ':';
4877 
4878 	for (str = probe->dtpr_func; *str != '\0'; str++)
4879 		c[i++] = *str;
4880 	c[i++] = ':';
4881 
4882 	for (str = probe->dtpr_name; *str != '\0'; str++)
4883 		c[i++] = *str;
4884 
4885 	while (*ecbmsg != '\0')
4886 		c[i++] = *ecbmsg++;
4887 
4888 	while (shift >= 0) {
4889 		mask = (uintptr_t)0xf << shift;
4890 
4891 		if (val >= ((uintptr_t)1 << shift))
4892 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4893 		shift -= 4;
4894 	}
4895 
4896 	c[i++] = ')';
4897 	c[i] = '\0';
4898 
4899 	debug_enter(c);
4900 }
4901 
4902 static void
4903 dtrace_action_panic(dtrace_ecb_t *ecb)
4904 {
4905 	dtrace_probe_t *probe = ecb->dte_probe;
4906 
4907 	/*
4908 	 * It's impossible to be taking action on the NULL probe.
4909 	 */
4910 	ASSERT(probe != NULL);
4911 
4912 	if (dtrace_destructive_disallow)
4913 		return;
4914 
4915 	if (dtrace_panicked != NULL)
4916 		return;
4917 
4918 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4919 		return;
4920 
4921 	/*
4922 	 * We won the right to panic.  (We want to be sure that only one
4923 	 * thread calls panic() from dtrace_probe(), and that panic() is
4924 	 * called exactly once.)
4925 	 */
4926 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4927 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4928 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4929 }
4930 
4931 static void
4932 dtrace_action_raise(uint64_t sig)
4933 {
4934 	if (dtrace_destructive_disallow)
4935 		return;
4936 
4937 	if (sig >= NSIG) {
4938 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4939 		return;
4940 	}
4941 
4942 	/*
4943 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4944 	 * invocations of the raise() action.
4945 	 */
4946 	if (curthread->t_dtrace_sig == 0)
4947 		curthread->t_dtrace_sig = (uint8_t)sig;
4948 
4949 	curthread->t_sig_check = 1;
4950 	aston(curthread);
4951 }
4952 
4953 static void
4954 dtrace_action_stop(void)
4955 {
4956 	if (dtrace_destructive_disallow)
4957 		return;
4958 
4959 	if (!curthread->t_dtrace_stop) {
4960 		curthread->t_dtrace_stop = 1;
4961 		curthread->t_sig_check = 1;
4962 		aston(curthread);
4963 	}
4964 }
4965 
4966 static void
4967 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4968 {
4969 	hrtime_t now;
4970 	volatile uint16_t *flags;
4971 	cpu_t *cpu = CPU;
4972 
4973 	if (dtrace_destructive_disallow)
4974 		return;
4975 
4976 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4977 
4978 	now = dtrace_gethrtime();
4979 
4980 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4981 		/*
4982 		 * We need to advance the mark to the current time.
4983 		 */
4984 		cpu->cpu_dtrace_chillmark = now;
4985 		cpu->cpu_dtrace_chilled = 0;
4986 	}
4987 
4988 	/*
4989 	 * Now check to see if the requested chill time would take us over
4990 	 * the maximum amount of time allowed in the chill interval.  (Or
4991 	 * worse, if the calculation itself induces overflow.)
4992 	 */
4993 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4994 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4995 		*flags |= CPU_DTRACE_ILLOP;
4996 		return;
4997 	}
4998 
4999 	while (dtrace_gethrtime() - now < val)
5000 		continue;
5001 
5002 	/*
5003 	 * Normally, we assure that the value of the variable "timestamp" does
5004 	 * not change within an ECB.  The presence of chill() represents an
5005 	 * exception to this rule, however.
5006 	 */
5007 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5008 	cpu->cpu_dtrace_chilled += val;
5009 }
5010 
5011 static void
5012 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5013     uint64_t *buf, uint64_t arg)
5014 {
5015 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5016 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5017 	uint64_t *pcs = &buf[1], *fps;
5018 	char *str = (char *)&pcs[nframes];
5019 	int size, offs = 0, i, j;
5020 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5021 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5022 	char *sym;
5023 
5024 	/*
5025 	 * Should be taking a faster path if string space has not been
5026 	 * allocated.
5027 	 */
5028 	ASSERT(strsize != 0);
5029 
5030 	/*
5031 	 * We will first allocate some temporary space for the frame pointers.
5032 	 */
5033 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5034 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5035 	    (nframes * sizeof (uint64_t));
5036 
5037 	if (!DTRACE_INSCRATCH(mstate, size)) {
5038 		/*
5039 		 * Not enough room for our frame pointers -- need to indicate
5040 		 * that we ran out of scratch space.
5041 		 */
5042 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5043 		return;
5044 	}
5045 
5046 	mstate->dtms_scratch_ptr += size;
5047 	saved = mstate->dtms_scratch_ptr;
5048 
5049 	/*
5050 	 * Now get a stack with both program counters and frame pointers.
5051 	 */
5052 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5053 	dtrace_getufpstack(buf, fps, nframes + 1);
5054 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5055 
5056 	/*
5057 	 * If that faulted, we're cooked.
5058 	 */
5059 	if (*flags & CPU_DTRACE_FAULT)
5060 		goto out;
5061 
5062 	/*
5063 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5064 	 * each iteration, we restore the scratch pointer.
5065 	 */
5066 	for (i = 0; i < nframes; i++) {
5067 		mstate->dtms_scratch_ptr = saved;
5068 
5069 		if (offs >= strsize)
5070 			break;
5071 
5072 		sym = (char *)(uintptr_t)dtrace_helper(
5073 		    DTRACE_HELPER_ACTION_USTACK,
5074 		    mstate, state, pcs[i], fps[i]);
5075 
5076 		/*
5077 		 * If we faulted while running the helper, we're going to
5078 		 * clear the fault and null out the corresponding string.
5079 		 */
5080 		if (*flags & CPU_DTRACE_FAULT) {
5081 			*flags &= ~CPU_DTRACE_FAULT;
5082 			str[offs++] = '\0';
5083 			continue;
5084 		}
5085 
5086 		if (sym == NULL) {
5087 			str[offs++] = '\0';
5088 			continue;
5089 		}
5090 
5091 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5092 
5093 		/*
5094 		 * Now copy in the string that the helper returned to us.
5095 		 */
5096 		for (j = 0; offs + j < strsize; j++) {
5097 			if ((str[offs + j] = sym[j]) == '\0')
5098 				break;
5099 		}
5100 
5101 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5102 
5103 		offs += j + 1;
5104 	}
5105 
5106 	if (offs >= strsize) {
5107 		/*
5108 		 * If we didn't have room for all of the strings, we don't
5109 		 * abort processing -- this needn't be a fatal error -- but we
5110 		 * still want to increment a counter (dts_stkstroverflows) to
5111 		 * allow this condition to be warned about.  (If this is from
5112 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5113 		 */
5114 		dtrace_error(&state->dts_stkstroverflows);
5115 	}
5116 
5117 	while (offs < strsize)
5118 		str[offs++] = '\0';
5119 
5120 out:
5121 	mstate->dtms_scratch_ptr = old;
5122 }
5123 
5124 /*
5125  * If you're looking for the epicenter of DTrace, you just found it.  This
5126  * is the function called by the provider to fire a probe -- from which all
5127  * subsequent probe-context DTrace activity emanates.
5128  */
5129 void
5130 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5131     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5132 {
5133 	processorid_t cpuid;
5134 	dtrace_icookie_t cookie;
5135 	dtrace_probe_t *probe;
5136 	dtrace_mstate_t mstate;
5137 	dtrace_ecb_t *ecb;
5138 	dtrace_action_t *act;
5139 	intptr_t offs;
5140 	size_t size;
5141 	int vtime, onintr;
5142 	volatile uint16_t *flags;
5143 	hrtime_t now;
5144 
5145 	/*
5146 	 * Kick out immediately if this CPU is still being born (in which case
5147 	 * curthread will be set to -1)
5148 	 */
5149 	if ((uintptr_t)curthread & 1)
5150 		return;
5151 
5152 	cookie = dtrace_interrupt_disable();
5153 	probe = dtrace_probes[id - 1];
5154 	cpuid = CPU->cpu_id;
5155 	onintr = CPU_ON_INTR(CPU);
5156 
5157 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5158 	    probe->dtpr_predcache == curthread->t_predcache) {
5159 		/*
5160 		 * We have hit in the predicate cache; we know that
5161 		 * this predicate would evaluate to be false.
5162 		 */
5163 		dtrace_interrupt_enable(cookie);
5164 		return;
5165 	}
5166 
5167 	if (panic_quiesce) {
5168 		/*
5169 		 * We don't trace anything if we're panicking.
5170 		 */
5171 		dtrace_interrupt_enable(cookie);
5172 		return;
5173 	}
5174 
5175 	now = dtrace_gethrtime();
5176 	vtime = dtrace_vtime_references != 0;
5177 
5178 	if (vtime && curthread->t_dtrace_start)
5179 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5180 
5181 	mstate.dtms_difo = NULL;
5182 	mstate.dtms_probe = probe;
5183 	mstate.dtms_strtok = NULL;
5184 	mstate.dtms_arg[0] = arg0;
5185 	mstate.dtms_arg[1] = arg1;
5186 	mstate.dtms_arg[2] = arg2;
5187 	mstate.dtms_arg[3] = arg3;
5188 	mstate.dtms_arg[4] = arg4;
5189 
5190 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5191 
5192 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5193 		dtrace_predicate_t *pred = ecb->dte_predicate;
5194 		dtrace_state_t *state = ecb->dte_state;
5195 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5196 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5197 		dtrace_vstate_t *vstate = &state->dts_vstate;
5198 		dtrace_provider_t *prov = probe->dtpr_provider;
5199 		int committed = 0;
5200 		caddr_t tomax;
5201 
5202 		/*
5203 		 * A little subtlety with the following (seemingly innocuous)
5204 		 * declaration of the automatic 'val':  by looking at the
5205 		 * code, you might think that it could be declared in the
5206 		 * action processing loop, below.  (That is, it's only used in
5207 		 * the action processing loop.)  However, it must be declared
5208 		 * out of that scope because in the case of DIF expression
5209 		 * arguments to aggregating actions, one iteration of the
5210 		 * action loop will use the last iteration's value.
5211 		 */
5212 #ifdef lint
5213 		uint64_t val = 0;
5214 #else
5215 		uint64_t val;
5216 #endif
5217 
5218 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5219 		*flags &= ~CPU_DTRACE_ERROR;
5220 
5221 		if (prov == dtrace_provider) {
5222 			/*
5223 			 * If dtrace itself is the provider of this probe,
5224 			 * we're only going to continue processing the ECB if
5225 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5226 			 * creating state.  (This prevents disjoint consumers
5227 			 * from seeing one another's metaprobes.)
5228 			 */
5229 			if (arg0 != (uint64_t)(uintptr_t)state)
5230 				continue;
5231 		}
5232 
5233 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5234 			/*
5235 			 * We're not currently active.  If our provider isn't
5236 			 * the dtrace pseudo provider, we're not interested.
5237 			 */
5238 			if (prov != dtrace_provider)
5239 				continue;
5240 
5241 			/*
5242 			 * Now we must further check if we are in the BEGIN
5243 			 * probe.  If we are, we will only continue processing
5244 			 * if we're still in WARMUP -- if one BEGIN enabling
5245 			 * has invoked the exit() action, we don't want to
5246 			 * evaluate subsequent BEGIN enablings.
5247 			 */
5248 			if (probe->dtpr_id == dtrace_probeid_begin &&
5249 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5250 				ASSERT(state->dts_activity ==
5251 				    DTRACE_ACTIVITY_DRAINING);
5252 				continue;
5253 			}
5254 		}
5255 
5256 		if (ecb->dte_cond) {
5257 			/*
5258 			 * If the dte_cond bits indicate that this
5259 			 * consumer is only allowed to see user-mode firings
5260 			 * of this probe, call the provider's dtps_usermode()
5261 			 * entry point to check that the probe was fired
5262 			 * while in a user context. Skip this ECB if that's
5263 			 * not the case.
5264 			 */
5265 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5266 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5267 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5268 				continue;
5269 
5270 			/*
5271 			 * This is more subtle than it looks. We have to be
5272 			 * absolutely certain that CRED() isn't going to
5273 			 * change out from under us so it's only legit to
5274 			 * examine that structure if we're in constrained
5275 			 * situations. Currently, the only times we'll this
5276 			 * check is if a non-super-user has enabled the
5277 			 * profile or syscall providers -- providers that
5278 			 * allow visibility of all processes. For the
5279 			 * profile case, the check above will ensure that
5280 			 * we're examining a user context.
5281 			 */
5282 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5283 				cred_t *cr;
5284 				cred_t *s_cr =
5285 				    ecb->dte_state->dts_cred.dcr_cred;
5286 				proc_t *proc;
5287 
5288 				ASSERT(s_cr != NULL);
5289 
5290 				if ((cr = CRED()) == NULL ||
5291 				    s_cr->cr_uid != cr->cr_uid ||
5292 				    s_cr->cr_uid != cr->cr_ruid ||
5293 				    s_cr->cr_uid != cr->cr_suid ||
5294 				    s_cr->cr_gid != cr->cr_gid ||
5295 				    s_cr->cr_gid != cr->cr_rgid ||
5296 				    s_cr->cr_gid != cr->cr_sgid ||
5297 				    (proc = ttoproc(curthread)) == NULL ||
5298 				    (proc->p_flag & SNOCD))
5299 					continue;
5300 			}
5301 
5302 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5303 				cred_t *cr;
5304 				cred_t *s_cr =
5305 				    ecb->dte_state->dts_cred.dcr_cred;
5306 
5307 				ASSERT(s_cr != NULL);
5308 
5309 				if ((cr = CRED()) == NULL ||
5310 				    s_cr->cr_zone->zone_id !=
5311 				    cr->cr_zone->zone_id)
5312 					continue;
5313 			}
5314 		}
5315 
5316 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5317 			/*
5318 			 * We seem to be dead.  Unless we (a) have kernel
5319 			 * destructive permissions (b) have expicitly enabled
5320 			 * destructive actions and (c) destructive actions have
5321 			 * not been disabled, we're going to transition into
5322 			 * the KILLED state, from which no further processing
5323 			 * on this state will be performed.
5324 			 */
5325 			if (!dtrace_priv_kernel_destructive(state) ||
5326 			    !state->dts_cred.dcr_destructive ||
5327 			    dtrace_destructive_disallow) {
5328 				void *activity = &state->dts_activity;
5329 				dtrace_activity_t current;
5330 
5331 				do {
5332 					current = state->dts_activity;
5333 				} while (dtrace_cas32(activity, current,
5334 				    DTRACE_ACTIVITY_KILLED) != current);
5335 
5336 				continue;
5337 			}
5338 		}
5339 
5340 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5341 		    ecb->dte_alignment, state, &mstate)) < 0)
5342 			continue;
5343 
5344 		tomax = buf->dtb_tomax;
5345 		ASSERT(tomax != NULL);
5346 
5347 		if (ecb->dte_size != 0)
5348 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5349 
5350 		mstate.dtms_epid = ecb->dte_epid;
5351 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5352 
5353 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5354 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5355 		else
5356 			mstate.dtms_access = 0;
5357 
5358 		if (pred != NULL) {
5359 			dtrace_difo_t *dp = pred->dtp_difo;
5360 			int rval;
5361 
5362 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5363 
5364 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5365 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5366 
5367 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5368 					/*
5369 					 * Update the predicate cache...
5370 					 */
5371 					ASSERT(cid == pred->dtp_cacheid);
5372 					curthread->t_predcache = cid;
5373 				}
5374 
5375 				continue;
5376 			}
5377 		}
5378 
5379 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5380 		    act != NULL; act = act->dta_next) {
5381 			size_t valoffs;
5382 			dtrace_difo_t *dp;
5383 			dtrace_recdesc_t *rec = &act->dta_rec;
5384 
5385 			size = rec->dtrd_size;
5386 			valoffs = offs + rec->dtrd_offset;
5387 
5388 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5389 				uint64_t v = 0xbad;
5390 				dtrace_aggregation_t *agg;
5391 
5392 				agg = (dtrace_aggregation_t *)act;
5393 
5394 				if ((dp = act->dta_difo) != NULL)
5395 					v = dtrace_dif_emulate(dp,
5396 					    &mstate, vstate, state);
5397 
5398 				if (*flags & CPU_DTRACE_ERROR)
5399 					continue;
5400 
5401 				/*
5402 				 * Note that we always pass the expression
5403 				 * value from the previous iteration of the
5404 				 * action loop.  This value will only be used
5405 				 * if there is an expression argument to the
5406 				 * aggregating action, denoted by the
5407 				 * dtag_hasarg field.
5408 				 */
5409 				dtrace_aggregate(agg, buf,
5410 				    offs, aggbuf, v, val);
5411 				continue;
5412 			}
5413 
5414 			switch (act->dta_kind) {
5415 			case DTRACEACT_STOP:
5416 				if (dtrace_priv_proc_destructive(state))
5417 					dtrace_action_stop();
5418 				continue;
5419 
5420 			case DTRACEACT_BREAKPOINT:
5421 				if (dtrace_priv_kernel_destructive(state))
5422 					dtrace_action_breakpoint(ecb);
5423 				continue;
5424 
5425 			case DTRACEACT_PANIC:
5426 				if (dtrace_priv_kernel_destructive(state))
5427 					dtrace_action_panic(ecb);
5428 				continue;
5429 
5430 			case DTRACEACT_STACK:
5431 				if (!dtrace_priv_kernel(state))
5432 					continue;
5433 
5434 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5435 				    size / sizeof (pc_t), probe->dtpr_aframes,
5436 				    DTRACE_ANCHORED(probe) ? NULL :
5437 				    (uint32_t *)arg0);
5438 
5439 				continue;
5440 
5441 			case DTRACEACT_JSTACK:
5442 			case DTRACEACT_USTACK:
5443 				if (!dtrace_priv_proc(state))
5444 					continue;
5445 
5446 				/*
5447 				 * See comment in DIF_VAR_PID.
5448 				 */
5449 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5450 				    CPU_ON_INTR(CPU)) {
5451 					int depth = DTRACE_USTACK_NFRAMES(
5452 					    rec->dtrd_arg) + 1;
5453 
5454 					dtrace_bzero((void *)(tomax + valoffs),
5455 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5456 					    + depth * sizeof (uint64_t));
5457 
5458 					continue;
5459 				}
5460 
5461 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5462 				    curproc->p_dtrace_helpers != NULL) {
5463 					/*
5464 					 * This is the slow path -- we have
5465 					 * allocated string space, and we're
5466 					 * getting the stack of a process that
5467 					 * has helpers.  Call into a separate
5468 					 * routine to perform this processing.
5469 					 */
5470 					dtrace_action_ustack(&mstate, state,
5471 					    (uint64_t *)(tomax + valoffs),
5472 					    rec->dtrd_arg);
5473 					continue;
5474 				}
5475 
5476 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5477 				dtrace_getupcstack((uint64_t *)
5478 				    (tomax + valoffs),
5479 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5480 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5481 				continue;
5482 
5483 			default:
5484 				break;
5485 			}
5486 
5487 			dp = act->dta_difo;
5488 			ASSERT(dp != NULL);
5489 
5490 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5491 
5492 			if (*flags & CPU_DTRACE_ERROR)
5493 				continue;
5494 
5495 			switch (act->dta_kind) {
5496 			case DTRACEACT_SPECULATE:
5497 				ASSERT(buf == &state->dts_buffer[cpuid]);
5498 				buf = dtrace_speculation_buffer(state,
5499 				    cpuid, val);
5500 
5501 				if (buf == NULL) {
5502 					*flags |= CPU_DTRACE_DROP;
5503 					continue;
5504 				}
5505 
5506 				offs = dtrace_buffer_reserve(buf,
5507 				    ecb->dte_needed, ecb->dte_alignment,
5508 				    state, NULL);
5509 
5510 				if (offs < 0) {
5511 					*flags |= CPU_DTRACE_DROP;
5512 					continue;
5513 				}
5514 
5515 				tomax = buf->dtb_tomax;
5516 				ASSERT(tomax != NULL);
5517 
5518 				if (ecb->dte_size != 0)
5519 					DTRACE_STORE(uint32_t, tomax, offs,
5520 					    ecb->dte_epid);
5521 				continue;
5522 
5523 			case DTRACEACT_CHILL:
5524 				if (dtrace_priv_kernel_destructive(state))
5525 					dtrace_action_chill(&mstate, val);
5526 				continue;
5527 
5528 			case DTRACEACT_RAISE:
5529 				if (dtrace_priv_proc_destructive(state))
5530 					dtrace_action_raise(val);
5531 				continue;
5532 
5533 			case DTRACEACT_COMMIT:
5534 				ASSERT(!committed);
5535 
5536 				/*
5537 				 * We need to commit our buffer state.
5538 				 */
5539 				if (ecb->dte_size)
5540 					buf->dtb_offset = offs + ecb->dte_size;
5541 				buf = &state->dts_buffer[cpuid];
5542 				dtrace_speculation_commit(state, cpuid, val);
5543 				committed = 1;
5544 				continue;
5545 
5546 			case DTRACEACT_DISCARD:
5547 				dtrace_speculation_discard(state, cpuid, val);
5548 				continue;
5549 
5550 			case DTRACEACT_DIFEXPR:
5551 			case DTRACEACT_LIBACT:
5552 			case DTRACEACT_PRINTF:
5553 			case DTRACEACT_PRINTA:
5554 			case DTRACEACT_SYSTEM:
5555 			case DTRACEACT_FREOPEN:
5556 				break;
5557 
5558 			case DTRACEACT_SYM:
5559 			case DTRACEACT_MOD:
5560 				if (!dtrace_priv_kernel(state))
5561 					continue;
5562 				break;
5563 
5564 			case DTRACEACT_USYM:
5565 			case DTRACEACT_UMOD:
5566 			case DTRACEACT_UADDR: {
5567 				struct pid *pid = curthread->t_procp->p_pidp;
5568 
5569 				if (!dtrace_priv_proc(state))
5570 					continue;
5571 
5572 				DTRACE_STORE(uint64_t, tomax,
5573 				    valoffs, (uint64_t)pid->pid_id);
5574 				DTRACE_STORE(uint64_t, tomax,
5575 				    valoffs + sizeof (uint64_t), val);
5576 
5577 				continue;
5578 			}
5579 
5580 			case DTRACEACT_EXIT: {
5581 				/*
5582 				 * For the exit action, we are going to attempt
5583 				 * to atomically set our activity to be
5584 				 * draining.  If this fails (either because
5585 				 * another CPU has beat us to the exit action,
5586 				 * or because our current activity is something
5587 				 * other than ACTIVE or WARMUP), we will
5588 				 * continue.  This assures that the exit action
5589 				 * can be successfully recorded at most once
5590 				 * when we're in the ACTIVE state.  If we're
5591 				 * encountering the exit() action while in
5592 				 * COOLDOWN, however, we want to honor the new
5593 				 * status code.  (We know that we're the only
5594 				 * thread in COOLDOWN, so there is no race.)
5595 				 */
5596 				void *activity = &state->dts_activity;
5597 				dtrace_activity_t current = state->dts_activity;
5598 
5599 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5600 					break;
5601 
5602 				if (current != DTRACE_ACTIVITY_WARMUP)
5603 					current = DTRACE_ACTIVITY_ACTIVE;
5604 
5605 				if (dtrace_cas32(activity, current,
5606 				    DTRACE_ACTIVITY_DRAINING) != current) {
5607 					*flags |= CPU_DTRACE_DROP;
5608 					continue;
5609 				}
5610 
5611 				break;
5612 			}
5613 
5614 			default:
5615 				ASSERT(0);
5616 			}
5617 
5618 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5619 				uintptr_t end = valoffs + size;
5620 
5621 				if (!dtrace_vcanload((void *)(uintptr_t)val,
5622 				    &dp->dtdo_rtype, &mstate, vstate))
5623 					continue;
5624 
5625 				/*
5626 				 * If this is a string, we're going to only
5627 				 * load until we find the zero byte -- after
5628 				 * which we'll store zero bytes.
5629 				 */
5630 				if (dp->dtdo_rtype.dtdt_kind ==
5631 				    DIF_TYPE_STRING) {
5632 					char c = '\0' + 1;
5633 					int intuple = act->dta_intuple;
5634 					size_t s;
5635 
5636 					for (s = 0; s < size; s++) {
5637 						if (c != '\0')
5638 							c = dtrace_load8(val++);
5639 
5640 						DTRACE_STORE(uint8_t, tomax,
5641 						    valoffs++, c);
5642 
5643 						if (c == '\0' && intuple)
5644 							break;
5645 					}
5646 
5647 					continue;
5648 				}
5649 
5650 				while (valoffs < end) {
5651 					DTRACE_STORE(uint8_t, tomax, valoffs++,
5652 					    dtrace_load8(val++));
5653 				}
5654 
5655 				continue;
5656 			}
5657 
5658 			switch (size) {
5659 			case 0:
5660 				break;
5661 
5662 			case sizeof (uint8_t):
5663 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
5664 				break;
5665 			case sizeof (uint16_t):
5666 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
5667 				break;
5668 			case sizeof (uint32_t):
5669 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5670 				break;
5671 			case sizeof (uint64_t):
5672 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5673 				break;
5674 			default:
5675 				/*
5676 				 * Any other size should have been returned by
5677 				 * reference, not by value.
5678 				 */
5679 				ASSERT(0);
5680 				break;
5681 			}
5682 		}
5683 
5684 		if (*flags & CPU_DTRACE_DROP)
5685 			continue;
5686 
5687 		if (*flags & CPU_DTRACE_FAULT) {
5688 			int ndx;
5689 			dtrace_action_t *err;
5690 
5691 			buf->dtb_errors++;
5692 
5693 			if (probe->dtpr_id == dtrace_probeid_error) {
5694 				/*
5695 				 * There's nothing we can do -- we had an
5696 				 * error on the error probe.  We bump an
5697 				 * error counter to at least indicate that
5698 				 * this condition happened.
5699 				 */
5700 				dtrace_error(&state->dts_dblerrors);
5701 				continue;
5702 			}
5703 
5704 			if (vtime) {
5705 				/*
5706 				 * Before recursing on dtrace_probe(), we
5707 				 * need to explicitly clear out our start
5708 				 * time to prevent it from being accumulated
5709 				 * into t_dtrace_vtime.
5710 				 */
5711 				curthread->t_dtrace_start = 0;
5712 			}
5713 
5714 			/*
5715 			 * Iterate over the actions to figure out which action
5716 			 * we were processing when we experienced the error.
5717 			 * Note that act points _past_ the faulting action; if
5718 			 * act is ecb->dte_action, the fault was in the
5719 			 * predicate, if it's ecb->dte_action->dta_next it's
5720 			 * in action #1, and so on.
5721 			 */
5722 			for (err = ecb->dte_action, ndx = 0;
5723 			    err != act; err = err->dta_next, ndx++)
5724 				continue;
5725 
5726 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5727 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5728 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5729 			    cpu_core[cpuid].cpuc_dtrace_illval);
5730 
5731 			continue;
5732 		}
5733 
5734 		if (!committed)
5735 			buf->dtb_offset = offs + ecb->dte_size;
5736 	}
5737 
5738 	if (vtime)
5739 		curthread->t_dtrace_start = dtrace_gethrtime();
5740 
5741 	dtrace_interrupt_enable(cookie);
5742 }
5743 
5744 /*
5745  * DTrace Probe Hashing Functions
5746  *
5747  * The functions in this section (and indeed, the functions in remaining
5748  * sections) are not _called_ from probe context.  (Any exceptions to this are
5749  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5750  * DTrace framework to look-up probes in, add probes to and remove probes from
5751  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5752  * probe tuple -- allowing for fast lookups, regardless of what was
5753  * specified.)
5754  */
5755 static uint_t
5756 dtrace_hash_str(char *p)
5757 {
5758 	unsigned int g;
5759 	uint_t hval = 0;
5760 
5761 	while (*p) {
5762 		hval = (hval << 4) + *p++;
5763 		if ((g = (hval & 0xf0000000)) != 0)
5764 			hval ^= g >> 24;
5765 		hval &= ~g;
5766 	}
5767 	return (hval);
5768 }
5769 
5770 static dtrace_hash_t *
5771 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5772 {
5773 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5774 
5775 	hash->dth_stroffs = stroffs;
5776 	hash->dth_nextoffs = nextoffs;
5777 	hash->dth_prevoffs = prevoffs;
5778 
5779 	hash->dth_size = 1;
5780 	hash->dth_mask = hash->dth_size - 1;
5781 
5782 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5783 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5784 
5785 	return (hash);
5786 }
5787 
5788 static void
5789 dtrace_hash_destroy(dtrace_hash_t *hash)
5790 {
5791 #ifdef DEBUG
5792 	int i;
5793 
5794 	for (i = 0; i < hash->dth_size; i++)
5795 		ASSERT(hash->dth_tab[i] == NULL);
5796 #endif
5797 
5798 	kmem_free(hash->dth_tab,
5799 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5800 	kmem_free(hash, sizeof (dtrace_hash_t));
5801 }
5802 
5803 static void
5804 dtrace_hash_resize(dtrace_hash_t *hash)
5805 {
5806 	int size = hash->dth_size, i, ndx;
5807 	int new_size = hash->dth_size << 1;
5808 	int new_mask = new_size - 1;
5809 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5810 
5811 	ASSERT((new_size & new_mask) == 0);
5812 
5813 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5814 
5815 	for (i = 0; i < size; i++) {
5816 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5817 			dtrace_probe_t *probe = bucket->dthb_chain;
5818 
5819 			ASSERT(probe != NULL);
5820 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5821 
5822 			next = bucket->dthb_next;
5823 			bucket->dthb_next = new_tab[ndx];
5824 			new_tab[ndx] = bucket;
5825 		}
5826 	}
5827 
5828 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5829 	hash->dth_tab = new_tab;
5830 	hash->dth_size = new_size;
5831 	hash->dth_mask = new_mask;
5832 }
5833 
5834 static void
5835 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5836 {
5837 	int hashval = DTRACE_HASHSTR(hash, new);
5838 	int ndx = hashval & hash->dth_mask;
5839 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5840 	dtrace_probe_t **nextp, **prevp;
5841 
5842 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5843 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5844 			goto add;
5845 	}
5846 
5847 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5848 		dtrace_hash_resize(hash);
5849 		dtrace_hash_add(hash, new);
5850 		return;
5851 	}
5852 
5853 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5854 	bucket->dthb_next = hash->dth_tab[ndx];
5855 	hash->dth_tab[ndx] = bucket;
5856 	hash->dth_nbuckets++;
5857 
5858 add:
5859 	nextp = DTRACE_HASHNEXT(hash, new);
5860 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5861 	*nextp = bucket->dthb_chain;
5862 
5863 	if (bucket->dthb_chain != NULL) {
5864 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5865 		ASSERT(*prevp == NULL);
5866 		*prevp = new;
5867 	}
5868 
5869 	bucket->dthb_chain = new;
5870 	bucket->dthb_len++;
5871 }
5872 
5873 static dtrace_probe_t *
5874 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5875 {
5876 	int hashval = DTRACE_HASHSTR(hash, template);
5877 	int ndx = hashval & hash->dth_mask;
5878 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5879 
5880 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5881 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5882 			return (bucket->dthb_chain);
5883 	}
5884 
5885 	return (NULL);
5886 }
5887 
5888 static int
5889 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5890 {
5891 	int hashval = DTRACE_HASHSTR(hash, template);
5892 	int ndx = hashval & hash->dth_mask;
5893 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5894 
5895 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5896 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5897 			return (bucket->dthb_len);
5898 	}
5899 
5900 	return (NULL);
5901 }
5902 
5903 static void
5904 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5905 {
5906 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5907 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5908 
5909 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5910 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5911 
5912 	/*
5913 	 * Find the bucket that we're removing this probe from.
5914 	 */
5915 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5916 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5917 			break;
5918 	}
5919 
5920 	ASSERT(bucket != NULL);
5921 
5922 	if (*prevp == NULL) {
5923 		if (*nextp == NULL) {
5924 			/*
5925 			 * The removed probe was the only probe on this
5926 			 * bucket; we need to remove the bucket.
5927 			 */
5928 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5929 
5930 			ASSERT(bucket->dthb_chain == probe);
5931 			ASSERT(b != NULL);
5932 
5933 			if (b == bucket) {
5934 				hash->dth_tab[ndx] = bucket->dthb_next;
5935 			} else {
5936 				while (b->dthb_next != bucket)
5937 					b = b->dthb_next;
5938 				b->dthb_next = bucket->dthb_next;
5939 			}
5940 
5941 			ASSERT(hash->dth_nbuckets > 0);
5942 			hash->dth_nbuckets--;
5943 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5944 			return;
5945 		}
5946 
5947 		bucket->dthb_chain = *nextp;
5948 	} else {
5949 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5950 	}
5951 
5952 	if (*nextp != NULL)
5953 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5954 }
5955 
5956 /*
5957  * DTrace Utility Functions
5958  *
5959  * These are random utility functions that are _not_ called from probe context.
5960  */
5961 static int
5962 dtrace_badattr(const dtrace_attribute_t *a)
5963 {
5964 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5965 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5966 	    a->dtat_class > DTRACE_CLASS_MAX);
5967 }
5968 
5969 /*
5970  * Return a duplicate copy of a string.  If the specified string is NULL,
5971  * this function returns a zero-length string.
5972  */
5973 static char *
5974 dtrace_strdup(const char *str)
5975 {
5976 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5977 
5978 	if (str != NULL)
5979 		(void) strcpy(new, str);
5980 
5981 	return (new);
5982 }
5983 
5984 #define	DTRACE_ISALPHA(c)	\
5985 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5986 
5987 static int
5988 dtrace_badname(const char *s)
5989 {
5990 	char c;
5991 
5992 	if (s == NULL || (c = *s++) == '\0')
5993 		return (0);
5994 
5995 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5996 		return (1);
5997 
5998 	while ((c = *s++) != '\0') {
5999 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6000 		    c != '-' && c != '_' && c != '.' && c != '`')
6001 			return (1);
6002 	}
6003 
6004 	return (0);
6005 }
6006 
6007 static void
6008 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6009 {
6010 	uint32_t priv;
6011 
6012 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6013 		/*
6014 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6015 		 */
6016 		priv = DTRACE_PRIV_ALL;
6017 	} else {
6018 		*uidp = crgetuid(cr);
6019 		*zoneidp = crgetzoneid(cr);
6020 
6021 		priv = 0;
6022 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6023 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6024 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6025 			priv |= DTRACE_PRIV_USER;
6026 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6027 			priv |= DTRACE_PRIV_PROC;
6028 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6029 			priv |= DTRACE_PRIV_OWNER;
6030 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6031 			priv |= DTRACE_PRIV_ZONEOWNER;
6032 	}
6033 
6034 	*privp = priv;
6035 }
6036 
6037 #ifdef DTRACE_ERRDEBUG
6038 static void
6039 dtrace_errdebug(const char *str)
6040 {
6041 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6042 	int occupied = 0;
6043 
6044 	mutex_enter(&dtrace_errlock);
6045 	dtrace_errlast = str;
6046 	dtrace_errthread = curthread;
6047 
6048 	while (occupied++ < DTRACE_ERRHASHSZ) {
6049 		if (dtrace_errhash[hval].dter_msg == str) {
6050 			dtrace_errhash[hval].dter_count++;
6051 			goto out;
6052 		}
6053 
6054 		if (dtrace_errhash[hval].dter_msg != NULL) {
6055 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6056 			continue;
6057 		}
6058 
6059 		dtrace_errhash[hval].dter_msg = str;
6060 		dtrace_errhash[hval].dter_count = 1;
6061 		goto out;
6062 	}
6063 
6064 	panic("dtrace: undersized error hash");
6065 out:
6066 	mutex_exit(&dtrace_errlock);
6067 }
6068 #endif
6069 
6070 /*
6071  * DTrace Matching Functions
6072  *
6073  * These functions are used to match groups of probes, given some elements of
6074  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6075  */
6076 static int
6077 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6078     zoneid_t zoneid)
6079 {
6080 	if (priv != DTRACE_PRIV_ALL) {
6081 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6082 		uint32_t match = priv & ppriv;
6083 
6084 		/*
6085 		 * No PRIV_DTRACE_* privileges...
6086 		 */
6087 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6088 		    DTRACE_PRIV_KERNEL)) == 0)
6089 			return (0);
6090 
6091 		/*
6092 		 * No matching bits, but there were bits to match...
6093 		 */
6094 		if (match == 0 && ppriv != 0)
6095 			return (0);
6096 
6097 		/*
6098 		 * Need to have permissions to the process, but don't...
6099 		 */
6100 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6101 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6102 			return (0);
6103 		}
6104 
6105 		/*
6106 		 * Need to be in the same zone unless we possess the
6107 		 * privilege to examine all zones.
6108 		 */
6109 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6110 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6111 			return (0);
6112 		}
6113 	}
6114 
6115 	return (1);
6116 }
6117 
6118 /*
6119  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6120  * consists of input pattern strings and an ops-vector to evaluate them.
6121  * This function returns >0 for match, 0 for no match, and <0 for error.
6122  */
6123 static int
6124 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6125     uint32_t priv, uid_t uid, zoneid_t zoneid)
6126 {
6127 	dtrace_provider_t *pvp = prp->dtpr_provider;
6128 	int rv;
6129 
6130 	if (pvp->dtpv_defunct)
6131 		return (0);
6132 
6133 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6134 		return (rv);
6135 
6136 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6137 		return (rv);
6138 
6139 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6140 		return (rv);
6141 
6142 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6143 		return (rv);
6144 
6145 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6146 		return (0);
6147 
6148 	return (rv);
6149 }
6150 
6151 /*
6152  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6153  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6154  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6155  * In addition, all of the recursion cases except for '*' matching have been
6156  * unwound.  For '*', we still implement recursive evaluation, but a depth
6157  * counter is maintained and matching is aborted if we recurse too deep.
6158  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6159  */
6160 static int
6161 dtrace_match_glob(const char *s, const char *p, int depth)
6162 {
6163 	const char *olds;
6164 	char s1, c;
6165 	int gs;
6166 
6167 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6168 		return (-1);
6169 
6170 	if (s == NULL)
6171 		s = ""; /* treat NULL as empty string */
6172 
6173 top:
6174 	olds = s;
6175 	s1 = *s++;
6176 
6177 	if (p == NULL)
6178 		return (0);
6179 
6180 	if ((c = *p++) == '\0')
6181 		return (s1 == '\0');
6182 
6183 	switch (c) {
6184 	case '[': {
6185 		int ok = 0, notflag = 0;
6186 		char lc = '\0';
6187 
6188 		if (s1 == '\0')
6189 			return (0);
6190 
6191 		if (*p == '!') {
6192 			notflag = 1;
6193 			p++;
6194 		}
6195 
6196 		if ((c = *p++) == '\0')
6197 			return (0);
6198 
6199 		do {
6200 			if (c == '-' && lc != '\0' && *p != ']') {
6201 				if ((c = *p++) == '\0')
6202 					return (0);
6203 				if (c == '\\' && (c = *p++) == '\0')
6204 					return (0);
6205 
6206 				if (notflag) {
6207 					if (s1 < lc || s1 > c)
6208 						ok++;
6209 					else
6210 						return (0);
6211 				} else if (lc <= s1 && s1 <= c)
6212 					ok++;
6213 
6214 			} else if (c == '\\' && (c = *p++) == '\0')
6215 				return (0);
6216 
6217 			lc = c; /* save left-hand 'c' for next iteration */
6218 
6219 			if (notflag) {
6220 				if (s1 != c)
6221 					ok++;
6222 				else
6223 					return (0);
6224 			} else if (s1 == c)
6225 				ok++;
6226 
6227 			if ((c = *p++) == '\0')
6228 				return (0);
6229 
6230 		} while (c != ']');
6231 
6232 		if (ok)
6233 			goto top;
6234 
6235 		return (0);
6236 	}
6237 
6238 	case '\\':
6239 		if ((c = *p++) == '\0')
6240 			return (0);
6241 		/*FALLTHRU*/
6242 
6243 	default:
6244 		if (c != s1)
6245 			return (0);
6246 		/*FALLTHRU*/
6247 
6248 	case '?':
6249 		if (s1 != '\0')
6250 			goto top;
6251 		return (0);
6252 
6253 	case '*':
6254 		while (*p == '*')
6255 			p++; /* consecutive *'s are identical to a single one */
6256 
6257 		if (*p == '\0')
6258 			return (1);
6259 
6260 		for (s = olds; *s != '\0'; s++) {
6261 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6262 				return (gs);
6263 		}
6264 
6265 		return (0);
6266 	}
6267 }
6268 
6269 /*ARGSUSED*/
6270 static int
6271 dtrace_match_string(const char *s, const char *p, int depth)
6272 {
6273 	return (s != NULL && strcmp(s, p) == 0);
6274 }
6275 
6276 /*ARGSUSED*/
6277 static int
6278 dtrace_match_nul(const char *s, const char *p, int depth)
6279 {
6280 	return (1); /* always match the empty pattern */
6281 }
6282 
6283 /*ARGSUSED*/
6284 static int
6285 dtrace_match_nonzero(const char *s, const char *p, int depth)
6286 {
6287 	return (s != NULL && s[0] != '\0');
6288 }
6289 
6290 static int
6291 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6292     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6293 {
6294 	dtrace_probe_t template, *probe;
6295 	dtrace_hash_t *hash = NULL;
6296 	int len, best = INT_MAX, nmatched = 0;
6297 	dtrace_id_t i;
6298 
6299 	ASSERT(MUTEX_HELD(&dtrace_lock));
6300 
6301 	/*
6302 	 * If the probe ID is specified in the key, just lookup by ID and
6303 	 * invoke the match callback once if a matching probe is found.
6304 	 */
6305 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6306 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6307 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6308 			(void) (*matched)(probe, arg);
6309 			nmatched++;
6310 		}
6311 		return (nmatched);
6312 	}
6313 
6314 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6315 	template.dtpr_func = (char *)pkp->dtpk_func;
6316 	template.dtpr_name = (char *)pkp->dtpk_name;
6317 
6318 	/*
6319 	 * We want to find the most distinct of the module name, function
6320 	 * name, and name.  So for each one that is not a glob pattern or
6321 	 * empty string, we perform a lookup in the corresponding hash and
6322 	 * use the hash table with the fewest collisions to do our search.
6323 	 */
6324 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6325 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6326 		best = len;
6327 		hash = dtrace_bymod;
6328 	}
6329 
6330 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6331 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6332 		best = len;
6333 		hash = dtrace_byfunc;
6334 	}
6335 
6336 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6337 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6338 		best = len;
6339 		hash = dtrace_byname;
6340 	}
6341 
6342 	/*
6343 	 * If we did not select a hash table, iterate over every probe and
6344 	 * invoke our callback for each one that matches our input probe key.
6345 	 */
6346 	if (hash == NULL) {
6347 		for (i = 0; i < dtrace_nprobes; i++) {
6348 			if ((probe = dtrace_probes[i]) == NULL ||
6349 			    dtrace_match_probe(probe, pkp, priv, uid,
6350 			    zoneid) <= 0)
6351 				continue;
6352 
6353 			nmatched++;
6354 
6355 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6356 				break;
6357 		}
6358 
6359 		return (nmatched);
6360 	}
6361 
6362 	/*
6363 	 * If we selected a hash table, iterate over each probe of the same key
6364 	 * name and invoke the callback for every probe that matches the other
6365 	 * attributes of our input probe key.
6366 	 */
6367 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6368 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6369 
6370 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6371 			continue;
6372 
6373 		nmatched++;
6374 
6375 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6376 			break;
6377 	}
6378 
6379 	return (nmatched);
6380 }
6381 
6382 /*
6383  * Return the function pointer dtrace_probecmp() should use to compare the
6384  * specified pattern with a string.  For NULL or empty patterns, we select
6385  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6386  * For non-empty non-glob strings, we use dtrace_match_string().
6387  */
6388 static dtrace_probekey_f *
6389 dtrace_probekey_func(const char *p)
6390 {
6391 	char c;
6392 
6393 	if (p == NULL || *p == '\0')
6394 		return (&dtrace_match_nul);
6395 
6396 	while ((c = *p++) != '\0') {
6397 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6398 			return (&dtrace_match_glob);
6399 	}
6400 
6401 	return (&dtrace_match_string);
6402 }
6403 
6404 /*
6405  * Build a probe comparison key for use with dtrace_match_probe() from the
6406  * given probe description.  By convention, a null key only matches anchored
6407  * probes: if each field is the empty string, reset dtpk_fmatch to
6408  * dtrace_match_nonzero().
6409  */
6410 static void
6411 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6412 {
6413 	pkp->dtpk_prov = pdp->dtpd_provider;
6414 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6415 
6416 	pkp->dtpk_mod = pdp->dtpd_mod;
6417 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6418 
6419 	pkp->dtpk_func = pdp->dtpd_func;
6420 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6421 
6422 	pkp->dtpk_name = pdp->dtpd_name;
6423 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6424 
6425 	pkp->dtpk_id = pdp->dtpd_id;
6426 
6427 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6428 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6429 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6430 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6431 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6432 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6433 }
6434 
6435 /*
6436  * DTrace Provider-to-Framework API Functions
6437  *
6438  * These functions implement much of the Provider-to-Framework API, as
6439  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6440  * the functions in the API for probe management (found below), and
6441  * dtrace_probe() itself (found above).
6442  */
6443 
6444 /*
6445  * Register the calling provider with the DTrace framework.  This should
6446  * generally be called by DTrace providers in their attach(9E) entry point.
6447  */
6448 int
6449 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6450     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6451 {
6452 	dtrace_provider_t *provider;
6453 
6454 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6455 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6456 		    "arguments", name ? name : "<NULL>");
6457 		return (EINVAL);
6458 	}
6459 
6460 	if (name[0] == '\0' || dtrace_badname(name)) {
6461 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6462 		    "provider name", name);
6463 		return (EINVAL);
6464 	}
6465 
6466 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6467 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6468 	    pops->dtps_destroy == NULL ||
6469 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6470 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6471 		    "provider ops", name);
6472 		return (EINVAL);
6473 	}
6474 
6475 	if (dtrace_badattr(&pap->dtpa_provider) ||
6476 	    dtrace_badattr(&pap->dtpa_mod) ||
6477 	    dtrace_badattr(&pap->dtpa_func) ||
6478 	    dtrace_badattr(&pap->dtpa_name) ||
6479 	    dtrace_badattr(&pap->dtpa_args)) {
6480 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6481 		    "provider attributes", name);
6482 		return (EINVAL);
6483 	}
6484 
6485 	if (priv & ~DTRACE_PRIV_ALL) {
6486 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6487 		    "privilege attributes", name);
6488 		return (EINVAL);
6489 	}
6490 
6491 	if ((priv & DTRACE_PRIV_KERNEL) &&
6492 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6493 	    pops->dtps_usermode == NULL) {
6494 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6495 		    "dtps_usermode() op for given privilege attributes", name);
6496 		return (EINVAL);
6497 	}
6498 
6499 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6500 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6501 	(void) strcpy(provider->dtpv_name, name);
6502 
6503 	provider->dtpv_attr = *pap;
6504 	provider->dtpv_priv.dtpp_flags = priv;
6505 	if (cr != NULL) {
6506 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6507 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6508 	}
6509 	provider->dtpv_pops = *pops;
6510 
6511 	if (pops->dtps_provide == NULL) {
6512 		ASSERT(pops->dtps_provide_module != NULL);
6513 		provider->dtpv_pops.dtps_provide =
6514 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6515 	}
6516 
6517 	if (pops->dtps_provide_module == NULL) {
6518 		ASSERT(pops->dtps_provide != NULL);
6519 		provider->dtpv_pops.dtps_provide_module =
6520 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6521 	}
6522 
6523 	if (pops->dtps_suspend == NULL) {
6524 		ASSERT(pops->dtps_resume == NULL);
6525 		provider->dtpv_pops.dtps_suspend =
6526 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6527 		provider->dtpv_pops.dtps_resume =
6528 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6529 	}
6530 
6531 	provider->dtpv_arg = arg;
6532 	*idp = (dtrace_provider_id_t)provider;
6533 
6534 	if (pops == &dtrace_provider_ops) {
6535 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6536 		ASSERT(MUTEX_HELD(&dtrace_lock));
6537 		ASSERT(dtrace_anon.dta_enabling == NULL);
6538 
6539 		/*
6540 		 * We make sure that the DTrace provider is at the head of
6541 		 * the provider chain.
6542 		 */
6543 		provider->dtpv_next = dtrace_provider;
6544 		dtrace_provider = provider;
6545 		return (0);
6546 	}
6547 
6548 	mutex_enter(&dtrace_provider_lock);
6549 	mutex_enter(&dtrace_lock);
6550 
6551 	/*
6552 	 * If there is at least one provider registered, we'll add this
6553 	 * provider after the first provider.
6554 	 */
6555 	if (dtrace_provider != NULL) {
6556 		provider->dtpv_next = dtrace_provider->dtpv_next;
6557 		dtrace_provider->dtpv_next = provider;
6558 	} else {
6559 		dtrace_provider = provider;
6560 	}
6561 
6562 	if (dtrace_retained != NULL) {
6563 		dtrace_enabling_provide(provider);
6564 
6565 		/*
6566 		 * Now we need to call dtrace_enabling_matchall() -- which
6567 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6568 		 * to drop all of our locks before calling into it...
6569 		 */
6570 		mutex_exit(&dtrace_lock);
6571 		mutex_exit(&dtrace_provider_lock);
6572 		dtrace_enabling_matchall();
6573 
6574 		return (0);
6575 	}
6576 
6577 	mutex_exit(&dtrace_lock);
6578 	mutex_exit(&dtrace_provider_lock);
6579 
6580 	return (0);
6581 }
6582 
6583 /*
6584  * Unregister the specified provider from the DTrace framework.  This should
6585  * generally be called by DTrace providers in their detach(9E) entry point.
6586  */
6587 int
6588 dtrace_unregister(dtrace_provider_id_t id)
6589 {
6590 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6591 	dtrace_provider_t *prev = NULL;
6592 	int i, self = 0;
6593 	dtrace_probe_t *probe, *first = NULL;
6594 
6595 	if (old->dtpv_pops.dtps_enable ==
6596 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6597 		/*
6598 		 * If DTrace itself is the provider, we're called with locks
6599 		 * already held.
6600 		 */
6601 		ASSERT(old == dtrace_provider);
6602 		ASSERT(dtrace_devi != NULL);
6603 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6604 		ASSERT(MUTEX_HELD(&dtrace_lock));
6605 		self = 1;
6606 
6607 		if (dtrace_provider->dtpv_next != NULL) {
6608 			/*
6609 			 * There's another provider here; return failure.
6610 			 */
6611 			return (EBUSY);
6612 		}
6613 	} else {
6614 		mutex_enter(&dtrace_provider_lock);
6615 		mutex_enter(&mod_lock);
6616 		mutex_enter(&dtrace_lock);
6617 	}
6618 
6619 	/*
6620 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6621 	 * probes, we refuse to let providers slither away, unless this
6622 	 * provider has already been explicitly invalidated.
6623 	 */
6624 	if (!old->dtpv_defunct &&
6625 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6626 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6627 		if (!self) {
6628 			mutex_exit(&dtrace_lock);
6629 			mutex_exit(&mod_lock);
6630 			mutex_exit(&dtrace_provider_lock);
6631 		}
6632 		return (EBUSY);
6633 	}
6634 
6635 	/*
6636 	 * Attempt to destroy the probes associated with this provider.
6637 	 */
6638 	for (i = 0; i < dtrace_nprobes; i++) {
6639 		if ((probe = dtrace_probes[i]) == NULL)
6640 			continue;
6641 
6642 		if (probe->dtpr_provider != old)
6643 			continue;
6644 
6645 		if (probe->dtpr_ecb == NULL)
6646 			continue;
6647 
6648 		/*
6649 		 * We have at least one ECB; we can't remove this provider.
6650 		 */
6651 		if (!self) {
6652 			mutex_exit(&dtrace_lock);
6653 			mutex_exit(&mod_lock);
6654 			mutex_exit(&dtrace_provider_lock);
6655 		}
6656 		return (EBUSY);
6657 	}
6658 
6659 	/*
6660 	 * All of the probes for this provider are disabled; we can safely
6661 	 * remove all of them from their hash chains and from the probe array.
6662 	 */
6663 	for (i = 0; i < dtrace_nprobes; i++) {
6664 		if ((probe = dtrace_probes[i]) == NULL)
6665 			continue;
6666 
6667 		if (probe->dtpr_provider != old)
6668 			continue;
6669 
6670 		dtrace_probes[i] = NULL;
6671 
6672 		dtrace_hash_remove(dtrace_bymod, probe);
6673 		dtrace_hash_remove(dtrace_byfunc, probe);
6674 		dtrace_hash_remove(dtrace_byname, probe);
6675 
6676 		if (first == NULL) {
6677 			first = probe;
6678 			probe->dtpr_nextmod = NULL;
6679 		} else {
6680 			probe->dtpr_nextmod = first;
6681 			first = probe;
6682 		}
6683 	}
6684 
6685 	/*
6686 	 * The provider's probes have been removed from the hash chains and
6687 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
6688 	 * everyone has cleared out from any probe array processing.
6689 	 */
6690 	dtrace_sync();
6691 
6692 	for (probe = first; probe != NULL; probe = first) {
6693 		first = probe->dtpr_nextmod;
6694 
6695 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6696 		    probe->dtpr_arg);
6697 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6698 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6699 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6700 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6701 		kmem_free(probe, sizeof (dtrace_probe_t));
6702 	}
6703 
6704 	if ((prev = dtrace_provider) == old) {
6705 		ASSERT(self || dtrace_devi == NULL);
6706 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6707 		dtrace_provider = old->dtpv_next;
6708 	} else {
6709 		while (prev != NULL && prev->dtpv_next != old)
6710 			prev = prev->dtpv_next;
6711 
6712 		if (prev == NULL) {
6713 			panic("attempt to unregister non-existent "
6714 			    "dtrace provider %p\n", (void *)id);
6715 		}
6716 
6717 		prev->dtpv_next = old->dtpv_next;
6718 	}
6719 
6720 	if (!self) {
6721 		mutex_exit(&dtrace_lock);
6722 		mutex_exit(&mod_lock);
6723 		mutex_exit(&dtrace_provider_lock);
6724 	}
6725 
6726 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6727 	kmem_free(old, sizeof (dtrace_provider_t));
6728 
6729 	return (0);
6730 }
6731 
6732 /*
6733  * Invalidate the specified provider.  All subsequent probe lookups for the
6734  * specified provider will fail, but its probes will not be removed.
6735  */
6736 void
6737 dtrace_invalidate(dtrace_provider_id_t id)
6738 {
6739 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6740 
6741 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6742 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6743 
6744 	mutex_enter(&dtrace_provider_lock);
6745 	mutex_enter(&dtrace_lock);
6746 
6747 	pvp->dtpv_defunct = 1;
6748 
6749 	mutex_exit(&dtrace_lock);
6750 	mutex_exit(&dtrace_provider_lock);
6751 }
6752 
6753 /*
6754  * Indicate whether or not DTrace has attached.
6755  */
6756 int
6757 dtrace_attached(void)
6758 {
6759 	/*
6760 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6761 	 * attached.  (It's non-NULL because DTrace is always itself a
6762 	 * provider.)
6763 	 */
6764 	return (dtrace_provider != NULL);
6765 }
6766 
6767 /*
6768  * Remove all the unenabled probes for the given provider.  This function is
6769  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6770  * -- just as many of its associated probes as it can.
6771  */
6772 int
6773 dtrace_condense(dtrace_provider_id_t id)
6774 {
6775 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6776 	int i;
6777 	dtrace_probe_t *probe;
6778 
6779 	/*
6780 	 * Make sure this isn't the dtrace provider itself.
6781 	 */
6782 	ASSERT(prov->dtpv_pops.dtps_enable !=
6783 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6784 
6785 	mutex_enter(&dtrace_provider_lock);
6786 	mutex_enter(&dtrace_lock);
6787 
6788 	/*
6789 	 * Attempt to destroy the probes associated with this provider.
6790 	 */
6791 	for (i = 0; i < dtrace_nprobes; i++) {
6792 		if ((probe = dtrace_probes[i]) == NULL)
6793 			continue;
6794 
6795 		if (probe->dtpr_provider != prov)
6796 			continue;
6797 
6798 		if (probe->dtpr_ecb != NULL)
6799 			continue;
6800 
6801 		dtrace_probes[i] = NULL;
6802 
6803 		dtrace_hash_remove(dtrace_bymod, probe);
6804 		dtrace_hash_remove(dtrace_byfunc, probe);
6805 		dtrace_hash_remove(dtrace_byname, probe);
6806 
6807 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6808 		    probe->dtpr_arg);
6809 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6810 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6811 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6812 		kmem_free(probe, sizeof (dtrace_probe_t));
6813 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6814 	}
6815 
6816 	mutex_exit(&dtrace_lock);
6817 	mutex_exit(&dtrace_provider_lock);
6818 
6819 	return (0);
6820 }
6821 
6822 /*
6823  * DTrace Probe Management Functions
6824  *
6825  * The functions in this section perform the DTrace probe management,
6826  * including functions to create probes, look-up probes, and call into the
6827  * providers to request that probes be provided.  Some of these functions are
6828  * in the Provider-to-Framework API; these functions can be identified by the
6829  * fact that they are not declared "static".
6830  */
6831 
6832 /*
6833  * Create a probe with the specified module name, function name, and name.
6834  */
6835 dtrace_id_t
6836 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6837     const char *func, const char *name, int aframes, void *arg)
6838 {
6839 	dtrace_probe_t *probe, **probes;
6840 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6841 	dtrace_id_t id;
6842 
6843 	if (provider == dtrace_provider) {
6844 		ASSERT(MUTEX_HELD(&dtrace_lock));
6845 	} else {
6846 		mutex_enter(&dtrace_lock);
6847 	}
6848 
6849 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6850 	    VM_BESTFIT | VM_SLEEP);
6851 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6852 
6853 	probe->dtpr_id = id;
6854 	probe->dtpr_gen = dtrace_probegen++;
6855 	probe->dtpr_mod = dtrace_strdup(mod);
6856 	probe->dtpr_func = dtrace_strdup(func);
6857 	probe->dtpr_name = dtrace_strdup(name);
6858 	probe->dtpr_arg = arg;
6859 	probe->dtpr_aframes = aframes;
6860 	probe->dtpr_provider = provider;
6861 
6862 	dtrace_hash_add(dtrace_bymod, probe);
6863 	dtrace_hash_add(dtrace_byfunc, probe);
6864 	dtrace_hash_add(dtrace_byname, probe);
6865 
6866 	if (id - 1 >= dtrace_nprobes) {
6867 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6868 		size_t nsize = osize << 1;
6869 
6870 		if (nsize == 0) {
6871 			ASSERT(osize == 0);
6872 			ASSERT(dtrace_probes == NULL);
6873 			nsize = sizeof (dtrace_probe_t *);
6874 		}
6875 
6876 		probes = kmem_zalloc(nsize, KM_SLEEP);
6877 
6878 		if (dtrace_probes == NULL) {
6879 			ASSERT(osize == 0);
6880 			dtrace_probes = probes;
6881 			dtrace_nprobes = 1;
6882 		} else {
6883 			dtrace_probe_t **oprobes = dtrace_probes;
6884 
6885 			bcopy(oprobes, probes, osize);
6886 			dtrace_membar_producer();
6887 			dtrace_probes = probes;
6888 
6889 			dtrace_sync();
6890 
6891 			/*
6892 			 * All CPUs are now seeing the new probes array; we can
6893 			 * safely free the old array.
6894 			 */
6895 			kmem_free(oprobes, osize);
6896 			dtrace_nprobes <<= 1;
6897 		}
6898 
6899 		ASSERT(id - 1 < dtrace_nprobes);
6900 	}
6901 
6902 	ASSERT(dtrace_probes[id - 1] == NULL);
6903 	dtrace_probes[id - 1] = probe;
6904 
6905 	if (provider != dtrace_provider)
6906 		mutex_exit(&dtrace_lock);
6907 
6908 	return (id);
6909 }
6910 
6911 static dtrace_probe_t *
6912 dtrace_probe_lookup_id(dtrace_id_t id)
6913 {
6914 	ASSERT(MUTEX_HELD(&dtrace_lock));
6915 
6916 	if (id == 0 || id > dtrace_nprobes)
6917 		return (NULL);
6918 
6919 	return (dtrace_probes[id - 1]);
6920 }
6921 
6922 static int
6923 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6924 {
6925 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6926 
6927 	return (DTRACE_MATCH_DONE);
6928 }
6929 
6930 /*
6931  * Look up a probe based on provider and one or more of module name, function
6932  * name and probe name.
6933  */
6934 dtrace_id_t
6935 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6936     const char *func, const char *name)
6937 {
6938 	dtrace_probekey_t pkey;
6939 	dtrace_id_t id;
6940 	int match;
6941 
6942 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6943 	pkey.dtpk_pmatch = &dtrace_match_string;
6944 	pkey.dtpk_mod = mod;
6945 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6946 	pkey.dtpk_func = func;
6947 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6948 	pkey.dtpk_name = name;
6949 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6950 	pkey.dtpk_id = DTRACE_IDNONE;
6951 
6952 	mutex_enter(&dtrace_lock);
6953 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
6954 	    dtrace_probe_lookup_match, &id);
6955 	mutex_exit(&dtrace_lock);
6956 
6957 	ASSERT(match == 1 || match == 0);
6958 	return (match ? id : 0);
6959 }
6960 
6961 /*
6962  * Returns the probe argument associated with the specified probe.
6963  */
6964 void *
6965 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6966 {
6967 	dtrace_probe_t *probe;
6968 	void *rval = NULL;
6969 
6970 	mutex_enter(&dtrace_lock);
6971 
6972 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6973 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6974 		rval = probe->dtpr_arg;
6975 
6976 	mutex_exit(&dtrace_lock);
6977 
6978 	return (rval);
6979 }
6980 
6981 /*
6982  * Copy a probe into a probe description.
6983  */
6984 static void
6985 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6986 {
6987 	bzero(pdp, sizeof (dtrace_probedesc_t));
6988 	pdp->dtpd_id = prp->dtpr_id;
6989 
6990 	(void) strncpy(pdp->dtpd_provider,
6991 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6992 
6993 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6994 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6995 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6996 }
6997 
6998 /*
6999  * Called to indicate that a probe -- or probes -- should be provided by a
7000  * specfied provider.  If the specified description is NULL, the provider will
7001  * be told to provide all of its probes.  (This is done whenever a new
7002  * consumer comes along, or whenever a retained enabling is to be matched.) If
7003  * the specified description is non-NULL, the provider is given the
7004  * opportunity to dynamically provide the specified probe, allowing providers
7005  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7006  * probes.)  If the provider is NULL, the operations will be applied to all
7007  * providers; if the provider is non-NULL the operations will only be applied
7008  * to the specified provider.  The dtrace_provider_lock must be held, and the
7009  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7010  * will need to grab the dtrace_lock when it reenters the framework through
7011  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7012  */
7013 static void
7014 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7015 {
7016 	struct modctl *ctl;
7017 	int all = 0;
7018 
7019 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7020 
7021 	if (prv == NULL) {
7022 		all = 1;
7023 		prv = dtrace_provider;
7024 	}
7025 
7026 	do {
7027 		/*
7028 		 * First, call the blanket provide operation.
7029 		 */
7030 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7031 
7032 		/*
7033 		 * Now call the per-module provide operation.  We will grab
7034 		 * mod_lock to prevent the list from being modified.  Note
7035 		 * that this also prevents the mod_busy bits from changing.
7036 		 * (mod_busy can only be changed with mod_lock held.)
7037 		 */
7038 		mutex_enter(&mod_lock);
7039 
7040 		ctl = &modules;
7041 		do {
7042 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7043 				continue;
7044 
7045 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7046 
7047 		} while ((ctl = ctl->mod_next) != &modules);
7048 
7049 		mutex_exit(&mod_lock);
7050 	} while (all && (prv = prv->dtpv_next) != NULL);
7051 }
7052 
7053 /*
7054  * Iterate over each probe, and call the Framework-to-Provider API function
7055  * denoted by offs.
7056  */
7057 static void
7058 dtrace_probe_foreach(uintptr_t offs)
7059 {
7060 	dtrace_provider_t *prov;
7061 	void (*func)(void *, dtrace_id_t, void *);
7062 	dtrace_probe_t *probe;
7063 	dtrace_icookie_t cookie;
7064 	int i;
7065 
7066 	/*
7067 	 * We disable interrupts to walk through the probe array.  This is
7068 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7069 	 * won't see stale data.
7070 	 */
7071 	cookie = dtrace_interrupt_disable();
7072 
7073 	for (i = 0; i < dtrace_nprobes; i++) {
7074 		if ((probe = dtrace_probes[i]) == NULL)
7075 			continue;
7076 
7077 		if (probe->dtpr_ecb == NULL) {
7078 			/*
7079 			 * This probe isn't enabled -- don't call the function.
7080 			 */
7081 			continue;
7082 		}
7083 
7084 		prov = probe->dtpr_provider;
7085 		func = *((void(**)(void *, dtrace_id_t, void *))
7086 		    ((uintptr_t)&prov->dtpv_pops + offs));
7087 
7088 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7089 	}
7090 
7091 	dtrace_interrupt_enable(cookie);
7092 }
7093 
7094 static int
7095 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7096 {
7097 	dtrace_probekey_t pkey;
7098 	uint32_t priv;
7099 	uid_t uid;
7100 	zoneid_t zoneid;
7101 
7102 	ASSERT(MUTEX_HELD(&dtrace_lock));
7103 	dtrace_ecb_create_cache = NULL;
7104 
7105 	if (desc == NULL) {
7106 		/*
7107 		 * If we're passed a NULL description, we're being asked to
7108 		 * create an ECB with a NULL probe.
7109 		 */
7110 		(void) dtrace_ecb_create_enable(NULL, enab);
7111 		return (0);
7112 	}
7113 
7114 	dtrace_probekey(desc, &pkey);
7115 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7116 	    &priv, &uid, &zoneid);
7117 
7118 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7119 	    enab));
7120 }
7121 
7122 /*
7123  * DTrace Helper Provider Functions
7124  */
7125 static void
7126 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7127 {
7128 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7129 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7130 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7131 }
7132 
7133 static void
7134 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7135     const dof_provider_t *dofprov, char *strtab)
7136 {
7137 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7138 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7139 	    dofprov->dofpv_provattr);
7140 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7141 	    dofprov->dofpv_modattr);
7142 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7143 	    dofprov->dofpv_funcattr);
7144 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7145 	    dofprov->dofpv_nameattr);
7146 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7147 	    dofprov->dofpv_argsattr);
7148 }
7149 
7150 static void
7151 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7152 {
7153 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7154 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7155 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7156 	dof_provider_t *provider;
7157 	dof_probe_t *probe;
7158 	uint32_t *off, *enoff;
7159 	uint8_t *arg;
7160 	char *strtab;
7161 	uint_t i, nprobes;
7162 	dtrace_helper_provdesc_t dhpv;
7163 	dtrace_helper_probedesc_t dhpb;
7164 	dtrace_meta_t *meta = dtrace_meta_pid;
7165 	dtrace_mops_t *mops = &meta->dtm_mops;
7166 	void *parg;
7167 
7168 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7169 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7170 	    provider->dofpv_strtab * dof->dofh_secsize);
7171 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7172 	    provider->dofpv_probes * dof->dofh_secsize);
7173 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7174 	    provider->dofpv_prargs * dof->dofh_secsize);
7175 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7176 	    provider->dofpv_proffs * dof->dofh_secsize);
7177 
7178 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7179 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7180 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7181 	enoff = NULL;
7182 
7183 	/*
7184 	 * See dtrace_helper_provider_validate().
7185 	 */
7186 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7187 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7188 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7189 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7190 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7191 	}
7192 
7193 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7194 
7195 	/*
7196 	 * Create the provider.
7197 	 */
7198 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7199 
7200 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7201 		return;
7202 
7203 	meta->dtm_count++;
7204 
7205 	/*
7206 	 * Create the probes.
7207 	 */
7208 	for (i = 0; i < nprobes; i++) {
7209 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7210 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7211 
7212 		dhpb.dthpb_mod = dhp->dofhp_mod;
7213 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7214 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7215 		dhpb.dthpb_base = probe->dofpr_addr;
7216 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7217 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7218 		if (enoff != NULL) {
7219 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7220 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7221 		} else {
7222 			dhpb.dthpb_enoffs = NULL;
7223 			dhpb.dthpb_nenoffs = 0;
7224 		}
7225 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7226 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7227 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7228 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7229 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7230 
7231 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7232 	}
7233 }
7234 
7235 static void
7236 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7237 {
7238 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7239 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7240 	int i;
7241 
7242 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7243 
7244 	for (i = 0; i < dof->dofh_secnum; i++) {
7245 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7246 		    dof->dofh_secoff + i * dof->dofh_secsize);
7247 
7248 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7249 			continue;
7250 
7251 		dtrace_helper_provide_one(dhp, sec, pid);
7252 	}
7253 
7254 	/*
7255 	 * We may have just created probes, so we must now rematch against
7256 	 * any retained enablings.  Note that this call will acquire both
7257 	 * cpu_lock and dtrace_lock; the fact that we are holding
7258 	 * dtrace_meta_lock now is what defines the ordering with respect to
7259 	 * these three locks.
7260 	 */
7261 	dtrace_enabling_matchall();
7262 }
7263 
7264 static void
7265 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7266 {
7267 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7268 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7269 	dof_sec_t *str_sec;
7270 	dof_provider_t *provider;
7271 	char *strtab;
7272 	dtrace_helper_provdesc_t dhpv;
7273 	dtrace_meta_t *meta = dtrace_meta_pid;
7274 	dtrace_mops_t *mops = &meta->dtm_mops;
7275 
7276 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7277 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7278 	    provider->dofpv_strtab * dof->dofh_secsize);
7279 
7280 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7281 
7282 	/*
7283 	 * Create the provider.
7284 	 */
7285 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7286 
7287 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7288 
7289 	meta->dtm_count--;
7290 }
7291 
7292 static void
7293 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7294 {
7295 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7296 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7297 	int i;
7298 
7299 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7300 
7301 	for (i = 0; i < dof->dofh_secnum; i++) {
7302 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7303 		    dof->dofh_secoff + i * dof->dofh_secsize);
7304 
7305 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7306 			continue;
7307 
7308 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7309 	}
7310 }
7311 
7312 /*
7313  * DTrace Meta Provider-to-Framework API Functions
7314  *
7315  * These functions implement the Meta Provider-to-Framework API, as described
7316  * in <sys/dtrace.h>.
7317  */
7318 int
7319 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7320     dtrace_meta_provider_id_t *idp)
7321 {
7322 	dtrace_meta_t *meta;
7323 	dtrace_helpers_t *help, *next;
7324 	int i;
7325 
7326 	*idp = DTRACE_METAPROVNONE;
7327 
7328 	/*
7329 	 * We strictly don't need the name, but we hold onto it for
7330 	 * debuggability. All hail error queues!
7331 	 */
7332 	if (name == NULL) {
7333 		cmn_err(CE_WARN, "failed to register meta-provider: "
7334 		    "invalid name");
7335 		return (EINVAL);
7336 	}
7337 
7338 	if (mops == NULL ||
7339 	    mops->dtms_create_probe == NULL ||
7340 	    mops->dtms_provide_pid == NULL ||
7341 	    mops->dtms_remove_pid == NULL) {
7342 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7343 		    "invalid ops", name);
7344 		return (EINVAL);
7345 	}
7346 
7347 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7348 	meta->dtm_mops = *mops;
7349 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7350 	(void) strcpy(meta->dtm_name, name);
7351 	meta->dtm_arg = arg;
7352 
7353 	mutex_enter(&dtrace_meta_lock);
7354 	mutex_enter(&dtrace_lock);
7355 
7356 	if (dtrace_meta_pid != NULL) {
7357 		mutex_exit(&dtrace_lock);
7358 		mutex_exit(&dtrace_meta_lock);
7359 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7360 		    "user-land meta-provider exists", name);
7361 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7362 		kmem_free(meta, sizeof (dtrace_meta_t));
7363 		return (EINVAL);
7364 	}
7365 
7366 	dtrace_meta_pid = meta;
7367 	*idp = (dtrace_meta_provider_id_t)meta;
7368 
7369 	/*
7370 	 * If there are providers and probes ready to go, pass them
7371 	 * off to the new meta provider now.
7372 	 */
7373 
7374 	help = dtrace_deferred_pid;
7375 	dtrace_deferred_pid = NULL;
7376 
7377 	mutex_exit(&dtrace_lock);
7378 
7379 	while (help != NULL) {
7380 		for (i = 0; i < help->dthps_nprovs; i++) {
7381 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7382 			    help->dthps_pid);
7383 		}
7384 
7385 		next = help->dthps_next;
7386 		help->dthps_next = NULL;
7387 		help->dthps_prev = NULL;
7388 		help->dthps_deferred = 0;
7389 		help = next;
7390 	}
7391 
7392 	mutex_exit(&dtrace_meta_lock);
7393 
7394 	return (0);
7395 }
7396 
7397 int
7398 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7399 {
7400 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7401 
7402 	mutex_enter(&dtrace_meta_lock);
7403 	mutex_enter(&dtrace_lock);
7404 
7405 	if (old == dtrace_meta_pid) {
7406 		pp = &dtrace_meta_pid;
7407 	} else {
7408 		panic("attempt to unregister non-existent "
7409 		    "dtrace meta-provider %p\n", (void *)old);
7410 	}
7411 
7412 	if (old->dtm_count != 0) {
7413 		mutex_exit(&dtrace_lock);
7414 		mutex_exit(&dtrace_meta_lock);
7415 		return (EBUSY);
7416 	}
7417 
7418 	*pp = NULL;
7419 
7420 	mutex_exit(&dtrace_lock);
7421 	mutex_exit(&dtrace_meta_lock);
7422 
7423 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7424 	kmem_free(old, sizeof (dtrace_meta_t));
7425 
7426 	return (0);
7427 }
7428 
7429 
7430 /*
7431  * DTrace DIF Object Functions
7432  */
7433 static int
7434 dtrace_difo_err(uint_t pc, const char *format, ...)
7435 {
7436 	if (dtrace_err_verbose) {
7437 		va_list alist;
7438 
7439 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7440 		va_start(alist, format);
7441 		(void) vuprintf(format, alist);
7442 		va_end(alist);
7443 	}
7444 
7445 #ifdef DTRACE_ERRDEBUG
7446 	dtrace_errdebug(format);
7447 #endif
7448 	return (1);
7449 }
7450 
7451 /*
7452  * Validate a DTrace DIF object by checking the IR instructions.  The following
7453  * rules are currently enforced by dtrace_difo_validate():
7454  *
7455  * 1. Each instruction must have a valid opcode
7456  * 2. Each register, string, variable, or subroutine reference must be valid
7457  * 3. No instruction can modify register %r0 (must be zero)
7458  * 4. All instruction reserved bits must be set to zero
7459  * 5. The last instruction must be a "ret" instruction
7460  * 6. All branch targets must reference a valid instruction _after_ the branch
7461  */
7462 static int
7463 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7464     cred_t *cr)
7465 {
7466 	int err = 0, i;
7467 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7468 	int kcheckload;
7469 	uint_t pc;
7470 
7471 	kcheckload = cr == NULL ||
7472 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7473 
7474 	dp->dtdo_destructive = 0;
7475 
7476 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7477 		dif_instr_t instr = dp->dtdo_buf[pc];
7478 
7479 		uint_t r1 = DIF_INSTR_R1(instr);
7480 		uint_t r2 = DIF_INSTR_R2(instr);
7481 		uint_t rd = DIF_INSTR_RD(instr);
7482 		uint_t rs = DIF_INSTR_RS(instr);
7483 		uint_t label = DIF_INSTR_LABEL(instr);
7484 		uint_t v = DIF_INSTR_VAR(instr);
7485 		uint_t subr = DIF_INSTR_SUBR(instr);
7486 		uint_t type = DIF_INSTR_TYPE(instr);
7487 		uint_t op = DIF_INSTR_OP(instr);
7488 
7489 		switch (op) {
7490 		case DIF_OP_OR:
7491 		case DIF_OP_XOR:
7492 		case DIF_OP_AND:
7493 		case DIF_OP_SLL:
7494 		case DIF_OP_SRL:
7495 		case DIF_OP_SRA:
7496 		case DIF_OP_SUB:
7497 		case DIF_OP_ADD:
7498 		case DIF_OP_MUL:
7499 		case DIF_OP_SDIV:
7500 		case DIF_OP_UDIV:
7501 		case DIF_OP_SREM:
7502 		case DIF_OP_UREM:
7503 		case DIF_OP_COPYS:
7504 			if (r1 >= nregs)
7505 				err += efunc(pc, "invalid register %u\n", r1);
7506 			if (r2 >= nregs)
7507 				err += efunc(pc, "invalid register %u\n", r2);
7508 			if (rd >= nregs)
7509 				err += efunc(pc, "invalid register %u\n", rd);
7510 			if (rd == 0)
7511 				err += efunc(pc, "cannot write to %r0\n");
7512 			break;
7513 		case DIF_OP_NOT:
7514 		case DIF_OP_MOV:
7515 		case DIF_OP_ALLOCS:
7516 			if (r1 >= nregs)
7517 				err += efunc(pc, "invalid register %u\n", r1);
7518 			if (r2 != 0)
7519 				err += efunc(pc, "non-zero reserved bits\n");
7520 			if (rd >= nregs)
7521 				err += efunc(pc, "invalid register %u\n", rd);
7522 			if (rd == 0)
7523 				err += efunc(pc, "cannot write to %r0\n");
7524 			break;
7525 		case DIF_OP_LDSB:
7526 		case DIF_OP_LDSH:
7527 		case DIF_OP_LDSW:
7528 		case DIF_OP_LDUB:
7529 		case DIF_OP_LDUH:
7530 		case DIF_OP_LDUW:
7531 		case DIF_OP_LDX:
7532 			if (r1 >= nregs)
7533 				err += efunc(pc, "invalid register %u\n", r1);
7534 			if (r2 != 0)
7535 				err += efunc(pc, "non-zero reserved bits\n");
7536 			if (rd >= nregs)
7537 				err += efunc(pc, "invalid register %u\n", rd);
7538 			if (rd == 0)
7539 				err += efunc(pc, "cannot write to %r0\n");
7540 			if (kcheckload)
7541 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7542 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7543 			break;
7544 		case DIF_OP_RLDSB:
7545 		case DIF_OP_RLDSH:
7546 		case DIF_OP_RLDSW:
7547 		case DIF_OP_RLDUB:
7548 		case DIF_OP_RLDUH:
7549 		case DIF_OP_RLDUW:
7550 		case DIF_OP_RLDX:
7551 			if (r1 >= nregs)
7552 				err += efunc(pc, "invalid register %u\n", r1);
7553 			if (r2 != 0)
7554 				err += efunc(pc, "non-zero reserved bits\n");
7555 			if (rd >= nregs)
7556 				err += efunc(pc, "invalid register %u\n", rd);
7557 			if (rd == 0)
7558 				err += efunc(pc, "cannot write to %r0\n");
7559 			break;
7560 		case DIF_OP_ULDSB:
7561 		case DIF_OP_ULDSH:
7562 		case DIF_OP_ULDSW:
7563 		case DIF_OP_ULDUB:
7564 		case DIF_OP_ULDUH:
7565 		case DIF_OP_ULDUW:
7566 		case DIF_OP_ULDX:
7567 			if (r1 >= nregs)
7568 				err += efunc(pc, "invalid register %u\n", r1);
7569 			if (r2 != 0)
7570 				err += efunc(pc, "non-zero reserved bits\n");
7571 			if (rd >= nregs)
7572 				err += efunc(pc, "invalid register %u\n", rd);
7573 			if (rd == 0)
7574 				err += efunc(pc, "cannot write to %r0\n");
7575 			break;
7576 		case DIF_OP_STB:
7577 		case DIF_OP_STH:
7578 		case DIF_OP_STW:
7579 		case DIF_OP_STX:
7580 			if (r1 >= nregs)
7581 				err += efunc(pc, "invalid register %u\n", r1);
7582 			if (r2 != 0)
7583 				err += efunc(pc, "non-zero reserved bits\n");
7584 			if (rd >= nregs)
7585 				err += efunc(pc, "invalid register %u\n", rd);
7586 			if (rd == 0)
7587 				err += efunc(pc, "cannot write to 0 address\n");
7588 			break;
7589 		case DIF_OP_CMP:
7590 		case DIF_OP_SCMP:
7591 			if (r1 >= nregs)
7592 				err += efunc(pc, "invalid register %u\n", r1);
7593 			if (r2 >= nregs)
7594 				err += efunc(pc, "invalid register %u\n", r2);
7595 			if (rd != 0)
7596 				err += efunc(pc, "non-zero reserved bits\n");
7597 			break;
7598 		case DIF_OP_TST:
7599 			if (r1 >= nregs)
7600 				err += efunc(pc, "invalid register %u\n", r1);
7601 			if (r2 != 0 || rd != 0)
7602 				err += efunc(pc, "non-zero reserved bits\n");
7603 			break;
7604 		case DIF_OP_BA:
7605 		case DIF_OP_BE:
7606 		case DIF_OP_BNE:
7607 		case DIF_OP_BG:
7608 		case DIF_OP_BGU:
7609 		case DIF_OP_BGE:
7610 		case DIF_OP_BGEU:
7611 		case DIF_OP_BL:
7612 		case DIF_OP_BLU:
7613 		case DIF_OP_BLE:
7614 		case DIF_OP_BLEU:
7615 			if (label >= dp->dtdo_len) {
7616 				err += efunc(pc, "invalid branch target %u\n",
7617 				    label);
7618 			}
7619 			if (label <= pc) {
7620 				err += efunc(pc, "backward branch to %u\n",
7621 				    label);
7622 			}
7623 			break;
7624 		case DIF_OP_RET:
7625 			if (r1 != 0 || r2 != 0)
7626 				err += efunc(pc, "non-zero reserved bits\n");
7627 			if (rd >= nregs)
7628 				err += efunc(pc, "invalid register %u\n", rd);
7629 			break;
7630 		case DIF_OP_NOP:
7631 		case DIF_OP_POPTS:
7632 		case DIF_OP_FLUSHTS:
7633 			if (r1 != 0 || r2 != 0 || rd != 0)
7634 				err += efunc(pc, "non-zero reserved bits\n");
7635 			break;
7636 		case DIF_OP_SETX:
7637 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7638 				err += efunc(pc, "invalid integer ref %u\n",
7639 				    DIF_INSTR_INTEGER(instr));
7640 			}
7641 			if (rd >= nregs)
7642 				err += efunc(pc, "invalid register %u\n", rd);
7643 			if (rd == 0)
7644 				err += efunc(pc, "cannot write to %r0\n");
7645 			break;
7646 		case DIF_OP_SETS:
7647 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
7648 				err += efunc(pc, "invalid string ref %u\n",
7649 				    DIF_INSTR_STRING(instr));
7650 			}
7651 			if (rd >= nregs)
7652 				err += efunc(pc, "invalid register %u\n", rd);
7653 			if (rd == 0)
7654 				err += efunc(pc, "cannot write to %r0\n");
7655 			break;
7656 		case DIF_OP_LDGA:
7657 		case DIF_OP_LDTA:
7658 			if (r1 > DIF_VAR_ARRAY_MAX)
7659 				err += efunc(pc, "invalid array %u\n", r1);
7660 			if (r2 >= nregs)
7661 				err += efunc(pc, "invalid register %u\n", r2);
7662 			if (rd >= nregs)
7663 				err += efunc(pc, "invalid register %u\n", rd);
7664 			if (rd == 0)
7665 				err += efunc(pc, "cannot write to %r0\n");
7666 			break;
7667 		case DIF_OP_LDGS:
7668 		case DIF_OP_LDTS:
7669 		case DIF_OP_LDLS:
7670 		case DIF_OP_LDGAA:
7671 		case DIF_OP_LDTAA:
7672 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
7673 				err += efunc(pc, "invalid variable %u\n", v);
7674 			if (rd >= nregs)
7675 				err += efunc(pc, "invalid register %u\n", rd);
7676 			if (rd == 0)
7677 				err += efunc(pc, "cannot write to %r0\n");
7678 			break;
7679 		case DIF_OP_STGS:
7680 		case DIF_OP_STTS:
7681 		case DIF_OP_STLS:
7682 		case DIF_OP_STGAA:
7683 		case DIF_OP_STTAA:
7684 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
7685 				err += efunc(pc, "invalid variable %u\n", v);
7686 			if (rs >= nregs)
7687 				err += efunc(pc, "invalid register %u\n", rd);
7688 			break;
7689 		case DIF_OP_CALL:
7690 			if (subr > DIF_SUBR_MAX)
7691 				err += efunc(pc, "invalid subr %u\n", subr);
7692 			if (rd >= nregs)
7693 				err += efunc(pc, "invalid register %u\n", rd);
7694 			if (rd == 0)
7695 				err += efunc(pc, "cannot write to %r0\n");
7696 
7697 			if (subr == DIF_SUBR_COPYOUT ||
7698 			    subr == DIF_SUBR_COPYOUTSTR) {
7699 				dp->dtdo_destructive = 1;
7700 			}
7701 			break;
7702 		case DIF_OP_PUSHTR:
7703 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
7704 				err += efunc(pc, "invalid ref type %u\n", type);
7705 			if (r2 >= nregs)
7706 				err += efunc(pc, "invalid register %u\n", r2);
7707 			if (rs >= nregs)
7708 				err += efunc(pc, "invalid register %u\n", rs);
7709 			break;
7710 		case DIF_OP_PUSHTV:
7711 			if (type != DIF_TYPE_CTF)
7712 				err += efunc(pc, "invalid val type %u\n", type);
7713 			if (r2 >= nregs)
7714 				err += efunc(pc, "invalid register %u\n", r2);
7715 			if (rs >= nregs)
7716 				err += efunc(pc, "invalid register %u\n", rs);
7717 			break;
7718 		default:
7719 			err += efunc(pc, "invalid opcode %u\n",
7720 			    DIF_INSTR_OP(instr));
7721 		}
7722 	}
7723 
7724 	if (dp->dtdo_len != 0 &&
7725 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7726 		err += efunc(dp->dtdo_len - 1,
7727 		    "expected 'ret' as last DIF instruction\n");
7728 	}
7729 
7730 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7731 		/*
7732 		 * If we're not returning by reference, the size must be either
7733 		 * 0 or the size of one of the base types.
7734 		 */
7735 		switch (dp->dtdo_rtype.dtdt_size) {
7736 		case 0:
7737 		case sizeof (uint8_t):
7738 		case sizeof (uint16_t):
7739 		case sizeof (uint32_t):
7740 		case sizeof (uint64_t):
7741 			break;
7742 
7743 		default:
7744 			err += efunc(dp->dtdo_len - 1, "bad return size");
7745 		}
7746 	}
7747 
7748 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7749 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7750 		dtrace_diftype_t *vt, *et;
7751 		uint_t id, ndx;
7752 
7753 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7754 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7755 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7756 			err += efunc(i, "unrecognized variable scope %d\n",
7757 			    v->dtdv_scope);
7758 			break;
7759 		}
7760 
7761 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7762 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7763 			err += efunc(i, "unrecognized variable type %d\n",
7764 			    v->dtdv_kind);
7765 			break;
7766 		}
7767 
7768 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7769 			err += efunc(i, "%d exceeds variable id limit\n", id);
7770 			break;
7771 		}
7772 
7773 		if (id < DIF_VAR_OTHER_UBASE)
7774 			continue;
7775 
7776 		/*
7777 		 * For user-defined variables, we need to check that this
7778 		 * definition is identical to any previous definition that we
7779 		 * encountered.
7780 		 */
7781 		ndx = id - DIF_VAR_OTHER_UBASE;
7782 
7783 		switch (v->dtdv_scope) {
7784 		case DIFV_SCOPE_GLOBAL:
7785 			if (ndx < vstate->dtvs_nglobals) {
7786 				dtrace_statvar_t *svar;
7787 
7788 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7789 					existing = &svar->dtsv_var;
7790 			}
7791 
7792 			break;
7793 
7794 		case DIFV_SCOPE_THREAD:
7795 			if (ndx < vstate->dtvs_ntlocals)
7796 				existing = &vstate->dtvs_tlocals[ndx];
7797 			break;
7798 
7799 		case DIFV_SCOPE_LOCAL:
7800 			if (ndx < vstate->dtvs_nlocals) {
7801 				dtrace_statvar_t *svar;
7802 
7803 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7804 					existing = &svar->dtsv_var;
7805 			}
7806 
7807 			break;
7808 		}
7809 
7810 		vt = &v->dtdv_type;
7811 
7812 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7813 			if (vt->dtdt_size == 0) {
7814 				err += efunc(i, "zero-sized variable\n");
7815 				break;
7816 			}
7817 
7818 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7819 			    vt->dtdt_size > dtrace_global_maxsize) {
7820 				err += efunc(i, "oversized by-ref global\n");
7821 				break;
7822 			}
7823 		}
7824 
7825 		if (existing == NULL || existing->dtdv_id == 0)
7826 			continue;
7827 
7828 		ASSERT(existing->dtdv_id == v->dtdv_id);
7829 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7830 
7831 		if (existing->dtdv_kind != v->dtdv_kind)
7832 			err += efunc(i, "%d changed variable kind\n", id);
7833 
7834 		et = &existing->dtdv_type;
7835 
7836 		if (vt->dtdt_flags != et->dtdt_flags) {
7837 			err += efunc(i, "%d changed variable type flags\n", id);
7838 			break;
7839 		}
7840 
7841 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7842 			err += efunc(i, "%d changed variable type size\n", id);
7843 			break;
7844 		}
7845 	}
7846 
7847 	return (err);
7848 }
7849 
7850 /*
7851  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7852  * are much more constrained than normal DIFOs.  Specifically, they may
7853  * not:
7854  *
7855  * 1. Make calls to subroutines other than copyin(), copyinstr() or
7856  *    miscellaneous string routines
7857  * 2. Access DTrace variables other than the args[] array, and the
7858  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
7859  * 3. Have thread-local variables.
7860  * 4. Have dynamic variables.
7861  */
7862 static int
7863 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7864 {
7865 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7866 	int err = 0;
7867 	uint_t pc;
7868 
7869 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7870 		dif_instr_t instr = dp->dtdo_buf[pc];
7871 
7872 		uint_t v = DIF_INSTR_VAR(instr);
7873 		uint_t subr = DIF_INSTR_SUBR(instr);
7874 		uint_t op = DIF_INSTR_OP(instr);
7875 
7876 		switch (op) {
7877 		case DIF_OP_OR:
7878 		case DIF_OP_XOR:
7879 		case DIF_OP_AND:
7880 		case DIF_OP_SLL:
7881 		case DIF_OP_SRL:
7882 		case DIF_OP_SRA:
7883 		case DIF_OP_SUB:
7884 		case DIF_OP_ADD:
7885 		case DIF_OP_MUL:
7886 		case DIF_OP_SDIV:
7887 		case DIF_OP_UDIV:
7888 		case DIF_OP_SREM:
7889 		case DIF_OP_UREM:
7890 		case DIF_OP_COPYS:
7891 		case DIF_OP_NOT:
7892 		case DIF_OP_MOV:
7893 		case DIF_OP_RLDSB:
7894 		case DIF_OP_RLDSH:
7895 		case DIF_OP_RLDSW:
7896 		case DIF_OP_RLDUB:
7897 		case DIF_OP_RLDUH:
7898 		case DIF_OP_RLDUW:
7899 		case DIF_OP_RLDX:
7900 		case DIF_OP_ULDSB:
7901 		case DIF_OP_ULDSH:
7902 		case DIF_OP_ULDSW:
7903 		case DIF_OP_ULDUB:
7904 		case DIF_OP_ULDUH:
7905 		case DIF_OP_ULDUW:
7906 		case DIF_OP_ULDX:
7907 		case DIF_OP_STB:
7908 		case DIF_OP_STH:
7909 		case DIF_OP_STW:
7910 		case DIF_OP_STX:
7911 		case DIF_OP_ALLOCS:
7912 		case DIF_OP_CMP:
7913 		case DIF_OP_SCMP:
7914 		case DIF_OP_TST:
7915 		case DIF_OP_BA:
7916 		case DIF_OP_BE:
7917 		case DIF_OP_BNE:
7918 		case DIF_OP_BG:
7919 		case DIF_OP_BGU:
7920 		case DIF_OP_BGE:
7921 		case DIF_OP_BGEU:
7922 		case DIF_OP_BL:
7923 		case DIF_OP_BLU:
7924 		case DIF_OP_BLE:
7925 		case DIF_OP_BLEU:
7926 		case DIF_OP_RET:
7927 		case DIF_OP_NOP:
7928 		case DIF_OP_POPTS:
7929 		case DIF_OP_FLUSHTS:
7930 		case DIF_OP_SETX:
7931 		case DIF_OP_SETS:
7932 		case DIF_OP_LDGA:
7933 		case DIF_OP_LDLS:
7934 		case DIF_OP_STGS:
7935 		case DIF_OP_STLS:
7936 		case DIF_OP_PUSHTR:
7937 		case DIF_OP_PUSHTV:
7938 			break;
7939 
7940 		case DIF_OP_LDGS:
7941 			if (v >= DIF_VAR_OTHER_UBASE)
7942 				break;
7943 
7944 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7945 				break;
7946 
7947 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7948 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
7949 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
7950 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
7951 				break;
7952 
7953 			err += efunc(pc, "illegal variable %u\n", v);
7954 			break;
7955 
7956 		case DIF_OP_LDTA:
7957 		case DIF_OP_LDTS:
7958 		case DIF_OP_LDGAA:
7959 		case DIF_OP_LDTAA:
7960 			err += efunc(pc, "illegal dynamic variable load\n");
7961 			break;
7962 
7963 		case DIF_OP_STTS:
7964 		case DIF_OP_STGAA:
7965 		case DIF_OP_STTAA:
7966 			err += efunc(pc, "illegal dynamic variable store\n");
7967 			break;
7968 
7969 		case DIF_OP_CALL:
7970 			if (subr == DIF_SUBR_ALLOCA ||
7971 			    subr == DIF_SUBR_BCOPY ||
7972 			    subr == DIF_SUBR_COPYIN ||
7973 			    subr == DIF_SUBR_COPYINTO ||
7974 			    subr == DIF_SUBR_COPYINSTR ||
7975 			    subr == DIF_SUBR_INDEX ||
7976 			    subr == DIF_SUBR_LLTOSTR ||
7977 			    subr == DIF_SUBR_RINDEX ||
7978 			    subr == DIF_SUBR_STRCHR ||
7979 			    subr == DIF_SUBR_STRJOIN ||
7980 			    subr == DIF_SUBR_STRRCHR ||
7981 			    subr == DIF_SUBR_STRSTR ||
7982 			    subr == DIF_SUBR_HTONS ||
7983 			    subr == DIF_SUBR_HTONL ||
7984 			    subr == DIF_SUBR_HTONLL ||
7985 			    subr == DIF_SUBR_NTOHS ||
7986 			    subr == DIF_SUBR_NTOHL ||
7987 			    subr == DIF_SUBR_NTOHLL)
7988 				break;
7989 
7990 			err += efunc(pc, "invalid subr %u\n", subr);
7991 			break;
7992 
7993 		default:
7994 			err += efunc(pc, "invalid opcode %u\n",
7995 			    DIF_INSTR_OP(instr));
7996 		}
7997 	}
7998 
7999 	return (err);
8000 }
8001 
8002 /*
8003  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8004  * basis; 0 if not.
8005  */
8006 static int
8007 dtrace_difo_cacheable(dtrace_difo_t *dp)
8008 {
8009 	int i;
8010 
8011 	if (dp == NULL)
8012 		return (0);
8013 
8014 	for (i = 0; i < dp->dtdo_varlen; i++) {
8015 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8016 
8017 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8018 			continue;
8019 
8020 		switch (v->dtdv_id) {
8021 		case DIF_VAR_CURTHREAD:
8022 		case DIF_VAR_PID:
8023 		case DIF_VAR_TID:
8024 		case DIF_VAR_EXECNAME:
8025 		case DIF_VAR_ZONENAME:
8026 			break;
8027 
8028 		default:
8029 			return (0);
8030 		}
8031 	}
8032 
8033 	/*
8034 	 * This DIF object may be cacheable.  Now we need to look for any
8035 	 * array loading instructions, any memory loading instructions, or
8036 	 * any stores to thread-local variables.
8037 	 */
8038 	for (i = 0; i < dp->dtdo_len; i++) {
8039 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8040 
8041 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8042 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8043 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8044 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8045 			return (0);
8046 	}
8047 
8048 	return (1);
8049 }
8050 
8051 static void
8052 dtrace_difo_hold(dtrace_difo_t *dp)
8053 {
8054 	int i;
8055 
8056 	ASSERT(MUTEX_HELD(&dtrace_lock));
8057 
8058 	dp->dtdo_refcnt++;
8059 	ASSERT(dp->dtdo_refcnt != 0);
8060 
8061 	/*
8062 	 * We need to check this DIF object for references to the variable
8063 	 * DIF_VAR_VTIMESTAMP.
8064 	 */
8065 	for (i = 0; i < dp->dtdo_varlen; i++) {
8066 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8067 
8068 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8069 			continue;
8070 
8071 		if (dtrace_vtime_references++ == 0)
8072 			dtrace_vtime_enable();
8073 	}
8074 }
8075 
8076 /*
8077  * This routine calculates the dynamic variable chunksize for a given DIF
8078  * object.  The calculation is not fool-proof, and can probably be tricked by
8079  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8080  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8081  * if a dynamic variable size exceeds the chunksize.
8082  */
8083 static void
8084 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8085 {
8086 	uint64_t sval;
8087 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8088 	const dif_instr_t *text = dp->dtdo_buf;
8089 	uint_t pc, srd = 0;
8090 	uint_t ttop = 0;
8091 	size_t size, ksize;
8092 	uint_t id, i;
8093 
8094 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8095 		dif_instr_t instr = text[pc];
8096 		uint_t op = DIF_INSTR_OP(instr);
8097 		uint_t rd = DIF_INSTR_RD(instr);
8098 		uint_t r1 = DIF_INSTR_R1(instr);
8099 		uint_t nkeys = 0;
8100 		uchar_t scope;
8101 
8102 		dtrace_key_t *key = tupregs;
8103 
8104 		switch (op) {
8105 		case DIF_OP_SETX:
8106 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8107 			srd = rd;
8108 			continue;
8109 
8110 		case DIF_OP_STTS:
8111 			key = &tupregs[DIF_DTR_NREGS];
8112 			key[0].dttk_size = 0;
8113 			key[1].dttk_size = 0;
8114 			nkeys = 2;
8115 			scope = DIFV_SCOPE_THREAD;
8116 			break;
8117 
8118 		case DIF_OP_STGAA:
8119 		case DIF_OP_STTAA:
8120 			nkeys = ttop;
8121 
8122 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8123 				key[nkeys++].dttk_size = 0;
8124 
8125 			key[nkeys++].dttk_size = 0;
8126 
8127 			if (op == DIF_OP_STTAA) {
8128 				scope = DIFV_SCOPE_THREAD;
8129 			} else {
8130 				scope = DIFV_SCOPE_GLOBAL;
8131 			}
8132 
8133 			break;
8134 
8135 		case DIF_OP_PUSHTR:
8136 			if (ttop == DIF_DTR_NREGS)
8137 				return;
8138 
8139 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8140 				/*
8141 				 * If the register for the size of the "pushtr"
8142 				 * is %r0 (or the value is 0) and the type is
8143 				 * a string, we'll use the system-wide default
8144 				 * string size.
8145 				 */
8146 				tupregs[ttop++].dttk_size =
8147 				    dtrace_strsize_default;
8148 			} else {
8149 				if (srd == 0)
8150 					return;
8151 
8152 				tupregs[ttop++].dttk_size = sval;
8153 			}
8154 
8155 			break;
8156 
8157 		case DIF_OP_PUSHTV:
8158 			if (ttop == DIF_DTR_NREGS)
8159 				return;
8160 
8161 			tupregs[ttop++].dttk_size = 0;
8162 			break;
8163 
8164 		case DIF_OP_FLUSHTS:
8165 			ttop = 0;
8166 			break;
8167 
8168 		case DIF_OP_POPTS:
8169 			if (ttop != 0)
8170 				ttop--;
8171 			break;
8172 		}
8173 
8174 		sval = 0;
8175 		srd = 0;
8176 
8177 		if (nkeys == 0)
8178 			continue;
8179 
8180 		/*
8181 		 * We have a dynamic variable allocation; calculate its size.
8182 		 */
8183 		for (ksize = 0, i = 0; i < nkeys; i++)
8184 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8185 
8186 		size = sizeof (dtrace_dynvar_t);
8187 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8188 		size += ksize;
8189 
8190 		/*
8191 		 * Now we need to determine the size of the stored data.
8192 		 */
8193 		id = DIF_INSTR_VAR(instr);
8194 
8195 		for (i = 0; i < dp->dtdo_varlen; i++) {
8196 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8197 
8198 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8199 				size += v->dtdv_type.dtdt_size;
8200 				break;
8201 			}
8202 		}
8203 
8204 		if (i == dp->dtdo_varlen)
8205 			return;
8206 
8207 		/*
8208 		 * We have the size.  If this is larger than the chunk size
8209 		 * for our dynamic variable state, reset the chunk size.
8210 		 */
8211 		size = P2ROUNDUP(size, sizeof (uint64_t));
8212 
8213 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8214 			vstate->dtvs_dynvars.dtds_chunksize = size;
8215 	}
8216 }
8217 
8218 static void
8219 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8220 {
8221 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8222 	uint_t id;
8223 
8224 	ASSERT(MUTEX_HELD(&dtrace_lock));
8225 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8226 
8227 	for (i = 0; i < dp->dtdo_varlen; i++) {
8228 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8229 		dtrace_statvar_t *svar, ***svarp;
8230 		size_t dsize = 0;
8231 		uint8_t scope = v->dtdv_scope;
8232 		int *np;
8233 
8234 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8235 			continue;
8236 
8237 		id -= DIF_VAR_OTHER_UBASE;
8238 
8239 		switch (scope) {
8240 		case DIFV_SCOPE_THREAD:
8241 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8242 				dtrace_difv_t *tlocals;
8243 
8244 				if ((ntlocals = (otlocals << 1)) == 0)
8245 					ntlocals = 1;
8246 
8247 				osz = otlocals * sizeof (dtrace_difv_t);
8248 				nsz = ntlocals * sizeof (dtrace_difv_t);
8249 
8250 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8251 
8252 				if (osz != 0) {
8253 					bcopy(vstate->dtvs_tlocals,
8254 					    tlocals, osz);
8255 					kmem_free(vstate->dtvs_tlocals, osz);
8256 				}
8257 
8258 				vstate->dtvs_tlocals = tlocals;
8259 				vstate->dtvs_ntlocals = ntlocals;
8260 			}
8261 
8262 			vstate->dtvs_tlocals[id] = *v;
8263 			continue;
8264 
8265 		case DIFV_SCOPE_LOCAL:
8266 			np = &vstate->dtvs_nlocals;
8267 			svarp = &vstate->dtvs_locals;
8268 
8269 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8270 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8271 				    sizeof (uint64_t));
8272 			else
8273 				dsize = NCPU * sizeof (uint64_t);
8274 
8275 			break;
8276 
8277 		case DIFV_SCOPE_GLOBAL:
8278 			np = &vstate->dtvs_nglobals;
8279 			svarp = &vstate->dtvs_globals;
8280 
8281 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8282 				dsize = v->dtdv_type.dtdt_size +
8283 				    sizeof (uint64_t);
8284 
8285 			break;
8286 
8287 		default:
8288 			ASSERT(0);
8289 		}
8290 
8291 		while (id >= (oldsvars = *np)) {
8292 			dtrace_statvar_t **statics;
8293 			int newsvars, oldsize, newsize;
8294 
8295 			if ((newsvars = (oldsvars << 1)) == 0)
8296 				newsvars = 1;
8297 
8298 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8299 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8300 
8301 			statics = kmem_zalloc(newsize, KM_SLEEP);
8302 
8303 			if (oldsize != 0) {
8304 				bcopy(*svarp, statics, oldsize);
8305 				kmem_free(*svarp, oldsize);
8306 			}
8307 
8308 			*svarp = statics;
8309 			*np = newsvars;
8310 		}
8311 
8312 		if ((svar = (*svarp)[id]) == NULL) {
8313 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8314 			svar->dtsv_var = *v;
8315 
8316 			if ((svar->dtsv_size = dsize) != 0) {
8317 				svar->dtsv_data = (uint64_t)(uintptr_t)
8318 				    kmem_zalloc(dsize, KM_SLEEP);
8319 			}
8320 
8321 			(*svarp)[id] = svar;
8322 		}
8323 
8324 		svar->dtsv_refcnt++;
8325 	}
8326 
8327 	dtrace_difo_chunksize(dp, vstate);
8328 	dtrace_difo_hold(dp);
8329 }
8330 
8331 static dtrace_difo_t *
8332 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8333 {
8334 	dtrace_difo_t *new;
8335 	size_t sz;
8336 
8337 	ASSERT(dp->dtdo_buf != NULL);
8338 	ASSERT(dp->dtdo_refcnt != 0);
8339 
8340 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8341 
8342 	ASSERT(dp->dtdo_buf != NULL);
8343 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8344 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8345 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8346 	new->dtdo_len = dp->dtdo_len;
8347 
8348 	if (dp->dtdo_strtab != NULL) {
8349 		ASSERT(dp->dtdo_strlen != 0);
8350 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8351 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8352 		new->dtdo_strlen = dp->dtdo_strlen;
8353 	}
8354 
8355 	if (dp->dtdo_inttab != NULL) {
8356 		ASSERT(dp->dtdo_intlen != 0);
8357 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8358 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8359 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8360 		new->dtdo_intlen = dp->dtdo_intlen;
8361 	}
8362 
8363 	if (dp->dtdo_vartab != NULL) {
8364 		ASSERT(dp->dtdo_varlen != 0);
8365 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8366 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8367 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8368 		new->dtdo_varlen = dp->dtdo_varlen;
8369 	}
8370 
8371 	dtrace_difo_init(new, vstate);
8372 	return (new);
8373 }
8374 
8375 static void
8376 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8377 {
8378 	int i;
8379 
8380 	ASSERT(dp->dtdo_refcnt == 0);
8381 
8382 	for (i = 0; i < dp->dtdo_varlen; i++) {
8383 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8384 		dtrace_statvar_t *svar, **svarp;
8385 		uint_t id;
8386 		uint8_t scope = v->dtdv_scope;
8387 		int *np;
8388 
8389 		switch (scope) {
8390 		case DIFV_SCOPE_THREAD:
8391 			continue;
8392 
8393 		case DIFV_SCOPE_LOCAL:
8394 			np = &vstate->dtvs_nlocals;
8395 			svarp = vstate->dtvs_locals;
8396 			break;
8397 
8398 		case DIFV_SCOPE_GLOBAL:
8399 			np = &vstate->dtvs_nglobals;
8400 			svarp = vstate->dtvs_globals;
8401 			break;
8402 
8403 		default:
8404 			ASSERT(0);
8405 		}
8406 
8407 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8408 			continue;
8409 
8410 		id -= DIF_VAR_OTHER_UBASE;
8411 		ASSERT(id < *np);
8412 
8413 		svar = svarp[id];
8414 		ASSERT(svar != NULL);
8415 		ASSERT(svar->dtsv_refcnt > 0);
8416 
8417 		if (--svar->dtsv_refcnt > 0)
8418 			continue;
8419 
8420 		if (svar->dtsv_size != 0) {
8421 			ASSERT(svar->dtsv_data != NULL);
8422 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8423 			    svar->dtsv_size);
8424 		}
8425 
8426 		kmem_free(svar, sizeof (dtrace_statvar_t));
8427 		svarp[id] = NULL;
8428 	}
8429 
8430 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8431 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8432 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8433 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8434 
8435 	kmem_free(dp, sizeof (dtrace_difo_t));
8436 }
8437 
8438 static void
8439 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8440 {
8441 	int i;
8442 
8443 	ASSERT(MUTEX_HELD(&dtrace_lock));
8444 	ASSERT(dp->dtdo_refcnt != 0);
8445 
8446 	for (i = 0; i < dp->dtdo_varlen; i++) {
8447 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8448 
8449 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8450 			continue;
8451 
8452 		ASSERT(dtrace_vtime_references > 0);
8453 		if (--dtrace_vtime_references == 0)
8454 			dtrace_vtime_disable();
8455 	}
8456 
8457 	if (--dp->dtdo_refcnt == 0)
8458 		dtrace_difo_destroy(dp, vstate);
8459 }
8460 
8461 /*
8462  * DTrace Format Functions
8463  */
8464 static uint16_t
8465 dtrace_format_add(dtrace_state_t *state, char *str)
8466 {
8467 	char *fmt, **new;
8468 	uint16_t ndx, len = strlen(str) + 1;
8469 
8470 	fmt = kmem_zalloc(len, KM_SLEEP);
8471 	bcopy(str, fmt, len);
8472 
8473 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8474 		if (state->dts_formats[ndx] == NULL) {
8475 			state->dts_formats[ndx] = fmt;
8476 			return (ndx + 1);
8477 		}
8478 	}
8479 
8480 	if (state->dts_nformats == USHRT_MAX) {
8481 		/*
8482 		 * This is only likely if a denial-of-service attack is being
8483 		 * attempted.  As such, it's okay to fail silently here.
8484 		 */
8485 		kmem_free(fmt, len);
8486 		return (0);
8487 	}
8488 
8489 	/*
8490 	 * For simplicity, we always resize the formats array to be exactly the
8491 	 * number of formats.
8492 	 */
8493 	ndx = state->dts_nformats++;
8494 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8495 
8496 	if (state->dts_formats != NULL) {
8497 		ASSERT(ndx != 0);
8498 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8499 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8500 	}
8501 
8502 	state->dts_formats = new;
8503 	state->dts_formats[ndx] = fmt;
8504 
8505 	return (ndx + 1);
8506 }
8507 
8508 static void
8509 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8510 {
8511 	char *fmt;
8512 
8513 	ASSERT(state->dts_formats != NULL);
8514 	ASSERT(format <= state->dts_nformats);
8515 	ASSERT(state->dts_formats[format - 1] != NULL);
8516 
8517 	fmt = state->dts_formats[format - 1];
8518 	kmem_free(fmt, strlen(fmt) + 1);
8519 	state->dts_formats[format - 1] = NULL;
8520 }
8521 
8522 static void
8523 dtrace_format_destroy(dtrace_state_t *state)
8524 {
8525 	int i;
8526 
8527 	if (state->dts_nformats == 0) {
8528 		ASSERT(state->dts_formats == NULL);
8529 		return;
8530 	}
8531 
8532 	ASSERT(state->dts_formats != NULL);
8533 
8534 	for (i = 0; i < state->dts_nformats; i++) {
8535 		char *fmt = state->dts_formats[i];
8536 
8537 		if (fmt == NULL)
8538 			continue;
8539 
8540 		kmem_free(fmt, strlen(fmt) + 1);
8541 	}
8542 
8543 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8544 	state->dts_nformats = 0;
8545 	state->dts_formats = NULL;
8546 }
8547 
8548 /*
8549  * DTrace Predicate Functions
8550  */
8551 static dtrace_predicate_t *
8552 dtrace_predicate_create(dtrace_difo_t *dp)
8553 {
8554 	dtrace_predicate_t *pred;
8555 
8556 	ASSERT(MUTEX_HELD(&dtrace_lock));
8557 	ASSERT(dp->dtdo_refcnt != 0);
8558 
8559 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8560 	pred->dtp_difo = dp;
8561 	pred->dtp_refcnt = 1;
8562 
8563 	if (!dtrace_difo_cacheable(dp))
8564 		return (pred);
8565 
8566 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8567 		/*
8568 		 * This is only theoretically possible -- we have had 2^32
8569 		 * cacheable predicates on this machine.  We cannot allow any
8570 		 * more predicates to become cacheable:  as unlikely as it is,
8571 		 * there may be a thread caching a (now stale) predicate cache
8572 		 * ID. (N.B.: the temptation is being successfully resisted to
8573 		 * have this cmn_err() "Holy shit -- we executed this code!")
8574 		 */
8575 		return (pred);
8576 	}
8577 
8578 	pred->dtp_cacheid = dtrace_predcache_id++;
8579 
8580 	return (pred);
8581 }
8582 
8583 static void
8584 dtrace_predicate_hold(dtrace_predicate_t *pred)
8585 {
8586 	ASSERT(MUTEX_HELD(&dtrace_lock));
8587 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8588 	ASSERT(pred->dtp_refcnt > 0);
8589 
8590 	pred->dtp_refcnt++;
8591 }
8592 
8593 static void
8594 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8595 {
8596 	dtrace_difo_t *dp = pred->dtp_difo;
8597 
8598 	ASSERT(MUTEX_HELD(&dtrace_lock));
8599 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8600 	ASSERT(pred->dtp_refcnt > 0);
8601 
8602 	if (--pred->dtp_refcnt == 0) {
8603 		dtrace_difo_release(pred->dtp_difo, vstate);
8604 		kmem_free(pred, sizeof (dtrace_predicate_t));
8605 	}
8606 }
8607 
8608 /*
8609  * DTrace Action Description Functions
8610  */
8611 static dtrace_actdesc_t *
8612 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8613     uint64_t uarg, uint64_t arg)
8614 {
8615 	dtrace_actdesc_t *act;
8616 
8617 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8618 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8619 
8620 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8621 	act->dtad_kind = kind;
8622 	act->dtad_ntuple = ntuple;
8623 	act->dtad_uarg = uarg;
8624 	act->dtad_arg = arg;
8625 	act->dtad_refcnt = 1;
8626 
8627 	return (act);
8628 }
8629 
8630 static void
8631 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8632 {
8633 	ASSERT(act->dtad_refcnt >= 1);
8634 	act->dtad_refcnt++;
8635 }
8636 
8637 static void
8638 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
8639 {
8640 	dtrace_actkind_t kind = act->dtad_kind;
8641 	dtrace_difo_t *dp;
8642 
8643 	ASSERT(act->dtad_refcnt >= 1);
8644 
8645 	if (--act->dtad_refcnt != 0)
8646 		return;
8647 
8648 	if ((dp = act->dtad_difo) != NULL)
8649 		dtrace_difo_release(dp, vstate);
8650 
8651 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
8652 		char *str = (char *)(uintptr_t)act->dtad_arg;
8653 
8654 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
8655 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
8656 
8657 		if (str != NULL)
8658 			kmem_free(str, strlen(str) + 1);
8659 	}
8660 
8661 	kmem_free(act, sizeof (dtrace_actdesc_t));
8662 }
8663 
8664 /*
8665  * DTrace ECB Functions
8666  */
8667 static dtrace_ecb_t *
8668 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
8669 {
8670 	dtrace_ecb_t *ecb;
8671 	dtrace_epid_t epid;
8672 
8673 	ASSERT(MUTEX_HELD(&dtrace_lock));
8674 
8675 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
8676 	ecb->dte_predicate = NULL;
8677 	ecb->dte_probe = probe;
8678 
8679 	/*
8680 	 * The default size is the size of the default action: recording
8681 	 * the epid.
8682 	 */
8683 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8684 	ecb->dte_alignment = sizeof (dtrace_epid_t);
8685 
8686 	epid = state->dts_epid++;
8687 
8688 	if (epid - 1 >= state->dts_necbs) {
8689 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
8690 		int necbs = state->dts_necbs << 1;
8691 
8692 		ASSERT(epid == state->dts_necbs + 1);
8693 
8694 		if (necbs == 0) {
8695 			ASSERT(oecbs == NULL);
8696 			necbs = 1;
8697 		}
8698 
8699 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
8700 
8701 		if (oecbs != NULL)
8702 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
8703 
8704 		dtrace_membar_producer();
8705 		state->dts_ecbs = ecbs;
8706 
8707 		if (oecbs != NULL) {
8708 			/*
8709 			 * If this state is active, we must dtrace_sync()
8710 			 * before we can free the old dts_ecbs array:  we're
8711 			 * coming in hot, and there may be active ring
8712 			 * buffer processing (which indexes into the dts_ecbs
8713 			 * array) on another CPU.
8714 			 */
8715 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
8716 				dtrace_sync();
8717 
8718 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
8719 		}
8720 
8721 		dtrace_membar_producer();
8722 		state->dts_necbs = necbs;
8723 	}
8724 
8725 	ecb->dte_state = state;
8726 
8727 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8728 	dtrace_membar_producer();
8729 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8730 
8731 	return (ecb);
8732 }
8733 
8734 static void
8735 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8736 {
8737 	dtrace_probe_t *probe = ecb->dte_probe;
8738 
8739 	ASSERT(MUTEX_HELD(&cpu_lock));
8740 	ASSERT(MUTEX_HELD(&dtrace_lock));
8741 	ASSERT(ecb->dte_next == NULL);
8742 
8743 	if (probe == NULL) {
8744 		/*
8745 		 * This is the NULL probe -- there's nothing to do.
8746 		 */
8747 		return;
8748 	}
8749 
8750 	if (probe->dtpr_ecb == NULL) {
8751 		dtrace_provider_t *prov = probe->dtpr_provider;
8752 
8753 		/*
8754 		 * We're the first ECB on this probe.
8755 		 */
8756 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8757 
8758 		if (ecb->dte_predicate != NULL)
8759 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8760 
8761 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8762 		    probe->dtpr_id, probe->dtpr_arg);
8763 	} else {
8764 		/*
8765 		 * This probe is already active.  Swing the last pointer to
8766 		 * point to the new ECB, and issue a dtrace_sync() to assure
8767 		 * that all CPUs have seen the change.
8768 		 */
8769 		ASSERT(probe->dtpr_ecb_last != NULL);
8770 		probe->dtpr_ecb_last->dte_next = ecb;
8771 		probe->dtpr_ecb_last = ecb;
8772 		probe->dtpr_predcache = 0;
8773 
8774 		dtrace_sync();
8775 	}
8776 }
8777 
8778 static void
8779 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8780 {
8781 	uint32_t maxalign = sizeof (dtrace_epid_t);
8782 	uint32_t align = sizeof (uint8_t), offs, diff;
8783 	dtrace_action_t *act;
8784 	int wastuple = 0;
8785 	uint32_t aggbase = UINT32_MAX;
8786 	dtrace_state_t *state = ecb->dte_state;
8787 
8788 	/*
8789 	 * If we record anything, we always record the epid.  (And we always
8790 	 * record it first.)
8791 	 */
8792 	offs = sizeof (dtrace_epid_t);
8793 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8794 
8795 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8796 		dtrace_recdesc_t *rec = &act->dta_rec;
8797 
8798 		if ((align = rec->dtrd_alignment) > maxalign)
8799 			maxalign = align;
8800 
8801 		if (!wastuple && act->dta_intuple) {
8802 			/*
8803 			 * This is the first record in a tuple.  Align the
8804 			 * offset to be at offset 4 in an 8-byte aligned
8805 			 * block.
8806 			 */
8807 			diff = offs + sizeof (dtrace_aggid_t);
8808 
8809 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8810 				offs += sizeof (uint64_t) - diff;
8811 
8812 			aggbase = offs - sizeof (dtrace_aggid_t);
8813 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8814 		}
8815 
8816 		/*LINTED*/
8817 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8818 			/*
8819 			 * The current offset is not properly aligned; align it.
8820 			 */
8821 			offs += align - diff;
8822 		}
8823 
8824 		rec->dtrd_offset = offs;
8825 
8826 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8827 			ecb->dte_needed = offs + rec->dtrd_size;
8828 
8829 			if (ecb->dte_needed > state->dts_needed)
8830 				state->dts_needed = ecb->dte_needed;
8831 		}
8832 
8833 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8834 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8835 			dtrace_action_t *first = agg->dtag_first, *prev;
8836 
8837 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8838 			ASSERT(wastuple);
8839 			ASSERT(aggbase != UINT32_MAX);
8840 
8841 			agg->dtag_base = aggbase;
8842 
8843 			while ((prev = first->dta_prev) != NULL &&
8844 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8845 				agg = (dtrace_aggregation_t *)prev;
8846 				first = agg->dtag_first;
8847 			}
8848 
8849 			if (prev != NULL) {
8850 				offs = prev->dta_rec.dtrd_offset +
8851 				    prev->dta_rec.dtrd_size;
8852 			} else {
8853 				offs = sizeof (dtrace_epid_t);
8854 			}
8855 			wastuple = 0;
8856 		} else {
8857 			if (!act->dta_intuple)
8858 				ecb->dte_size = offs + rec->dtrd_size;
8859 
8860 			offs += rec->dtrd_size;
8861 		}
8862 
8863 		wastuple = act->dta_intuple;
8864 	}
8865 
8866 	if ((act = ecb->dte_action) != NULL &&
8867 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8868 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8869 		/*
8870 		 * If the size is still sizeof (dtrace_epid_t), then all
8871 		 * actions store no data; set the size to 0.
8872 		 */
8873 		ecb->dte_alignment = maxalign;
8874 		ecb->dte_size = 0;
8875 
8876 		/*
8877 		 * If the needed space is still sizeof (dtrace_epid_t), then
8878 		 * all actions need no additional space; set the needed
8879 		 * size to 0.
8880 		 */
8881 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8882 			ecb->dte_needed = 0;
8883 
8884 		return;
8885 	}
8886 
8887 	/*
8888 	 * Set our alignment, and make sure that the dte_size and dte_needed
8889 	 * are aligned to the size of an EPID.
8890 	 */
8891 	ecb->dte_alignment = maxalign;
8892 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8893 	    ~(sizeof (dtrace_epid_t) - 1);
8894 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8895 	    ~(sizeof (dtrace_epid_t) - 1);
8896 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8897 }
8898 
8899 static dtrace_action_t *
8900 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8901 {
8902 	dtrace_aggregation_t *agg;
8903 	size_t size = sizeof (uint64_t);
8904 	int ntuple = desc->dtad_ntuple;
8905 	dtrace_action_t *act;
8906 	dtrace_recdesc_t *frec;
8907 	dtrace_aggid_t aggid;
8908 	dtrace_state_t *state = ecb->dte_state;
8909 
8910 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8911 	agg->dtag_ecb = ecb;
8912 
8913 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8914 
8915 	switch (desc->dtad_kind) {
8916 	case DTRACEAGG_MIN:
8917 		agg->dtag_initial = UINT64_MAX;
8918 		agg->dtag_aggregate = dtrace_aggregate_min;
8919 		break;
8920 
8921 	case DTRACEAGG_MAX:
8922 		agg->dtag_aggregate = dtrace_aggregate_max;
8923 		break;
8924 
8925 	case DTRACEAGG_COUNT:
8926 		agg->dtag_aggregate = dtrace_aggregate_count;
8927 		break;
8928 
8929 	case DTRACEAGG_QUANTIZE:
8930 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8931 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8932 		    sizeof (uint64_t);
8933 		break;
8934 
8935 	case DTRACEAGG_LQUANTIZE: {
8936 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8937 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8938 
8939 		agg->dtag_initial = desc->dtad_arg;
8940 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8941 
8942 		if (step == 0 || levels == 0)
8943 			goto err;
8944 
8945 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8946 		break;
8947 	}
8948 
8949 	case DTRACEAGG_AVG:
8950 		agg->dtag_aggregate = dtrace_aggregate_avg;
8951 		size = sizeof (uint64_t) * 2;
8952 		break;
8953 
8954 	case DTRACEAGG_SUM:
8955 		agg->dtag_aggregate = dtrace_aggregate_sum;
8956 		break;
8957 
8958 	default:
8959 		goto err;
8960 	}
8961 
8962 	agg->dtag_action.dta_rec.dtrd_size = size;
8963 
8964 	if (ntuple == 0)
8965 		goto err;
8966 
8967 	/*
8968 	 * We must make sure that we have enough actions for the n-tuple.
8969 	 */
8970 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8971 		if (DTRACEACT_ISAGG(act->dta_kind))
8972 			break;
8973 
8974 		if (--ntuple == 0) {
8975 			/*
8976 			 * This is the action with which our n-tuple begins.
8977 			 */
8978 			agg->dtag_first = act;
8979 			goto success;
8980 		}
8981 	}
8982 
8983 	/*
8984 	 * This n-tuple is short by ntuple elements.  Return failure.
8985 	 */
8986 	ASSERT(ntuple != 0);
8987 err:
8988 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8989 	return (NULL);
8990 
8991 success:
8992 	/*
8993 	 * If the last action in the tuple has a size of zero, it's actually
8994 	 * an expression argument for the aggregating action.
8995 	 */
8996 	ASSERT(ecb->dte_action_last != NULL);
8997 	act = ecb->dte_action_last;
8998 
8999 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9000 		ASSERT(act->dta_difo != NULL);
9001 
9002 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9003 			agg->dtag_hasarg = 1;
9004 	}
9005 
9006 	/*
9007 	 * We need to allocate an id for this aggregation.
9008 	 */
9009 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9010 	    VM_BESTFIT | VM_SLEEP);
9011 
9012 	if (aggid - 1 >= state->dts_naggregations) {
9013 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9014 		dtrace_aggregation_t **aggs;
9015 		int naggs = state->dts_naggregations << 1;
9016 		int onaggs = state->dts_naggregations;
9017 
9018 		ASSERT(aggid == state->dts_naggregations + 1);
9019 
9020 		if (naggs == 0) {
9021 			ASSERT(oaggs == NULL);
9022 			naggs = 1;
9023 		}
9024 
9025 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9026 
9027 		if (oaggs != NULL) {
9028 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9029 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9030 		}
9031 
9032 		state->dts_aggregations = aggs;
9033 		state->dts_naggregations = naggs;
9034 	}
9035 
9036 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9037 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9038 
9039 	frec = &agg->dtag_first->dta_rec;
9040 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9041 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9042 
9043 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9044 		ASSERT(!act->dta_intuple);
9045 		act->dta_intuple = 1;
9046 	}
9047 
9048 	return (&agg->dtag_action);
9049 }
9050 
9051 static void
9052 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9053 {
9054 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9055 	dtrace_state_t *state = ecb->dte_state;
9056 	dtrace_aggid_t aggid = agg->dtag_id;
9057 
9058 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9059 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9060 
9061 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9062 	state->dts_aggregations[aggid - 1] = NULL;
9063 
9064 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9065 }
9066 
9067 static int
9068 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9069 {
9070 	dtrace_action_t *action, *last;
9071 	dtrace_difo_t *dp = desc->dtad_difo;
9072 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9073 	uint16_t format = 0;
9074 	dtrace_recdesc_t *rec;
9075 	dtrace_state_t *state = ecb->dte_state;
9076 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9077 	uint64_t arg = desc->dtad_arg;
9078 
9079 	ASSERT(MUTEX_HELD(&dtrace_lock));
9080 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9081 
9082 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9083 		/*
9084 		 * If this is an aggregating action, there must be neither
9085 		 * a speculate nor a commit on the action chain.
9086 		 */
9087 		dtrace_action_t *act;
9088 
9089 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9090 			if (act->dta_kind == DTRACEACT_COMMIT)
9091 				return (EINVAL);
9092 
9093 			if (act->dta_kind == DTRACEACT_SPECULATE)
9094 				return (EINVAL);
9095 		}
9096 
9097 		action = dtrace_ecb_aggregation_create(ecb, desc);
9098 
9099 		if (action == NULL)
9100 			return (EINVAL);
9101 	} else {
9102 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9103 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9104 		    dp != NULL && dp->dtdo_destructive)) {
9105 			state->dts_destructive = 1;
9106 		}
9107 
9108 		switch (desc->dtad_kind) {
9109 		case DTRACEACT_PRINTF:
9110 		case DTRACEACT_PRINTA:
9111 		case DTRACEACT_SYSTEM:
9112 		case DTRACEACT_FREOPEN:
9113 			/*
9114 			 * We know that our arg is a string -- turn it into a
9115 			 * format.
9116 			 */
9117 			if (arg == NULL) {
9118 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9119 				format = 0;
9120 			} else {
9121 				ASSERT(arg != NULL);
9122 				ASSERT(arg > KERNELBASE);
9123 				format = dtrace_format_add(state,
9124 				    (char *)(uintptr_t)arg);
9125 			}
9126 
9127 			/*FALLTHROUGH*/
9128 		case DTRACEACT_LIBACT:
9129 		case DTRACEACT_DIFEXPR:
9130 			if (dp == NULL)
9131 				return (EINVAL);
9132 
9133 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9134 				break;
9135 
9136 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9137 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9138 					return (EINVAL);
9139 
9140 				size = opt[DTRACEOPT_STRSIZE];
9141 			}
9142 
9143 			break;
9144 
9145 		case DTRACEACT_STACK:
9146 			if ((nframes = arg) == 0) {
9147 				nframes = opt[DTRACEOPT_STACKFRAMES];
9148 				ASSERT(nframes > 0);
9149 				arg = nframes;
9150 			}
9151 
9152 			size = nframes * sizeof (pc_t);
9153 			break;
9154 
9155 		case DTRACEACT_JSTACK:
9156 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9157 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9158 
9159 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9160 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9161 
9162 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9163 
9164 			/*FALLTHROUGH*/
9165 		case DTRACEACT_USTACK:
9166 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9167 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9168 				strsize = DTRACE_USTACK_STRSIZE(arg);
9169 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9170 				ASSERT(nframes > 0);
9171 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9172 			}
9173 
9174 			/*
9175 			 * Save a slot for the pid.
9176 			 */
9177 			size = (nframes + 1) * sizeof (uint64_t);
9178 			size += DTRACE_USTACK_STRSIZE(arg);
9179 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9180 
9181 			break;
9182 
9183 		case DTRACEACT_SYM:
9184 		case DTRACEACT_MOD:
9185 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9186 			    sizeof (uint64_t)) ||
9187 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9188 				return (EINVAL);
9189 			break;
9190 
9191 		case DTRACEACT_USYM:
9192 		case DTRACEACT_UMOD:
9193 		case DTRACEACT_UADDR:
9194 			if (dp == NULL ||
9195 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9196 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9197 				return (EINVAL);
9198 
9199 			/*
9200 			 * We have a slot for the pid, plus a slot for the
9201 			 * argument.  To keep things simple (aligned with
9202 			 * bitness-neutral sizing), we store each as a 64-bit
9203 			 * quantity.
9204 			 */
9205 			size = 2 * sizeof (uint64_t);
9206 			break;
9207 
9208 		case DTRACEACT_STOP:
9209 		case DTRACEACT_BREAKPOINT:
9210 		case DTRACEACT_PANIC:
9211 			break;
9212 
9213 		case DTRACEACT_CHILL:
9214 		case DTRACEACT_DISCARD:
9215 		case DTRACEACT_RAISE:
9216 			if (dp == NULL)
9217 				return (EINVAL);
9218 			break;
9219 
9220 		case DTRACEACT_EXIT:
9221 			if (dp == NULL ||
9222 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9223 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9224 				return (EINVAL);
9225 			break;
9226 
9227 		case DTRACEACT_SPECULATE:
9228 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9229 				return (EINVAL);
9230 
9231 			if (dp == NULL)
9232 				return (EINVAL);
9233 
9234 			state->dts_speculates = 1;
9235 			break;
9236 
9237 		case DTRACEACT_COMMIT: {
9238 			dtrace_action_t *act = ecb->dte_action;
9239 
9240 			for (; act != NULL; act = act->dta_next) {
9241 				if (act->dta_kind == DTRACEACT_COMMIT)
9242 					return (EINVAL);
9243 			}
9244 
9245 			if (dp == NULL)
9246 				return (EINVAL);
9247 			break;
9248 		}
9249 
9250 		default:
9251 			return (EINVAL);
9252 		}
9253 
9254 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9255 			/*
9256 			 * If this is a data-storing action or a speculate,
9257 			 * we must be sure that there isn't a commit on the
9258 			 * action chain.
9259 			 */
9260 			dtrace_action_t *act = ecb->dte_action;
9261 
9262 			for (; act != NULL; act = act->dta_next) {
9263 				if (act->dta_kind == DTRACEACT_COMMIT)
9264 					return (EINVAL);
9265 			}
9266 		}
9267 
9268 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9269 		action->dta_rec.dtrd_size = size;
9270 	}
9271 
9272 	action->dta_refcnt = 1;
9273 	rec = &action->dta_rec;
9274 	size = rec->dtrd_size;
9275 
9276 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9277 		if (!(size & mask)) {
9278 			align = mask + 1;
9279 			break;
9280 		}
9281 	}
9282 
9283 	action->dta_kind = desc->dtad_kind;
9284 
9285 	if ((action->dta_difo = dp) != NULL)
9286 		dtrace_difo_hold(dp);
9287 
9288 	rec->dtrd_action = action->dta_kind;
9289 	rec->dtrd_arg = arg;
9290 	rec->dtrd_uarg = desc->dtad_uarg;
9291 	rec->dtrd_alignment = (uint16_t)align;
9292 	rec->dtrd_format = format;
9293 
9294 	if ((last = ecb->dte_action_last) != NULL) {
9295 		ASSERT(ecb->dte_action != NULL);
9296 		action->dta_prev = last;
9297 		last->dta_next = action;
9298 	} else {
9299 		ASSERT(ecb->dte_action == NULL);
9300 		ecb->dte_action = action;
9301 	}
9302 
9303 	ecb->dte_action_last = action;
9304 
9305 	return (0);
9306 }
9307 
9308 static void
9309 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9310 {
9311 	dtrace_action_t *act = ecb->dte_action, *next;
9312 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9313 	dtrace_difo_t *dp;
9314 	uint16_t format;
9315 
9316 	if (act != NULL && act->dta_refcnt > 1) {
9317 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9318 		act->dta_refcnt--;
9319 	} else {
9320 		for (; act != NULL; act = next) {
9321 			next = act->dta_next;
9322 			ASSERT(next != NULL || act == ecb->dte_action_last);
9323 			ASSERT(act->dta_refcnt == 1);
9324 
9325 			if ((format = act->dta_rec.dtrd_format) != 0)
9326 				dtrace_format_remove(ecb->dte_state, format);
9327 
9328 			if ((dp = act->dta_difo) != NULL)
9329 				dtrace_difo_release(dp, vstate);
9330 
9331 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9332 				dtrace_ecb_aggregation_destroy(ecb, act);
9333 			} else {
9334 				kmem_free(act, sizeof (dtrace_action_t));
9335 			}
9336 		}
9337 	}
9338 
9339 	ecb->dte_action = NULL;
9340 	ecb->dte_action_last = NULL;
9341 	ecb->dte_size = sizeof (dtrace_epid_t);
9342 }
9343 
9344 static void
9345 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9346 {
9347 	/*
9348 	 * We disable the ECB by removing it from its probe.
9349 	 */
9350 	dtrace_ecb_t *pecb, *prev = NULL;
9351 	dtrace_probe_t *probe = ecb->dte_probe;
9352 
9353 	ASSERT(MUTEX_HELD(&dtrace_lock));
9354 
9355 	if (probe == NULL) {
9356 		/*
9357 		 * This is the NULL probe; there is nothing to disable.
9358 		 */
9359 		return;
9360 	}
9361 
9362 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9363 		if (pecb == ecb)
9364 			break;
9365 		prev = pecb;
9366 	}
9367 
9368 	ASSERT(pecb != NULL);
9369 
9370 	if (prev == NULL) {
9371 		probe->dtpr_ecb = ecb->dte_next;
9372 	} else {
9373 		prev->dte_next = ecb->dte_next;
9374 	}
9375 
9376 	if (ecb == probe->dtpr_ecb_last) {
9377 		ASSERT(ecb->dte_next == NULL);
9378 		probe->dtpr_ecb_last = prev;
9379 	}
9380 
9381 	/*
9382 	 * The ECB has been disconnected from the probe; now sync to assure
9383 	 * that all CPUs have seen the change before returning.
9384 	 */
9385 	dtrace_sync();
9386 
9387 	if (probe->dtpr_ecb == NULL) {
9388 		/*
9389 		 * That was the last ECB on the probe; clear the predicate
9390 		 * cache ID for the probe, disable it and sync one more time
9391 		 * to assure that we'll never hit it again.
9392 		 */
9393 		dtrace_provider_t *prov = probe->dtpr_provider;
9394 
9395 		ASSERT(ecb->dte_next == NULL);
9396 		ASSERT(probe->dtpr_ecb_last == NULL);
9397 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9398 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9399 		    probe->dtpr_id, probe->dtpr_arg);
9400 		dtrace_sync();
9401 	} else {
9402 		/*
9403 		 * There is at least one ECB remaining on the probe.  If there
9404 		 * is _exactly_ one, set the probe's predicate cache ID to be
9405 		 * the predicate cache ID of the remaining ECB.
9406 		 */
9407 		ASSERT(probe->dtpr_ecb_last != NULL);
9408 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9409 
9410 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9411 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9412 
9413 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9414 
9415 			if (p != NULL)
9416 				probe->dtpr_predcache = p->dtp_cacheid;
9417 		}
9418 
9419 		ecb->dte_next = NULL;
9420 	}
9421 }
9422 
9423 static void
9424 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9425 {
9426 	dtrace_state_t *state = ecb->dte_state;
9427 	dtrace_vstate_t *vstate = &state->dts_vstate;
9428 	dtrace_predicate_t *pred;
9429 	dtrace_epid_t epid = ecb->dte_epid;
9430 
9431 	ASSERT(MUTEX_HELD(&dtrace_lock));
9432 	ASSERT(ecb->dte_next == NULL);
9433 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9434 
9435 	if ((pred = ecb->dte_predicate) != NULL)
9436 		dtrace_predicate_release(pred, vstate);
9437 
9438 	dtrace_ecb_action_remove(ecb);
9439 
9440 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9441 	state->dts_ecbs[epid - 1] = NULL;
9442 
9443 	kmem_free(ecb, sizeof (dtrace_ecb_t));
9444 }
9445 
9446 static dtrace_ecb_t *
9447 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9448     dtrace_enabling_t *enab)
9449 {
9450 	dtrace_ecb_t *ecb;
9451 	dtrace_predicate_t *pred;
9452 	dtrace_actdesc_t *act;
9453 	dtrace_provider_t *prov;
9454 	dtrace_ecbdesc_t *desc = enab->dten_current;
9455 
9456 	ASSERT(MUTEX_HELD(&dtrace_lock));
9457 	ASSERT(state != NULL);
9458 
9459 	ecb = dtrace_ecb_add(state, probe);
9460 	ecb->dte_uarg = desc->dted_uarg;
9461 
9462 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9463 		dtrace_predicate_hold(pred);
9464 		ecb->dte_predicate = pred;
9465 	}
9466 
9467 	if (probe != NULL) {
9468 		/*
9469 		 * If the provider shows more leg than the consumer is old
9470 		 * enough to see, we need to enable the appropriate implicit
9471 		 * predicate bits to prevent the ecb from activating at
9472 		 * revealing times.
9473 		 *
9474 		 * Providers specifying DTRACE_PRIV_USER at register time
9475 		 * are stating that they need the /proc-style privilege
9476 		 * model to be enforced, and this is what DTRACE_COND_OWNER
9477 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9478 		 */
9479 		prov = probe->dtpr_provider;
9480 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9481 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9482 			ecb->dte_cond |= DTRACE_COND_OWNER;
9483 
9484 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9485 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9486 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9487 
9488 		/*
9489 		 * If the provider shows us kernel innards and the user
9490 		 * is lacking sufficient privilege, enable the
9491 		 * DTRACE_COND_USERMODE implicit predicate.
9492 		 */
9493 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9494 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9495 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9496 	}
9497 
9498 	if (dtrace_ecb_create_cache != NULL) {
9499 		/*
9500 		 * If we have a cached ecb, we'll use its action list instead
9501 		 * of creating our own (saving both time and space).
9502 		 */
9503 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9504 		dtrace_action_t *act = cached->dte_action;
9505 
9506 		if (act != NULL) {
9507 			ASSERT(act->dta_refcnt > 0);
9508 			act->dta_refcnt++;
9509 			ecb->dte_action = act;
9510 			ecb->dte_action_last = cached->dte_action_last;
9511 			ecb->dte_needed = cached->dte_needed;
9512 			ecb->dte_size = cached->dte_size;
9513 			ecb->dte_alignment = cached->dte_alignment;
9514 		}
9515 
9516 		return (ecb);
9517 	}
9518 
9519 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9520 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9521 			dtrace_ecb_destroy(ecb);
9522 			return (NULL);
9523 		}
9524 	}
9525 
9526 	dtrace_ecb_resize(ecb);
9527 
9528 	return (dtrace_ecb_create_cache = ecb);
9529 }
9530 
9531 static int
9532 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9533 {
9534 	dtrace_ecb_t *ecb;
9535 	dtrace_enabling_t *enab = arg;
9536 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9537 
9538 	ASSERT(state != NULL);
9539 
9540 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9541 		/*
9542 		 * This probe was created in a generation for which this
9543 		 * enabling has previously created ECBs; we don't want to
9544 		 * enable it again, so just kick out.
9545 		 */
9546 		return (DTRACE_MATCH_NEXT);
9547 	}
9548 
9549 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9550 		return (DTRACE_MATCH_DONE);
9551 
9552 	dtrace_ecb_enable(ecb);
9553 	return (DTRACE_MATCH_NEXT);
9554 }
9555 
9556 static dtrace_ecb_t *
9557 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9558 {
9559 	dtrace_ecb_t *ecb;
9560 
9561 	ASSERT(MUTEX_HELD(&dtrace_lock));
9562 
9563 	if (id == 0 || id > state->dts_necbs)
9564 		return (NULL);
9565 
9566 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9567 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9568 
9569 	return (state->dts_ecbs[id - 1]);
9570 }
9571 
9572 static dtrace_aggregation_t *
9573 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9574 {
9575 	dtrace_aggregation_t *agg;
9576 
9577 	ASSERT(MUTEX_HELD(&dtrace_lock));
9578 
9579 	if (id == 0 || id > state->dts_naggregations)
9580 		return (NULL);
9581 
9582 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9583 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9584 	    agg->dtag_id == id);
9585 
9586 	return (state->dts_aggregations[id - 1]);
9587 }
9588 
9589 /*
9590  * DTrace Buffer Functions
9591  *
9592  * The following functions manipulate DTrace buffers.  Most of these functions
9593  * are called in the context of establishing or processing consumer state;
9594  * exceptions are explicitly noted.
9595  */
9596 
9597 /*
9598  * Note:  called from cross call context.  This function switches the two
9599  * buffers on a given CPU.  The atomicity of this operation is assured by
9600  * disabling interrupts while the actual switch takes place; the disabling of
9601  * interrupts serializes the execution with any execution of dtrace_probe() on
9602  * the same CPU.
9603  */
9604 static void
9605 dtrace_buffer_switch(dtrace_buffer_t *buf)
9606 {
9607 	caddr_t tomax = buf->dtb_tomax;
9608 	caddr_t xamot = buf->dtb_xamot;
9609 	dtrace_icookie_t cookie;
9610 
9611 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9612 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9613 
9614 	cookie = dtrace_interrupt_disable();
9615 	buf->dtb_tomax = xamot;
9616 	buf->dtb_xamot = tomax;
9617 	buf->dtb_xamot_drops = buf->dtb_drops;
9618 	buf->dtb_xamot_offset = buf->dtb_offset;
9619 	buf->dtb_xamot_errors = buf->dtb_errors;
9620 	buf->dtb_xamot_flags = buf->dtb_flags;
9621 	buf->dtb_offset = 0;
9622 	buf->dtb_drops = 0;
9623 	buf->dtb_errors = 0;
9624 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9625 	dtrace_interrupt_enable(cookie);
9626 }
9627 
9628 /*
9629  * Note:  called from cross call context.  This function activates a buffer
9630  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
9631  * is guaranteed by the disabling of interrupts.
9632  */
9633 static void
9634 dtrace_buffer_activate(dtrace_state_t *state)
9635 {
9636 	dtrace_buffer_t *buf;
9637 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
9638 
9639 	buf = &state->dts_buffer[CPU->cpu_id];
9640 
9641 	if (buf->dtb_tomax != NULL) {
9642 		/*
9643 		 * We might like to assert that the buffer is marked inactive,
9644 		 * but this isn't necessarily true:  the buffer for the CPU
9645 		 * that processes the BEGIN probe has its buffer activated
9646 		 * manually.  In this case, we take the (harmless) action
9647 		 * re-clearing the bit INACTIVE bit.
9648 		 */
9649 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
9650 	}
9651 
9652 	dtrace_interrupt_enable(cookie);
9653 }
9654 
9655 static int
9656 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
9657     processorid_t cpu)
9658 {
9659 	cpu_t *cp;
9660 	dtrace_buffer_t *buf;
9661 
9662 	ASSERT(MUTEX_HELD(&cpu_lock));
9663 	ASSERT(MUTEX_HELD(&dtrace_lock));
9664 
9665 	if (size > dtrace_nonroot_maxsize &&
9666 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
9667 		return (EFBIG);
9668 
9669 	cp = cpu_list;
9670 
9671 	do {
9672 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9673 			continue;
9674 
9675 		buf = &bufs[cp->cpu_id];
9676 
9677 		/*
9678 		 * If there is already a buffer allocated for this CPU, it
9679 		 * is only possible that this is a DR event.  In this case,
9680 		 * the buffer size must match our specified size.
9681 		 */
9682 		if (buf->dtb_tomax != NULL) {
9683 			ASSERT(buf->dtb_size == size);
9684 			continue;
9685 		}
9686 
9687 		ASSERT(buf->dtb_xamot == NULL);
9688 
9689 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9690 			goto err;
9691 
9692 		buf->dtb_size = size;
9693 		buf->dtb_flags = flags;
9694 		buf->dtb_offset = 0;
9695 		buf->dtb_drops = 0;
9696 
9697 		if (flags & DTRACEBUF_NOSWITCH)
9698 			continue;
9699 
9700 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9701 			goto err;
9702 	} while ((cp = cp->cpu_next) != cpu_list);
9703 
9704 	return (0);
9705 
9706 err:
9707 	cp = cpu_list;
9708 
9709 	do {
9710 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9711 			continue;
9712 
9713 		buf = &bufs[cp->cpu_id];
9714 
9715 		if (buf->dtb_xamot != NULL) {
9716 			ASSERT(buf->dtb_tomax != NULL);
9717 			ASSERT(buf->dtb_size == size);
9718 			kmem_free(buf->dtb_xamot, size);
9719 		}
9720 
9721 		if (buf->dtb_tomax != NULL) {
9722 			ASSERT(buf->dtb_size == size);
9723 			kmem_free(buf->dtb_tomax, size);
9724 		}
9725 
9726 		buf->dtb_tomax = NULL;
9727 		buf->dtb_xamot = NULL;
9728 		buf->dtb_size = 0;
9729 	} while ((cp = cp->cpu_next) != cpu_list);
9730 
9731 	return (ENOMEM);
9732 }
9733 
9734 /*
9735  * Note:  called from probe context.  This function just increments the drop
9736  * count on a buffer.  It has been made a function to allow for the
9737  * possibility of understanding the source of mysterious drop counts.  (A
9738  * problem for which one may be particularly disappointed that DTrace cannot
9739  * be used to understand DTrace.)
9740  */
9741 static void
9742 dtrace_buffer_drop(dtrace_buffer_t *buf)
9743 {
9744 	buf->dtb_drops++;
9745 }
9746 
9747 /*
9748  * Note:  called from probe context.  This function is called to reserve space
9749  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9750  * mstate.  Returns the new offset in the buffer, or a negative value if an
9751  * error has occurred.
9752  */
9753 static intptr_t
9754 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9755     dtrace_state_t *state, dtrace_mstate_t *mstate)
9756 {
9757 	intptr_t offs = buf->dtb_offset, soffs;
9758 	intptr_t woffs;
9759 	caddr_t tomax;
9760 	size_t total;
9761 
9762 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9763 		return (-1);
9764 
9765 	if ((tomax = buf->dtb_tomax) == NULL) {
9766 		dtrace_buffer_drop(buf);
9767 		return (-1);
9768 	}
9769 
9770 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9771 		while (offs & (align - 1)) {
9772 			/*
9773 			 * Assert that our alignment is off by a number which
9774 			 * is itself sizeof (uint32_t) aligned.
9775 			 */
9776 			ASSERT(!((align - (offs & (align - 1))) &
9777 			    (sizeof (uint32_t) - 1)));
9778 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9779 			offs += sizeof (uint32_t);
9780 		}
9781 
9782 		if ((soffs = offs + needed) > buf->dtb_size) {
9783 			dtrace_buffer_drop(buf);
9784 			return (-1);
9785 		}
9786 
9787 		if (mstate == NULL)
9788 			return (offs);
9789 
9790 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9791 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9792 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9793 
9794 		return (offs);
9795 	}
9796 
9797 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9798 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9799 		    (buf->dtb_flags & DTRACEBUF_FULL))
9800 			return (-1);
9801 		goto out;
9802 	}
9803 
9804 	total = needed + (offs & (align - 1));
9805 
9806 	/*
9807 	 * For a ring buffer, life is quite a bit more complicated.  Before
9808 	 * we can store any padding, we need to adjust our wrapping offset.
9809 	 * (If we've never before wrapped or we're not about to, no adjustment
9810 	 * is required.)
9811 	 */
9812 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9813 	    offs + total > buf->dtb_size) {
9814 		woffs = buf->dtb_xamot_offset;
9815 
9816 		if (offs + total > buf->dtb_size) {
9817 			/*
9818 			 * We can't fit in the end of the buffer.  First, a
9819 			 * sanity check that we can fit in the buffer at all.
9820 			 */
9821 			if (total > buf->dtb_size) {
9822 				dtrace_buffer_drop(buf);
9823 				return (-1);
9824 			}
9825 
9826 			/*
9827 			 * We're going to be storing at the top of the buffer,
9828 			 * so now we need to deal with the wrapped offset.  We
9829 			 * only reset our wrapped offset to 0 if it is
9830 			 * currently greater than the current offset.  If it
9831 			 * is less than the current offset, it is because a
9832 			 * previous allocation induced a wrap -- but the
9833 			 * allocation didn't subsequently take the space due
9834 			 * to an error or false predicate evaluation.  In this
9835 			 * case, we'll just leave the wrapped offset alone: if
9836 			 * the wrapped offset hasn't been advanced far enough
9837 			 * for this allocation, it will be adjusted in the
9838 			 * lower loop.
9839 			 */
9840 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9841 				if (woffs >= offs)
9842 					woffs = 0;
9843 			} else {
9844 				woffs = 0;
9845 			}
9846 
9847 			/*
9848 			 * Now we know that we're going to be storing to the
9849 			 * top of the buffer and that there is room for us
9850 			 * there.  We need to clear the buffer from the current
9851 			 * offset to the end (there may be old gunk there).
9852 			 */
9853 			while (offs < buf->dtb_size)
9854 				tomax[offs++] = 0;
9855 
9856 			/*
9857 			 * We need to set our offset to zero.  And because we
9858 			 * are wrapping, we need to set the bit indicating as
9859 			 * much.  We can also adjust our needed space back
9860 			 * down to the space required by the ECB -- we know
9861 			 * that the top of the buffer is aligned.
9862 			 */
9863 			offs = 0;
9864 			total = needed;
9865 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9866 		} else {
9867 			/*
9868 			 * There is room for us in the buffer, so we simply
9869 			 * need to check the wrapped offset.
9870 			 */
9871 			if (woffs < offs) {
9872 				/*
9873 				 * The wrapped offset is less than the offset.
9874 				 * This can happen if we allocated buffer space
9875 				 * that induced a wrap, but then we didn't
9876 				 * subsequently take the space due to an error
9877 				 * or false predicate evaluation.  This is
9878 				 * okay; we know that _this_ allocation isn't
9879 				 * going to induce a wrap.  We still can't
9880 				 * reset the wrapped offset to be zero,
9881 				 * however: the space may have been trashed in
9882 				 * the previous failed probe attempt.  But at
9883 				 * least the wrapped offset doesn't need to
9884 				 * be adjusted at all...
9885 				 */
9886 				goto out;
9887 			}
9888 		}
9889 
9890 		while (offs + total > woffs) {
9891 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9892 			size_t size;
9893 
9894 			if (epid == DTRACE_EPIDNONE) {
9895 				size = sizeof (uint32_t);
9896 			} else {
9897 				ASSERT(epid <= state->dts_necbs);
9898 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9899 
9900 				size = state->dts_ecbs[epid - 1]->dte_size;
9901 			}
9902 
9903 			ASSERT(woffs + size <= buf->dtb_size);
9904 			ASSERT(size != 0);
9905 
9906 			if (woffs + size == buf->dtb_size) {
9907 				/*
9908 				 * We've reached the end of the buffer; we want
9909 				 * to set the wrapped offset to 0 and break
9910 				 * out.  However, if the offs is 0, then we're
9911 				 * in a strange edge-condition:  the amount of
9912 				 * space that we want to reserve plus the size
9913 				 * of the record that we're overwriting is
9914 				 * greater than the size of the buffer.  This
9915 				 * is problematic because if we reserve the
9916 				 * space but subsequently don't consume it (due
9917 				 * to a failed predicate or error) the wrapped
9918 				 * offset will be 0 -- yet the EPID at offset 0
9919 				 * will not be committed.  This situation is
9920 				 * relatively easy to deal with:  if we're in
9921 				 * this case, the buffer is indistinguishable
9922 				 * from one that hasn't wrapped; we need only
9923 				 * finish the job by clearing the wrapped bit,
9924 				 * explicitly setting the offset to be 0, and
9925 				 * zero'ing out the old data in the buffer.
9926 				 */
9927 				if (offs == 0) {
9928 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9929 					buf->dtb_offset = 0;
9930 					woffs = total;
9931 
9932 					while (woffs < buf->dtb_size)
9933 						tomax[woffs++] = 0;
9934 				}
9935 
9936 				woffs = 0;
9937 				break;
9938 			}
9939 
9940 			woffs += size;
9941 		}
9942 
9943 		/*
9944 		 * We have a wrapped offset.  It may be that the wrapped offset
9945 		 * has become zero -- that's okay.
9946 		 */
9947 		buf->dtb_xamot_offset = woffs;
9948 	}
9949 
9950 out:
9951 	/*
9952 	 * Now we can plow the buffer with any necessary padding.
9953 	 */
9954 	while (offs & (align - 1)) {
9955 		/*
9956 		 * Assert that our alignment is off by a number which
9957 		 * is itself sizeof (uint32_t) aligned.
9958 		 */
9959 		ASSERT(!((align - (offs & (align - 1))) &
9960 		    (sizeof (uint32_t) - 1)));
9961 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9962 		offs += sizeof (uint32_t);
9963 	}
9964 
9965 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9966 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9967 			buf->dtb_flags |= DTRACEBUF_FULL;
9968 			return (-1);
9969 		}
9970 	}
9971 
9972 	if (mstate == NULL)
9973 		return (offs);
9974 
9975 	/*
9976 	 * For ring buffers and fill buffers, the scratch space is always
9977 	 * the inactive buffer.
9978 	 */
9979 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9980 	mstate->dtms_scratch_size = buf->dtb_size;
9981 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9982 
9983 	return (offs);
9984 }
9985 
9986 static void
9987 dtrace_buffer_polish(dtrace_buffer_t *buf)
9988 {
9989 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9990 	ASSERT(MUTEX_HELD(&dtrace_lock));
9991 
9992 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9993 		return;
9994 
9995 	/*
9996 	 * We need to polish the ring buffer.  There are three cases:
9997 	 *
9998 	 * - The first (and presumably most common) is that there is no gap
9999 	 *   between the buffer offset and the wrapped offset.  In this case,
10000 	 *   there is nothing in the buffer that isn't valid data; we can
10001 	 *   mark the buffer as polished and return.
10002 	 *
10003 	 * - The second (less common than the first but still more common
10004 	 *   than the third) is that there is a gap between the buffer offset
10005 	 *   and the wrapped offset, and the wrapped offset is larger than the
10006 	 *   buffer offset.  This can happen because of an alignment issue, or
10007 	 *   can happen because of a call to dtrace_buffer_reserve() that
10008 	 *   didn't subsequently consume the buffer space.  In this case,
10009 	 *   we need to zero the data from the buffer offset to the wrapped
10010 	 *   offset.
10011 	 *
10012 	 * - The third (and least common) is that there is a gap between the
10013 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10014 	 *   _less_ than the buffer offset.  This can only happen because a
10015 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10016 	 *   was not subsequently consumed.  In this case, we need to zero the
10017 	 *   space from the offset to the end of the buffer _and_ from the
10018 	 *   top of the buffer to the wrapped offset.
10019 	 */
10020 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10021 		bzero(buf->dtb_tomax + buf->dtb_offset,
10022 		    buf->dtb_xamot_offset - buf->dtb_offset);
10023 	}
10024 
10025 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10026 		bzero(buf->dtb_tomax + buf->dtb_offset,
10027 		    buf->dtb_size - buf->dtb_offset);
10028 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10029 	}
10030 }
10031 
10032 static void
10033 dtrace_buffer_free(dtrace_buffer_t *bufs)
10034 {
10035 	int i;
10036 
10037 	for (i = 0; i < NCPU; i++) {
10038 		dtrace_buffer_t *buf = &bufs[i];
10039 
10040 		if (buf->dtb_tomax == NULL) {
10041 			ASSERT(buf->dtb_xamot == NULL);
10042 			ASSERT(buf->dtb_size == 0);
10043 			continue;
10044 		}
10045 
10046 		if (buf->dtb_xamot != NULL) {
10047 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10048 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10049 		}
10050 
10051 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10052 		buf->dtb_size = 0;
10053 		buf->dtb_tomax = NULL;
10054 		buf->dtb_xamot = NULL;
10055 	}
10056 }
10057 
10058 /*
10059  * DTrace Enabling Functions
10060  */
10061 static dtrace_enabling_t *
10062 dtrace_enabling_create(dtrace_vstate_t *vstate)
10063 {
10064 	dtrace_enabling_t *enab;
10065 
10066 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10067 	enab->dten_vstate = vstate;
10068 
10069 	return (enab);
10070 }
10071 
10072 static void
10073 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10074 {
10075 	dtrace_ecbdesc_t **ndesc;
10076 	size_t osize, nsize;
10077 
10078 	/*
10079 	 * We can't add to enablings after we've enabled them, or after we've
10080 	 * retained them.
10081 	 */
10082 	ASSERT(enab->dten_probegen == 0);
10083 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10084 
10085 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10086 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10087 		return;
10088 	}
10089 
10090 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10091 
10092 	if (enab->dten_maxdesc == 0) {
10093 		enab->dten_maxdesc = 1;
10094 	} else {
10095 		enab->dten_maxdesc <<= 1;
10096 	}
10097 
10098 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10099 
10100 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10101 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10102 	bcopy(enab->dten_desc, ndesc, osize);
10103 	kmem_free(enab->dten_desc, osize);
10104 
10105 	enab->dten_desc = ndesc;
10106 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10107 }
10108 
10109 static void
10110 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10111     dtrace_probedesc_t *pd)
10112 {
10113 	dtrace_ecbdesc_t *new;
10114 	dtrace_predicate_t *pred;
10115 	dtrace_actdesc_t *act;
10116 
10117 	/*
10118 	 * We're going to create a new ECB description that matches the
10119 	 * specified ECB in every way, but has the specified probe description.
10120 	 */
10121 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10122 
10123 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10124 		dtrace_predicate_hold(pred);
10125 
10126 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10127 		dtrace_actdesc_hold(act);
10128 
10129 	new->dted_action = ecb->dted_action;
10130 	new->dted_pred = ecb->dted_pred;
10131 	new->dted_probe = *pd;
10132 	new->dted_uarg = ecb->dted_uarg;
10133 
10134 	dtrace_enabling_add(enab, new);
10135 }
10136 
10137 static void
10138 dtrace_enabling_dump(dtrace_enabling_t *enab)
10139 {
10140 	int i;
10141 
10142 	for (i = 0; i < enab->dten_ndesc; i++) {
10143 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10144 
10145 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10146 		    desc->dtpd_provider, desc->dtpd_mod,
10147 		    desc->dtpd_func, desc->dtpd_name);
10148 	}
10149 }
10150 
10151 static void
10152 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10153 {
10154 	int i;
10155 	dtrace_ecbdesc_t *ep;
10156 	dtrace_vstate_t *vstate = enab->dten_vstate;
10157 
10158 	ASSERT(MUTEX_HELD(&dtrace_lock));
10159 
10160 	for (i = 0; i < enab->dten_ndesc; i++) {
10161 		dtrace_actdesc_t *act, *next;
10162 		dtrace_predicate_t *pred;
10163 
10164 		ep = enab->dten_desc[i];
10165 
10166 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10167 			dtrace_predicate_release(pred, vstate);
10168 
10169 		for (act = ep->dted_action; act != NULL; act = next) {
10170 			next = act->dtad_next;
10171 			dtrace_actdesc_release(act, vstate);
10172 		}
10173 
10174 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10175 	}
10176 
10177 	kmem_free(enab->dten_desc,
10178 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10179 
10180 	/*
10181 	 * If this was a retained enabling, decrement the dts_nretained count
10182 	 * and take it off of the dtrace_retained list.
10183 	 */
10184 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10185 	    dtrace_retained == enab) {
10186 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10187 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10188 		enab->dten_vstate->dtvs_state->dts_nretained--;
10189 	}
10190 
10191 	if (enab->dten_prev == NULL) {
10192 		if (dtrace_retained == enab) {
10193 			dtrace_retained = enab->dten_next;
10194 
10195 			if (dtrace_retained != NULL)
10196 				dtrace_retained->dten_prev = NULL;
10197 		}
10198 	} else {
10199 		ASSERT(enab != dtrace_retained);
10200 		ASSERT(dtrace_retained != NULL);
10201 		enab->dten_prev->dten_next = enab->dten_next;
10202 	}
10203 
10204 	if (enab->dten_next != NULL) {
10205 		ASSERT(dtrace_retained != NULL);
10206 		enab->dten_next->dten_prev = enab->dten_prev;
10207 	}
10208 
10209 	kmem_free(enab, sizeof (dtrace_enabling_t));
10210 }
10211 
10212 static int
10213 dtrace_enabling_retain(dtrace_enabling_t *enab)
10214 {
10215 	dtrace_state_t *state;
10216 
10217 	ASSERT(MUTEX_HELD(&dtrace_lock));
10218 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10219 	ASSERT(enab->dten_vstate != NULL);
10220 
10221 	state = enab->dten_vstate->dtvs_state;
10222 	ASSERT(state != NULL);
10223 
10224 	/*
10225 	 * We only allow each state to retain dtrace_retain_max enablings.
10226 	 */
10227 	if (state->dts_nretained >= dtrace_retain_max)
10228 		return (ENOSPC);
10229 
10230 	state->dts_nretained++;
10231 
10232 	if (dtrace_retained == NULL) {
10233 		dtrace_retained = enab;
10234 		return (0);
10235 	}
10236 
10237 	enab->dten_next = dtrace_retained;
10238 	dtrace_retained->dten_prev = enab;
10239 	dtrace_retained = enab;
10240 
10241 	return (0);
10242 }
10243 
10244 static int
10245 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10246     dtrace_probedesc_t *create)
10247 {
10248 	dtrace_enabling_t *new, *enab;
10249 	int found = 0, err = ENOENT;
10250 
10251 	ASSERT(MUTEX_HELD(&dtrace_lock));
10252 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10253 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10254 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10255 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10256 
10257 	new = dtrace_enabling_create(&state->dts_vstate);
10258 
10259 	/*
10260 	 * Iterate over all retained enablings, looking for enablings that
10261 	 * match the specified state.
10262 	 */
10263 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10264 		int i;
10265 
10266 		/*
10267 		 * dtvs_state can only be NULL for helper enablings -- and
10268 		 * helper enablings can't be retained.
10269 		 */
10270 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10271 
10272 		if (enab->dten_vstate->dtvs_state != state)
10273 			continue;
10274 
10275 		/*
10276 		 * Now iterate over each probe description; we're looking for
10277 		 * an exact match to the specified probe description.
10278 		 */
10279 		for (i = 0; i < enab->dten_ndesc; i++) {
10280 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10281 			dtrace_probedesc_t *pd = &ep->dted_probe;
10282 
10283 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10284 				continue;
10285 
10286 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10287 				continue;
10288 
10289 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10290 				continue;
10291 
10292 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10293 				continue;
10294 
10295 			/*
10296 			 * We have a winning probe!  Add it to our growing
10297 			 * enabling.
10298 			 */
10299 			found = 1;
10300 			dtrace_enabling_addlike(new, ep, create);
10301 		}
10302 	}
10303 
10304 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10305 		dtrace_enabling_destroy(new);
10306 		return (err);
10307 	}
10308 
10309 	return (0);
10310 }
10311 
10312 static void
10313 dtrace_enabling_retract(dtrace_state_t *state)
10314 {
10315 	dtrace_enabling_t *enab, *next;
10316 
10317 	ASSERT(MUTEX_HELD(&dtrace_lock));
10318 
10319 	/*
10320 	 * Iterate over all retained enablings, destroy the enablings retained
10321 	 * for the specified state.
10322 	 */
10323 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10324 		next = enab->dten_next;
10325 
10326 		/*
10327 		 * dtvs_state can only be NULL for helper enablings -- and
10328 		 * helper enablings can't be retained.
10329 		 */
10330 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10331 
10332 		if (enab->dten_vstate->dtvs_state == state) {
10333 			ASSERT(state->dts_nretained > 0);
10334 			dtrace_enabling_destroy(enab);
10335 		}
10336 	}
10337 
10338 	ASSERT(state->dts_nretained == 0);
10339 }
10340 
10341 static int
10342 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10343 {
10344 	int i = 0;
10345 	int matched = 0;
10346 
10347 	ASSERT(MUTEX_HELD(&cpu_lock));
10348 	ASSERT(MUTEX_HELD(&dtrace_lock));
10349 
10350 	for (i = 0; i < enab->dten_ndesc; i++) {
10351 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10352 
10353 		enab->dten_current = ep;
10354 		enab->dten_error = 0;
10355 
10356 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
10357 
10358 		if (enab->dten_error != 0) {
10359 			/*
10360 			 * If we get an error half-way through enabling the
10361 			 * probes, we kick out -- perhaps with some number of
10362 			 * them enabled.  Leaving enabled probes enabled may
10363 			 * be slightly confusing for user-level, but we expect
10364 			 * that no one will attempt to actually drive on in
10365 			 * the face of such errors.  If this is an anonymous
10366 			 * enabling (indicated with a NULL nmatched pointer),
10367 			 * we cmn_err() a message.  We aren't expecting to
10368 			 * get such an error -- such as it can exist at all,
10369 			 * it would be a result of corrupted DOF in the driver
10370 			 * properties.
10371 			 */
10372 			if (nmatched == NULL) {
10373 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10374 				    "error on %p: %d", (void *)ep,
10375 				    enab->dten_error);
10376 			}
10377 
10378 			return (enab->dten_error);
10379 		}
10380 	}
10381 
10382 	enab->dten_probegen = dtrace_probegen;
10383 	if (nmatched != NULL)
10384 		*nmatched = matched;
10385 
10386 	return (0);
10387 }
10388 
10389 static void
10390 dtrace_enabling_matchall(void)
10391 {
10392 	dtrace_enabling_t *enab;
10393 
10394 	mutex_enter(&cpu_lock);
10395 	mutex_enter(&dtrace_lock);
10396 
10397 	/*
10398 	 * Because we can be called after dtrace_detach() has been called, we
10399 	 * cannot assert that there are retained enablings.  We can safely
10400 	 * load from dtrace_retained, however:  the taskq_destroy() at the
10401 	 * end of dtrace_detach() will block pending our completion.
10402 	 */
10403 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
10404 		(void) dtrace_enabling_match(enab, NULL);
10405 
10406 	mutex_exit(&dtrace_lock);
10407 	mutex_exit(&cpu_lock);
10408 }
10409 
10410 static int
10411 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
10412 {
10413 	dtrace_enabling_t *enab;
10414 	int matched, total = 0, err;
10415 
10416 	ASSERT(MUTEX_HELD(&cpu_lock));
10417 	ASSERT(MUTEX_HELD(&dtrace_lock));
10418 
10419 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10420 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10421 
10422 		if (enab->dten_vstate->dtvs_state != state)
10423 			continue;
10424 
10425 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
10426 			return (err);
10427 
10428 		total += matched;
10429 	}
10430 
10431 	if (nmatched != NULL)
10432 		*nmatched = total;
10433 
10434 	return (0);
10435 }
10436 
10437 /*
10438  * If an enabling is to be enabled without having matched probes (that is, if
10439  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10440  * enabling must be _primed_ by creating an ECB for every ECB description.
10441  * This must be done to assure that we know the number of speculations, the
10442  * number of aggregations, the minimum buffer size needed, etc. before we
10443  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10444  * enabling any probes, we create ECBs for every ECB decription, but with a
10445  * NULL probe -- which is exactly what this function does.
10446  */
10447 static void
10448 dtrace_enabling_prime(dtrace_state_t *state)
10449 {
10450 	dtrace_enabling_t *enab;
10451 	int i;
10452 
10453 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10454 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10455 
10456 		if (enab->dten_vstate->dtvs_state != state)
10457 			continue;
10458 
10459 		/*
10460 		 * We don't want to prime an enabling more than once, lest
10461 		 * we allow a malicious user to induce resource exhaustion.
10462 		 * (The ECBs that result from priming an enabling aren't
10463 		 * leaked -- but they also aren't deallocated until the
10464 		 * consumer state is destroyed.)
10465 		 */
10466 		if (enab->dten_primed)
10467 			continue;
10468 
10469 		for (i = 0; i < enab->dten_ndesc; i++) {
10470 			enab->dten_current = enab->dten_desc[i];
10471 			(void) dtrace_probe_enable(NULL, enab);
10472 		}
10473 
10474 		enab->dten_primed = 1;
10475 	}
10476 }
10477 
10478 /*
10479  * Called to indicate that probes should be provided due to retained
10480  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10481  * must take an initial lap through the enabling calling the dtps_provide()
10482  * entry point explicitly to allow for autocreated probes.
10483  */
10484 static void
10485 dtrace_enabling_provide(dtrace_provider_t *prv)
10486 {
10487 	int i, all = 0;
10488 	dtrace_probedesc_t desc;
10489 
10490 	ASSERT(MUTEX_HELD(&dtrace_lock));
10491 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10492 
10493 	if (prv == NULL) {
10494 		all = 1;
10495 		prv = dtrace_provider;
10496 	}
10497 
10498 	do {
10499 		dtrace_enabling_t *enab = dtrace_retained;
10500 		void *parg = prv->dtpv_arg;
10501 
10502 		for (; enab != NULL; enab = enab->dten_next) {
10503 			for (i = 0; i < enab->dten_ndesc; i++) {
10504 				desc = enab->dten_desc[i]->dted_probe;
10505 				mutex_exit(&dtrace_lock);
10506 				prv->dtpv_pops.dtps_provide(parg, &desc);
10507 				mutex_enter(&dtrace_lock);
10508 			}
10509 		}
10510 	} while (all && (prv = prv->dtpv_next) != NULL);
10511 
10512 	mutex_exit(&dtrace_lock);
10513 	dtrace_probe_provide(NULL, all ? NULL : prv);
10514 	mutex_enter(&dtrace_lock);
10515 }
10516 
10517 /*
10518  * DTrace DOF Functions
10519  */
10520 /*ARGSUSED*/
10521 static void
10522 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10523 {
10524 	if (dtrace_err_verbose)
10525 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10526 
10527 #ifdef DTRACE_ERRDEBUG
10528 	dtrace_errdebug(str);
10529 #endif
10530 }
10531 
10532 /*
10533  * Create DOF out of a currently enabled state.  Right now, we only create
10534  * DOF containing the run-time options -- but this could be expanded to create
10535  * complete DOF representing the enabled state.
10536  */
10537 static dof_hdr_t *
10538 dtrace_dof_create(dtrace_state_t *state)
10539 {
10540 	dof_hdr_t *dof;
10541 	dof_sec_t *sec;
10542 	dof_optdesc_t *opt;
10543 	int i, len = sizeof (dof_hdr_t) +
10544 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10545 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10546 
10547 	ASSERT(MUTEX_HELD(&dtrace_lock));
10548 
10549 	dof = kmem_zalloc(len, KM_SLEEP);
10550 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10551 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10552 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10553 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10554 
10555 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10556 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10557 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10558 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10559 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10560 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10561 
10562 	dof->dofh_flags = 0;
10563 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10564 	dof->dofh_secsize = sizeof (dof_sec_t);
10565 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10566 	dof->dofh_secoff = sizeof (dof_hdr_t);
10567 	dof->dofh_loadsz = len;
10568 	dof->dofh_filesz = len;
10569 	dof->dofh_pad = 0;
10570 
10571 	/*
10572 	 * Fill in the option section header...
10573 	 */
10574 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10575 	sec->dofs_type = DOF_SECT_OPTDESC;
10576 	sec->dofs_align = sizeof (uint64_t);
10577 	sec->dofs_flags = DOF_SECF_LOAD;
10578 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10579 
10580 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10581 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10582 
10583 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10584 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10585 
10586 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10587 		opt[i].dofo_option = i;
10588 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10589 		opt[i].dofo_value = state->dts_options[i];
10590 	}
10591 
10592 	return (dof);
10593 }
10594 
10595 static dof_hdr_t *
10596 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10597 {
10598 	dof_hdr_t hdr, *dof;
10599 
10600 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10601 
10602 	/*
10603 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10604 	 */
10605 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10606 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10607 		*errp = EFAULT;
10608 		return (NULL);
10609 	}
10610 
10611 	/*
10612 	 * Now we'll allocate the entire DOF and copy it in -- provided
10613 	 * that the length isn't outrageous.
10614 	 */
10615 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10616 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10617 		*errp = E2BIG;
10618 		return (NULL);
10619 	}
10620 
10621 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10622 		dtrace_dof_error(&hdr, "invalid load size");
10623 		*errp = EINVAL;
10624 		return (NULL);
10625 	}
10626 
10627 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10628 
10629 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10630 		kmem_free(dof, hdr.dofh_loadsz);
10631 		*errp = EFAULT;
10632 		return (NULL);
10633 	}
10634 
10635 	return (dof);
10636 }
10637 
10638 static dof_hdr_t *
10639 dtrace_dof_property(const char *name)
10640 {
10641 	uchar_t *buf;
10642 	uint64_t loadsz;
10643 	unsigned int len, i;
10644 	dof_hdr_t *dof;
10645 
10646 	/*
10647 	 * Unfortunately, array of values in .conf files are always (and
10648 	 * only) interpreted to be integer arrays.  We must read our DOF
10649 	 * as an integer array, and then squeeze it into a byte array.
10650 	 */
10651 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
10652 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
10653 		return (NULL);
10654 
10655 	for (i = 0; i < len; i++)
10656 		buf[i] = (uchar_t)(((int *)buf)[i]);
10657 
10658 	if (len < sizeof (dof_hdr_t)) {
10659 		ddi_prop_free(buf);
10660 		dtrace_dof_error(NULL, "truncated header");
10661 		return (NULL);
10662 	}
10663 
10664 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
10665 		ddi_prop_free(buf);
10666 		dtrace_dof_error(NULL, "truncated DOF");
10667 		return (NULL);
10668 	}
10669 
10670 	if (loadsz >= dtrace_dof_maxsize) {
10671 		ddi_prop_free(buf);
10672 		dtrace_dof_error(NULL, "oversized DOF");
10673 		return (NULL);
10674 	}
10675 
10676 	dof = kmem_alloc(loadsz, KM_SLEEP);
10677 	bcopy(buf, dof, loadsz);
10678 	ddi_prop_free(buf);
10679 
10680 	return (dof);
10681 }
10682 
10683 static void
10684 dtrace_dof_destroy(dof_hdr_t *dof)
10685 {
10686 	kmem_free(dof, dof->dofh_loadsz);
10687 }
10688 
10689 /*
10690  * Return the dof_sec_t pointer corresponding to a given section index.  If the
10691  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
10692  * a type other than DOF_SECT_NONE is specified, the header is checked against
10693  * this type and NULL is returned if the types do not match.
10694  */
10695 static dof_sec_t *
10696 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
10697 {
10698 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
10699 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
10700 
10701 	if (i >= dof->dofh_secnum) {
10702 		dtrace_dof_error(dof, "referenced section index is invalid");
10703 		return (NULL);
10704 	}
10705 
10706 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
10707 		dtrace_dof_error(dof, "referenced section is not loadable");
10708 		return (NULL);
10709 	}
10710 
10711 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
10712 		dtrace_dof_error(dof, "referenced section is the wrong type");
10713 		return (NULL);
10714 	}
10715 
10716 	return (sec);
10717 }
10718 
10719 static dtrace_probedesc_t *
10720 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
10721 {
10722 	dof_probedesc_t *probe;
10723 	dof_sec_t *strtab;
10724 	uintptr_t daddr = (uintptr_t)dof;
10725 	uintptr_t str;
10726 	size_t size;
10727 
10728 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10729 		dtrace_dof_error(dof, "invalid probe section");
10730 		return (NULL);
10731 	}
10732 
10733 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10734 		dtrace_dof_error(dof, "bad alignment in probe description");
10735 		return (NULL);
10736 	}
10737 
10738 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10739 		dtrace_dof_error(dof, "truncated probe description");
10740 		return (NULL);
10741 	}
10742 
10743 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10744 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10745 
10746 	if (strtab == NULL)
10747 		return (NULL);
10748 
10749 	str = daddr + strtab->dofs_offset;
10750 	size = strtab->dofs_size;
10751 
10752 	if (probe->dofp_provider >= strtab->dofs_size) {
10753 		dtrace_dof_error(dof, "corrupt probe provider");
10754 		return (NULL);
10755 	}
10756 
10757 	(void) strncpy(desc->dtpd_provider,
10758 	    (char *)(str + probe->dofp_provider),
10759 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10760 
10761 	if (probe->dofp_mod >= strtab->dofs_size) {
10762 		dtrace_dof_error(dof, "corrupt probe module");
10763 		return (NULL);
10764 	}
10765 
10766 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10767 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10768 
10769 	if (probe->dofp_func >= strtab->dofs_size) {
10770 		dtrace_dof_error(dof, "corrupt probe function");
10771 		return (NULL);
10772 	}
10773 
10774 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10775 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10776 
10777 	if (probe->dofp_name >= strtab->dofs_size) {
10778 		dtrace_dof_error(dof, "corrupt probe name");
10779 		return (NULL);
10780 	}
10781 
10782 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10783 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10784 
10785 	return (desc);
10786 }
10787 
10788 static dtrace_difo_t *
10789 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10790     cred_t *cr)
10791 {
10792 	dtrace_difo_t *dp;
10793 	size_t ttl = 0;
10794 	dof_difohdr_t *dofd;
10795 	uintptr_t daddr = (uintptr_t)dof;
10796 	size_t max = dtrace_difo_maxsize;
10797 	int i, l, n;
10798 
10799 	static const struct {
10800 		int section;
10801 		int bufoffs;
10802 		int lenoffs;
10803 		int entsize;
10804 		int align;
10805 		const char *msg;
10806 	} difo[] = {
10807 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10808 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10809 		sizeof (dif_instr_t), "multiple DIF sections" },
10810 
10811 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10812 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10813 		sizeof (uint64_t), "multiple integer tables" },
10814 
10815 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10816 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10817 		sizeof (char), "multiple string tables" },
10818 
10819 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10820 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10821 		sizeof (uint_t), "multiple variable tables" },
10822 
10823 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10824 	};
10825 
10826 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10827 		dtrace_dof_error(dof, "invalid DIFO header section");
10828 		return (NULL);
10829 	}
10830 
10831 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10832 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10833 		return (NULL);
10834 	}
10835 
10836 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10837 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10838 		dtrace_dof_error(dof, "bad size in DIFO header");
10839 		return (NULL);
10840 	}
10841 
10842 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10843 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10844 
10845 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10846 	dp->dtdo_rtype = dofd->dofd_rtype;
10847 
10848 	for (l = 0; l < n; l++) {
10849 		dof_sec_t *subsec;
10850 		void **bufp;
10851 		uint32_t *lenp;
10852 
10853 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10854 		    dofd->dofd_links[l])) == NULL)
10855 			goto err; /* invalid section link */
10856 
10857 		if (ttl + subsec->dofs_size > max) {
10858 			dtrace_dof_error(dof, "exceeds maximum size");
10859 			goto err;
10860 		}
10861 
10862 		ttl += subsec->dofs_size;
10863 
10864 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10865 			if (subsec->dofs_type != difo[i].section)
10866 				continue;
10867 
10868 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10869 				dtrace_dof_error(dof, "section not loaded");
10870 				goto err;
10871 			}
10872 
10873 			if (subsec->dofs_align != difo[i].align) {
10874 				dtrace_dof_error(dof, "bad alignment");
10875 				goto err;
10876 			}
10877 
10878 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10879 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10880 
10881 			if (*bufp != NULL) {
10882 				dtrace_dof_error(dof, difo[i].msg);
10883 				goto err;
10884 			}
10885 
10886 			if (difo[i].entsize != subsec->dofs_entsize) {
10887 				dtrace_dof_error(dof, "entry size mismatch");
10888 				goto err;
10889 			}
10890 
10891 			if (subsec->dofs_entsize != 0 &&
10892 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10893 				dtrace_dof_error(dof, "corrupt entry size");
10894 				goto err;
10895 			}
10896 
10897 			*lenp = subsec->dofs_size;
10898 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10899 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10900 			    *bufp, subsec->dofs_size);
10901 
10902 			if (subsec->dofs_entsize != 0)
10903 				*lenp /= subsec->dofs_entsize;
10904 
10905 			break;
10906 		}
10907 
10908 		/*
10909 		 * If we encounter a loadable DIFO sub-section that is not
10910 		 * known to us, assume this is a broken program and fail.
10911 		 */
10912 		if (difo[i].section == DOF_SECT_NONE &&
10913 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10914 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10915 			goto err;
10916 		}
10917 	}
10918 
10919 	if (dp->dtdo_buf == NULL) {
10920 		/*
10921 		 * We can't have a DIF object without DIF text.
10922 		 */
10923 		dtrace_dof_error(dof, "missing DIF text");
10924 		goto err;
10925 	}
10926 
10927 	/*
10928 	 * Before we validate the DIF object, run through the variable table
10929 	 * looking for the strings -- if any of their size are under, we'll set
10930 	 * their size to be the system-wide default string size.  Note that
10931 	 * this should _not_ happen if the "strsize" option has been set --
10932 	 * in this case, the compiler should have set the size to reflect the
10933 	 * setting of the option.
10934 	 */
10935 	for (i = 0; i < dp->dtdo_varlen; i++) {
10936 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10937 		dtrace_diftype_t *t = &v->dtdv_type;
10938 
10939 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10940 			continue;
10941 
10942 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10943 			t->dtdt_size = dtrace_strsize_default;
10944 	}
10945 
10946 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10947 		goto err;
10948 
10949 	dtrace_difo_init(dp, vstate);
10950 	return (dp);
10951 
10952 err:
10953 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10954 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10955 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10956 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10957 
10958 	kmem_free(dp, sizeof (dtrace_difo_t));
10959 	return (NULL);
10960 }
10961 
10962 static dtrace_predicate_t *
10963 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10964     cred_t *cr)
10965 {
10966 	dtrace_difo_t *dp;
10967 
10968 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10969 		return (NULL);
10970 
10971 	return (dtrace_predicate_create(dp));
10972 }
10973 
10974 static dtrace_actdesc_t *
10975 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10976     cred_t *cr)
10977 {
10978 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10979 	dof_actdesc_t *desc;
10980 	dof_sec_t *difosec;
10981 	size_t offs;
10982 	uintptr_t daddr = (uintptr_t)dof;
10983 	uint64_t arg;
10984 	dtrace_actkind_t kind;
10985 
10986 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10987 		dtrace_dof_error(dof, "invalid action section");
10988 		return (NULL);
10989 	}
10990 
10991 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10992 		dtrace_dof_error(dof, "truncated action description");
10993 		return (NULL);
10994 	}
10995 
10996 	if (sec->dofs_align != sizeof (uint64_t)) {
10997 		dtrace_dof_error(dof, "bad alignment in action description");
10998 		return (NULL);
10999 	}
11000 
11001 	if (sec->dofs_size < sec->dofs_entsize) {
11002 		dtrace_dof_error(dof, "section entry size exceeds total size");
11003 		return (NULL);
11004 	}
11005 
11006 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11007 		dtrace_dof_error(dof, "bad entry size in action description");
11008 		return (NULL);
11009 	}
11010 
11011 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11012 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11013 		return (NULL);
11014 	}
11015 
11016 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11017 		desc = (dof_actdesc_t *)(daddr +
11018 		    (uintptr_t)sec->dofs_offset + offs);
11019 		kind = (dtrace_actkind_t)desc->dofa_kind;
11020 
11021 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11022 		    (kind != DTRACEACT_PRINTA ||
11023 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11024 			dof_sec_t *strtab;
11025 			char *str, *fmt;
11026 			uint64_t i;
11027 
11028 			/*
11029 			 * printf()-like actions must have a format string.
11030 			 */
11031 			if ((strtab = dtrace_dof_sect(dof,
11032 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11033 				goto err;
11034 
11035 			str = (char *)((uintptr_t)dof +
11036 			    (uintptr_t)strtab->dofs_offset);
11037 
11038 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11039 				if (str[i] == '\0')
11040 					break;
11041 			}
11042 
11043 			if (i >= strtab->dofs_size) {
11044 				dtrace_dof_error(dof, "bogus format string");
11045 				goto err;
11046 			}
11047 
11048 			if (i == desc->dofa_arg) {
11049 				dtrace_dof_error(dof, "empty format string");
11050 				goto err;
11051 			}
11052 
11053 			i -= desc->dofa_arg;
11054 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11055 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11056 			arg = (uint64_t)(uintptr_t)fmt;
11057 		} else {
11058 			if (kind == DTRACEACT_PRINTA) {
11059 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11060 				arg = 0;
11061 			} else {
11062 				arg = desc->dofa_arg;
11063 			}
11064 		}
11065 
11066 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11067 		    desc->dofa_uarg, arg);
11068 
11069 		if (last != NULL) {
11070 			last->dtad_next = act;
11071 		} else {
11072 			first = act;
11073 		}
11074 
11075 		last = act;
11076 
11077 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11078 			continue;
11079 
11080 		if ((difosec = dtrace_dof_sect(dof,
11081 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11082 			goto err;
11083 
11084 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11085 
11086 		if (act->dtad_difo == NULL)
11087 			goto err;
11088 	}
11089 
11090 	ASSERT(first != NULL);
11091 	return (first);
11092 
11093 err:
11094 	for (act = first; act != NULL; act = next) {
11095 		next = act->dtad_next;
11096 		dtrace_actdesc_release(act, vstate);
11097 	}
11098 
11099 	return (NULL);
11100 }
11101 
11102 static dtrace_ecbdesc_t *
11103 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11104     cred_t *cr)
11105 {
11106 	dtrace_ecbdesc_t *ep;
11107 	dof_ecbdesc_t *ecb;
11108 	dtrace_probedesc_t *desc;
11109 	dtrace_predicate_t *pred = NULL;
11110 
11111 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11112 		dtrace_dof_error(dof, "truncated ECB description");
11113 		return (NULL);
11114 	}
11115 
11116 	if (sec->dofs_align != sizeof (uint64_t)) {
11117 		dtrace_dof_error(dof, "bad alignment in ECB description");
11118 		return (NULL);
11119 	}
11120 
11121 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11122 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11123 
11124 	if (sec == NULL)
11125 		return (NULL);
11126 
11127 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11128 	ep->dted_uarg = ecb->dofe_uarg;
11129 	desc = &ep->dted_probe;
11130 
11131 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11132 		goto err;
11133 
11134 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11135 		if ((sec = dtrace_dof_sect(dof,
11136 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11137 			goto err;
11138 
11139 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11140 			goto err;
11141 
11142 		ep->dted_pred.dtpdd_predicate = pred;
11143 	}
11144 
11145 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11146 		if ((sec = dtrace_dof_sect(dof,
11147 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11148 			goto err;
11149 
11150 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11151 
11152 		if (ep->dted_action == NULL)
11153 			goto err;
11154 	}
11155 
11156 	return (ep);
11157 
11158 err:
11159 	if (pred != NULL)
11160 		dtrace_predicate_release(pred, vstate);
11161 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11162 	return (NULL);
11163 }
11164 
11165 /*
11166  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11167  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11168  * site of any user SETX relocations to account for load object base address.
11169  * In the future, if we need other relocations, this function can be extended.
11170  */
11171 static int
11172 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11173 {
11174 	uintptr_t daddr = (uintptr_t)dof;
11175 	dof_relohdr_t *dofr =
11176 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11177 	dof_sec_t *ss, *rs, *ts;
11178 	dof_relodesc_t *r;
11179 	uint_t i, n;
11180 
11181 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11182 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11183 		dtrace_dof_error(dof, "invalid relocation header");
11184 		return (-1);
11185 	}
11186 
11187 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11188 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11189 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11190 
11191 	if (ss == NULL || rs == NULL || ts == NULL)
11192 		return (-1); /* dtrace_dof_error() has been called already */
11193 
11194 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11195 	    rs->dofs_align != sizeof (uint64_t)) {
11196 		dtrace_dof_error(dof, "invalid relocation section");
11197 		return (-1);
11198 	}
11199 
11200 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11201 	n = rs->dofs_size / rs->dofs_entsize;
11202 
11203 	for (i = 0; i < n; i++) {
11204 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11205 
11206 		switch (r->dofr_type) {
11207 		case DOF_RELO_NONE:
11208 			break;
11209 		case DOF_RELO_SETX:
11210 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11211 			    sizeof (uint64_t) > ts->dofs_size) {
11212 				dtrace_dof_error(dof, "bad relocation offset");
11213 				return (-1);
11214 			}
11215 
11216 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11217 				dtrace_dof_error(dof, "misaligned setx relo");
11218 				return (-1);
11219 			}
11220 
11221 			*(uint64_t *)taddr += ubase;
11222 			break;
11223 		default:
11224 			dtrace_dof_error(dof, "invalid relocation type");
11225 			return (-1);
11226 		}
11227 
11228 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11229 	}
11230 
11231 	return (0);
11232 }
11233 
11234 /*
11235  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11236  * header:  it should be at the front of a memory region that is at least
11237  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11238  * size.  It need not be validated in any other way.
11239  */
11240 static int
11241 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11242     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11243 {
11244 	uint64_t len = dof->dofh_loadsz, seclen;
11245 	uintptr_t daddr = (uintptr_t)dof;
11246 	dtrace_ecbdesc_t *ep;
11247 	dtrace_enabling_t *enab;
11248 	uint_t i;
11249 
11250 	ASSERT(MUTEX_HELD(&dtrace_lock));
11251 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11252 
11253 	/*
11254 	 * Check the DOF header identification bytes.  In addition to checking
11255 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11256 	 * we can use them later without fear of regressing existing binaries.
11257 	 */
11258 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11259 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11260 		dtrace_dof_error(dof, "DOF magic string mismatch");
11261 		return (-1);
11262 	}
11263 
11264 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11265 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11266 		dtrace_dof_error(dof, "DOF has invalid data model");
11267 		return (-1);
11268 	}
11269 
11270 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11271 		dtrace_dof_error(dof, "DOF encoding mismatch");
11272 		return (-1);
11273 	}
11274 
11275 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11276 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11277 		dtrace_dof_error(dof, "DOF version mismatch");
11278 		return (-1);
11279 	}
11280 
11281 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11282 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11283 		return (-1);
11284 	}
11285 
11286 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11287 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11288 		return (-1);
11289 	}
11290 
11291 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11292 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11293 		return (-1);
11294 	}
11295 
11296 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11297 		if (dof->dofh_ident[i] != 0) {
11298 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11299 			return (-1);
11300 		}
11301 	}
11302 
11303 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11304 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11305 		return (-1);
11306 	}
11307 
11308 	if (dof->dofh_secsize == 0) {
11309 		dtrace_dof_error(dof, "zero section header size");
11310 		return (-1);
11311 	}
11312 
11313 	/*
11314 	 * Check that the section headers don't exceed the amount of DOF
11315 	 * data.  Note that we cast the section size and number of sections
11316 	 * to uint64_t's to prevent possible overflow in the multiplication.
11317 	 */
11318 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11319 
11320 	if (dof->dofh_secoff > len || seclen > len ||
11321 	    dof->dofh_secoff + seclen > len) {
11322 		dtrace_dof_error(dof, "truncated section headers");
11323 		return (-1);
11324 	}
11325 
11326 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11327 		dtrace_dof_error(dof, "misaligned section headers");
11328 		return (-1);
11329 	}
11330 
11331 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11332 		dtrace_dof_error(dof, "misaligned section size");
11333 		return (-1);
11334 	}
11335 
11336 	/*
11337 	 * Take an initial pass through the section headers to be sure that
11338 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11339 	 * set, do not permit sections relating to providers, probes, or args.
11340 	 */
11341 	for (i = 0; i < dof->dofh_secnum; i++) {
11342 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11343 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11344 
11345 		if (noprobes) {
11346 			switch (sec->dofs_type) {
11347 			case DOF_SECT_PROVIDER:
11348 			case DOF_SECT_PROBES:
11349 			case DOF_SECT_PRARGS:
11350 			case DOF_SECT_PROFFS:
11351 				dtrace_dof_error(dof, "illegal sections "
11352 				    "for enabling");
11353 				return (-1);
11354 			}
11355 		}
11356 
11357 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11358 			continue; /* just ignore non-loadable sections */
11359 
11360 		if (sec->dofs_align & (sec->dofs_align - 1)) {
11361 			dtrace_dof_error(dof, "bad section alignment");
11362 			return (-1);
11363 		}
11364 
11365 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11366 			dtrace_dof_error(dof, "misaligned section");
11367 			return (-1);
11368 		}
11369 
11370 		if (sec->dofs_offset > len || sec->dofs_size > len ||
11371 		    sec->dofs_offset + sec->dofs_size > len) {
11372 			dtrace_dof_error(dof, "corrupt section header");
11373 			return (-1);
11374 		}
11375 
11376 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11377 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11378 			dtrace_dof_error(dof, "non-terminating string table");
11379 			return (-1);
11380 		}
11381 	}
11382 
11383 	/*
11384 	 * Take a second pass through the sections and locate and perform any
11385 	 * relocations that are present.  We do this after the first pass to
11386 	 * be sure that all sections have had their headers validated.
11387 	 */
11388 	for (i = 0; i < dof->dofh_secnum; i++) {
11389 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11390 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11391 
11392 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11393 			continue; /* skip sections that are not loadable */
11394 
11395 		switch (sec->dofs_type) {
11396 		case DOF_SECT_URELHDR:
11397 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11398 				return (-1);
11399 			break;
11400 		}
11401 	}
11402 
11403 	if ((enab = *enabp) == NULL)
11404 		enab = *enabp = dtrace_enabling_create(vstate);
11405 
11406 	for (i = 0; i < dof->dofh_secnum; i++) {
11407 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11408 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11409 
11410 		if (sec->dofs_type != DOF_SECT_ECBDESC)
11411 			continue;
11412 
11413 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11414 			dtrace_enabling_destroy(enab);
11415 			*enabp = NULL;
11416 			return (-1);
11417 		}
11418 
11419 		dtrace_enabling_add(enab, ep);
11420 	}
11421 
11422 	return (0);
11423 }
11424 
11425 /*
11426  * Process DOF for any options.  This routine assumes that the DOF has been
11427  * at least processed by dtrace_dof_slurp().
11428  */
11429 static int
11430 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11431 {
11432 	int i, rval;
11433 	uint32_t entsize;
11434 	size_t offs;
11435 	dof_optdesc_t *desc;
11436 
11437 	for (i = 0; i < dof->dofh_secnum; i++) {
11438 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11439 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11440 
11441 		if (sec->dofs_type != DOF_SECT_OPTDESC)
11442 			continue;
11443 
11444 		if (sec->dofs_align != sizeof (uint64_t)) {
11445 			dtrace_dof_error(dof, "bad alignment in "
11446 			    "option description");
11447 			return (EINVAL);
11448 		}
11449 
11450 		if ((entsize = sec->dofs_entsize) == 0) {
11451 			dtrace_dof_error(dof, "zeroed option entry size");
11452 			return (EINVAL);
11453 		}
11454 
11455 		if (entsize < sizeof (dof_optdesc_t)) {
11456 			dtrace_dof_error(dof, "bad option entry size");
11457 			return (EINVAL);
11458 		}
11459 
11460 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11461 			desc = (dof_optdesc_t *)((uintptr_t)dof +
11462 			    (uintptr_t)sec->dofs_offset + offs);
11463 
11464 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11465 				dtrace_dof_error(dof, "non-zero option string");
11466 				return (EINVAL);
11467 			}
11468 
11469 			if (desc->dofo_value == DTRACEOPT_UNSET) {
11470 				dtrace_dof_error(dof, "unset option");
11471 				return (EINVAL);
11472 			}
11473 
11474 			if ((rval = dtrace_state_option(state,
11475 			    desc->dofo_option, desc->dofo_value)) != 0) {
11476 				dtrace_dof_error(dof, "rejected option");
11477 				return (rval);
11478 			}
11479 		}
11480 	}
11481 
11482 	return (0);
11483 }
11484 
11485 /*
11486  * DTrace Consumer State Functions
11487  */
11488 int
11489 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11490 {
11491 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11492 	void *base;
11493 	uintptr_t limit;
11494 	dtrace_dynvar_t *dvar, *next, *start;
11495 	int i;
11496 
11497 	ASSERT(MUTEX_HELD(&dtrace_lock));
11498 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11499 
11500 	bzero(dstate, sizeof (dtrace_dstate_t));
11501 
11502 	if ((dstate->dtds_chunksize = chunksize) == 0)
11503 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11504 
11505 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11506 		size = min;
11507 
11508 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11509 		return (ENOMEM);
11510 
11511 	dstate->dtds_size = size;
11512 	dstate->dtds_base = base;
11513 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11514 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11515 
11516 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11517 
11518 	if (hashsize != 1 && (hashsize & 1))
11519 		hashsize--;
11520 
11521 	dstate->dtds_hashsize = hashsize;
11522 	dstate->dtds_hash = dstate->dtds_base;
11523 
11524 	/*
11525 	 * Set all of our hash buckets to point to the single sink, and (if
11526 	 * it hasn't already been set), set the sink's hash value to be the
11527 	 * sink sentinel value.  The sink is needed for dynamic variable
11528 	 * lookups to know that they have iterated over an entire, valid hash
11529 	 * chain.
11530 	 */
11531 	for (i = 0; i < hashsize; i++)
11532 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11533 
11534 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11535 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11536 
11537 	/*
11538 	 * Determine number of active CPUs.  Divide free list evenly among
11539 	 * active CPUs.
11540 	 */
11541 	start = (dtrace_dynvar_t *)
11542 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11543 	limit = (uintptr_t)base + size;
11544 
11545 	maxper = (limit - (uintptr_t)start) / NCPU;
11546 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11547 
11548 	for (i = 0; i < NCPU; i++) {
11549 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11550 
11551 		/*
11552 		 * If we don't even have enough chunks to make it once through
11553 		 * NCPUs, we're just going to allocate everything to the first
11554 		 * CPU.  And if we're on the last CPU, we're going to allocate
11555 		 * whatever is left over.  In either case, we set the limit to
11556 		 * be the limit of the dynamic variable space.
11557 		 */
11558 		if (maxper == 0 || i == NCPU - 1) {
11559 			limit = (uintptr_t)base + size;
11560 			start = NULL;
11561 		} else {
11562 			limit = (uintptr_t)start + maxper;
11563 			start = (dtrace_dynvar_t *)limit;
11564 		}
11565 
11566 		ASSERT(limit <= (uintptr_t)base + size);
11567 
11568 		for (;;) {
11569 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11570 			    dstate->dtds_chunksize);
11571 
11572 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11573 				break;
11574 
11575 			dvar->dtdv_next = next;
11576 			dvar = next;
11577 		}
11578 
11579 		if (maxper == 0)
11580 			break;
11581 	}
11582 
11583 	return (0);
11584 }
11585 
11586 void
11587 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11588 {
11589 	ASSERT(MUTEX_HELD(&cpu_lock));
11590 
11591 	if (dstate->dtds_base == NULL)
11592 		return;
11593 
11594 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11595 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11596 }
11597 
11598 static void
11599 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11600 {
11601 	/*
11602 	 * Logical XOR, where are you?
11603 	 */
11604 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11605 
11606 	if (vstate->dtvs_nglobals > 0) {
11607 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11608 		    sizeof (dtrace_statvar_t *));
11609 	}
11610 
11611 	if (vstate->dtvs_ntlocals > 0) {
11612 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11613 		    sizeof (dtrace_difv_t));
11614 	}
11615 
11616 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11617 
11618 	if (vstate->dtvs_nlocals > 0) {
11619 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11620 		    sizeof (dtrace_statvar_t *));
11621 	}
11622 }
11623 
11624 static void
11625 dtrace_state_clean(dtrace_state_t *state)
11626 {
11627 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11628 		return;
11629 
11630 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11631 	dtrace_speculation_clean(state);
11632 }
11633 
11634 static void
11635 dtrace_state_deadman(dtrace_state_t *state)
11636 {
11637 	hrtime_t now;
11638 
11639 	dtrace_sync();
11640 
11641 	now = dtrace_gethrtime();
11642 
11643 	if (state != dtrace_anon.dta_state &&
11644 	    now - state->dts_laststatus >= dtrace_deadman_user)
11645 		return;
11646 
11647 	/*
11648 	 * We must be sure that dts_alive never appears to be less than the
11649 	 * value upon entry to dtrace_state_deadman(), and because we lack a
11650 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
11651 	 * store INT64_MAX to it, followed by a memory barrier, followed by
11652 	 * the new value.  This assures that dts_alive never appears to be
11653 	 * less than its true value, regardless of the order in which the
11654 	 * stores to the underlying storage are issued.
11655 	 */
11656 	state->dts_alive = INT64_MAX;
11657 	dtrace_membar_producer();
11658 	state->dts_alive = now;
11659 }
11660 
11661 dtrace_state_t *
11662 dtrace_state_create(dev_t *devp, cred_t *cr)
11663 {
11664 	minor_t minor;
11665 	major_t major;
11666 	char c[30];
11667 	dtrace_state_t *state;
11668 	dtrace_optval_t *opt;
11669 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
11670 
11671 	ASSERT(MUTEX_HELD(&dtrace_lock));
11672 	ASSERT(MUTEX_HELD(&cpu_lock));
11673 
11674 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
11675 	    VM_BESTFIT | VM_SLEEP);
11676 
11677 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
11678 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11679 		return (NULL);
11680 	}
11681 
11682 	state = ddi_get_soft_state(dtrace_softstate, minor);
11683 	state->dts_epid = DTRACE_EPIDNONE + 1;
11684 
11685 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
11686 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
11687 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
11688 
11689 	if (devp != NULL) {
11690 		major = getemajor(*devp);
11691 	} else {
11692 		major = ddi_driver_major(dtrace_devi);
11693 	}
11694 
11695 	state->dts_dev = makedevice(major, minor);
11696 
11697 	if (devp != NULL)
11698 		*devp = state->dts_dev;
11699 
11700 	/*
11701 	 * We allocate NCPU buffers.  On the one hand, this can be quite
11702 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
11703 	 * other hand, it saves an additional memory reference in the probe
11704 	 * path.
11705 	 */
11706 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
11707 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
11708 	state->dts_cleaner = CYCLIC_NONE;
11709 	state->dts_deadman = CYCLIC_NONE;
11710 	state->dts_vstate.dtvs_state = state;
11711 
11712 	for (i = 0; i < DTRACEOPT_MAX; i++)
11713 		state->dts_options[i] = DTRACEOPT_UNSET;
11714 
11715 	/*
11716 	 * Set the default options.
11717 	 */
11718 	opt = state->dts_options;
11719 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
11720 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
11721 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
11722 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
11723 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
11724 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
11725 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
11726 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
11727 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
11728 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
11729 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
11730 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
11731 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
11732 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
11733 
11734 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
11735 
11736 	/*
11737 	 * Depending on the user credentials, we set flag bits which alter probe
11738 	 * visibility or the amount of destructiveness allowed.  In the case of
11739 	 * actual anonymous tracing, or the possession of all privileges, all of
11740 	 * the normal checks are bypassed.
11741 	 */
11742 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
11743 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11744 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11745 	} else {
11746 		/*
11747 		 * Set up the credentials for this instantiation.  We take a
11748 		 * hold on the credential to prevent it from disappearing on
11749 		 * us; this in turn prevents the zone_t referenced by this
11750 		 * credential from disappearing.  This means that we can
11751 		 * examine the credential and the zone from probe context.
11752 		 */
11753 		crhold(cr);
11754 		state->dts_cred.dcr_cred = cr;
11755 
11756 		/*
11757 		 * CRA_PROC means "we have *some* privilege for dtrace" and
11758 		 * unlocks the use of variables like pid, zonename, etc.
11759 		 */
11760 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11761 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11762 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11763 		}
11764 
11765 		/*
11766 		 * dtrace_user allows use of syscall and profile providers.
11767 		 * If the user also has proc_owner and/or proc_zone, we
11768 		 * extend the scope to include additional visibility and
11769 		 * destructive power.
11770 		 */
11771 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
11772 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11773 				state->dts_cred.dcr_visible |=
11774 				    DTRACE_CRV_ALLPROC;
11775 
11776 				state->dts_cred.dcr_action |=
11777 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11778 			}
11779 
11780 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
11781 				state->dts_cred.dcr_visible |=
11782 				    DTRACE_CRV_ALLZONE;
11783 
11784 				state->dts_cred.dcr_action |=
11785 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11786 			}
11787 
11788 			/*
11789 			 * If we have all privs in whatever zone this is,
11790 			 * we can do destructive things to processes which
11791 			 * have altered credentials.
11792 			 */
11793 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11794 			    cr->cr_zone->zone_privset)) {
11795 				state->dts_cred.dcr_action |=
11796 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11797 			}
11798 		}
11799 
11800 		/*
11801 		 * Holding the dtrace_kernel privilege also implies that
11802 		 * the user has the dtrace_user privilege from a visibility
11803 		 * perspective.  But without further privileges, some
11804 		 * destructive actions are not available.
11805 		 */
11806 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11807 			/*
11808 			 * Make all probes in all zones visible.  However,
11809 			 * this doesn't mean that all actions become available
11810 			 * to all zones.
11811 			 */
11812 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11813 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
11814 
11815 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11816 			    DTRACE_CRA_PROC;
11817 			/*
11818 			 * Holding proc_owner means that destructive actions
11819 			 * for *this* zone are allowed.
11820 			 */
11821 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11822 				state->dts_cred.dcr_action |=
11823 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11824 
11825 			/*
11826 			 * Holding proc_zone means that destructive actions
11827 			 * for this user/group ID in all zones is allowed.
11828 			 */
11829 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11830 				state->dts_cred.dcr_action |=
11831 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11832 
11833 			/*
11834 			 * If we have all privs in whatever zone this is,
11835 			 * we can do destructive things to processes which
11836 			 * have altered credentials.
11837 			 */
11838 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11839 			    cr->cr_zone->zone_privset)) {
11840 				state->dts_cred.dcr_action |=
11841 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11842 			}
11843 		}
11844 
11845 		/*
11846 		 * Holding the dtrace_proc privilege gives control over fasttrap
11847 		 * and pid providers.  We need to grant wider destructive
11848 		 * privileges in the event that the user has proc_owner and/or
11849 		 * proc_zone.
11850 		 */
11851 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11852 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11853 				state->dts_cred.dcr_action |=
11854 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11855 
11856 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11857 				state->dts_cred.dcr_action |=
11858 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11859 		}
11860 	}
11861 
11862 	return (state);
11863 }
11864 
11865 static int
11866 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11867 {
11868 	dtrace_optval_t *opt = state->dts_options, size;
11869 	processorid_t cpu;
11870 	int flags = 0, rval;
11871 
11872 	ASSERT(MUTEX_HELD(&dtrace_lock));
11873 	ASSERT(MUTEX_HELD(&cpu_lock));
11874 	ASSERT(which < DTRACEOPT_MAX);
11875 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11876 	    (state == dtrace_anon.dta_state &&
11877 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11878 
11879 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11880 		return (0);
11881 
11882 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11883 		cpu = opt[DTRACEOPT_CPU];
11884 
11885 	if (which == DTRACEOPT_SPECSIZE)
11886 		flags |= DTRACEBUF_NOSWITCH;
11887 
11888 	if (which == DTRACEOPT_BUFSIZE) {
11889 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11890 			flags |= DTRACEBUF_RING;
11891 
11892 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11893 			flags |= DTRACEBUF_FILL;
11894 
11895 		if (state != dtrace_anon.dta_state ||
11896 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
11897 			flags |= DTRACEBUF_INACTIVE;
11898 	}
11899 
11900 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11901 		/*
11902 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11903 		 * aligned, drop it down by the difference.
11904 		 */
11905 		if (size & (sizeof (uint64_t) - 1))
11906 			size -= size & (sizeof (uint64_t) - 1);
11907 
11908 		if (size < state->dts_reserve) {
11909 			/*
11910 			 * Buffers always must be large enough to accommodate
11911 			 * their prereserved space.  We return E2BIG instead
11912 			 * of ENOMEM in this case to allow for user-level
11913 			 * software to differentiate the cases.
11914 			 */
11915 			return (E2BIG);
11916 		}
11917 
11918 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11919 
11920 		if (rval != ENOMEM) {
11921 			opt[which] = size;
11922 			return (rval);
11923 		}
11924 
11925 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11926 			return (rval);
11927 	}
11928 
11929 	return (ENOMEM);
11930 }
11931 
11932 static int
11933 dtrace_state_buffers(dtrace_state_t *state)
11934 {
11935 	dtrace_speculation_t *spec = state->dts_speculations;
11936 	int rval, i;
11937 
11938 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11939 	    DTRACEOPT_BUFSIZE)) != 0)
11940 		return (rval);
11941 
11942 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11943 	    DTRACEOPT_AGGSIZE)) != 0)
11944 		return (rval);
11945 
11946 	for (i = 0; i < state->dts_nspeculations; i++) {
11947 		if ((rval = dtrace_state_buffer(state,
11948 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11949 			return (rval);
11950 	}
11951 
11952 	return (0);
11953 }
11954 
11955 static void
11956 dtrace_state_prereserve(dtrace_state_t *state)
11957 {
11958 	dtrace_ecb_t *ecb;
11959 	dtrace_probe_t *probe;
11960 
11961 	state->dts_reserve = 0;
11962 
11963 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11964 		return;
11965 
11966 	/*
11967 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11968 	 * prereserved space to be the space required by the END probes.
11969 	 */
11970 	probe = dtrace_probes[dtrace_probeid_end - 1];
11971 	ASSERT(probe != NULL);
11972 
11973 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11974 		if (ecb->dte_state != state)
11975 			continue;
11976 
11977 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11978 	}
11979 }
11980 
11981 static int
11982 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11983 {
11984 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11985 	dtrace_speculation_t *spec;
11986 	dtrace_buffer_t *buf;
11987 	cyc_handler_t hdlr;
11988 	cyc_time_t when;
11989 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11990 	dtrace_icookie_t cookie;
11991 
11992 	mutex_enter(&cpu_lock);
11993 	mutex_enter(&dtrace_lock);
11994 
11995 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11996 		rval = EBUSY;
11997 		goto out;
11998 	}
11999 
12000 	/*
12001 	 * Before we can perform any checks, we must prime all of the
12002 	 * retained enablings that correspond to this state.
12003 	 */
12004 	dtrace_enabling_prime(state);
12005 
12006 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12007 		rval = EACCES;
12008 		goto out;
12009 	}
12010 
12011 	dtrace_state_prereserve(state);
12012 
12013 	/*
12014 	 * Now we want to do is try to allocate our speculations.
12015 	 * We do not automatically resize the number of speculations; if
12016 	 * this fails, we will fail the operation.
12017 	 */
12018 	nspec = opt[DTRACEOPT_NSPEC];
12019 	ASSERT(nspec != DTRACEOPT_UNSET);
12020 
12021 	if (nspec > INT_MAX) {
12022 		rval = ENOMEM;
12023 		goto out;
12024 	}
12025 
12026 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12027 
12028 	if (spec == NULL) {
12029 		rval = ENOMEM;
12030 		goto out;
12031 	}
12032 
12033 	state->dts_speculations = spec;
12034 	state->dts_nspeculations = (int)nspec;
12035 
12036 	for (i = 0; i < nspec; i++) {
12037 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12038 			rval = ENOMEM;
12039 			goto err;
12040 		}
12041 
12042 		spec[i].dtsp_buffer = buf;
12043 	}
12044 
12045 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12046 		if (dtrace_anon.dta_state == NULL) {
12047 			rval = ENOENT;
12048 			goto out;
12049 		}
12050 
12051 		if (state->dts_necbs != 0) {
12052 			rval = EALREADY;
12053 			goto out;
12054 		}
12055 
12056 		state->dts_anon = dtrace_anon_grab();
12057 		ASSERT(state->dts_anon != NULL);
12058 		state = state->dts_anon;
12059 
12060 		/*
12061 		 * We want "grabanon" to be set in the grabbed state, so we'll
12062 		 * copy that option value from the grabbing state into the
12063 		 * grabbed state.
12064 		 */
12065 		state->dts_options[DTRACEOPT_GRABANON] =
12066 		    opt[DTRACEOPT_GRABANON];
12067 
12068 		*cpu = dtrace_anon.dta_beganon;
12069 
12070 		/*
12071 		 * If the anonymous state is active (as it almost certainly
12072 		 * is if the anonymous enabling ultimately matched anything),
12073 		 * we don't allow any further option processing -- but we
12074 		 * don't return failure.
12075 		 */
12076 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12077 			goto out;
12078 	}
12079 
12080 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12081 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12082 		if (state->dts_aggregations == NULL) {
12083 			/*
12084 			 * We're not going to create an aggregation buffer
12085 			 * because we don't have any ECBs that contain
12086 			 * aggregations -- set this option to 0.
12087 			 */
12088 			opt[DTRACEOPT_AGGSIZE] = 0;
12089 		} else {
12090 			/*
12091 			 * If we have an aggregation buffer, we must also have
12092 			 * a buffer to use as scratch.
12093 			 */
12094 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12095 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12096 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12097 			}
12098 		}
12099 	}
12100 
12101 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12102 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12103 		if (!state->dts_speculates) {
12104 			/*
12105 			 * We're not going to create speculation buffers
12106 			 * because we don't have any ECBs that actually
12107 			 * speculate -- set the speculation size to 0.
12108 			 */
12109 			opt[DTRACEOPT_SPECSIZE] = 0;
12110 		}
12111 	}
12112 
12113 	/*
12114 	 * The bare minimum size for any buffer that we're actually going to
12115 	 * do anything to is sizeof (uint64_t).
12116 	 */
12117 	sz = sizeof (uint64_t);
12118 
12119 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12120 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12121 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12122 		/*
12123 		 * A buffer size has been explicitly set to 0 (or to a size
12124 		 * that will be adjusted to 0) and we need the space -- we
12125 		 * need to return failure.  We return ENOSPC to differentiate
12126 		 * it from failing to allocate a buffer due to failure to meet
12127 		 * the reserve (for which we return E2BIG).
12128 		 */
12129 		rval = ENOSPC;
12130 		goto out;
12131 	}
12132 
12133 	if ((rval = dtrace_state_buffers(state)) != 0)
12134 		goto err;
12135 
12136 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12137 		sz = dtrace_dstate_defsize;
12138 
12139 	do {
12140 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12141 
12142 		if (rval == 0)
12143 			break;
12144 
12145 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12146 			goto err;
12147 	} while (sz >>= 1);
12148 
12149 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12150 
12151 	if (rval != 0)
12152 		goto err;
12153 
12154 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12155 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12156 
12157 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12158 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12159 
12160 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12161 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12162 
12163 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12164 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12165 
12166 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12167 	hdlr.cyh_arg = state;
12168 	hdlr.cyh_level = CY_LOW_LEVEL;
12169 
12170 	when.cyt_when = 0;
12171 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12172 
12173 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12174 
12175 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12176 	hdlr.cyh_arg = state;
12177 	hdlr.cyh_level = CY_LOW_LEVEL;
12178 
12179 	when.cyt_when = 0;
12180 	when.cyt_interval = dtrace_deadman_interval;
12181 
12182 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12183 	state->dts_deadman = cyclic_add(&hdlr, &when);
12184 
12185 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12186 
12187 	/*
12188 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12189 	 * interrupts here both to record the CPU on which we fired the BEGIN
12190 	 * probe (the data from this CPU will be processed first at user
12191 	 * level) and to manually activate the buffer for this CPU.
12192 	 */
12193 	cookie = dtrace_interrupt_disable();
12194 	*cpu = CPU->cpu_id;
12195 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12196 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12197 
12198 	dtrace_probe(dtrace_probeid_begin,
12199 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12200 	dtrace_interrupt_enable(cookie);
12201 	/*
12202 	 * We may have had an exit action from a BEGIN probe; only change our
12203 	 * state to ACTIVE if we're still in WARMUP.
12204 	 */
12205 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12206 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12207 
12208 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12209 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12210 
12211 	/*
12212 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12213 	 * want each CPU to transition its principal buffer out of the
12214 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12215 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12216 	 * atomically transition from processing none of a state's ECBs to
12217 	 * processing all of them.
12218 	 */
12219 	dtrace_xcall(DTRACE_CPUALL,
12220 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12221 	goto out;
12222 
12223 err:
12224 	dtrace_buffer_free(state->dts_buffer);
12225 	dtrace_buffer_free(state->dts_aggbuffer);
12226 
12227 	if ((nspec = state->dts_nspeculations) == 0) {
12228 		ASSERT(state->dts_speculations == NULL);
12229 		goto out;
12230 	}
12231 
12232 	spec = state->dts_speculations;
12233 	ASSERT(spec != NULL);
12234 
12235 	for (i = 0; i < state->dts_nspeculations; i++) {
12236 		if ((buf = spec[i].dtsp_buffer) == NULL)
12237 			break;
12238 
12239 		dtrace_buffer_free(buf);
12240 		kmem_free(buf, bufsize);
12241 	}
12242 
12243 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12244 	state->dts_nspeculations = 0;
12245 	state->dts_speculations = NULL;
12246 
12247 out:
12248 	mutex_exit(&dtrace_lock);
12249 	mutex_exit(&cpu_lock);
12250 
12251 	return (rval);
12252 }
12253 
12254 static int
12255 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12256 {
12257 	dtrace_icookie_t cookie;
12258 
12259 	ASSERT(MUTEX_HELD(&dtrace_lock));
12260 
12261 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12262 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12263 		return (EINVAL);
12264 
12265 	/*
12266 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12267 	 * to be sure that every CPU has seen it.  See below for the details
12268 	 * on why this is done.
12269 	 */
12270 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12271 	dtrace_sync();
12272 
12273 	/*
12274 	 * By this point, it is impossible for any CPU to be still processing
12275 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12276 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12277 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12278 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12279 	 * iff we're in the END probe.
12280 	 */
12281 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12282 	dtrace_sync();
12283 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12284 
12285 	/*
12286 	 * Finally, we can release the reserve and call the END probe.  We
12287 	 * disable interrupts across calling the END probe to allow us to
12288 	 * return the CPU on which we actually called the END probe.  This
12289 	 * allows user-land to be sure that this CPU's principal buffer is
12290 	 * processed last.
12291 	 */
12292 	state->dts_reserve = 0;
12293 
12294 	cookie = dtrace_interrupt_disable();
12295 	*cpu = CPU->cpu_id;
12296 	dtrace_probe(dtrace_probeid_end,
12297 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12298 	dtrace_interrupt_enable(cookie);
12299 
12300 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12301 	dtrace_sync();
12302 
12303 	return (0);
12304 }
12305 
12306 static int
12307 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12308     dtrace_optval_t val)
12309 {
12310 	ASSERT(MUTEX_HELD(&dtrace_lock));
12311 
12312 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12313 		return (EBUSY);
12314 
12315 	if (option >= DTRACEOPT_MAX)
12316 		return (EINVAL);
12317 
12318 	if (option != DTRACEOPT_CPU && val < 0)
12319 		return (EINVAL);
12320 
12321 	switch (option) {
12322 	case DTRACEOPT_DESTRUCTIVE:
12323 		if (dtrace_destructive_disallow)
12324 			return (EACCES);
12325 
12326 		state->dts_cred.dcr_destructive = 1;
12327 		break;
12328 
12329 	case DTRACEOPT_BUFSIZE:
12330 	case DTRACEOPT_DYNVARSIZE:
12331 	case DTRACEOPT_AGGSIZE:
12332 	case DTRACEOPT_SPECSIZE:
12333 	case DTRACEOPT_STRSIZE:
12334 		if (val < 0)
12335 			return (EINVAL);
12336 
12337 		if (val >= LONG_MAX) {
12338 			/*
12339 			 * If this is an otherwise negative value, set it to
12340 			 * the highest multiple of 128m less than LONG_MAX.
12341 			 * Technically, we're adjusting the size without
12342 			 * regard to the buffer resizing policy, but in fact,
12343 			 * this has no effect -- if we set the buffer size to
12344 			 * ~LONG_MAX and the buffer policy is ultimately set to
12345 			 * be "manual", the buffer allocation is guaranteed to
12346 			 * fail, if only because the allocation requires two
12347 			 * buffers.  (We set the the size to the highest
12348 			 * multiple of 128m because it ensures that the size
12349 			 * will remain a multiple of a megabyte when
12350 			 * repeatedly halved -- all the way down to 15m.)
12351 			 */
12352 			val = LONG_MAX - (1 << 27) + 1;
12353 		}
12354 	}
12355 
12356 	state->dts_options[option] = val;
12357 
12358 	return (0);
12359 }
12360 
12361 static void
12362 dtrace_state_destroy(dtrace_state_t *state)
12363 {
12364 	dtrace_ecb_t *ecb;
12365 	dtrace_vstate_t *vstate = &state->dts_vstate;
12366 	minor_t minor = getminor(state->dts_dev);
12367 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12368 	dtrace_speculation_t *spec = state->dts_speculations;
12369 	int nspec = state->dts_nspeculations;
12370 	uint32_t match;
12371 
12372 	ASSERT(MUTEX_HELD(&dtrace_lock));
12373 	ASSERT(MUTEX_HELD(&cpu_lock));
12374 
12375 	/*
12376 	 * First, retract any retained enablings for this state.
12377 	 */
12378 	dtrace_enabling_retract(state);
12379 	ASSERT(state->dts_nretained == 0);
12380 
12381 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12382 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12383 		/*
12384 		 * We have managed to come into dtrace_state_destroy() on a
12385 		 * hot enabling -- almost certainly because of a disorderly
12386 		 * shutdown of a consumer.  (That is, a consumer that is
12387 		 * exiting without having called dtrace_stop().) In this case,
12388 		 * we're going to set our activity to be KILLED, and then
12389 		 * issue a sync to be sure that everyone is out of probe
12390 		 * context before we start blowing away ECBs.
12391 		 */
12392 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12393 		dtrace_sync();
12394 	}
12395 
12396 	/*
12397 	 * Release the credential hold we took in dtrace_state_create().
12398 	 */
12399 	if (state->dts_cred.dcr_cred != NULL)
12400 		crfree(state->dts_cred.dcr_cred);
12401 
12402 	/*
12403 	 * Now we can safely disable and destroy any enabled probes.  Because
12404 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12405 	 * (especially if they're all enabled), we take two passes through the
12406 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12407 	 * in the second we disable whatever is left over.
12408 	 */
12409 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12410 		for (i = 0; i < state->dts_necbs; i++) {
12411 			if ((ecb = state->dts_ecbs[i]) == NULL)
12412 				continue;
12413 
12414 			if (match && ecb->dte_probe != NULL) {
12415 				dtrace_probe_t *probe = ecb->dte_probe;
12416 				dtrace_provider_t *prov = probe->dtpr_provider;
12417 
12418 				if (!(prov->dtpv_priv.dtpp_flags & match))
12419 					continue;
12420 			}
12421 
12422 			dtrace_ecb_disable(ecb);
12423 			dtrace_ecb_destroy(ecb);
12424 		}
12425 
12426 		if (!match)
12427 			break;
12428 	}
12429 
12430 	/*
12431 	 * Before we free the buffers, perform one more sync to assure that
12432 	 * every CPU is out of probe context.
12433 	 */
12434 	dtrace_sync();
12435 
12436 	dtrace_buffer_free(state->dts_buffer);
12437 	dtrace_buffer_free(state->dts_aggbuffer);
12438 
12439 	for (i = 0; i < nspec; i++)
12440 		dtrace_buffer_free(spec[i].dtsp_buffer);
12441 
12442 	if (state->dts_cleaner != CYCLIC_NONE)
12443 		cyclic_remove(state->dts_cleaner);
12444 
12445 	if (state->dts_deadman != CYCLIC_NONE)
12446 		cyclic_remove(state->dts_deadman);
12447 
12448 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12449 	dtrace_vstate_fini(vstate);
12450 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12451 
12452 	if (state->dts_aggregations != NULL) {
12453 #ifdef DEBUG
12454 		for (i = 0; i < state->dts_naggregations; i++)
12455 			ASSERT(state->dts_aggregations[i] == NULL);
12456 #endif
12457 		ASSERT(state->dts_naggregations > 0);
12458 		kmem_free(state->dts_aggregations,
12459 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12460 	}
12461 
12462 	kmem_free(state->dts_buffer, bufsize);
12463 	kmem_free(state->dts_aggbuffer, bufsize);
12464 
12465 	for (i = 0; i < nspec; i++)
12466 		kmem_free(spec[i].dtsp_buffer, bufsize);
12467 
12468 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12469 
12470 	dtrace_format_destroy(state);
12471 
12472 	vmem_destroy(state->dts_aggid_arena);
12473 	ddi_soft_state_free(dtrace_softstate, minor);
12474 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12475 }
12476 
12477 /*
12478  * DTrace Anonymous Enabling Functions
12479  */
12480 static dtrace_state_t *
12481 dtrace_anon_grab(void)
12482 {
12483 	dtrace_state_t *state;
12484 
12485 	ASSERT(MUTEX_HELD(&dtrace_lock));
12486 
12487 	if ((state = dtrace_anon.dta_state) == NULL) {
12488 		ASSERT(dtrace_anon.dta_enabling == NULL);
12489 		return (NULL);
12490 	}
12491 
12492 	ASSERT(dtrace_anon.dta_enabling != NULL);
12493 	ASSERT(dtrace_retained != NULL);
12494 
12495 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12496 	dtrace_anon.dta_enabling = NULL;
12497 	dtrace_anon.dta_state = NULL;
12498 
12499 	return (state);
12500 }
12501 
12502 static void
12503 dtrace_anon_property(void)
12504 {
12505 	int i, rv;
12506 	dtrace_state_t *state;
12507 	dof_hdr_t *dof;
12508 	char c[32];		/* enough for "dof-data-" + digits */
12509 
12510 	ASSERT(MUTEX_HELD(&dtrace_lock));
12511 	ASSERT(MUTEX_HELD(&cpu_lock));
12512 
12513 	for (i = 0; ; i++) {
12514 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12515 
12516 		dtrace_err_verbose = 1;
12517 
12518 		if ((dof = dtrace_dof_property(c)) == NULL) {
12519 			dtrace_err_verbose = 0;
12520 			break;
12521 		}
12522 
12523 		/*
12524 		 * We want to create anonymous state, so we need to transition
12525 		 * the kernel debugger to indicate that DTrace is active.  If
12526 		 * this fails (e.g. because the debugger has modified text in
12527 		 * some way), we won't continue with the processing.
12528 		 */
12529 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12530 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12531 			    "enabling ignored.");
12532 			dtrace_dof_destroy(dof);
12533 			break;
12534 		}
12535 
12536 		/*
12537 		 * If we haven't allocated an anonymous state, we'll do so now.
12538 		 */
12539 		if ((state = dtrace_anon.dta_state) == NULL) {
12540 			state = dtrace_state_create(NULL, NULL);
12541 			dtrace_anon.dta_state = state;
12542 
12543 			if (state == NULL) {
12544 				/*
12545 				 * This basically shouldn't happen:  the only
12546 				 * failure mode from dtrace_state_create() is a
12547 				 * failure of ddi_soft_state_zalloc() that
12548 				 * itself should never happen.  Still, the
12549 				 * interface allows for a failure mode, and
12550 				 * we want to fail as gracefully as possible:
12551 				 * we'll emit an error message and cease
12552 				 * processing anonymous state in this case.
12553 				 */
12554 				cmn_err(CE_WARN, "failed to create "
12555 				    "anonymous state");
12556 				dtrace_dof_destroy(dof);
12557 				break;
12558 			}
12559 		}
12560 
12561 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12562 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12563 
12564 		if (rv == 0)
12565 			rv = dtrace_dof_options(dof, state);
12566 
12567 		dtrace_err_verbose = 0;
12568 		dtrace_dof_destroy(dof);
12569 
12570 		if (rv != 0) {
12571 			/*
12572 			 * This is malformed DOF; chuck any anonymous state
12573 			 * that we created.
12574 			 */
12575 			ASSERT(dtrace_anon.dta_enabling == NULL);
12576 			dtrace_state_destroy(state);
12577 			dtrace_anon.dta_state = NULL;
12578 			break;
12579 		}
12580 
12581 		ASSERT(dtrace_anon.dta_enabling != NULL);
12582 	}
12583 
12584 	if (dtrace_anon.dta_enabling != NULL) {
12585 		int rval;
12586 
12587 		/*
12588 		 * dtrace_enabling_retain() can only fail because we are
12589 		 * trying to retain more enablings than are allowed -- but
12590 		 * we only have one anonymous enabling, and we are guaranteed
12591 		 * to be allowed at least one retained enabling; we assert
12592 		 * that dtrace_enabling_retain() returns success.
12593 		 */
12594 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12595 		ASSERT(rval == 0);
12596 
12597 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12598 	}
12599 }
12600 
12601 /*
12602  * DTrace Helper Functions
12603  */
12604 static void
12605 dtrace_helper_trace(dtrace_helper_action_t *helper,
12606     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12607 {
12608 	uint32_t size, next, nnext, i;
12609 	dtrace_helptrace_t *ent;
12610 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12611 
12612 	if (!dtrace_helptrace_enabled)
12613 		return;
12614 
12615 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12616 
12617 	/*
12618 	 * What would a tracing framework be without its own tracing
12619 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12620 	 */
12621 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12622 	    sizeof (uint64_t) - sizeof (uint64_t);
12623 
12624 	/*
12625 	 * Iterate until we can allocate a slot in the trace buffer.
12626 	 */
12627 	do {
12628 		next = dtrace_helptrace_next;
12629 
12630 		if (next + size < dtrace_helptrace_bufsize) {
12631 			nnext = next + size;
12632 		} else {
12633 			nnext = size;
12634 		}
12635 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
12636 
12637 	/*
12638 	 * We have our slot; fill it in.
12639 	 */
12640 	if (nnext == size)
12641 		next = 0;
12642 
12643 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
12644 	ent->dtht_helper = helper;
12645 	ent->dtht_where = where;
12646 	ent->dtht_nlocals = vstate->dtvs_nlocals;
12647 
12648 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
12649 	    mstate->dtms_fltoffs : -1;
12650 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
12651 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
12652 
12653 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
12654 		dtrace_statvar_t *svar;
12655 
12656 		if ((svar = vstate->dtvs_locals[i]) == NULL)
12657 			continue;
12658 
12659 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
12660 		ent->dtht_locals[i] =
12661 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
12662 	}
12663 }
12664 
12665 static uint64_t
12666 dtrace_helper(int which, dtrace_mstate_t *mstate,
12667     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
12668 {
12669 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12670 	uint64_t sarg0 = mstate->dtms_arg[0];
12671 	uint64_t sarg1 = mstate->dtms_arg[1];
12672 	uint64_t rval;
12673 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
12674 	dtrace_helper_action_t *helper;
12675 	dtrace_vstate_t *vstate;
12676 	dtrace_difo_t *pred;
12677 	int i, trace = dtrace_helptrace_enabled;
12678 
12679 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
12680 
12681 	if (helpers == NULL)
12682 		return (0);
12683 
12684 	if ((helper = helpers->dthps_actions[which]) == NULL)
12685 		return (0);
12686 
12687 	vstate = &helpers->dthps_vstate;
12688 	mstate->dtms_arg[0] = arg0;
12689 	mstate->dtms_arg[1] = arg1;
12690 
12691 	/*
12692 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
12693 	 * we'll call the corresponding actions.  Note that the below calls
12694 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
12695 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
12696 	 * the stored DIF offset with its own (which is the desired behavior).
12697 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
12698 	 * from machine state; this is okay, too.
12699 	 */
12700 	for (; helper != NULL; helper = helper->dtha_next) {
12701 		if ((pred = helper->dtha_predicate) != NULL) {
12702 			if (trace)
12703 				dtrace_helper_trace(helper, mstate, vstate, 0);
12704 
12705 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
12706 				goto next;
12707 
12708 			if (*flags & CPU_DTRACE_FAULT)
12709 				goto err;
12710 		}
12711 
12712 		for (i = 0; i < helper->dtha_nactions; i++) {
12713 			if (trace)
12714 				dtrace_helper_trace(helper,
12715 				    mstate, vstate, i + 1);
12716 
12717 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
12718 			    mstate, vstate, state);
12719 
12720 			if (*flags & CPU_DTRACE_FAULT)
12721 				goto err;
12722 		}
12723 
12724 next:
12725 		if (trace)
12726 			dtrace_helper_trace(helper, mstate, vstate,
12727 			    DTRACE_HELPTRACE_NEXT);
12728 	}
12729 
12730 	if (trace)
12731 		dtrace_helper_trace(helper, mstate, vstate,
12732 		    DTRACE_HELPTRACE_DONE);
12733 
12734 	/*
12735 	 * Restore the arg0 that we saved upon entry.
12736 	 */
12737 	mstate->dtms_arg[0] = sarg0;
12738 	mstate->dtms_arg[1] = sarg1;
12739 
12740 	return (rval);
12741 
12742 err:
12743 	if (trace)
12744 		dtrace_helper_trace(helper, mstate, vstate,
12745 		    DTRACE_HELPTRACE_ERR);
12746 
12747 	/*
12748 	 * Restore the arg0 that we saved upon entry.
12749 	 */
12750 	mstate->dtms_arg[0] = sarg0;
12751 	mstate->dtms_arg[1] = sarg1;
12752 
12753 	return (NULL);
12754 }
12755 
12756 static void
12757 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
12758     dtrace_vstate_t *vstate)
12759 {
12760 	int i;
12761 
12762 	if (helper->dtha_predicate != NULL)
12763 		dtrace_difo_release(helper->dtha_predicate, vstate);
12764 
12765 	for (i = 0; i < helper->dtha_nactions; i++) {
12766 		ASSERT(helper->dtha_actions[i] != NULL);
12767 		dtrace_difo_release(helper->dtha_actions[i], vstate);
12768 	}
12769 
12770 	kmem_free(helper->dtha_actions,
12771 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
12772 	kmem_free(helper, sizeof (dtrace_helper_action_t));
12773 }
12774 
12775 static int
12776 dtrace_helper_destroygen(int gen)
12777 {
12778 	proc_t *p = curproc;
12779 	dtrace_helpers_t *help = p->p_dtrace_helpers;
12780 	dtrace_vstate_t *vstate;
12781 	int i;
12782 
12783 	ASSERT(MUTEX_HELD(&dtrace_lock));
12784 
12785 	if (help == NULL || gen > help->dthps_generation)
12786 		return (EINVAL);
12787 
12788 	vstate = &help->dthps_vstate;
12789 
12790 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12791 		dtrace_helper_action_t *last = NULL, *h, *next;
12792 
12793 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12794 			next = h->dtha_next;
12795 
12796 			if (h->dtha_generation == gen) {
12797 				if (last != NULL) {
12798 					last->dtha_next = next;
12799 				} else {
12800 					help->dthps_actions[i] = next;
12801 				}
12802 
12803 				dtrace_helper_action_destroy(h, vstate);
12804 			} else {
12805 				last = h;
12806 			}
12807 		}
12808 	}
12809 
12810 	/*
12811 	 * Interate until we've cleared out all helper providers with the
12812 	 * given generation number.
12813 	 */
12814 	for (;;) {
12815 		dtrace_helper_provider_t *prov;
12816 
12817 		/*
12818 		 * Look for a helper provider with the right generation. We
12819 		 * have to start back at the beginning of the list each time
12820 		 * because we drop dtrace_lock. It's unlikely that we'll make
12821 		 * more than two passes.
12822 		 */
12823 		for (i = 0; i < help->dthps_nprovs; i++) {
12824 			prov = help->dthps_provs[i];
12825 
12826 			if (prov->dthp_generation == gen)
12827 				break;
12828 		}
12829 
12830 		/*
12831 		 * If there were no matches, we're done.
12832 		 */
12833 		if (i == help->dthps_nprovs)
12834 			break;
12835 
12836 		/*
12837 		 * Move the last helper provider into this slot.
12838 		 */
12839 		help->dthps_nprovs--;
12840 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
12841 		help->dthps_provs[help->dthps_nprovs] = NULL;
12842 
12843 		mutex_exit(&dtrace_lock);
12844 
12845 		/*
12846 		 * If we have a meta provider, remove this helper provider.
12847 		 */
12848 		mutex_enter(&dtrace_meta_lock);
12849 		if (dtrace_meta_pid != NULL) {
12850 			ASSERT(dtrace_deferred_pid == NULL);
12851 			dtrace_helper_provider_remove(&prov->dthp_prov,
12852 			    p->p_pid);
12853 		}
12854 		mutex_exit(&dtrace_meta_lock);
12855 
12856 		dtrace_helper_provider_destroy(prov);
12857 
12858 		mutex_enter(&dtrace_lock);
12859 	}
12860 
12861 	return (0);
12862 }
12863 
12864 static int
12865 dtrace_helper_validate(dtrace_helper_action_t *helper)
12866 {
12867 	int err = 0, i;
12868 	dtrace_difo_t *dp;
12869 
12870 	if ((dp = helper->dtha_predicate) != NULL)
12871 		err += dtrace_difo_validate_helper(dp);
12872 
12873 	for (i = 0; i < helper->dtha_nactions; i++)
12874 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
12875 
12876 	return (err == 0);
12877 }
12878 
12879 static int
12880 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
12881 {
12882 	dtrace_helpers_t *help;
12883 	dtrace_helper_action_t *helper, *last;
12884 	dtrace_actdesc_t *act;
12885 	dtrace_vstate_t *vstate;
12886 	dtrace_predicate_t *pred;
12887 	int count = 0, nactions = 0, i;
12888 
12889 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
12890 		return (EINVAL);
12891 
12892 	help = curproc->p_dtrace_helpers;
12893 	last = help->dthps_actions[which];
12894 	vstate = &help->dthps_vstate;
12895 
12896 	for (count = 0; last != NULL; last = last->dtha_next) {
12897 		count++;
12898 		if (last->dtha_next == NULL)
12899 			break;
12900 	}
12901 
12902 	/*
12903 	 * If we already have dtrace_helper_actions_max helper actions for this
12904 	 * helper action type, we'll refuse to add a new one.
12905 	 */
12906 	if (count >= dtrace_helper_actions_max)
12907 		return (ENOSPC);
12908 
12909 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
12910 	helper->dtha_generation = help->dthps_generation;
12911 
12912 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
12913 		ASSERT(pred->dtp_difo != NULL);
12914 		dtrace_difo_hold(pred->dtp_difo);
12915 		helper->dtha_predicate = pred->dtp_difo;
12916 	}
12917 
12918 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12919 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12920 			goto err;
12921 
12922 		if (act->dtad_difo == NULL)
12923 			goto err;
12924 
12925 		nactions++;
12926 	}
12927 
12928 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12929 	    (helper->dtha_nactions = nactions), KM_SLEEP);
12930 
12931 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12932 		dtrace_difo_hold(act->dtad_difo);
12933 		helper->dtha_actions[i++] = act->dtad_difo;
12934 	}
12935 
12936 	if (!dtrace_helper_validate(helper))
12937 		goto err;
12938 
12939 	if (last == NULL) {
12940 		help->dthps_actions[which] = helper;
12941 	} else {
12942 		last->dtha_next = helper;
12943 	}
12944 
12945 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12946 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12947 		dtrace_helptrace_next = 0;
12948 	}
12949 
12950 	return (0);
12951 err:
12952 	dtrace_helper_action_destroy(helper, vstate);
12953 	return (EINVAL);
12954 }
12955 
12956 static void
12957 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12958     dof_helper_t *dofhp)
12959 {
12960 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12961 
12962 	mutex_enter(&dtrace_meta_lock);
12963 	mutex_enter(&dtrace_lock);
12964 
12965 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12966 		/*
12967 		 * If the dtrace module is loaded but not attached, or if
12968 		 * there aren't isn't a meta provider registered to deal with
12969 		 * these provider descriptions, we need to postpone creating
12970 		 * the actual providers until later.
12971 		 */
12972 
12973 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12974 		    dtrace_deferred_pid != help) {
12975 			help->dthps_deferred = 1;
12976 			help->dthps_pid = p->p_pid;
12977 			help->dthps_next = dtrace_deferred_pid;
12978 			help->dthps_prev = NULL;
12979 			if (dtrace_deferred_pid != NULL)
12980 				dtrace_deferred_pid->dthps_prev = help;
12981 			dtrace_deferred_pid = help;
12982 		}
12983 
12984 		mutex_exit(&dtrace_lock);
12985 
12986 	} else if (dofhp != NULL) {
12987 		/*
12988 		 * If the dtrace module is loaded and we have a particular
12989 		 * helper provider description, pass that off to the
12990 		 * meta provider.
12991 		 */
12992 
12993 		mutex_exit(&dtrace_lock);
12994 
12995 		dtrace_helper_provide(dofhp, p->p_pid);
12996 
12997 	} else {
12998 		/*
12999 		 * Otherwise, just pass all the helper provider descriptions
13000 		 * off to the meta provider.
13001 		 */
13002 
13003 		int i;
13004 		mutex_exit(&dtrace_lock);
13005 
13006 		for (i = 0; i < help->dthps_nprovs; i++) {
13007 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13008 			    p->p_pid);
13009 		}
13010 	}
13011 
13012 	mutex_exit(&dtrace_meta_lock);
13013 }
13014 
13015 static int
13016 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13017 {
13018 	dtrace_helpers_t *help;
13019 	dtrace_helper_provider_t *hprov, **tmp_provs;
13020 	uint_t tmp_maxprovs, i;
13021 
13022 	ASSERT(MUTEX_HELD(&dtrace_lock));
13023 
13024 	help = curproc->p_dtrace_helpers;
13025 	ASSERT(help != NULL);
13026 
13027 	/*
13028 	 * If we already have dtrace_helper_providers_max helper providers,
13029 	 * we're refuse to add a new one.
13030 	 */
13031 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13032 		return (ENOSPC);
13033 
13034 	/*
13035 	 * Check to make sure this isn't a duplicate.
13036 	 */
13037 	for (i = 0; i < help->dthps_nprovs; i++) {
13038 		if (dofhp->dofhp_addr ==
13039 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13040 			return (EALREADY);
13041 	}
13042 
13043 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13044 	hprov->dthp_prov = *dofhp;
13045 	hprov->dthp_ref = 1;
13046 	hprov->dthp_generation = gen;
13047 
13048 	/*
13049 	 * Allocate a bigger table for helper providers if it's already full.
13050 	 */
13051 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13052 		tmp_maxprovs = help->dthps_maxprovs;
13053 		tmp_provs = help->dthps_provs;
13054 
13055 		if (help->dthps_maxprovs == 0)
13056 			help->dthps_maxprovs = 2;
13057 		else
13058 			help->dthps_maxprovs *= 2;
13059 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13060 			help->dthps_maxprovs = dtrace_helper_providers_max;
13061 
13062 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13063 
13064 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13065 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13066 
13067 		if (tmp_provs != NULL) {
13068 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13069 			    sizeof (dtrace_helper_provider_t *));
13070 			kmem_free(tmp_provs, tmp_maxprovs *
13071 			    sizeof (dtrace_helper_provider_t *));
13072 		}
13073 	}
13074 
13075 	help->dthps_provs[help->dthps_nprovs] = hprov;
13076 	help->dthps_nprovs++;
13077 
13078 	return (0);
13079 }
13080 
13081 static void
13082 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13083 {
13084 	mutex_enter(&dtrace_lock);
13085 
13086 	if (--hprov->dthp_ref == 0) {
13087 		dof_hdr_t *dof;
13088 		mutex_exit(&dtrace_lock);
13089 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13090 		dtrace_dof_destroy(dof);
13091 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13092 	} else {
13093 		mutex_exit(&dtrace_lock);
13094 	}
13095 }
13096 
13097 static int
13098 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13099 {
13100 	uintptr_t daddr = (uintptr_t)dof;
13101 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13102 	dof_provider_t *provider;
13103 	dof_probe_t *probe;
13104 	uint8_t *arg;
13105 	char *strtab, *typestr;
13106 	dof_stridx_t typeidx;
13107 	size_t typesz;
13108 	uint_t nprobes, j, k;
13109 
13110 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13111 
13112 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13113 		dtrace_dof_error(dof, "misaligned section offset");
13114 		return (-1);
13115 	}
13116 
13117 	/*
13118 	 * The section needs to be large enough to contain the DOF provider
13119 	 * structure appropriate for the given version.
13120 	 */
13121 	if (sec->dofs_size <
13122 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13123 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13124 	    sizeof (dof_provider_t))) {
13125 		dtrace_dof_error(dof, "provider section too small");
13126 		return (-1);
13127 	}
13128 
13129 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13130 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13131 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13132 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13133 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13134 
13135 	if (str_sec == NULL || prb_sec == NULL ||
13136 	    arg_sec == NULL || off_sec == NULL)
13137 		return (-1);
13138 
13139 	enoff_sec = NULL;
13140 
13141 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13142 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13143 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13144 	    provider->dofpv_prenoffs)) == NULL)
13145 		return (-1);
13146 
13147 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13148 
13149 	if (provider->dofpv_name >= str_sec->dofs_size ||
13150 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13151 		dtrace_dof_error(dof, "invalid provider name");
13152 		return (-1);
13153 	}
13154 
13155 	if (prb_sec->dofs_entsize == 0 ||
13156 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13157 		dtrace_dof_error(dof, "invalid entry size");
13158 		return (-1);
13159 	}
13160 
13161 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13162 		dtrace_dof_error(dof, "misaligned entry size");
13163 		return (-1);
13164 	}
13165 
13166 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13167 		dtrace_dof_error(dof, "invalid entry size");
13168 		return (-1);
13169 	}
13170 
13171 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13172 		dtrace_dof_error(dof, "misaligned section offset");
13173 		return (-1);
13174 	}
13175 
13176 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13177 		dtrace_dof_error(dof, "invalid entry size");
13178 		return (-1);
13179 	}
13180 
13181 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13182 
13183 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13184 
13185 	/*
13186 	 * Take a pass through the probes to check for errors.
13187 	 */
13188 	for (j = 0; j < nprobes; j++) {
13189 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13190 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13191 
13192 		if (probe->dofpr_func >= str_sec->dofs_size) {
13193 			dtrace_dof_error(dof, "invalid function name");
13194 			return (-1);
13195 		}
13196 
13197 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13198 			dtrace_dof_error(dof, "function name too long");
13199 			return (-1);
13200 		}
13201 
13202 		if (probe->dofpr_name >= str_sec->dofs_size ||
13203 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13204 			dtrace_dof_error(dof, "invalid probe name");
13205 			return (-1);
13206 		}
13207 
13208 		/*
13209 		 * The offset count must not wrap the index, and the offsets
13210 		 * must also not overflow the section's data.
13211 		 */
13212 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13213 		    probe->dofpr_offidx ||
13214 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13215 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13216 			dtrace_dof_error(dof, "invalid probe offset");
13217 			return (-1);
13218 		}
13219 
13220 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13221 			/*
13222 			 * If there's no is-enabled offset section, make sure
13223 			 * there aren't any is-enabled offsets. Otherwise
13224 			 * perform the same checks as for probe offsets
13225 			 * (immediately above).
13226 			 */
13227 			if (enoff_sec == NULL) {
13228 				if (probe->dofpr_enoffidx != 0 ||
13229 				    probe->dofpr_nenoffs != 0) {
13230 					dtrace_dof_error(dof, "is-enabled "
13231 					    "offsets with null section");
13232 					return (-1);
13233 				}
13234 			} else if (probe->dofpr_enoffidx +
13235 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13236 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13237 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13238 				dtrace_dof_error(dof, "invalid is-enabled "
13239 				    "offset");
13240 				return (-1);
13241 			}
13242 
13243 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13244 				dtrace_dof_error(dof, "zero probe and "
13245 				    "is-enabled offsets");
13246 				return (-1);
13247 			}
13248 		} else if (probe->dofpr_noffs == 0) {
13249 			dtrace_dof_error(dof, "zero probe offsets");
13250 			return (-1);
13251 		}
13252 
13253 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13254 		    probe->dofpr_argidx ||
13255 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13256 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13257 			dtrace_dof_error(dof, "invalid args");
13258 			return (-1);
13259 		}
13260 
13261 		typeidx = probe->dofpr_nargv;
13262 		typestr = strtab + probe->dofpr_nargv;
13263 		for (k = 0; k < probe->dofpr_nargc; k++) {
13264 			if (typeidx >= str_sec->dofs_size) {
13265 				dtrace_dof_error(dof, "bad "
13266 				    "native argument type");
13267 				return (-1);
13268 			}
13269 
13270 			typesz = strlen(typestr) + 1;
13271 			if (typesz > DTRACE_ARGTYPELEN) {
13272 				dtrace_dof_error(dof, "native "
13273 				    "argument type too long");
13274 				return (-1);
13275 			}
13276 			typeidx += typesz;
13277 			typestr += typesz;
13278 		}
13279 
13280 		typeidx = probe->dofpr_xargv;
13281 		typestr = strtab + probe->dofpr_xargv;
13282 		for (k = 0; k < probe->dofpr_xargc; k++) {
13283 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13284 				dtrace_dof_error(dof, "bad "
13285 				    "native argument index");
13286 				return (-1);
13287 			}
13288 
13289 			if (typeidx >= str_sec->dofs_size) {
13290 				dtrace_dof_error(dof, "bad "
13291 				    "translated argument type");
13292 				return (-1);
13293 			}
13294 
13295 			typesz = strlen(typestr) + 1;
13296 			if (typesz > DTRACE_ARGTYPELEN) {
13297 				dtrace_dof_error(dof, "translated argument "
13298 				    "type too long");
13299 				return (-1);
13300 			}
13301 
13302 			typeidx += typesz;
13303 			typestr += typesz;
13304 		}
13305 	}
13306 
13307 	return (0);
13308 }
13309 
13310 static int
13311 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13312 {
13313 	dtrace_helpers_t *help;
13314 	dtrace_vstate_t *vstate;
13315 	dtrace_enabling_t *enab = NULL;
13316 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13317 	uintptr_t daddr = (uintptr_t)dof;
13318 
13319 	ASSERT(MUTEX_HELD(&dtrace_lock));
13320 
13321 	if ((help = curproc->p_dtrace_helpers) == NULL)
13322 		help = dtrace_helpers_create(curproc);
13323 
13324 	vstate = &help->dthps_vstate;
13325 
13326 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13327 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13328 		dtrace_dof_destroy(dof);
13329 		return (rv);
13330 	}
13331 
13332 	/*
13333 	 * Look for helper providers and validate their descriptions.
13334 	 */
13335 	if (dhp != NULL) {
13336 		for (i = 0; i < dof->dofh_secnum; i++) {
13337 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13338 			    dof->dofh_secoff + i * dof->dofh_secsize);
13339 
13340 			if (sec->dofs_type != DOF_SECT_PROVIDER)
13341 				continue;
13342 
13343 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13344 				dtrace_enabling_destroy(enab);
13345 				dtrace_dof_destroy(dof);
13346 				return (-1);
13347 			}
13348 
13349 			nprovs++;
13350 		}
13351 	}
13352 
13353 	/*
13354 	 * Now we need to walk through the ECB descriptions in the enabling.
13355 	 */
13356 	for (i = 0; i < enab->dten_ndesc; i++) {
13357 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13358 		dtrace_probedesc_t *desc = &ep->dted_probe;
13359 
13360 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13361 			continue;
13362 
13363 		if (strcmp(desc->dtpd_mod, "helper") != 0)
13364 			continue;
13365 
13366 		if (strcmp(desc->dtpd_func, "ustack") != 0)
13367 			continue;
13368 
13369 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13370 		    ep)) != 0) {
13371 			/*
13372 			 * Adding this helper action failed -- we are now going
13373 			 * to rip out the entire generation and return failure.
13374 			 */
13375 			(void) dtrace_helper_destroygen(help->dthps_generation);
13376 			dtrace_enabling_destroy(enab);
13377 			dtrace_dof_destroy(dof);
13378 			return (-1);
13379 		}
13380 
13381 		nhelpers++;
13382 	}
13383 
13384 	if (nhelpers < enab->dten_ndesc)
13385 		dtrace_dof_error(dof, "unmatched helpers");
13386 
13387 	gen = help->dthps_generation++;
13388 	dtrace_enabling_destroy(enab);
13389 
13390 	if (dhp != NULL && nprovs > 0) {
13391 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13392 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13393 			mutex_exit(&dtrace_lock);
13394 			dtrace_helper_provider_register(curproc, help, dhp);
13395 			mutex_enter(&dtrace_lock);
13396 
13397 			destroy = 0;
13398 		}
13399 	}
13400 
13401 	if (destroy)
13402 		dtrace_dof_destroy(dof);
13403 
13404 	return (gen);
13405 }
13406 
13407 static dtrace_helpers_t *
13408 dtrace_helpers_create(proc_t *p)
13409 {
13410 	dtrace_helpers_t *help;
13411 
13412 	ASSERT(MUTEX_HELD(&dtrace_lock));
13413 	ASSERT(p->p_dtrace_helpers == NULL);
13414 
13415 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13416 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13417 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13418 
13419 	p->p_dtrace_helpers = help;
13420 	dtrace_helpers++;
13421 
13422 	return (help);
13423 }
13424 
13425 static void
13426 dtrace_helpers_destroy(void)
13427 {
13428 	dtrace_helpers_t *help;
13429 	dtrace_vstate_t *vstate;
13430 	proc_t *p = curproc;
13431 	int i;
13432 
13433 	mutex_enter(&dtrace_lock);
13434 
13435 	ASSERT(p->p_dtrace_helpers != NULL);
13436 	ASSERT(dtrace_helpers > 0);
13437 
13438 	help = p->p_dtrace_helpers;
13439 	vstate = &help->dthps_vstate;
13440 
13441 	/*
13442 	 * We're now going to lose the help from this process.
13443 	 */
13444 	p->p_dtrace_helpers = NULL;
13445 	dtrace_sync();
13446 
13447 	/*
13448 	 * Destory the helper actions.
13449 	 */
13450 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13451 		dtrace_helper_action_t *h, *next;
13452 
13453 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13454 			next = h->dtha_next;
13455 			dtrace_helper_action_destroy(h, vstate);
13456 			h = next;
13457 		}
13458 	}
13459 
13460 	mutex_exit(&dtrace_lock);
13461 
13462 	/*
13463 	 * Destroy the helper providers.
13464 	 */
13465 	if (help->dthps_maxprovs > 0) {
13466 		mutex_enter(&dtrace_meta_lock);
13467 		if (dtrace_meta_pid != NULL) {
13468 			ASSERT(dtrace_deferred_pid == NULL);
13469 
13470 			for (i = 0; i < help->dthps_nprovs; i++) {
13471 				dtrace_helper_provider_remove(
13472 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13473 			}
13474 		} else {
13475 			mutex_enter(&dtrace_lock);
13476 			ASSERT(help->dthps_deferred == 0 ||
13477 			    help->dthps_next != NULL ||
13478 			    help->dthps_prev != NULL ||
13479 			    help == dtrace_deferred_pid);
13480 
13481 			/*
13482 			 * Remove the helper from the deferred list.
13483 			 */
13484 			if (help->dthps_next != NULL)
13485 				help->dthps_next->dthps_prev = help->dthps_prev;
13486 			if (help->dthps_prev != NULL)
13487 				help->dthps_prev->dthps_next = help->dthps_next;
13488 			if (dtrace_deferred_pid == help) {
13489 				dtrace_deferred_pid = help->dthps_next;
13490 				ASSERT(help->dthps_prev == NULL);
13491 			}
13492 
13493 			mutex_exit(&dtrace_lock);
13494 		}
13495 
13496 		mutex_exit(&dtrace_meta_lock);
13497 
13498 		for (i = 0; i < help->dthps_nprovs; i++) {
13499 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13500 		}
13501 
13502 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13503 		    sizeof (dtrace_helper_provider_t *));
13504 	}
13505 
13506 	mutex_enter(&dtrace_lock);
13507 
13508 	dtrace_vstate_fini(&help->dthps_vstate);
13509 	kmem_free(help->dthps_actions,
13510 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13511 	kmem_free(help, sizeof (dtrace_helpers_t));
13512 
13513 	--dtrace_helpers;
13514 	mutex_exit(&dtrace_lock);
13515 }
13516 
13517 static void
13518 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13519 {
13520 	dtrace_helpers_t *help, *newhelp;
13521 	dtrace_helper_action_t *helper, *new, *last;
13522 	dtrace_difo_t *dp;
13523 	dtrace_vstate_t *vstate;
13524 	int i, j, sz, hasprovs = 0;
13525 
13526 	mutex_enter(&dtrace_lock);
13527 	ASSERT(from->p_dtrace_helpers != NULL);
13528 	ASSERT(dtrace_helpers > 0);
13529 
13530 	help = from->p_dtrace_helpers;
13531 	newhelp = dtrace_helpers_create(to);
13532 	ASSERT(to->p_dtrace_helpers != NULL);
13533 
13534 	newhelp->dthps_generation = help->dthps_generation;
13535 	vstate = &newhelp->dthps_vstate;
13536 
13537 	/*
13538 	 * Duplicate the helper actions.
13539 	 */
13540 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13541 		if ((helper = help->dthps_actions[i]) == NULL)
13542 			continue;
13543 
13544 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13545 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13546 			    KM_SLEEP);
13547 			new->dtha_generation = helper->dtha_generation;
13548 
13549 			if ((dp = helper->dtha_predicate) != NULL) {
13550 				dp = dtrace_difo_duplicate(dp, vstate);
13551 				new->dtha_predicate = dp;
13552 			}
13553 
13554 			new->dtha_nactions = helper->dtha_nactions;
13555 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
13556 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
13557 
13558 			for (j = 0; j < new->dtha_nactions; j++) {
13559 				dtrace_difo_t *dp = helper->dtha_actions[j];
13560 
13561 				ASSERT(dp != NULL);
13562 				dp = dtrace_difo_duplicate(dp, vstate);
13563 				new->dtha_actions[j] = dp;
13564 			}
13565 
13566 			if (last != NULL) {
13567 				last->dtha_next = new;
13568 			} else {
13569 				newhelp->dthps_actions[i] = new;
13570 			}
13571 
13572 			last = new;
13573 		}
13574 	}
13575 
13576 	/*
13577 	 * Duplicate the helper providers and register them with the
13578 	 * DTrace framework.
13579 	 */
13580 	if (help->dthps_nprovs > 0) {
13581 		newhelp->dthps_nprovs = help->dthps_nprovs;
13582 		newhelp->dthps_maxprovs = help->dthps_nprovs;
13583 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13584 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13585 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13586 			newhelp->dthps_provs[i] = help->dthps_provs[i];
13587 			newhelp->dthps_provs[i]->dthp_ref++;
13588 		}
13589 
13590 		hasprovs = 1;
13591 	}
13592 
13593 	mutex_exit(&dtrace_lock);
13594 
13595 	if (hasprovs)
13596 		dtrace_helper_provider_register(to, newhelp, NULL);
13597 }
13598 
13599 /*
13600  * DTrace Hook Functions
13601  */
13602 static void
13603 dtrace_module_loaded(struct modctl *ctl)
13604 {
13605 	dtrace_provider_t *prv;
13606 
13607 	mutex_enter(&dtrace_provider_lock);
13608 	mutex_enter(&mod_lock);
13609 
13610 	ASSERT(ctl->mod_busy);
13611 
13612 	/*
13613 	 * We're going to call each providers per-module provide operation
13614 	 * specifying only this module.
13615 	 */
13616 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13617 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13618 
13619 	mutex_exit(&mod_lock);
13620 	mutex_exit(&dtrace_provider_lock);
13621 
13622 	/*
13623 	 * If we have any retained enablings, we need to match against them.
13624 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13625 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13626 	 * module.  (In particular, this happens when loading scheduling
13627 	 * classes.)  So if we have any retained enablings, we need to dispatch
13628 	 * our task queue to do the match for us.
13629 	 */
13630 	mutex_enter(&dtrace_lock);
13631 
13632 	if (dtrace_retained == NULL) {
13633 		mutex_exit(&dtrace_lock);
13634 		return;
13635 	}
13636 
13637 	(void) taskq_dispatch(dtrace_taskq,
13638 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
13639 
13640 	mutex_exit(&dtrace_lock);
13641 
13642 	/*
13643 	 * And now, for a little heuristic sleaze:  in general, we want to
13644 	 * match modules as soon as they load.  However, we cannot guarantee
13645 	 * this, because it would lead us to the lock ordering violation
13646 	 * outlined above.  The common case, of course, is that cpu_lock is
13647 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
13648 	 * long enough for the task queue to do its work.  If it's not, it's
13649 	 * not a serious problem -- it just means that the module that we
13650 	 * just loaded may not be immediately instrumentable.
13651 	 */
13652 	delay(1);
13653 }
13654 
13655 static void
13656 dtrace_module_unloaded(struct modctl *ctl)
13657 {
13658 	dtrace_probe_t template, *probe, *first, *next;
13659 	dtrace_provider_t *prov;
13660 
13661 	template.dtpr_mod = ctl->mod_modname;
13662 
13663 	mutex_enter(&dtrace_provider_lock);
13664 	mutex_enter(&mod_lock);
13665 	mutex_enter(&dtrace_lock);
13666 
13667 	if (dtrace_bymod == NULL) {
13668 		/*
13669 		 * The DTrace module is loaded (obviously) but not attached;
13670 		 * we don't have any work to do.
13671 		 */
13672 		mutex_exit(&dtrace_provider_lock);
13673 		mutex_exit(&mod_lock);
13674 		mutex_exit(&dtrace_lock);
13675 		return;
13676 	}
13677 
13678 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
13679 	    probe != NULL; probe = probe->dtpr_nextmod) {
13680 		if (probe->dtpr_ecb != NULL) {
13681 			mutex_exit(&dtrace_provider_lock);
13682 			mutex_exit(&mod_lock);
13683 			mutex_exit(&dtrace_lock);
13684 
13685 			/*
13686 			 * This shouldn't _actually_ be possible -- we're
13687 			 * unloading a module that has an enabled probe in it.
13688 			 * (It's normally up to the provider to make sure that
13689 			 * this can't happen.)  However, because dtps_enable()
13690 			 * doesn't have a failure mode, there can be an
13691 			 * enable/unload race.  Upshot:  we don't want to
13692 			 * assert, but we're not going to disable the
13693 			 * probe, either.
13694 			 */
13695 			if (dtrace_err_verbose) {
13696 				cmn_err(CE_WARN, "unloaded module '%s' had "
13697 				    "enabled probes", ctl->mod_modname);
13698 			}
13699 
13700 			return;
13701 		}
13702 	}
13703 
13704 	probe = first;
13705 
13706 	for (first = NULL; probe != NULL; probe = next) {
13707 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
13708 
13709 		dtrace_probes[probe->dtpr_id - 1] = NULL;
13710 
13711 		next = probe->dtpr_nextmod;
13712 		dtrace_hash_remove(dtrace_bymod, probe);
13713 		dtrace_hash_remove(dtrace_byfunc, probe);
13714 		dtrace_hash_remove(dtrace_byname, probe);
13715 
13716 		if (first == NULL) {
13717 			first = probe;
13718 			probe->dtpr_nextmod = NULL;
13719 		} else {
13720 			probe->dtpr_nextmod = first;
13721 			first = probe;
13722 		}
13723 	}
13724 
13725 	/*
13726 	 * We've removed all of the module's probes from the hash chains and
13727 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
13728 	 * everyone has cleared out from any probe array processing.
13729 	 */
13730 	dtrace_sync();
13731 
13732 	for (probe = first; probe != NULL; probe = first) {
13733 		first = probe->dtpr_nextmod;
13734 		prov = probe->dtpr_provider;
13735 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
13736 		    probe->dtpr_arg);
13737 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
13738 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
13739 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
13740 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
13741 		kmem_free(probe, sizeof (dtrace_probe_t));
13742 	}
13743 
13744 	mutex_exit(&dtrace_lock);
13745 	mutex_exit(&mod_lock);
13746 	mutex_exit(&dtrace_provider_lock);
13747 }
13748 
13749 void
13750 dtrace_suspend(void)
13751 {
13752 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
13753 }
13754 
13755 void
13756 dtrace_resume(void)
13757 {
13758 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
13759 }
13760 
13761 static int
13762 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
13763 {
13764 	ASSERT(MUTEX_HELD(&cpu_lock));
13765 	mutex_enter(&dtrace_lock);
13766 
13767 	switch (what) {
13768 	case CPU_CONFIG: {
13769 		dtrace_state_t *state;
13770 		dtrace_optval_t *opt, rs, c;
13771 
13772 		/*
13773 		 * For now, we only allocate a new buffer for anonymous state.
13774 		 */
13775 		if ((state = dtrace_anon.dta_state) == NULL)
13776 			break;
13777 
13778 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13779 			break;
13780 
13781 		opt = state->dts_options;
13782 		c = opt[DTRACEOPT_CPU];
13783 
13784 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
13785 			break;
13786 
13787 		/*
13788 		 * Regardless of what the actual policy is, we're going to
13789 		 * temporarily set our resize policy to be manual.  We're
13790 		 * also going to temporarily set our CPU option to denote
13791 		 * the newly configured CPU.
13792 		 */
13793 		rs = opt[DTRACEOPT_BUFRESIZE];
13794 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
13795 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
13796 
13797 		(void) dtrace_state_buffers(state);
13798 
13799 		opt[DTRACEOPT_BUFRESIZE] = rs;
13800 		opt[DTRACEOPT_CPU] = c;
13801 
13802 		break;
13803 	}
13804 
13805 	case CPU_UNCONFIG:
13806 		/*
13807 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
13808 		 * buffer will be freed when the consumer exits.)
13809 		 */
13810 		break;
13811 
13812 	default:
13813 		break;
13814 	}
13815 
13816 	mutex_exit(&dtrace_lock);
13817 	return (0);
13818 }
13819 
13820 static void
13821 dtrace_cpu_setup_initial(processorid_t cpu)
13822 {
13823 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
13824 }
13825 
13826 static void
13827 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
13828 {
13829 	if (dtrace_toxranges >= dtrace_toxranges_max) {
13830 		int osize, nsize;
13831 		dtrace_toxrange_t *range;
13832 
13833 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13834 
13835 		if (osize == 0) {
13836 			ASSERT(dtrace_toxrange == NULL);
13837 			ASSERT(dtrace_toxranges_max == 0);
13838 			dtrace_toxranges_max = 1;
13839 		} else {
13840 			dtrace_toxranges_max <<= 1;
13841 		}
13842 
13843 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13844 		range = kmem_zalloc(nsize, KM_SLEEP);
13845 
13846 		if (dtrace_toxrange != NULL) {
13847 			ASSERT(osize != 0);
13848 			bcopy(dtrace_toxrange, range, osize);
13849 			kmem_free(dtrace_toxrange, osize);
13850 		}
13851 
13852 		dtrace_toxrange = range;
13853 	}
13854 
13855 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
13856 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
13857 
13858 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
13859 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
13860 	dtrace_toxranges++;
13861 }
13862 
13863 /*
13864  * DTrace Driver Cookbook Functions
13865  */
13866 /*ARGSUSED*/
13867 static int
13868 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
13869 {
13870 	dtrace_provider_id_t id;
13871 	dtrace_state_t *state = NULL;
13872 	dtrace_enabling_t *enab;
13873 
13874 	mutex_enter(&cpu_lock);
13875 	mutex_enter(&dtrace_provider_lock);
13876 	mutex_enter(&dtrace_lock);
13877 
13878 	if (ddi_soft_state_init(&dtrace_softstate,
13879 	    sizeof (dtrace_state_t), 0) != 0) {
13880 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
13881 		mutex_exit(&cpu_lock);
13882 		mutex_exit(&dtrace_provider_lock);
13883 		mutex_exit(&dtrace_lock);
13884 		return (DDI_FAILURE);
13885 	}
13886 
13887 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
13888 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
13889 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
13890 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
13891 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
13892 		ddi_remove_minor_node(devi, NULL);
13893 		ddi_soft_state_fini(&dtrace_softstate);
13894 		mutex_exit(&cpu_lock);
13895 		mutex_exit(&dtrace_provider_lock);
13896 		mutex_exit(&dtrace_lock);
13897 		return (DDI_FAILURE);
13898 	}
13899 
13900 	ddi_report_dev(devi);
13901 	dtrace_devi = devi;
13902 
13903 	dtrace_modload = dtrace_module_loaded;
13904 	dtrace_modunload = dtrace_module_unloaded;
13905 	dtrace_cpu_init = dtrace_cpu_setup_initial;
13906 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
13907 	dtrace_helpers_fork = dtrace_helpers_duplicate;
13908 	dtrace_cpustart_init = dtrace_suspend;
13909 	dtrace_cpustart_fini = dtrace_resume;
13910 	dtrace_debugger_init = dtrace_suspend;
13911 	dtrace_debugger_fini = dtrace_resume;
13912 	dtrace_kreloc_init = dtrace_suspend;
13913 	dtrace_kreloc_fini = dtrace_resume;
13914 
13915 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13916 
13917 	ASSERT(MUTEX_HELD(&cpu_lock));
13918 
13919 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
13920 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13921 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
13922 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
13923 	    VM_SLEEP | VMC_IDENTIFIER);
13924 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
13925 	    1, INT_MAX, 0);
13926 
13927 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
13928 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
13929 	    NULL, NULL, NULL, NULL, NULL, 0);
13930 
13931 	ASSERT(MUTEX_HELD(&cpu_lock));
13932 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
13933 	    offsetof(dtrace_probe_t, dtpr_nextmod),
13934 	    offsetof(dtrace_probe_t, dtpr_prevmod));
13935 
13936 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
13937 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
13938 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
13939 
13940 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
13941 	    offsetof(dtrace_probe_t, dtpr_nextname),
13942 	    offsetof(dtrace_probe_t, dtpr_prevname));
13943 
13944 	if (dtrace_retain_max < 1) {
13945 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
13946 		    "setting to 1", dtrace_retain_max);
13947 		dtrace_retain_max = 1;
13948 	}
13949 
13950 	/*
13951 	 * Now discover our toxic ranges.
13952 	 */
13953 	dtrace_toxic_ranges(dtrace_toxrange_add);
13954 
13955 	/*
13956 	 * Before we register ourselves as a provider to our own framework,
13957 	 * we would like to assert that dtrace_provider is NULL -- but that's
13958 	 * not true if we were loaded as a dependency of a DTrace provider.
13959 	 * Once we've registered, we can assert that dtrace_provider is our
13960 	 * pseudo provider.
13961 	 */
13962 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
13963 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
13964 
13965 	ASSERT(dtrace_provider != NULL);
13966 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
13967 
13968 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
13969 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
13970 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
13971 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
13972 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
13973 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
13974 
13975 	dtrace_anon_property();
13976 	mutex_exit(&cpu_lock);
13977 
13978 	/*
13979 	 * If DTrace helper tracing is enabled, we need to allocate the
13980 	 * trace buffer and initialize the values.
13981 	 */
13982 	if (dtrace_helptrace_enabled) {
13983 		ASSERT(dtrace_helptrace_buffer == NULL);
13984 		dtrace_helptrace_buffer =
13985 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
13986 		dtrace_helptrace_next = 0;
13987 	}
13988 
13989 	/*
13990 	 * If there are already providers, we must ask them to provide their
13991 	 * probes, and then match any anonymous enabling against them.  Note
13992 	 * that there should be no other retained enablings at this time:
13993 	 * the only retained enablings at this time should be the anonymous
13994 	 * enabling.
13995 	 */
13996 	if (dtrace_anon.dta_enabling != NULL) {
13997 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13998 
13999 		dtrace_enabling_provide(NULL);
14000 		state = dtrace_anon.dta_state;
14001 
14002 		/*
14003 		 * We couldn't hold cpu_lock across the above call to
14004 		 * dtrace_enabling_provide(), but we must hold it to actually
14005 		 * enable the probes.  We have to drop all of our locks, pick
14006 		 * up cpu_lock, and regain our locks before matching the
14007 		 * retained anonymous enabling.
14008 		 */
14009 		mutex_exit(&dtrace_lock);
14010 		mutex_exit(&dtrace_provider_lock);
14011 
14012 		mutex_enter(&cpu_lock);
14013 		mutex_enter(&dtrace_provider_lock);
14014 		mutex_enter(&dtrace_lock);
14015 
14016 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14017 			(void) dtrace_enabling_match(enab, NULL);
14018 
14019 		mutex_exit(&cpu_lock);
14020 	}
14021 
14022 	mutex_exit(&dtrace_lock);
14023 	mutex_exit(&dtrace_provider_lock);
14024 
14025 	if (state != NULL) {
14026 		/*
14027 		 * If we created any anonymous state, set it going now.
14028 		 */
14029 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14030 	}
14031 
14032 	return (DDI_SUCCESS);
14033 }
14034 
14035 /*ARGSUSED*/
14036 static int
14037 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14038 {
14039 	dtrace_state_t *state;
14040 	uint32_t priv;
14041 	uid_t uid;
14042 	zoneid_t zoneid;
14043 
14044 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14045 		return (0);
14046 
14047 	/*
14048 	 * If this wasn't an open with the "helper" minor, then it must be
14049 	 * the "dtrace" minor.
14050 	 */
14051 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
14052 
14053 	/*
14054 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14055 	 * caller lacks sufficient permission to do anything with DTrace.
14056 	 */
14057 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14058 	if (priv == DTRACE_PRIV_NONE)
14059 		return (EACCES);
14060 
14061 	/*
14062 	 * Ask all providers to provide all their probes.
14063 	 */
14064 	mutex_enter(&dtrace_provider_lock);
14065 	dtrace_probe_provide(NULL, NULL);
14066 	mutex_exit(&dtrace_provider_lock);
14067 
14068 	mutex_enter(&cpu_lock);
14069 	mutex_enter(&dtrace_lock);
14070 	dtrace_opens++;
14071 	dtrace_membar_producer();
14072 
14073 	/*
14074 	 * If the kernel debugger is active (that is, if the kernel debugger
14075 	 * modified text in some way), we won't allow the open.
14076 	 */
14077 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14078 		dtrace_opens--;
14079 		mutex_exit(&cpu_lock);
14080 		mutex_exit(&dtrace_lock);
14081 		return (EBUSY);
14082 	}
14083 
14084 	state = dtrace_state_create(devp, cred_p);
14085 	mutex_exit(&cpu_lock);
14086 
14087 	if (state == NULL) {
14088 		if (--dtrace_opens == 0)
14089 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14090 		mutex_exit(&dtrace_lock);
14091 		return (EAGAIN);
14092 	}
14093 
14094 	mutex_exit(&dtrace_lock);
14095 
14096 	return (0);
14097 }
14098 
14099 /*ARGSUSED*/
14100 static int
14101 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14102 {
14103 	minor_t minor = getminor(dev);
14104 	dtrace_state_t *state;
14105 
14106 	if (minor == DTRACEMNRN_HELPER)
14107 		return (0);
14108 
14109 	state = ddi_get_soft_state(dtrace_softstate, minor);
14110 
14111 	mutex_enter(&cpu_lock);
14112 	mutex_enter(&dtrace_lock);
14113 
14114 	if (state->dts_anon) {
14115 		/*
14116 		 * There is anonymous state. Destroy that first.
14117 		 */
14118 		ASSERT(dtrace_anon.dta_state == NULL);
14119 		dtrace_state_destroy(state->dts_anon);
14120 	}
14121 
14122 	dtrace_state_destroy(state);
14123 	ASSERT(dtrace_opens > 0);
14124 	if (--dtrace_opens == 0)
14125 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14126 
14127 	mutex_exit(&dtrace_lock);
14128 	mutex_exit(&cpu_lock);
14129 
14130 	return (0);
14131 }
14132 
14133 /*ARGSUSED*/
14134 static int
14135 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14136 {
14137 	int rval;
14138 	dof_helper_t help, *dhp = NULL;
14139 
14140 	switch (cmd) {
14141 	case DTRACEHIOC_ADDDOF:
14142 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14143 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14144 			return (EFAULT);
14145 		}
14146 
14147 		dhp = &help;
14148 		arg = (intptr_t)help.dofhp_dof;
14149 		/*FALLTHROUGH*/
14150 
14151 	case DTRACEHIOC_ADD: {
14152 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14153 
14154 		if (dof == NULL)
14155 			return (rval);
14156 
14157 		mutex_enter(&dtrace_lock);
14158 
14159 		/*
14160 		 * dtrace_helper_slurp() takes responsibility for the dof --
14161 		 * it may free it now or it may save it and free it later.
14162 		 */
14163 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14164 			*rv = rval;
14165 			rval = 0;
14166 		} else {
14167 			rval = EINVAL;
14168 		}
14169 
14170 		mutex_exit(&dtrace_lock);
14171 		return (rval);
14172 	}
14173 
14174 	case DTRACEHIOC_REMOVE: {
14175 		mutex_enter(&dtrace_lock);
14176 		rval = dtrace_helper_destroygen(arg);
14177 		mutex_exit(&dtrace_lock);
14178 
14179 		return (rval);
14180 	}
14181 
14182 	default:
14183 		break;
14184 	}
14185 
14186 	return (ENOTTY);
14187 }
14188 
14189 /*ARGSUSED*/
14190 static int
14191 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14192 {
14193 	minor_t minor = getminor(dev);
14194 	dtrace_state_t *state;
14195 	int rval;
14196 
14197 	if (minor == DTRACEMNRN_HELPER)
14198 		return (dtrace_ioctl_helper(cmd, arg, rv));
14199 
14200 	state = ddi_get_soft_state(dtrace_softstate, minor);
14201 
14202 	if (state->dts_anon) {
14203 		ASSERT(dtrace_anon.dta_state == NULL);
14204 		state = state->dts_anon;
14205 	}
14206 
14207 	switch (cmd) {
14208 	case DTRACEIOC_PROVIDER: {
14209 		dtrace_providerdesc_t pvd;
14210 		dtrace_provider_t *pvp;
14211 
14212 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14213 			return (EFAULT);
14214 
14215 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14216 		mutex_enter(&dtrace_provider_lock);
14217 
14218 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14219 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14220 				break;
14221 		}
14222 
14223 		mutex_exit(&dtrace_provider_lock);
14224 
14225 		if (pvp == NULL)
14226 			return (ESRCH);
14227 
14228 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14229 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14230 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14231 			return (EFAULT);
14232 
14233 		return (0);
14234 	}
14235 
14236 	case DTRACEIOC_EPROBE: {
14237 		dtrace_eprobedesc_t epdesc;
14238 		dtrace_ecb_t *ecb;
14239 		dtrace_action_t *act;
14240 		void *buf;
14241 		size_t size;
14242 		uintptr_t dest;
14243 		int nrecs;
14244 
14245 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14246 			return (EFAULT);
14247 
14248 		mutex_enter(&dtrace_lock);
14249 
14250 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14251 			mutex_exit(&dtrace_lock);
14252 			return (EINVAL);
14253 		}
14254 
14255 		if (ecb->dte_probe == NULL) {
14256 			mutex_exit(&dtrace_lock);
14257 			return (EINVAL);
14258 		}
14259 
14260 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14261 		epdesc.dtepd_uarg = ecb->dte_uarg;
14262 		epdesc.dtepd_size = ecb->dte_size;
14263 
14264 		nrecs = epdesc.dtepd_nrecs;
14265 		epdesc.dtepd_nrecs = 0;
14266 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14267 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14268 				continue;
14269 
14270 			epdesc.dtepd_nrecs++;
14271 		}
14272 
14273 		/*
14274 		 * Now that we have the size, we need to allocate a temporary
14275 		 * buffer in which to store the complete description.  We need
14276 		 * the temporary buffer to be able to drop dtrace_lock()
14277 		 * across the copyout(), below.
14278 		 */
14279 		size = sizeof (dtrace_eprobedesc_t) +
14280 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14281 
14282 		buf = kmem_alloc(size, KM_SLEEP);
14283 		dest = (uintptr_t)buf;
14284 
14285 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14286 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14287 
14288 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14289 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14290 				continue;
14291 
14292 			if (nrecs-- == 0)
14293 				break;
14294 
14295 			bcopy(&act->dta_rec, (void *)dest,
14296 			    sizeof (dtrace_recdesc_t));
14297 			dest += sizeof (dtrace_recdesc_t);
14298 		}
14299 
14300 		mutex_exit(&dtrace_lock);
14301 
14302 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14303 			kmem_free(buf, size);
14304 			return (EFAULT);
14305 		}
14306 
14307 		kmem_free(buf, size);
14308 		return (0);
14309 	}
14310 
14311 	case DTRACEIOC_AGGDESC: {
14312 		dtrace_aggdesc_t aggdesc;
14313 		dtrace_action_t *act;
14314 		dtrace_aggregation_t *agg;
14315 		int nrecs;
14316 		uint32_t offs;
14317 		dtrace_recdesc_t *lrec;
14318 		void *buf;
14319 		size_t size;
14320 		uintptr_t dest;
14321 
14322 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14323 			return (EFAULT);
14324 
14325 		mutex_enter(&dtrace_lock);
14326 
14327 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14328 			mutex_exit(&dtrace_lock);
14329 			return (EINVAL);
14330 		}
14331 
14332 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14333 
14334 		nrecs = aggdesc.dtagd_nrecs;
14335 		aggdesc.dtagd_nrecs = 0;
14336 
14337 		offs = agg->dtag_base;
14338 		lrec = &agg->dtag_action.dta_rec;
14339 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14340 
14341 		for (act = agg->dtag_first; ; act = act->dta_next) {
14342 			ASSERT(act->dta_intuple ||
14343 			    DTRACEACT_ISAGG(act->dta_kind));
14344 
14345 			/*
14346 			 * If this action has a record size of zero, it
14347 			 * denotes an argument to the aggregating action.
14348 			 * Because the presence of this record doesn't (or
14349 			 * shouldn't) affect the way the data is interpreted,
14350 			 * we don't copy it out to save user-level the
14351 			 * confusion of dealing with a zero-length record.
14352 			 */
14353 			if (act->dta_rec.dtrd_size == 0) {
14354 				ASSERT(agg->dtag_hasarg);
14355 				continue;
14356 			}
14357 
14358 			aggdesc.dtagd_nrecs++;
14359 
14360 			if (act == &agg->dtag_action)
14361 				break;
14362 		}
14363 
14364 		/*
14365 		 * Now that we have the size, we need to allocate a temporary
14366 		 * buffer in which to store the complete description.  We need
14367 		 * the temporary buffer to be able to drop dtrace_lock()
14368 		 * across the copyout(), below.
14369 		 */
14370 		size = sizeof (dtrace_aggdesc_t) +
14371 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14372 
14373 		buf = kmem_alloc(size, KM_SLEEP);
14374 		dest = (uintptr_t)buf;
14375 
14376 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14377 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14378 
14379 		for (act = agg->dtag_first; ; act = act->dta_next) {
14380 			dtrace_recdesc_t rec = act->dta_rec;
14381 
14382 			/*
14383 			 * See the comment in the above loop for why we pass
14384 			 * over zero-length records.
14385 			 */
14386 			if (rec.dtrd_size == 0) {
14387 				ASSERT(agg->dtag_hasarg);
14388 				continue;
14389 			}
14390 
14391 			if (nrecs-- == 0)
14392 				break;
14393 
14394 			rec.dtrd_offset -= offs;
14395 			bcopy(&rec, (void *)dest, sizeof (rec));
14396 			dest += sizeof (dtrace_recdesc_t);
14397 
14398 			if (act == &agg->dtag_action)
14399 				break;
14400 		}
14401 
14402 		mutex_exit(&dtrace_lock);
14403 
14404 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14405 			kmem_free(buf, size);
14406 			return (EFAULT);
14407 		}
14408 
14409 		kmem_free(buf, size);
14410 		return (0);
14411 	}
14412 
14413 	case DTRACEIOC_ENABLE: {
14414 		dof_hdr_t *dof;
14415 		dtrace_enabling_t *enab = NULL;
14416 		dtrace_vstate_t *vstate;
14417 		int err = 0;
14418 
14419 		*rv = 0;
14420 
14421 		/*
14422 		 * If a NULL argument has been passed, we take this as our
14423 		 * cue to reevaluate our enablings.
14424 		 */
14425 		if (arg == NULL) {
14426 			mutex_enter(&cpu_lock);
14427 			mutex_enter(&dtrace_lock);
14428 			err = dtrace_enabling_matchstate(state, rv);
14429 			mutex_exit(&dtrace_lock);
14430 			mutex_exit(&cpu_lock);
14431 
14432 			return (err);
14433 		}
14434 
14435 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14436 			return (rval);
14437 
14438 		mutex_enter(&cpu_lock);
14439 		mutex_enter(&dtrace_lock);
14440 		vstate = &state->dts_vstate;
14441 
14442 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14443 			mutex_exit(&dtrace_lock);
14444 			mutex_exit(&cpu_lock);
14445 			dtrace_dof_destroy(dof);
14446 			return (EBUSY);
14447 		}
14448 
14449 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14450 			mutex_exit(&dtrace_lock);
14451 			mutex_exit(&cpu_lock);
14452 			dtrace_dof_destroy(dof);
14453 			return (EINVAL);
14454 		}
14455 
14456 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14457 			dtrace_enabling_destroy(enab);
14458 			mutex_exit(&dtrace_lock);
14459 			mutex_exit(&cpu_lock);
14460 			dtrace_dof_destroy(dof);
14461 			return (rval);
14462 		}
14463 
14464 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14465 			err = dtrace_enabling_retain(enab);
14466 		} else {
14467 			dtrace_enabling_destroy(enab);
14468 		}
14469 
14470 		mutex_exit(&cpu_lock);
14471 		mutex_exit(&dtrace_lock);
14472 		dtrace_dof_destroy(dof);
14473 
14474 		return (err);
14475 	}
14476 
14477 	case DTRACEIOC_REPLICATE: {
14478 		dtrace_repldesc_t desc;
14479 		dtrace_probedesc_t *match = &desc.dtrpd_match;
14480 		dtrace_probedesc_t *create = &desc.dtrpd_create;
14481 		int err;
14482 
14483 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14484 			return (EFAULT);
14485 
14486 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14487 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14488 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14489 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14490 
14491 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14492 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14493 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14494 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14495 
14496 		mutex_enter(&dtrace_lock);
14497 		err = dtrace_enabling_replicate(state, match, create);
14498 		mutex_exit(&dtrace_lock);
14499 
14500 		return (err);
14501 	}
14502 
14503 	case DTRACEIOC_PROBEMATCH:
14504 	case DTRACEIOC_PROBES: {
14505 		dtrace_probe_t *probe = NULL;
14506 		dtrace_probedesc_t desc;
14507 		dtrace_probekey_t pkey;
14508 		dtrace_id_t i;
14509 		int m = 0;
14510 		uint32_t priv;
14511 		uid_t uid;
14512 		zoneid_t zoneid;
14513 
14514 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14515 			return (EFAULT);
14516 
14517 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14518 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14519 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14520 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14521 
14522 		/*
14523 		 * Before we attempt to match this probe, we want to give
14524 		 * all providers the opportunity to provide it.
14525 		 */
14526 		if (desc.dtpd_id == DTRACE_IDNONE) {
14527 			mutex_enter(&dtrace_provider_lock);
14528 			dtrace_probe_provide(&desc, NULL);
14529 			mutex_exit(&dtrace_provider_lock);
14530 			desc.dtpd_id++;
14531 		}
14532 
14533 		if (cmd == DTRACEIOC_PROBEMATCH)  {
14534 			dtrace_probekey(&desc, &pkey);
14535 			pkey.dtpk_id = DTRACE_IDNONE;
14536 		}
14537 
14538 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14539 
14540 		mutex_enter(&dtrace_lock);
14541 
14542 		if (cmd == DTRACEIOC_PROBEMATCH) {
14543 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14544 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14545 				    (m = dtrace_match_probe(probe, &pkey,
14546 				    priv, uid, zoneid)) != 0)
14547 					break;
14548 			}
14549 
14550 			if (m < 0) {
14551 				mutex_exit(&dtrace_lock);
14552 				return (EINVAL);
14553 			}
14554 
14555 		} else {
14556 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14557 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14558 				    dtrace_match_priv(probe, priv, uid, zoneid))
14559 					break;
14560 			}
14561 		}
14562 
14563 		if (probe == NULL) {
14564 			mutex_exit(&dtrace_lock);
14565 			return (ESRCH);
14566 		}
14567 
14568 		dtrace_probe_description(probe, &desc);
14569 		mutex_exit(&dtrace_lock);
14570 
14571 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14572 			return (EFAULT);
14573 
14574 		return (0);
14575 	}
14576 
14577 	case DTRACEIOC_PROBEARG: {
14578 		dtrace_argdesc_t desc;
14579 		dtrace_probe_t *probe;
14580 		dtrace_provider_t *prov;
14581 
14582 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14583 			return (EFAULT);
14584 
14585 		if (desc.dtargd_id == DTRACE_IDNONE)
14586 			return (EINVAL);
14587 
14588 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14589 			return (EINVAL);
14590 
14591 		mutex_enter(&dtrace_provider_lock);
14592 		mutex_enter(&mod_lock);
14593 		mutex_enter(&dtrace_lock);
14594 
14595 		if (desc.dtargd_id > dtrace_nprobes) {
14596 			mutex_exit(&dtrace_lock);
14597 			mutex_exit(&mod_lock);
14598 			mutex_exit(&dtrace_provider_lock);
14599 			return (EINVAL);
14600 		}
14601 
14602 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14603 			mutex_exit(&dtrace_lock);
14604 			mutex_exit(&mod_lock);
14605 			mutex_exit(&dtrace_provider_lock);
14606 			return (EINVAL);
14607 		}
14608 
14609 		mutex_exit(&dtrace_lock);
14610 
14611 		prov = probe->dtpr_provider;
14612 
14613 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14614 			/*
14615 			 * There isn't any typed information for this probe.
14616 			 * Set the argument number to DTRACE_ARGNONE.
14617 			 */
14618 			desc.dtargd_ndx = DTRACE_ARGNONE;
14619 		} else {
14620 			desc.dtargd_native[0] = '\0';
14621 			desc.dtargd_xlate[0] = '\0';
14622 			desc.dtargd_mapping = desc.dtargd_ndx;
14623 
14624 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14625 			    probe->dtpr_id, probe->dtpr_arg, &desc);
14626 		}
14627 
14628 		mutex_exit(&mod_lock);
14629 		mutex_exit(&dtrace_provider_lock);
14630 
14631 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14632 			return (EFAULT);
14633 
14634 		return (0);
14635 	}
14636 
14637 	case DTRACEIOC_GO: {
14638 		processorid_t cpuid;
14639 		rval = dtrace_state_go(state, &cpuid);
14640 
14641 		if (rval != 0)
14642 			return (rval);
14643 
14644 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14645 			return (EFAULT);
14646 
14647 		return (0);
14648 	}
14649 
14650 	case DTRACEIOC_STOP: {
14651 		processorid_t cpuid;
14652 
14653 		mutex_enter(&dtrace_lock);
14654 		rval = dtrace_state_stop(state, &cpuid);
14655 		mutex_exit(&dtrace_lock);
14656 
14657 		if (rval != 0)
14658 			return (rval);
14659 
14660 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14661 			return (EFAULT);
14662 
14663 		return (0);
14664 	}
14665 
14666 	case DTRACEIOC_DOFGET: {
14667 		dof_hdr_t hdr, *dof;
14668 		uint64_t len;
14669 
14670 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
14671 			return (EFAULT);
14672 
14673 		mutex_enter(&dtrace_lock);
14674 		dof = dtrace_dof_create(state);
14675 		mutex_exit(&dtrace_lock);
14676 
14677 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
14678 		rval = copyout(dof, (void *)arg, len);
14679 		dtrace_dof_destroy(dof);
14680 
14681 		return (rval == 0 ? 0 : EFAULT);
14682 	}
14683 
14684 	case DTRACEIOC_AGGSNAP:
14685 	case DTRACEIOC_BUFSNAP: {
14686 		dtrace_bufdesc_t desc;
14687 		caddr_t cached;
14688 		dtrace_buffer_t *buf;
14689 
14690 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14691 			return (EFAULT);
14692 
14693 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
14694 			return (EINVAL);
14695 
14696 		mutex_enter(&dtrace_lock);
14697 
14698 		if (cmd == DTRACEIOC_BUFSNAP) {
14699 			buf = &state->dts_buffer[desc.dtbd_cpu];
14700 		} else {
14701 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
14702 		}
14703 
14704 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
14705 			size_t sz = buf->dtb_offset;
14706 
14707 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
14708 				mutex_exit(&dtrace_lock);
14709 				return (EBUSY);
14710 			}
14711 
14712 			/*
14713 			 * If this buffer has already been consumed, we're
14714 			 * going to indicate that there's nothing left here
14715 			 * to consume.
14716 			 */
14717 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
14718 				mutex_exit(&dtrace_lock);
14719 
14720 				desc.dtbd_size = 0;
14721 				desc.dtbd_drops = 0;
14722 				desc.dtbd_errors = 0;
14723 				desc.dtbd_oldest = 0;
14724 				sz = sizeof (desc);
14725 
14726 				if (copyout(&desc, (void *)arg, sz) != 0)
14727 					return (EFAULT);
14728 
14729 				return (0);
14730 			}
14731 
14732 			/*
14733 			 * If this is a ring buffer that has wrapped, we want
14734 			 * to copy the whole thing out.
14735 			 */
14736 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
14737 				dtrace_buffer_polish(buf);
14738 				sz = buf->dtb_size;
14739 			}
14740 
14741 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
14742 				mutex_exit(&dtrace_lock);
14743 				return (EFAULT);
14744 			}
14745 
14746 			desc.dtbd_size = sz;
14747 			desc.dtbd_drops = buf->dtb_drops;
14748 			desc.dtbd_errors = buf->dtb_errors;
14749 			desc.dtbd_oldest = buf->dtb_xamot_offset;
14750 
14751 			mutex_exit(&dtrace_lock);
14752 
14753 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14754 				return (EFAULT);
14755 
14756 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
14757 
14758 			return (0);
14759 		}
14760 
14761 		if (buf->dtb_tomax == NULL) {
14762 			ASSERT(buf->dtb_xamot == NULL);
14763 			mutex_exit(&dtrace_lock);
14764 			return (ENOENT);
14765 		}
14766 
14767 		cached = buf->dtb_tomax;
14768 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
14769 
14770 		dtrace_xcall(desc.dtbd_cpu,
14771 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
14772 
14773 		state->dts_errors += buf->dtb_xamot_errors;
14774 
14775 		/*
14776 		 * If the buffers did not actually switch, then the cross call
14777 		 * did not take place -- presumably because the given CPU is
14778 		 * not in the ready set.  If this is the case, we'll return
14779 		 * ENOENT.
14780 		 */
14781 		if (buf->dtb_tomax == cached) {
14782 			ASSERT(buf->dtb_xamot != cached);
14783 			mutex_exit(&dtrace_lock);
14784 			return (ENOENT);
14785 		}
14786 
14787 		ASSERT(cached == buf->dtb_xamot);
14788 
14789 		/*
14790 		 * We have our snapshot; now copy it out.
14791 		 */
14792 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
14793 		    buf->dtb_xamot_offset) != 0) {
14794 			mutex_exit(&dtrace_lock);
14795 			return (EFAULT);
14796 		}
14797 
14798 		desc.dtbd_size = buf->dtb_xamot_offset;
14799 		desc.dtbd_drops = buf->dtb_xamot_drops;
14800 		desc.dtbd_errors = buf->dtb_xamot_errors;
14801 		desc.dtbd_oldest = 0;
14802 
14803 		mutex_exit(&dtrace_lock);
14804 
14805 		/*
14806 		 * Finally, copy out the buffer description.
14807 		 */
14808 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14809 			return (EFAULT);
14810 
14811 		return (0);
14812 	}
14813 
14814 	case DTRACEIOC_CONF: {
14815 		dtrace_conf_t conf;
14816 
14817 		bzero(&conf, sizeof (conf));
14818 		conf.dtc_difversion = DIF_VERSION;
14819 		conf.dtc_difintregs = DIF_DIR_NREGS;
14820 		conf.dtc_diftupregs = DIF_DTR_NREGS;
14821 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
14822 
14823 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
14824 			return (EFAULT);
14825 
14826 		return (0);
14827 	}
14828 
14829 	case DTRACEIOC_STATUS: {
14830 		dtrace_status_t stat;
14831 		dtrace_dstate_t *dstate;
14832 		int i, j;
14833 		uint64_t nerrs;
14834 
14835 		/*
14836 		 * See the comment in dtrace_state_deadman() for the reason
14837 		 * for setting dts_laststatus to INT64_MAX before setting
14838 		 * it to the correct value.
14839 		 */
14840 		state->dts_laststatus = INT64_MAX;
14841 		dtrace_membar_producer();
14842 		state->dts_laststatus = dtrace_gethrtime();
14843 
14844 		bzero(&stat, sizeof (stat));
14845 
14846 		mutex_enter(&dtrace_lock);
14847 
14848 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
14849 			mutex_exit(&dtrace_lock);
14850 			return (ENOENT);
14851 		}
14852 
14853 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
14854 			stat.dtst_exiting = 1;
14855 
14856 		nerrs = state->dts_errors;
14857 		dstate = &state->dts_vstate.dtvs_dynvars;
14858 
14859 		for (i = 0; i < NCPU; i++) {
14860 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
14861 
14862 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
14863 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
14864 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
14865 
14866 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
14867 				stat.dtst_filled++;
14868 
14869 			nerrs += state->dts_buffer[i].dtb_errors;
14870 
14871 			for (j = 0; j < state->dts_nspeculations; j++) {
14872 				dtrace_speculation_t *spec;
14873 				dtrace_buffer_t *buf;
14874 
14875 				spec = &state->dts_speculations[j];
14876 				buf = &spec->dtsp_buffer[i];
14877 				stat.dtst_specdrops += buf->dtb_xamot_drops;
14878 			}
14879 		}
14880 
14881 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
14882 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
14883 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
14884 		stat.dtst_dblerrors = state->dts_dblerrors;
14885 		stat.dtst_killed =
14886 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
14887 		stat.dtst_errors = nerrs;
14888 
14889 		mutex_exit(&dtrace_lock);
14890 
14891 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
14892 			return (EFAULT);
14893 
14894 		return (0);
14895 	}
14896 
14897 	case DTRACEIOC_FORMAT: {
14898 		dtrace_fmtdesc_t fmt;
14899 		char *str;
14900 		int len;
14901 
14902 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
14903 			return (EFAULT);
14904 
14905 		mutex_enter(&dtrace_lock);
14906 
14907 		if (fmt.dtfd_format == 0 ||
14908 		    fmt.dtfd_format > state->dts_nformats) {
14909 			mutex_exit(&dtrace_lock);
14910 			return (EINVAL);
14911 		}
14912 
14913 		/*
14914 		 * Format strings are allocated contiguously and they are
14915 		 * never freed; if a format index is less than the number
14916 		 * of formats, we can assert that the format map is non-NULL
14917 		 * and that the format for the specified index is non-NULL.
14918 		 */
14919 		ASSERT(state->dts_formats != NULL);
14920 		str = state->dts_formats[fmt.dtfd_format - 1];
14921 		ASSERT(str != NULL);
14922 
14923 		len = strlen(str) + 1;
14924 
14925 		if (len > fmt.dtfd_length) {
14926 			fmt.dtfd_length = len;
14927 
14928 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
14929 				mutex_exit(&dtrace_lock);
14930 				return (EINVAL);
14931 			}
14932 		} else {
14933 			if (copyout(str, fmt.dtfd_string, len) != 0) {
14934 				mutex_exit(&dtrace_lock);
14935 				return (EINVAL);
14936 			}
14937 		}
14938 
14939 		mutex_exit(&dtrace_lock);
14940 		return (0);
14941 	}
14942 
14943 	default:
14944 		break;
14945 	}
14946 
14947 	return (ENOTTY);
14948 }
14949 
14950 /*ARGSUSED*/
14951 static int
14952 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
14953 {
14954 	dtrace_state_t *state;
14955 
14956 	switch (cmd) {
14957 	case DDI_DETACH:
14958 		break;
14959 
14960 	case DDI_SUSPEND:
14961 		return (DDI_SUCCESS);
14962 
14963 	default:
14964 		return (DDI_FAILURE);
14965 	}
14966 
14967 	mutex_enter(&cpu_lock);
14968 	mutex_enter(&dtrace_provider_lock);
14969 	mutex_enter(&dtrace_lock);
14970 
14971 	ASSERT(dtrace_opens == 0);
14972 
14973 	if (dtrace_helpers > 0) {
14974 		mutex_exit(&dtrace_provider_lock);
14975 		mutex_exit(&dtrace_lock);
14976 		mutex_exit(&cpu_lock);
14977 		return (DDI_FAILURE);
14978 	}
14979 
14980 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
14981 		mutex_exit(&dtrace_provider_lock);
14982 		mutex_exit(&dtrace_lock);
14983 		mutex_exit(&cpu_lock);
14984 		return (DDI_FAILURE);
14985 	}
14986 
14987 	dtrace_provider = NULL;
14988 
14989 	if ((state = dtrace_anon_grab()) != NULL) {
14990 		/*
14991 		 * If there were ECBs on this state, the provider should
14992 		 * have not been allowed to detach; assert that there is
14993 		 * none.
14994 		 */
14995 		ASSERT(state->dts_necbs == 0);
14996 		dtrace_state_destroy(state);
14997 
14998 		/*
14999 		 * If we're being detached with anonymous state, we need to
15000 		 * indicate to the kernel debugger that DTrace is now inactive.
15001 		 */
15002 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15003 	}
15004 
15005 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15006 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15007 	dtrace_cpu_init = NULL;
15008 	dtrace_helpers_cleanup = NULL;
15009 	dtrace_helpers_fork = NULL;
15010 	dtrace_cpustart_init = NULL;
15011 	dtrace_cpustart_fini = NULL;
15012 	dtrace_debugger_init = NULL;
15013 	dtrace_debugger_fini = NULL;
15014 	dtrace_kreloc_init = NULL;
15015 	dtrace_kreloc_fini = NULL;
15016 	dtrace_modload = NULL;
15017 	dtrace_modunload = NULL;
15018 
15019 	mutex_exit(&cpu_lock);
15020 
15021 	if (dtrace_helptrace_enabled) {
15022 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15023 		dtrace_helptrace_buffer = NULL;
15024 	}
15025 
15026 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15027 	dtrace_probes = NULL;
15028 	dtrace_nprobes = 0;
15029 
15030 	dtrace_hash_destroy(dtrace_bymod);
15031 	dtrace_hash_destroy(dtrace_byfunc);
15032 	dtrace_hash_destroy(dtrace_byname);
15033 	dtrace_bymod = NULL;
15034 	dtrace_byfunc = NULL;
15035 	dtrace_byname = NULL;
15036 
15037 	kmem_cache_destroy(dtrace_state_cache);
15038 	vmem_destroy(dtrace_minor);
15039 	vmem_destroy(dtrace_arena);
15040 
15041 	if (dtrace_toxrange != NULL) {
15042 		kmem_free(dtrace_toxrange,
15043 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15044 		dtrace_toxrange = NULL;
15045 		dtrace_toxranges = 0;
15046 		dtrace_toxranges_max = 0;
15047 	}
15048 
15049 	ddi_remove_minor_node(dtrace_devi, NULL);
15050 	dtrace_devi = NULL;
15051 
15052 	ddi_soft_state_fini(&dtrace_softstate);
15053 
15054 	ASSERT(dtrace_vtime_references == 0);
15055 	ASSERT(dtrace_opens == 0);
15056 	ASSERT(dtrace_retained == NULL);
15057 
15058 	mutex_exit(&dtrace_lock);
15059 	mutex_exit(&dtrace_provider_lock);
15060 
15061 	/*
15062 	 * We don't destroy the task queue until after we have dropped our
15063 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15064 	 * attempting to do work after we have effectively detached but before
15065 	 * the task queue has been destroyed, all tasks dispatched via the
15066 	 * task queue must check that DTrace is still attached before
15067 	 * performing any operation.
15068 	 */
15069 	taskq_destroy(dtrace_taskq);
15070 	dtrace_taskq = NULL;
15071 
15072 	return (DDI_SUCCESS);
15073 }
15074 
15075 /*ARGSUSED*/
15076 static int
15077 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15078 {
15079 	int error;
15080 
15081 	switch (infocmd) {
15082 	case DDI_INFO_DEVT2DEVINFO:
15083 		*result = (void *)dtrace_devi;
15084 		error = DDI_SUCCESS;
15085 		break;
15086 	case DDI_INFO_DEVT2INSTANCE:
15087 		*result = (void *)0;
15088 		error = DDI_SUCCESS;
15089 		break;
15090 	default:
15091 		error = DDI_FAILURE;
15092 	}
15093 	return (error);
15094 }
15095 
15096 static struct cb_ops dtrace_cb_ops = {
15097 	dtrace_open,		/* open */
15098 	dtrace_close,		/* close */
15099 	nulldev,		/* strategy */
15100 	nulldev,		/* print */
15101 	nodev,			/* dump */
15102 	nodev,			/* read */
15103 	nodev,			/* write */
15104 	dtrace_ioctl,		/* ioctl */
15105 	nodev,			/* devmap */
15106 	nodev,			/* mmap */
15107 	nodev,			/* segmap */
15108 	nochpoll,		/* poll */
15109 	ddi_prop_op,		/* cb_prop_op */
15110 	0,			/* streamtab  */
15111 	D_NEW | D_MP		/* Driver compatibility flag */
15112 };
15113 
15114 static struct dev_ops dtrace_ops = {
15115 	DEVO_REV,		/* devo_rev */
15116 	0,			/* refcnt */
15117 	dtrace_info,		/* get_dev_info */
15118 	nulldev,		/* identify */
15119 	nulldev,		/* probe */
15120 	dtrace_attach,		/* attach */
15121 	dtrace_detach,		/* detach */
15122 	nodev,			/* reset */
15123 	&dtrace_cb_ops,		/* driver operations */
15124 	NULL,			/* bus operations */
15125 	nodev			/* dev power */
15126 };
15127 
15128 static struct modldrv modldrv = {
15129 	&mod_driverops,		/* module type (this is a pseudo driver) */
15130 	"Dynamic Tracing",	/* name of module */
15131 	&dtrace_ops,		/* driver ops */
15132 };
15133 
15134 static struct modlinkage modlinkage = {
15135 	MODREV_1,
15136 	(void *)&modldrv,
15137 	NULL
15138 };
15139 
15140 int
15141 _init(void)
15142 {
15143 	return (mod_install(&modlinkage));
15144 }
15145 
15146 int
15147 _info(struct modinfo *modinfop)
15148 {
15149 	return (mod_info(&modlinkage, modinfop));
15150 }
15151 
15152 int
15153 _fini(void)
15154 {
15155 	return (mod_remove(&modlinkage));
15156 }
15157