1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 148 /* 149 * DTrace External Variables 150 * 151 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 152 * available to DTrace consumers via the backtick (`) syntax. One of these, 153 * dtrace_zero, is made deliberately so: it is provided as a source of 154 * well-known, zero-filled memory. While this variable is not documented, 155 * it is used by some translators as an implementation detail. 156 */ 157 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 158 159 /* 160 * DTrace Internal Variables 161 */ 162 static dev_info_t *dtrace_devi; /* device info */ 163 static vmem_t *dtrace_arena; /* probe ID arena */ 164 static vmem_t *dtrace_minor; /* minor number arena */ 165 static taskq_t *dtrace_taskq; /* task queue */ 166 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 167 static int dtrace_nprobes; /* number of probes */ 168 static dtrace_provider_t *dtrace_provider; /* provider list */ 169 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 170 static int dtrace_opens; /* number of opens */ 171 static int dtrace_helpers; /* number of helpers */ 172 static void *dtrace_softstate; /* softstate pointer */ 173 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 174 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 175 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 176 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 177 static int dtrace_toxranges; /* number of toxic ranges */ 178 static int dtrace_toxranges_max; /* size of toxic range array */ 179 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 180 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 181 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 182 static kthread_t *dtrace_panicked; /* panicking thread */ 183 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 184 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 185 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 186 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 187 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 188 189 /* 190 * DTrace Locking 191 * DTrace is protected by three (relatively coarse-grained) locks: 192 * 193 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 194 * including enabling state, probes, ECBs, consumer state, helper state, 195 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 196 * probe context is lock-free -- synchronization is handled via the 197 * dtrace_sync() cross call mechanism. 198 * 199 * (2) dtrace_provider_lock is required when manipulating provider state, or 200 * when provider state must be held constant. 201 * 202 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 203 * when meta provider state must be held constant. 204 * 205 * The lock ordering between these three locks is dtrace_meta_lock before 206 * dtrace_provider_lock before dtrace_lock. (In particular, there are 207 * several places where dtrace_provider_lock is held by the framework as it 208 * calls into the providers -- which then call back into the framework, 209 * grabbing dtrace_lock.) 210 * 211 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 212 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 213 * role as a coarse-grained lock; it is acquired before both of these locks. 214 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 215 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 216 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 217 * acquired _between_ dtrace_provider_lock and dtrace_lock. 218 */ 219 static kmutex_t dtrace_lock; /* probe state lock */ 220 static kmutex_t dtrace_provider_lock; /* provider state lock */ 221 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 222 223 /* 224 * DTrace Provider Variables 225 * 226 * These are the variables relating to DTrace as a provider (that is, the 227 * provider of the BEGIN, END, and ERROR probes). 228 */ 229 static dtrace_pattr_t dtrace_provider_attr = { 230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 }; 236 237 static void 238 dtrace_nullop(void) 239 {} 240 241 static dtrace_pops_t dtrace_provider_ops = { 242 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 243 (void (*)(void *, struct modctl *))dtrace_nullop, 244 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 245 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 NULL, 249 NULL, 250 NULL, 251 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 252 }; 253 254 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 255 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 256 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 257 258 /* 259 * DTrace Helper Tracing Variables 260 */ 261 uint32_t dtrace_helptrace_next = 0; 262 uint32_t dtrace_helptrace_nlocals; 263 char *dtrace_helptrace_buffer; 264 int dtrace_helptrace_bufsize = 512 * 1024; 265 266 #ifdef DEBUG 267 int dtrace_helptrace_enabled = 1; 268 #else 269 int dtrace_helptrace_enabled = 0; 270 #endif 271 272 /* 273 * DTrace Error Hashing 274 * 275 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 276 * table. This is very useful for checking coverage of tests that are 277 * expected to induce DIF or DOF processing errors, and may be useful for 278 * debugging problems in the DIF code generator or in DOF generation . The 279 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 280 */ 281 #ifdef DEBUG 282 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 283 static const char *dtrace_errlast; 284 static kthread_t *dtrace_errthread; 285 static kmutex_t dtrace_errlock; 286 #endif 287 288 /* 289 * DTrace Macros and Constants 290 * 291 * These are various macros that are useful in various spots in the 292 * implementation, along with a few random constants that have no meaning 293 * outside of the implementation. There is no real structure to this cpp 294 * mishmash -- but is there ever? 295 */ 296 #define DTRACE_HASHSTR(hash, probe) \ 297 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 298 299 #define DTRACE_HASHNEXT(hash, probe) \ 300 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 301 302 #define DTRACE_HASHPREV(hash, probe) \ 303 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 304 305 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 306 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 307 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 308 309 #define DTRACE_AGGHASHSIZE_SLEW 17 310 311 /* 312 * The key for a thread-local variable consists of the lower 61 bits of the 313 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 314 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 315 * equal to a variable identifier. This is necessary (but not sufficient) to 316 * assure that global associative arrays never collide with thread-local 317 * variables. To guarantee that they cannot collide, we must also define the 318 * order for keying dynamic variables. That order is: 319 * 320 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 321 * 322 * Because the variable-key and the tls-key are in orthogonal spaces, there is 323 * no way for a global variable key signature to match a thread-local key 324 * signature. 325 */ 326 #define DTRACE_TLS_THRKEY(where) { \ 327 uint_t intr = 0; \ 328 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 329 for (; actv; actv >>= 1) \ 330 intr++; \ 331 ASSERT(intr < (1 << 3)); \ 332 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 333 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 334 } 335 336 #define DTRACE_STORE(type, tomax, offset, what) \ 337 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 338 339 #ifndef __i386 340 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 341 if (addr & (size - 1)) { \ 342 *flags |= CPU_DTRACE_BADALIGN; \ 343 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 344 return (0); \ 345 } 346 #else 347 #define DTRACE_ALIGNCHECK(addr, size, flags) 348 #endif 349 350 #define DTRACE_LOADFUNC(bits) \ 351 /*CSTYLED*/ \ 352 uint##bits##_t \ 353 dtrace_load##bits(uintptr_t addr) \ 354 { \ 355 size_t size = bits / NBBY; \ 356 /*CSTYLED*/ \ 357 uint##bits##_t rval; \ 358 int i; \ 359 volatile uint16_t *flags = (volatile uint16_t *) \ 360 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 361 \ 362 DTRACE_ALIGNCHECK(addr, size, flags); \ 363 \ 364 for (i = 0; i < dtrace_toxranges; i++) { \ 365 if (addr >= dtrace_toxrange[i].dtt_limit) \ 366 continue; \ 367 \ 368 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 369 continue; \ 370 \ 371 /* \ 372 * This address falls within a toxic region; return 0. \ 373 */ \ 374 *flags |= CPU_DTRACE_BADADDR; \ 375 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 376 return (0); \ 377 } \ 378 \ 379 *flags |= CPU_DTRACE_NOFAULT; \ 380 /*CSTYLED*/ \ 381 rval = *((volatile uint##bits##_t *)addr); \ 382 *flags &= ~CPU_DTRACE_NOFAULT; \ 383 \ 384 return (rval); \ 385 } 386 387 #ifdef _LP64 388 #define dtrace_loadptr dtrace_load64 389 #else 390 #define dtrace_loadptr dtrace_load32 391 #endif 392 393 #define DTRACE_DYNHASH_FREE 0 394 #define DTRACE_DYNHASH_SINK 1 395 #define DTRACE_DYNHASH_VALID 2 396 397 #define DTRACE_MATCH_NEXT 0 398 #define DTRACE_MATCH_DONE 1 399 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 400 #define DTRACE_STATE_ALIGN 64 401 402 #define DTRACE_FLAGS2FLT(flags) \ 403 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 404 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 405 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 406 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 407 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 408 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 409 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 410 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 411 DTRACEFLT_UNKNOWN) 412 413 #define DTRACEACT_ISSTRING(act) \ 414 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 415 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 416 417 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 418 static void dtrace_enabling_provide(dtrace_provider_t *); 419 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 420 static void dtrace_enabling_matchall(void); 421 static dtrace_state_t *dtrace_anon_grab(void); 422 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 423 dtrace_state_t *, uint64_t, uint64_t); 424 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 425 static void dtrace_buffer_drop(dtrace_buffer_t *); 426 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 427 dtrace_state_t *, dtrace_mstate_t *); 428 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 429 dtrace_optval_t); 430 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 431 432 /* 433 * DTrace Probe Context Functions 434 * 435 * These functions are called from probe context. Because probe context is 436 * any context in which C may be called, arbitrarily locks may be held, 437 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 438 * As a result, functions called from probe context may only call other DTrace 439 * support functions -- they may not interact at all with the system at large. 440 * (Note that the ASSERT macro is made probe-context safe by redefining it in 441 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 442 * loads are to be performed from probe context, they _must_ be in terms of 443 * the safe dtrace_load*() variants. 444 * 445 * Some functions in this block are not actually called from probe context; 446 * for these functions, there will be a comment above the function reading 447 * "Note: not called from probe context." 448 */ 449 void 450 dtrace_panic(const char *format, ...) 451 { 452 va_list alist; 453 454 va_start(alist, format); 455 dtrace_vpanic(format, alist); 456 va_end(alist); 457 } 458 459 int 460 dtrace_assfail(const char *a, const char *f, int l) 461 { 462 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 463 464 /* 465 * We just need something here that even the most clever compiler 466 * cannot optimize away. 467 */ 468 return (a[(uintptr_t)f]); 469 } 470 471 /* 472 * Atomically increment a specified error counter from probe context. 473 */ 474 static void 475 dtrace_error(uint32_t *counter) 476 { 477 /* 478 * Most counters stored to in probe context are per-CPU counters. 479 * However, there are some error conditions that are sufficiently 480 * arcane that they don't merit per-CPU storage. If these counters 481 * are incremented concurrently on different CPUs, scalability will be 482 * adversely affected -- but we don't expect them to be white-hot in a 483 * correctly constructed enabling... 484 */ 485 uint32_t oval, nval; 486 487 do { 488 oval = *counter; 489 490 if ((nval = oval + 1) == 0) { 491 /* 492 * If the counter would wrap, set it to 1 -- assuring 493 * that the counter is never zero when we have seen 494 * errors. (The counter must be 32-bits because we 495 * aren't guaranteed a 64-bit compare&swap operation.) 496 * To save this code both the infamy of being fingered 497 * by a priggish news story and the indignity of being 498 * the target of a neo-puritan witch trial, we're 499 * carefully avoiding any colorful description of the 500 * likelihood of this condition -- but suffice it to 501 * say that it is only slightly more likely than the 502 * overflow of predicate cache IDs, as discussed in 503 * dtrace_predicate_create(). 504 */ 505 nval = 1; 506 } 507 } while (dtrace_cas32(counter, oval, nval) != oval); 508 } 509 510 /* 511 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 512 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 513 */ 514 DTRACE_LOADFUNC(8) 515 DTRACE_LOADFUNC(16) 516 DTRACE_LOADFUNC(32) 517 DTRACE_LOADFUNC(64) 518 519 static int 520 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 521 { 522 if (dest < mstate->dtms_scratch_base) 523 return (0); 524 525 if (dest + size < dest) 526 return (0); 527 528 if (dest + size > mstate->dtms_scratch_ptr) 529 return (0); 530 531 return (1); 532 } 533 534 static int 535 dtrace_canstore_statvar(uint64_t addr, size_t sz, 536 dtrace_statvar_t **svars, int nsvars) 537 { 538 int i; 539 540 for (i = 0; i < nsvars; i++) { 541 dtrace_statvar_t *svar = svars[i]; 542 543 if (svar == NULL || svar->dtsv_size == 0) 544 continue; 545 546 if (addr - svar->dtsv_data < svar->dtsv_size && 547 addr + sz <= svar->dtsv_data + svar->dtsv_size) 548 return (1); 549 } 550 551 return (0); 552 } 553 554 /* 555 * Check to see if the address is within a memory region to which a store may 556 * be issued. This includes the DTrace scratch areas, and any DTrace variable 557 * region. The caller of dtrace_canstore() is responsible for performing any 558 * alignment checks that are needed before stores are actually executed. 559 */ 560 static int 561 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 562 dtrace_vstate_t *vstate) 563 { 564 uintptr_t a; 565 size_t s; 566 567 /* 568 * First, check to see if the address is in scratch space... 569 */ 570 a = mstate->dtms_scratch_base; 571 s = mstate->dtms_scratch_size; 572 573 if (addr - a < s && addr + sz <= a + s) 574 return (1); 575 576 /* 577 * Now check to see if it's a dynamic variable. This check will pick 578 * up both thread-local variables and any global dynamically-allocated 579 * variables. 580 */ 581 a = (uintptr_t)vstate->dtvs_dynvars.dtds_base; 582 s = vstate->dtvs_dynvars.dtds_size; 583 if (addr - a < s && addr + sz <= a + s) 584 return (1); 585 586 /* 587 * Finally, check the static local and global variables. These checks 588 * take the longest, so we perform them last. 589 */ 590 if (dtrace_canstore_statvar(addr, sz, 591 vstate->dtvs_locals, vstate->dtvs_nlocals)) 592 return (1); 593 594 if (dtrace_canstore_statvar(addr, sz, 595 vstate->dtvs_globals, vstate->dtvs_nglobals)) 596 return (1); 597 598 return (0); 599 } 600 601 /* 602 * Compare two strings using safe loads. 603 */ 604 static int 605 dtrace_strncmp(char *s1, char *s2, size_t limit) 606 { 607 uint8_t c1, c2; 608 volatile uint16_t *flags; 609 610 if (s1 == s2 || limit == 0) 611 return (0); 612 613 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 614 615 do { 616 if (s1 == NULL) { 617 c1 = '\0'; 618 } else { 619 c1 = dtrace_load8((uintptr_t)s1++); 620 } 621 622 if (s2 == NULL) { 623 c2 = '\0'; 624 } else { 625 c2 = dtrace_load8((uintptr_t)s2++); 626 } 627 628 if (c1 != c2) 629 return (c1 - c2); 630 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 631 632 return (0); 633 } 634 635 /* 636 * Compute strlen(s) for a string using safe memory accesses. The additional 637 * len parameter is used to specify a maximum length to ensure completion. 638 */ 639 static size_t 640 dtrace_strlen(const char *s, size_t lim) 641 { 642 uint_t len; 643 644 for (len = 0; len != lim; len++) { 645 if (dtrace_load8((uintptr_t)s++) == '\0') 646 break; 647 } 648 649 return (len); 650 } 651 652 /* 653 * Check if an address falls within a toxic region. 654 */ 655 static int 656 dtrace_istoxic(uintptr_t kaddr, size_t size) 657 { 658 uintptr_t taddr, tsize; 659 int i; 660 661 for (i = 0; i < dtrace_toxranges; i++) { 662 taddr = dtrace_toxrange[i].dtt_base; 663 tsize = dtrace_toxrange[i].dtt_limit - taddr; 664 665 if (kaddr - taddr < tsize) { 666 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 667 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 668 return (1); 669 } 670 671 if (taddr - kaddr < size) { 672 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 673 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 674 return (1); 675 } 676 } 677 678 return (0); 679 } 680 681 /* 682 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 683 * memory specified by the DIF program. The dst is assumed to be safe memory 684 * that we can store to directly because it is managed by DTrace. As with 685 * standard bcopy, overlapping copies are handled properly. 686 */ 687 static void 688 dtrace_bcopy(const void *src, void *dst, size_t len) 689 { 690 if (len != 0) { 691 uint8_t *s1 = dst; 692 const uint8_t *s2 = src; 693 694 if (s1 <= s2) { 695 do { 696 *s1++ = dtrace_load8((uintptr_t)s2++); 697 } while (--len != 0); 698 } else { 699 s2 += len; 700 s1 += len; 701 702 do { 703 *--s1 = dtrace_load8((uintptr_t)--s2); 704 } while (--len != 0); 705 } 706 } 707 } 708 709 /* 710 * Copy src to dst using safe memory accesses, up to either the specified 711 * length, or the point that a nul byte is encountered. The src is assumed to 712 * be unsafe memory specified by the DIF program. The dst is assumed to be 713 * safe memory that we can store to directly because it is managed by DTrace. 714 * Unlike dtrace_bcopy(), overlapping regions are not handled. 715 */ 716 static void 717 dtrace_strcpy(const void *src, void *dst, size_t len) 718 { 719 if (len != 0) { 720 uint8_t *s1 = dst, c; 721 const uint8_t *s2 = src; 722 723 do { 724 *s1++ = c = dtrace_load8((uintptr_t)s2++); 725 } while (--len != 0 && c != '\0'); 726 } 727 } 728 729 /* 730 * Copy src to dst, deriving the size and type from the specified (BYREF) 731 * variable type. The src is assumed to be unsafe memory specified by the DIF 732 * program. The dst is assumed to be DTrace variable memory that is of the 733 * specified type; we assume that we can store to directly. 734 */ 735 static void 736 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 737 { 738 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 739 740 if (type->dtdt_kind == DIF_TYPE_STRING) { 741 dtrace_strcpy(src, dst, type->dtdt_size); 742 } else { 743 dtrace_bcopy(src, dst, type->dtdt_size); 744 } 745 } 746 747 /* 748 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 749 * unsafe memory specified by the DIF program. The s2 data is assumed to be 750 * safe memory that we can access directly because it is managed by DTrace. 751 */ 752 static int 753 dtrace_bcmp(const void *s1, const void *s2, size_t len) 754 { 755 volatile uint16_t *flags; 756 757 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 758 759 if (s1 == s2) 760 return (0); 761 762 if (s1 == NULL || s2 == NULL) 763 return (1); 764 765 if (s1 != s2 && len != 0) { 766 const uint8_t *ps1 = s1; 767 const uint8_t *ps2 = s2; 768 769 do { 770 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 771 return (1); 772 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 773 } 774 return (0); 775 } 776 777 /* 778 * Zero the specified region using a simple byte-by-byte loop. Note that this 779 * is for safe DTrace-managed memory only. 780 */ 781 static void 782 dtrace_bzero(void *dst, size_t len) 783 { 784 uchar_t *cp; 785 786 for (cp = dst; len != 0; len--) 787 *cp++ = 0; 788 } 789 790 /* 791 * This privilege check should be used by actions and subroutines to 792 * verify that the user credentials of the process that enabled the 793 * invoking ECB match the target credentials 794 */ 795 static int 796 dtrace_priv_proc_common_user(dtrace_state_t *state) 797 { 798 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 799 800 /* 801 * We should always have a non-NULL state cred here, since if cred 802 * is null (anonymous tracing), we fast-path bypass this routine. 803 */ 804 ASSERT(s_cr != NULL); 805 806 if ((cr = CRED()) != NULL && 807 s_cr->cr_uid == cr->cr_uid && 808 s_cr->cr_uid == cr->cr_ruid && 809 s_cr->cr_uid == cr->cr_suid && 810 s_cr->cr_gid == cr->cr_gid && 811 s_cr->cr_gid == cr->cr_rgid && 812 s_cr->cr_gid == cr->cr_sgid) 813 return (1); 814 815 return (0); 816 } 817 818 /* 819 * This privilege check should be used by actions and subroutines to 820 * verify that the zone of the process that enabled the invoking ECB 821 * matches the target credentials 822 */ 823 static int 824 dtrace_priv_proc_common_zone(dtrace_state_t *state) 825 { 826 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 827 828 /* 829 * We should always have a non-NULL state cred here, since if cred 830 * is null (anonymous tracing), we fast-path bypass this routine. 831 */ 832 ASSERT(s_cr != NULL); 833 834 if ((cr = CRED()) != NULL && 835 s_cr->cr_zone == cr->cr_zone) 836 return (1); 837 838 return (0); 839 } 840 841 /* 842 * This privilege check should be used by actions and subroutines to 843 * verify that the process has not setuid or changed credentials. 844 */ 845 static int 846 dtrace_priv_proc_common_nocd() 847 { 848 proc_t *proc; 849 850 if ((proc = ttoproc(curthread)) != NULL && 851 !(proc->p_flag & SNOCD)) 852 return (1); 853 854 return (0); 855 } 856 857 static int 858 dtrace_priv_proc_destructive(dtrace_state_t *state) 859 { 860 int action = state->dts_cred.dcr_action; 861 862 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 863 dtrace_priv_proc_common_zone(state) == 0) 864 goto bad; 865 866 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 867 dtrace_priv_proc_common_user(state) == 0) 868 goto bad; 869 870 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 871 dtrace_priv_proc_common_nocd() == 0) 872 goto bad; 873 874 return (1); 875 876 bad: 877 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 878 879 return (0); 880 } 881 882 static int 883 dtrace_priv_proc_control(dtrace_state_t *state) 884 { 885 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 886 return (1); 887 888 if (dtrace_priv_proc_common_zone(state) && 889 dtrace_priv_proc_common_user(state) && 890 dtrace_priv_proc_common_nocd()) 891 return (1); 892 893 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 894 895 return (0); 896 } 897 898 static int 899 dtrace_priv_proc(dtrace_state_t *state) 900 { 901 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 902 return (1); 903 904 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 905 906 return (0); 907 } 908 909 static int 910 dtrace_priv_kernel(dtrace_state_t *state) 911 { 912 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 913 return (1); 914 915 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 916 917 return (0); 918 } 919 920 static int 921 dtrace_priv_kernel_destructive(dtrace_state_t *state) 922 { 923 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 924 return (1); 925 926 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 927 928 return (0); 929 } 930 931 /* 932 * Note: not called from probe context. This function is called 933 * asynchronously (and at a regular interval) from outside of probe context to 934 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 935 * cleaning is explained in detail in <sys/dtrace_impl.h>. 936 */ 937 void 938 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 939 { 940 dtrace_dynvar_t *dirty; 941 dtrace_dstate_percpu_t *dcpu; 942 int i, work = 0; 943 944 for (i = 0; i < NCPU; i++) { 945 dcpu = &dstate->dtds_percpu[i]; 946 947 ASSERT(dcpu->dtdsc_rinsing == NULL); 948 949 /* 950 * If the dirty list is NULL, there is no dirty work to do. 951 */ 952 if (dcpu->dtdsc_dirty == NULL) 953 continue; 954 955 /* 956 * If the clean list is non-NULL, then we're not going to do 957 * any work for this CPU -- it means that there has not been 958 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 959 * since the last time we cleaned house. 960 */ 961 if (dcpu->dtdsc_clean != NULL) 962 continue; 963 964 work = 1; 965 966 /* 967 * Atomically move the dirty list aside. 968 */ 969 do { 970 dirty = dcpu->dtdsc_dirty; 971 972 /* 973 * Before we zap the dirty list, set the rinsing list. 974 * (This allows for a potential assertion in 975 * dtrace_dynvar(): if a free dynamic variable appears 976 * on a hash chain, either the dirty list or the 977 * rinsing list for some CPU must be non-NULL.) 978 */ 979 dcpu->dtdsc_rinsing = dirty; 980 dtrace_membar_producer(); 981 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 982 dirty, NULL) != dirty); 983 } 984 985 if (!work) { 986 /* 987 * We have no work to do; we can simply return. 988 */ 989 return; 990 } 991 992 dtrace_sync(); 993 994 for (i = 0; i < NCPU; i++) { 995 dcpu = &dstate->dtds_percpu[i]; 996 997 if (dcpu->dtdsc_rinsing == NULL) 998 continue; 999 1000 /* 1001 * We are now guaranteed that no hash chain contains a pointer 1002 * into this dirty list; we can make it clean. 1003 */ 1004 ASSERT(dcpu->dtdsc_clean == NULL); 1005 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1006 dcpu->dtdsc_rinsing = NULL; 1007 } 1008 1009 /* 1010 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1011 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1012 * This prevents a race whereby a CPU incorrectly decides that 1013 * the state should be something other than DTRACE_DSTATE_CLEAN 1014 * after dtrace_dynvar_clean() has completed. 1015 */ 1016 dtrace_sync(); 1017 1018 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1019 } 1020 1021 /* 1022 * Depending on the value of the op parameter, this function looks-up, 1023 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1024 * allocation is requested, this function will return a pointer to a 1025 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1026 * variable can be allocated. If NULL is returned, the appropriate counter 1027 * will be incremented. 1028 */ 1029 dtrace_dynvar_t * 1030 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1031 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op) 1032 { 1033 uint64_t hashval = DTRACE_DYNHASH_VALID; 1034 dtrace_dynhash_t *hash = dstate->dtds_hash; 1035 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1036 processorid_t me = CPU->cpu_id, cpu = me; 1037 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1038 size_t bucket, ksize; 1039 size_t chunksize = dstate->dtds_chunksize; 1040 uintptr_t kdata, lock, nstate; 1041 uint_t i; 1042 1043 ASSERT(nkeys != 0); 1044 1045 /* 1046 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1047 * algorithm. For the by-value portions, we perform the algorithm in 1048 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1049 * bit, and seems to have only a minute effect on distribution. For 1050 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1051 * over each referenced byte. It's painful to do this, but it's much 1052 * better than pathological hash distribution. The efficacy of the 1053 * hashing algorithm (and a comparison with other algorithms) may be 1054 * found by running the ::dtrace_dynstat MDB dcmd. 1055 */ 1056 for (i = 0; i < nkeys; i++) { 1057 if (key[i].dttk_size == 0) { 1058 uint64_t val = key[i].dttk_value; 1059 1060 hashval += (val >> 48) & 0xffff; 1061 hashval += (hashval << 10); 1062 hashval ^= (hashval >> 6); 1063 1064 hashval += (val >> 32) & 0xffff; 1065 hashval += (hashval << 10); 1066 hashval ^= (hashval >> 6); 1067 1068 hashval += (val >> 16) & 0xffff; 1069 hashval += (hashval << 10); 1070 hashval ^= (hashval >> 6); 1071 1072 hashval += val & 0xffff; 1073 hashval += (hashval << 10); 1074 hashval ^= (hashval >> 6); 1075 } else { 1076 /* 1077 * This is incredibly painful, but it beats the hell 1078 * out of the alternative. 1079 */ 1080 uint64_t j, size = key[i].dttk_size; 1081 uintptr_t base = (uintptr_t)key[i].dttk_value; 1082 1083 for (j = 0; j < size; j++) { 1084 hashval += dtrace_load8(base + j); 1085 hashval += (hashval << 10); 1086 hashval ^= (hashval >> 6); 1087 } 1088 } 1089 } 1090 1091 hashval += (hashval << 3); 1092 hashval ^= (hashval >> 11); 1093 hashval += (hashval << 15); 1094 1095 /* 1096 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1097 * comes out to be one of our two sentinel hash values. If this 1098 * actually happens, we set the hashval to be a value known to be a 1099 * non-sentinel value. 1100 */ 1101 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1102 hashval = DTRACE_DYNHASH_VALID; 1103 1104 /* 1105 * Yes, it's painful to do a divide here. If the cycle count becomes 1106 * important here, tricks can be pulled to reduce it. (However, it's 1107 * critical that hash collisions be kept to an absolute minimum; 1108 * they're much more painful than a divide.) It's better to have a 1109 * solution that generates few collisions and still keeps things 1110 * relatively simple. 1111 */ 1112 bucket = hashval % dstate->dtds_hashsize; 1113 1114 if (op == DTRACE_DYNVAR_DEALLOC) { 1115 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1116 1117 for (;;) { 1118 while ((lock = *lockp) & 1) 1119 continue; 1120 1121 if (dtrace_casptr((void *)lockp, 1122 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1123 break; 1124 } 1125 1126 dtrace_membar_producer(); 1127 } 1128 1129 top: 1130 prev = NULL; 1131 lock = hash[bucket].dtdh_lock; 1132 1133 dtrace_membar_consumer(); 1134 1135 start = hash[bucket].dtdh_chain; 1136 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1137 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1138 op != DTRACE_DYNVAR_DEALLOC)); 1139 1140 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1141 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1142 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1143 1144 if (dvar->dtdv_hashval != hashval) { 1145 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1146 /* 1147 * We've reached the sink, and therefore the 1148 * end of the hash chain; we can kick out of 1149 * the loop knowing that we have seen a valid 1150 * snapshot of state. 1151 */ 1152 ASSERT(dvar->dtdv_next == NULL); 1153 ASSERT(dvar == &dtrace_dynhash_sink); 1154 break; 1155 } 1156 1157 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1158 /* 1159 * We've gone off the rails: somewhere along 1160 * the line, one of the members of this hash 1161 * chain was deleted. Note that we could also 1162 * detect this by simply letting this loop run 1163 * to completion, as we would eventually hit 1164 * the end of the dirty list. However, we 1165 * want to avoid running the length of the 1166 * dirty list unnecessarily (it might be quite 1167 * long), so we catch this as early as 1168 * possible by detecting the hash marker. In 1169 * this case, we simply set dvar to NULL and 1170 * break; the conditional after the loop will 1171 * send us back to top. 1172 */ 1173 dvar = NULL; 1174 break; 1175 } 1176 1177 goto next; 1178 } 1179 1180 if (dtuple->dtt_nkeys != nkeys) 1181 goto next; 1182 1183 for (i = 0; i < nkeys; i++, dkey++) { 1184 if (dkey->dttk_size != key[i].dttk_size) 1185 goto next; /* size or type mismatch */ 1186 1187 if (dkey->dttk_size != 0) { 1188 if (dtrace_bcmp( 1189 (void *)(uintptr_t)key[i].dttk_value, 1190 (void *)(uintptr_t)dkey->dttk_value, 1191 dkey->dttk_size)) 1192 goto next; 1193 } else { 1194 if (dkey->dttk_value != key[i].dttk_value) 1195 goto next; 1196 } 1197 } 1198 1199 if (op != DTRACE_DYNVAR_DEALLOC) 1200 return (dvar); 1201 1202 ASSERT(dvar->dtdv_next == NULL || 1203 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1204 1205 if (prev != NULL) { 1206 ASSERT(hash[bucket].dtdh_chain != dvar); 1207 ASSERT(start != dvar); 1208 ASSERT(prev->dtdv_next == dvar); 1209 prev->dtdv_next = dvar->dtdv_next; 1210 } else { 1211 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1212 start, dvar->dtdv_next) != start) { 1213 /* 1214 * We have failed to atomically swing the 1215 * hash table head pointer, presumably because 1216 * of a conflicting allocation on another CPU. 1217 * We need to reread the hash chain and try 1218 * again. 1219 */ 1220 goto top; 1221 } 1222 } 1223 1224 dtrace_membar_producer(); 1225 1226 /* 1227 * Now set the hash value to indicate that it's free. 1228 */ 1229 ASSERT(hash[bucket].dtdh_chain != dvar); 1230 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1231 1232 dtrace_membar_producer(); 1233 1234 /* 1235 * Set the next pointer to point at the dirty list, and 1236 * atomically swing the dirty pointer to the newly freed dvar. 1237 */ 1238 do { 1239 next = dcpu->dtdsc_dirty; 1240 dvar->dtdv_next = next; 1241 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1242 1243 /* 1244 * Finally, unlock this hash bucket. 1245 */ 1246 ASSERT(hash[bucket].dtdh_lock == lock); 1247 ASSERT(lock & 1); 1248 hash[bucket].dtdh_lock++; 1249 1250 return (NULL); 1251 next: 1252 prev = dvar; 1253 continue; 1254 } 1255 1256 if (dvar == NULL) { 1257 /* 1258 * If dvar is NULL, it is because we went off the rails: 1259 * one of the elements that we traversed in the hash chain 1260 * was deleted while we were traversing it. In this case, 1261 * we assert that we aren't doing a dealloc (deallocs lock 1262 * the hash bucket to prevent themselves from racing with 1263 * one another), and retry the hash chain traversal. 1264 */ 1265 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1266 goto top; 1267 } 1268 1269 if (op != DTRACE_DYNVAR_ALLOC) { 1270 /* 1271 * If we are not to allocate a new variable, we want to 1272 * return NULL now. Before we return, check that the value 1273 * of the lock word hasn't changed. If it has, we may have 1274 * seen an inconsistent snapshot. 1275 */ 1276 if (op == DTRACE_DYNVAR_NOALLOC) { 1277 if (hash[bucket].dtdh_lock != lock) 1278 goto top; 1279 } else { 1280 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1281 ASSERT(hash[bucket].dtdh_lock == lock); 1282 ASSERT(lock & 1); 1283 hash[bucket].dtdh_lock++; 1284 } 1285 1286 return (NULL); 1287 } 1288 1289 /* 1290 * We need to allocate a new dynamic variable. The size we need is the 1291 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1292 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1293 * the size of any referred-to data (dsize). We then round the final 1294 * size up to the chunksize for allocation. 1295 */ 1296 for (ksize = 0, i = 0; i < nkeys; i++) 1297 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1298 1299 /* 1300 * This should be pretty much impossible, but could happen if, say, 1301 * strange DIF specified the tuple. Ideally, this should be an 1302 * assertion and not an error condition -- but that requires that the 1303 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1304 * bullet-proof. (That is, it must not be able to be fooled by 1305 * malicious DIF.) Given the lack of backwards branches in DIF, 1306 * solving this would presumably not amount to solving the Halting 1307 * Problem -- but it still seems awfully hard. 1308 */ 1309 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1310 ksize + dsize > chunksize) { 1311 dcpu->dtdsc_drops++; 1312 return (NULL); 1313 } 1314 1315 nstate = DTRACE_DSTATE_EMPTY; 1316 1317 do { 1318 retry: 1319 free = dcpu->dtdsc_free; 1320 1321 if (free == NULL) { 1322 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1323 void *rval; 1324 1325 if (clean == NULL) { 1326 /* 1327 * We're out of dynamic variable space on 1328 * this CPU. Unless we have tried all CPUs, 1329 * we'll try to allocate from a different 1330 * CPU. 1331 */ 1332 switch (dstate->dtds_state) { 1333 case DTRACE_DSTATE_CLEAN: { 1334 void *sp = &dstate->dtds_state; 1335 1336 if (++cpu >= NCPU) 1337 cpu = 0; 1338 1339 if (dcpu->dtdsc_dirty != NULL && 1340 nstate == DTRACE_DSTATE_EMPTY) 1341 nstate = DTRACE_DSTATE_DIRTY; 1342 1343 if (dcpu->dtdsc_rinsing != NULL) 1344 nstate = DTRACE_DSTATE_RINSING; 1345 1346 dcpu = &dstate->dtds_percpu[cpu]; 1347 1348 if (cpu != me) 1349 goto retry; 1350 1351 (void) dtrace_cas32(sp, 1352 DTRACE_DSTATE_CLEAN, nstate); 1353 1354 /* 1355 * To increment the correct bean 1356 * counter, take another lap. 1357 */ 1358 goto retry; 1359 } 1360 1361 case DTRACE_DSTATE_DIRTY: 1362 dcpu->dtdsc_dirty_drops++; 1363 break; 1364 1365 case DTRACE_DSTATE_RINSING: 1366 dcpu->dtdsc_rinsing_drops++; 1367 break; 1368 1369 case DTRACE_DSTATE_EMPTY: 1370 dcpu->dtdsc_drops++; 1371 break; 1372 } 1373 1374 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1375 return (NULL); 1376 } 1377 1378 /* 1379 * The clean list appears to be non-empty. We want to 1380 * move the clean list to the free list; we start by 1381 * moving the clean pointer aside. 1382 */ 1383 if (dtrace_casptr(&dcpu->dtdsc_clean, 1384 clean, NULL) != clean) { 1385 /* 1386 * We are in one of two situations: 1387 * 1388 * (a) The clean list was switched to the 1389 * free list by another CPU. 1390 * 1391 * (b) The clean list was added to by the 1392 * cleansing cyclic. 1393 * 1394 * In either of these situations, we can 1395 * just reattempt the free list allocation. 1396 */ 1397 goto retry; 1398 } 1399 1400 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1401 1402 /* 1403 * Now we'll move the clean list to the free list. 1404 * It's impossible for this to fail: the only way 1405 * the free list can be updated is through this 1406 * code path, and only one CPU can own the clean list. 1407 * Thus, it would only be possible for this to fail if 1408 * this code were racing with dtrace_dynvar_clean(). 1409 * (That is, if dtrace_dynvar_clean() updated the clean 1410 * list, and we ended up racing to update the free 1411 * list.) This race is prevented by the dtrace_sync() 1412 * in dtrace_dynvar_clean() -- which flushes the 1413 * owners of the clean lists out before resetting 1414 * the clean lists. 1415 */ 1416 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1417 ASSERT(rval == NULL); 1418 goto retry; 1419 } 1420 1421 dvar = free; 1422 new_free = dvar->dtdv_next; 1423 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1424 1425 /* 1426 * We have now allocated a new chunk. We copy the tuple keys into the 1427 * tuple array and copy any referenced key data into the data space 1428 * following the tuple array. As we do this, we relocate dttk_value 1429 * in the final tuple to point to the key data address in the chunk. 1430 */ 1431 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1432 dvar->dtdv_data = (void *)(kdata + ksize); 1433 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1434 1435 for (i = 0; i < nkeys; i++) { 1436 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1437 size_t kesize = key[i].dttk_size; 1438 1439 if (kesize != 0) { 1440 dtrace_bcopy( 1441 (const void *)(uintptr_t)key[i].dttk_value, 1442 (void *)kdata, kesize); 1443 dkey->dttk_value = kdata; 1444 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1445 } else { 1446 dkey->dttk_value = key[i].dttk_value; 1447 } 1448 1449 dkey->dttk_size = kesize; 1450 } 1451 1452 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1453 dvar->dtdv_hashval = hashval; 1454 dvar->dtdv_next = start; 1455 1456 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1457 return (dvar); 1458 1459 /* 1460 * The cas has failed. Either another CPU is adding an element to 1461 * this hash chain, or another CPU is deleting an element from this 1462 * hash chain. The simplest way to deal with both of these cases 1463 * (though not necessarily the most efficient) is to free our 1464 * allocated block and tail-call ourselves. Note that the free is 1465 * to the dirty list and _not_ to the free list. This is to prevent 1466 * races with allocators, above. 1467 */ 1468 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1469 1470 dtrace_membar_producer(); 1471 1472 do { 1473 free = dcpu->dtdsc_dirty; 1474 dvar->dtdv_next = free; 1475 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1476 1477 return (dtrace_dynvar(dstate, nkeys, key, dsize, op)); 1478 } 1479 1480 /*ARGSUSED*/ 1481 static void 1482 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1483 { 1484 if (nval < *oval) 1485 *oval = nval; 1486 } 1487 1488 /*ARGSUSED*/ 1489 static void 1490 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1491 { 1492 if (nval > *oval) 1493 *oval = nval; 1494 } 1495 1496 static void 1497 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1498 { 1499 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1500 int64_t val = (int64_t)nval; 1501 1502 if (val < 0) { 1503 for (i = 0; i < zero; i++) { 1504 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1505 quanta[i] += incr; 1506 return; 1507 } 1508 } 1509 } else { 1510 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1511 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1512 quanta[i - 1] += incr; 1513 return; 1514 } 1515 } 1516 1517 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1518 return; 1519 } 1520 1521 ASSERT(0); 1522 } 1523 1524 static void 1525 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1526 { 1527 uint64_t arg = *lquanta++; 1528 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1529 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1530 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1531 int32_t val = (int32_t)nval, level; 1532 1533 ASSERT(step != 0); 1534 ASSERT(levels != 0); 1535 1536 if (val < base) { 1537 /* 1538 * This is an underflow. 1539 */ 1540 lquanta[0] += incr; 1541 return; 1542 } 1543 1544 level = (val - base) / step; 1545 1546 if (level < levels) { 1547 lquanta[level + 1] += incr; 1548 return; 1549 } 1550 1551 /* 1552 * This is an overflow. 1553 */ 1554 lquanta[levels + 1] += incr; 1555 } 1556 1557 /*ARGSUSED*/ 1558 static void 1559 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1560 { 1561 data[0]++; 1562 data[1] += nval; 1563 } 1564 1565 /*ARGSUSED*/ 1566 static void 1567 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1568 { 1569 *oval = *oval + 1; 1570 } 1571 1572 /*ARGSUSED*/ 1573 static void 1574 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1575 { 1576 *oval += nval; 1577 } 1578 1579 /* 1580 * Aggregate given the tuple in the principal data buffer, and the aggregating 1581 * action denoted by the specified dtrace_aggregation_t. The aggregation 1582 * buffer is specified as the buf parameter. This routine does not return 1583 * failure; if there is no space in the aggregation buffer, the data will be 1584 * dropped, and a corresponding counter incremented. 1585 */ 1586 static void 1587 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1588 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1589 { 1590 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1591 uint32_t i, ndx, size, fsize; 1592 uint32_t align = sizeof (uint64_t) - 1; 1593 dtrace_aggbuffer_t *agb; 1594 dtrace_aggkey_t *key; 1595 uint32_t hashval = 0, limit, isstr; 1596 caddr_t tomax, data, kdata; 1597 dtrace_actkind_t action; 1598 dtrace_action_t *act; 1599 uintptr_t offs; 1600 1601 if (buf == NULL) 1602 return; 1603 1604 if (!agg->dtag_hasarg) { 1605 /* 1606 * Currently, only quantize() and lquantize() take additional 1607 * arguments, and they have the same semantics: an increment 1608 * value that defaults to 1 when not present. If additional 1609 * aggregating actions take arguments, the setting of the 1610 * default argument value will presumably have to become more 1611 * sophisticated... 1612 */ 1613 arg = 1; 1614 } 1615 1616 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1617 size = rec->dtrd_offset - agg->dtag_base; 1618 fsize = size + rec->dtrd_size; 1619 1620 ASSERT(dbuf->dtb_tomax != NULL); 1621 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1622 1623 if ((tomax = buf->dtb_tomax) == NULL) { 1624 dtrace_buffer_drop(buf); 1625 return; 1626 } 1627 1628 /* 1629 * The metastructure is always at the bottom of the buffer. 1630 */ 1631 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1632 sizeof (dtrace_aggbuffer_t)); 1633 1634 if (buf->dtb_offset == 0) { 1635 /* 1636 * We just kludge up approximately 1/8th of the size to be 1637 * buckets. If this guess ends up being routinely 1638 * off-the-mark, we may need to dynamically readjust this 1639 * based on past performance. 1640 */ 1641 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1642 1643 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1644 (uintptr_t)tomax || hashsize == 0) { 1645 /* 1646 * We've been given a ludicrously small buffer; 1647 * increment our drop count and leave. 1648 */ 1649 dtrace_buffer_drop(buf); 1650 return; 1651 } 1652 1653 /* 1654 * And now, a pathetic attempt to try to get a an odd (or 1655 * perchance, a prime) hash size for better hash distribution. 1656 */ 1657 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1658 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1659 1660 agb->dtagb_hashsize = hashsize; 1661 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1662 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1663 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1664 1665 for (i = 0; i < agb->dtagb_hashsize; i++) 1666 agb->dtagb_hash[i] = NULL; 1667 } 1668 1669 ASSERT(agg->dtag_first != NULL); 1670 ASSERT(agg->dtag_first->dta_intuple); 1671 1672 /* 1673 * Calculate the hash value based on the key. Note that we _don't_ 1674 * include the aggid in the hashing (but we will store it as part of 1675 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1676 * algorithm: a simple, quick algorithm that has no known funnels, and 1677 * gets good distribution in practice. The efficacy of the hashing 1678 * algorithm (and a comparison with other algorithms) may be found by 1679 * running the ::dtrace_aggstat MDB dcmd. 1680 */ 1681 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1682 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1683 limit = i + act->dta_rec.dtrd_size; 1684 ASSERT(limit <= size); 1685 isstr = DTRACEACT_ISSTRING(act); 1686 1687 for (; i < limit; i++) { 1688 hashval += data[i]; 1689 hashval += (hashval << 10); 1690 hashval ^= (hashval >> 6); 1691 1692 if (isstr && data[i] == '\0') 1693 break; 1694 } 1695 } 1696 1697 hashval += (hashval << 3); 1698 hashval ^= (hashval >> 11); 1699 hashval += (hashval << 15); 1700 1701 /* 1702 * Yes, the divide here is expensive -- but it's generally the least 1703 * of the performance issues given the amount of data that we iterate 1704 * over to compute hash values, compare data, etc. 1705 */ 1706 ndx = hashval % agb->dtagb_hashsize; 1707 1708 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1709 ASSERT((caddr_t)key >= tomax); 1710 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1711 1712 if (hashval != key->dtak_hashval || key->dtak_size != size) 1713 continue; 1714 1715 kdata = key->dtak_data; 1716 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1717 1718 for (act = agg->dtag_first; act->dta_intuple; 1719 act = act->dta_next) { 1720 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1721 limit = i + act->dta_rec.dtrd_size; 1722 ASSERT(limit <= size); 1723 isstr = DTRACEACT_ISSTRING(act); 1724 1725 for (; i < limit; i++) { 1726 if (kdata[i] != data[i]) 1727 goto next; 1728 1729 if (isstr && data[i] == '\0') 1730 break; 1731 } 1732 } 1733 1734 if (action != key->dtak_action) { 1735 /* 1736 * We are aggregating on the same value in the same 1737 * aggregation with two different aggregating actions. 1738 * (This should have been picked up in the compiler, 1739 * so we may be dealing with errant or devious DIF.) 1740 * This is an error condition; we indicate as much, 1741 * and return. 1742 */ 1743 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 1744 return; 1745 } 1746 1747 /* 1748 * This is a hit: we need to apply the aggregator to 1749 * the value at this key. 1750 */ 1751 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 1752 return; 1753 next: 1754 continue; 1755 } 1756 1757 /* 1758 * We didn't find it. We need to allocate some zero-filled space, 1759 * link it into the hash table appropriately, and apply the aggregator 1760 * to the (zero-filled) value. 1761 */ 1762 offs = buf->dtb_offset; 1763 while (offs & (align - 1)) 1764 offs += sizeof (uint32_t); 1765 1766 /* 1767 * If we don't have enough room to both allocate a new key _and_ 1768 * its associated data, increment the drop count and return. 1769 */ 1770 if ((uintptr_t)tomax + offs + fsize > 1771 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 1772 dtrace_buffer_drop(buf); 1773 return; 1774 } 1775 1776 /*CONSTCOND*/ 1777 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 1778 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 1779 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 1780 1781 key->dtak_data = kdata = tomax + offs; 1782 buf->dtb_offset = offs + fsize; 1783 1784 /* 1785 * Now copy the data across. 1786 */ 1787 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 1788 1789 for (i = sizeof (dtrace_aggid_t); i < size; i++) 1790 kdata[i] = data[i]; 1791 1792 /* 1793 * Because strings are not zeroed out by default, we need to iterate 1794 * looking for actions that store strings, and we need to explicitly 1795 * pad these strings out with zeroes. 1796 */ 1797 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1798 int nul; 1799 1800 if (!DTRACEACT_ISSTRING(act)) 1801 continue; 1802 1803 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1804 limit = i + act->dta_rec.dtrd_size; 1805 ASSERT(limit <= size); 1806 1807 for (nul = 0; i < limit; i++) { 1808 if (nul) { 1809 kdata[i] = '\0'; 1810 continue; 1811 } 1812 1813 if (data[i] != '\0') 1814 continue; 1815 1816 nul = 1; 1817 } 1818 } 1819 1820 for (i = size; i < fsize; i++) 1821 kdata[i] = 0; 1822 1823 key->dtak_hashval = hashval; 1824 key->dtak_size = size; 1825 key->dtak_action = action; 1826 key->dtak_next = agb->dtagb_hash[ndx]; 1827 agb->dtagb_hash[ndx] = key; 1828 1829 /* 1830 * Finally, apply the aggregator. 1831 */ 1832 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 1833 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 1834 } 1835 1836 /* 1837 * Given consumer state, this routine finds a speculation in the INACTIVE 1838 * state and transitions it into the ACTIVE state. If there is no speculation 1839 * in the INACTIVE state, 0 is returned. In this case, no error counter is 1840 * incremented -- it is up to the caller to take appropriate action. 1841 */ 1842 static int 1843 dtrace_speculation(dtrace_state_t *state) 1844 { 1845 int i = 0; 1846 dtrace_speculation_state_t current; 1847 uint32_t *stat = &state->dts_speculations_unavail, count; 1848 1849 while (i < state->dts_nspeculations) { 1850 dtrace_speculation_t *spec = &state->dts_speculations[i]; 1851 1852 current = spec->dtsp_state; 1853 1854 if (current != DTRACESPEC_INACTIVE) { 1855 if (current == DTRACESPEC_COMMITTINGMANY || 1856 current == DTRACESPEC_COMMITTING || 1857 current == DTRACESPEC_DISCARDING) 1858 stat = &state->dts_speculations_busy; 1859 i++; 1860 continue; 1861 } 1862 1863 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1864 current, DTRACESPEC_ACTIVE) == current) 1865 return (i + 1); 1866 } 1867 1868 /* 1869 * We couldn't find a speculation. If we found as much as a single 1870 * busy speculation buffer, we'll attribute this failure as "busy" 1871 * instead of "unavail". 1872 */ 1873 do { 1874 count = *stat; 1875 } while (dtrace_cas32(stat, count, count + 1) != count); 1876 1877 return (0); 1878 } 1879 1880 /* 1881 * This routine commits an active speculation. If the specified speculation 1882 * is not in a valid state to perform a commit(), this routine will silently do 1883 * nothing. The state of the specified speculation is transitioned according 1884 * to the state transition diagram outlined in <sys/dtrace_impl.h> 1885 */ 1886 static void 1887 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 1888 dtrace_specid_t which) 1889 { 1890 dtrace_speculation_t *spec; 1891 dtrace_buffer_t *src, *dest; 1892 uintptr_t daddr, saddr, dlimit; 1893 dtrace_speculation_state_t current, new; 1894 intptr_t offs; 1895 1896 if (which == 0) 1897 return; 1898 1899 if (which > state->dts_nspeculations) { 1900 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 1901 return; 1902 } 1903 1904 spec = &state->dts_speculations[which - 1]; 1905 src = &spec->dtsp_buffer[cpu]; 1906 dest = &state->dts_buffer[cpu]; 1907 1908 do { 1909 current = spec->dtsp_state; 1910 1911 if (current == DTRACESPEC_COMMITTINGMANY) 1912 break; 1913 1914 switch (current) { 1915 case DTRACESPEC_INACTIVE: 1916 case DTRACESPEC_DISCARDING: 1917 return; 1918 1919 case DTRACESPEC_COMMITTING: 1920 /* 1921 * This is only possible if we are (a) commit()'ing 1922 * without having done a prior speculate() on this CPU 1923 * and (b) racing with another commit() on a different 1924 * CPU. There's nothing to do -- we just assert that 1925 * our offset is 0. 1926 */ 1927 ASSERT(src->dtb_offset == 0); 1928 return; 1929 1930 case DTRACESPEC_ACTIVE: 1931 new = DTRACESPEC_COMMITTING; 1932 break; 1933 1934 case DTRACESPEC_ACTIVEONE: 1935 /* 1936 * This speculation is active on one CPU. If our 1937 * buffer offset is non-zero, we know that the one CPU 1938 * must be us. Otherwise, we are committing on a 1939 * different CPU from the speculate(), and we must 1940 * rely on being asynchronously cleaned. 1941 */ 1942 if (src->dtb_offset != 0) { 1943 new = DTRACESPEC_COMMITTING; 1944 break; 1945 } 1946 /*FALLTHROUGH*/ 1947 1948 case DTRACESPEC_ACTIVEMANY: 1949 new = DTRACESPEC_COMMITTINGMANY; 1950 break; 1951 1952 default: 1953 ASSERT(0); 1954 } 1955 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 1956 current, new) != current); 1957 1958 /* 1959 * We have set the state to indicate that we are committing this 1960 * speculation. Now reserve the necessary space in the destination 1961 * buffer. 1962 */ 1963 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 1964 sizeof (uint64_t), state, NULL)) < 0) { 1965 dtrace_buffer_drop(dest); 1966 goto out; 1967 } 1968 1969 /* 1970 * We have the space; copy the buffer across. (Note that this is a 1971 * highly subobtimal bcopy(); in the unlikely event that this becomes 1972 * a serious performance issue, a high-performance DTrace-specific 1973 * bcopy() should obviously be invented.) 1974 */ 1975 daddr = (uintptr_t)dest->dtb_tomax + offs; 1976 dlimit = daddr + src->dtb_offset; 1977 saddr = (uintptr_t)src->dtb_tomax; 1978 1979 /* 1980 * First, the aligned portion. 1981 */ 1982 while (dlimit - daddr >= sizeof (uint64_t)) { 1983 *((uint64_t *)daddr) = *((uint64_t *)saddr); 1984 1985 daddr += sizeof (uint64_t); 1986 saddr += sizeof (uint64_t); 1987 } 1988 1989 /* 1990 * Now any left-over bit... 1991 */ 1992 while (dlimit - daddr) 1993 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 1994 1995 /* 1996 * Finally, commit the reserved space in the destination buffer. 1997 */ 1998 dest->dtb_offset = offs + src->dtb_offset; 1999 2000 out: 2001 /* 2002 * If we're lucky enough to be the only active CPU on this speculation 2003 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2004 */ 2005 if (current == DTRACESPEC_ACTIVE || 2006 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2007 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2008 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2009 2010 ASSERT(rval == DTRACESPEC_COMMITTING); 2011 } 2012 2013 src->dtb_offset = 0; 2014 src->dtb_xamot_drops += src->dtb_drops; 2015 src->dtb_drops = 0; 2016 } 2017 2018 /* 2019 * This routine discards an active speculation. If the specified speculation 2020 * is not in a valid state to perform a discard(), this routine will silently 2021 * do nothing. The state of the specified speculation is transitioned 2022 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2023 */ 2024 static void 2025 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2026 dtrace_specid_t which) 2027 { 2028 dtrace_speculation_t *spec; 2029 dtrace_speculation_state_t current, new; 2030 dtrace_buffer_t *buf; 2031 2032 if (which == 0) 2033 return; 2034 2035 if (which > state->dts_nspeculations) { 2036 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2037 return; 2038 } 2039 2040 spec = &state->dts_speculations[which - 1]; 2041 buf = &spec->dtsp_buffer[cpu]; 2042 2043 do { 2044 current = spec->dtsp_state; 2045 2046 switch (current) { 2047 case DTRACESPEC_INACTIVE: 2048 case DTRACESPEC_COMMITTINGMANY: 2049 case DTRACESPEC_COMMITTING: 2050 case DTRACESPEC_DISCARDING: 2051 return; 2052 2053 case DTRACESPEC_ACTIVE: 2054 case DTRACESPEC_ACTIVEMANY: 2055 new = DTRACESPEC_DISCARDING; 2056 break; 2057 2058 case DTRACESPEC_ACTIVEONE: 2059 if (buf->dtb_offset != 0) { 2060 new = DTRACESPEC_INACTIVE; 2061 } else { 2062 new = DTRACESPEC_DISCARDING; 2063 } 2064 break; 2065 2066 default: 2067 ASSERT(0); 2068 } 2069 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2070 current, new) != current); 2071 2072 buf->dtb_offset = 0; 2073 buf->dtb_drops = 0; 2074 } 2075 2076 /* 2077 * Note: not called from probe context. This function is called 2078 * asynchronously from cross call context to clean any speculations that are 2079 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2080 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2081 * speculation. 2082 */ 2083 static void 2084 dtrace_speculation_clean_here(dtrace_state_t *state) 2085 { 2086 dtrace_icookie_t cookie; 2087 processorid_t cpu = CPU->cpu_id; 2088 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2089 dtrace_specid_t i; 2090 2091 cookie = dtrace_interrupt_disable(); 2092 2093 if (dest->dtb_tomax == NULL) { 2094 dtrace_interrupt_enable(cookie); 2095 return; 2096 } 2097 2098 for (i = 0; i < state->dts_nspeculations; i++) { 2099 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2100 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2101 2102 if (src->dtb_tomax == NULL) 2103 continue; 2104 2105 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2106 src->dtb_offset = 0; 2107 continue; 2108 } 2109 2110 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2111 continue; 2112 2113 if (src->dtb_offset == 0) 2114 continue; 2115 2116 dtrace_speculation_commit(state, cpu, i + 1); 2117 } 2118 2119 dtrace_interrupt_enable(cookie); 2120 } 2121 2122 /* 2123 * Note: not called from probe context. This function is called 2124 * asynchronously (and at a regular interval) to clean any speculations that 2125 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2126 * is work to be done, it cross calls all CPUs to perform that work; 2127 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2128 * INACTIVE state until they have been cleaned by all CPUs. 2129 */ 2130 static void 2131 dtrace_speculation_clean(dtrace_state_t *state) 2132 { 2133 int work = 0, rv; 2134 dtrace_specid_t i; 2135 2136 for (i = 0; i < state->dts_nspeculations; i++) { 2137 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2138 2139 ASSERT(!spec->dtsp_cleaning); 2140 2141 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2142 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2143 continue; 2144 2145 work++; 2146 spec->dtsp_cleaning = 1; 2147 } 2148 2149 if (!work) 2150 return; 2151 2152 dtrace_xcall(DTRACE_CPUALL, 2153 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2154 2155 /* 2156 * We now know that all CPUs have committed or discarded their 2157 * speculation buffers, as appropriate. We can now set the state 2158 * to inactive. 2159 */ 2160 for (i = 0; i < state->dts_nspeculations; i++) { 2161 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2162 dtrace_speculation_state_t current, new; 2163 2164 if (!spec->dtsp_cleaning) 2165 continue; 2166 2167 current = spec->dtsp_state; 2168 ASSERT(current == DTRACESPEC_DISCARDING || 2169 current == DTRACESPEC_COMMITTINGMANY); 2170 2171 new = DTRACESPEC_INACTIVE; 2172 2173 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2174 ASSERT(rv == current); 2175 spec->dtsp_cleaning = 0; 2176 } 2177 } 2178 2179 /* 2180 * Called as part of a speculate() to get the speculative buffer associated 2181 * with a given speculation. Returns NULL if the specified speculation is not 2182 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2183 * the active CPU is not the specified CPU -- the speculation will be 2184 * atomically transitioned into the ACTIVEMANY state. 2185 */ 2186 static dtrace_buffer_t * 2187 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2188 dtrace_specid_t which) 2189 { 2190 dtrace_speculation_t *spec; 2191 dtrace_speculation_state_t current, new; 2192 dtrace_buffer_t *buf; 2193 2194 if (which == 0) 2195 return (NULL); 2196 2197 if (which > state->dts_nspeculations) { 2198 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2199 return (NULL); 2200 } 2201 2202 spec = &state->dts_speculations[which - 1]; 2203 buf = &spec->dtsp_buffer[cpuid]; 2204 2205 do { 2206 current = spec->dtsp_state; 2207 2208 switch (current) { 2209 case DTRACESPEC_INACTIVE: 2210 case DTRACESPEC_COMMITTINGMANY: 2211 case DTRACESPEC_DISCARDING: 2212 return (NULL); 2213 2214 case DTRACESPEC_COMMITTING: 2215 ASSERT(buf->dtb_offset == 0); 2216 return (NULL); 2217 2218 case DTRACESPEC_ACTIVEONE: 2219 /* 2220 * This speculation is currently active on one CPU. 2221 * Check the offset in the buffer; if it's non-zero, 2222 * that CPU must be us (and we leave the state alone). 2223 * If it's zero, assume that we're starting on a new 2224 * CPU -- and change the state to indicate that the 2225 * speculation is active on more than one CPU. 2226 */ 2227 if (buf->dtb_offset != 0) 2228 return (buf); 2229 2230 new = DTRACESPEC_ACTIVEMANY; 2231 break; 2232 2233 case DTRACESPEC_ACTIVEMANY: 2234 return (buf); 2235 2236 case DTRACESPEC_ACTIVE: 2237 new = DTRACESPEC_ACTIVEONE; 2238 break; 2239 2240 default: 2241 ASSERT(0); 2242 } 2243 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2244 current, new) != current); 2245 2246 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2247 return (buf); 2248 } 2249 2250 /* 2251 * This function implements the DIF emulator's variable lookups. The emulator 2252 * passes a reserved variable identifier and optional built-in array index. 2253 */ 2254 static uint64_t 2255 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2256 uint64_t ndx) 2257 { 2258 /* 2259 * If we're accessing one of the uncached arguments, we'll turn this 2260 * into a reference in the args array. 2261 */ 2262 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2263 ndx = v - DIF_VAR_ARG0; 2264 v = DIF_VAR_ARGS; 2265 } 2266 2267 switch (v) { 2268 case DIF_VAR_ARGS: 2269 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2270 if (ndx >= sizeof (mstate->dtms_arg) / 2271 sizeof (mstate->dtms_arg[0])) { 2272 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2273 dtrace_provider_t *pv; 2274 uint64_t val; 2275 2276 pv = mstate->dtms_probe->dtpr_provider; 2277 if (pv->dtpv_pops.dtps_getargval != NULL) 2278 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2279 mstate->dtms_probe->dtpr_id, 2280 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2281 else 2282 val = dtrace_getarg(ndx, aframes); 2283 2284 /* 2285 * This is regrettably required to keep the compiler 2286 * from tail-optimizing the call to dtrace_getarg(). 2287 * The condition always evaluates to true, but the 2288 * compiler has no way of figuring that out a priori. 2289 * (None of this would be necessary if the compiler 2290 * could be relied upon to _always_ tail-optimize 2291 * the call to dtrace_getarg() -- but it can't.) 2292 */ 2293 if (mstate->dtms_probe != NULL) 2294 return (val); 2295 2296 ASSERT(0); 2297 } 2298 2299 return (mstate->dtms_arg[ndx]); 2300 2301 case DIF_VAR_UREGS: { 2302 klwp_t *lwp; 2303 2304 if (!dtrace_priv_proc(state)) 2305 return (0); 2306 2307 if ((lwp = curthread->t_lwp) == NULL) { 2308 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2309 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2310 return (0); 2311 } 2312 2313 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2314 } 2315 2316 case DIF_VAR_CURTHREAD: 2317 if (!dtrace_priv_kernel(state)) 2318 return (0); 2319 return ((uint64_t)(uintptr_t)curthread); 2320 2321 case DIF_VAR_TIMESTAMP: 2322 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2323 mstate->dtms_timestamp = dtrace_gethrtime(); 2324 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2325 } 2326 return (mstate->dtms_timestamp); 2327 2328 case DIF_VAR_VTIMESTAMP: 2329 ASSERT(dtrace_vtime_references != 0); 2330 return (curthread->t_dtrace_vtime); 2331 2332 case DIF_VAR_WALLTIMESTAMP: 2333 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2334 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2335 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2336 } 2337 return (mstate->dtms_walltimestamp); 2338 2339 case DIF_VAR_IPL: 2340 if (!dtrace_priv_kernel(state)) 2341 return (0); 2342 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2343 mstate->dtms_ipl = dtrace_getipl(); 2344 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2345 } 2346 return (mstate->dtms_ipl); 2347 2348 case DIF_VAR_EPID: 2349 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2350 return (mstate->dtms_epid); 2351 2352 case DIF_VAR_ID: 2353 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2354 return (mstate->dtms_probe->dtpr_id); 2355 2356 case DIF_VAR_STACKDEPTH: 2357 if (!dtrace_priv_kernel(state)) 2358 return (0); 2359 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2360 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2361 2362 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2363 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2364 } 2365 return (mstate->dtms_stackdepth); 2366 2367 case DIF_VAR_USTACKDEPTH: 2368 if (!dtrace_priv_proc(state)) 2369 return (0); 2370 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2371 /* 2372 * See comment in DIF_VAR_PID. 2373 */ 2374 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2375 CPU_ON_INTR(CPU)) { 2376 mstate->dtms_ustackdepth = 0; 2377 } else { 2378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2379 mstate->dtms_ustackdepth = 2380 dtrace_getustackdepth(); 2381 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2382 } 2383 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2384 } 2385 return (mstate->dtms_ustackdepth); 2386 2387 case DIF_VAR_CALLER: 2388 if (!dtrace_priv_kernel(state)) 2389 return (0); 2390 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2391 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2392 2393 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2394 /* 2395 * If this is an unanchored probe, we are 2396 * required to go through the slow path: 2397 * dtrace_caller() only guarantees correct 2398 * results for anchored probes. 2399 */ 2400 pc_t caller[2]; 2401 2402 dtrace_getpcstack(caller, 2, aframes, 2403 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2404 mstate->dtms_caller = caller[1]; 2405 } else if ((mstate->dtms_caller = 2406 dtrace_caller(aframes)) == -1) { 2407 /* 2408 * We have failed to do this the quick way; 2409 * we must resort to the slower approach of 2410 * calling dtrace_getpcstack(). 2411 */ 2412 pc_t caller; 2413 2414 dtrace_getpcstack(&caller, 1, aframes, NULL); 2415 mstate->dtms_caller = caller; 2416 } 2417 2418 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2419 } 2420 return (mstate->dtms_caller); 2421 2422 case DIF_VAR_UCALLER: 2423 if (!dtrace_priv_proc(state)) 2424 return (0); 2425 2426 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2427 uint64_t ustack[3]; 2428 2429 /* 2430 * dtrace_getupcstack() fills in the first uint64_t 2431 * with the current PID. The second uint64_t will 2432 * be the program counter at user-level. The third 2433 * uint64_t will contain the caller, which is what 2434 * we're after. 2435 */ 2436 ustack[2] = NULL; 2437 dtrace_getupcstack(ustack, 3); 2438 mstate->dtms_ucaller = ustack[2]; 2439 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2440 } 2441 2442 return (mstate->dtms_ucaller); 2443 2444 case DIF_VAR_PROBEPROV: 2445 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2446 return ((uint64_t)(uintptr_t) 2447 mstate->dtms_probe->dtpr_provider->dtpv_name); 2448 2449 case DIF_VAR_PROBEMOD: 2450 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2451 return ((uint64_t)(uintptr_t) 2452 mstate->dtms_probe->dtpr_mod); 2453 2454 case DIF_VAR_PROBEFUNC: 2455 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2456 return ((uint64_t)(uintptr_t) 2457 mstate->dtms_probe->dtpr_func); 2458 2459 case DIF_VAR_PROBENAME: 2460 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2461 return ((uint64_t)(uintptr_t) 2462 mstate->dtms_probe->dtpr_name); 2463 2464 case DIF_VAR_PID: 2465 if (!dtrace_priv_proc(state)) 2466 return (0); 2467 2468 /* 2469 * Note that we are assuming that an unanchored probe is 2470 * always due to a high-level interrupt. (And we're assuming 2471 * that there is only a single high level interrupt.) 2472 */ 2473 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2474 return (pid0.pid_id); 2475 2476 /* 2477 * It is always safe to dereference one's own t_procp pointer: 2478 * it always points to a valid, allocated proc structure. 2479 * Further, it is always safe to dereference the p_pidp member 2480 * of one's own proc structure. (These are truisms becuase 2481 * threads and processes don't clean up their own state -- 2482 * they leave that task to whomever reaps them.) 2483 */ 2484 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2485 2486 case DIF_VAR_TID: 2487 /* 2488 * See comment in DIF_VAR_PID. 2489 */ 2490 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2491 return (0); 2492 2493 return ((uint64_t)curthread->t_tid); 2494 2495 case DIF_VAR_EXECNAME: 2496 if (!dtrace_priv_proc(state)) 2497 return (0); 2498 2499 /* 2500 * See comment in DIF_VAR_PID. 2501 */ 2502 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2503 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2504 2505 /* 2506 * It is always safe to dereference one's own t_procp pointer: 2507 * it always points to a valid, allocated proc structure. 2508 * (This is true because threads don't clean up their own 2509 * state -- they leave that task to whomever reaps them.) 2510 */ 2511 return ((uint64_t)(uintptr_t) 2512 curthread->t_procp->p_user.u_comm); 2513 2514 case DIF_VAR_ZONENAME: 2515 if (!dtrace_priv_proc(state)) 2516 return (0); 2517 2518 /* 2519 * See comment in DIF_VAR_PID. 2520 */ 2521 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2522 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2523 2524 /* 2525 * It is always safe to dereference one's own t_procp pointer: 2526 * it always points to a valid, allocated proc structure. 2527 * (This is true because threads don't clean up their own 2528 * state -- they leave that task to whomever reaps them.) 2529 */ 2530 return ((uint64_t)(uintptr_t) 2531 curthread->t_procp->p_zone->zone_name); 2532 2533 default: 2534 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2535 return (0); 2536 } 2537 } 2538 2539 /* 2540 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2541 * Notice that we don't bother validating the proper number of arguments or 2542 * their types in the tuple stack. This isn't needed because all argument 2543 * interpretation is safe because of our load safety -- the worst that can 2544 * happen is that a bogus program can obtain bogus results. 2545 */ 2546 static void 2547 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2548 dtrace_key_t *tupregs, int nargs, 2549 dtrace_mstate_t *mstate, dtrace_state_t *state) 2550 { 2551 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2552 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2553 2554 union { 2555 mutex_impl_t mi; 2556 uint64_t mx; 2557 } m; 2558 2559 union { 2560 krwlock_t ri; 2561 uintptr_t rw; 2562 } r; 2563 2564 switch (subr) { 2565 case DIF_SUBR_RAND: 2566 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2567 break; 2568 2569 case DIF_SUBR_MUTEX_OWNED: 2570 m.mx = dtrace_load64(tupregs[0].dttk_value); 2571 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2572 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2573 else 2574 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2575 break; 2576 2577 case DIF_SUBR_MUTEX_OWNER: 2578 m.mx = dtrace_load64(tupregs[0].dttk_value); 2579 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 2580 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 2581 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 2582 else 2583 regs[rd] = 0; 2584 break; 2585 2586 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 2587 m.mx = dtrace_load64(tupregs[0].dttk_value); 2588 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 2589 break; 2590 2591 case DIF_SUBR_MUTEX_TYPE_SPIN: 2592 m.mx = dtrace_load64(tupregs[0].dttk_value); 2593 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 2594 break; 2595 2596 case DIF_SUBR_RW_READ_HELD: { 2597 uintptr_t tmp; 2598 2599 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2600 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 2601 break; 2602 } 2603 2604 case DIF_SUBR_RW_WRITE_HELD: 2605 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2606 regs[rd] = _RW_WRITE_HELD(&r.ri); 2607 break; 2608 2609 case DIF_SUBR_RW_ISWRITER: 2610 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 2611 regs[rd] = _RW_ISWRITER(&r.ri); 2612 break; 2613 2614 case DIF_SUBR_BCOPY: { 2615 /* 2616 * We need to be sure that the destination is in the scratch 2617 * region -- no other region is allowed. 2618 */ 2619 uintptr_t src = tupregs[0].dttk_value; 2620 uintptr_t dest = tupregs[1].dttk_value; 2621 size_t size = tupregs[2].dttk_value; 2622 2623 if (!dtrace_inscratch(dest, size, mstate)) { 2624 *flags |= CPU_DTRACE_BADADDR; 2625 *illval = regs[rd]; 2626 break; 2627 } 2628 2629 dtrace_bcopy((void *)src, (void *)dest, size); 2630 break; 2631 } 2632 2633 case DIF_SUBR_ALLOCA: 2634 case DIF_SUBR_COPYIN: { 2635 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 2636 uint64_t size = 2637 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 2638 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 2639 2640 /* 2641 * This action doesn't require any credential checks since 2642 * probes will not activate in user contexts to which the 2643 * enabling user does not have permissions. 2644 */ 2645 if (mstate->dtms_scratch_ptr + scratch_size > 2646 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2647 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2648 regs[rd] = NULL; 2649 break; 2650 } 2651 2652 if (subr == DIF_SUBR_COPYIN) { 2653 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2654 dtrace_copyin(tupregs[0].dttk_value, dest, size); 2655 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2656 } 2657 2658 mstate->dtms_scratch_ptr += scratch_size; 2659 regs[rd] = dest; 2660 break; 2661 } 2662 2663 case DIF_SUBR_COPYINTO: { 2664 uint64_t size = tupregs[1].dttk_value; 2665 uintptr_t dest = tupregs[2].dttk_value; 2666 2667 /* 2668 * This action doesn't require any credential checks since 2669 * probes will not activate in user contexts to which the 2670 * enabling user does not have permissions. 2671 */ 2672 if (!dtrace_inscratch(dest, size, mstate)) { 2673 *flags |= CPU_DTRACE_BADADDR; 2674 *illval = regs[rd]; 2675 break; 2676 } 2677 2678 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2679 dtrace_copyin(tupregs[0].dttk_value, dest, size); 2680 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2681 break; 2682 } 2683 2684 case DIF_SUBR_COPYINSTR: { 2685 uintptr_t dest = mstate->dtms_scratch_ptr; 2686 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2687 2688 if (nargs > 1 && tupregs[1].dttk_value < size) 2689 size = tupregs[1].dttk_value + 1; 2690 2691 /* 2692 * This action doesn't require any credential checks since 2693 * probes will not activate in user contexts to which the 2694 * enabling user does not have permissions. 2695 */ 2696 if (mstate->dtms_scratch_ptr + size > 2697 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2698 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2699 regs[rd] = NULL; 2700 break; 2701 } 2702 2703 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2704 dtrace_copyinstr(tupregs[0].dttk_value, dest, size); 2705 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2706 2707 ((char *)dest)[size - 1] = '\0'; 2708 mstate->dtms_scratch_ptr += size; 2709 regs[rd] = dest; 2710 break; 2711 } 2712 2713 case DIF_SUBR_MSGSIZE: 2714 case DIF_SUBR_MSGDSIZE: { 2715 uintptr_t baddr = tupregs[0].dttk_value, daddr; 2716 uintptr_t wptr, rptr; 2717 size_t count = 0; 2718 int cont = 0; 2719 2720 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 2721 wptr = dtrace_loadptr(baddr + 2722 offsetof(mblk_t, b_wptr)); 2723 2724 rptr = dtrace_loadptr(baddr + 2725 offsetof(mblk_t, b_rptr)); 2726 2727 if (wptr < rptr) { 2728 *flags |= CPU_DTRACE_BADADDR; 2729 *illval = tupregs[0].dttk_value; 2730 break; 2731 } 2732 2733 daddr = dtrace_loadptr(baddr + 2734 offsetof(mblk_t, b_datap)); 2735 2736 baddr = dtrace_loadptr(baddr + 2737 offsetof(mblk_t, b_cont)); 2738 2739 /* 2740 * We want to prevent against denial-of-service here, 2741 * so we're only going to search the list for 2742 * dtrace_msgdsize_max mblks. 2743 */ 2744 if (cont++ > dtrace_msgdsize_max) { 2745 *flags |= CPU_DTRACE_ILLOP; 2746 break; 2747 } 2748 2749 if (subr == DIF_SUBR_MSGDSIZE) { 2750 if (dtrace_load8(daddr + 2751 offsetof(dblk_t, db_type)) != M_DATA) 2752 continue; 2753 } 2754 2755 count += wptr - rptr; 2756 } 2757 2758 if (!(*flags & CPU_DTRACE_FAULT)) 2759 regs[rd] = count; 2760 2761 break; 2762 } 2763 2764 case DIF_SUBR_PROGENYOF: { 2765 pid_t pid = tupregs[0].dttk_value; 2766 proc_t *p; 2767 int rval = 0; 2768 2769 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2770 2771 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 2772 if (p->p_pidp->pid_id == pid) { 2773 rval = 1; 2774 break; 2775 } 2776 } 2777 2778 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2779 2780 regs[rd] = rval; 2781 break; 2782 } 2783 2784 case DIF_SUBR_SPECULATION: 2785 regs[rd] = dtrace_speculation(state); 2786 break; 2787 2788 case DIF_SUBR_COPYOUT: { 2789 uintptr_t kaddr = tupregs[0].dttk_value; 2790 uintptr_t uaddr = tupregs[1].dttk_value; 2791 uint64_t size = tupregs[2].dttk_value; 2792 2793 if (!dtrace_destructive_disallow && 2794 dtrace_priv_proc_control(state) && 2795 !dtrace_istoxic(kaddr, size)) { 2796 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2797 dtrace_copyout(kaddr, uaddr, size); 2798 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2799 } 2800 break; 2801 } 2802 2803 case DIF_SUBR_COPYOUTSTR: { 2804 uintptr_t kaddr = tupregs[0].dttk_value; 2805 uintptr_t uaddr = tupregs[1].dttk_value; 2806 uint64_t size = tupregs[2].dttk_value; 2807 2808 if (!dtrace_destructive_disallow && 2809 dtrace_priv_proc_control(state) && 2810 !dtrace_istoxic(kaddr, size)) { 2811 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2812 dtrace_copyoutstr(kaddr, uaddr, size); 2813 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2814 } 2815 break; 2816 } 2817 2818 case DIF_SUBR_STRLEN: 2819 regs[rd] = dtrace_strlen((char *)(uintptr_t) 2820 tupregs[0].dttk_value, 2821 state->dts_options[DTRACEOPT_STRSIZE]); 2822 break; 2823 2824 case DIF_SUBR_STRCHR: 2825 case DIF_SUBR_STRRCHR: { 2826 /* 2827 * We're going to iterate over the string looking for the 2828 * specified character. We will iterate until we have reached 2829 * the string length or we have found the character. If this 2830 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 2831 * of the specified character instead of the first. 2832 */ 2833 uintptr_t addr = tupregs[0].dttk_value; 2834 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 2835 char c, target = (char)tupregs[1].dttk_value; 2836 2837 for (regs[rd] = NULL; addr < limit; addr++) { 2838 if ((c = dtrace_load8(addr)) == target) { 2839 regs[rd] = addr; 2840 2841 if (subr == DIF_SUBR_STRCHR) 2842 break; 2843 } 2844 2845 if (c == '\0') 2846 break; 2847 } 2848 2849 break; 2850 } 2851 2852 case DIF_SUBR_STRSTR: 2853 case DIF_SUBR_INDEX: 2854 case DIF_SUBR_RINDEX: { 2855 /* 2856 * We're going to iterate over the string looking for the 2857 * specified string. We will iterate until we have reached 2858 * the string length or we have found the string. (Yes, this 2859 * is done in the most naive way possible -- but considering 2860 * that the string we're searching for is likely to be 2861 * relatively short, the complexity of Rabin-Karp or similar 2862 * hardly seems merited.) 2863 */ 2864 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 2865 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 2866 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2867 size_t len = dtrace_strlen(addr, size); 2868 size_t sublen = dtrace_strlen(substr, size); 2869 char *limit = addr + len, *orig = addr; 2870 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 2871 int inc = 1; 2872 2873 regs[rd] = notfound; 2874 2875 /* 2876 * strstr() and index()/rindex() have similar semantics if 2877 * both strings are the empty string: strstr() returns a 2878 * pointer to the (empty) string, and index() and rindex() 2879 * both return index 0 (regardless of any position argument). 2880 */ 2881 if (sublen == 0 && len == 0) { 2882 if (subr == DIF_SUBR_STRSTR) 2883 regs[rd] = (uintptr_t)addr; 2884 else 2885 regs[rd] = 0; 2886 break; 2887 } 2888 2889 if (subr != DIF_SUBR_STRSTR) { 2890 if (subr == DIF_SUBR_RINDEX) { 2891 limit = orig - 1; 2892 addr += len; 2893 inc = -1; 2894 } 2895 2896 /* 2897 * Both index() and rindex() take an optional position 2898 * argument that denotes the starting position. 2899 */ 2900 if (nargs == 3) { 2901 int64_t pos = (int64_t)tupregs[2].dttk_value; 2902 2903 /* 2904 * If the position argument to index() is 2905 * negative, Perl implicitly clamps it at 2906 * zero. This semantic is a little surprising 2907 * given the special meaning of negative 2908 * positions to similar Perl functions like 2909 * substr(), but it appears to reflect a 2910 * notion that index() can start from a 2911 * negative index and increment its way up to 2912 * the string. Given this notion, Perl's 2913 * rindex() is at least self-consistent in 2914 * that it implicitly clamps positions greater 2915 * than the string length to be the string 2916 * length. Where Perl completely loses 2917 * coherence, however, is when the specified 2918 * substring is the empty string (""). In 2919 * this case, even if the position is 2920 * negative, rindex() returns 0 -- and even if 2921 * the position is greater than the length, 2922 * index() returns the string length. These 2923 * semantics violate the notion that index() 2924 * should never return a value less than the 2925 * specified position and that rindex() should 2926 * never return a value greater than the 2927 * specified position. (One assumes that 2928 * these semantics are artifacts of Perl's 2929 * implementation and not the results of 2930 * deliberate design -- it beggars belief that 2931 * even Larry Wall could desire such oddness.) 2932 * While in the abstract one would wish for 2933 * consistent position semantics across 2934 * substr(), index() and rindex() -- or at the 2935 * very least self-consistent position 2936 * semantics for index() and rindex() -- we 2937 * instead opt to keep with the extant Perl 2938 * semantics, in all their broken glory. (Do 2939 * we have more desire to maintain Perl's 2940 * semantics than Perl does? Probably.) 2941 */ 2942 if (subr == DIF_SUBR_RINDEX) { 2943 if (pos < 0) { 2944 if (sublen == 0) 2945 regs[rd] = 0; 2946 break; 2947 } 2948 2949 if (pos > len) 2950 pos = len; 2951 } else { 2952 if (pos < 0) 2953 pos = 0; 2954 2955 if (pos >= len) { 2956 if (sublen == 0) 2957 regs[rd] = len; 2958 break; 2959 } 2960 } 2961 2962 addr = orig + pos; 2963 } 2964 } 2965 2966 for (regs[rd] = notfound; addr != limit; addr += inc) { 2967 if (dtrace_strncmp(addr, substr, sublen) == 0) { 2968 if (subr != DIF_SUBR_STRSTR) { 2969 /* 2970 * As D index() and rindex() are 2971 * modeled on Perl (and not on awk), 2972 * we return a zero-based (and not a 2973 * one-based) index. (For you Perl 2974 * weenies: no, we're not going to add 2975 * $[ -- and shouldn't you be at a con 2976 * or something?) 2977 */ 2978 regs[rd] = (uintptr_t)(addr - orig); 2979 break; 2980 } 2981 2982 ASSERT(subr == DIF_SUBR_STRSTR); 2983 regs[rd] = (uintptr_t)addr; 2984 break; 2985 } 2986 } 2987 2988 break; 2989 } 2990 2991 case DIF_SUBR_STRTOK: { 2992 uintptr_t addr = tupregs[0].dttk_value; 2993 uintptr_t tokaddr = tupregs[1].dttk_value; 2994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2995 uintptr_t limit, toklimit = tokaddr + size; 2996 uint8_t c, tokmap[32]; /* 256 / 8 */ 2997 char *dest = (char *)mstate->dtms_scratch_ptr; 2998 int i; 2999 3000 if (mstate->dtms_scratch_ptr + size > 3001 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3002 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3003 regs[rd] = NULL; 3004 break; 3005 } 3006 3007 if (addr == NULL) { 3008 /* 3009 * If the address specified is NULL, we use our saved 3010 * strtok pointer from the mstate. Note that this 3011 * means that the saved strtok pointer is _only_ 3012 * valid within multiple enablings of the same probe -- 3013 * it behaves like an implicit clause-local variable. 3014 */ 3015 addr = mstate->dtms_strtok; 3016 } 3017 3018 /* 3019 * First, zero the token map, and then process the token 3020 * string -- setting a bit in the map for every character 3021 * found in the token string. 3022 */ 3023 for (i = 0; i < sizeof (tokmap); i++) 3024 tokmap[i] = 0; 3025 3026 for (; tokaddr < toklimit; tokaddr++) { 3027 if ((c = dtrace_load8(tokaddr)) == '\0') 3028 break; 3029 3030 ASSERT((c >> 3) < sizeof (tokmap)); 3031 tokmap[c >> 3] |= (1 << (c & 0x7)); 3032 } 3033 3034 for (limit = addr + size; addr < limit; addr++) { 3035 /* 3036 * We're looking for a character that is _not_ contained 3037 * in the token string. 3038 */ 3039 if ((c = dtrace_load8(addr)) == '\0') 3040 break; 3041 3042 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3043 break; 3044 } 3045 3046 if (c == '\0') { 3047 /* 3048 * We reached the end of the string without finding 3049 * any character that was not in the token string. 3050 * We return NULL in this case, and we set the saved 3051 * address to NULL as well. 3052 */ 3053 regs[rd] = NULL; 3054 mstate->dtms_strtok = NULL; 3055 break; 3056 } 3057 3058 /* 3059 * From here on, we're copying into the destination string. 3060 */ 3061 for (i = 0; addr < limit && i < size - 1; addr++) { 3062 if ((c = dtrace_load8(addr)) == '\0') 3063 break; 3064 3065 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3066 break; 3067 3068 ASSERT(i < size); 3069 dest[i++] = c; 3070 } 3071 3072 ASSERT(i < size); 3073 dest[i] = '\0'; 3074 regs[rd] = (uintptr_t)dest; 3075 mstate->dtms_scratch_ptr += size; 3076 mstate->dtms_strtok = addr; 3077 break; 3078 } 3079 3080 case DIF_SUBR_SUBSTR: { 3081 uintptr_t s = tupregs[0].dttk_value; 3082 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3083 char *d = (char *)mstate->dtms_scratch_ptr; 3084 int64_t index = (int64_t)tupregs[1].dttk_value; 3085 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3086 size_t len = dtrace_strlen((char *)s, size); 3087 int64_t i = 0; 3088 3089 if (nargs <= 2) 3090 remaining = (int64_t)size; 3091 3092 if (mstate->dtms_scratch_ptr + size > 3093 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3094 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3095 regs[rd] = NULL; 3096 break; 3097 } 3098 3099 if (index < 0) { 3100 index += len; 3101 3102 if (index < 0 && index + remaining > 0) { 3103 remaining += index; 3104 index = 0; 3105 } 3106 } 3107 3108 if (index >= len || index < 0) 3109 index = len; 3110 3111 for (d[0] = '\0'; remaining > 0; remaining--) { 3112 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3113 break; 3114 3115 if (i == size) { 3116 d[i - 1] = '\0'; 3117 break; 3118 } 3119 } 3120 3121 mstate->dtms_scratch_ptr += size; 3122 regs[rd] = (uintptr_t)d; 3123 break; 3124 } 3125 3126 case DIF_SUBR_GETMAJOR: 3127 #ifdef _LP64 3128 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3129 #else 3130 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3131 #endif 3132 break; 3133 3134 case DIF_SUBR_GETMINOR: 3135 #ifdef _LP64 3136 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3137 #else 3138 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3139 #endif 3140 break; 3141 3142 case DIF_SUBR_DDI_PATHNAME: { 3143 /* 3144 * This one is a galactic mess. We are going to roughly 3145 * emulate ddi_pathname(), but it's made more complicated 3146 * by the fact that we (a) want to include the minor name and 3147 * (b) must proceed iteratively instead of recursively. 3148 */ 3149 uintptr_t dest = mstate->dtms_scratch_ptr; 3150 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3151 char *start = (char *)dest, *end = start + size - 1; 3152 uintptr_t daddr = tupregs[0].dttk_value; 3153 int64_t minor = (int64_t)tupregs[1].dttk_value; 3154 char *s; 3155 int i, len, depth = 0; 3156 3157 if (size == 0 || mstate->dtms_scratch_ptr + size > 3158 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3159 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3160 regs[rd] = NULL; 3161 break; 3162 } 3163 3164 *end = '\0'; 3165 3166 /* 3167 * We want to have a name for the minor. In order to do this, 3168 * we need to walk the minor list from the devinfo. We want 3169 * to be sure that we don't infinitely walk a circular list, 3170 * so we check for circularity by sending a scout pointer 3171 * ahead two elements for every element that we iterate over; 3172 * if the list is circular, these will ultimately point to the 3173 * same element. You may recognize this little trick as the 3174 * answer to a stupid interview question -- one that always 3175 * seems to be asked by those who had to have it laboriously 3176 * explained to them, and who can't even concisely describe 3177 * the conditions under which one would be forced to resort to 3178 * this technique. Needless to say, those conditions are 3179 * found here -- and probably only here. Is this is the only 3180 * use of this infamous trick in shipping, production code? 3181 * If it isn't, it probably should be... 3182 */ 3183 if (minor != -1) { 3184 uintptr_t maddr = dtrace_loadptr(daddr + 3185 offsetof(struct dev_info, devi_minor)); 3186 3187 uintptr_t next = offsetof(struct ddi_minor_data, next); 3188 uintptr_t name = offsetof(struct ddi_minor_data, 3189 d_minor) + offsetof(struct ddi_minor, name); 3190 uintptr_t dev = offsetof(struct ddi_minor_data, 3191 d_minor) + offsetof(struct ddi_minor, dev); 3192 uintptr_t scout; 3193 3194 if (maddr != NULL) 3195 scout = dtrace_loadptr(maddr + next); 3196 3197 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3198 uint64_t m; 3199 #ifdef _LP64 3200 m = dtrace_load64(maddr + dev) & MAXMIN64; 3201 #else 3202 m = dtrace_load32(maddr + dev) & MAXMIN; 3203 #endif 3204 if (m != minor) { 3205 maddr = dtrace_loadptr(maddr + next); 3206 3207 if (scout == NULL) 3208 continue; 3209 3210 scout = dtrace_loadptr(scout + next); 3211 3212 if (scout == NULL) 3213 continue; 3214 3215 scout = dtrace_loadptr(scout + next); 3216 3217 if (scout == NULL) 3218 continue; 3219 3220 if (scout == maddr) { 3221 *flags |= CPU_DTRACE_ILLOP; 3222 break; 3223 } 3224 3225 continue; 3226 } 3227 3228 /* 3229 * We have the minor data. Now we need to 3230 * copy the minor's name into the end of the 3231 * pathname. 3232 */ 3233 s = (char *)dtrace_loadptr(maddr + name); 3234 len = dtrace_strlen(s, size); 3235 3236 if (*flags & CPU_DTRACE_FAULT) 3237 break; 3238 3239 if (len != 0) { 3240 if ((end -= (len + 1)) < start) 3241 break; 3242 3243 *end = ':'; 3244 } 3245 3246 for (i = 1; i <= len; i++) 3247 end[i] = dtrace_load8((uintptr_t)s++); 3248 break; 3249 } 3250 } 3251 3252 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3253 ddi_node_state_t devi_state; 3254 3255 devi_state = dtrace_load32(daddr + 3256 offsetof(struct dev_info, devi_node_state)); 3257 3258 if (*flags & CPU_DTRACE_FAULT) 3259 break; 3260 3261 if (devi_state >= DS_INITIALIZED) { 3262 s = (char *)dtrace_loadptr(daddr + 3263 offsetof(struct dev_info, devi_addr)); 3264 len = dtrace_strlen(s, size); 3265 3266 if (*flags & CPU_DTRACE_FAULT) 3267 break; 3268 3269 if (len != 0) { 3270 if ((end -= (len + 1)) < start) 3271 break; 3272 3273 *end = '@'; 3274 } 3275 3276 for (i = 1; i <= len; i++) 3277 end[i] = dtrace_load8((uintptr_t)s++); 3278 } 3279 3280 /* 3281 * Now for the node name... 3282 */ 3283 s = (char *)dtrace_loadptr(daddr + 3284 offsetof(struct dev_info, devi_node_name)); 3285 3286 daddr = dtrace_loadptr(daddr + 3287 offsetof(struct dev_info, devi_parent)); 3288 3289 /* 3290 * If our parent is NULL (that is, if we're the root 3291 * node), we're going to use the special path 3292 * "devices". 3293 */ 3294 if (daddr == NULL) 3295 s = "devices"; 3296 3297 len = dtrace_strlen(s, size); 3298 if (*flags & CPU_DTRACE_FAULT) 3299 break; 3300 3301 if ((end -= (len + 1)) < start) 3302 break; 3303 3304 for (i = 1; i <= len; i++) 3305 end[i] = dtrace_load8((uintptr_t)s++); 3306 *end = '/'; 3307 3308 if (depth++ > dtrace_devdepth_max) { 3309 *flags |= CPU_DTRACE_ILLOP; 3310 break; 3311 } 3312 } 3313 3314 if (end < start) 3315 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3316 3317 if (daddr == NULL) { 3318 regs[rd] = (uintptr_t)end; 3319 mstate->dtms_scratch_ptr += size; 3320 } 3321 3322 break; 3323 } 3324 3325 case DIF_SUBR_STRJOIN: { 3326 char *d = (char *)mstate->dtms_scratch_ptr; 3327 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3328 uintptr_t s1 = tupregs[0].dttk_value; 3329 uintptr_t s2 = tupregs[1].dttk_value; 3330 int i = 0; 3331 3332 if (mstate->dtms_scratch_ptr + size > 3333 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3334 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3335 regs[rd] = NULL; 3336 break; 3337 } 3338 3339 for (;;) { 3340 if (i >= size) { 3341 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3342 regs[rd] = NULL; 3343 break; 3344 } 3345 3346 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3347 i--; 3348 break; 3349 } 3350 } 3351 3352 for (;;) { 3353 if (i >= size) { 3354 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3355 regs[rd] = NULL; 3356 break; 3357 } 3358 3359 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3360 break; 3361 } 3362 3363 if (i < size) { 3364 mstate->dtms_scratch_ptr += i; 3365 regs[rd] = (uintptr_t)d; 3366 } 3367 3368 break; 3369 } 3370 3371 case DIF_SUBR_LLTOSTR: { 3372 int64_t i = (int64_t)tupregs[0].dttk_value; 3373 int64_t val = i < 0 ? i * -1 : i; 3374 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3375 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3376 3377 if (mstate->dtms_scratch_ptr + size > 3378 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3380 regs[rd] = NULL; 3381 break; 3382 } 3383 3384 for (*end-- = '\0'; val; val /= 10) 3385 *end-- = '0' + (val % 10); 3386 3387 if (i == 0) 3388 *end-- = '0'; 3389 3390 if (i < 0) 3391 *end-- = '-'; 3392 3393 regs[rd] = (uintptr_t)end + 1; 3394 mstate->dtms_scratch_ptr += size; 3395 break; 3396 } 3397 3398 case DIF_SUBR_DIRNAME: 3399 case DIF_SUBR_BASENAME: { 3400 char *dest = (char *)mstate->dtms_scratch_ptr; 3401 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3402 uintptr_t src = tupregs[0].dttk_value; 3403 int i, j, len = dtrace_strlen((char *)src, size); 3404 int lastbase = -1, firstbase = -1, lastdir = -1; 3405 int start, end; 3406 3407 if (mstate->dtms_scratch_ptr + size > 3408 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3409 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3410 regs[rd] = NULL; 3411 break; 3412 } 3413 3414 /* 3415 * The basename and dirname for a zero-length string is 3416 * defined to be "." 3417 */ 3418 if (len == 0) { 3419 len = 1; 3420 src = (uintptr_t)"."; 3421 } 3422 3423 /* 3424 * Start from the back of the string, moving back toward the 3425 * front until we see a character that isn't a slash. That 3426 * character is the last character in the basename. 3427 */ 3428 for (i = len - 1; i >= 0; i--) { 3429 if (dtrace_load8(src + i) != '/') 3430 break; 3431 } 3432 3433 if (i >= 0) 3434 lastbase = i; 3435 3436 /* 3437 * Starting from the last character in the basename, move 3438 * towards the front until we find a slash. The character 3439 * that we processed immediately before that is the first 3440 * character in the basename. 3441 */ 3442 for (; i >= 0; i--) { 3443 if (dtrace_load8(src + i) == '/') 3444 break; 3445 } 3446 3447 if (i >= 0) 3448 firstbase = i + 1; 3449 3450 /* 3451 * Now keep going until we find a non-slash character. That 3452 * character is the last character in the dirname. 3453 */ 3454 for (; i >= 0; i--) { 3455 if (dtrace_load8(src + i) != '/') 3456 break; 3457 } 3458 3459 if (i >= 0) 3460 lastdir = i; 3461 3462 ASSERT(!(lastbase == -1 && firstbase != -1)); 3463 ASSERT(!(firstbase == -1 && lastdir != -1)); 3464 3465 if (lastbase == -1) { 3466 /* 3467 * We didn't find a non-slash character. We know that 3468 * the length is non-zero, so the whole string must be 3469 * slashes. In either the dirname or the basename 3470 * case, we return '/'. 3471 */ 3472 ASSERT(firstbase == -1); 3473 firstbase = lastbase = lastdir = 0; 3474 } 3475 3476 if (firstbase == -1) { 3477 /* 3478 * The entire string consists only of a basename 3479 * component. If we're looking for dirname, we need 3480 * to change our string to be just "."; if we're 3481 * looking for a basename, we'll just set the first 3482 * character of the basename to be 0. 3483 */ 3484 if (subr == DIF_SUBR_DIRNAME) { 3485 ASSERT(lastdir == -1); 3486 src = (uintptr_t)"."; 3487 lastdir = 0; 3488 } else { 3489 firstbase = 0; 3490 } 3491 } 3492 3493 if (subr == DIF_SUBR_DIRNAME) { 3494 if (lastdir == -1) { 3495 /* 3496 * We know that we have a slash in the name -- 3497 * or lastdir would be set to 0, above. And 3498 * because lastdir is -1, we know that this 3499 * slash must be the first character. (That 3500 * is, the full string must be of the form 3501 * "/basename".) In this case, the last 3502 * character of the directory name is 0. 3503 */ 3504 lastdir = 0; 3505 } 3506 3507 start = 0; 3508 end = lastdir; 3509 } else { 3510 ASSERT(subr == DIF_SUBR_BASENAME); 3511 ASSERT(firstbase != -1 && lastbase != -1); 3512 start = firstbase; 3513 end = lastbase; 3514 } 3515 3516 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 3517 dest[j] = dtrace_load8(src + i); 3518 3519 dest[j] = '\0'; 3520 regs[rd] = (uintptr_t)dest; 3521 mstate->dtms_scratch_ptr += size; 3522 break; 3523 } 3524 3525 case DIF_SUBR_CLEANPATH: { 3526 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3527 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3528 uintptr_t src = tupregs[0].dttk_value; 3529 int i = 0, j = 0; 3530 3531 if (mstate->dtms_scratch_ptr + size > 3532 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3533 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3534 regs[rd] = NULL; 3535 break; 3536 } 3537 3538 /* 3539 * Move forward, loading each character. 3540 */ 3541 do { 3542 c = dtrace_load8(src + i++); 3543 next: 3544 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 3545 break; 3546 3547 if (c != '/') { 3548 dest[j++] = c; 3549 continue; 3550 } 3551 3552 c = dtrace_load8(src + i++); 3553 3554 if (c == '/') { 3555 /* 3556 * We have two slashes -- we can just advance 3557 * to the next character. 3558 */ 3559 goto next; 3560 } 3561 3562 if (c != '.') { 3563 /* 3564 * This is not "." and it's not ".." -- we can 3565 * just store the "/" and this character and 3566 * drive on. 3567 */ 3568 dest[j++] = '/'; 3569 dest[j++] = c; 3570 continue; 3571 } 3572 3573 c = dtrace_load8(src + i++); 3574 3575 if (c == '/') { 3576 /* 3577 * This is a "/./" component. We're not going 3578 * to store anything in the destination buffer; 3579 * we're just going to go to the next component. 3580 */ 3581 goto next; 3582 } 3583 3584 if (c != '.') { 3585 /* 3586 * This is not ".." -- we can just store the 3587 * "/." and this character and continue 3588 * processing. 3589 */ 3590 dest[j++] = '/'; 3591 dest[j++] = '.'; 3592 dest[j++] = c; 3593 continue; 3594 } 3595 3596 c = dtrace_load8(src + i++); 3597 3598 if (c != '/' && c != '\0') { 3599 /* 3600 * This is not ".." -- it's "..[mumble]". 3601 * We'll store the "/.." and this character 3602 * and continue processing. 3603 */ 3604 dest[j++] = '/'; 3605 dest[j++] = '.'; 3606 dest[j++] = '.'; 3607 dest[j++] = c; 3608 continue; 3609 } 3610 3611 /* 3612 * This is "/../" or "/..\0". We need to back up 3613 * our destination pointer until we find a "/". 3614 */ 3615 i--; 3616 while (j != 0 && dest[--j] != '/') 3617 continue; 3618 3619 if (c == '\0') 3620 dest[++j] = '/'; 3621 } while (c != '\0'); 3622 3623 dest[j] = '\0'; 3624 regs[rd] = (uintptr_t)dest; 3625 mstate->dtms_scratch_ptr += size; 3626 break; 3627 } 3628 } 3629 } 3630 3631 /* 3632 * Emulate the execution of DTrace IR instructions specified by the given 3633 * DIF object. This function is deliberately void of assertions as all of 3634 * the necessary checks are handled by a call to dtrace_difo_validate(). 3635 */ 3636 static uint64_t 3637 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 3638 dtrace_vstate_t *vstate, dtrace_state_t *state) 3639 { 3640 const dif_instr_t *text = difo->dtdo_buf; 3641 const uint_t textlen = difo->dtdo_len; 3642 const char *strtab = difo->dtdo_strtab; 3643 const uint64_t *inttab = difo->dtdo_inttab; 3644 3645 uint64_t rval = 0; 3646 dtrace_statvar_t *svar; 3647 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 3648 dtrace_difv_t *v; 3649 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3650 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3651 3652 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 3653 uint64_t regs[DIF_DIR_NREGS]; 3654 uint64_t *tmp; 3655 3656 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 3657 int64_t cc_r; 3658 uint_t pc = 0, id, opc; 3659 uint8_t ttop = 0; 3660 dif_instr_t instr; 3661 uint_t r1, r2, rd; 3662 3663 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 3664 3665 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 3666 opc = pc; 3667 3668 instr = text[pc++]; 3669 r1 = DIF_INSTR_R1(instr); 3670 r2 = DIF_INSTR_R2(instr); 3671 rd = DIF_INSTR_RD(instr); 3672 3673 switch (DIF_INSTR_OP(instr)) { 3674 case DIF_OP_OR: 3675 regs[rd] = regs[r1] | regs[r2]; 3676 break; 3677 case DIF_OP_XOR: 3678 regs[rd] = regs[r1] ^ regs[r2]; 3679 break; 3680 case DIF_OP_AND: 3681 regs[rd] = regs[r1] & regs[r2]; 3682 break; 3683 case DIF_OP_SLL: 3684 regs[rd] = regs[r1] << regs[r2]; 3685 break; 3686 case DIF_OP_SRL: 3687 regs[rd] = regs[r1] >> regs[r2]; 3688 break; 3689 case DIF_OP_SUB: 3690 regs[rd] = regs[r1] - regs[r2]; 3691 break; 3692 case DIF_OP_ADD: 3693 regs[rd] = regs[r1] + regs[r2]; 3694 break; 3695 case DIF_OP_MUL: 3696 regs[rd] = regs[r1] * regs[r2]; 3697 break; 3698 case DIF_OP_SDIV: 3699 if (regs[r2] == 0) { 3700 regs[rd] = 0; 3701 *flags |= CPU_DTRACE_DIVZERO; 3702 } else { 3703 regs[rd] = (int64_t)regs[r1] / 3704 (int64_t)regs[r2]; 3705 } 3706 break; 3707 3708 case DIF_OP_UDIV: 3709 if (regs[r2] == 0) { 3710 regs[rd] = 0; 3711 *flags |= CPU_DTRACE_DIVZERO; 3712 } else { 3713 regs[rd] = regs[r1] / regs[r2]; 3714 } 3715 break; 3716 3717 case DIF_OP_SREM: 3718 if (regs[r2] == 0) { 3719 regs[rd] = 0; 3720 *flags |= CPU_DTRACE_DIVZERO; 3721 } else { 3722 regs[rd] = (int64_t)regs[r1] % 3723 (int64_t)regs[r2]; 3724 } 3725 break; 3726 3727 case DIF_OP_UREM: 3728 if (regs[r2] == 0) { 3729 regs[rd] = 0; 3730 *flags |= CPU_DTRACE_DIVZERO; 3731 } else { 3732 regs[rd] = regs[r1] % regs[r2]; 3733 } 3734 break; 3735 3736 case DIF_OP_NOT: 3737 regs[rd] = ~regs[r1]; 3738 break; 3739 case DIF_OP_MOV: 3740 regs[rd] = regs[r1]; 3741 break; 3742 case DIF_OP_CMP: 3743 cc_r = regs[r1] - regs[r2]; 3744 cc_n = cc_r < 0; 3745 cc_z = cc_r == 0; 3746 cc_v = 0; 3747 cc_c = regs[r1] < regs[r2]; 3748 break; 3749 case DIF_OP_TST: 3750 cc_n = cc_v = cc_c = 0; 3751 cc_z = regs[r1] == 0; 3752 break; 3753 case DIF_OP_BA: 3754 pc = DIF_INSTR_LABEL(instr); 3755 break; 3756 case DIF_OP_BE: 3757 if (cc_z) 3758 pc = DIF_INSTR_LABEL(instr); 3759 break; 3760 case DIF_OP_BNE: 3761 if (cc_z == 0) 3762 pc = DIF_INSTR_LABEL(instr); 3763 break; 3764 case DIF_OP_BG: 3765 if ((cc_z | (cc_n ^ cc_v)) == 0) 3766 pc = DIF_INSTR_LABEL(instr); 3767 break; 3768 case DIF_OP_BGU: 3769 if ((cc_c | cc_z) == 0) 3770 pc = DIF_INSTR_LABEL(instr); 3771 break; 3772 case DIF_OP_BGE: 3773 if ((cc_n ^ cc_v) == 0) 3774 pc = DIF_INSTR_LABEL(instr); 3775 break; 3776 case DIF_OP_BGEU: 3777 if (cc_c == 0) 3778 pc = DIF_INSTR_LABEL(instr); 3779 break; 3780 case DIF_OP_BL: 3781 if (cc_n ^ cc_v) 3782 pc = DIF_INSTR_LABEL(instr); 3783 break; 3784 case DIF_OP_BLU: 3785 if (cc_c) 3786 pc = DIF_INSTR_LABEL(instr); 3787 break; 3788 case DIF_OP_BLE: 3789 if (cc_z | (cc_n ^ cc_v)) 3790 pc = DIF_INSTR_LABEL(instr); 3791 break; 3792 case DIF_OP_BLEU: 3793 if (cc_c | cc_z) 3794 pc = DIF_INSTR_LABEL(instr); 3795 break; 3796 case DIF_OP_RLDSB: 3797 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 3798 *flags |= CPU_DTRACE_KPRIV; 3799 *illval = regs[r1]; 3800 break; 3801 } 3802 /*FALLTHROUGH*/ 3803 case DIF_OP_LDSB: 3804 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 3805 break; 3806 case DIF_OP_RLDSH: 3807 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 3808 *flags |= CPU_DTRACE_KPRIV; 3809 *illval = regs[r1]; 3810 break; 3811 } 3812 /*FALLTHROUGH*/ 3813 case DIF_OP_LDSH: 3814 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 3815 break; 3816 case DIF_OP_RLDSW: 3817 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 3818 *flags |= CPU_DTRACE_KPRIV; 3819 *illval = regs[r1]; 3820 break; 3821 } 3822 /*FALLTHROUGH*/ 3823 case DIF_OP_LDSW: 3824 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 3825 break; 3826 case DIF_OP_RLDUB: 3827 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 3828 *flags |= CPU_DTRACE_KPRIV; 3829 *illval = regs[r1]; 3830 break; 3831 } 3832 /*FALLTHROUGH*/ 3833 case DIF_OP_LDUB: 3834 regs[rd] = dtrace_load8(regs[r1]); 3835 break; 3836 case DIF_OP_RLDUH: 3837 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 3838 *flags |= CPU_DTRACE_KPRIV; 3839 *illval = regs[r1]; 3840 break; 3841 } 3842 /*FALLTHROUGH*/ 3843 case DIF_OP_LDUH: 3844 regs[rd] = dtrace_load16(regs[r1]); 3845 break; 3846 case DIF_OP_RLDUW: 3847 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 3848 *flags |= CPU_DTRACE_KPRIV; 3849 *illval = regs[r1]; 3850 break; 3851 } 3852 /*FALLTHROUGH*/ 3853 case DIF_OP_LDUW: 3854 regs[rd] = dtrace_load32(regs[r1]); 3855 break; 3856 case DIF_OP_RLDX: 3857 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 3858 *flags |= CPU_DTRACE_KPRIV; 3859 *illval = regs[r1]; 3860 break; 3861 } 3862 /*FALLTHROUGH*/ 3863 case DIF_OP_LDX: 3864 regs[rd] = dtrace_load64(regs[r1]); 3865 break; 3866 case DIF_OP_ULDSB: 3867 regs[rd] = (int8_t) 3868 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 3869 break; 3870 case DIF_OP_ULDSH: 3871 regs[rd] = (int16_t) 3872 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 3873 break; 3874 case DIF_OP_ULDSW: 3875 regs[rd] = (int32_t) 3876 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 3877 break; 3878 case DIF_OP_ULDUB: 3879 regs[rd] = 3880 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 3881 break; 3882 case DIF_OP_ULDUH: 3883 regs[rd] = 3884 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 3885 break; 3886 case DIF_OP_ULDUW: 3887 regs[rd] = 3888 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 3889 break; 3890 case DIF_OP_ULDX: 3891 regs[rd] = 3892 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 3893 break; 3894 case DIF_OP_RET: 3895 rval = regs[rd]; 3896 break; 3897 case DIF_OP_NOP: 3898 break; 3899 case DIF_OP_SETX: 3900 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 3901 break; 3902 case DIF_OP_SETS: 3903 regs[rd] = (uint64_t)(uintptr_t) 3904 (strtab + DIF_INSTR_STRING(instr)); 3905 break; 3906 case DIF_OP_SCMP: 3907 cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1], 3908 (char *)(uintptr_t)regs[r2], 3909 state->dts_options[DTRACEOPT_STRSIZE]); 3910 3911 cc_n = cc_r < 0; 3912 cc_z = cc_r == 0; 3913 cc_v = cc_c = 0; 3914 break; 3915 case DIF_OP_LDGA: 3916 regs[rd] = dtrace_dif_variable(mstate, state, 3917 r1, regs[r2]); 3918 break; 3919 case DIF_OP_LDGS: 3920 id = DIF_INSTR_VAR(instr); 3921 3922 if (id >= DIF_VAR_OTHER_UBASE) { 3923 uintptr_t a; 3924 3925 id -= DIF_VAR_OTHER_UBASE; 3926 svar = vstate->dtvs_globals[id]; 3927 ASSERT(svar != NULL); 3928 v = &svar->dtsv_var; 3929 3930 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 3931 regs[rd] = svar->dtsv_data; 3932 break; 3933 } 3934 3935 a = (uintptr_t)svar->dtsv_data; 3936 3937 if (*(uint8_t *)a == UINT8_MAX) { 3938 /* 3939 * If the 0th byte is set to UINT8_MAX 3940 * then this is to be treated as a 3941 * reference to a NULL variable. 3942 */ 3943 regs[rd] = NULL; 3944 } else { 3945 regs[rd] = a + sizeof (uint64_t); 3946 } 3947 3948 break; 3949 } 3950 3951 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 3952 break; 3953 3954 case DIF_OP_STGS: 3955 id = DIF_INSTR_VAR(instr); 3956 3957 ASSERT(id >= DIF_VAR_OTHER_UBASE); 3958 id -= DIF_VAR_OTHER_UBASE; 3959 3960 svar = vstate->dtvs_globals[id]; 3961 ASSERT(svar != NULL); 3962 v = &svar->dtsv_var; 3963 3964 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 3965 uintptr_t a = (uintptr_t)svar->dtsv_data; 3966 3967 ASSERT(a != NULL); 3968 ASSERT(svar->dtsv_size != 0); 3969 3970 if (regs[rd] == NULL) { 3971 *(uint8_t *)a = UINT8_MAX; 3972 break; 3973 } else { 3974 *(uint8_t *)a = 0; 3975 a += sizeof (uint64_t); 3976 } 3977 3978 dtrace_vcopy((void *)(uintptr_t)regs[rd], 3979 (void *)a, &v->dtdv_type); 3980 break; 3981 } 3982 3983 svar->dtsv_data = regs[rd]; 3984 break; 3985 3986 case DIF_OP_LDTA: 3987 /* 3988 * There are no DTrace built-in thread-local arrays at 3989 * present. This opcode is saved for future work. 3990 */ 3991 *flags |= CPU_DTRACE_ILLOP; 3992 regs[rd] = 0; 3993 break; 3994 3995 case DIF_OP_LDLS: 3996 id = DIF_INSTR_VAR(instr); 3997 3998 if (id < DIF_VAR_OTHER_UBASE) { 3999 /* 4000 * For now, this has no meaning. 4001 */ 4002 regs[rd] = 0; 4003 break; 4004 } 4005 4006 id -= DIF_VAR_OTHER_UBASE; 4007 4008 ASSERT(id < vstate->dtvs_nlocals); 4009 ASSERT(vstate->dtvs_locals != NULL); 4010 4011 svar = vstate->dtvs_locals[id]; 4012 ASSERT(svar != NULL); 4013 v = &svar->dtsv_var; 4014 4015 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4016 uintptr_t a = (uintptr_t)svar->dtsv_data; 4017 size_t sz = v->dtdv_type.dtdt_size; 4018 4019 sz += sizeof (uint64_t); 4020 ASSERT(svar->dtsv_size == NCPU * sz); 4021 a += CPU->cpu_id * sz; 4022 4023 if (*(uint8_t *)a == UINT8_MAX) { 4024 /* 4025 * If the 0th byte is set to UINT8_MAX 4026 * then this is to be treated as a 4027 * reference to a NULL variable. 4028 */ 4029 regs[rd] = NULL; 4030 } else { 4031 regs[rd] = a + sizeof (uint64_t); 4032 } 4033 4034 break; 4035 } 4036 4037 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4038 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4039 regs[rd] = tmp[CPU->cpu_id]; 4040 break; 4041 4042 case DIF_OP_STLS: 4043 id = DIF_INSTR_VAR(instr); 4044 4045 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4046 id -= DIF_VAR_OTHER_UBASE; 4047 ASSERT(id < vstate->dtvs_nlocals); 4048 4049 ASSERT(vstate->dtvs_locals != NULL); 4050 svar = vstate->dtvs_locals[id]; 4051 ASSERT(svar != NULL); 4052 v = &svar->dtsv_var; 4053 4054 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4055 uintptr_t a = (uintptr_t)svar->dtsv_data; 4056 size_t sz = v->dtdv_type.dtdt_size; 4057 4058 sz += sizeof (uint64_t); 4059 ASSERT(svar->dtsv_size == NCPU * sz); 4060 a += CPU->cpu_id * sz; 4061 4062 if (regs[rd] == NULL) { 4063 *(uint8_t *)a = UINT8_MAX; 4064 break; 4065 } else { 4066 *(uint8_t *)a = 0; 4067 a += sizeof (uint64_t); 4068 } 4069 4070 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4071 (void *)a, &v->dtdv_type); 4072 break; 4073 } 4074 4075 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4076 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4077 tmp[CPU->cpu_id] = regs[rd]; 4078 break; 4079 4080 case DIF_OP_LDTS: { 4081 dtrace_dynvar_t *dvar; 4082 dtrace_key_t *key; 4083 4084 id = DIF_INSTR_VAR(instr); 4085 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4086 id -= DIF_VAR_OTHER_UBASE; 4087 v = &vstate->dtvs_tlocals[id]; 4088 4089 key = &tupregs[DIF_DTR_NREGS]; 4090 key[0].dttk_value = (uint64_t)id; 4091 key[0].dttk_size = 0; 4092 DTRACE_TLS_THRKEY(key[1].dttk_value); 4093 key[1].dttk_size = 0; 4094 4095 dvar = dtrace_dynvar(dstate, 2, key, 4096 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC); 4097 4098 if (dvar == NULL) { 4099 regs[rd] = 0; 4100 break; 4101 } 4102 4103 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4104 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4105 } else { 4106 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4107 } 4108 4109 break; 4110 } 4111 4112 case DIF_OP_STTS: { 4113 dtrace_dynvar_t *dvar; 4114 dtrace_key_t *key; 4115 4116 id = DIF_INSTR_VAR(instr); 4117 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4118 id -= DIF_VAR_OTHER_UBASE; 4119 4120 key = &tupregs[DIF_DTR_NREGS]; 4121 key[0].dttk_value = (uint64_t)id; 4122 key[0].dttk_size = 0; 4123 DTRACE_TLS_THRKEY(key[1].dttk_value); 4124 key[1].dttk_size = 0; 4125 v = &vstate->dtvs_tlocals[id]; 4126 4127 dvar = dtrace_dynvar(dstate, 2, key, 4128 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4129 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4130 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4131 DTRACE_DYNVAR_DEALLOC); 4132 4133 /* 4134 * Given that we're storing to thread-local data, 4135 * we need to flush our predicate cache. 4136 */ 4137 curthread->t_predcache = NULL; 4138 4139 if (dvar == NULL) 4140 break; 4141 4142 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4143 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4144 dvar->dtdv_data, &v->dtdv_type); 4145 } else { 4146 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4147 } 4148 4149 break; 4150 } 4151 4152 case DIF_OP_SRA: 4153 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4154 break; 4155 4156 case DIF_OP_CALL: 4157 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4158 regs, tupregs, ttop, mstate, state); 4159 break; 4160 4161 case DIF_OP_PUSHTR: 4162 if (ttop == DIF_DTR_NREGS) { 4163 *flags |= CPU_DTRACE_TUPOFLOW; 4164 break; 4165 } 4166 4167 if (r1 == DIF_TYPE_STRING) { 4168 /* 4169 * If this is a string type and the size is 0, 4170 * we'll use the system-wide default string 4171 * size. Note that we are _not_ looking at 4172 * the value of the DTRACEOPT_STRSIZE option; 4173 * had this been set, we would expect to have 4174 * a non-zero size value in the "pushtr". 4175 */ 4176 tupregs[ttop].dttk_size = 4177 dtrace_strlen((char *)(uintptr_t)regs[rd], 4178 regs[r2] ? regs[r2] : 4179 dtrace_strsize_default) + 1; 4180 } else { 4181 tupregs[ttop].dttk_size = regs[r2]; 4182 } 4183 4184 tupregs[ttop++].dttk_value = regs[rd]; 4185 break; 4186 4187 case DIF_OP_PUSHTV: 4188 if (ttop == DIF_DTR_NREGS) { 4189 *flags |= CPU_DTRACE_TUPOFLOW; 4190 break; 4191 } 4192 4193 tupregs[ttop].dttk_value = regs[rd]; 4194 tupregs[ttop++].dttk_size = 0; 4195 break; 4196 4197 case DIF_OP_POPTS: 4198 if (ttop != 0) 4199 ttop--; 4200 break; 4201 4202 case DIF_OP_FLUSHTS: 4203 ttop = 0; 4204 break; 4205 4206 case DIF_OP_LDGAA: 4207 case DIF_OP_LDTAA: { 4208 dtrace_dynvar_t *dvar; 4209 dtrace_key_t *key = tupregs; 4210 uint_t nkeys = ttop; 4211 4212 id = DIF_INSTR_VAR(instr); 4213 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4214 id -= DIF_VAR_OTHER_UBASE; 4215 4216 key[nkeys].dttk_value = (uint64_t)id; 4217 key[nkeys++].dttk_size = 0; 4218 4219 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 4220 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4221 key[nkeys++].dttk_size = 0; 4222 v = &vstate->dtvs_tlocals[id]; 4223 } else { 4224 v = &vstate->dtvs_globals[id]->dtsv_var; 4225 } 4226 4227 dvar = dtrace_dynvar(dstate, nkeys, key, 4228 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4229 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4230 DTRACE_DYNVAR_NOALLOC); 4231 4232 if (dvar == NULL) { 4233 regs[rd] = 0; 4234 break; 4235 } 4236 4237 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4238 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4239 } else { 4240 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4241 } 4242 4243 break; 4244 } 4245 4246 case DIF_OP_STGAA: 4247 case DIF_OP_STTAA: { 4248 dtrace_dynvar_t *dvar; 4249 dtrace_key_t *key = tupregs; 4250 uint_t nkeys = ttop; 4251 4252 id = DIF_INSTR_VAR(instr); 4253 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4254 id -= DIF_VAR_OTHER_UBASE; 4255 4256 key[nkeys].dttk_value = (uint64_t)id; 4257 key[nkeys++].dttk_size = 0; 4258 4259 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 4260 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 4261 key[nkeys++].dttk_size = 0; 4262 v = &vstate->dtvs_tlocals[id]; 4263 } else { 4264 v = &vstate->dtvs_globals[id]->dtsv_var; 4265 } 4266 4267 dvar = dtrace_dynvar(dstate, nkeys, key, 4268 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4269 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4270 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4271 DTRACE_DYNVAR_DEALLOC); 4272 4273 if (dvar == NULL) 4274 break; 4275 4276 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4277 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4278 dvar->dtdv_data, &v->dtdv_type); 4279 } else { 4280 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4281 } 4282 4283 break; 4284 } 4285 4286 case DIF_OP_ALLOCS: { 4287 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4288 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 4289 4290 if (mstate->dtms_scratch_ptr + size > 4291 mstate->dtms_scratch_base + 4292 mstate->dtms_scratch_size) { 4293 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4294 regs[rd] = NULL; 4295 } else { 4296 dtrace_bzero((void *) 4297 mstate->dtms_scratch_ptr, size); 4298 mstate->dtms_scratch_ptr += size; 4299 regs[rd] = ptr; 4300 } 4301 break; 4302 } 4303 4304 case DIF_OP_COPYS: 4305 if (!dtrace_canstore(regs[rd], regs[r2], 4306 mstate, vstate)) { 4307 *flags |= CPU_DTRACE_BADADDR; 4308 *illval = regs[rd]; 4309 break; 4310 } 4311 4312 dtrace_bcopy((void *)(uintptr_t)regs[r1], 4313 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 4314 break; 4315 4316 case DIF_OP_STB: 4317 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 4318 *flags |= CPU_DTRACE_BADADDR; 4319 *illval = regs[rd]; 4320 break; 4321 } 4322 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 4323 break; 4324 4325 case DIF_OP_STH: 4326 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 4327 *flags |= CPU_DTRACE_BADADDR; 4328 *illval = regs[rd]; 4329 break; 4330 } 4331 if (regs[rd] & 1) { 4332 *flags |= CPU_DTRACE_BADALIGN; 4333 *illval = regs[rd]; 4334 break; 4335 } 4336 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 4337 break; 4338 4339 case DIF_OP_STW: 4340 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 4341 *flags |= CPU_DTRACE_BADADDR; 4342 *illval = regs[rd]; 4343 break; 4344 } 4345 if (regs[rd] & 3) { 4346 *flags |= CPU_DTRACE_BADALIGN; 4347 *illval = regs[rd]; 4348 break; 4349 } 4350 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 4351 break; 4352 4353 case DIF_OP_STX: 4354 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 4355 *flags |= CPU_DTRACE_BADADDR; 4356 *illval = regs[rd]; 4357 break; 4358 } 4359 if (regs[rd] & 7) { 4360 *flags |= CPU_DTRACE_BADALIGN; 4361 *illval = regs[rd]; 4362 break; 4363 } 4364 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 4365 break; 4366 } 4367 } 4368 4369 if (!(*flags & CPU_DTRACE_FAULT)) 4370 return (rval); 4371 4372 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 4373 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 4374 4375 return (0); 4376 } 4377 4378 static void 4379 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 4380 { 4381 dtrace_probe_t *probe = ecb->dte_probe; 4382 dtrace_provider_t *prov = probe->dtpr_provider; 4383 char c[DTRACE_FULLNAMELEN + 80], *str; 4384 char *msg = "dtrace: breakpoint action at probe "; 4385 char *ecbmsg = " (ecb "; 4386 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 4387 uintptr_t val = (uintptr_t)ecb; 4388 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 4389 4390 if (dtrace_destructive_disallow) 4391 return; 4392 4393 /* 4394 * It's impossible to be taking action on the NULL probe. 4395 */ 4396 ASSERT(probe != NULL); 4397 4398 /* 4399 * This is a poor man's (destitute man's?) sprintf(): we want to 4400 * print the provider name, module name, function name and name of 4401 * the probe, along with the hex address of the ECB with the breakpoint 4402 * action -- all of which we must place in the character buffer by 4403 * hand. 4404 */ 4405 while (*msg != '\0') 4406 c[i++] = *msg++; 4407 4408 for (str = prov->dtpv_name; *str != '\0'; str++) 4409 c[i++] = *str; 4410 c[i++] = ':'; 4411 4412 for (str = probe->dtpr_mod; *str != '\0'; str++) 4413 c[i++] = *str; 4414 c[i++] = ':'; 4415 4416 for (str = probe->dtpr_func; *str != '\0'; str++) 4417 c[i++] = *str; 4418 c[i++] = ':'; 4419 4420 for (str = probe->dtpr_name; *str != '\0'; str++) 4421 c[i++] = *str; 4422 4423 while (*ecbmsg != '\0') 4424 c[i++] = *ecbmsg++; 4425 4426 while (shift >= 0) { 4427 mask = (uintptr_t)0xf << shift; 4428 4429 if (val >= ((uintptr_t)1 << shift)) 4430 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 4431 shift -= 4; 4432 } 4433 4434 c[i++] = ')'; 4435 c[i] = '\0'; 4436 4437 debug_enter(c); 4438 } 4439 4440 static void 4441 dtrace_action_panic(dtrace_ecb_t *ecb) 4442 { 4443 dtrace_probe_t *probe = ecb->dte_probe; 4444 4445 /* 4446 * It's impossible to be taking action on the NULL probe. 4447 */ 4448 ASSERT(probe != NULL); 4449 4450 if (dtrace_destructive_disallow) 4451 return; 4452 4453 if (dtrace_panicked != NULL) 4454 return; 4455 4456 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 4457 return; 4458 4459 /* 4460 * We won the right to panic. (We want to be sure that only one 4461 * thread calls panic() from dtrace_probe(), and that panic() is 4462 * called exactly once.) 4463 */ 4464 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 4465 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 4466 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 4467 } 4468 4469 static void 4470 dtrace_action_raise(uint64_t sig) 4471 { 4472 if (dtrace_destructive_disallow) 4473 return; 4474 4475 if (sig >= NSIG) { 4476 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4477 return; 4478 } 4479 4480 /* 4481 * raise() has a queue depth of 1 -- we ignore all subsequent 4482 * invocations of the raise() action. 4483 */ 4484 if (curthread->t_dtrace_sig == 0) 4485 curthread->t_dtrace_sig = (uint8_t)sig; 4486 4487 curthread->t_sig_check = 1; 4488 aston(curthread); 4489 } 4490 4491 static void 4492 dtrace_action_stop(void) 4493 { 4494 if (dtrace_destructive_disallow) 4495 return; 4496 4497 if (!curthread->t_dtrace_stop) { 4498 curthread->t_dtrace_stop = 1; 4499 curthread->t_sig_check = 1; 4500 aston(curthread); 4501 } 4502 } 4503 4504 static void 4505 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 4506 { 4507 hrtime_t now; 4508 volatile uint16_t *flags; 4509 cpu_t *cpu = CPU; 4510 4511 if (dtrace_destructive_disallow) 4512 return; 4513 4514 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 4515 4516 now = dtrace_gethrtime(); 4517 4518 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 4519 /* 4520 * We need to advance the mark to the current time. 4521 */ 4522 cpu->cpu_dtrace_chillmark = now; 4523 cpu->cpu_dtrace_chilled = 0; 4524 } 4525 4526 /* 4527 * Now check to see if the requested chill time would take us over 4528 * the maximum amount of time allowed in the chill interval. (Or 4529 * worse, if the calculation itself induces overflow.) 4530 */ 4531 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 4532 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 4533 *flags |= CPU_DTRACE_ILLOP; 4534 return; 4535 } 4536 4537 while (dtrace_gethrtime() - now < val) 4538 continue; 4539 4540 /* 4541 * Normally, we assure that the value of the variable "timestamp" does 4542 * not change within an ECB. The presence of chill() represents an 4543 * exception to this rule, however. 4544 */ 4545 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 4546 cpu->cpu_dtrace_chilled += val; 4547 } 4548 4549 static void 4550 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 4551 uint64_t *buf, uint64_t arg) 4552 { 4553 int nframes = DTRACE_USTACK_NFRAMES(arg); 4554 int strsize = DTRACE_USTACK_STRSIZE(arg); 4555 uint64_t *pcs = &buf[1], *fps; 4556 char *str = (char *)&pcs[nframes]; 4557 int size, offs = 0, i, j; 4558 uintptr_t old = mstate->dtms_scratch_ptr, saved; 4559 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4560 char *sym; 4561 4562 /* 4563 * Should be taking a faster path if string space has not been 4564 * allocated. 4565 */ 4566 ASSERT(strsize != 0); 4567 4568 /* 4569 * We will first allocate some temporary space for the frame pointers. 4570 */ 4571 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4572 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 4573 (nframes * sizeof (uint64_t)); 4574 4575 if (mstate->dtms_scratch_ptr + size > 4576 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 4577 /* 4578 * Not enough room for our frame pointers -- need to indicate 4579 * that we ran out of scratch space. 4580 */ 4581 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4582 return; 4583 } 4584 4585 mstate->dtms_scratch_ptr += size; 4586 saved = mstate->dtms_scratch_ptr; 4587 4588 /* 4589 * Now get a stack with both program counters and frame pointers. 4590 */ 4591 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4592 dtrace_getufpstack(buf, fps, nframes + 1); 4593 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4594 4595 /* 4596 * If that faulted, we're cooked. 4597 */ 4598 if (*flags & CPU_DTRACE_FAULT) 4599 goto out; 4600 4601 /* 4602 * Now we want to walk up the stack, calling the USTACK helper. For 4603 * each iteration, we restore the scratch pointer. 4604 */ 4605 for (i = 0; i < nframes; i++) { 4606 mstate->dtms_scratch_ptr = saved; 4607 4608 if (offs >= strsize) 4609 break; 4610 4611 sym = (char *)(uintptr_t)dtrace_helper( 4612 DTRACE_HELPER_ACTION_USTACK, 4613 mstate, state, pcs[i], fps[i]); 4614 4615 /* 4616 * If we faulted while running the helper, we're going to 4617 * clear the fault and null out the corresponding string. 4618 */ 4619 if (*flags & CPU_DTRACE_FAULT) { 4620 *flags &= ~CPU_DTRACE_FAULT; 4621 str[offs++] = '\0'; 4622 continue; 4623 } 4624 4625 if (sym == NULL) { 4626 str[offs++] = '\0'; 4627 continue; 4628 } 4629 4630 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4631 4632 /* 4633 * Now copy in the string that the helper returned to us. 4634 */ 4635 for (j = 0; offs + j < strsize; j++) { 4636 if ((str[offs + j] = sym[j]) == '\0') 4637 break; 4638 } 4639 4640 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4641 4642 offs += j + 1; 4643 } 4644 4645 if (offs >= strsize) { 4646 /* 4647 * If we didn't have room for all of the strings, we don't 4648 * abort processing -- this needn't be a fatal error -- but we 4649 * still want to increment a counter (dts_stkstroverflows) to 4650 * allow this condition to be warned about. (If this is from 4651 * a jstack() action, it is easily tuned via jstackstrsize.) 4652 */ 4653 dtrace_error(&state->dts_stkstroverflows); 4654 } 4655 4656 while (offs < strsize) 4657 str[offs++] = '\0'; 4658 4659 out: 4660 mstate->dtms_scratch_ptr = old; 4661 } 4662 4663 /* 4664 * If you're looking for the epicenter of DTrace, you just found it. This 4665 * is the function called by the provider to fire a probe -- from which all 4666 * subsequent probe-context DTrace activity emanates. 4667 */ 4668 void 4669 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 4670 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 4671 { 4672 processorid_t cpuid; 4673 dtrace_icookie_t cookie; 4674 dtrace_probe_t *probe; 4675 dtrace_mstate_t mstate; 4676 dtrace_ecb_t *ecb; 4677 dtrace_action_t *act; 4678 intptr_t offs; 4679 size_t size; 4680 int vtime, onintr; 4681 volatile uint16_t *flags; 4682 hrtime_t now; 4683 4684 /* 4685 * Kick out immediately if this CPU is still being born (in which case 4686 * curthread will be set to -1) 4687 */ 4688 if ((uintptr_t)curthread & 1) 4689 return; 4690 4691 cookie = dtrace_interrupt_disable(); 4692 probe = dtrace_probes[id - 1]; 4693 cpuid = CPU->cpu_id; 4694 onintr = CPU_ON_INTR(CPU); 4695 4696 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 4697 probe->dtpr_predcache == curthread->t_predcache) { 4698 /* 4699 * We have hit in the predicate cache; we know that 4700 * this predicate would evaluate to be false. 4701 */ 4702 dtrace_interrupt_enable(cookie); 4703 return; 4704 } 4705 4706 if (panic_quiesce) { 4707 /* 4708 * We don't trace anything if we're panicking. 4709 */ 4710 dtrace_interrupt_enable(cookie); 4711 return; 4712 } 4713 4714 now = dtrace_gethrtime(); 4715 vtime = dtrace_vtime_references != 0; 4716 4717 if (vtime && curthread->t_dtrace_start) 4718 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 4719 4720 mstate.dtms_probe = probe; 4721 mstate.dtms_arg[0] = arg0; 4722 mstate.dtms_arg[1] = arg1; 4723 mstate.dtms_arg[2] = arg2; 4724 mstate.dtms_arg[3] = arg3; 4725 mstate.dtms_arg[4] = arg4; 4726 4727 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 4728 4729 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 4730 dtrace_predicate_t *pred = ecb->dte_predicate; 4731 dtrace_state_t *state = ecb->dte_state; 4732 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 4733 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 4734 dtrace_vstate_t *vstate = &state->dts_vstate; 4735 dtrace_provider_t *prov = probe->dtpr_provider; 4736 int committed = 0; 4737 caddr_t tomax; 4738 4739 /* 4740 * A little subtlety with the following (seemingly innocuous) 4741 * declaration of the automatic 'val': by looking at the 4742 * code, you might think that it could be declared in the 4743 * action processing loop, below. (That is, it's only used in 4744 * the action processing loop.) However, it must be declared 4745 * out of that scope because in the case of DIF expression 4746 * arguments to aggregating actions, one iteration of the 4747 * action loop will use the last iteration's value. 4748 */ 4749 #ifdef lint 4750 uint64_t val = 0; 4751 #else 4752 uint64_t val; 4753 #endif 4754 4755 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 4756 *flags &= ~CPU_DTRACE_ERROR; 4757 4758 if (prov == dtrace_provider) { 4759 /* 4760 * If dtrace itself is the provider of this probe, 4761 * we're only going to continue processing the ECB if 4762 * arg0 (the dtrace_state_t) is equal to the ECB's 4763 * creating state. (This prevents disjoint consumers 4764 * from seeing one another's metaprobes.) 4765 */ 4766 if (arg0 != (uint64_t)(uintptr_t)state) 4767 continue; 4768 } 4769 4770 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 4771 /* 4772 * We're not currently active. If our provider isn't 4773 * the dtrace pseudo provider, we're not interested. 4774 */ 4775 if (prov != dtrace_provider) 4776 continue; 4777 4778 /* 4779 * Now we must further check if we are in the BEGIN 4780 * probe. If we are, we will only continue processing 4781 * if we're still in WARMUP -- if one BEGIN enabling 4782 * has invoked the exit() action, we don't want to 4783 * evaluate subsequent BEGIN enablings. 4784 */ 4785 if (probe->dtpr_id == dtrace_probeid_begin && 4786 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 4787 ASSERT(state->dts_activity == 4788 DTRACE_ACTIVITY_DRAINING); 4789 continue; 4790 } 4791 } 4792 4793 if (ecb->dte_cond) { 4794 /* 4795 * If the dte_cond bits indicate that this 4796 * consumer is only allowed to see user-mode firings 4797 * of this probe, call the provider's dtps_usermode() 4798 * entry point to check that the probe was fired 4799 * while in a user context. Skip this ECB if that's 4800 * not the case. 4801 */ 4802 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 4803 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 4804 probe->dtpr_id, probe->dtpr_arg) == 0) 4805 continue; 4806 4807 /* 4808 * This is more subtle than it looks. We have to be 4809 * absolutely certain that CRED() isn't going to 4810 * change out from under us so it's only legit to 4811 * examine that structure if we're in constrained 4812 * situations. Currently, the only times we'll this 4813 * check is if a non-super-user has enabled the 4814 * profile or syscall providers -- providers that 4815 * allow visibility of all processes. For the 4816 * profile case, the check above will ensure that 4817 * we're examining a user context. 4818 */ 4819 if (ecb->dte_cond & DTRACE_COND_OWNER) { 4820 cred_t *cr; 4821 cred_t *s_cr = 4822 ecb->dte_state->dts_cred.dcr_cred; 4823 proc_t *proc; 4824 4825 ASSERT(s_cr != NULL); 4826 4827 if ((cr = CRED()) == NULL || 4828 s_cr->cr_uid != cr->cr_uid || 4829 s_cr->cr_uid != cr->cr_ruid || 4830 s_cr->cr_uid != cr->cr_suid || 4831 s_cr->cr_gid != cr->cr_gid || 4832 s_cr->cr_gid != cr->cr_rgid || 4833 s_cr->cr_gid != cr->cr_sgid || 4834 (proc = ttoproc(curthread)) == NULL || 4835 (proc->p_flag & SNOCD)) 4836 continue; 4837 } 4838 4839 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 4840 cred_t *cr; 4841 cred_t *s_cr = 4842 ecb->dte_state->dts_cred.dcr_cred; 4843 4844 ASSERT(s_cr != NULL); 4845 4846 if ((cr = CRED()) == NULL || 4847 s_cr->cr_zone->zone_id != 4848 cr->cr_zone->zone_id) 4849 continue; 4850 } 4851 } 4852 4853 if (now - state->dts_alive > dtrace_deadman_timeout) { 4854 /* 4855 * We seem to be dead. Unless we (a) have kernel 4856 * destructive permissions (b) have expicitly enabled 4857 * destructive actions and (c) destructive actions have 4858 * not been disabled, we're going to transition into 4859 * the KILLED state, from which no further processing 4860 * on this state will be performed. 4861 */ 4862 if (!dtrace_priv_kernel_destructive(state) || 4863 !state->dts_cred.dcr_destructive || 4864 dtrace_destructive_disallow) { 4865 void *activity = &state->dts_activity; 4866 dtrace_activity_t current; 4867 4868 do { 4869 current = state->dts_activity; 4870 } while (dtrace_cas32(activity, current, 4871 DTRACE_ACTIVITY_KILLED) != current); 4872 4873 continue; 4874 } 4875 } 4876 4877 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 4878 ecb->dte_alignment, state, &mstate)) < 0) 4879 continue; 4880 4881 tomax = buf->dtb_tomax; 4882 ASSERT(tomax != NULL); 4883 4884 if (ecb->dte_size != 0) 4885 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 4886 4887 mstate.dtms_epid = ecb->dte_epid; 4888 mstate.dtms_present |= DTRACE_MSTATE_EPID; 4889 4890 if (pred != NULL) { 4891 dtrace_difo_t *dp = pred->dtp_difo; 4892 int rval; 4893 4894 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 4895 4896 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 4897 dtrace_cacheid_t cid = probe->dtpr_predcache; 4898 4899 if (cid != DTRACE_CACHEIDNONE && !onintr) { 4900 /* 4901 * Update the predicate cache... 4902 */ 4903 ASSERT(cid == pred->dtp_cacheid); 4904 curthread->t_predcache = cid; 4905 } 4906 4907 continue; 4908 } 4909 } 4910 4911 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 4912 act != NULL; act = act->dta_next) { 4913 size_t valoffs; 4914 dtrace_difo_t *dp; 4915 dtrace_recdesc_t *rec = &act->dta_rec; 4916 4917 size = rec->dtrd_size; 4918 valoffs = offs + rec->dtrd_offset; 4919 4920 if (DTRACEACT_ISAGG(act->dta_kind)) { 4921 uint64_t v = 0xbad; 4922 dtrace_aggregation_t *agg; 4923 4924 agg = (dtrace_aggregation_t *)act; 4925 4926 if ((dp = act->dta_difo) != NULL) 4927 v = dtrace_dif_emulate(dp, 4928 &mstate, vstate, state); 4929 4930 if (*flags & CPU_DTRACE_ERROR) 4931 continue; 4932 4933 /* 4934 * Note that we always pass the expression 4935 * value from the previous iteration of the 4936 * action loop. This value will only be used 4937 * if there is an expression argument to the 4938 * aggregating action, denoted by the 4939 * dtag_hasarg field. 4940 */ 4941 dtrace_aggregate(agg, buf, 4942 offs, aggbuf, v, val); 4943 continue; 4944 } 4945 4946 switch (act->dta_kind) { 4947 case DTRACEACT_STOP: 4948 if (dtrace_priv_proc_destructive(state)) 4949 dtrace_action_stop(); 4950 continue; 4951 4952 case DTRACEACT_BREAKPOINT: 4953 if (dtrace_priv_kernel_destructive(state)) 4954 dtrace_action_breakpoint(ecb); 4955 continue; 4956 4957 case DTRACEACT_PANIC: 4958 if (dtrace_priv_kernel_destructive(state)) 4959 dtrace_action_panic(ecb); 4960 continue; 4961 4962 case DTRACEACT_STACK: 4963 if (!dtrace_priv_kernel(state)) 4964 continue; 4965 4966 dtrace_getpcstack((pc_t *)(tomax + valoffs), 4967 size / sizeof (pc_t), probe->dtpr_aframes, 4968 DTRACE_ANCHORED(probe) ? NULL : 4969 (uint32_t *)arg0); 4970 4971 continue; 4972 4973 case DTRACEACT_JSTACK: 4974 case DTRACEACT_USTACK: 4975 if (!dtrace_priv_proc(state)) 4976 continue; 4977 4978 /* 4979 * See comment in DIF_VAR_PID. 4980 */ 4981 if (DTRACE_ANCHORED(mstate.dtms_probe) && 4982 CPU_ON_INTR(CPU)) { 4983 int depth = DTRACE_USTACK_NFRAMES( 4984 rec->dtrd_arg) + 1; 4985 4986 dtrace_bzero((void *)(tomax + valoffs), 4987 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 4988 + depth * sizeof (uint64_t)); 4989 4990 continue; 4991 } 4992 4993 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 4994 curproc->p_dtrace_helpers != NULL) { 4995 /* 4996 * This is the slow path -- we have 4997 * allocated string space, and we're 4998 * getting the stack of a process that 4999 * has helpers. Call into a separate 5000 * routine to perform this processing. 5001 */ 5002 dtrace_action_ustack(&mstate, state, 5003 (uint64_t *)(tomax + valoffs), 5004 rec->dtrd_arg); 5005 continue; 5006 } 5007 5008 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5009 dtrace_getupcstack((uint64_t *) 5010 (tomax + valoffs), 5011 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5012 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5013 continue; 5014 5015 default: 5016 break; 5017 } 5018 5019 dp = act->dta_difo; 5020 ASSERT(dp != NULL); 5021 5022 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5023 5024 if (*flags & CPU_DTRACE_ERROR) 5025 continue; 5026 5027 switch (act->dta_kind) { 5028 case DTRACEACT_SPECULATE: 5029 ASSERT(buf == &state->dts_buffer[cpuid]); 5030 buf = dtrace_speculation_buffer(state, 5031 cpuid, val); 5032 5033 if (buf == NULL) { 5034 *flags |= CPU_DTRACE_DROP; 5035 continue; 5036 } 5037 5038 offs = dtrace_buffer_reserve(buf, 5039 ecb->dte_needed, ecb->dte_alignment, 5040 state, NULL); 5041 5042 if (offs < 0) { 5043 *flags |= CPU_DTRACE_DROP; 5044 continue; 5045 } 5046 5047 tomax = buf->dtb_tomax; 5048 ASSERT(tomax != NULL); 5049 5050 if (ecb->dte_size != 0) 5051 DTRACE_STORE(uint32_t, tomax, offs, 5052 ecb->dte_epid); 5053 continue; 5054 5055 case DTRACEACT_CHILL: 5056 if (dtrace_priv_kernel_destructive(state)) 5057 dtrace_action_chill(&mstate, val); 5058 continue; 5059 5060 case DTRACEACT_RAISE: 5061 if (dtrace_priv_proc_destructive(state)) 5062 dtrace_action_raise(val); 5063 continue; 5064 5065 case DTRACEACT_COMMIT: 5066 ASSERT(!committed); 5067 5068 /* 5069 * We need to commit our buffer state. 5070 */ 5071 if (ecb->dte_size) 5072 buf->dtb_offset = offs + ecb->dte_size; 5073 buf = &state->dts_buffer[cpuid]; 5074 dtrace_speculation_commit(state, cpuid, val); 5075 committed = 1; 5076 continue; 5077 5078 case DTRACEACT_DISCARD: 5079 dtrace_speculation_discard(state, cpuid, val); 5080 continue; 5081 5082 case DTRACEACT_DIFEXPR: 5083 case DTRACEACT_LIBACT: 5084 case DTRACEACT_PRINTF: 5085 case DTRACEACT_PRINTA: 5086 case DTRACEACT_SYSTEM: 5087 case DTRACEACT_FREOPEN: 5088 break; 5089 5090 case DTRACEACT_SYM: 5091 case DTRACEACT_MOD: 5092 if (!dtrace_priv_kernel(state)) 5093 continue; 5094 break; 5095 5096 case DTRACEACT_USYM: 5097 case DTRACEACT_UMOD: 5098 case DTRACEACT_UADDR: { 5099 struct pid *pid = curthread->t_procp->p_pidp; 5100 5101 if (!dtrace_priv_proc(state)) 5102 continue; 5103 5104 DTRACE_STORE(uint64_t, tomax, 5105 valoffs, (uint64_t)pid->pid_id); 5106 DTRACE_STORE(uint64_t, tomax, 5107 valoffs + sizeof (uint64_t), val); 5108 5109 continue; 5110 } 5111 5112 case DTRACEACT_EXIT: { 5113 /* 5114 * For the exit action, we are going to attempt 5115 * to atomically set our activity to be 5116 * draining. If this fails (either because 5117 * another CPU has beat us to the exit action, 5118 * or because our current activity is something 5119 * other than ACTIVE or WARMUP), we will 5120 * continue. This assures that the exit action 5121 * can be successfully recorded at most once 5122 * when we're in the ACTIVE state. If we're 5123 * encountering the exit() action while in 5124 * COOLDOWN, however, we want to honor the new 5125 * status code. (We know that we're the only 5126 * thread in COOLDOWN, so there is no race.) 5127 */ 5128 void *activity = &state->dts_activity; 5129 dtrace_activity_t current = state->dts_activity; 5130 5131 if (current == DTRACE_ACTIVITY_COOLDOWN) 5132 break; 5133 5134 if (current != DTRACE_ACTIVITY_WARMUP) 5135 current = DTRACE_ACTIVITY_ACTIVE; 5136 5137 if (dtrace_cas32(activity, current, 5138 DTRACE_ACTIVITY_DRAINING) != current) { 5139 *flags |= CPU_DTRACE_DROP; 5140 continue; 5141 } 5142 5143 break; 5144 } 5145 5146 default: 5147 ASSERT(0); 5148 } 5149 5150 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5151 uintptr_t end = valoffs + size; 5152 5153 /* 5154 * If this is a string, we're going to only 5155 * load until we find the zero byte -- after 5156 * which we'll store zero bytes. 5157 */ 5158 if (dp->dtdo_rtype.dtdt_kind == 5159 DIF_TYPE_STRING) { 5160 char c = '\0' + 1; 5161 int intuple = act->dta_intuple; 5162 size_t s; 5163 5164 for (s = 0; s < size; s++) { 5165 if (c != '\0') 5166 c = dtrace_load8(val++); 5167 5168 DTRACE_STORE(uint8_t, tomax, 5169 valoffs++, c); 5170 5171 if (c == '\0' && intuple) 5172 break; 5173 } 5174 5175 continue; 5176 } 5177 5178 while (valoffs < end) { 5179 DTRACE_STORE(uint8_t, tomax, valoffs++, 5180 dtrace_load8(val++)); 5181 } 5182 5183 continue; 5184 } 5185 5186 switch (size) { 5187 case 0: 5188 break; 5189 5190 case sizeof (uint8_t): 5191 DTRACE_STORE(uint8_t, tomax, valoffs, val); 5192 break; 5193 case sizeof (uint16_t): 5194 DTRACE_STORE(uint16_t, tomax, valoffs, val); 5195 break; 5196 case sizeof (uint32_t): 5197 DTRACE_STORE(uint32_t, tomax, valoffs, val); 5198 break; 5199 case sizeof (uint64_t): 5200 DTRACE_STORE(uint64_t, tomax, valoffs, val); 5201 break; 5202 default: 5203 /* 5204 * Any other size should have been returned by 5205 * reference, not by value. 5206 */ 5207 ASSERT(0); 5208 break; 5209 } 5210 } 5211 5212 if (*flags & CPU_DTRACE_DROP) 5213 continue; 5214 5215 if (*flags & CPU_DTRACE_FAULT) { 5216 int ndx; 5217 dtrace_action_t *err; 5218 5219 buf->dtb_errors++; 5220 5221 if (probe->dtpr_id == dtrace_probeid_error) { 5222 /* 5223 * There's nothing we can do -- we had an 5224 * error on the error probe. We bump an 5225 * error counter to at least indicate that 5226 * this condition happened. 5227 */ 5228 dtrace_error(&state->dts_dblerrors); 5229 continue; 5230 } 5231 5232 if (vtime) { 5233 /* 5234 * Before recursing on dtrace_probe(), we 5235 * need to explicitly clear out our start 5236 * time to prevent it from being accumulated 5237 * into t_dtrace_vtime. 5238 */ 5239 curthread->t_dtrace_start = 0; 5240 } 5241 5242 /* 5243 * Iterate over the actions to figure out which action 5244 * we were processing when we experienced the error. 5245 * Note that act points _past_ the faulting action; if 5246 * act is ecb->dte_action, the fault was in the 5247 * predicate, if it's ecb->dte_action->dta_next it's 5248 * in action #1, and so on. 5249 */ 5250 for (err = ecb->dte_action, ndx = 0; 5251 err != act; err = err->dta_next, ndx++) 5252 continue; 5253 5254 dtrace_probe_error(state, ecb->dte_epid, ndx, 5255 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 5256 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 5257 cpu_core[cpuid].cpuc_dtrace_illval); 5258 5259 continue; 5260 } 5261 5262 if (!committed) 5263 buf->dtb_offset = offs + ecb->dte_size; 5264 } 5265 5266 if (vtime) 5267 curthread->t_dtrace_start = dtrace_gethrtime(); 5268 5269 dtrace_interrupt_enable(cookie); 5270 } 5271 5272 /* 5273 * DTrace Probe Hashing Functions 5274 * 5275 * The functions in this section (and indeed, the functions in remaining 5276 * sections) are not _called_ from probe context. (Any exceptions to this are 5277 * marked with a "Note:".) Rather, they are called from elsewhere in the 5278 * DTrace framework to look-up probes in, add probes to and remove probes from 5279 * the DTrace probe hashes. (Each probe is hashed by each element of the 5280 * probe tuple -- allowing for fast lookups, regardless of what was 5281 * specified.) 5282 */ 5283 static uint_t 5284 dtrace_hash_str(char *p) 5285 { 5286 unsigned int g; 5287 uint_t hval = 0; 5288 5289 while (*p) { 5290 hval = (hval << 4) + *p++; 5291 if ((g = (hval & 0xf0000000)) != 0) 5292 hval ^= g >> 24; 5293 hval &= ~g; 5294 } 5295 return (hval); 5296 } 5297 5298 static dtrace_hash_t * 5299 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 5300 { 5301 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 5302 5303 hash->dth_stroffs = stroffs; 5304 hash->dth_nextoffs = nextoffs; 5305 hash->dth_prevoffs = prevoffs; 5306 5307 hash->dth_size = 1; 5308 hash->dth_mask = hash->dth_size - 1; 5309 5310 hash->dth_tab = kmem_zalloc(hash->dth_size * 5311 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 5312 5313 return (hash); 5314 } 5315 5316 static void 5317 dtrace_hash_destroy(dtrace_hash_t *hash) 5318 { 5319 #ifdef DEBUG 5320 int i; 5321 5322 for (i = 0; i < hash->dth_size; i++) 5323 ASSERT(hash->dth_tab[i] == NULL); 5324 #endif 5325 5326 kmem_free(hash->dth_tab, 5327 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 5328 kmem_free(hash, sizeof (dtrace_hash_t)); 5329 } 5330 5331 static void 5332 dtrace_hash_resize(dtrace_hash_t *hash) 5333 { 5334 int size = hash->dth_size, i, ndx; 5335 int new_size = hash->dth_size << 1; 5336 int new_mask = new_size - 1; 5337 dtrace_hashbucket_t **new_tab, *bucket, *next; 5338 5339 ASSERT((new_size & new_mask) == 0); 5340 5341 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 5342 5343 for (i = 0; i < size; i++) { 5344 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 5345 dtrace_probe_t *probe = bucket->dthb_chain; 5346 5347 ASSERT(probe != NULL); 5348 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 5349 5350 next = bucket->dthb_next; 5351 bucket->dthb_next = new_tab[ndx]; 5352 new_tab[ndx] = bucket; 5353 } 5354 } 5355 5356 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 5357 hash->dth_tab = new_tab; 5358 hash->dth_size = new_size; 5359 hash->dth_mask = new_mask; 5360 } 5361 5362 static void 5363 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 5364 { 5365 int hashval = DTRACE_HASHSTR(hash, new); 5366 int ndx = hashval & hash->dth_mask; 5367 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5368 dtrace_probe_t **nextp, **prevp; 5369 5370 for (; bucket != NULL; bucket = bucket->dthb_next) { 5371 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 5372 goto add; 5373 } 5374 5375 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 5376 dtrace_hash_resize(hash); 5377 dtrace_hash_add(hash, new); 5378 return; 5379 } 5380 5381 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 5382 bucket->dthb_next = hash->dth_tab[ndx]; 5383 hash->dth_tab[ndx] = bucket; 5384 hash->dth_nbuckets++; 5385 5386 add: 5387 nextp = DTRACE_HASHNEXT(hash, new); 5388 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 5389 *nextp = bucket->dthb_chain; 5390 5391 if (bucket->dthb_chain != NULL) { 5392 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 5393 ASSERT(*prevp == NULL); 5394 *prevp = new; 5395 } 5396 5397 bucket->dthb_chain = new; 5398 bucket->dthb_len++; 5399 } 5400 5401 static dtrace_probe_t * 5402 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 5403 { 5404 int hashval = DTRACE_HASHSTR(hash, template); 5405 int ndx = hashval & hash->dth_mask; 5406 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5407 5408 for (; bucket != NULL; bucket = bucket->dthb_next) { 5409 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5410 return (bucket->dthb_chain); 5411 } 5412 5413 return (NULL); 5414 } 5415 5416 static int 5417 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 5418 { 5419 int hashval = DTRACE_HASHSTR(hash, template); 5420 int ndx = hashval & hash->dth_mask; 5421 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5422 5423 for (; bucket != NULL; bucket = bucket->dthb_next) { 5424 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 5425 return (bucket->dthb_len); 5426 } 5427 5428 return (NULL); 5429 } 5430 5431 static void 5432 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 5433 { 5434 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 5435 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 5436 5437 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 5438 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 5439 5440 /* 5441 * Find the bucket that we're removing this probe from. 5442 */ 5443 for (; bucket != NULL; bucket = bucket->dthb_next) { 5444 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 5445 break; 5446 } 5447 5448 ASSERT(bucket != NULL); 5449 5450 if (*prevp == NULL) { 5451 if (*nextp == NULL) { 5452 /* 5453 * The removed probe was the only probe on this 5454 * bucket; we need to remove the bucket. 5455 */ 5456 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 5457 5458 ASSERT(bucket->dthb_chain == probe); 5459 ASSERT(b != NULL); 5460 5461 if (b == bucket) { 5462 hash->dth_tab[ndx] = bucket->dthb_next; 5463 } else { 5464 while (b->dthb_next != bucket) 5465 b = b->dthb_next; 5466 b->dthb_next = bucket->dthb_next; 5467 } 5468 5469 ASSERT(hash->dth_nbuckets > 0); 5470 hash->dth_nbuckets--; 5471 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 5472 return; 5473 } 5474 5475 bucket->dthb_chain = *nextp; 5476 } else { 5477 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 5478 } 5479 5480 if (*nextp != NULL) 5481 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 5482 } 5483 5484 /* 5485 * DTrace Utility Functions 5486 * 5487 * These are random utility functions that are _not_ called from probe context. 5488 */ 5489 static int 5490 dtrace_badattr(const dtrace_attribute_t *a) 5491 { 5492 return (a->dtat_name > DTRACE_STABILITY_MAX || 5493 a->dtat_data > DTRACE_STABILITY_MAX || 5494 a->dtat_class > DTRACE_CLASS_MAX); 5495 } 5496 5497 /* 5498 * Return a duplicate copy of a string. If the specified string is NULL, 5499 * this function returns a zero-length string. 5500 */ 5501 static char * 5502 dtrace_strdup(const char *str) 5503 { 5504 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 5505 5506 if (str != NULL) 5507 (void) strcpy(new, str); 5508 5509 return (new); 5510 } 5511 5512 #define DTRACE_ISALPHA(c) \ 5513 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 5514 5515 static int 5516 dtrace_badname(const char *s) 5517 { 5518 char c; 5519 5520 if (s == NULL || (c = *s++) == '\0') 5521 return (0); 5522 5523 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 5524 return (1); 5525 5526 while ((c = *s++) != '\0') { 5527 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 5528 c != '-' && c != '_' && c != '.' && c != '`') 5529 return (1); 5530 } 5531 5532 return (0); 5533 } 5534 5535 static void 5536 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 5537 { 5538 uint32_t priv; 5539 5540 *uidp = crgetuid(cr); 5541 *zoneidp = crgetzoneid(cr); 5542 if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 5543 priv = DTRACE_PRIV_ALL; 5544 } else { 5545 priv = 0; 5546 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 5547 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 5548 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 5549 priv |= DTRACE_PRIV_USER; 5550 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 5551 priv |= DTRACE_PRIV_PROC; 5552 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 5553 priv |= DTRACE_PRIV_OWNER; 5554 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 5555 priv |= DTRACE_PRIV_ZONEOWNER; 5556 } 5557 5558 *privp = priv; 5559 } 5560 5561 #ifdef DTRACE_ERRDEBUG 5562 static void 5563 dtrace_errdebug(const char *str) 5564 { 5565 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 5566 int occupied = 0; 5567 5568 mutex_enter(&dtrace_errlock); 5569 dtrace_errlast = str; 5570 dtrace_errthread = curthread; 5571 5572 while (occupied++ < DTRACE_ERRHASHSZ) { 5573 if (dtrace_errhash[hval].dter_msg == str) { 5574 dtrace_errhash[hval].dter_count++; 5575 goto out; 5576 } 5577 5578 if (dtrace_errhash[hval].dter_msg != NULL) { 5579 hval = (hval + 1) % DTRACE_ERRHASHSZ; 5580 continue; 5581 } 5582 5583 dtrace_errhash[hval].dter_msg = str; 5584 dtrace_errhash[hval].dter_count = 1; 5585 goto out; 5586 } 5587 5588 panic("dtrace: undersized error hash"); 5589 out: 5590 mutex_exit(&dtrace_errlock); 5591 } 5592 #endif 5593 5594 /* 5595 * DTrace Matching Functions 5596 * 5597 * These functions are used to match groups of probes, given some elements of 5598 * a probe tuple, or some globbed expressions for elements of a probe tuple. 5599 */ 5600 static int 5601 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 5602 zoneid_t zoneid) 5603 { 5604 if (priv != DTRACE_PRIV_ALL) { 5605 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 5606 uint32_t match = priv & ppriv; 5607 5608 /* 5609 * No PRIV_DTRACE_* privileges... 5610 */ 5611 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 5612 DTRACE_PRIV_KERNEL)) == 0) 5613 return (0); 5614 5615 /* 5616 * No matching bits, but there were bits to match... 5617 */ 5618 if (match == 0 && ppriv != 0) 5619 return (0); 5620 5621 /* 5622 * Need to have permissions to the process, but don't... 5623 */ 5624 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 5625 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 5626 return (0); 5627 } 5628 5629 /* 5630 * Need to be in the same zone unless we possess the 5631 * privilege to examine all zones. 5632 */ 5633 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 5634 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 5635 return (0); 5636 } 5637 } 5638 5639 return (1); 5640 } 5641 5642 /* 5643 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 5644 * consists of input pattern strings and an ops-vector to evaluate them. 5645 * This function returns >0 for match, 0 for no match, and <0 for error. 5646 */ 5647 static int 5648 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 5649 uint32_t priv, uid_t uid, zoneid_t zoneid) 5650 { 5651 dtrace_provider_t *pvp = prp->dtpr_provider; 5652 int rv; 5653 5654 if (pvp->dtpv_defunct) 5655 return (0); 5656 5657 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 5658 return (rv); 5659 5660 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 5661 return (rv); 5662 5663 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 5664 return (rv); 5665 5666 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 5667 return (rv); 5668 5669 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 5670 return (0); 5671 5672 return (rv); 5673 } 5674 5675 /* 5676 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 5677 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 5678 * libc's version, the kernel version only applies to 8-bit ASCII strings. 5679 * In addition, all of the recursion cases except for '*' matching have been 5680 * unwound. For '*', we still implement recursive evaluation, but a depth 5681 * counter is maintained and matching is aborted if we recurse too deep. 5682 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 5683 */ 5684 static int 5685 dtrace_match_glob(const char *s, const char *p, int depth) 5686 { 5687 const char *olds; 5688 char s1, c; 5689 int gs; 5690 5691 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 5692 return (-1); 5693 5694 if (s == NULL) 5695 s = ""; /* treat NULL as empty string */ 5696 5697 top: 5698 olds = s; 5699 s1 = *s++; 5700 5701 if (p == NULL) 5702 return (0); 5703 5704 if ((c = *p++) == '\0') 5705 return (s1 == '\0'); 5706 5707 switch (c) { 5708 case '[': { 5709 int ok = 0, notflag = 0; 5710 char lc = '\0'; 5711 5712 if (s1 == '\0') 5713 return (0); 5714 5715 if (*p == '!') { 5716 notflag = 1; 5717 p++; 5718 } 5719 5720 if ((c = *p++) == '\0') 5721 return (0); 5722 5723 do { 5724 if (c == '-' && lc != '\0' && *p != ']') { 5725 if ((c = *p++) == '\0') 5726 return (0); 5727 if (c == '\\' && (c = *p++) == '\0') 5728 return (0); 5729 5730 if (notflag) { 5731 if (s1 < lc || s1 > c) 5732 ok++; 5733 else 5734 return (0); 5735 } else if (lc <= s1 && s1 <= c) 5736 ok++; 5737 5738 } else if (c == '\\' && (c = *p++) == '\0') 5739 return (0); 5740 5741 lc = c; /* save left-hand 'c' for next iteration */ 5742 5743 if (notflag) { 5744 if (s1 != c) 5745 ok++; 5746 else 5747 return (0); 5748 } else if (s1 == c) 5749 ok++; 5750 5751 if ((c = *p++) == '\0') 5752 return (0); 5753 5754 } while (c != ']'); 5755 5756 if (ok) 5757 goto top; 5758 5759 return (0); 5760 } 5761 5762 case '\\': 5763 if ((c = *p++) == '\0') 5764 return (0); 5765 /*FALLTHRU*/ 5766 5767 default: 5768 if (c != s1) 5769 return (0); 5770 /*FALLTHRU*/ 5771 5772 case '?': 5773 if (s1 != '\0') 5774 goto top; 5775 return (0); 5776 5777 case '*': 5778 while (*p == '*') 5779 p++; /* consecutive *'s are identical to a single one */ 5780 5781 if (*p == '\0') 5782 return (1); 5783 5784 for (s = olds; *s != '\0'; s++) { 5785 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 5786 return (gs); 5787 } 5788 5789 return (0); 5790 } 5791 } 5792 5793 /*ARGSUSED*/ 5794 static int 5795 dtrace_match_string(const char *s, const char *p, int depth) 5796 { 5797 return (s != NULL && strcmp(s, p) == 0); 5798 } 5799 5800 /*ARGSUSED*/ 5801 static int 5802 dtrace_match_nul(const char *s, const char *p, int depth) 5803 { 5804 return (1); /* always match the empty pattern */ 5805 } 5806 5807 /*ARGSUSED*/ 5808 static int 5809 dtrace_match_nonzero(const char *s, const char *p, int depth) 5810 { 5811 return (s != NULL && s[0] != '\0'); 5812 } 5813 5814 static int 5815 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 5816 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 5817 { 5818 dtrace_probe_t template, *probe; 5819 dtrace_hash_t *hash = NULL; 5820 int len, best = INT_MAX, nmatched = 0; 5821 dtrace_id_t i; 5822 5823 ASSERT(MUTEX_HELD(&dtrace_lock)); 5824 5825 /* 5826 * If the probe ID is specified in the key, just lookup by ID and 5827 * invoke the match callback once if a matching probe is found. 5828 */ 5829 if (pkp->dtpk_id != DTRACE_IDNONE) { 5830 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 5831 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 5832 (void) (*matched)(probe, arg); 5833 nmatched++; 5834 } 5835 return (nmatched); 5836 } 5837 5838 template.dtpr_mod = (char *)pkp->dtpk_mod; 5839 template.dtpr_func = (char *)pkp->dtpk_func; 5840 template.dtpr_name = (char *)pkp->dtpk_name; 5841 5842 /* 5843 * We want to find the most distinct of the module name, function 5844 * name, and name. So for each one that is not a glob pattern or 5845 * empty string, we perform a lookup in the corresponding hash and 5846 * use the hash table with the fewest collisions to do our search. 5847 */ 5848 if (pkp->dtpk_mmatch == &dtrace_match_string && 5849 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 5850 best = len; 5851 hash = dtrace_bymod; 5852 } 5853 5854 if (pkp->dtpk_fmatch == &dtrace_match_string && 5855 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 5856 best = len; 5857 hash = dtrace_byfunc; 5858 } 5859 5860 if (pkp->dtpk_nmatch == &dtrace_match_string && 5861 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 5862 best = len; 5863 hash = dtrace_byname; 5864 } 5865 5866 /* 5867 * If we did not select a hash table, iterate over every probe and 5868 * invoke our callback for each one that matches our input probe key. 5869 */ 5870 if (hash == NULL) { 5871 for (i = 0; i < dtrace_nprobes; i++) { 5872 if ((probe = dtrace_probes[i]) == NULL || 5873 dtrace_match_probe(probe, pkp, priv, uid, 5874 zoneid) <= 0) 5875 continue; 5876 5877 nmatched++; 5878 5879 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 5880 break; 5881 } 5882 5883 return (nmatched); 5884 } 5885 5886 /* 5887 * If we selected a hash table, iterate over each probe of the same key 5888 * name and invoke the callback for every probe that matches the other 5889 * attributes of our input probe key. 5890 */ 5891 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 5892 probe = *(DTRACE_HASHNEXT(hash, probe))) { 5893 5894 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 5895 continue; 5896 5897 nmatched++; 5898 5899 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 5900 break; 5901 } 5902 5903 return (nmatched); 5904 } 5905 5906 /* 5907 * Return the function pointer dtrace_probecmp() should use to compare the 5908 * specified pattern with a string. For NULL or empty patterns, we select 5909 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 5910 * For non-empty non-glob strings, we use dtrace_match_string(). 5911 */ 5912 static dtrace_probekey_f * 5913 dtrace_probekey_func(const char *p) 5914 { 5915 char c; 5916 5917 if (p == NULL || *p == '\0') 5918 return (&dtrace_match_nul); 5919 5920 while ((c = *p++) != '\0') { 5921 if (c == '[' || c == '?' || c == '*' || c == '\\') 5922 return (&dtrace_match_glob); 5923 } 5924 5925 return (&dtrace_match_string); 5926 } 5927 5928 /* 5929 * Build a probe comparison key for use with dtrace_match_probe() from the 5930 * given probe description. By convention, a null key only matches anchored 5931 * probes: if each field is the empty string, reset dtpk_fmatch to 5932 * dtrace_match_nonzero(). 5933 */ 5934 static void 5935 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 5936 { 5937 pkp->dtpk_prov = pdp->dtpd_provider; 5938 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 5939 5940 pkp->dtpk_mod = pdp->dtpd_mod; 5941 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 5942 5943 pkp->dtpk_func = pdp->dtpd_func; 5944 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 5945 5946 pkp->dtpk_name = pdp->dtpd_name; 5947 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 5948 5949 pkp->dtpk_id = pdp->dtpd_id; 5950 5951 if (pkp->dtpk_id == DTRACE_IDNONE && 5952 pkp->dtpk_pmatch == &dtrace_match_nul && 5953 pkp->dtpk_mmatch == &dtrace_match_nul && 5954 pkp->dtpk_fmatch == &dtrace_match_nul && 5955 pkp->dtpk_nmatch == &dtrace_match_nul) 5956 pkp->dtpk_fmatch = &dtrace_match_nonzero; 5957 } 5958 5959 /* 5960 * DTrace Provider-to-Framework API Functions 5961 * 5962 * These functions implement much of the Provider-to-Framework API, as 5963 * described in <sys/dtrace.h>. The parts of the API not in this section are 5964 * the functions in the API for probe management (found below), and 5965 * dtrace_probe() itself (found above). 5966 */ 5967 5968 /* 5969 * Register the calling provider with the DTrace framework. This should 5970 * generally be called by DTrace providers in their attach(9E) entry point. 5971 */ 5972 int 5973 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 5974 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 5975 { 5976 dtrace_provider_t *provider; 5977 5978 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 5979 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 5980 "arguments", name ? name : "<NULL>"); 5981 return (EINVAL); 5982 } 5983 5984 if (name[0] == '\0' || dtrace_badname(name)) { 5985 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 5986 "provider name", name); 5987 return (EINVAL); 5988 } 5989 5990 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 5991 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 5992 pops->dtps_destroy == NULL || 5993 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 5994 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 5995 "provider ops", name); 5996 return (EINVAL); 5997 } 5998 5999 if (dtrace_badattr(&pap->dtpa_provider) || 6000 dtrace_badattr(&pap->dtpa_mod) || 6001 dtrace_badattr(&pap->dtpa_func) || 6002 dtrace_badattr(&pap->dtpa_name) || 6003 dtrace_badattr(&pap->dtpa_args)) { 6004 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6005 "provider attributes", name); 6006 return (EINVAL); 6007 } 6008 6009 if (priv & ~DTRACE_PRIV_ALL) { 6010 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6011 "privilege attributes", name); 6012 return (EINVAL); 6013 } 6014 6015 if ((priv & DTRACE_PRIV_KERNEL) && 6016 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6017 pops->dtps_usermode == NULL) { 6018 cmn_err(CE_WARN, "failed to register provider '%s': need " 6019 "dtps_usermode() op for given privilege attributes", name); 6020 return (EINVAL); 6021 } 6022 6023 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6024 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6025 (void) strcpy(provider->dtpv_name, name); 6026 6027 provider->dtpv_attr = *pap; 6028 provider->dtpv_priv.dtpp_flags = priv; 6029 if (cr != NULL) { 6030 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6031 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6032 } 6033 provider->dtpv_pops = *pops; 6034 6035 if (pops->dtps_provide == NULL) { 6036 ASSERT(pops->dtps_provide_module != NULL); 6037 provider->dtpv_pops.dtps_provide = 6038 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6039 } 6040 6041 if (pops->dtps_provide_module == NULL) { 6042 ASSERT(pops->dtps_provide != NULL); 6043 provider->dtpv_pops.dtps_provide_module = 6044 (void (*)(void *, struct modctl *))dtrace_nullop; 6045 } 6046 6047 if (pops->dtps_suspend == NULL) { 6048 ASSERT(pops->dtps_resume == NULL); 6049 provider->dtpv_pops.dtps_suspend = 6050 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6051 provider->dtpv_pops.dtps_resume = 6052 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6053 } 6054 6055 provider->dtpv_arg = arg; 6056 *idp = (dtrace_provider_id_t)provider; 6057 6058 if (pops == &dtrace_provider_ops) { 6059 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6060 ASSERT(MUTEX_HELD(&dtrace_lock)); 6061 ASSERT(dtrace_anon.dta_enabling == NULL); 6062 6063 /* 6064 * We make sure that the DTrace provider is at the head of 6065 * the provider chain. 6066 */ 6067 provider->dtpv_next = dtrace_provider; 6068 dtrace_provider = provider; 6069 return (0); 6070 } 6071 6072 mutex_enter(&dtrace_provider_lock); 6073 mutex_enter(&dtrace_lock); 6074 6075 /* 6076 * If there is at least one provider registered, we'll add this 6077 * provider after the first provider. 6078 */ 6079 if (dtrace_provider != NULL) { 6080 provider->dtpv_next = dtrace_provider->dtpv_next; 6081 dtrace_provider->dtpv_next = provider; 6082 } else { 6083 dtrace_provider = provider; 6084 } 6085 6086 if (dtrace_retained != NULL) { 6087 dtrace_enabling_provide(provider); 6088 6089 /* 6090 * Now we need to call dtrace_enabling_matchall() -- which 6091 * will acquire cpu_lock and dtrace_lock. We therefore need 6092 * to drop all of our locks before calling into it... 6093 */ 6094 mutex_exit(&dtrace_lock); 6095 mutex_exit(&dtrace_provider_lock); 6096 dtrace_enabling_matchall(); 6097 6098 return (0); 6099 } 6100 6101 mutex_exit(&dtrace_lock); 6102 mutex_exit(&dtrace_provider_lock); 6103 6104 return (0); 6105 } 6106 6107 /* 6108 * Unregister the specified provider from the DTrace framework. This should 6109 * generally be called by DTrace providers in their detach(9E) entry point. 6110 */ 6111 int 6112 dtrace_unregister(dtrace_provider_id_t id) 6113 { 6114 dtrace_provider_t *old = (dtrace_provider_t *)id; 6115 dtrace_provider_t *prev = NULL; 6116 int i, self = 0; 6117 dtrace_probe_t *probe, *first = NULL; 6118 6119 if (old->dtpv_pops.dtps_enable == 6120 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6121 /* 6122 * If DTrace itself is the provider, we're called with locks 6123 * already held. 6124 */ 6125 ASSERT(old == dtrace_provider); 6126 ASSERT(dtrace_devi != NULL); 6127 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6128 ASSERT(MUTEX_HELD(&dtrace_lock)); 6129 self = 1; 6130 6131 if (dtrace_provider->dtpv_next != NULL) { 6132 /* 6133 * There's another provider here; return failure. 6134 */ 6135 return (EBUSY); 6136 } 6137 } else { 6138 mutex_enter(&dtrace_provider_lock); 6139 mutex_enter(&mod_lock); 6140 mutex_enter(&dtrace_lock); 6141 } 6142 6143 /* 6144 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6145 * probes, we refuse to let providers slither away, unless this 6146 * provider has already been explicitly invalidated. 6147 */ 6148 if (!old->dtpv_defunct && 6149 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6150 dtrace_anon.dta_state->dts_necbs > 0))) { 6151 if (!self) { 6152 mutex_exit(&dtrace_lock); 6153 mutex_exit(&mod_lock); 6154 mutex_exit(&dtrace_provider_lock); 6155 } 6156 return (EBUSY); 6157 } 6158 6159 /* 6160 * Attempt to destroy the probes associated with this provider. 6161 */ 6162 for (i = 0; i < dtrace_nprobes; i++) { 6163 if ((probe = dtrace_probes[i]) == NULL) 6164 continue; 6165 6166 if (probe->dtpr_provider != old) 6167 continue; 6168 6169 if (probe->dtpr_ecb == NULL) 6170 continue; 6171 6172 /* 6173 * We have at least one ECB; we can't remove this provider. 6174 */ 6175 if (!self) { 6176 mutex_exit(&dtrace_lock); 6177 mutex_exit(&mod_lock); 6178 mutex_exit(&dtrace_provider_lock); 6179 } 6180 return (EBUSY); 6181 } 6182 6183 /* 6184 * All of the probes for this provider are disabled; we can safely 6185 * remove all of them from their hash chains and from the probe array. 6186 */ 6187 for (i = 0; i < dtrace_nprobes; i++) { 6188 if ((probe = dtrace_probes[i]) == NULL) 6189 continue; 6190 6191 if (probe->dtpr_provider != old) 6192 continue; 6193 6194 dtrace_probes[i] = NULL; 6195 6196 dtrace_hash_remove(dtrace_bymod, probe); 6197 dtrace_hash_remove(dtrace_byfunc, probe); 6198 dtrace_hash_remove(dtrace_byname, probe); 6199 6200 if (first == NULL) { 6201 first = probe; 6202 probe->dtpr_nextmod = NULL; 6203 } else { 6204 probe->dtpr_nextmod = first; 6205 first = probe; 6206 } 6207 } 6208 6209 /* 6210 * The provider's probes have been removed from the hash chains and 6211 * from the probe array. Now issue a dtrace_sync() to be sure that 6212 * everyone has cleared out from any probe array processing. 6213 */ 6214 dtrace_sync(); 6215 6216 for (probe = first; probe != NULL; probe = first) { 6217 first = probe->dtpr_nextmod; 6218 6219 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 6220 probe->dtpr_arg); 6221 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6222 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6223 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6224 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 6225 kmem_free(probe, sizeof (dtrace_probe_t)); 6226 } 6227 6228 if ((prev = dtrace_provider) == old) { 6229 ASSERT(self || dtrace_devi == NULL); 6230 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 6231 dtrace_provider = old->dtpv_next; 6232 } else { 6233 while (prev != NULL && prev->dtpv_next != old) 6234 prev = prev->dtpv_next; 6235 6236 if (prev == NULL) { 6237 panic("attempt to unregister non-existent " 6238 "dtrace provider %p\n", (void *)id); 6239 } 6240 6241 prev->dtpv_next = old->dtpv_next; 6242 } 6243 6244 if (!self) { 6245 mutex_exit(&dtrace_lock); 6246 mutex_exit(&mod_lock); 6247 mutex_exit(&dtrace_provider_lock); 6248 } 6249 6250 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 6251 kmem_free(old, sizeof (dtrace_provider_t)); 6252 6253 return (0); 6254 } 6255 6256 /* 6257 * Invalidate the specified provider. All subsequent probe lookups for the 6258 * specified provider will fail, but its probes will not be removed. 6259 */ 6260 void 6261 dtrace_invalidate(dtrace_provider_id_t id) 6262 { 6263 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 6264 6265 ASSERT(pvp->dtpv_pops.dtps_enable != 6266 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6267 6268 mutex_enter(&dtrace_provider_lock); 6269 mutex_enter(&dtrace_lock); 6270 6271 pvp->dtpv_defunct = 1; 6272 6273 mutex_exit(&dtrace_lock); 6274 mutex_exit(&dtrace_provider_lock); 6275 } 6276 6277 /* 6278 * Indicate whether or not DTrace has attached. 6279 */ 6280 int 6281 dtrace_attached(void) 6282 { 6283 /* 6284 * dtrace_provider will be non-NULL iff the DTrace driver has 6285 * attached. (It's non-NULL because DTrace is always itself a 6286 * provider.) 6287 */ 6288 return (dtrace_provider != NULL); 6289 } 6290 6291 /* 6292 * Remove all the unenabled probes for the given provider. This function is 6293 * not unlike dtrace_unregister(), except that it doesn't remove the provider 6294 * -- just as many of its associated probes as it can. 6295 */ 6296 int 6297 dtrace_condense(dtrace_provider_id_t id) 6298 { 6299 dtrace_provider_t *prov = (dtrace_provider_t *)id; 6300 int i; 6301 dtrace_probe_t *probe; 6302 6303 /* 6304 * Make sure this isn't the dtrace provider itself. 6305 */ 6306 ASSERT(prov->dtpv_pops.dtps_enable != 6307 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 6308 6309 mutex_enter(&dtrace_provider_lock); 6310 mutex_enter(&dtrace_lock); 6311 6312 /* 6313 * Attempt to destroy the probes associated with this provider. 6314 */ 6315 for (i = 0; i < dtrace_nprobes; i++) { 6316 if ((probe = dtrace_probes[i]) == NULL) 6317 continue; 6318 6319 if (probe->dtpr_provider != prov) 6320 continue; 6321 6322 if (probe->dtpr_ecb != NULL) 6323 continue; 6324 6325 dtrace_probes[i] = NULL; 6326 6327 dtrace_hash_remove(dtrace_bymod, probe); 6328 dtrace_hash_remove(dtrace_byfunc, probe); 6329 dtrace_hash_remove(dtrace_byname, probe); 6330 6331 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 6332 probe->dtpr_arg); 6333 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 6334 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 6335 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 6336 kmem_free(probe, sizeof (dtrace_probe_t)); 6337 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 6338 } 6339 6340 mutex_exit(&dtrace_lock); 6341 mutex_exit(&dtrace_provider_lock); 6342 6343 return (0); 6344 } 6345 6346 /* 6347 * DTrace Probe Management Functions 6348 * 6349 * The functions in this section perform the DTrace probe management, 6350 * including functions to create probes, look-up probes, and call into the 6351 * providers to request that probes be provided. Some of these functions are 6352 * in the Provider-to-Framework API; these functions can be identified by the 6353 * fact that they are not declared "static". 6354 */ 6355 6356 /* 6357 * Create a probe with the specified module name, function name, and name. 6358 */ 6359 dtrace_id_t 6360 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 6361 const char *func, const char *name, int aframes, void *arg) 6362 { 6363 dtrace_probe_t *probe, **probes; 6364 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 6365 dtrace_id_t id; 6366 6367 if (provider == dtrace_provider) { 6368 ASSERT(MUTEX_HELD(&dtrace_lock)); 6369 } else { 6370 mutex_enter(&dtrace_lock); 6371 } 6372 6373 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 6374 VM_BESTFIT | VM_SLEEP); 6375 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 6376 6377 probe->dtpr_id = id; 6378 probe->dtpr_gen = dtrace_probegen++; 6379 probe->dtpr_mod = dtrace_strdup(mod); 6380 probe->dtpr_func = dtrace_strdup(func); 6381 probe->dtpr_name = dtrace_strdup(name); 6382 probe->dtpr_arg = arg; 6383 probe->dtpr_aframes = aframes; 6384 probe->dtpr_provider = provider; 6385 6386 dtrace_hash_add(dtrace_bymod, probe); 6387 dtrace_hash_add(dtrace_byfunc, probe); 6388 dtrace_hash_add(dtrace_byname, probe); 6389 6390 if (id - 1 >= dtrace_nprobes) { 6391 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 6392 size_t nsize = osize << 1; 6393 6394 if (nsize == 0) { 6395 ASSERT(osize == 0); 6396 ASSERT(dtrace_probes == NULL); 6397 nsize = sizeof (dtrace_probe_t *); 6398 } 6399 6400 probes = kmem_zalloc(nsize, KM_SLEEP); 6401 6402 if (dtrace_probes == NULL) { 6403 ASSERT(osize == 0); 6404 dtrace_probes = probes; 6405 dtrace_nprobes = 1; 6406 } else { 6407 dtrace_probe_t **oprobes = dtrace_probes; 6408 6409 bcopy(oprobes, probes, osize); 6410 dtrace_membar_producer(); 6411 dtrace_probes = probes; 6412 6413 dtrace_sync(); 6414 6415 /* 6416 * All CPUs are now seeing the new probes array; we can 6417 * safely free the old array. 6418 */ 6419 kmem_free(oprobes, osize); 6420 dtrace_nprobes <<= 1; 6421 } 6422 6423 ASSERT(id - 1 < dtrace_nprobes); 6424 } 6425 6426 ASSERT(dtrace_probes[id - 1] == NULL); 6427 dtrace_probes[id - 1] = probe; 6428 6429 if (provider != dtrace_provider) 6430 mutex_exit(&dtrace_lock); 6431 6432 return (id); 6433 } 6434 6435 static dtrace_probe_t * 6436 dtrace_probe_lookup_id(dtrace_id_t id) 6437 { 6438 ASSERT(MUTEX_HELD(&dtrace_lock)); 6439 6440 if (id == 0 || id > dtrace_nprobes) 6441 return (NULL); 6442 6443 return (dtrace_probes[id - 1]); 6444 } 6445 6446 static int 6447 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 6448 { 6449 *((dtrace_id_t *)arg) = probe->dtpr_id; 6450 6451 return (DTRACE_MATCH_DONE); 6452 } 6453 6454 /* 6455 * Look up a probe based on provider and one or more of module name, function 6456 * name and probe name. 6457 */ 6458 dtrace_id_t 6459 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 6460 const char *func, const char *name) 6461 { 6462 dtrace_probekey_t pkey; 6463 dtrace_id_t id; 6464 int match; 6465 6466 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 6467 pkey.dtpk_pmatch = &dtrace_match_string; 6468 pkey.dtpk_mod = mod; 6469 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 6470 pkey.dtpk_func = func; 6471 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 6472 pkey.dtpk_name = name; 6473 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 6474 pkey.dtpk_id = DTRACE_IDNONE; 6475 6476 mutex_enter(&dtrace_lock); 6477 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 6478 dtrace_probe_lookup_match, &id); 6479 mutex_exit(&dtrace_lock); 6480 6481 ASSERT(match == 1 || match == 0); 6482 return (match ? id : 0); 6483 } 6484 6485 /* 6486 * Returns the probe argument associated with the specified probe. 6487 */ 6488 void * 6489 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 6490 { 6491 dtrace_probe_t *probe; 6492 void *rval = NULL; 6493 6494 mutex_enter(&dtrace_lock); 6495 6496 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 6497 probe->dtpr_provider == (dtrace_provider_t *)id) 6498 rval = probe->dtpr_arg; 6499 6500 mutex_exit(&dtrace_lock); 6501 6502 return (rval); 6503 } 6504 6505 /* 6506 * Copy a probe into a probe description. 6507 */ 6508 static void 6509 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 6510 { 6511 bzero(pdp, sizeof (dtrace_probedesc_t)); 6512 pdp->dtpd_id = prp->dtpr_id; 6513 6514 (void) strncpy(pdp->dtpd_provider, 6515 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 6516 6517 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 6518 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 6519 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 6520 } 6521 6522 /* 6523 * Called to indicate that a probe -- or probes -- should be provided by a 6524 * specfied provider. If the specified description is NULL, the provider will 6525 * be told to provide all of its probes. (This is done whenever a new 6526 * consumer comes along, or whenever a retained enabling is to be matched.) If 6527 * the specified description is non-NULL, the provider is given the 6528 * opportunity to dynamically provide the specified probe, allowing providers 6529 * to support the creation of probes on-the-fly. (So-called _autocreated_ 6530 * probes.) If the provider is NULL, the operations will be applied to all 6531 * providers; if the provider is non-NULL the operations will only be applied 6532 * to the specified provider. The dtrace_provider_lock must be held, and the 6533 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 6534 * will need to grab the dtrace_lock when it reenters the framework through 6535 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 6536 */ 6537 static void 6538 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 6539 { 6540 struct modctl *ctl; 6541 int all = 0; 6542 6543 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6544 6545 if (prv == NULL) { 6546 all = 1; 6547 prv = dtrace_provider; 6548 } 6549 6550 do { 6551 /* 6552 * First, call the blanket provide operation. 6553 */ 6554 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 6555 6556 /* 6557 * Now call the per-module provide operation. We will grab 6558 * mod_lock to prevent the list from being modified. Note 6559 * that this also prevents the mod_busy bits from changing. 6560 * (mod_busy can only be changed with mod_lock held.) 6561 */ 6562 mutex_enter(&mod_lock); 6563 6564 ctl = &modules; 6565 do { 6566 if (ctl->mod_busy || ctl->mod_mp == NULL) 6567 continue; 6568 6569 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 6570 6571 } while ((ctl = ctl->mod_next) != &modules); 6572 6573 mutex_exit(&mod_lock); 6574 } while (all && (prv = prv->dtpv_next) != NULL); 6575 } 6576 6577 /* 6578 * Iterate over each probe, and call the Framework-to-Provider API function 6579 * denoted by offs. 6580 */ 6581 static void 6582 dtrace_probe_foreach(uintptr_t offs) 6583 { 6584 dtrace_provider_t *prov; 6585 void (*func)(void *, dtrace_id_t, void *); 6586 dtrace_probe_t *probe; 6587 dtrace_icookie_t cookie; 6588 int i; 6589 6590 /* 6591 * We disable interrupts to walk through the probe array. This is 6592 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 6593 * won't see stale data. 6594 */ 6595 cookie = dtrace_interrupt_disable(); 6596 6597 for (i = 0; i < dtrace_nprobes; i++) { 6598 if ((probe = dtrace_probes[i]) == NULL) 6599 continue; 6600 6601 if (probe->dtpr_ecb == NULL) { 6602 /* 6603 * This probe isn't enabled -- don't call the function. 6604 */ 6605 continue; 6606 } 6607 6608 prov = probe->dtpr_provider; 6609 func = *((void(**)(void *, dtrace_id_t, void *)) 6610 ((uintptr_t)&prov->dtpv_pops + offs)); 6611 6612 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 6613 } 6614 6615 dtrace_interrupt_enable(cookie); 6616 } 6617 6618 static int 6619 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 6620 { 6621 dtrace_probekey_t pkey; 6622 uint32_t priv; 6623 uid_t uid; 6624 zoneid_t zoneid; 6625 6626 ASSERT(MUTEX_HELD(&dtrace_lock)); 6627 dtrace_ecb_create_cache = NULL; 6628 6629 if (desc == NULL) { 6630 /* 6631 * If we're passed a NULL description, we're being asked to 6632 * create an ECB with a NULL probe. 6633 */ 6634 (void) dtrace_ecb_create_enable(NULL, enab); 6635 return (0); 6636 } 6637 6638 dtrace_probekey(desc, &pkey); 6639 dtrace_cred2priv(CRED(), &priv, &uid, &zoneid); 6640 6641 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 6642 enab)); 6643 } 6644 6645 /* 6646 * DTrace Helper Provider Functions 6647 */ 6648 static void 6649 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 6650 { 6651 attr->dtat_name = DOF_ATTR_NAME(dofattr); 6652 attr->dtat_data = DOF_ATTR_DATA(dofattr); 6653 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 6654 } 6655 6656 static void 6657 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 6658 const dof_provider_t *dofprov, char *strtab) 6659 { 6660 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 6661 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 6662 dofprov->dofpv_provattr); 6663 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 6664 dofprov->dofpv_modattr); 6665 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 6666 dofprov->dofpv_funcattr); 6667 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 6668 dofprov->dofpv_nameattr); 6669 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 6670 dofprov->dofpv_argsattr); 6671 } 6672 6673 static void 6674 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 6675 { 6676 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6677 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6678 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 6679 dof_provider_t *provider; 6680 dof_probe_t *probe; 6681 uint32_t *off, *enoff; 6682 uint8_t *arg; 6683 char *strtab; 6684 uint_t i, nprobes; 6685 dtrace_helper_provdesc_t dhpv; 6686 dtrace_helper_probedesc_t dhpb; 6687 dtrace_meta_t *meta = dtrace_meta_pid; 6688 dtrace_mops_t *mops = &meta->dtm_mops; 6689 void *parg; 6690 6691 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 6692 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6693 provider->dofpv_strtab * dof->dofh_secsize); 6694 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6695 provider->dofpv_probes * dof->dofh_secsize); 6696 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6697 provider->dofpv_prargs * dof->dofh_secsize); 6698 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6699 provider->dofpv_proffs * dof->dofh_secsize); 6700 6701 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 6702 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 6703 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 6704 enoff = NULL; 6705 6706 /* 6707 * See dtrace_helper_provider_validate(). 6708 */ 6709 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 6710 provider->dofpv_prenoffs != 0) { 6711 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6712 provider->dofpv_prenoffs * dof->dofh_secsize); 6713 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 6714 } 6715 6716 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 6717 6718 /* 6719 * Create the provider. 6720 */ 6721 dtrace_dofprov2hprov(&dhpv, provider, strtab); 6722 6723 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 6724 return; 6725 6726 meta->dtm_count++; 6727 6728 /* 6729 * Create the probes. 6730 */ 6731 for (i = 0; i < nprobes; i++) { 6732 probe = (dof_probe_t *)(uintptr_t)(daddr + 6733 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 6734 6735 dhpb.dthpb_mod = dhp->dofhp_mod; 6736 dhpb.dthpb_func = strtab + probe->dofpr_func; 6737 dhpb.dthpb_name = strtab + probe->dofpr_name; 6738 dhpb.dthpb_base = probe->dofpr_addr; 6739 dhpb.dthpb_offs = off + probe->dofpr_offidx; 6740 dhpb.dthpb_noffs = probe->dofpr_noffs; 6741 if (enoff != NULL) { 6742 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 6743 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 6744 } else { 6745 dhpb.dthpb_enoffs = NULL; 6746 dhpb.dthpb_nenoffs = 0; 6747 } 6748 dhpb.dthpb_args = arg + probe->dofpr_argidx; 6749 dhpb.dthpb_nargc = probe->dofpr_nargc; 6750 dhpb.dthpb_xargc = probe->dofpr_xargc; 6751 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 6752 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 6753 6754 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 6755 } 6756 } 6757 6758 static void 6759 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 6760 { 6761 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6762 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6763 int i; 6764 6765 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 6766 6767 for (i = 0; i < dof->dofh_secnum; i++) { 6768 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 6769 dof->dofh_secoff + i * dof->dofh_secsize); 6770 6771 if (sec->dofs_type != DOF_SECT_PROVIDER) 6772 continue; 6773 6774 dtrace_helper_provide_one(dhp, sec, pid); 6775 } 6776 6777 /* 6778 * We may have just created probes, so we must now rematch against 6779 * any retained enablings. Note that this call will acquire both 6780 * cpu_lock and dtrace_lock; the fact that we are holding 6781 * dtrace_meta_lock now is what defines the ordering with respect to 6782 * these three locks. 6783 */ 6784 dtrace_enabling_matchall(); 6785 } 6786 6787 static void 6788 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 6789 { 6790 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6791 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6792 dof_sec_t *str_sec; 6793 dof_provider_t *provider; 6794 char *strtab; 6795 dtrace_helper_provdesc_t dhpv; 6796 dtrace_meta_t *meta = dtrace_meta_pid; 6797 dtrace_mops_t *mops = &meta->dtm_mops; 6798 6799 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 6800 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 6801 provider->dofpv_strtab * dof->dofh_secsize); 6802 6803 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 6804 6805 /* 6806 * Create the provider. 6807 */ 6808 dtrace_dofprov2hprov(&dhpv, provider, strtab); 6809 6810 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 6811 6812 meta->dtm_count--; 6813 } 6814 6815 static void 6816 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid) 6817 { 6818 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 6819 dof_hdr_t *dof = (dof_hdr_t *)daddr; 6820 int i; 6821 6822 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 6823 6824 for (i = 0; i < dof->dofh_secnum; i++) { 6825 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 6826 dof->dofh_secoff + i * dof->dofh_secsize); 6827 6828 if (sec->dofs_type != DOF_SECT_PROVIDER) 6829 continue; 6830 6831 dtrace_helper_remove_one(dhp, sec, pid); 6832 } 6833 } 6834 6835 /* 6836 * DTrace Meta Provider-to-Framework API Functions 6837 * 6838 * These functions implement the Meta Provider-to-Framework API, as described 6839 * in <sys/dtrace.h>. 6840 */ 6841 int 6842 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 6843 dtrace_meta_provider_id_t *idp) 6844 { 6845 dtrace_meta_t *meta; 6846 dtrace_helpers_t *help, *next; 6847 int i; 6848 6849 *idp = DTRACE_METAPROVNONE; 6850 6851 /* 6852 * We strictly don't need the name, but we hold onto it for 6853 * debuggability. All hail error queues! 6854 */ 6855 if (name == NULL) { 6856 cmn_err(CE_WARN, "failed to register meta-provider: " 6857 "invalid name"); 6858 return (EINVAL); 6859 } 6860 6861 if (mops == NULL || 6862 mops->dtms_create_probe == NULL || 6863 mops->dtms_provide_pid == NULL || 6864 mops->dtms_remove_pid == NULL) { 6865 cmn_err(CE_WARN, "failed to register meta-register %s: " 6866 "invalid ops", name); 6867 return (EINVAL); 6868 } 6869 6870 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 6871 meta->dtm_mops = *mops; 6872 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6873 (void) strcpy(meta->dtm_name, name); 6874 meta->dtm_arg = arg; 6875 6876 mutex_enter(&dtrace_meta_lock); 6877 mutex_enter(&dtrace_lock); 6878 6879 if (dtrace_meta_pid != NULL) { 6880 mutex_exit(&dtrace_lock); 6881 mutex_exit(&dtrace_meta_lock); 6882 cmn_err(CE_WARN, "failed to register meta-register %s: " 6883 "user-land meta-provider exists", name); 6884 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 6885 kmem_free(meta, sizeof (dtrace_meta_t)); 6886 return (EINVAL); 6887 } 6888 6889 dtrace_meta_pid = meta; 6890 *idp = (dtrace_meta_provider_id_t)meta; 6891 6892 /* 6893 * If there are providers and probes ready to go, pass them 6894 * off to the new meta provider now. 6895 */ 6896 6897 help = dtrace_deferred_pid; 6898 dtrace_deferred_pid = NULL; 6899 6900 mutex_exit(&dtrace_lock); 6901 6902 while (help != NULL) { 6903 for (i = 0; i < help->dthps_nprovs; i++) { 6904 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 6905 help->dthps_pid); 6906 } 6907 6908 next = help->dthps_next; 6909 help->dthps_next = NULL; 6910 help->dthps_prev = NULL; 6911 help->dthps_deferred = 0; 6912 help = next; 6913 } 6914 6915 mutex_exit(&dtrace_meta_lock); 6916 6917 return (0); 6918 } 6919 6920 int 6921 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 6922 { 6923 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 6924 6925 mutex_enter(&dtrace_meta_lock); 6926 mutex_enter(&dtrace_lock); 6927 6928 if (old == dtrace_meta_pid) { 6929 pp = &dtrace_meta_pid; 6930 } else { 6931 panic("attempt to unregister non-existent " 6932 "dtrace meta-provider %p\n", (void *)old); 6933 } 6934 6935 if (old->dtm_count != 0) { 6936 mutex_exit(&dtrace_lock); 6937 mutex_exit(&dtrace_meta_lock); 6938 return (EBUSY); 6939 } 6940 6941 *pp = NULL; 6942 6943 mutex_exit(&dtrace_lock); 6944 mutex_exit(&dtrace_meta_lock); 6945 6946 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 6947 kmem_free(old, sizeof (dtrace_meta_t)); 6948 6949 return (0); 6950 } 6951 6952 6953 /* 6954 * DTrace DIF Object Functions 6955 */ 6956 static int 6957 dtrace_difo_err(uint_t pc, const char *format, ...) 6958 { 6959 if (dtrace_err_verbose) { 6960 va_list alist; 6961 6962 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 6963 va_start(alist, format); 6964 (void) vuprintf(format, alist); 6965 va_end(alist); 6966 } 6967 6968 #ifdef DTRACE_ERRDEBUG 6969 dtrace_errdebug(format); 6970 #endif 6971 return (1); 6972 } 6973 6974 /* 6975 * Validate a DTrace DIF object by checking the IR instructions. The following 6976 * rules are currently enforced by dtrace_difo_validate(): 6977 * 6978 * 1. Each instruction must have a valid opcode 6979 * 2. Each register, string, variable, or subroutine reference must be valid 6980 * 3. No instruction can modify register %r0 (must be zero) 6981 * 4. All instruction reserved bits must be set to zero 6982 * 5. The last instruction must be a "ret" instruction 6983 * 6. All branch targets must reference a valid instruction _after_ the branch 6984 */ 6985 static int 6986 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 6987 cred_t *cr) 6988 { 6989 int err = 0, i; 6990 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 6991 int kcheck; 6992 uint_t pc; 6993 6994 kcheck = cr == NULL || 6995 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0; 6996 6997 dp->dtdo_destructive = 0; 6998 6999 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7000 dif_instr_t instr = dp->dtdo_buf[pc]; 7001 7002 uint_t r1 = DIF_INSTR_R1(instr); 7003 uint_t r2 = DIF_INSTR_R2(instr); 7004 uint_t rd = DIF_INSTR_RD(instr); 7005 uint_t rs = DIF_INSTR_RS(instr); 7006 uint_t label = DIF_INSTR_LABEL(instr); 7007 uint_t v = DIF_INSTR_VAR(instr); 7008 uint_t subr = DIF_INSTR_SUBR(instr); 7009 uint_t type = DIF_INSTR_TYPE(instr); 7010 uint_t op = DIF_INSTR_OP(instr); 7011 7012 switch (op) { 7013 case DIF_OP_OR: 7014 case DIF_OP_XOR: 7015 case DIF_OP_AND: 7016 case DIF_OP_SLL: 7017 case DIF_OP_SRL: 7018 case DIF_OP_SRA: 7019 case DIF_OP_SUB: 7020 case DIF_OP_ADD: 7021 case DIF_OP_MUL: 7022 case DIF_OP_SDIV: 7023 case DIF_OP_UDIV: 7024 case DIF_OP_SREM: 7025 case DIF_OP_UREM: 7026 case DIF_OP_COPYS: 7027 if (r1 >= nregs) 7028 err += efunc(pc, "invalid register %u\n", r1); 7029 if (r2 >= nregs) 7030 err += efunc(pc, "invalid register %u\n", r2); 7031 if (rd >= nregs) 7032 err += efunc(pc, "invalid register %u\n", rd); 7033 if (rd == 0) 7034 err += efunc(pc, "cannot write to %r0\n"); 7035 break; 7036 case DIF_OP_NOT: 7037 case DIF_OP_MOV: 7038 case DIF_OP_ALLOCS: 7039 if (r1 >= nregs) 7040 err += efunc(pc, "invalid register %u\n", r1); 7041 if (r2 != 0) 7042 err += efunc(pc, "non-zero reserved bits\n"); 7043 if (rd >= nregs) 7044 err += efunc(pc, "invalid register %u\n", rd); 7045 if (rd == 0) 7046 err += efunc(pc, "cannot write to %r0\n"); 7047 break; 7048 case DIF_OP_LDSB: 7049 case DIF_OP_LDSH: 7050 case DIF_OP_LDSW: 7051 case DIF_OP_LDUB: 7052 case DIF_OP_LDUH: 7053 case DIF_OP_LDUW: 7054 case DIF_OP_LDX: 7055 if (r1 >= nregs) 7056 err += efunc(pc, "invalid register %u\n", r1); 7057 if (r2 != 0) 7058 err += efunc(pc, "non-zero reserved bits\n"); 7059 if (rd >= nregs) 7060 err += efunc(pc, "invalid register %u\n", rd); 7061 if (rd == 0) 7062 err += efunc(pc, "cannot write to %r0\n"); 7063 if (kcheck) 7064 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7065 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7066 break; 7067 case DIF_OP_RLDSB: 7068 case DIF_OP_RLDSH: 7069 case DIF_OP_RLDSW: 7070 case DIF_OP_RLDUB: 7071 case DIF_OP_RLDUH: 7072 case DIF_OP_RLDUW: 7073 case DIF_OP_RLDX: 7074 if (r1 >= nregs) 7075 err += efunc(pc, "invalid register %u\n", r1); 7076 if (r2 != 0) 7077 err += efunc(pc, "non-zero reserved bits\n"); 7078 if (rd >= nregs) 7079 err += efunc(pc, "invalid register %u\n", rd); 7080 if (rd == 0) 7081 err += efunc(pc, "cannot write to %r0\n"); 7082 break; 7083 case DIF_OP_ULDSB: 7084 case DIF_OP_ULDSH: 7085 case DIF_OP_ULDSW: 7086 case DIF_OP_ULDUB: 7087 case DIF_OP_ULDUH: 7088 case DIF_OP_ULDUW: 7089 case DIF_OP_ULDX: 7090 if (r1 >= nregs) 7091 err += efunc(pc, "invalid register %u\n", r1); 7092 if (r2 != 0) 7093 err += efunc(pc, "non-zero reserved bits\n"); 7094 if (rd >= nregs) 7095 err += efunc(pc, "invalid register %u\n", rd); 7096 if (rd == 0) 7097 err += efunc(pc, "cannot write to %r0\n"); 7098 break; 7099 case DIF_OP_STB: 7100 case DIF_OP_STH: 7101 case DIF_OP_STW: 7102 case DIF_OP_STX: 7103 if (r1 >= nregs) 7104 err += efunc(pc, "invalid register %u\n", r1); 7105 if (r2 != 0) 7106 err += efunc(pc, "non-zero reserved bits\n"); 7107 if (rd >= nregs) 7108 err += efunc(pc, "invalid register %u\n", rd); 7109 if (rd == 0) 7110 err += efunc(pc, "cannot write to 0 address\n"); 7111 break; 7112 case DIF_OP_CMP: 7113 case DIF_OP_SCMP: 7114 if (r1 >= nregs) 7115 err += efunc(pc, "invalid register %u\n", r1); 7116 if (r2 >= nregs) 7117 err += efunc(pc, "invalid register %u\n", r2); 7118 if (rd != 0) 7119 err += efunc(pc, "non-zero reserved bits\n"); 7120 break; 7121 case DIF_OP_TST: 7122 if (r1 >= nregs) 7123 err += efunc(pc, "invalid register %u\n", r1); 7124 if (r2 != 0 || rd != 0) 7125 err += efunc(pc, "non-zero reserved bits\n"); 7126 break; 7127 case DIF_OP_BA: 7128 case DIF_OP_BE: 7129 case DIF_OP_BNE: 7130 case DIF_OP_BG: 7131 case DIF_OP_BGU: 7132 case DIF_OP_BGE: 7133 case DIF_OP_BGEU: 7134 case DIF_OP_BL: 7135 case DIF_OP_BLU: 7136 case DIF_OP_BLE: 7137 case DIF_OP_BLEU: 7138 if (label >= dp->dtdo_len) { 7139 err += efunc(pc, "invalid branch target %u\n", 7140 label); 7141 } 7142 if (label <= pc) { 7143 err += efunc(pc, "backward branch to %u\n", 7144 label); 7145 } 7146 break; 7147 case DIF_OP_RET: 7148 if (r1 != 0 || r2 != 0) 7149 err += efunc(pc, "non-zero reserved bits\n"); 7150 if (rd >= nregs) 7151 err += efunc(pc, "invalid register %u\n", rd); 7152 break; 7153 case DIF_OP_NOP: 7154 case DIF_OP_POPTS: 7155 case DIF_OP_FLUSHTS: 7156 if (r1 != 0 || r2 != 0 || rd != 0) 7157 err += efunc(pc, "non-zero reserved bits\n"); 7158 break; 7159 case DIF_OP_SETX: 7160 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7161 err += efunc(pc, "invalid integer ref %u\n", 7162 DIF_INSTR_INTEGER(instr)); 7163 } 7164 if (rd >= nregs) 7165 err += efunc(pc, "invalid register %u\n", rd); 7166 if (rd == 0) 7167 err += efunc(pc, "cannot write to %r0\n"); 7168 break; 7169 case DIF_OP_SETS: 7170 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 7171 err += efunc(pc, "invalid string ref %u\n", 7172 DIF_INSTR_STRING(instr)); 7173 } 7174 if (rd >= nregs) 7175 err += efunc(pc, "invalid register %u\n", rd); 7176 if (rd == 0) 7177 err += efunc(pc, "cannot write to %r0\n"); 7178 break; 7179 case DIF_OP_LDGA: 7180 case DIF_OP_LDTA: 7181 if (r1 > DIF_VAR_ARRAY_MAX) 7182 err += efunc(pc, "invalid array %u\n", r1); 7183 if (r2 >= nregs) 7184 err += efunc(pc, "invalid register %u\n", r2); 7185 if (rd >= nregs) 7186 err += efunc(pc, "invalid register %u\n", rd); 7187 if (rd == 0) 7188 err += efunc(pc, "cannot write to %r0\n"); 7189 break; 7190 case DIF_OP_LDGS: 7191 case DIF_OP_LDTS: 7192 case DIF_OP_LDLS: 7193 case DIF_OP_LDGAA: 7194 case DIF_OP_LDTAA: 7195 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 7196 err += efunc(pc, "invalid variable %u\n", v); 7197 if (rd >= nregs) 7198 err += efunc(pc, "invalid register %u\n", rd); 7199 if (rd == 0) 7200 err += efunc(pc, "cannot write to %r0\n"); 7201 break; 7202 case DIF_OP_STGS: 7203 case DIF_OP_STTS: 7204 case DIF_OP_STLS: 7205 case DIF_OP_STGAA: 7206 case DIF_OP_STTAA: 7207 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 7208 err += efunc(pc, "invalid variable %u\n", v); 7209 if (rs >= nregs) 7210 err += efunc(pc, "invalid register %u\n", rd); 7211 break; 7212 case DIF_OP_CALL: 7213 if (subr > DIF_SUBR_MAX) 7214 err += efunc(pc, "invalid subr %u\n", subr); 7215 if (rd >= nregs) 7216 err += efunc(pc, "invalid register %u\n", rd); 7217 if (rd == 0) 7218 err += efunc(pc, "cannot write to %r0\n"); 7219 7220 if (subr == DIF_SUBR_COPYOUT || 7221 subr == DIF_SUBR_COPYOUTSTR) { 7222 dp->dtdo_destructive = 1; 7223 } 7224 break; 7225 case DIF_OP_PUSHTR: 7226 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 7227 err += efunc(pc, "invalid ref type %u\n", type); 7228 if (r2 >= nregs) 7229 err += efunc(pc, "invalid register %u\n", r2); 7230 if (rs >= nregs) 7231 err += efunc(pc, "invalid register %u\n", rs); 7232 break; 7233 case DIF_OP_PUSHTV: 7234 if (type != DIF_TYPE_CTF) 7235 err += efunc(pc, "invalid val type %u\n", type); 7236 if (r2 >= nregs) 7237 err += efunc(pc, "invalid register %u\n", r2); 7238 if (rs >= nregs) 7239 err += efunc(pc, "invalid register %u\n", rs); 7240 break; 7241 default: 7242 err += efunc(pc, "invalid opcode %u\n", 7243 DIF_INSTR_OP(instr)); 7244 } 7245 } 7246 7247 if (dp->dtdo_len != 0 && 7248 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 7249 err += efunc(dp->dtdo_len - 1, 7250 "expected 'ret' as last DIF instruction\n"); 7251 } 7252 7253 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 7254 /* 7255 * If we're not returning by reference, the size must be either 7256 * 0 or the size of one of the base types. 7257 */ 7258 switch (dp->dtdo_rtype.dtdt_size) { 7259 case 0: 7260 case sizeof (uint8_t): 7261 case sizeof (uint16_t): 7262 case sizeof (uint32_t): 7263 case sizeof (uint64_t): 7264 break; 7265 7266 default: 7267 err += efunc(dp->dtdo_len - 1, "bad return size"); 7268 } 7269 } 7270 7271 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 7272 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 7273 dtrace_diftype_t *vt, *et; 7274 uint_t id, ndx; 7275 7276 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 7277 v->dtdv_scope != DIFV_SCOPE_THREAD && 7278 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 7279 err += efunc(i, "unrecognized variable scope %d\n", 7280 v->dtdv_scope); 7281 break; 7282 } 7283 7284 if (v->dtdv_kind != DIFV_KIND_ARRAY && 7285 v->dtdv_kind != DIFV_KIND_SCALAR) { 7286 err += efunc(i, "unrecognized variable type %d\n", 7287 v->dtdv_kind); 7288 break; 7289 } 7290 7291 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 7292 err += efunc(i, "%d exceeds variable id limit\n", id); 7293 break; 7294 } 7295 7296 if (id < DIF_VAR_OTHER_UBASE) 7297 continue; 7298 7299 /* 7300 * For user-defined variables, we need to check that this 7301 * definition is identical to any previous definition that we 7302 * encountered. 7303 */ 7304 ndx = id - DIF_VAR_OTHER_UBASE; 7305 7306 switch (v->dtdv_scope) { 7307 case DIFV_SCOPE_GLOBAL: 7308 if (ndx < vstate->dtvs_nglobals) { 7309 dtrace_statvar_t *svar; 7310 7311 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 7312 existing = &svar->dtsv_var; 7313 } 7314 7315 break; 7316 7317 case DIFV_SCOPE_THREAD: 7318 if (ndx < vstate->dtvs_ntlocals) 7319 existing = &vstate->dtvs_tlocals[ndx]; 7320 break; 7321 7322 case DIFV_SCOPE_LOCAL: 7323 if (ndx < vstate->dtvs_nlocals) { 7324 dtrace_statvar_t *svar; 7325 7326 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 7327 existing = &svar->dtsv_var; 7328 } 7329 7330 break; 7331 } 7332 7333 vt = &v->dtdv_type; 7334 7335 if (vt->dtdt_flags & DIF_TF_BYREF) { 7336 if (vt->dtdt_size == 0) { 7337 err += efunc(i, "zero-sized variable\n"); 7338 break; 7339 } 7340 7341 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 7342 vt->dtdt_size > dtrace_global_maxsize) { 7343 err += efunc(i, "oversized by-ref global\n"); 7344 break; 7345 } 7346 } 7347 7348 if (existing == NULL || existing->dtdv_id == 0) 7349 continue; 7350 7351 ASSERT(existing->dtdv_id == v->dtdv_id); 7352 ASSERT(existing->dtdv_scope == v->dtdv_scope); 7353 7354 if (existing->dtdv_kind != v->dtdv_kind) 7355 err += efunc(i, "%d changed variable kind\n", id); 7356 7357 et = &existing->dtdv_type; 7358 7359 if (vt->dtdt_flags != et->dtdt_flags) { 7360 err += efunc(i, "%d changed variable type flags\n", id); 7361 break; 7362 } 7363 7364 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 7365 err += efunc(i, "%d changed variable type size\n", id); 7366 break; 7367 } 7368 } 7369 7370 return (err); 7371 } 7372 7373 /* 7374 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 7375 * are much more constrained than normal DIFOs. Specifically, they may 7376 * not: 7377 * 7378 * 1. Make calls to subroutines other than copyin(), copyinstr() or 7379 * miscellaneous string routines 7380 * 2. Access DTrace variables other than the args[] array, and the 7381 * curthread, pid, tid and execname variables. 7382 * 3. Have thread-local variables. 7383 * 4. Have dynamic variables. 7384 */ 7385 static int 7386 dtrace_difo_validate_helper(dtrace_difo_t *dp) 7387 { 7388 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7389 int err = 0; 7390 uint_t pc; 7391 7392 for (pc = 0; pc < dp->dtdo_len; pc++) { 7393 dif_instr_t instr = dp->dtdo_buf[pc]; 7394 7395 uint_t v = DIF_INSTR_VAR(instr); 7396 uint_t subr = DIF_INSTR_SUBR(instr); 7397 uint_t op = DIF_INSTR_OP(instr); 7398 7399 switch (op) { 7400 case DIF_OP_OR: 7401 case DIF_OP_XOR: 7402 case DIF_OP_AND: 7403 case DIF_OP_SLL: 7404 case DIF_OP_SRL: 7405 case DIF_OP_SRA: 7406 case DIF_OP_SUB: 7407 case DIF_OP_ADD: 7408 case DIF_OP_MUL: 7409 case DIF_OP_SDIV: 7410 case DIF_OP_UDIV: 7411 case DIF_OP_SREM: 7412 case DIF_OP_UREM: 7413 case DIF_OP_COPYS: 7414 case DIF_OP_NOT: 7415 case DIF_OP_MOV: 7416 case DIF_OP_RLDSB: 7417 case DIF_OP_RLDSH: 7418 case DIF_OP_RLDSW: 7419 case DIF_OP_RLDUB: 7420 case DIF_OP_RLDUH: 7421 case DIF_OP_RLDUW: 7422 case DIF_OP_RLDX: 7423 case DIF_OP_ULDSB: 7424 case DIF_OP_ULDSH: 7425 case DIF_OP_ULDSW: 7426 case DIF_OP_ULDUB: 7427 case DIF_OP_ULDUH: 7428 case DIF_OP_ULDUW: 7429 case DIF_OP_ULDX: 7430 case DIF_OP_STB: 7431 case DIF_OP_STH: 7432 case DIF_OP_STW: 7433 case DIF_OP_STX: 7434 case DIF_OP_ALLOCS: 7435 case DIF_OP_CMP: 7436 case DIF_OP_SCMP: 7437 case DIF_OP_TST: 7438 case DIF_OP_BA: 7439 case DIF_OP_BE: 7440 case DIF_OP_BNE: 7441 case DIF_OP_BG: 7442 case DIF_OP_BGU: 7443 case DIF_OP_BGE: 7444 case DIF_OP_BGEU: 7445 case DIF_OP_BL: 7446 case DIF_OP_BLU: 7447 case DIF_OP_BLE: 7448 case DIF_OP_BLEU: 7449 case DIF_OP_RET: 7450 case DIF_OP_NOP: 7451 case DIF_OP_POPTS: 7452 case DIF_OP_FLUSHTS: 7453 case DIF_OP_SETX: 7454 case DIF_OP_SETS: 7455 case DIF_OP_LDGA: 7456 case DIF_OP_LDLS: 7457 case DIF_OP_STGS: 7458 case DIF_OP_STLS: 7459 case DIF_OP_PUSHTR: 7460 case DIF_OP_PUSHTV: 7461 break; 7462 7463 case DIF_OP_LDGS: 7464 if (v >= DIF_VAR_OTHER_UBASE) 7465 break; 7466 7467 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 7468 break; 7469 7470 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 7471 v == DIF_VAR_TID || v == DIF_VAR_EXECNAME || 7472 v == DIF_VAR_ZONENAME) 7473 break; 7474 7475 err += efunc(pc, "illegal variable %u\n", v); 7476 break; 7477 7478 case DIF_OP_LDTA: 7479 case DIF_OP_LDTS: 7480 case DIF_OP_LDGAA: 7481 case DIF_OP_LDTAA: 7482 err += efunc(pc, "illegal dynamic variable load\n"); 7483 break; 7484 7485 case DIF_OP_STTS: 7486 case DIF_OP_STGAA: 7487 case DIF_OP_STTAA: 7488 err += efunc(pc, "illegal dynamic variable store\n"); 7489 break; 7490 7491 case DIF_OP_CALL: 7492 if (subr == DIF_SUBR_ALLOCA || 7493 subr == DIF_SUBR_BCOPY || 7494 subr == DIF_SUBR_COPYIN || 7495 subr == DIF_SUBR_COPYINTO || 7496 subr == DIF_SUBR_COPYINSTR || 7497 subr == DIF_SUBR_INDEX || 7498 subr == DIF_SUBR_LLTOSTR || 7499 subr == DIF_SUBR_RINDEX || 7500 subr == DIF_SUBR_STRCHR || 7501 subr == DIF_SUBR_STRJOIN || 7502 subr == DIF_SUBR_STRRCHR || 7503 subr == DIF_SUBR_STRSTR) 7504 break; 7505 7506 err += efunc(pc, "invalid subr %u\n", subr); 7507 break; 7508 7509 default: 7510 err += efunc(pc, "invalid opcode %u\n", 7511 DIF_INSTR_OP(instr)); 7512 } 7513 } 7514 7515 return (err); 7516 } 7517 7518 /* 7519 * Returns 1 if the expression in the DIF object can be cached on a per-thread 7520 * basis; 0 if not. 7521 */ 7522 static int 7523 dtrace_difo_cacheable(dtrace_difo_t *dp) 7524 { 7525 int i; 7526 7527 if (dp == NULL) 7528 return (0); 7529 7530 for (i = 0; i < dp->dtdo_varlen; i++) { 7531 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7532 7533 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 7534 continue; 7535 7536 switch (v->dtdv_id) { 7537 case DIF_VAR_CURTHREAD: 7538 case DIF_VAR_PID: 7539 case DIF_VAR_TID: 7540 case DIF_VAR_EXECNAME: 7541 case DIF_VAR_ZONENAME: 7542 break; 7543 7544 default: 7545 return (0); 7546 } 7547 } 7548 7549 /* 7550 * This DIF object may be cacheable. Now we need to look for any 7551 * array loading instructions, any memory loading instructions, or 7552 * any stores to thread-local variables. 7553 */ 7554 for (i = 0; i < dp->dtdo_len; i++) { 7555 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 7556 7557 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 7558 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 7559 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 7560 op == DIF_OP_LDGA || op == DIF_OP_STTS) 7561 return (0); 7562 } 7563 7564 return (1); 7565 } 7566 7567 static void 7568 dtrace_difo_hold(dtrace_difo_t *dp) 7569 { 7570 int i; 7571 7572 ASSERT(MUTEX_HELD(&dtrace_lock)); 7573 7574 dp->dtdo_refcnt++; 7575 ASSERT(dp->dtdo_refcnt != 0); 7576 7577 /* 7578 * We need to check this DIF object for references to the variable 7579 * DIF_VAR_VTIMESTAMP. 7580 */ 7581 for (i = 0; i < dp->dtdo_varlen; i++) { 7582 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7583 7584 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 7585 continue; 7586 7587 if (dtrace_vtime_references++ == 0) 7588 dtrace_vtime_enable(); 7589 } 7590 } 7591 7592 /* 7593 * This routine calculates the dynamic variable chunksize for a given DIF 7594 * object. The calculation is not fool-proof, and can probably be tricked by 7595 * malicious DIF -- but it works for all compiler-generated DIF. Because this 7596 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 7597 * if a dynamic variable size exceeds the chunksize. 7598 */ 7599 static void 7600 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7601 { 7602 uint64_t sval; 7603 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 7604 const dif_instr_t *text = dp->dtdo_buf; 7605 uint_t pc, srd = 0; 7606 uint_t ttop = 0; 7607 size_t size, ksize; 7608 uint_t id, i; 7609 7610 for (pc = 0; pc < dp->dtdo_len; pc++) { 7611 dif_instr_t instr = text[pc]; 7612 uint_t op = DIF_INSTR_OP(instr); 7613 uint_t rd = DIF_INSTR_RD(instr); 7614 uint_t r1 = DIF_INSTR_R1(instr); 7615 uint_t nkeys = 0; 7616 uchar_t scope; 7617 7618 dtrace_key_t *key = tupregs; 7619 7620 switch (op) { 7621 case DIF_OP_SETX: 7622 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 7623 srd = rd; 7624 continue; 7625 7626 case DIF_OP_STTS: 7627 key = &tupregs[DIF_DTR_NREGS]; 7628 key[0].dttk_size = 0; 7629 key[1].dttk_size = 0; 7630 nkeys = 2; 7631 scope = DIFV_SCOPE_THREAD; 7632 break; 7633 7634 case DIF_OP_STGAA: 7635 case DIF_OP_STTAA: 7636 nkeys = ttop; 7637 7638 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 7639 key[nkeys++].dttk_size = 0; 7640 7641 key[nkeys++].dttk_size = 0; 7642 7643 if (op == DIF_OP_STTAA) { 7644 scope = DIFV_SCOPE_THREAD; 7645 } else { 7646 scope = DIFV_SCOPE_GLOBAL; 7647 } 7648 7649 break; 7650 7651 case DIF_OP_PUSHTR: 7652 if (ttop == DIF_DTR_NREGS) 7653 return; 7654 7655 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 7656 /* 7657 * If the register for the size of the "pushtr" 7658 * is %r0 (or the value is 0) and the type is 7659 * a string, we'll use the system-wide default 7660 * string size. 7661 */ 7662 tupregs[ttop++].dttk_size = 7663 dtrace_strsize_default; 7664 } else { 7665 if (srd == 0) 7666 return; 7667 7668 tupregs[ttop++].dttk_size = sval; 7669 } 7670 7671 break; 7672 7673 case DIF_OP_PUSHTV: 7674 if (ttop == DIF_DTR_NREGS) 7675 return; 7676 7677 tupregs[ttop++].dttk_size = 0; 7678 break; 7679 7680 case DIF_OP_FLUSHTS: 7681 ttop = 0; 7682 break; 7683 7684 case DIF_OP_POPTS: 7685 if (ttop != 0) 7686 ttop--; 7687 break; 7688 } 7689 7690 sval = 0; 7691 srd = 0; 7692 7693 if (nkeys == 0) 7694 continue; 7695 7696 /* 7697 * We have a dynamic variable allocation; calculate its size. 7698 */ 7699 for (ksize = 0, i = 0; i < nkeys; i++) 7700 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 7701 7702 size = sizeof (dtrace_dynvar_t); 7703 size += sizeof (dtrace_key_t) * (nkeys - 1); 7704 size += ksize; 7705 7706 /* 7707 * Now we need to determine the size of the stored data. 7708 */ 7709 id = DIF_INSTR_VAR(instr); 7710 7711 for (i = 0; i < dp->dtdo_varlen; i++) { 7712 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7713 7714 if (v->dtdv_id == id && v->dtdv_scope == scope) { 7715 size += v->dtdv_type.dtdt_size; 7716 break; 7717 } 7718 } 7719 7720 if (i == dp->dtdo_varlen) 7721 return; 7722 7723 /* 7724 * We have the size. If this is larger than the chunk size 7725 * for our dynamic variable state, reset the chunk size. 7726 */ 7727 size = P2ROUNDUP(size, sizeof (uint64_t)); 7728 7729 if (size > vstate->dtvs_dynvars.dtds_chunksize) 7730 vstate->dtvs_dynvars.dtds_chunksize = size; 7731 } 7732 } 7733 7734 static void 7735 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7736 { 7737 int i, oldsvars, osz, nsz, otlocals, ntlocals; 7738 uint_t id; 7739 7740 ASSERT(MUTEX_HELD(&dtrace_lock)); 7741 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 7742 7743 for (i = 0; i < dp->dtdo_varlen; i++) { 7744 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7745 dtrace_statvar_t *svar, ***svarp; 7746 size_t dsize = 0; 7747 uint8_t scope = v->dtdv_scope; 7748 int *np; 7749 7750 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 7751 continue; 7752 7753 id -= DIF_VAR_OTHER_UBASE; 7754 7755 switch (scope) { 7756 case DIFV_SCOPE_THREAD: 7757 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 7758 dtrace_difv_t *tlocals; 7759 7760 if ((ntlocals = (otlocals << 1)) == 0) 7761 ntlocals = 1; 7762 7763 osz = otlocals * sizeof (dtrace_difv_t); 7764 nsz = ntlocals * sizeof (dtrace_difv_t); 7765 7766 tlocals = kmem_zalloc(nsz, KM_SLEEP); 7767 7768 if (osz != 0) { 7769 bcopy(vstate->dtvs_tlocals, 7770 tlocals, osz); 7771 kmem_free(vstate->dtvs_tlocals, osz); 7772 } 7773 7774 vstate->dtvs_tlocals = tlocals; 7775 vstate->dtvs_ntlocals = ntlocals; 7776 } 7777 7778 vstate->dtvs_tlocals[id] = *v; 7779 continue; 7780 7781 case DIFV_SCOPE_LOCAL: 7782 np = &vstate->dtvs_nlocals; 7783 svarp = &vstate->dtvs_locals; 7784 7785 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 7786 dsize = NCPU * (v->dtdv_type.dtdt_size + 7787 sizeof (uint64_t)); 7788 else 7789 dsize = NCPU * sizeof (uint64_t); 7790 7791 break; 7792 7793 case DIFV_SCOPE_GLOBAL: 7794 np = &vstate->dtvs_nglobals; 7795 svarp = &vstate->dtvs_globals; 7796 7797 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 7798 dsize = v->dtdv_type.dtdt_size + 7799 sizeof (uint64_t); 7800 7801 break; 7802 7803 default: 7804 ASSERT(0); 7805 } 7806 7807 while (id >= (oldsvars = *np)) { 7808 dtrace_statvar_t **statics; 7809 int newsvars, oldsize, newsize; 7810 7811 if ((newsvars = (oldsvars << 1)) == 0) 7812 newsvars = 1; 7813 7814 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 7815 newsize = newsvars * sizeof (dtrace_statvar_t *); 7816 7817 statics = kmem_zalloc(newsize, KM_SLEEP); 7818 7819 if (oldsize != 0) { 7820 bcopy(*svarp, statics, oldsize); 7821 kmem_free(*svarp, oldsize); 7822 } 7823 7824 *svarp = statics; 7825 *np = newsvars; 7826 } 7827 7828 if ((svar = (*svarp)[id]) == NULL) { 7829 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 7830 svar->dtsv_var = *v; 7831 7832 if ((svar->dtsv_size = dsize) != 0) { 7833 svar->dtsv_data = (uint64_t)(uintptr_t) 7834 kmem_zalloc(dsize, KM_SLEEP); 7835 } 7836 7837 (*svarp)[id] = svar; 7838 } 7839 7840 svar->dtsv_refcnt++; 7841 } 7842 7843 dtrace_difo_chunksize(dp, vstate); 7844 dtrace_difo_hold(dp); 7845 } 7846 7847 static dtrace_difo_t * 7848 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7849 { 7850 dtrace_difo_t *new; 7851 size_t sz; 7852 7853 ASSERT(dp->dtdo_buf != NULL); 7854 ASSERT(dp->dtdo_refcnt != 0); 7855 7856 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 7857 7858 ASSERT(dp->dtdo_buf != NULL); 7859 sz = dp->dtdo_len * sizeof (dif_instr_t); 7860 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 7861 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 7862 new->dtdo_len = dp->dtdo_len; 7863 7864 if (dp->dtdo_strtab != NULL) { 7865 ASSERT(dp->dtdo_strlen != 0); 7866 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 7867 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 7868 new->dtdo_strlen = dp->dtdo_strlen; 7869 } 7870 7871 if (dp->dtdo_inttab != NULL) { 7872 ASSERT(dp->dtdo_intlen != 0); 7873 sz = dp->dtdo_intlen * sizeof (uint64_t); 7874 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 7875 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 7876 new->dtdo_intlen = dp->dtdo_intlen; 7877 } 7878 7879 if (dp->dtdo_vartab != NULL) { 7880 ASSERT(dp->dtdo_varlen != 0); 7881 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 7882 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 7883 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 7884 new->dtdo_varlen = dp->dtdo_varlen; 7885 } 7886 7887 dtrace_difo_init(new, vstate); 7888 return (new); 7889 } 7890 7891 static void 7892 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7893 { 7894 int i; 7895 7896 ASSERT(dp->dtdo_refcnt == 0); 7897 7898 for (i = 0; i < dp->dtdo_varlen; i++) { 7899 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7900 dtrace_statvar_t *svar, **svarp; 7901 uint_t id; 7902 uint8_t scope = v->dtdv_scope; 7903 int *np; 7904 7905 switch (scope) { 7906 case DIFV_SCOPE_THREAD: 7907 continue; 7908 7909 case DIFV_SCOPE_LOCAL: 7910 np = &vstate->dtvs_nlocals; 7911 svarp = vstate->dtvs_locals; 7912 break; 7913 7914 case DIFV_SCOPE_GLOBAL: 7915 np = &vstate->dtvs_nglobals; 7916 svarp = vstate->dtvs_globals; 7917 break; 7918 7919 default: 7920 ASSERT(0); 7921 } 7922 7923 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 7924 continue; 7925 7926 id -= DIF_VAR_OTHER_UBASE; 7927 ASSERT(id < *np); 7928 7929 svar = svarp[id]; 7930 ASSERT(svar != NULL); 7931 ASSERT(svar->dtsv_refcnt > 0); 7932 7933 if (--svar->dtsv_refcnt > 0) 7934 continue; 7935 7936 if (svar->dtsv_size != 0) { 7937 ASSERT(svar->dtsv_data != NULL); 7938 kmem_free((void *)(uintptr_t)svar->dtsv_data, 7939 svar->dtsv_size); 7940 } 7941 7942 kmem_free(svar, sizeof (dtrace_statvar_t)); 7943 svarp[id] = NULL; 7944 } 7945 7946 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 7947 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 7948 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 7949 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 7950 7951 kmem_free(dp, sizeof (dtrace_difo_t)); 7952 } 7953 7954 static void 7955 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 7956 { 7957 int i; 7958 7959 ASSERT(MUTEX_HELD(&dtrace_lock)); 7960 ASSERT(dp->dtdo_refcnt != 0); 7961 7962 for (i = 0; i < dp->dtdo_varlen; i++) { 7963 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 7964 7965 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 7966 continue; 7967 7968 ASSERT(dtrace_vtime_references > 0); 7969 if (--dtrace_vtime_references == 0) 7970 dtrace_vtime_disable(); 7971 } 7972 7973 if (--dp->dtdo_refcnt == 0) 7974 dtrace_difo_destroy(dp, vstate); 7975 } 7976 7977 /* 7978 * DTrace Format Functions 7979 */ 7980 static uint16_t 7981 dtrace_format_add(dtrace_state_t *state, char *str) 7982 { 7983 char *fmt, **new; 7984 uint16_t ndx, len = strlen(str) + 1; 7985 7986 fmt = kmem_zalloc(len, KM_SLEEP); 7987 bcopy(str, fmt, len); 7988 7989 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 7990 if (state->dts_formats[ndx] == NULL) { 7991 state->dts_formats[ndx] = fmt; 7992 return (ndx + 1); 7993 } 7994 } 7995 7996 if (state->dts_nformats == USHRT_MAX) { 7997 /* 7998 * This is only likely if a denial-of-service attack is being 7999 * attempted. As such, it's okay to fail silently here. 8000 */ 8001 kmem_free(fmt, len); 8002 return (0); 8003 } 8004 8005 /* 8006 * For simplicity, we always resize the formats array to be exactly the 8007 * number of formats. 8008 */ 8009 ndx = state->dts_nformats++; 8010 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8011 8012 if (state->dts_formats != NULL) { 8013 ASSERT(ndx != 0); 8014 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8015 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8016 } 8017 8018 state->dts_formats = new; 8019 state->dts_formats[ndx] = fmt; 8020 8021 return (ndx + 1); 8022 } 8023 8024 static void 8025 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8026 { 8027 char *fmt; 8028 8029 ASSERT(state->dts_formats != NULL); 8030 ASSERT(format <= state->dts_nformats); 8031 ASSERT(state->dts_formats[format - 1] != NULL); 8032 8033 fmt = state->dts_formats[format - 1]; 8034 kmem_free(fmt, strlen(fmt) + 1); 8035 state->dts_formats[format - 1] = NULL; 8036 } 8037 8038 static void 8039 dtrace_format_destroy(dtrace_state_t *state) 8040 { 8041 int i; 8042 8043 if (state->dts_nformats == 0) { 8044 ASSERT(state->dts_formats == NULL); 8045 return; 8046 } 8047 8048 ASSERT(state->dts_formats != NULL); 8049 8050 for (i = 0; i < state->dts_nformats; i++) { 8051 char *fmt = state->dts_formats[i]; 8052 8053 if (fmt == NULL) 8054 continue; 8055 8056 kmem_free(fmt, strlen(fmt) + 1); 8057 } 8058 8059 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8060 state->dts_nformats = 0; 8061 state->dts_formats = NULL; 8062 } 8063 8064 /* 8065 * DTrace Predicate Functions 8066 */ 8067 static dtrace_predicate_t * 8068 dtrace_predicate_create(dtrace_difo_t *dp) 8069 { 8070 dtrace_predicate_t *pred; 8071 8072 ASSERT(MUTEX_HELD(&dtrace_lock)); 8073 ASSERT(dp->dtdo_refcnt != 0); 8074 8075 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8076 pred->dtp_difo = dp; 8077 pred->dtp_refcnt = 1; 8078 8079 if (!dtrace_difo_cacheable(dp)) 8080 return (pred); 8081 8082 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8083 /* 8084 * This is only theoretically possible -- we have had 2^32 8085 * cacheable predicates on this machine. We cannot allow any 8086 * more predicates to become cacheable: as unlikely as it is, 8087 * there may be a thread caching a (now stale) predicate cache 8088 * ID. (N.B.: the temptation is being successfully resisted to 8089 * have this cmn_err() "Holy shit -- we executed this code!") 8090 */ 8091 return (pred); 8092 } 8093 8094 pred->dtp_cacheid = dtrace_predcache_id++; 8095 8096 return (pred); 8097 } 8098 8099 static void 8100 dtrace_predicate_hold(dtrace_predicate_t *pred) 8101 { 8102 ASSERT(MUTEX_HELD(&dtrace_lock)); 8103 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8104 ASSERT(pred->dtp_refcnt > 0); 8105 8106 pred->dtp_refcnt++; 8107 } 8108 8109 static void 8110 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8111 { 8112 dtrace_difo_t *dp = pred->dtp_difo; 8113 8114 ASSERT(MUTEX_HELD(&dtrace_lock)); 8115 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8116 ASSERT(pred->dtp_refcnt > 0); 8117 8118 if (--pred->dtp_refcnt == 0) { 8119 dtrace_difo_release(pred->dtp_difo, vstate); 8120 kmem_free(pred, sizeof (dtrace_predicate_t)); 8121 } 8122 } 8123 8124 /* 8125 * DTrace Action Description Functions 8126 */ 8127 static dtrace_actdesc_t * 8128 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8129 uint64_t uarg, uint64_t arg) 8130 { 8131 dtrace_actdesc_t *act; 8132 8133 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8134 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8135 8136 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8137 act->dtad_kind = kind; 8138 act->dtad_ntuple = ntuple; 8139 act->dtad_uarg = uarg; 8140 act->dtad_arg = arg; 8141 act->dtad_refcnt = 1; 8142 8143 return (act); 8144 } 8145 8146 static void 8147 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8148 { 8149 ASSERT(act->dtad_refcnt >= 1); 8150 act->dtad_refcnt++; 8151 } 8152 8153 static void 8154 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 8155 { 8156 dtrace_actkind_t kind = act->dtad_kind; 8157 dtrace_difo_t *dp; 8158 8159 ASSERT(act->dtad_refcnt >= 1); 8160 8161 if (--act->dtad_refcnt != 0) 8162 return; 8163 8164 if ((dp = act->dtad_difo) != NULL) 8165 dtrace_difo_release(dp, vstate); 8166 8167 if (DTRACEACT_ISPRINTFLIKE(kind)) { 8168 char *str = (char *)(uintptr_t)act->dtad_arg; 8169 8170 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 8171 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 8172 8173 if (str != NULL) 8174 kmem_free(str, strlen(str) + 1); 8175 } 8176 8177 kmem_free(act, sizeof (dtrace_actdesc_t)); 8178 } 8179 8180 /* 8181 * DTrace ECB Functions 8182 */ 8183 static dtrace_ecb_t * 8184 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 8185 { 8186 dtrace_ecb_t *ecb; 8187 dtrace_epid_t epid; 8188 8189 ASSERT(MUTEX_HELD(&dtrace_lock)); 8190 8191 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 8192 ecb->dte_predicate = NULL; 8193 ecb->dte_probe = probe; 8194 8195 /* 8196 * The default size is the size of the default action: recording 8197 * the epid. 8198 */ 8199 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8200 ecb->dte_alignment = sizeof (dtrace_epid_t); 8201 8202 epid = state->dts_epid++; 8203 8204 if (epid - 1 >= state->dts_necbs) { 8205 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 8206 int necbs = state->dts_necbs << 1; 8207 8208 ASSERT(epid == state->dts_necbs + 1); 8209 8210 if (necbs == 0) { 8211 ASSERT(oecbs == NULL); 8212 necbs = 1; 8213 } 8214 8215 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 8216 8217 if (oecbs != NULL) 8218 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 8219 8220 dtrace_membar_producer(); 8221 state->dts_ecbs = ecbs; 8222 8223 if (oecbs != NULL) { 8224 /* 8225 * If this state is active, we must dtrace_sync() 8226 * before we can free the old dts_ecbs array: we're 8227 * coming in hot, and there may be active ring 8228 * buffer processing (which indexes into the dts_ecbs 8229 * array) on another CPU. 8230 */ 8231 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 8232 dtrace_sync(); 8233 8234 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 8235 } 8236 8237 dtrace_membar_producer(); 8238 state->dts_necbs = necbs; 8239 } 8240 8241 ecb->dte_state = state; 8242 8243 ASSERT(state->dts_ecbs[epid - 1] == NULL); 8244 dtrace_membar_producer(); 8245 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 8246 8247 return (ecb); 8248 } 8249 8250 static void 8251 dtrace_ecb_enable(dtrace_ecb_t *ecb) 8252 { 8253 dtrace_probe_t *probe = ecb->dte_probe; 8254 8255 ASSERT(MUTEX_HELD(&cpu_lock)); 8256 ASSERT(MUTEX_HELD(&dtrace_lock)); 8257 ASSERT(ecb->dte_next == NULL); 8258 8259 if (probe == NULL) { 8260 /* 8261 * This is the NULL probe -- there's nothing to do. 8262 */ 8263 return; 8264 } 8265 8266 if (probe->dtpr_ecb == NULL) { 8267 dtrace_provider_t *prov = probe->dtpr_provider; 8268 8269 /* 8270 * We're the first ECB on this probe. 8271 */ 8272 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 8273 8274 if (ecb->dte_predicate != NULL) 8275 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 8276 8277 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 8278 probe->dtpr_id, probe->dtpr_arg); 8279 } else { 8280 /* 8281 * This probe is already active. Swing the last pointer to 8282 * point to the new ECB, and issue a dtrace_sync() to assure 8283 * that all CPUs have seen the change. 8284 */ 8285 ASSERT(probe->dtpr_ecb_last != NULL); 8286 probe->dtpr_ecb_last->dte_next = ecb; 8287 probe->dtpr_ecb_last = ecb; 8288 probe->dtpr_predcache = 0; 8289 8290 dtrace_sync(); 8291 } 8292 } 8293 8294 static void 8295 dtrace_ecb_resize(dtrace_ecb_t *ecb) 8296 { 8297 uint32_t maxalign = sizeof (dtrace_epid_t); 8298 uint32_t align = sizeof (uint8_t), offs, diff; 8299 dtrace_action_t *act; 8300 int wastuple = 0; 8301 uint32_t aggbase = UINT32_MAX; 8302 dtrace_state_t *state = ecb->dte_state; 8303 8304 /* 8305 * If we record anything, we always record the epid. (And we always 8306 * record it first.) 8307 */ 8308 offs = sizeof (dtrace_epid_t); 8309 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 8310 8311 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 8312 dtrace_recdesc_t *rec = &act->dta_rec; 8313 8314 if ((align = rec->dtrd_alignment) > maxalign) 8315 maxalign = align; 8316 8317 if (!wastuple && act->dta_intuple) { 8318 /* 8319 * This is the first record in a tuple. Align the 8320 * offset to be at offset 4 in an 8-byte aligned 8321 * block. 8322 */ 8323 diff = offs + sizeof (dtrace_aggid_t); 8324 8325 if (diff = (diff & (sizeof (uint64_t) - 1))) 8326 offs += sizeof (uint64_t) - diff; 8327 8328 aggbase = offs - sizeof (dtrace_aggid_t); 8329 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 8330 } 8331 8332 /*LINTED*/ 8333 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 8334 /* 8335 * The current offset is not properly aligned; align it. 8336 */ 8337 offs += align - diff; 8338 } 8339 8340 rec->dtrd_offset = offs; 8341 8342 if (offs + rec->dtrd_size > ecb->dte_needed) { 8343 ecb->dte_needed = offs + rec->dtrd_size; 8344 8345 if (ecb->dte_needed > state->dts_needed) 8346 state->dts_needed = ecb->dte_needed; 8347 } 8348 8349 if (DTRACEACT_ISAGG(act->dta_kind)) { 8350 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 8351 dtrace_action_t *first = agg->dtag_first, *prev; 8352 8353 ASSERT(rec->dtrd_size != 0 && first != NULL); 8354 ASSERT(wastuple); 8355 ASSERT(aggbase != UINT32_MAX); 8356 8357 agg->dtag_base = aggbase; 8358 8359 while ((prev = first->dta_prev) != NULL && 8360 DTRACEACT_ISAGG(prev->dta_kind)) { 8361 agg = (dtrace_aggregation_t *)prev; 8362 first = agg->dtag_first; 8363 } 8364 8365 if (prev != NULL) { 8366 offs = prev->dta_rec.dtrd_offset + 8367 prev->dta_rec.dtrd_size; 8368 } else { 8369 offs = sizeof (dtrace_epid_t); 8370 } 8371 wastuple = 0; 8372 } else { 8373 if (!act->dta_intuple) 8374 ecb->dte_size = offs + rec->dtrd_size; 8375 8376 offs += rec->dtrd_size; 8377 } 8378 8379 wastuple = act->dta_intuple; 8380 } 8381 8382 if ((act = ecb->dte_action) != NULL && 8383 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 8384 ecb->dte_size == sizeof (dtrace_epid_t)) { 8385 /* 8386 * If the size is still sizeof (dtrace_epid_t), then all 8387 * actions store no data; set the size to 0. 8388 */ 8389 ecb->dte_alignment = maxalign; 8390 ecb->dte_size = 0; 8391 8392 /* 8393 * If the needed space is still sizeof (dtrace_epid_t), then 8394 * all actions need no additional space; set the needed 8395 * size to 0. 8396 */ 8397 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 8398 ecb->dte_needed = 0; 8399 8400 return; 8401 } 8402 8403 /* 8404 * Set our alignment, and make sure that the dte_size and dte_needed 8405 * are aligned to the size of an EPID. 8406 */ 8407 ecb->dte_alignment = maxalign; 8408 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 8409 ~(sizeof (dtrace_epid_t) - 1); 8410 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 8411 ~(sizeof (dtrace_epid_t) - 1); 8412 ASSERT(ecb->dte_size <= ecb->dte_needed); 8413 } 8414 8415 static dtrace_action_t * 8416 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 8417 { 8418 dtrace_aggregation_t *agg; 8419 size_t size = sizeof (uint64_t); 8420 int ntuple = desc->dtad_ntuple; 8421 dtrace_action_t *act; 8422 dtrace_recdesc_t *frec; 8423 dtrace_aggid_t aggid; 8424 dtrace_state_t *state = ecb->dte_state; 8425 8426 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 8427 agg->dtag_ecb = ecb; 8428 8429 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 8430 8431 switch (desc->dtad_kind) { 8432 case DTRACEAGG_MIN: 8433 agg->dtag_initial = UINT64_MAX; 8434 agg->dtag_aggregate = dtrace_aggregate_min; 8435 break; 8436 8437 case DTRACEAGG_MAX: 8438 agg->dtag_aggregate = dtrace_aggregate_max; 8439 break; 8440 8441 case DTRACEAGG_COUNT: 8442 agg->dtag_aggregate = dtrace_aggregate_count; 8443 break; 8444 8445 case DTRACEAGG_QUANTIZE: 8446 agg->dtag_aggregate = dtrace_aggregate_quantize; 8447 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 8448 sizeof (uint64_t); 8449 break; 8450 8451 case DTRACEAGG_LQUANTIZE: { 8452 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 8453 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 8454 8455 agg->dtag_initial = desc->dtad_arg; 8456 agg->dtag_aggregate = dtrace_aggregate_lquantize; 8457 8458 if (step == 0 || levels == 0) 8459 goto err; 8460 8461 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 8462 break; 8463 } 8464 8465 case DTRACEAGG_AVG: 8466 agg->dtag_aggregate = dtrace_aggregate_avg; 8467 size = sizeof (uint64_t) * 2; 8468 break; 8469 8470 case DTRACEAGG_SUM: 8471 agg->dtag_aggregate = dtrace_aggregate_sum; 8472 break; 8473 8474 default: 8475 goto err; 8476 } 8477 8478 agg->dtag_action.dta_rec.dtrd_size = size; 8479 8480 if (ntuple == 0) 8481 goto err; 8482 8483 /* 8484 * We must make sure that we have enough actions for the n-tuple. 8485 */ 8486 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 8487 if (DTRACEACT_ISAGG(act->dta_kind)) 8488 break; 8489 8490 if (--ntuple == 0) { 8491 /* 8492 * This is the action with which our n-tuple begins. 8493 */ 8494 agg->dtag_first = act; 8495 goto success; 8496 } 8497 } 8498 8499 /* 8500 * This n-tuple is short by ntuple elements. Return failure. 8501 */ 8502 ASSERT(ntuple != 0); 8503 err: 8504 kmem_free(agg, sizeof (dtrace_aggregation_t)); 8505 return (NULL); 8506 8507 success: 8508 /* 8509 * If the last action in the tuple has a size of zero, it's actually 8510 * an expression argument for the aggregating action. 8511 */ 8512 ASSERT(ecb->dte_action_last != NULL); 8513 act = ecb->dte_action_last; 8514 8515 if (act->dta_kind == DTRACEACT_DIFEXPR) { 8516 ASSERT(act->dta_difo != NULL); 8517 8518 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 8519 agg->dtag_hasarg = 1; 8520 } 8521 8522 /* 8523 * We need to allocate an id for this aggregation. 8524 */ 8525 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 8526 VM_BESTFIT | VM_SLEEP); 8527 8528 if (aggid - 1 >= state->dts_naggregations) { 8529 dtrace_aggregation_t **oaggs = state->dts_aggregations; 8530 dtrace_aggregation_t **aggs; 8531 int naggs = state->dts_naggregations << 1; 8532 int onaggs = state->dts_naggregations; 8533 8534 ASSERT(aggid == state->dts_naggregations + 1); 8535 8536 if (naggs == 0) { 8537 ASSERT(oaggs == NULL); 8538 naggs = 1; 8539 } 8540 8541 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 8542 8543 if (oaggs != NULL) { 8544 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 8545 kmem_free(oaggs, onaggs * sizeof (*aggs)); 8546 } 8547 8548 state->dts_aggregations = aggs; 8549 state->dts_naggregations = naggs; 8550 } 8551 8552 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 8553 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 8554 8555 frec = &agg->dtag_first->dta_rec; 8556 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 8557 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 8558 8559 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 8560 ASSERT(!act->dta_intuple); 8561 act->dta_intuple = 1; 8562 } 8563 8564 return (&agg->dtag_action); 8565 } 8566 8567 static void 8568 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 8569 { 8570 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 8571 dtrace_state_t *state = ecb->dte_state; 8572 dtrace_aggid_t aggid = agg->dtag_id; 8573 8574 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 8575 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 8576 8577 ASSERT(state->dts_aggregations[aggid - 1] == agg); 8578 state->dts_aggregations[aggid - 1] = NULL; 8579 8580 kmem_free(agg, sizeof (dtrace_aggregation_t)); 8581 } 8582 8583 static int 8584 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 8585 { 8586 dtrace_action_t *action, *last; 8587 dtrace_difo_t *dp = desc->dtad_difo; 8588 uint32_t size = 0, align = sizeof (uint8_t), mask; 8589 uint16_t format = 0; 8590 dtrace_recdesc_t *rec; 8591 dtrace_state_t *state = ecb->dte_state; 8592 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 8593 uint64_t arg = desc->dtad_arg; 8594 8595 ASSERT(MUTEX_HELD(&dtrace_lock)); 8596 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 8597 8598 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 8599 /* 8600 * If this is an aggregating action, there must be neither 8601 * a speculate nor a commit on the action chain. 8602 */ 8603 dtrace_action_t *act; 8604 8605 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 8606 if (act->dta_kind == DTRACEACT_COMMIT) 8607 return (EINVAL); 8608 8609 if (act->dta_kind == DTRACEACT_SPECULATE) 8610 return (EINVAL); 8611 } 8612 8613 action = dtrace_ecb_aggregation_create(ecb, desc); 8614 8615 if (action == NULL) 8616 return (EINVAL); 8617 } else { 8618 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 8619 (desc->dtad_kind == DTRACEACT_DIFEXPR && 8620 dp != NULL && dp->dtdo_destructive)) { 8621 state->dts_destructive = 1; 8622 } 8623 8624 switch (desc->dtad_kind) { 8625 case DTRACEACT_PRINTF: 8626 case DTRACEACT_PRINTA: 8627 case DTRACEACT_SYSTEM: 8628 case DTRACEACT_FREOPEN: 8629 /* 8630 * We know that our arg is a string -- turn it into a 8631 * format. 8632 */ 8633 if (arg == NULL) { 8634 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 8635 format = 0; 8636 } else { 8637 ASSERT(arg != NULL); 8638 ASSERT(arg > KERNELBASE); 8639 format = dtrace_format_add(state, 8640 (char *)(uintptr_t)arg); 8641 } 8642 8643 /*FALLTHROUGH*/ 8644 case DTRACEACT_LIBACT: 8645 case DTRACEACT_DIFEXPR: 8646 if (dp == NULL) 8647 return (EINVAL); 8648 8649 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 8650 break; 8651 8652 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 8653 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8654 return (EINVAL); 8655 8656 size = opt[DTRACEOPT_STRSIZE]; 8657 } 8658 8659 break; 8660 8661 case DTRACEACT_STACK: 8662 if ((nframes = arg) == 0) { 8663 nframes = opt[DTRACEOPT_STACKFRAMES]; 8664 ASSERT(nframes > 0); 8665 arg = nframes; 8666 } 8667 8668 size = nframes * sizeof (pc_t); 8669 break; 8670 8671 case DTRACEACT_JSTACK: 8672 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 8673 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 8674 8675 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 8676 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 8677 8678 arg = DTRACE_USTACK_ARG(nframes, strsize); 8679 8680 /*FALLTHROUGH*/ 8681 case DTRACEACT_USTACK: 8682 if (desc->dtad_kind != DTRACEACT_JSTACK && 8683 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 8684 strsize = DTRACE_USTACK_STRSIZE(arg); 8685 nframes = opt[DTRACEOPT_USTACKFRAMES]; 8686 ASSERT(nframes > 0); 8687 arg = DTRACE_USTACK_ARG(nframes, strsize); 8688 } 8689 8690 /* 8691 * Save a slot for the pid. 8692 */ 8693 size = (nframes + 1) * sizeof (uint64_t); 8694 size += DTRACE_USTACK_STRSIZE(arg); 8695 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 8696 8697 break; 8698 8699 case DTRACEACT_SYM: 8700 case DTRACEACT_MOD: 8701 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 8702 sizeof (uint64_t)) || 8703 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8704 return (EINVAL); 8705 break; 8706 8707 case DTRACEACT_USYM: 8708 case DTRACEACT_UMOD: 8709 case DTRACEACT_UADDR: 8710 if (dp == NULL || 8711 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 8712 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8713 return (EINVAL); 8714 8715 /* 8716 * We have a slot for the pid, plus a slot for the 8717 * argument. To keep things simple (aligned with 8718 * bitness-neutral sizing), we store each as a 64-bit 8719 * quantity. 8720 */ 8721 size = 2 * sizeof (uint64_t); 8722 break; 8723 8724 case DTRACEACT_STOP: 8725 case DTRACEACT_BREAKPOINT: 8726 case DTRACEACT_PANIC: 8727 break; 8728 8729 case DTRACEACT_CHILL: 8730 case DTRACEACT_DISCARD: 8731 case DTRACEACT_RAISE: 8732 if (dp == NULL) 8733 return (EINVAL); 8734 break; 8735 8736 case DTRACEACT_EXIT: 8737 if (dp == NULL || 8738 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 8739 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 8740 return (EINVAL); 8741 break; 8742 8743 case DTRACEACT_SPECULATE: 8744 if (ecb->dte_size > sizeof (dtrace_epid_t)) 8745 return (EINVAL); 8746 8747 if (dp == NULL) 8748 return (EINVAL); 8749 8750 state->dts_speculates = 1; 8751 break; 8752 8753 case DTRACEACT_COMMIT: { 8754 dtrace_action_t *act = ecb->dte_action; 8755 8756 for (; act != NULL; act = act->dta_next) { 8757 if (act->dta_kind == DTRACEACT_COMMIT) 8758 return (EINVAL); 8759 } 8760 8761 if (dp == NULL) 8762 return (EINVAL); 8763 break; 8764 } 8765 8766 default: 8767 return (EINVAL); 8768 } 8769 8770 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 8771 /* 8772 * If this is a data-storing action or a speculate, 8773 * we must be sure that there isn't a commit on the 8774 * action chain. 8775 */ 8776 dtrace_action_t *act = ecb->dte_action; 8777 8778 for (; act != NULL; act = act->dta_next) { 8779 if (act->dta_kind == DTRACEACT_COMMIT) 8780 return (EINVAL); 8781 } 8782 } 8783 8784 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 8785 action->dta_rec.dtrd_size = size; 8786 } 8787 8788 action->dta_refcnt = 1; 8789 rec = &action->dta_rec; 8790 size = rec->dtrd_size; 8791 8792 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 8793 if (!(size & mask)) { 8794 align = mask + 1; 8795 break; 8796 } 8797 } 8798 8799 action->dta_kind = desc->dtad_kind; 8800 8801 if ((action->dta_difo = dp) != NULL) 8802 dtrace_difo_hold(dp); 8803 8804 rec->dtrd_action = action->dta_kind; 8805 rec->dtrd_arg = arg; 8806 rec->dtrd_uarg = desc->dtad_uarg; 8807 rec->dtrd_alignment = (uint16_t)align; 8808 rec->dtrd_format = format; 8809 8810 if ((last = ecb->dte_action_last) != NULL) { 8811 ASSERT(ecb->dte_action != NULL); 8812 action->dta_prev = last; 8813 last->dta_next = action; 8814 } else { 8815 ASSERT(ecb->dte_action == NULL); 8816 ecb->dte_action = action; 8817 } 8818 8819 ecb->dte_action_last = action; 8820 8821 return (0); 8822 } 8823 8824 static void 8825 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 8826 { 8827 dtrace_action_t *act = ecb->dte_action, *next; 8828 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 8829 dtrace_difo_t *dp; 8830 uint16_t format; 8831 8832 if (act != NULL && act->dta_refcnt > 1) { 8833 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 8834 act->dta_refcnt--; 8835 } else { 8836 for (; act != NULL; act = next) { 8837 next = act->dta_next; 8838 ASSERT(next != NULL || act == ecb->dte_action_last); 8839 ASSERT(act->dta_refcnt == 1); 8840 8841 if ((format = act->dta_rec.dtrd_format) != 0) 8842 dtrace_format_remove(ecb->dte_state, format); 8843 8844 if ((dp = act->dta_difo) != NULL) 8845 dtrace_difo_release(dp, vstate); 8846 8847 if (DTRACEACT_ISAGG(act->dta_kind)) { 8848 dtrace_ecb_aggregation_destroy(ecb, act); 8849 } else { 8850 kmem_free(act, sizeof (dtrace_action_t)); 8851 } 8852 } 8853 } 8854 8855 ecb->dte_action = NULL; 8856 ecb->dte_action_last = NULL; 8857 ecb->dte_size = sizeof (dtrace_epid_t); 8858 } 8859 8860 static void 8861 dtrace_ecb_disable(dtrace_ecb_t *ecb) 8862 { 8863 /* 8864 * We disable the ECB by removing it from its probe. 8865 */ 8866 dtrace_ecb_t *pecb, *prev = NULL; 8867 dtrace_probe_t *probe = ecb->dte_probe; 8868 8869 ASSERT(MUTEX_HELD(&dtrace_lock)); 8870 8871 if (probe == NULL) { 8872 /* 8873 * This is the NULL probe; there is nothing to disable. 8874 */ 8875 return; 8876 } 8877 8878 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 8879 if (pecb == ecb) 8880 break; 8881 prev = pecb; 8882 } 8883 8884 ASSERT(pecb != NULL); 8885 8886 if (prev == NULL) { 8887 probe->dtpr_ecb = ecb->dte_next; 8888 } else { 8889 prev->dte_next = ecb->dte_next; 8890 } 8891 8892 if (ecb == probe->dtpr_ecb_last) { 8893 ASSERT(ecb->dte_next == NULL); 8894 probe->dtpr_ecb_last = prev; 8895 } 8896 8897 /* 8898 * The ECB has been disconnected from the probe; now sync to assure 8899 * that all CPUs have seen the change before returning. 8900 */ 8901 dtrace_sync(); 8902 8903 if (probe->dtpr_ecb == NULL) { 8904 /* 8905 * That was the last ECB on the probe; clear the predicate 8906 * cache ID for the probe, disable it and sync one more time 8907 * to assure that we'll never hit it again. 8908 */ 8909 dtrace_provider_t *prov = probe->dtpr_provider; 8910 8911 ASSERT(ecb->dte_next == NULL); 8912 ASSERT(probe->dtpr_ecb_last == NULL); 8913 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 8914 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 8915 probe->dtpr_id, probe->dtpr_arg); 8916 dtrace_sync(); 8917 } else { 8918 /* 8919 * There is at least one ECB remaining on the probe. If there 8920 * is _exactly_ one, set the probe's predicate cache ID to be 8921 * the predicate cache ID of the remaining ECB. 8922 */ 8923 ASSERT(probe->dtpr_ecb_last != NULL); 8924 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 8925 8926 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 8927 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 8928 8929 ASSERT(probe->dtpr_ecb->dte_next == NULL); 8930 8931 if (p != NULL) 8932 probe->dtpr_predcache = p->dtp_cacheid; 8933 } 8934 8935 ecb->dte_next = NULL; 8936 } 8937 } 8938 8939 static void 8940 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 8941 { 8942 dtrace_state_t *state = ecb->dte_state; 8943 dtrace_vstate_t *vstate = &state->dts_vstate; 8944 dtrace_predicate_t *pred; 8945 dtrace_epid_t epid = ecb->dte_epid; 8946 8947 ASSERT(MUTEX_HELD(&dtrace_lock)); 8948 ASSERT(ecb->dte_next == NULL); 8949 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 8950 8951 if ((pred = ecb->dte_predicate) != NULL) 8952 dtrace_predicate_release(pred, vstate); 8953 8954 dtrace_ecb_action_remove(ecb); 8955 8956 ASSERT(state->dts_ecbs[epid - 1] == ecb); 8957 state->dts_ecbs[epid - 1] = NULL; 8958 8959 kmem_free(ecb, sizeof (dtrace_ecb_t)); 8960 } 8961 8962 static dtrace_ecb_t * 8963 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 8964 dtrace_enabling_t *enab) 8965 { 8966 dtrace_ecb_t *ecb; 8967 dtrace_predicate_t *pred; 8968 dtrace_actdesc_t *act; 8969 dtrace_provider_t *prov; 8970 dtrace_ecbdesc_t *desc = enab->dten_current; 8971 8972 ASSERT(MUTEX_HELD(&dtrace_lock)); 8973 ASSERT(state != NULL); 8974 8975 ecb = dtrace_ecb_add(state, probe); 8976 ecb->dte_uarg = desc->dted_uarg; 8977 8978 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 8979 dtrace_predicate_hold(pred); 8980 ecb->dte_predicate = pred; 8981 } 8982 8983 if (probe != NULL) { 8984 /* 8985 * If the provider shows more leg than the consumer is old 8986 * enough to see, we need to enable the appropriate implicit 8987 * predicate bits to prevent the ecb from activating at 8988 * revealing times. 8989 * 8990 * Providers specifying DTRACE_PRIV_USER at register time 8991 * are stating that they need the /proc-style privilege 8992 * model to be enforced, and this is what DTRACE_COND_OWNER 8993 * and DTRACE_COND_ZONEOWNER will then do at probe time. 8994 */ 8995 prov = probe->dtpr_provider; 8996 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 8997 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 8998 ecb->dte_cond |= DTRACE_COND_OWNER; 8999 9000 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9001 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9002 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9003 9004 /* 9005 * If the provider shows us kernel innards and the user 9006 * is lacking sufficient privilege, enable the 9007 * DTRACE_COND_USERMODE implicit predicate. 9008 */ 9009 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9010 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9011 ecb->dte_cond |= DTRACE_COND_USERMODE; 9012 } 9013 9014 if (dtrace_ecb_create_cache != NULL) { 9015 /* 9016 * If we have a cached ecb, we'll use its action list instead 9017 * of creating our own (saving both time and space). 9018 */ 9019 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9020 dtrace_action_t *act = cached->dte_action; 9021 9022 if (act != NULL) { 9023 ASSERT(act->dta_refcnt > 0); 9024 act->dta_refcnt++; 9025 ecb->dte_action = act; 9026 ecb->dte_action_last = cached->dte_action_last; 9027 ecb->dte_needed = cached->dte_needed; 9028 ecb->dte_size = cached->dte_size; 9029 ecb->dte_alignment = cached->dte_alignment; 9030 } 9031 9032 return (ecb); 9033 } 9034 9035 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9036 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9037 dtrace_ecb_destroy(ecb); 9038 return (NULL); 9039 } 9040 } 9041 9042 dtrace_ecb_resize(ecb); 9043 9044 return (dtrace_ecb_create_cache = ecb); 9045 } 9046 9047 static int 9048 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9049 { 9050 dtrace_ecb_t *ecb; 9051 dtrace_enabling_t *enab = arg; 9052 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9053 9054 ASSERT(state != NULL); 9055 9056 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9057 /* 9058 * This probe was created in a generation for which this 9059 * enabling has previously created ECBs; we don't want to 9060 * enable it again, so just kick out. 9061 */ 9062 return (DTRACE_MATCH_NEXT); 9063 } 9064 9065 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9066 return (DTRACE_MATCH_DONE); 9067 9068 dtrace_ecb_enable(ecb); 9069 return (DTRACE_MATCH_NEXT); 9070 } 9071 9072 static dtrace_ecb_t * 9073 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9074 { 9075 dtrace_ecb_t *ecb; 9076 9077 ASSERT(MUTEX_HELD(&dtrace_lock)); 9078 9079 if (id == 0 || id > state->dts_necbs) 9080 return (NULL); 9081 9082 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9083 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9084 9085 return (state->dts_ecbs[id - 1]); 9086 } 9087 9088 static dtrace_aggregation_t * 9089 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9090 { 9091 dtrace_aggregation_t *agg; 9092 9093 ASSERT(MUTEX_HELD(&dtrace_lock)); 9094 9095 if (id == 0 || id > state->dts_naggregations) 9096 return (NULL); 9097 9098 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9099 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9100 agg->dtag_id == id); 9101 9102 return (state->dts_aggregations[id - 1]); 9103 } 9104 9105 /* 9106 * DTrace Buffer Functions 9107 * 9108 * The following functions manipulate DTrace buffers. Most of these functions 9109 * are called in the context of establishing or processing consumer state; 9110 * exceptions are explicitly noted. 9111 */ 9112 9113 /* 9114 * Note: called from cross call context. This function switches the two 9115 * buffers on a given CPU. The atomicity of this operation is assured by 9116 * disabling interrupts while the actual switch takes place; the disabling of 9117 * interrupts serializes the execution with any execution of dtrace_probe() on 9118 * the same CPU. 9119 */ 9120 static void 9121 dtrace_buffer_switch(dtrace_buffer_t *buf) 9122 { 9123 caddr_t tomax = buf->dtb_tomax; 9124 caddr_t xamot = buf->dtb_xamot; 9125 dtrace_icookie_t cookie; 9126 9127 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9128 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9129 9130 cookie = dtrace_interrupt_disable(); 9131 buf->dtb_tomax = xamot; 9132 buf->dtb_xamot = tomax; 9133 buf->dtb_xamot_drops = buf->dtb_drops; 9134 buf->dtb_xamot_offset = buf->dtb_offset; 9135 buf->dtb_xamot_errors = buf->dtb_errors; 9136 buf->dtb_xamot_flags = buf->dtb_flags; 9137 buf->dtb_offset = 0; 9138 buf->dtb_drops = 0; 9139 buf->dtb_errors = 0; 9140 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9141 dtrace_interrupt_enable(cookie); 9142 } 9143 9144 /* 9145 * Note: called from cross call context. This function activates a buffer 9146 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 9147 * is guaranteed by the disabling of interrupts. 9148 */ 9149 static void 9150 dtrace_buffer_activate(dtrace_state_t *state) 9151 { 9152 dtrace_buffer_t *buf; 9153 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 9154 9155 buf = &state->dts_buffer[CPU->cpu_id]; 9156 9157 if (buf->dtb_tomax != NULL) { 9158 /* 9159 * We might like to assert that the buffer is marked inactive, 9160 * but this isn't necessarily true: the buffer for the CPU 9161 * that processes the BEGIN probe has its buffer activated 9162 * manually. In this case, we take the (harmless) action 9163 * re-clearing the bit INACTIVE bit. 9164 */ 9165 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 9166 } 9167 9168 dtrace_interrupt_enable(cookie); 9169 } 9170 9171 static int 9172 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 9173 processorid_t cpu) 9174 { 9175 cpu_t *cp; 9176 dtrace_buffer_t *buf; 9177 9178 ASSERT(MUTEX_HELD(&cpu_lock)); 9179 ASSERT(MUTEX_HELD(&dtrace_lock)); 9180 9181 if (size > dtrace_nonroot_maxsize && 9182 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 9183 return (EFBIG); 9184 9185 cp = cpu_list; 9186 9187 do { 9188 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9189 continue; 9190 9191 buf = &bufs[cp->cpu_id]; 9192 9193 /* 9194 * If there is already a buffer allocated for this CPU, it 9195 * is only possible that this is a DR event. In this case, 9196 * the buffer size must match our specified size. 9197 */ 9198 if (buf->dtb_tomax != NULL) { 9199 ASSERT(buf->dtb_size == size); 9200 continue; 9201 } 9202 9203 ASSERT(buf->dtb_xamot == NULL); 9204 9205 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9206 goto err; 9207 9208 buf->dtb_size = size; 9209 buf->dtb_flags = flags; 9210 buf->dtb_offset = 0; 9211 buf->dtb_drops = 0; 9212 9213 if (flags & DTRACEBUF_NOSWITCH) 9214 continue; 9215 9216 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 9217 goto err; 9218 } while ((cp = cp->cpu_next) != cpu_list); 9219 9220 return (0); 9221 9222 err: 9223 cp = cpu_list; 9224 9225 do { 9226 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 9227 continue; 9228 9229 buf = &bufs[cp->cpu_id]; 9230 9231 if (buf->dtb_xamot != NULL) { 9232 ASSERT(buf->dtb_tomax != NULL); 9233 ASSERT(buf->dtb_size == size); 9234 kmem_free(buf->dtb_xamot, size); 9235 } 9236 9237 if (buf->dtb_tomax != NULL) { 9238 ASSERT(buf->dtb_size == size); 9239 kmem_free(buf->dtb_tomax, size); 9240 } 9241 9242 buf->dtb_tomax = NULL; 9243 buf->dtb_xamot = NULL; 9244 buf->dtb_size = 0; 9245 } while ((cp = cp->cpu_next) != cpu_list); 9246 9247 return (ENOMEM); 9248 } 9249 9250 /* 9251 * Note: called from probe context. This function just increments the drop 9252 * count on a buffer. It has been made a function to allow for the 9253 * possibility of understanding the source of mysterious drop counts. (A 9254 * problem for which one may be particularly disappointed that DTrace cannot 9255 * be used to understand DTrace.) 9256 */ 9257 static void 9258 dtrace_buffer_drop(dtrace_buffer_t *buf) 9259 { 9260 buf->dtb_drops++; 9261 } 9262 9263 /* 9264 * Note: called from probe context. This function is called to reserve space 9265 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 9266 * mstate. Returns the new offset in the buffer, or a negative value if an 9267 * error has occurred. 9268 */ 9269 static intptr_t 9270 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 9271 dtrace_state_t *state, dtrace_mstate_t *mstate) 9272 { 9273 intptr_t offs = buf->dtb_offset, soffs; 9274 intptr_t woffs; 9275 caddr_t tomax; 9276 size_t total; 9277 9278 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 9279 return (-1); 9280 9281 if ((tomax = buf->dtb_tomax) == NULL) { 9282 dtrace_buffer_drop(buf); 9283 return (-1); 9284 } 9285 9286 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 9287 while (offs & (align - 1)) { 9288 /* 9289 * Assert that our alignment is off by a number which 9290 * is itself sizeof (uint32_t) aligned. 9291 */ 9292 ASSERT(!((align - (offs & (align - 1))) & 9293 (sizeof (uint32_t) - 1))); 9294 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9295 offs += sizeof (uint32_t); 9296 } 9297 9298 if ((soffs = offs + needed) > buf->dtb_size) { 9299 dtrace_buffer_drop(buf); 9300 return (-1); 9301 } 9302 9303 if (mstate == NULL) 9304 return (offs); 9305 9306 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 9307 mstate->dtms_scratch_size = buf->dtb_size - soffs; 9308 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9309 9310 return (offs); 9311 } 9312 9313 if (buf->dtb_flags & DTRACEBUF_FILL) { 9314 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 9315 (buf->dtb_flags & DTRACEBUF_FULL)) 9316 return (-1); 9317 goto out; 9318 } 9319 9320 total = needed + (offs & (align - 1)); 9321 9322 /* 9323 * For a ring buffer, life is quite a bit more complicated. Before 9324 * we can store any padding, we need to adjust our wrapping offset. 9325 * (If we've never before wrapped or we're not about to, no adjustment 9326 * is required.) 9327 */ 9328 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 9329 offs + total > buf->dtb_size) { 9330 woffs = buf->dtb_xamot_offset; 9331 9332 if (offs + total > buf->dtb_size) { 9333 /* 9334 * We can't fit in the end of the buffer. First, a 9335 * sanity check that we can fit in the buffer at all. 9336 */ 9337 if (total > buf->dtb_size) { 9338 dtrace_buffer_drop(buf); 9339 return (-1); 9340 } 9341 9342 /* 9343 * We're going to be storing at the top of the buffer, 9344 * so now we need to deal with the wrapped offset. We 9345 * only reset our wrapped offset to 0 if it is 9346 * currently greater than the current offset. If it 9347 * is less than the current offset, it is because a 9348 * previous allocation induced a wrap -- but the 9349 * allocation didn't subsequently take the space due 9350 * to an error or false predicate evaluation. In this 9351 * case, we'll just leave the wrapped offset alone: if 9352 * the wrapped offset hasn't been advanced far enough 9353 * for this allocation, it will be adjusted in the 9354 * lower loop. 9355 */ 9356 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 9357 if (woffs >= offs) 9358 woffs = 0; 9359 } else { 9360 woffs = 0; 9361 } 9362 9363 /* 9364 * Now we know that we're going to be storing to the 9365 * top of the buffer and that there is room for us 9366 * there. We need to clear the buffer from the current 9367 * offset to the end (there may be old gunk there). 9368 */ 9369 while (offs < buf->dtb_size) 9370 tomax[offs++] = 0; 9371 9372 /* 9373 * We need to set our offset to zero. And because we 9374 * are wrapping, we need to set the bit indicating as 9375 * much. We can also adjust our needed space back 9376 * down to the space required by the ECB -- we know 9377 * that the top of the buffer is aligned. 9378 */ 9379 offs = 0; 9380 total = needed; 9381 buf->dtb_flags |= DTRACEBUF_WRAPPED; 9382 } else { 9383 /* 9384 * There is room for us in the buffer, so we simply 9385 * need to check the wrapped offset. 9386 */ 9387 if (woffs < offs) { 9388 /* 9389 * The wrapped offset is less than the offset. 9390 * This can happen if we allocated buffer space 9391 * that induced a wrap, but then we didn't 9392 * subsequently take the space due to an error 9393 * or false predicate evaluation. This is 9394 * okay; we know that _this_ allocation isn't 9395 * going to induce a wrap. We still can't 9396 * reset the wrapped offset to be zero, 9397 * however: the space may have been trashed in 9398 * the previous failed probe attempt. But at 9399 * least the wrapped offset doesn't need to 9400 * be adjusted at all... 9401 */ 9402 goto out; 9403 } 9404 } 9405 9406 while (offs + total > woffs) { 9407 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 9408 size_t size; 9409 9410 if (epid == DTRACE_EPIDNONE) { 9411 size = sizeof (uint32_t); 9412 } else { 9413 ASSERT(epid <= state->dts_necbs); 9414 ASSERT(state->dts_ecbs[epid - 1] != NULL); 9415 9416 size = state->dts_ecbs[epid - 1]->dte_size; 9417 } 9418 9419 ASSERT(woffs + size <= buf->dtb_size); 9420 ASSERT(size != 0); 9421 9422 if (woffs + size == buf->dtb_size) { 9423 /* 9424 * We've reached the end of the buffer; we want 9425 * to set the wrapped offset to 0 and break 9426 * out. However, if the offs is 0, then we're 9427 * in a strange edge-condition: the amount of 9428 * space that we want to reserve plus the size 9429 * of the record that we're overwriting is 9430 * greater than the size of the buffer. This 9431 * is problematic because if we reserve the 9432 * space but subsequently don't consume it (due 9433 * to a failed predicate or error) the wrapped 9434 * offset will be 0 -- yet the EPID at offset 0 9435 * will not be committed. This situation is 9436 * relatively easy to deal with: if we're in 9437 * this case, the buffer is indistinguishable 9438 * from one that hasn't wrapped; we need only 9439 * finish the job by clearing the wrapped bit, 9440 * explicitly setting the offset to be 0, and 9441 * zero'ing out the old data in the buffer. 9442 */ 9443 if (offs == 0) { 9444 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 9445 buf->dtb_offset = 0; 9446 woffs = total; 9447 9448 while (woffs < buf->dtb_size) 9449 tomax[woffs++] = 0; 9450 } 9451 9452 woffs = 0; 9453 break; 9454 } 9455 9456 woffs += size; 9457 } 9458 9459 /* 9460 * We have a wrapped offset. It may be that the wrapped offset 9461 * has become zero -- that's okay. 9462 */ 9463 buf->dtb_xamot_offset = woffs; 9464 } 9465 9466 out: 9467 /* 9468 * Now we can plow the buffer with any necessary padding. 9469 */ 9470 while (offs & (align - 1)) { 9471 /* 9472 * Assert that our alignment is off by a number which 9473 * is itself sizeof (uint32_t) aligned. 9474 */ 9475 ASSERT(!((align - (offs & (align - 1))) & 9476 (sizeof (uint32_t) - 1))); 9477 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 9478 offs += sizeof (uint32_t); 9479 } 9480 9481 if (buf->dtb_flags & DTRACEBUF_FILL) { 9482 if (offs + needed > buf->dtb_size - state->dts_reserve) { 9483 buf->dtb_flags |= DTRACEBUF_FULL; 9484 return (-1); 9485 } 9486 } 9487 9488 if (mstate == NULL) 9489 return (offs); 9490 9491 /* 9492 * For ring buffers and fill buffers, the scratch space is always 9493 * the inactive buffer. 9494 */ 9495 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 9496 mstate->dtms_scratch_size = buf->dtb_size; 9497 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 9498 9499 return (offs); 9500 } 9501 9502 static void 9503 dtrace_buffer_polish(dtrace_buffer_t *buf) 9504 { 9505 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 9506 ASSERT(MUTEX_HELD(&dtrace_lock)); 9507 9508 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 9509 return; 9510 9511 /* 9512 * We need to polish the ring buffer. There are three cases: 9513 * 9514 * - The first (and presumably most common) is that there is no gap 9515 * between the buffer offset and the wrapped offset. In this case, 9516 * there is nothing in the buffer that isn't valid data; we can 9517 * mark the buffer as polished and return. 9518 * 9519 * - The second (less common than the first but still more common 9520 * than the third) is that there is a gap between the buffer offset 9521 * and the wrapped offset, and the wrapped offset is larger than the 9522 * buffer offset. This can happen because of an alignment issue, or 9523 * can happen because of a call to dtrace_buffer_reserve() that 9524 * didn't subsequently consume the buffer space. In this case, 9525 * we need to zero the data from the buffer offset to the wrapped 9526 * offset. 9527 * 9528 * - The third (and least common) is that there is a gap between the 9529 * buffer offset and the wrapped offset, but the wrapped offset is 9530 * _less_ than the buffer offset. This can only happen because a 9531 * call to dtrace_buffer_reserve() induced a wrap, but the space 9532 * was not subsequently consumed. In this case, we need to zero the 9533 * space from the offset to the end of the buffer _and_ from the 9534 * top of the buffer to the wrapped offset. 9535 */ 9536 if (buf->dtb_offset < buf->dtb_xamot_offset) { 9537 bzero(buf->dtb_tomax + buf->dtb_offset, 9538 buf->dtb_xamot_offset - buf->dtb_offset); 9539 } 9540 9541 if (buf->dtb_offset > buf->dtb_xamot_offset) { 9542 bzero(buf->dtb_tomax + buf->dtb_offset, 9543 buf->dtb_size - buf->dtb_offset); 9544 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 9545 } 9546 } 9547 9548 static void 9549 dtrace_buffer_free(dtrace_buffer_t *bufs) 9550 { 9551 int i; 9552 9553 for (i = 0; i < NCPU; i++) { 9554 dtrace_buffer_t *buf = &bufs[i]; 9555 9556 if (buf->dtb_tomax == NULL) { 9557 ASSERT(buf->dtb_xamot == NULL); 9558 ASSERT(buf->dtb_size == 0); 9559 continue; 9560 } 9561 9562 if (buf->dtb_xamot != NULL) { 9563 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9564 kmem_free(buf->dtb_xamot, buf->dtb_size); 9565 } 9566 9567 kmem_free(buf->dtb_tomax, buf->dtb_size); 9568 buf->dtb_size = 0; 9569 buf->dtb_tomax = NULL; 9570 buf->dtb_xamot = NULL; 9571 } 9572 } 9573 9574 /* 9575 * DTrace Enabling Functions 9576 */ 9577 static dtrace_enabling_t * 9578 dtrace_enabling_create(dtrace_vstate_t *vstate) 9579 { 9580 dtrace_enabling_t *enab; 9581 9582 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 9583 enab->dten_vstate = vstate; 9584 9585 return (enab); 9586 } 9587 9588 static void 9589 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 9590 { 9591 dtrace_ecbdesc_t **ndesc; 9592 size_t osize, nsize; 9593 9594 /* 9595 * We can't add to enablings after we've enabled them, or after we've 9596 * retained them. 9597 */ 9598 ASSERT(enab->dten_probegen == 0); 9599 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 9600 9601 if (enab->dten_ndesc < enab->dten_maxdesc) { 9602 enab->dten_desc[enab->dten_ndesc++] = ecb; 9603 return; 9604 } 9605 9606 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 9607 9608 if (enab->dten_maxdesc == 0) { 9609 enab->dten_maxdesc = 1; 9610 } else { 9611 enab->dten_maxdesc <<= 1; 9612 } 9613 9614 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 9615 9616 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 9617 ndesc = kmem_zalloc(nsize, KM_SLEEP); 9618 bcopy(enab->dten_desc, ndesc, osize); 9619 kmem_free(enab->dten_desc, osize); 9620 9621 enab->dten_desc = ndesc; 9622 enab->dten_desc[enab->dten_ndesc++] = ecb; 9623 } 9624 9625 static void 9626 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 9627 dtrace_probedesc_t *pd) 9628 { 9629 dtrace_ecbdesc_t *new; 9630 dtrace_predicate_t *pred; 9631 dtrace_actdesc_t *act; 9632 9633 /* 9634 * We're going to create a new ECB description that matches the 9635 * specified ECB in every way, but has the specified probe description. 9636 */ 9637 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 9638 9639 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 9640 dtrace_predicate_hold(pred); 9641 9642 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 9643 dtrace_actdesc_hold(act); 9644 9645 new->dted_action = ecb->dted_action; 9646 new->dted_pred = ecb->dted_pred; 9647 new->dted_probe = *pd; 9648 new->dted_uarg = ecb->dted_uarg; 9649 9650 dtrace_enabling_add(enab, new); 9651 } 9652 9653 static void 9654 dtrace_enabling_dump(dtrace_enabling_t *enab) 9655 { 9656 int i; 9657 9658 for (i = 0; i < enab->dten_ndesc; i++) { 9659 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 9660 9661 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 9662 desc->dtpd_provider, desc->dtpd_mod, 9663 desc->dtpd_func, desc->dtpd_name); 9664 } 9665 } 9666 9667 static void 9668 dtrace_enabling_destroy(dtrace_enabling_t *enab) 9669 { 9670 int i; 9671 dtrace_ecbdesc_t *ep; 9672 dtrace_vstate_t *vstate = enab->dten_vstate; 9673 9674 ASSERT(MUTEX_HELD(&dtrace_lock)); 9675 9676 for (i = 0; i < enab->dten_ndesc; i++) { 9677 dtrace_actdesc_t *act, *next; 9678 dtrace_predicate_t *pred; 9679 9680 ep = enab->dten_desc[i]; 9681 9682 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 9683 dtrace_predicate_release(pred, vstate); 9684 9685 for (act = ep->dted_action; act != NULL; act = next) { 9686 next = act->dtad_next; 9687 dtrace_actdesc_release(act, vstate); 9688 } 9689 9690 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 9691 } 9692 9693 kmem_free(enab->dten_desc, 9694 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 9695 9696 /* 9697 * If this was a retained enabling, decrement the dts_nretained count 9698 * and take it off of the dtrace_retained list. 9699 */ 9700 if (enab->dten_prev != NULL || enab->dten_next != NULL || 9701 dtrace_retained == enab) { 9702 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9703 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 9704 enab->dten_vstate->dtvs_state->dts_nretained--; 9705 } 9706 9707 if (enab->dten_prev == NULL) { 9708 if (dtrace_retained == enab) { 9709 dtrace_retained = enab->dten_next; 9710 9711 if (dtrace_retained != NULL) 9712 dtrace_retained->dten_prev = NULL; 9713 } 9714 } else { 9715 ASSERT(enab != dtrace_retained); 9716 ASSERT(dtrace_retained != NULL); 9717 enab->dten_prev->dten_next = enab->dten_next; 9718 } 9719 9720 if (enab->dten_next != NULL) { 9721 ASSERT(dtrace_retained != NULL); 9722 enab->dten_next->dten_prev = enab->dten_prev; 9723 } 9724 9725 kmem_free(enab, sizeof (dtrace_enabling_t)); 9726 } 9727 9728 static int 9729 dtrace_enabling_retain(dtrace_enabling_t *enab) 9730 { 9731 dtrace_state_t *state; 9732 9733 ASSERT(MUTEX_HELD(&dtrace_lock)); 9734 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 9735 ASSERT(enab->dten_vstate != NULL); 9736 9737 state = enab->dten_vstate->dtvs_state; 9738 ASSERT(state != NULL); 9739 9740 /* 9741 * We only allow each state to retain dtrace_retain_max enablings. 9742 */ 9743 if (state->dts_nretained >= dtrace_retain_max) 9744 return (ENOSPC); 9745 9746 state->dts_nretained++; 9747 9748 if (dtrace_retained == NULL) { 9749 dtrace_retained = enab; 9750 return (0); 9751 } 9752 9753 enab->dten_next = dtrace_retained; 9754 dtrace_retained->dten_prev = enab; 9755 dtrace_retained = enab; 9756 9757 return (0); 9758 } 9759 9760 static int 9761 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 9762 dtrace_probedesc_t *create) 9763 { 9764 dtrace_enabling_t *new, *enab; 9765 int found = 0, err = ENOENT; 9766 9767 ASSERT(MUTEX_HELD(&dtrace_lock)); 9768 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 9769 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 9770 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 9771 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 9772 9773 new = dtrace_enabling_create(&state->dts_vstate); 9774 9775 /* 9776 * Iterate over all retained enablings, looking for enablings that 9777 * match the specified state. 9778 */ 9779 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9780 int i; 9781 9782 /* 9783 * dtvs_state can only be NULL for helper enablings -- and 9784 * helper enablings can't be retained. 9785 */ 9786 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9787 9788 if (enab->dten_vstate->dtvs_state != state) 9789 continue; 9790 9791 /* 9792 * Now iterate over each probe description; we're looking for 9793 * an exact match to the specified probe description. 9794 */ 9795 for (i = 0; i < enab->dten_ndesc; i++) { 9796 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 9797 dtrace_probedesc_t *pd = &ep->dted_probe; 9798 9799 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 9800 continue; 9801 9802 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 9803 continue; 9804 9805 if (strcmp(pd->dtpd_func, match->dtpd_func)) 9806 continue; 9807 9808 if (strcmp(pd->dtpd_name, match->dtpd_name)) 9809 continue; 9810 9811 /* 9812 * We have a winning probe! Add it to our growing 9813 * enabling. 9814 */ 9815 found = 1; 9816 dtrace_enabling_addlike(new, ep, create); 9817 } 9818 } 9819 9820 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 9821 dtrace_enabling_destroy(new); 9822 return (err); 9823 } 9824 9825 return (0); 9826 } 9827 9828 static void 9829 dtrace_enabling_retract(dtrace_state_t *state) 9830 { 9831 dtrace_enabling_t *enab, *next; 9832 9833 ASSERT(MUTEX_HELD(&dtrace_lock)); 9834 9835 /* 9836 * Iterate over all retained enablings, destroy the enablings retained 9837 * for the specified state. 9838 */ 9839 for (enab = dtrace_retained; enab != NULL; enab = next) { 9840 next = enab->dten_next; 9841 9842 /* 9843 * dtvs_state can only be NULL for helper enablings -- and 9844 * helper enablings can't be retained. 9845 */ 9846 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9847 9848 if (enab->dten_vstate->dtvs_state == state) { 9849 ASSERT(state->dts_nretained > 0); 9850 dtrace_enabling_destroy(enab); 9851 } 9852 } 9853 9854 ASSERT(state->dts_nretained == 0); 9855 } 9856 9857 static int 9858 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 9859 { 9860 int i = 0; 9861 int matched = 0; 9862 9863 ASSERT(MUTEX_HELD(&cpu_lock)); 9864 ASSERT(MUTEX_HELD(&dtrace_lock)); 9865 9866 for (i = 0; i < enab->dten_ndesc; i++) { 9867 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 9868 9869 enab->dten_current = ep; 9870 enab->dten_error = 0; 9871 9872 matched += dtrace_probe_enable(&ep->dted_probe, enab); 9873 9874 if (enab->dten_error != 0) { 9875 /* 9876 * If we get an error half-way through enabling the 9877 * probes, we kick out -- perhaps with some number of 9878 * them enabled. Leaving enabled probes enabled may 9879 * be slightly confusing for user-level, but we expect 9880 * that no one will attempt to actually drive on in 9881 * the face of such errors. If this is an anonymous 9882 * enabling (indicated with a NULL nmatched pointer), 9883 * we cmn_err() a message. We aren't expecting to 9884 * get such an error -- such as it can exist at all, 9885 * it would be a result of corrupted DOF in the driver 9886 * properties. 9887 */ 9888 if (nmatched == NULL) { 9889 cmn_err(CE_WARN, "dtrace_enabling_match() " 9890 "error on %p: %d", (void *)ep, 9891 enab->dten_error); 9892 } 9893 9894 return (enab->dten_error); 9895 } 9896 } 9897 9898 enab->dten_probegen = dtrace_probegen; 9899 if (nmatched != NULL) 9900 *nmatched = matched; 9901 9902 return (0); 9903 } 9904 9905 static void 9906 dtrace_enabling_matchall(void) 9907 { 9908 dtrace_enabling_t *enab; 9909 9910 mutex_enter(&cpu_lock); 9911 mutex_enter(&dtrace_lock); 9912 9913 /* 9914 * Because we can be called after dtrace_detach() has been called, we 9915 * cannot assert that there are retained enablings. We can safely 9916 * load from dtrace_retained, however: the taskq_destroy() at the 9917 * end of dtrace_detach() will block pending our completion. 9918 */ 9919 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 9920 (void) dtrace_enabling_match(enab, NULL); 9921 9922 mutex_exit(&dtrace_lock); 9923 mutex_exit(&cpu_lock); 9924 } 9925 9926 static int 9927 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 9928 { 9929 dtrace_enabling_t *enab; 9930 int matched, total = 0, err; 9931 9932 ASSERT(MUTEX_HELD(&cpu_lock)); 9933 ASSERT(MUTEX_HELD(&dtrace_lock)); 9934 9935 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9936 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9937 9938 if (enab->dten_vstate->dtvs_state != state) 9939 continue; 9940 9941 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 9942 return (err); 9943 9944 total += matched; 9945 } 9946 9947 if (nmatched != NULL) 9948 *nmatched = total; 9949 9950 return (0); 9951 } 9952 9953 /* 9954 * If an enabling is to be enabled without having matched probes (that is, if 9955 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 9956 * enabling must be _primed_ by creating an ECB for every ECB description. 9957 * This must be done to assure that we know the number of speculations, the 9958 * number of aggregations, the minimum buffer size needed, etc. before we 9959 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 9960 * enabling any probes, we create ECBs for every ECB decription, but with a 9961 * NULL probe -- which is exactly what this function does. 9962 */ 9963 static void 9964 dtrace_enabling_prime(dtrace_state_t *state) 9965 { 9966 dtrace_enabling_t *enab; 9967 int i; 9968 9969 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 9970 ASSERT(enab->dten_vstate->dtvs_state != NULL); 9971 9972 if (enab->dten_vstate->dtvs_state != state) 9973 continue; 9974 9975 /* 9976 * We don't want to prime an enabling more than once, lest 9977 * we allow a malicious user to induce resource exhaustion. 9978 * (The ECBs that result from priming an enabling aren't 9979 * leaked -- but they also aren't deallocated until the 9980 * consumer state is destroyed.) 9981 */ 9982 if (enab->dten_primed) 9983 continue; 9984 9985 for (i = 0; i < enab->dten_ndesc; i++) { 9986 enab->dten_current = enab->dten_desc[i]; 9987 (void) dtrace_probe_enable(NULL, enab); 9988 } 9989 9990 enab->dten_primed = 1; 9991 } 9992 } 9993 9994 /* 9995 * Called to indicate that probes should be provided due to retained 9996 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 9997 * must take an initial lap through the enabling calling the dtps_provide() 9998 * entry point explicitly to allow for autocreated probes. 9999 */ 10000 static void 10001 dtrace_enabling_provide(dtrace_provider_t *prv) 10002 { 10003 int i, all = 0; 10004 dtrace_probedesc_t desc; 10005 10006 ASSERT(MUTEX_HELD(&dtrace_lock)); 10007 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10008 10009 if (prv == NULL) { 10010 all = 1; 10011 prv = dtrace_provider; 10012 } 10013 10014 do { 10015 dtrace_enabling_t *enab = dtrace_retained; 10016 void *parg = prv->dtpv_arg; 10017 10018 for (; enab != NULL; enab = enab->dten_next) { 10019 for (i = 0; i < enab->dten_ndesc; i++) { 10020 desc = enab->dten_desc[i]->dted_probe; 10021 mutex_exit(&dtrace_lock); 10022 prv->dtpv_pops.dtps_provide(parg, &desc); 10023 mutex_enter(&dtrace_lock); 10024 } 10025 } 10026 } while (all && (prv = prv->dtpv_next) != NULL); 10027 10028 mutex_exit(&dtrace_lock); 10029 dtrace_probe_provide(NULL, all ? NULL : prv); 10030 mutex_enter(&dtrace_lock); 10031 } 10032 10033 /* 10034 * DTrace DOF Functions 10035 */ 10036 /*ARGSUSED*/ 10037 static void 10038 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10039 { 10040 if (dtrace_err_verbose) 10041 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10042 10043 #ifdef DTRACE_ERRDEBUG 10044 dtrace_errdebug(str); 10045 #endif 10046 } 10047 10048 /* 10049 * Create DOF out of a currently enabled state. Right now, we only create 10050 * DOF containing the run-time options -- but this could be expanded to create 10051 * complete DOF representing the enabled state. 10052 */ 10053 static dof_hdr_t * 10054 dtrace_dof_create(dtrace_state_t *state) 10055 { 10056 dof_hdr_t *dof; 10057 dof_sec_t *sec; 10058 dof_optdesc_t *opt; 10059 int i, len = sizeof (dof_hdr_t) + 10060 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10061 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10062 10063 ASSERT(MUTEX_HELD(&dtrace_lock)); 10064 10065 dof = kmem_zalloc(len, KM_SLEEP); 10066 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10067 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10068 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10069 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10070 10071 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10072 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10073 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10074 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10075 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10076 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10077 10078 dof->dofh_flags = 0; 10079 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10080 dof->dofh_secsize = sizeof (dof_sec_t); 10081 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10082 dof->dofh_secoff = sizeof (dof_hdr_t); 10083 dof->dofh_loadsz = len; 10084 dof->dofh_filesz = len; 10085 dof->dofh_pad = 0; 10086 10087 /* 10088 * Fill in the option section header... 10089 */ 10090 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10091 sec->dofs_type = DOF_SECT_OPTDESC; 10092 sec->dofs_align = sizeof (uint64_t); 10093 sec->dofs_flags = DOF_SECF_LOAD; 10094 sec->dofs_entsize = sizeof (dof_optdesc_t); 10095 10096 opt = (dof_optdesc_t *)((uintptr_t)sec + 10097 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10098 10099 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10100 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10101 10102 for (i = 0; i < DTRACEOPT_MAX; i++) { 10103 opt[i].dofo_option = i; 10104 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10105 opt[i].dofo_value = state->dts_options[i]; 10106 } 10107 10108 return (dof); 10109 } 10110 10111 static dof_hdr_t * 10112 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10113 { 10114 dof_hdr_t hdr, *dof; 10115 10116 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10117 10118 /* 10119 * First, we're going to copyin() the sizeof (dof_hdr_t). 10120 */ 10121 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10122 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10123 *errp = EFAULT; 10124 return (NULL); 10125 } 10126 10127 /* 10128 * Now we'll allocate the entire DOF and copy it in -- provided 10129 * that the length isn't outrageous. 10130 */ 10131 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10132 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10133 *errp = E2BIG; 10134 return (NULL); 10135 } 10136 10137 if (hdr.dofh_loadsz < sizeof (hdr)) { 10138 dtrace_dof_error(&hdr, "invalid load size"); 10139 *errp = EINVAL; 10140 return (NULL); 10141 } 10142 10143 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10144 10145 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10146 kmem_free(dof, hdr.dofh_loadsz); 10147 *errp = EFAULT; 10148 return (NULL); 10149 } 10150 10151 return (dof); 10152 } 10153 10154 static dof_hdr_t * 10155 dtrace_dof_property(const char *name) 10156 { 10157 uchar_t *buf; 10158 uint64_t loadsz; 10159 unsigned int len, i; 10160 dof_hdr_t *dof; 10161 10162 /* 10163 * Unfortunately, array of values in .conf files are always (and 10164 * only) interpreted to be integer arrays. We must read our DOF 10165 * as an integer array, and then squeeze it into a byte array. 10166 */ 10167 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 10168 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 10169 return (NULL); 10170 10171 for (i = 0; i < len; i++) 10172 buf[i] = (uchar_t)(((int *)buf)[i]); 10173 10174 if (len < sizeof (dof_hdr_t)) { 10175 ddi_prop_free(buf); 10176 dtrace_dof_error(NULL, "truncated header"); 10177 return (NULL); 10178 } 10179 10180 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 10181 ddi_prop_free(buf); 10182 dtrace_dof_error(NULL, "truncated DOF"); 10183 return (NULL); 10184 } 10185 10186 if (loadsz >= dtrace_dof_maxsize) { 10187 ddi_prop_free(buf); 10188 dtrace_dof_error(NULL, "oversized DOF"); 10189 return (NULL); 10190 } 10191 10192 dof = kmem_alloc(loadsz, KM_SLEEP); 10193 bcopy(buf, dof, loadsz); 10194 ddi_prop_free(buf); 10195 10196 return (dof); 10197 } 10198 10199 static void 10200 dtrace_dof_destroy(dof_hdr_t *dof) 10201 { 10202 kmem_free(dof, dof->dofh_loadsz); 10203 } 10204 10205 /* 10206 * Return the dof_sec_t pointer corresponding to a given section index. If the 10207 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 10208 * a type other than DOF_SECT_NONE is specified, the header is checked against 10209 * this type and NULL is returned if the types do not match. 10210 */ 10211 static dof_sec_t * 10212 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 10213 { 10214 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 10215 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 10216 10217 if (i >= dof->dofh_secnum) { 10218 dtrace_dof_error(dof, "referenced section index is invalid"); 10219 return (NULL); 10220 } 10221 10222 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 10223 dtrace_dof_error(dof, "referenced section is not loadable"); 10224 return (NULL); 10225 } 10226 10227 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 10228 dtrace_dof_error(dof, "referenced section is the wrong type"); 10229 return (NULL); 10230 } 10231 10232 return (sec); 10233 } 10234 10235 static dtrace_probedesc_t * 10236 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 10237 { 10238 dof_probedesc_t *probe; 10239 dof_sec_t *strtab; 10240 uintptr_t daddr = (uintptr_t)dof; 10241 uintptr_t str; 10242 size_t size; 10243 10244 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 10245 dtrace_dof_error(dof, "invalid probe section"); 10246 return (NULL); 10247 } 10248 10249 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10250 dtrace_dof_error(dof, "bad alignment in probe description"); 10251 return (NULL); 10252 } 10253 10254 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 10255 dtrace_dof_error(dof, "truncated probe description"); 10256 return (NULL); 10257 } 10258 10259 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 10260 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 10261 10262 if (strtab == NULL) 10263 return (NULL); 10264 10265 str = daddr + strtab->dofs_offset; 10266 size = strtab->dofs_size; 10267 10268 if (probe->dofp_provider >= strtab->dofs_size) { 10269 dtrace_dof_error(dof, "corrupt probe provider"); 10270 return (NULL); 10271 } 10272 10273 (void) strncpy(desc->dtpd_provider, 10274 (char *)(str + probe->dofp_provider), 10275 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 10276 10277 if (probe->dofp_mod >= strtab->dofs_size) { 10278 dtrace_dof_error(dof, "corrupt probe module"); 10279 return (NULL); 10280 } 10281 10282 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 10283 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 10284 10285 if (probe->dofp_func >= strtab->dofs_size) { 10286 dtrace_dof_error(dof, "corrupt probe function"); 10287 return (NULL); 10288 } 10289 10290 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 10291 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 10292 10293 if (probe->dofp_name >= strtab->dofs_size) { 10294 dtrace_dof_error(dof, "corrupt probe name"); 10295 return (NULL); 10296 } 10297 10298 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 10299 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 10300 10301 return (desc); 10302 } 10303 10304 static dtrace_difo_t * 10305 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10306 cred_t *cr) 10307 { 10308 dtrace_difo_t *dp; 10309 size_t ttl = 0; 10310 dof_difohdr_t *dofd; 10311 uintptr_t daddr = (uintptr_t)dof; 10312 size_t max = dtrace_difo_maxsize; 10313 int i, l, n; 10314 10315 static const struct { 10316 int section; 10317 int bufoffs; 10318 int lenoffs; 10319 int entsize; 10320 int align; 10321 const char *msg; 10322 } difo[] = { 10323 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 10324 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 10325 sizeof (dif_instr_t), "multiple DIF sections" }, 10326 10327 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 10328 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 10329 sizeof (uint64_t), "multiple integer tables" }, 10330 10331 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 10332 offsetof(dtrace_difo_t, dtdo_strlen), 0, 10333 sizeof (char), "multiple string tables" }, 10334 10335 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 10336 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 10337 sizeof (uint_t), "multiple variable tables" }, 10338 10339 { DOF_SECT_NONE, 0, 0, 0, NULL } 10340 }; 10341 10342 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 10343 dtrace_dof_error(dof, "invalid DIFO header section"); 10344 return (NULL); 10345 } 10346 10347 if (sec->dofs_align != sizeof (dof_secidx_t)) { 10348 dtrace_dof_error(dof, "bad alignment in DIFO header"); 10349 return (NULL); 10350 } 10351 10352 if (sec->dofs_size < sizeof (dof_difohdr_t) || 10353 sec->dofs_size % sizeof (dof_secidx_t)) { 10354 dtrace_dof_error(dof, "bad size in DIFO header"); 10355 return (NULL); 10356 } 10357 10358 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 10359 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 10360 10361 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10362 dp->dtdo_rtype = dofd->dofd_rtype; 10363 10364 for (l = 0; l < n; l++) { 10365 dof_sec_t *subsec; 10366 void **bufp; 10367 uint32_t *lenp; 10368 10369 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 10370 dofd->dofd_links[l])) == NULL) 10371 goto err; /* invalid section link */ 10372 10373 if (ttl + subsec->dofs_size > max) { 10374 dtrace_dof_error(dof, "exceeds maximum size"); 10375 goto err; 10376 } 10377 10378 ttl += subsec->dofs_size; 10379 10380 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 10381 if (subsec->dofs_type != difo[i].section) 10382 continue; 10383 10384 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 10385 dtrace_dof_error(dof, "section not loaded"); 10386 goto err; 10387 } 10388 10389 if (subsec->dofs_align != difo[i].align) { 10390 dtrace_dof_error(dof, "bad alignment"); 10391 goto err; 10392 } 10393 10394 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 10395 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 10396 10397 if (*bufp != NULL) { 10398 dtrace_dof_error(dof, difo[i].msg); 10399 goto err; 10400 } 10401 10402 if (difo[i].entsize != subsec->dofs_entsize) { 10403 dtrace_dof_error(dof, "entry size mismatch"); 10404 goto err; 10405 } 10406 10407 if (subsec->dofs_entsize != 0 && 10408 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 10409 dtrace_dof_error(dof, "corrupt entry size"); 10410 goto err; 10411 } 10412 10413 *lenp = subsec->dofs_size; 10414 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 10415 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 10416 *bufp, subsec->dofs_size); 10417 10418 if (subsec->dofs_entsize != 0) 10419 *lenp /= subsec->dofs_entsize; 10420 10421 break; 10422 } 10423 10424 /* 10425 * If we encounter a loadable DIFO sub-section that is not 10426 * known to us, assume this is a broken program and fail. 10427 */ 10428 if (difo[i].section == DOF_SECT_NONE && 10429 (subsec->dofs_flags & DOF_SECF_LOAD)) { 10430 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 10431 goto err; 10432 } 10433 } 10434 10435 if (dp->dtdo_buf == NULL) { 10436 /* 10437 * We can't have a DIF object without DIF text. 10438 */ 10439 dtrace_dof_error(dof, "missing DIF text"); 10440 goto err; 10441 } 10442 10443 /* 10444 * Before we validate the DIF object, run through the variable table 10445 * looking for the strings -- if any of their size are under, we'll set 10446 * their size to be the system-wide default string size. Note that 10447 * this should _not_ happen if the "strsize" option has been set -- 10448 * in this case, the compiler should have set the size to reflect the 10449 * setting of the option. 10450 */ 10451 for (i = 0; i < dp->dtdo_varlen; i++) { 10452 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10453 dtrace_diftype_t *t = &v->dtdv_type; 10454 10455 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 10456 continue; 10457 10458 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 10459 t->dtdt_size = dtrace_strsize_default; 10460 } 10461 10462 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 10463 goto err; 10464 10465 dtrace_difo_init(dp, vstate); 10466 return (dp); 10467 10468 err: 10469 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10470 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10471 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10472 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10473 10474 kmem_free(dp, sizeof (dtrace_difo_t)); 10475 return (NULL); 10476 } 10477 10478 static dtrace_predicate_t * 10479 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10480 cred_t *cr) 10481 { 10482 dtrace_difo_t *dp; 10483 10484 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 10485 return (NULL); 10486 10487 return (dtrace_predicate_create(dp)); 10488 } 10489 10490 static dtrace_actdesc_t * 10491 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10492 cred_t *cr) 10493 { 10494 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 10495 dof_actdesc_t *desc; 10496 dof_sec_t *difosec; 10497 size_t offs; 10498 uintptr_t daddr = (uintptr_t)dof; 10499 uint64_t arg; 10500 dtrace_actkind_t kind; 10501 10502 if (sec->dofs_type != DOF_SECT_ACTDESC) { 10503 dtrace_dof_error(dof, "invalid action section"); 10504 return (NULL); 10505 } 10506 10507 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 10508 dtrace_dof_error(dof, "truncated action description"); 10509 return (NULL); 10510 } 10511 10512 if (sec->dofs_align != sizeof (uint64_t)) { 10513 dtrace_dof_error(dof, "bad alignment in action description"); 10514 return (NULL); 10515 } 10516 10517 if (sec->dofs_size < sec->dofs_entsize) { 10518 dtrace_dof_error(dof, "section entry size exceeds total size"); 10519 return (NULL); 10520 } 10521 10522 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 10523 dtrace_dof_error(dof, "bad entry size in action description"); 10524 return (NULL); 10525 } 10526 10527 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 10528 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 10529 return (NULL); 10530 } 10531 10532 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 10533 desc = (dof_actdesc_t *)(daddr + 10534 (uintptr_t)sec->dofs_offset + offs); 10535 kind = (dtrace_actkind_t)desc->dofa_kind; 10536 10537 if (DTRACEACT_ISPRINTFLIKE(kind) && 10538 (kind != DTRACEACT_PRINTA || 10539 desc->dofa_strtab != DOF_SECIDX_NONE)) { 10540 dof_sec_t *strtab; 10541 char *str, *fmt; 10542 uint64_t i; 10543 10544 /* 10545 * printf()-like actions must have a format string. 10546 */ 10547 if ((strtab = dtrace_dof_sect(dof, 10548 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 10549 goto err; 10550 10551 str = (char *)((uintptr_t)dof + 10552 (uintptr_t)strtab->dofs_offset); 10553 10554 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 10555 if (str[i] == '\0') 10556 break; 10557 } 10558 10559 if (i >= strtab->dofs_size) { 10560 dtrace_dof_error(dof, "bogus format string"); 10561 goto err; 10562 } 10563 10564 if (i == desc->dofa_arg) { 10565 dtrace_dof_error(dof, "empty format string"); 10566 goto err; 10567 } 10568 10569 i -= desc->dofa_arg; 10570 fmt = kmem_alloc(i + 1, KM_SLEEP); 10571 bcopy(&str[desc->dofa_arg], fmt, i + 1); 10572 arg = (uint64_t)(uintptr_t)fmt; 10573 } else { 10574 if (kind == DTRACEACT_PRINTA) { 10575 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 10576 arg = 0; 10577 } else { 10578 arg = desc->dofa_arg; 10579 } 10580 } 10581 10582 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 10583 desc->dofa_uarg, arg); 10584 10585 if (last != NULL) { 10586 last->dtad_next = act; 10587 } else { 10588 first = act; 10589 } 10590 10591 last = act; 10592 10593 if (desc->dofa_difo == DOF_SECIDX_NONE) 10594 continue; 10595 10596 if ((difosec = dtrace_dof_sect(dof, 10597 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 10598 goto err; 10599 10600 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 10601 10602 if (act->dtad_difo == NULL) 10603 goto err; 10604 } 10605 10606 ASSERT(first != NULL); 10607 return (first); 10608 10609 err: 10610 for (act = first; act != NULL; act = next) { 10611 next = act->dtad_next; 10612 dtrace_actdesc_release(act, vstate); 10613 } 10614 10615 return (NULL); 10616 } 10617 10618 static dtrace_ecbdesc_t * 10619 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 10620 cred_t *cr) 10621 { 10622 dtrace_ecbdesc_t *ep; 10623 dof_ecbdesc_t *ecb; 10624 dtrace_probedesc_t *desc; 10625 dtrace_predicate_t *pred = NULL; 10626 10627 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 10628 dtrace_dof_error(dof, "truncated ECB description"); 10629 return (NULL); 10630 } 10631 10632 if (sec->dofs_align != sizeof (uint64_t)) { 10633 dtrace_dof_error(dof, "bad alignment in ECB description"); 10634 return (NULL); 10635 } 10636 10637 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 10638 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 10639 10640 if (sec == NULL) 10641 return (NULL); 10642 10643 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10644 ep->dted_uarg = ecb->dofe_uarg; 10645 desc = &ep->dted_probe; 10646 10647 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 10648 goto err; 10649 10650 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 10651 if ((sec = dtrace_dof_sect(dof, 10652 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 10653 goto err; 10654 10655 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 10656 goto err; 10657 10658 ep->dted_pred.dtpdd_predicate = pred; 10659 } 10660 10661 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 10662 if ((sec = dtrace_dof_sect(dof, 10663 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 10664 goto err; 10665 10666 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 10667 10668 if (ep->dted_action == NULL) 10669 goto err; 10670 } 10671 10672 return (ep); 10673 10674 err: 10675 if (pred != NULL) 10676 dtrace_predicate_release(pred, vstate); 10677 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10678 return (NULL); 10679 } 10680 10681 /* 10682 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 10683 * specified DOF. At present, this amounts to simply adding 'ubase' to the 10684 * site of any user SETX relocations to account for load object base address. 10685 * In the future, if we need other relocations, this function can be extended. 10686 */ 10687 static int 10688 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 10689 { 10690 uintptr_t daddr = (uintptr_t)dof; 10691 dof_relohdr_t *dofr = 10692 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 10693 dof_sec_t *ss, *rs, *ts; 10694 dof_relodesc_t *r; 10695 uint_t i, n; 10696 10697 if (sec->dofs_size < sizeof (dof_relohdr_t) || 10698 sec->dofs_align != sizeof (dof_secidx_t)) { 10699 dtrace_dof_error(dof, "invalid relocation header"); 10700 return (-1); 10701 } 10702 10703 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 10704 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 10705 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 10706 10707 if (ss == NULL || rs == NULL || ts == NULL) 10708 return (-1); /* dtrace_dof_error() has been called already */ 10709 10710 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 10711 rs->dofs_align != sizeof (uint64_t)) { 10712 dtrace_dof_error(dof, "invalid relocation section"); 10713 return (-1); 10714 } 10715 10716 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 10717 n = rs->dofs_size / rs->dofs_entsize; 10718 10719 for (i = 0; i < n; i++) { 10720 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 10721 10722 switch (r->dofr_type) { 10723 case DOF_RELO_NONE: 10724 break; 10725 case DOF_RELO_SETX: 10726 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 10727 sizeof (uint64_t) > ts->dofs_size) { 10728 dtrace_dof_error(dof, "bad relocation offset"); 10729 return (-1); 10730 } 10731 10732 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 10733 dtrace_dof_error(dof, "misaligned setx relo"); 10734 return (-1); 10735 } 10736 10737 *(uint64_t *)taddr += ubase; 10738 break; 10739 default: 10740 dtrace_dof_error(dof, "invalid relocation type"); 10741 return (-1); 10742 } 10743 10744 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 10745 } 10746 10747 return (0); 10748 } 10749 10750 /* 10751 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 10752 * header: it should be at the front of a memory region that is at least 10753 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 10754 * size. It need not be validated in any other way. 10755 */ 10756 static int 10757 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 10758 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 10759 { 10760 uint64_t len = dof->dofh_loadsz, seclen; 10761 uintptr_t daddr = (uintptr_t)dof; 10762 dtrace_ecbdesc_t *ep; 10763 dtrace_enabling_t *enab; 10764 uint_t i; 10765 10766 ASSERT(MUTEX_HELD(&dtrace_lock)); 10767 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 10768 10769 /* 10770 * Check the DOF header identification bytes. In addition to checking 10771 * valid settings, we also verify that unused bits/bytes are zeroed so 10772 * we can use them later without fear of regressing existing binaries. 10773 */ 10774 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 10775 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 10776 dtrace_dof_error(dof, "DOF magic string mismatch"); 10777 return (-1); 10778 } 10779 10780 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 10781 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 10782 dtrace_dof_error(dof, "DOF has invalid data model"); 10783 return (-1); 10784 } 10785 10786 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 10787 dtrace_dof_error(dof, "DOF encoding mismatch"); 10788 return (-1); 10789 } 10790 10791 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 10792 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 10793 dtrace_dof_error(dof, "DOF version mismatch"); 10794 return (-1); 10795 } 10796 10797 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 10798 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 10799 return (-1); 10800 } 10801 10802 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 10803 dtrace_dof_error(dof, "DOF uses too many integer registers"); 10804 return (-1); 10805 } 10806 10807 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 10808 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 10809 return (-1); 10810 } 10811 10812 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 10813 if (dof->dofh_ident[i] != 0) { 10814 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 10815 return (-1); 10816 } 10817 } 10818 10819 if (dof->dofh_flags & ~DOF_FL_VALID) { 10820 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 10821 return (-1); 10822 } 10823 10824 if (dof->dofh_secsize == 0) { 10825 dtrace_dof_error(dof, "zero section header size"); 10826 return (-1); 10827 } 10828 10829 /* 10830 * Check that the section headers don't exceed the amount of DOF 10831 * data. Note that we cast the section size and number of sections 10832 * to uint64_t's to prevent possible overflow in the multiplication. 10833 */ 10834 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 10835 10836 if (dof->dofh_secoff > len || seclen > len || 10837 dof->dofh_secoff + seclen > len) { 10838 dtrace_dof_error(dof, "truncated section headers"); 10839 return (-1); 10840 } 10841 10842 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 10843 dtrace_dof_error(dof, "misaligned section headers"); 10844 return (-1); 10845 } 10846 10847 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 10848 dtrace_dof_error(dof, "misaligned section size"); 10849 return (-1); 10850 } 10851 10852 /* 10853 * Take an initial pass through the section headers to be sure that 10854 * the headers don't have stray offsets. If the 'noprobes' flag is 10855 * set, do not permit sections relating to providers, probes, or args. 10856 */ 10857 for (i = 0; i < dof->dofh_secnum; i++) { 10858 dof_sec_t *sec = (dof_sec_t *)(daddr + 10859 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10860 10861 if (noprobes) { 10862 switch (sec->dofs_type) { 10863 case DOF_SECT_PROVIDER: 10864 case DOF_SECT_PROBES: 10865 case DOF_SECT_PRARGS: 10866 case DOF_SECT_PROFFS: 10867 dtrace_dof_error(dof, "illegal sections " 10868 "for enabling"); 10869 return (-1); 10870 } 10871 } 10872 10873 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 10874 continue; /* just ignore non-loadable sections */ 10875 10876 if (sec->dofs_align & (sec->dofs_align - 1)) { 10877 dtrace_dof_error(dof, "bad section alignment"); 10878 return (-1); 10879 } 10880 10881 if (sec->dofs_offset & (sec->dofs_align - 1)) { 10882 dtrace_dof_error(dof, "misaligned section"); 10883 return (-1); 10884 } 10885 10886 if (sec->dofs_offset > len || sec->dofs_size > len || 10887 sec->dofs_offset + sec->dofs_size > len) { 10888 dtrace_dof_error(dof, "corrupt section header"); 10889 return (-1); 10890 } 10891 10892 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 10893 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 10894 dtrace_dof_error(dof, "non-terminating string table"); 10895 return (-1); 10896 } 10897 } 10898 10899 /* 10900 * Take a second pass through the sections and locate and perform any 10901 * relocations that are present. We do this after the first pass to 10902 * be sure that all sections have had their headers validated. 10903 */ 10904 for (i = 0; i < dof->dofh_secnum; i++) { 10905 dof_sec_t *sec = (dof_sec_t *)(daddr + 10906 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10907 10908 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 10909 continue; /* skip sections that are not loadable */ 10910 10911 switch (sec->dofs_type) { 10912 case DOF_SECT_URELHDR: 10913 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 10914 return (-1); 10915 break; 10916 } 10917 } 10918 10919 if ((enab = *enabp) == NULL) 10920 enab = *enabp = dtrace_enabling_create(vstate); 10921 10922 for (i = 0; i < dof->dofh_secnum; i++) { 10923 dof_sec_t *sec = (dof_sec_t *)(daddr + 10924 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10925 10926 if (sec->dofs_type != DOF_SECT_ECBDESC) 10927 continue; 10928 10929 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 10930 dtrace_enabling_destroy(enab); 10931 *enabp = NULL; 10932 return (-1); 10933 } 10934 10935 dtrace_enabling_add(enab, ep); 10936 } 10937 10938 return (0); 10939 } 10940 10941 /* 10942 * Process DOF for any options. This routine assumes that the DOF has been 10943 * at least processed by dtrace_dof_slurp(). 10944 */ 10945 static int 10946 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 10947 { 10948 int i, rval; 10949 uint32_t entsize; 10950 size_t offs; 10951 dof_optdesc_t *desc; 10952 10953 for (i = 0; i < dof->dofh_secnum; i++) { 10954 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 10955 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 10956 10957 if (sec->dofs_type != DOF_SECT_OPTDESC) 10958 continue; 10959 10960 if (sec->dofs_align != sizeof (uint64_t)) { 10961 dtrace_dof_error(dof, "bad alignment in " 10962 "option description"); 10963 return (EINVAL); 10964 } 10965 10966 if ((entsize = sec->dofs_entsize) == 0) { 10967 dtrace_dof_error(dof, "zeroed option entry size"); 10968 return (EINVAL); 10969 } 10970 10971 if (entsize < sizeof (dof_optdesc_t)) { 10972 dtrace_dof_error(dof, "bad option entry size"); 10973 return (EINVAL); 10974 } 10975 10976 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 10977 desc = (dof_optdesc_t *)((uintptr_t)dof + 10978 (uintptr_t)sec->dofs_offset + offs); 10979 10980 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 10981 dtrace_dof_error(dof, "non-zero option string"); 10982 return (EINVAL); 10983 } 10984 10985 if (desc->dofo_value == DTRACEOPT_UNSET) { 10986 dtrace_dof_error(dof, "unset option"); 10987 return (EINVAL); 10988 } 10989 10990 if ((rval = dtrace_state_option(state, 10991 desc->dofo_option, desc->dofo_value)) != 0) { 10992 dtrace_dof_error(dof, "rejected option"); 10993 return (rval); 10994 } 10995 } 10996 } 10997 10998 return (0); 10999 } 11000 11001 /* 11002 * DTrace Consumer State Functions 11003 */ 11004 int 11005 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11006 { 11007 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11008 void *base; 11009 uintptr_t limit; 11010 dtrace_dynvar_t *dvar, *next, *start; 11011 int i; 11012 11013 ASSERT(MUTEX_HELD(&dtrace_lock)); 11014 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11015 11016 bzero(dstate, sizeof (dtrace_dstate_t)); 11017 11018 if ((dstate->dtds_chunksize = chunksize) == 0) 11019 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11020 11021 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11022 size = min; 11023 11024 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11025 return (ENOMEM); 11026 11027 dstate->dtds_size = size; 11028 dstate->dtds_base = base; 11029 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11030 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11031 11032 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11033 11034 if (hashsize != 1 && (hashsize & 1)) 11035 hashsize--; 11036 11037 dstate->dtds_hashsize = hashsize; 11038 dstate->dtds_hash = dstate->dtds_base; 11039 11040 /* 11041 * Set all of our hash buckets to point to the single sink, and (if 11042 * it hasn't already been set), set the sink's hash value to be the 11043 * sink sentinel value. The sink is needed for dynamic variable 11044 * lookups to know that they have iterated over an entire, valid hash 11045 * chain. 11046 */ 11047 for (i = 0; i < hashsize; i++) 11048 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11049 11050 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11051 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11052 11053 /* 11054 * Determine number of active CPUs. Divide free list evenly among 11055 * active CPUs. 11056 */ 11057 start = (dtrace_dynvar_t *) 11058 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11059 limit = (uintptr_t)base + size; 11060 11061 maxper = (limit - (uintptr_t)start) / NCPU; 11062 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11063 11064 for (i = 0; i < NCPU; i++) { 11065 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11066 11067 /* 11068 * If we don't even have enough chunks to make it once through 11069 * NCPUs, we're just going to allocate everything to the first 11070 * CPU. And if we're on the last CPU, we're going to allocate 11071 * whatever is left over. In either case, we set the limit to 11072 * be the limit of the dynamic variable space. 11073 */ 11074 if (maxper == 0 || i == NCPU - 1) { 11075 limit = (uintptr_t)base + size; 11076 start = NULL; 11077 } else { 11078 limit = (uintptr_t)start + maxper; 11079 start = (dtrace_dynvar_t *)limit; 11080 } 11081 11082 ASSERT(limit <= (uintptr_t)base + size); 11083 11084 for (;;) { 11085 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11086 dstate->dtds_chunksize); 11087 11088 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11089 break; 11090 11091 dvar->dtdv_next = next; 11092 dvar = next; 11093 } 11094 11095 if (maxper == 0) 11096 break; 11097 } 11098 11099 return (0); 11100 } 11101 11102 void 11103 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11104 { 11105 ASSERT(MUTEX_HELD(&cpu_lock)); 11106 11107 if (dstate->dtds_base == NULL) 11108 return; 11109 11110 kmem_free(dstate->dtds_base, dstate->dtds_size); 11111 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11112 } 11113 11114 static void 11115 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11116 { 11117 /* 11118 * Logical XOR, where are you? 11119 */ 11120 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11121 11122 if (vstate->dtvs_nglobals > 0) { 11123 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11124 sizeof (dtrace_statvar_t *)); 11125 } 11126 11127 if (vstate->dtvs_ntlocals > 0) { 11128 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11129 sizeof (dtrace_difv_t)); 11130 } 11131 11132 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11133 11134 if (vstate->dtvs_nlocals > 0) { 11135 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11136 sizeof (dtrace_statvar_t *)); 11137 } 11138 } 11139 11140 static void 11141 dtrace_state_clean(dtrace_state_t *state) 11142 { 11143 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11144 return; 11145 11146 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 11147 dtrace_speculation_clean(state); 11148 } 11149 11150 static void 11151 dtrace_state_deadman(dtrace_state_t *state) 11152 { 11153 hrtime_t now; 11154 11155 dtrace_sync(); 11156 11157 now = dtrace_gethrtime(); 11158 11159 if (state != dtrace_anon.dta_state && 11160 now - state->dts_laststatus >= dtrace_deadman_user) 11161 return; 11162 11163 /* 11164 * We must be sure that dts_alive never appears to be less than the 11165 * value upon entry to dtrace_state_deadman(), and because we lack a 11166 * dtrace_cas64(), we cannot store to it atomically. We thus instead 11167 * store INT64_MAX to it, followed by a memory barrier, followed by 11168 * the new value. This assures that dts_alive never appears to be 11169 * less than its true value, regardless of the order in which the 11170 * stores to the underlying storage are issued. 11171 */ 11172 state->dts_alive = INT64_MAX; 11173 dtrace_membar_producer(); 11174 state->dts_alive = now; 11175 } 11176 11177 dtrace_state_t * 11178 dtrace_state_create(dev_t *devp, cred_t *cr) 11179 { 11180 minor_t minor; 11181 major_t major; 11182 char c[30]; 11183 dtrace_state_t *state; 11184 dtrace_optval_t *opt; 11185 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 11186 11187 ASSERT(MUTEX_HELD(&dtrace_lock)); 11188 ASSERT(MUTEX_HELD(&cpu_lock)); 11189 11190 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 11191 VM_BESTFIT | VM_SLEEP); 11192 11193 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 11194 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11195 return (NULL); 11196 } 11197 11198 state = ddi_get_soft_state(dtrace_softstate, minor); 11199 state->dts_epid = DTRACE_EPIDNONE + 1; 11200 11201 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 11202 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 11203 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 11204 11205 if (devp != NULL) { 11206 major = getemajor(*devp); 11207 } else { 11208 major = ddi_driver_major(dtrace_devi); 11209 } 11210 11211 state->dts_dev = makedevice(major, minor); 11212 11213 if (devp != NULL) 11214 *devp = state->dts_dev; 11215 11216 /* 11217 * We allocate NCPU buffers. On the one hand, this can be quite 11218 * a bit of memory per instance (nearly 36K on a Starcat). On the 11219 * other hand, it saves an additional memory reference in the probe 11220 * path. 11221 */ 11222 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 11223 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 11224 state->dts_cleaner = CYCLIC_NONE; 11225 state->dts_deadman = CYCLIC_NONE; 11226 state->dts_vstate.dtvs_state = state; 11227 11228 for (i = 0; i < DTRACEOPT_MAX; i++) 11229 state->dts_options[i] = DTRACEOPT_UNSET; 11230 11231 /* 11232 * Set the default options. 11233 */ 11234 opt = state->dts_options; 11235 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 11236 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 11237 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 11238 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 11239 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 11240 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 11241 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 11242 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 11243 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 11244 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 11245 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 11246 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 11247 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 11248 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 11249 11250 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 11251 11252 /* 11253 * Depending on the user credentials, we set flag bits which alter probe 11254 * visibility or the amount of destructiveness allowed. In the case of 11255 * actual anonymous tracing, or the possession of all privileges, all of 11256 * the normal checks are bypassed. 11257 */ 11258 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 11259 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 11260 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 11261 } else { 11262 /* 11263 * Set up the credentials for this instantiation. We take a 11264 * hold on the credential to prevent it from disappearing on 11265 * us; this in turn prevents the zone_t referenced by this 11266 * credential from disappearing. This means that we can 11267 * examine the credential and the zone from probe context. 11268 */ 11269 crhold(cr); 11270 state->dts_cred.dcr_cred = cr; 11271 11272 /* 11273 * CRA_PROC means "we have *some* privilege for dtrace" and 11274 * unlocks the use of variables like pid, zonename, etc. 11275 */ 11276 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 11277 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11278 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 11279 } 11280 11281 /* 11282 * dtrace_user allows use of syscall and profile providers. 11283 * If the user also has proc_owner and/or proc_zone, we 11284 * extend the scope to include additional visibility and 11285 * destructive power. 11286 */ 11287 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 11288 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 11289 state->dts_cred.dcr_visible |= 11290 DTRACE_CRV_ALLPROC; 11291 11292 state->dts_cred.dcr_action |= 11293 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11294 } 11295 11296 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 11297 state->dts_cred.dcr_visible |= 11298 DTRACE_CRV_ALLZONE; 11299 11300 state->dts_cred.dcr_action |= 11301 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11302 } 11303 11304 /* 11305 * If we have all privs in whatever zone this is, 11306 * we can do destructive things to processes which 11307 * have altered credentials. 11308 */ 11309 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11310 cr->cr_zone->zone_privset)) { 11311 state->dts_cred.dcr_action |= 11312 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11313 } 11314 } 11315 11316 /* 11317 * Holding the dtrace_kernel privilege also implies that 11318 * the user has the dtrace_user privilege from a visibility 11319 * perspective. But without further privileges, some 11320 * destructive actions are not available. 11321 */ 11322 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 11323 /* 11324 * Make all probes in all zones visible. However, 11325 * this doesn't mean that all actions become available 11326 * to all zones. 11327 */ 11328 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 11329 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 11330 11331 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 11332 DTRACE_CRA_PROC; 11333 /* 11334 * Holding proc_owner means that destructive actions 11335 * for *this* zone are allowed. 11336 */ 11337 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11338 state->dts_cred.dcr_action |= 11339 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11340 11341 /* 11342 * Holding proc_zone means that destructive actions 11343 * for this user/group ID in all zones is allowed. 11344 */ 11345 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11346 state->dts_cred.dcr_action |= 11347 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11348 11349 /* 11350 * If we have all privs in whatever zone this is, 11351 * we can do destructive things to processes which 11352 * have altered credentials. 11353 */ 11354 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 11355 cr->cr_zone->zone_privset)) { 11356 state->dts_cred.dcr_action |= 11357 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 11358 } 11359 } 11360 11361 /* 11362 * Holding the dtrace_proc privilege gives control over fasttrap 11363 * and pid providers. We need to grant wider destructive 11364 * privileges in the event that the user has proc_owner and/or 11365 * proc_zone. 11366 */ 11367 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 11368 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 11369 state->dts_cred.dcr_action |= 11370 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 11371 11372 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 11373 state->dts_cred.dcr_action |= 11374 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 11375 } 11376 } 11377 11378 return (state); 11379 } 11380 11381 static int 11382 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 11383 { 11384 dtrace_optval_t *opt = state->dts_options, size; 11385 processorid_t cpu; 11386 int flags = 0, rval; 11387 11388 ASSERT(MUTEX_HELD(&dtrace_lock)); 11389 ASSERT(MUTEX_HELD(&cpu_lock)); 11390 ASSERT(which < DTRACEOPT_MAX); 11391 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 11392 (state == dtrace_anon.dta_state && 11393 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 11394 11395 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 11396 return (0); 11397 11398 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 11399 cpu = opt[DTRACEOPT_CPU]; 11400 11401 if (which == DTRACEOPT_SPECSIZE) 11402 flags |= DTRACEBUF_NOSWITCH; 11403 11404 if (which == DTRACEOPT_BUFSIZE) { 11405 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 11406 flags |= DTRACEBUF_RING; 11407 11408 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 11409 flags |= DTRACEBUF_FILL; 11410 11411 flags |= DTRACEBUF_INACTIVE; 11412 } 11413 11414 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 11415 /* 11416 * The size must be 8-byte aligned. If the size is not 8-byte 11417 * aligned, drop it down by the difference. 11418 */ 11419 if (size & (sizeof (uint64_t) - 1)) 11420 size -= size & (sizeof (uint64_t) - 1); 11421 11422 if (size < state->dts_reserve) { 11423 /* 11424 * Buffers always must be large enough to accommodate 11425 * their prereserved space. We return E2BIG instead 11426 * of ENOMEM in this case to allow for user-level 11427 * software to differentiate the cases. 11428 */ 11429 return (E2BIG); 11430 } 11431 11432 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 11433 11434 if (rval != ENOMEM) { 11435 opt[which] = size; 11436 return (rval); 11437 } 11438 11439 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 11440 return (rval); 11441 } 11442 11443 return (ENOMEM); 11444 } 11445 11446 static int 11447 dtrace_state_buffers(dtrace_state_t *state) 11448 { 11449 dtrace_speculation_t *spec = state->dts_speculations; 11450 int rval, i; 11451 11452 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 11453 DTRACEOPT_BUFSIZE)) != 0) 11454 return (rval); 11455 11456 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 11457 DTRACEOPT_AGGSIZE)) != 0) 11458 return (rval); 11459 11460 for (i = 0; i < state->dts_nspeculations; i++) { 11461 if ((rval = dtrace_state_buffer(state, 11462 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 11463 return (rval); 11464 } 11465 11466 return (0); 11467 } 11468 11469 static void 11470 dtrace_state_prereserve(dtrace_state_t *state) 11471 { 11472 dtrace_ecb_t *ecb; 11473 dtrace_probe_t *probe; 11474 11475 state->dts_reserve = 0; 11476 11477 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 11478 return; 11479 11480 /* 11481 * If our buffer policy is a "fill" buffer policy, we need to set the 11482 * prereserved space to be the space required by the END probes. 11483 */ 11484 probe = dtrace_probes[dtrace_probeid_end - 1]; 11485 ASSERT(probe != NULL); 11486 11487 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 11488 if (ecb->dte_state != state) 11489 continue; 11490 11491 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 11492 } 11493 } 11494 11495 static int 11496 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 11497 { 11498 dtrace_optval_t *opt = state->dts_options, sz, nspec; 11499 dtrace_speculation_t *spec; 11500 dtrace_buffer_t *buf; 11501 cyc_handler_t hdlr; 11502 cyc_time_t when; 11503 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 11504 dtrace_icookie_t cookie; 11505 11506 mutex_enter(&cpu_lock); 11507 mutex_enter(&dtrace_lock); 11508 11509 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 11510 rval = EBUSY; 11511 goto out; 11512 } 11513 11514 /* 11515 * Before we can perform any checks, we must prime all of the 11516 * retained enablings that correspond to this state. 11517 */ 11518 dtrace_enabling_prime(state); 11519 11520 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 11521 rval = EACCES; 11522 goto out; 11523 } 11524 11525 dtrace_state_prereserve(state); 11526 11527 /* 11528 * Now we want to do is try to allocate our speculations. 11529 * We do not automatically resize the number of speculations; if 11530 * this fails, we will fail the operation. 11531 */ 11532 nspec = opt[DTRACEOPT_NSPEC]; 11533 ASSERT(nspec != DTRACEOPT_UNSET); 11534 11535 if (nspec > INT_MAX) { 11536 rval = ENOMEM; 11537 goto out; 11538 } 11539 11540 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 11541 11542 if (spec == NULL) { 11543 rval = ENOMEM; 11544 goto out; 11545 } 11546 11547 state->dts_speculations = spec; 11548 state->dts_nspeculations = (int)nspec; 11549 11550 for (i = 0; i < nspec; i++) { 11551 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 11552 rval = ENOMEM; 11553 goto err; 11554 } 11555 11556 spec[i].dtsp_buffer = buf; 11557 } 11558 11559 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 11560 if (dtrace_anon.dta_state == NULL) { 11561 rval = ENOENT; 11562 goto out; 11563 } 11564 11565 if (state->dts_necbs != 0) { 11566 rval = EALREADY; 11567 goto out; 11568 } 11569 11570 state->dts_anon = dtrace_anon_grab(); 11571 ASSERT(state->dts_anon != NULL); 11572 state = state->dts_anon; 11573 11574 /* 11575 * We want "grabanon" to be set in the grabbed state, so we'll 11576 * copy that option value from the grabbing state into the 11577 * grabbed state. 11578 */ 11579 state->dts_options[DTRACEOPT_GRABANON] = 11580 opt[DTRACEOPT_GRABANON]; 11581 11582 *cpu = dtrace_anon.dta_beganon; 11583 11584 /* 11585 * If the anonymous state is active (as it almost certainly 11586 * is if the anonymous enabling ultimately matched anything), 11587 * we don't allow any further option processing -- but we 11588 * don't return failure. 11589 */ 11590 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11591 goto out; 11592 } 11593 11594 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 11595 opt[DTRACEOPT_AGGSIZE] != 0) { 11596 if (state->dts_aggregations == NULL) { 11597 /* 11598 * We're not going to create an aggregation buffer 11599 * because we don't have any ECBs that contain 11600 * aggregations -- set this option to 0. 11601 */ 11602 opt[DTRACEOPT_AGGSIZE] = 0; 11603 } else { 11604 /* 11605 * If we have an aggregation buffer, we must also have 11606 * a buffer to use as scratch. 11607 */ 11608 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 11609 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 11610 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 11611 } 11612 } 11613 } 11614 11615 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 11616 opt[DTRACEOPT_SPECSIZE] != 0) { 11617 if (!state->dts_speculates) { 11618 /* 11619 * We're not going to create speculation buffers 11620 * because we don't have any ECBs that actually 11621 * speculate -- set the speculation size to 0. 11622 */ 11623 opt[DTRACEOPT_SPECSIZE] = 0; 11624 } 11625 } 11626 11627 /* 11628 * The bare minimum size for any buffer that we're actually going to 11629 * do anything to is sizeof (uint64_t). 11630 */ 11631 sz = sizeof (uint64_t); 11632 11633 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 11634 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 11635 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 11636 /* 11637 * A buffer size has been explicitly set to 0 (or to a size 11638 * that will be adjusted to 0) and we need the space -- we 11639 * need to return failure. We return ENOSPC to differentiate 11640 * it from failing to allocate a buffer due to failure to meet 11641 * the reserve (for which we return E2BIG). 11642 */ 11643 rval = ENOSPC; 11644 goto out; 11645 } 11646 11647 if ((rval = dtrace_state_buffers(state)) != 0) 11648 goto err; 11649 11650 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 11651 sz = dtrace_dstate_defsize; 11652 11653 do { 11654 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 11655 11656 if (rval == 0) 11657 break; 11658 11659 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 11660 goto err; 11661 } while (sz >>= 1); 11662 11663 opt[DTRACEOPT_DYNVARSIZE] = sz; 11664 11665 if (rval != 0) 11666 goto err; 11667 11668 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 11669 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 11670 11671 if (opt[DTRACEOPT_CLEANRATE] == 0) 11672 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 11673 11674 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 11675 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 11676 11677 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 11678 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 11679 11680 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 11681 hdlr.cyh_arg = state; 11682 hdlr.cyh_level = CY_LOW_LEVEL; 11683 11684 when.cyt_when = 0; 11685 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 11686 11687 state->dts_cleaner = cyclic_add(&hdlr, &when); 11688 11689 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 11690 hdlr.cyh_arg = state; 11691 hdlr.cyh_level = CY_LOW_LEVEL; 11692 11693 when.cyt_when = 0; 11694 when.cyt_interval = dtrace_deadman_interval; 11695 11696 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 11697 state->dts_deadman = cyclic_add(&hdlr, &when); 11698 11699 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 11700 11701 /* 11702 * Now it's time to actually fire the BEGIN probe. We need to disable 11703 * interrupts here both to record the CPU on which we fired the BEGIN 11704 * probe (the data from this CPU will be processed first at user 11705 * level) and to manually activate the buffer for this CPU. 11706 */ 11707 cookie = dtrace_interrupt_disable(); 11708 *cpu = CPU->cpu_id; 11709 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 11710 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 11711 11712 dtrace_probe(dtrace_probeid_begin, 11713 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 11714 dtrace_interrupt_enable(cookie); 11715 /* 11716 * We may have had an exit action from a BEGIN probe; only change our 11717 * state to ACTIVE if we're still in WARMUP. 11718 */ 11719 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 11720 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 11721 11722 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 11723 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 11724 11725 /* 11726 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 11727 * want each CPU to transition its principal buffer out of the 11728 * INACTIVE state. Doing this assures that no CPU will suddenly begin 11729 * processing an ECB halfway down a probe's ECB chain; all CPUs will 11730 * atomically transition from processing none of a state's ECBs to 11731 * processing all of them. 11732 */ 11733 dtrace_xcall(DTRACE_CPUALL, 11734 (dtrace_xcall_t)dtrace_buffer_activate, state); 11735 goto out; 11736 11737 err: 11738 dtrace_buffer_free(state->dts_buffer); 11739 dtrace_buffer_free(state->dts_aggbuffer); 11740 11741 if ((nspec = state->dts_nspeculations) == 0) { 11742 ASSERT(state->dts_speculations == NULL); 11743 goto out; 11744 } 11745 11746 spec = state->dts_speculations; 11747 ASSERT(spec != NULL); 11748 11749 for (i = 0; i < state->dts_nspeculations; i++) { 11750 if ((buf = spec[i].dtsp_buffer) == NULL) 11751 break; 11752 11753 dtrace_buffer_free(buf); 11754 kmem_free(buf, bufsize); 11755 } 11756 11757 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 11758 state->dts_nspeculations = 0; 11759 state->dts_speculations = NULL; 11760 11761 out: 11762 mutex_exit(&dtrace_lock); 11763 mutex_exit(&cpu_lock); 11764 11765 return (rval); 11766 } 11767 11768 static int 11769 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 11770 { 11771 dtrace_icookie_t cookie; 11772 11773 ASSERT(MUTEX_HELD(&dtrace_lock)); 11774 11775 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 11776 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 11777 return (EINVAL); 11778 11779 /* 11780 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 11781 * to be sure that every CPU has seen it. See below for the details 11782 * on why this is done. 11783 */ 11784 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 11785 dtrace_sync(); 11786 11787 /* 11788 * By this point, it is impossible for any CPU to be still processing 11789 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 11790 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 11791 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 11792 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 11793 * iff we're in the END probe. 11794 */ 11795 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 11796 dtrace_sync(); 11797 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 11798 11799 /* 11800 * Finally, we can release the reserve and call the END probe. We 11801 * disable interrupts across calling the END probe to allow us to 11802 * return the CPU on which we actually called the END probe. This 11803 * allows user-land to be sure that this CPU's principal buffer is 11804 * processed last. 11805 */ 11806 state->dts_reserve = 0; 11807 11808 cookie = dtrace_interrupt_disable(); 11809 *cpu = CPU->cpu_id; 11810 dtrace_probe(dtrace_probeid_end, 11811 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 11812 dtrace_interrupt_enable(cookie); 11813 11814 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 11815 dtrace_sync(); 11816 11817 return (0); 11818 } 11819 11820 static int 11821 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 11822 dtrace_optval_t val) 11823 { 11824 ASSERT(MUTEX_HELD(&dtrace_lock)); 11825 11826 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11827 return (EBUSY); 11828 11829 if (option >= DTRACEOPT_MAX) 11830 return (EINVAL); 11831 11832 if (option != DTRACEOPT_CPU && val < 0) 11833 return (EINVAL); 11834 11835 switch (option) { 11836 case DTRACEOPT_DESTRUCTIVE: 11837 if (dtrace_destructive_disallow) 11838 return (EACCES); 11839 11840 state->dts_cred.dcr_destructive = 1; 11841 break; 11842 11843 case DTRACEOPT_BUFSIZE: 11844 case DTRACEOPT_DYNVARSIZE: 11845 case DTRACEOPT_AGGSIZE: 11846 case DTRACEOPT_SPECSIZE: 11847 case DTRACEOPT_STRSIZE: 11848 if (val < 0) 11849 return (EINVAL); 11850 11851 if (val >= LONG_MAX) { 11852 /* 11853 * If this is an otherwise negative value, set it to 11854 * the highest multiple of 128m less than LONG_MAX. 11855 * Technically, we're adjusting the size without 11856 * regard to the buffer resizing policy, but in fact, 11857 * this has no effect -- if we set the buffer size to 11858 * ~LONG_MAX and the buffer policy is ultimately set to 11859 * be "manual", the buffer allocation is guaranteed to 11860 * fail, if only because the allocation requires two 11861 * buffers. (We set the the size to the highest 11862 * multiple of 128m because it ensures that the size 11863 * will remain a multiple of a megabyte when 11864 * repeatedly halved -- all the way down to 15m.) 11865 */ 11866 val = LONG_MAX - (1 << 27) + 1; 11867 } 11868 } 11869 11870 state->dts_options[option] = val; 11871 11872 return (0); 11873 } 11874 11875 static void 11876 dtrace_state_destroy(dtrace_state_t *state) 11877 { 11878 dtrace_ecb_t *ecb; 11879 dtrace_vstate_t *vstate = &state->dts_vstate; 11880 minor_t minor = getminor(state->dts_dev); 11881 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 11882 dtrace_speculation_t *spec = state->dts_speculations; 11883 int nspec = state->dts_nspeculations; 11884 uint32_t match; 11885 11886 ASSERT(MUTEX_HELD(&dtrace_lock)); 11887 ASSERT(MUTEX_HELD(&cpu_lock)); 11888 11889 /* 11890 * First, retract any retained enablings for this state. 11891 */ 11892 dtrace_enabling_retract(state); 11893 ASSERT(state->dts_nretained == 0); 11894 11895 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 11896 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 11897 /* 11898 * We have managed to come into dtrace_state_destroy() on a 11899 * hot enabling -- almost certainly because of a disorderly 11900 * shutdown of a consumer. (That is, a consumer that is 11901 * exiting without having called dtrace_stop().) In this case, 11902 * we're going to set our activity to be KILLED, and then 11903 * issue a sync to be sure that everyone is out of probe 11904 * context before we start blowing away ECBs. 11905 */ 11906 state->dts_activity = DTRACE_ACTIVITY_KILLED; 11907 dtrace_sync(); 11908 } 11909 11910 /* 11911 * Release the credential hold we took in dtrace_state_create(). 11912 */ 11913 if (state->dts_cred.dcr_cred != NULL) 11914 crfree(state->dts_cred.dcr_cred); 11915 11916 /* 11917 * Now we can safely disable and destroy any enabled probes. Because 11918 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 11919 * (especially if they're all enabled), we take two passes through the 11920 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 11921 * in the second we disable whatever is left over. 11922 */ 11923 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 11924 for (i = 0; i < state->dts_necbs; i++) { 11925 if ((ecb = state->dts_ecbs[i]) == NULL) 11926 continue; 11927 11928 if (match && ecb->dte_probe != NULL) { 11929 dtrace_probe_t *probe = ecb->dte_probe; 11930 dtrace_provider_t *prov = probe->dtpr_provider; 11931 11932 if (!(prov->dtpv_priv.dtpp_flags & match)) 11933 continue; 11934 } 11935 11936 dtrace_ecb_disable(ecb); 11937 dtrace_ecb_destroy(ecb); 11938 } 11939 11940 if (!match) 11941 break; 11942 } 11943 11944 /* 11945 * Before we free the buffers, perform one more sync to assure that 11946 * every CPU is out of probe context. 11947 */ 11948 dtrace_sync(); 11949 11950 dtrace_buffer_free(state->dts_buffer); 11951 dtrace_buffer_free(state->dts_aggbuffer); 11952 11953 for (i = 0; i < nspec; i++) 11954 dtrace_buffer_free(spec[i].dtsp_buffer); 11955 11956 if (state->dts_cleaner != CYCLIC_NONE) 11957 cyclic_remove(state->dts_cleaner); 11958 11959 if (state->dts_deadman != CYCLIC_NONE) 11960 cyclic_remove(state->dts_deadman); 11961 11962 dtrace_dstate_fini(&vstate->dtvs_dynvars); 11963 dtrace_vstate_fini(vstate); 11964 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 11965 11966 if (state->dts_aggregations != NULL) { 11967 #ifdef DEBUG 11968 for (i = 0; i < state->dts_naggregations; i++) 11969 ASSERT(state->dts_aggregations[i] == NULL); 11970 #endif 11971 ASSERT(state->dts_naggregations > 0); 11972 kmem_free(state->dts_aggregations, 11973 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 11974 } 11975 11976 kmem_free(state->dts_buffer, bufsize); 11977 kmem_free(state->dts_aggbuffer, bufsize); 11978 11979 for (i = 0; i < nspec; i++) 11980 kmem_free(spec[i].dtsp_buffer, bufsize); 11981 11982 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 11983 11984 dtrace_format_destroy(state); 11985 11986 vmem_destroy(state->dts_aggid_arena); 11987 ddi_soft_state_free(dtrace_softstate, minor); 11988 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 11989 } 11990 11991 /* 11992 * DTrace Anonymous Enabling Functions 11993 */ 11994 static dtrace_state_t * 11995 dtrace_anon_grab(void) 11996 { 11997 dtrace_state_t *state; 11998 11999 ASSERT(MUTEX_HELD(&dtrace_lock)); 12000 12001 if ((state = dtrace_anon.dta_state) == NULL) { 12002 ASSERT(dtrace_anon.dta_enabling == NULL); 12003 return (NULL); 12004 } 12005 12006 ASSERT(dtrace_anon.dta_enabling != NULL); 12007 ASSERT(dtrace_retained != NULL); 12008 12009 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12010 dtrace_anon.dta_enabling = NULL; 12011 dtrace_anon.dta_state = NULL; 12012 12013 return (state); 12014 } 12015 12016 static void 12017 dtrace_anon_property(void) 12018 { 12019 int i, rv; 12020 dtrace_state_t *state; 12021 dof_hdr_t *dof; 12022 char c[32]; /* enough for "dof-data-" + digits */ 12023 12024 ASSERT(MUTEX_HELD(&dtrace_lock)); 12025 ASSERT(MUTEX_HELD(&cpu_lock)); 12026 12027 for (i = 0; ; i++) { 12028 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12029 12030 dtrace_err_verbose = 1; 12031 12032 if ((dof = dtrace_dof_property(c)) == NULL) { 12033 dtrace_err_verbose = 0; 12034 break; 12035 } 12036 12037 /* 12038 * We want to create anonymous state, so we need to transition 12039 * the kernel debugger to indicate that DTrace is active. If 12040 * this fails (e.g. because the debugger has modified text in 12041 * some way), we won't continue with the processing. 12042 */ 12043 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12044 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12045 "enabling ignored."); 12046 dtrace_dof_destroy(dof); 12047 break; 12048 } 12049 12050 /* 12051 * If we haven't allocated an anonymous state, we'll do so now. 12052 */ 12053 if ((state = dtrace_anon.dta_state) == NULL) { 12054 state = dtrace_state_create(NULL, NULL); 12055 dtrace_anon.dta_state = state; 12056 12057 if (state == NULL) { 12058 /* 12059 * This basically shouldn't happen: the only 12060 * failure mode from dtrace_state_create() is a 12061 * failure of ddi_soft_state_zalloc() that 12062 * itself should never happen. Still, the 12063 * interface allows for a failure mode, and 12064 * we want to fail as gracefully as possible: 12065 * we'll emit an error message and cease 12066 * processing anonymous state in this case. 12067 */ 12068 cmn_err(CE_WARN, "failed to create " 12069 "anonymous state"); 12070 dtrace_dof_destroy(dof); 12071 break; 12072 } 12073 } 12074 12075 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12076 &dtrace_anon.dta_enabling, 0, B_TRUE); 12077 12078 if (rv == 0) 12079 rv = dtrace_dof_options(dof, state); 12080 12081 dtrace_err_verbose = 0; 12082 dtrace_dof_destroy(dof); 12083 12084 if (rv != 0) { 12085 /* 12086 * This is malformed DOF; chuck any anonymous state 12087 * that we created. 12088 */ 12089 ASSERT(dtrace_anon.dta_enabling == NULL); 12090 dtrace_state_destroy(state); 12091 dtrace_anon.dta_state = NULL; 12092 break; 12093 } 12094 12095 ASSERT(dtrace_anon.dta_enabling != NULL); 12096 } 12097 12098 if (dtrace_anon.dta_enabling != NULL) { 12099 int rval; 12100 12101 /* 12102 * dtrace_enabling_retain() can only fail because we are 12103 * trying to retain more enablings than are allowed -- but 12104 * we only have one anonymous enabling, and we are guaranteed 12105 * to be allowed at least one retained enabling; we assert 12106 * that dtrace_enabling_retain() returns success. 12107 */ 12108 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12109 ASSERT(rval == 0); 12110 12111 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12112 } 12113 } 12114 12115 /* 12116 * DTrace Helper Functions 12117 */ 12118 static void 12119 dtrace_helper_trace(dtrace_helper_action_t *helper, 12120 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12121 { 12122 uint32_t size, next, nnext, i; 12123 dtrace_helptrace_t *ent; 12124 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12125 12126 if (!dtrace_helptrace_enabled) 12127 return; 12128 12129 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12130 12131 /* 12132 * What would a tracing framework be without its own tracing 12133 * framework? (Well, a hell of a lot simpler, for starters...) 12134 */ 12135 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12136 sizeof (uint64_t) - sizeof (uint64_t); 12137 12138 /* 12139 * Iterate until we can allocate a slot in the trace buffer. 12140 */ 12141 do { 12142 next = dtrace_helptrace_next; 12143 12144 if (next + size < dtrace_helptrace_bufsize) { 12145 nnext = next + size; 12146 } else { 12147 nnext = size; 12148 } 12149 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 12150 12151 /* 12152 * We have our slot; fill it in. 12153 */ 12154 if (nnext == size) 12155 next = 0; 12156 12157 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 12158 ent->dtht_helper = helper; 12159 ent->dtht_where = where; 12160 ent->dtht_nlocals = vstate->dtvs_nlocals; 12161 12162 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 12163 mstate->dtms_fltoffs : -1; 12164 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 12165 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 12166 12167 for (i = 0; i < vstate->dtvs_nlocals; i++) { 12168 dtrace_statvar_t *svar; 12169 12170 if ((svar = vstate->dtvs_locals[i]) == NULL) 12171 continue; 12172 12173 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 12174 ent->dtht_locals[i] = 12175 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 12176 } 12177 } 12178 12179 static uint64_t 12180 dtrace_helper(int which, dtrace_mstate_t *mstate, 12181 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 12182 { 12183 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12184 uint64_t sarg0 = mstate->dtms_arg[0]; 12185 uint64_t sarg1 = mstate->dtms_arg[1]; 12186 uint64_t rval; 12187 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 12188 dtrace_helper_action_t *helper; 12189 dtrace_vstate_t *vstate; 12190 dtrace_difo_t *pred; 12191 int i, trace = dtrace_helptrace_enabled; 12192 12193 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 12194 12195 if (helpers == NULL) 12196 return (0); 12197 12198 if ((helper = helpers->dthps_actions[which]) == NULL) 12199 return (0); 12200 12201 vstate = &helpers->dthps_vstate; 12202 mstate->dtms_arg[0] = arg0; 12203 mstate->dtms_arg[1] = arg1; 12204 12205 /* 12206 * Now iterate over each helper. If its predicate evaluates to 'true', 12207 * we'll call the corresponding actions. Note that the below calls 12208 * to dtrace_dif_emulate() may set faults in machine state. This is 12209 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 12210 * the stored DIF offset with its own (which is the desired behavior). 12211 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 12212 * from machine state; this is okay, too. 12213 */ 12214 for (; helper != NULL; helper = helper->dthp_next) { 12215 if ((pred = helper->dthp_predicate) != NULL) { 12216 if (trace) 12217 dtrace_helper_trace(helper, mstate, vstate, 0); 12218 12219 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 12220 goto next; 12221 12222 if (*flags & CPU_DTRACE_FAULT) 12223 goto err; 12224 } 12225 12226 for (i = 0; i < helper->dthp_nactions; i++) { 12227 if (trace) 12228 dtrace_helper_trace(helper, 12229 mstate, vstate, i + 1); 12230 12231 rval = dtrace_dif_emulate(helper->dthp_actions[i], 12232 mstate, vstate, state); 12233 12234 if (*flags & CPU_DTRACE_FAULT) 12235 goto err; 12236 } 12237 12238 next: 12239 if (trace) 12240 dtrace_helper_trace(helper, mstate, vstate, 12241 DTRACE_HELPTRACE_NEXT); 12242 } 12243 12244 if (trace) 12245 dtrace_helper_trace(helper, mstate, vstate, 12246 DTRACE_HELPTRACE_DONE); 12247 12248 /* 12249 * Restore the arg0 that we saved upon entry. 12250 */ 12251 mstate->dtms_arg[0] = sarg0; 12252 mstate->dtms_arg[1] = sarg1; 12253 12254 return (rval); 12255 12256 err: 12257 if (trace) 12258 dtrace_helper_trace(helper, mstate, vstate, 12259 DTRACE_HELPTRACE_ERR); 12260 12261 /* 12262 * Restore the arg0 that we saved upon entry. 12263 */ 12264 mstate->dtms_arg[0] = sarg0; 12265 mstate->dtms_arg[1] = sarg1; 12266 12267 return (NULL); 12268 } 12269 12270 static void 12271 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate) 12272 { 12273 int i; 12274 12275 if (helper->dthp_predicate != NULL) 12276 dtrace_difo_release(helper->dthp_predicate, vstate); 12277 12278 for (i = 0; i < helper->dthp_nactions; i++) { 12279 ASSERT(helper->dthp_actions[i] != NULL); 12280 dtrace_difo_release(helper->dthp_actions[i], vstate); 12281 } 12282 12283 kmem_free(helper->dthp_actions, 12284 helper->dthp_nactions * sizeof (dtrace_difo_t *)); 12285 kmem_free(helper, sizeof (dtrace_helper_action_t)); 12286 } 12287 12288 static int 12289 dtrace_helper_destroygen(int gen) 12290 { 12291 dtrace_helpers_t *help = curproc->p_dtrace_helpers; 12292 dtrace_vstate_t *vstate; 12293 int i; 12294 12295 ASSERT(MUTEX_HELD(&dtrace_lock)); 12296 12297 if (help == NULL || gen > help->dthps_generation) 12298 return (EINVAL); 12299 12300 vstate = &help->dthps_vstate; 12301 12302 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12303 dtrace_helper_action_t *last = NULL, *h, *next; 12304 12305 for (h = help->dthps_actions[i]; h != NULL; h = next) { 12306 next = h->dthp_next; 12307 12308 if (h->dthp_generation == gen) { 12309 if (last != NULL) { 12310 last->dthp_next = next; 12311 } else { 12312 help->dthps_actions[i] = next; 12313 } 12314 12315 dtrace_helper_destroy(h, vstate); 12316 } else { 12317 last = h; 12318 } 12319 } 12320 } 12321 12322 return (0); 12323 } 12324 12325 static int 12326 dtrace_helper_validate(dtrace_helper_action_t *helper) 12327 { 12328 int err = 0, i; 12329 dtrace_difo_t *dp; 12330 12331 if ((dp = helper->dthp_predicate) != NULL) 12332 err += dtrace_difo_validate_helper(dp); 12333 12334 for (i = 0; i < helper->dthp_nactions; i++) 12335 err += dtrace_difo_validate_helper(helper->dthp_actions[i]); 12336 12337 return (err == 0); 12338 } 12339 12340 static int 12341 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 12342 { 12343 dtrace_helpers_t *help; 12344 dtrace_helper_action_t *helper, *last; 12345 dtrace_actdesc_t *act; 12346 dtrace_vstate_t *vstate; 12347 dtrace_predicate_t *pred; 12348 int count = 0, nactions = 0, i; 12349 12350 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 12351 return (EINVAL); 12352 12353 help = curproc->p_dtrace_helpers; 12354 last = help->dthps_actions[which]; 12355 vstate = &help->dthps_vstate; 12356 12357 for (count = 0; last != NULL; last = last->dthp_next) { 12358 count++; 12359 if (last->dthp_next == NULL) 12360 break; 12361 } 12362 12363 /* 12364 * If we already have dtrace_helper_actions_max helper actions for this 12365 * helper action type, we'll refuse to add a new one. 12366 */ 12367 if (count >= dtrace_helper_actions_max) 12368 return (ENOSPC); 12369 12370 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 12371 helper->dthp_generation = help->dthps_generation; 12372 12373 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 12374 ASSERT(pred->dtp_difo != NULL); 12375 dtrace_difo_hold(pred->dtp_difo); 12376 helper->dthp_predicate = pred->dtp_difo; 12377 } 12378 12379 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 12380 if (act->dtad_kind != DTRACEACT_DIFEXPR) 12381 goto err; 12382 12383 if (act->dtad_difo == NULL) 12384 goto err; 12385 12386 nactions++; 12387 } 12388 12389 helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 12390 (helper->dthp_nactions = nactions), KM_SLEEP); 12391 12392 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 12393 dtrace_difo_hold(act->dtad_difo); 12394 helper->dthp_actions[i++] = act->dtad_difo; 12395 } 12396 12397 if (!dtrace_helper_validate(helper)) 12398 goto err; 12399 12400 if (last == NULL) { 12401 help->dthps_actions[which] = helper; 12402 } else { 12403 last->dthp_next = helper; 12404 } 12405 12406 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 12407 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 12408 dtrace_helptrace_next = 0; 12409 } 12410 12411 return (0); 12412 err: 12413 dtrace_helper_destroy(helper, vstate); 12414 return (EINVAL); 12415 } 12416 12417 static void 12418 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 12419 dof_helper_t *dofhp) 12420 { 12421 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 12422 12423 mutex_enter(&dtrace_meta_lock); 12424 mutex_enter(&dtrace_lock); 12425 12426 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 12427 /* 12428 * If the dtrace module is loaded but not attached, or if 12429 * there aren't isn't a meta provider registered to deal with 12430 * these provider descriptions, we need to postpone creating 12431 * the actual providers until later. 12432 */ 12433 12434 if (help->dthps_next == NULL && help->dthps_prev == NULL && 12435 dtrace_deferred_pid != help) { 12436 help->dthps_deferred = 1; 12437 help->dthps_pid = p->p_pid; 12438 help->dthps_next = dtrace_deferred_pid; 12439 help->dthps_prev = NULL; 12440 if (dtrace_deferred_pid != NULL) 12441 dtrace_deferred_pid->dthps_prev = help; 12442 dtrace_deferred_pid = help; 12443 } 12444 12445 mutex_exit(&dtrace_lock); 12446 12447 } else if (dofhp != NULL) { 12448 /* 12449 * If the dtrace module is loaded and we have a particular 12450 * helper provider description, pass that off to the 12451 * meta provider. 12452 */ 12453 12454 mutex_exit(&dtrace_lock); 12455 12456 dtrace_helper_provide(dofhp, p->p_pid); 12457 12458 } else { 12459 /* 12460 * Otherwise, just pass all the helper provider descriptions 12461 * off to the meta provider. 12462 */ 12463 12464 int i; 12465 mutex_exit(&dtrace_lock); 12466 12467 for (i = 0; i < help->dthps_nprovs; i++) { 12468 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 12469 p->p_pid); 12470 } 12471 } 12472 12473 mutex_exit(&dtrace_meta_lock); 12474 } 12475 12476 static int 12477 dtrace_helper_provider_add(dof_helper_t *dofhp) 12478 { 12479 dtrace_helpers_t *help; 12480 dtrace_helper_provider_t *hprov, **tmp_provs; 12481 uint_t tmp_nprovs, i; 12482 12483 help = curproc->p_dtrace_helpers; 12484 ASSERT(help != NULL); 12485 12486 /* 12487 * If we already have dtrace_helper_providers_max helper providers, 12488 * we're refuse to add a new one. 12489 */ 12490 if (help->dthps_nprovs >= dtrace_helper_providers_max) 12491 return (ENOSPC); 12492 12493 /* 12494 * Check to make sure this isn't a duplicate. 12495 */ 12496 for (i = 0; i < help->dthps_nprovs; i++) { 12497 if (dofhp->dofhp_addr == 12498 help->dthps_provs[i]->dthp_prov.dofhp_addr) 12499 return (EALREADY); 12500 } 12501 12502 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 12503 hprov->dthp_prov = *dofhp; 12504 hprov->dthp_ref = 1; 12505 12506 tmp_nprovs = help->dthps_nprovs; 12507 tmp_provs = help->dthps_provs; 12508 help->dthps_nprovs++; 12509 help->dthps_provs = kmem_zalloc(help->dthps_nprovs * 12510 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 12511 12512 help->dthps_provs[tmp_nprovs] = hprov; 12513 if (tmp_provs != NULL) { 12514 bcopy(tmp_provs, help->dthps_provs, tmp_nprovs * 12515 sizeof (dtrace_helper_provider_t *)); 12516 kmem_free(tmp_provs, tmp_nprovs * 12517 sizeof (dtrace_helper_provider_t *)); 12518 } 12519 12520 return (0); 12521 } 12522 12523 static void 12524 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov) 12525 { 12526 mutex_enter(&dtrace_lock); 12527 12528 if (--hprov->dthp_ref == 0) { 12529 dof_hdr_t *dof; 12530 mutex_exit(&dtrace_lock); 12531 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 12532 dtrace_dof_destroy(dof); 12533 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 12534 } else { 12535 mutex_exit(&dtrace_lock); 12536 } 12537 } 12538 12539 static int 12540 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 12541 { 12542 uintptr_t daddr = (uintptr_t)dof; 12543 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 12544 dof_provider_t *provider; 12545 dof_probe_t *probe; 12546 uint8_t *arg; 12547 char *strtab, *typestr; 12548 dof_stridx_t typeidx; 12549 size_t typesz; 12550 uint_t nprobes, j, k; 12551 12552 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 12553 12554 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 12555 dtrace_dof_error(dof, "misaligned section offset"); 12556 return (-1); 12557 } 12558 12559 /* 12560 * The section needs to be large enough to contain the DOF provider 12561 * structure appropriate for the given version. 12562 */ 12563 if (sec->dofs_size < 12564 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 12565 offsetof(dof_provider_t, dofpv_prenoffs) : 12566 sizeof (dof_provider_t))) { 12567 dtrace_dof_error(dof, "provider section too small"); 12568 return (-1); 12569 } 12570 12571 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 12572 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 12573 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 12574 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 12575 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 12576 12577 if (str_sec == NULL || prb_sec == NULL || 12578 arg_sec == NULL || off_sec == NULL) 12579 return (-1); 12580 12581 enoff_sec = NULL; 12582 12583 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12584 provider->dofpv_prenoffs != 0 && (enoff_sec = dtrace_dof_sect(dof, 12585 DOF_SECT_PRENOFFS, provider->dofpv_prenoffs)) == NULL) 12586 return (-1); 12587 12588 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 12589 12590 if (provider->dofpv_name >= str_sec->dofs_size || 12591 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 12592 dtrace_dof_error(dof, "invalid provider name"); 12593 return (-1); 12594 } 12595 12596 if (prb_sec->dofs_entsize == 0 || 12597 prb_sec->dofs_entsize > prb_sec->dofs_size) { 12598 dtrace_dof_error(dof, "invalid entry size"); 12599 return (-1); 12600 } 12601 12602 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 12603 dtrace_dof_error(dof, "misaligned entry size"); 12604 return (-1); 12605 } 12606 12607 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 12608 dtrace_dof_error(dof, "invalid entry size"); 12609 return (-1); 12610 } 12611 12612 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 12613 dtrace_dof_error(dof, "misaligned section offset"); 12614 return (-1); 12615 } 12616 12617 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 12618 dtrace_dof_error(dof, "invalid entry size"); 12619 return (-1); 12620 } 12621 12622 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 12623 12624 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 12625 12626 /* 12627 * Take a pass through the probes to check for errors. 12628 */ 12629 for (j = 0; j < nprobes; j++) { 12630 probe = (dof_probe_t *)(uintptr_t)(daddr + 12631 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 12632 12633 if (probe->dofpr_func >= str_sec->dofs_size) { 12634 dtrace_dof_error(dof, "invalid function name"); 12635 return (-1); 12636 } 12637 12638 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 12639 dtrace_dof_error(dof, "function name too long"); 12640 return (-1); 12641 } 12642 12643 if (probe->dofpr_name >= str_sec->dofs_size || 12644 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 12645 dtrace_dof_error(dof, "invalid probe name"); 12646 return (-1); 12647 } 12648 12649 /* 12650 * The offset count must not wrap the index and there must be 12651 * at least one offset. The offsets must also not overflow the 12652 * section's data. 12653 */ 12654 if (probe->dofpr_offidx + probe->dofpr_noffs <= 12655 probe->dofpr_offidx || 12656 (probe->dofpr_offidx + probe->dofpr_noffs) * 12657 off_sec->dofs_entsize > off_sec->dofs_size) { 12658 dtrace_dof_error(dof, "invalid probe offset"); 12659 return (-1); 12660 } 12661 12662 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 12663 /* 12664 * If there's no is-enabled offset section, make sure 12665 * there aren't any is-enabled offsets. Otherwise 12666 * perform the same checks as for probe offsets 12667 * (immediately above), except that having zero 12668 * is-enabled offsets is permitted. 12669 */ 12670 if (enoff_sec == NULL) { 12671 if (probe->dofpr_enoffidx != 0 || 12672 probe->dofpr_nenoffs != 0) { 12673 dtrace_dof_error(dof, "is-enabled " 12674 "offsets with null section"); 12675 return (-1); 12676 } 12677 } else if (probe->dofpr_enoffidx + 12678 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 12679 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 12680 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 12681 dtrace_dof_error(dof, "invalid is-enabled " 12682 "offset"); 12683 return (-1); 12684 } 12685 } 12686 12687 if (probe->dofpr_argidx + probe->dofpr_xargc < 12688 probe->dofpr_argidx || 12689 (probe->dofpr_argidx + probe->dofpr_xargc) * 12690 arg_sec->dofs_entsize > arg_sec->dofs_size) { 12691 dtrace_dof_error(dof, "invalid args"); 12692 return (-1); 12693 } 12694 12695 typeidx = probe->dofpr_nargv; 12696 typestr = strtab + probe->dofpr_nargv; 12697 for (k = 0; k < probe->dofpr_nargc; k++) { 12698 if (typeidx >= str_sec->dofs_size) { 12699 dtrace_dof_error(dof, "bad " 12700 "native argument type"); 12701 return (-1); 12702 } 12703 12704 typesz = strlen(typestr) + 1; 12705 if (typesz > DTRACE_ARGTYPELEN) { 12706 dtrace_dof_error(dof, "native " 12707 "argument type too long"); 12708 return (-1); 12709 } 12710 typeidx += typesz; 12711 typestr += typesz; 12712 } 12713 12714 typeidx = probe->dofpr_xargv; 12715 typestr = strtab + probe->dofpr_xargv; 12716 for (k = 0; k < probe->dofpr_xargc; k++) { 12717 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 12718 dtrace_dof_error(dof, "bad " 12719 "native argument index"); 12720 return (-1); 12721 } 12722 12723 if (typeidx >= str_sec->dofs_size) { 12724 dtrace_dof_error(dof, "bad " 12725 "translated argument type"); 12726 return (-1); 12727 } 12728 12729 typesz = strlen(typestr) + 1; 12730 if (typesz > DTRACE_ARGTYPELEN) { 12731 dtrace_dof_error(dof, "translated argument " 12732 "type too long"); 12733 return (-1); 12734 } 12735 12736 typeidx += typesz; 12737 typestr += typesz; 12738 } 12739 } 12740 12741 return (0); 12742 } 12743 12744 static int 12745 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 12746 { 12747 dtrace_helpers_t *help; 12748 dtrace_vstate_t *vstate; 12749 dtrace_enabling_t *enab = NULL; 12750 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 12751 uintptr_t daddr = (uintptr_t)dof; 12752 12753 ASSERT(MUTEX_HELD(&dtrace_lock)); 12754 12755 if ((help = curproc->p_dtrace_helpers) == NULL) 12756 help = dtrace_helpers_create(curproc); 12757 12758 vstate = &help->dthps_vstate; 12759 12760 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 12761 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 12762 dtrace_dof_destroy(dof); 12763 return (rv); 12764 } 12765 12766 /* 12767 * Look for helper providers and validate their descriptions. 12768 */ 12769 if (dhp != NULL) { 12770 for (i = 0; i < dof->dofh_secnum; i++) { 12771 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 12772 dof->dofh_secoff + i * dof->dofh_secsize); 12773 12774 if (sec->dofs_type != DOF_SECT_PROVIDER) 12775 continue; 12776 12777 if (dtrace_helper_provider_validate(dof, sec) != 0) { 12778 dtrace_enabling_destroy(enab); 12779 dtrace_dof_destroy(dof); 12780 return (-1); 12781 } 12782 12783 nprovs++; 12784 } 12785 } 12786 12787 /* 12788 * Now we need to walk through the ECB descriptions in the enabling. 12789 */ 12790 for (i = 0; i < enab->dten_ndesc; i++) { 12791 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12792 dtrace_probedesc_t *desc = &ep->dted_probe; 12793 12794 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 12795 continue; 12796 12797 if (strcmp(desc->dtpd_mod, "helper") != 0) 12798 continue; 12799 12800 if (strcmp(desc->dtpd_func, "ustack") != 0) 12801 continue; 12802 12803 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 12804 ep)) != 0) { 12805 /* 12806 * Adding this helper action failed -- we are now going 12807 * to rip out the entire generation and return failure. 12808 */ 12809 (void) dtrace_helper_destroygen(help->dthps_generation); 12810 dtrace_enabling_destroy(enab); 12811 dtrace_dof_destroy(dof); 12812 return (-1); 12813 } 12814 12815 nhelpers++; 12816 } 12817 12818 if (nhelpers < enab->dten_ndesc) 12819 dtrace_dof_error(dof, "unmatched helpers"); 12820 12821 gen = help->dthps_generation++; 12822 dtrace_enabling_destroy(enab); 12823 12824 if (dhp != NULL && nprovs > 0) { 12825 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 12826 if (dtrace_helper_provider_add(dhp) == 0) { 12827 mutex_exit(&dtrace_lock); 12828 dtrace_helper_provider_register(curproc, help, dhp); 12829 mutex_enter(&dtrace_lock); 12830 12831 destroy = 0; 12832 } 12833 } 12834 12835 if (destroy) 12836 dtrace_dof_destroy(dof); 12837 12838 return (gen); 12839 } 12840 12841 static dtrace_helpers_t * 12842 dtrace_helpers_create(proc_t *p) 12843 { 12844 dtrace_helpers_t *help; 12845 12846 ASSERT(MUTEX_HELD(&dtrace_lock)); 12847 ASSERT(p->p_dtrace_helpers == NULL); 12848 12849 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 12850 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 12851 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 12852 12853 p->p_dtrace_helpers = help; 12854 dtrace_helpers++; 12855 12856 return (help); 12857 } 12858 12859 static void 12860 dtrace_helpers_destroy(void) 12861 { 12862 dtrace_helpers_t *help; 12863 dtrace_vstate_t *vstate; 12864 proc_t *p = curproc; 12865 int i; 12866 12867 mutex_enter(&dtrace_lock); 12868 12869 ASSERT(p->p_dtrace_helpers != NULL); 12870 ASSERT(dtrace_helpers > 0); 12871 12872 help = p->p_dtrace_helpers; 12873 vstate = &help->dthps_vstate; 12874 12875 /* 12876 * We're now going to lose the help from this process. 12877 */ 12878 p->p_dtrace_helpers = NULL; 12879 dtrace_sync(); 12880 12881 /* 12882 * Destory the helper actions. 12883 */ 12884 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12885 dtrace_helper_action_t *h, *next; 12886 12887 for (h = help->dthps_actions[i]; h != NULL; h = next) { 12888 next = h->dthp_next; 12889 dtrace_helper_destroy(h, vstate); 12890 h = next; 12891 } 12892 } 12893 12894 mutex_exit(&dtrace_lock); 12895 12896 /* 12897 * Destroy the helper providers. 12898 */ 12899 if (help->dthps_nprovs > 0) { 12900 mutex_enter(&dtrace_meta_lock); 12901 if (dtrace_meta_pid != NULL) { 12902 ASSERT(dtrace_deferred_pid == NULL); 12903 12904 for (i = 0; i < help->dthps_nprovs; i++) { 12905 dtrace_helper_remove( 12906 &help->dthps_provs[i]->dthp_prov, p->p_pid); 12907 } 12908 } else { 12909 mutex_enter(&dtrace_lock); 12910 ASSERT(help->dthps_deferred == 0 || 12911 help->dthps_next != NULL || 12912 help->dthps_prev != NULL || 12913 help == dtrace_deferred_pid); 12914 12915 /* 12916 * Remove the helper from the deferred list. 12917 */ 12918 if (help->dthps_next != NULL) 12919 help->dthps_next->dthps_prev = help->dthps_prev; 12920 if (help->dthps_prev != NULL) 12921 help->dthps_prev->dthps_next = help->dthps_next; 12922 if (dtrace_deferred_pid == help) { 12923 dtrace_deferred_pid = help->dthps_next; 12924 ASSERT(help->dthps_prev == NULL); 12925 } 12926 12927 mutex_exit(&dtrace_lock); 12928 } 12929 12930 mutex_exit(&dtrace_meta_lock); 12931 12932 for (i = 0; i < help->dthps_nprovs; i++) { 12933 dtrace_helper_provider_remove(help->dthps_provs[i]); 12934 } 12935 12936 kmem_free(help->dthps_provs, help->dthps_nprovs * 12937 sizeof (dtrace_helper_provider_t *)); 12938 } 12939 12940 mutex_enter(&dtrace_lock); 12941 12942 dtrace_vstate_fini(&help->dthps_vstate); 12943 kmem_free(help->dthps_actions, 12944 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 12945 kmem_free(help, sizeof (dtrace_helpers_t)); 12946 12947 --dtrace_helpers; 12948 mutex_exit(&dtrace_lock); 12949 } 12950 12951 static void 12952 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 12953 { 12954 dtrace_helpers_t *help, *newhelp; 12955 dtrace_helper_action_t *helper, *new, *last; 12956 dtrace_difo_t *dp; 12957 dtrace_vstate_t *vstate; 12958 int i, j, sz, hasprovs = 0; 12959 12960 mutex_enter(&dtrace_lock); 12961 ASSERT(from->p_dtrace_helpers != NULL); 12962 ASSERT(dtrace_helpers > 0); 12963 12964 help = from->p_dtrace_helpers; 12965 newhelp = dtrace_helpers_create(to); 12966 ASSERT(to->p_dtrace_helpers != NULL); 12967 12968 newhelp->dthps_generation = help->dthps_generation; 12969 vstate = &newhelp->dthps_vstate; 12970 12971 /* 12972 * Duplicate the helper actions. 12973 */ 12974 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 12975 if ((helper = help->dthps_actions[i]) == NULL) 12976 continue; 12977 12978 for (last = NULL; helper != NULL; helper = helper->dthp_next) { 12979 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 12980 KM_SLEEP); 12981 new->dthp_generation = helper->dthp_generation; 12982 12983 if ((dp = helper->dthp_predicate) != NULL) { 12984 dp = dtrace_difo_duplicate(dp, vstate); 12985 new->dthp_predicate = dp; 12986 } 12987 12988 new->dthp_nactions = helper->dthp_nactions; 12989 sz = sizeof (dtrace_difo_t *) * new->dthp_nactions; 12990 new->dthp_actions = kmem_alloc(sz, KM_SLEEP); 12991 12992 for (j = 0; j < new->dthp_nactions; j++) { 12993 dtrace_difo_t *dp = helper->dthp_actions[j]; 12994 12995 ASSERT(dp != NULL); 12996 dp = dtrace_difo_duplicate(dp, vstate); 12997 new->dthp_actions[j] = dp; 12998 } 12999 13000 if (last != NULL) { 13001 last->dthp_next = new; 13002 } else { 13003 newhelp->dthps_actions[i] = new; 13004 } 13005 13006 last = new; 13007 } 13008 } 13009 13010 /* 13011 * Duplicate the helper providers and register them with the 13012 * DTrace framework. 13013 */ 13014 if (help->dthps_nprovs > 0) { 13015 newhelp->dthps_nprovs = help->dthps_nprovs; 13016 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13017 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13018 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13019 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13020 newhelp->dthps_provs[i]->dthp_ref++; 13021 } 13022 13023 hasprovs = 1; 13024 } 13025 13026 mutex_exit(&dtrace_lock); 13027 13028 if (hasprovs) 13029 dtrace_helper_provider_register(to, newhelp, NULL); 13030 } 13031 13032 /* 13033 * DTrace Hook Functions 13034 */ 13035 static void 13036 dtrace_module_loaded(struct modctl *ctl) 13037 { 13038 dtrace_provider_t *prv; 13039 13040 mutex_enter(&dtrace_provider_lock); 13041 mutex_enter(&mod_lock); 13042 13043 ASSERT(ctl->mod_busy); 13044 13045 /* 13046 * We're going to call each providers per-module provide operation 13047 * specifying only this module. 13048 */ 13049 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13050 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13051 13052 mutex_exit(&mod_lock); 13053 mutex_exit(&dtrace_provider_lock); 13054 13055 /* 13056 * If we have any retained enablings, we need to match against them. 13057 * Enabling probes requires that cpu_lock be held, and we cannot hold 13058 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13059 * module. (In particular, this happens when loading scheduling 13060 * classes.) So if we have any retained enablings, we need to dispatch 13061 * our task queue to do the match for us. 13062 */ 13063 mutex_enter(&dtrace_lock); 13064 13065 if (dtrace_retained == NULL) { 13066 mutex_exit(&dtrace_lock); 13067 return; 13068 } 13069 13070 (void) taskq_dispatch(dtrace_taskq, 13071 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 13072 13073 mutex_exit(&dtrace_lock); 13074 13075 /* 13076 * And now, for a little heuristic sleaze: in general, we want to 13077 * match modules as soon as they load. However, we cannot guarantee 13078 * this, because it would lead us to the lock ordering violation 13079 * outlined above. The common case, of course, is that cpu_lock is 13080 * _not_ held -- so we delay here for a clock tick, hoping that that's 13081 * long enough for the task queue to do its work. If it's not, it's 13082 * not a serious problem -- it just means that the module that we 13083 * just loaded may not be immediately instrumentable. 13084 */ 13085 delay(1); 13086 } 13087 13088 static void 13089 dtrace_module_unloaded(struct modctl *ctl) 13090 { 13091 dtrace_probe_t template, *probe, *first, *next; 13092 dtrace_provider_t *prov; 13093 13094 template.dtpr_mod = ctl->mod_modname; 13095 13096 mutex_enter(&dtrace_provider_lock); 13097 mutex_enter(&mod_lock); 13098 mutex_enter(&dtrace_lock); 13099 13100 if (dtrace_bymod == NULL) { 13101 /* 13102 * The DTrace module is loaded (obviously) but not attached; 13103 * we don't have any work to do. 13104 */ 13105 mutex_exit(&dtrace_provider_lock); 13106 mutex_exit(&mod_lock); 13107 mutex_exit(&dtrace_lock); 13108 return; 13109 } 13110 13111 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 13112 probe != NULL; probe = probe->dtpr_nextmod) { 13113 if (probe->dtpr_ecb != NULL) { 13114 mutex_exit(&dtrace_provider_lock); 13115 mutex_exit(&mod_lock); 13116 mutex_exit(&dtrace_lock); 13117 13118 /* 13119 * This shouldn't _actually_ be possible -- we're 13120 * unloading a module that has an enabled probe in it. 13121 * (It's normally up to the provider to make sure that 13122 * this can't happen.) However, because dtps_enable() 13123 * doesn't have a failure mode, there can be an 13124 * enable/unload race. Upshot: we don't want to 13125 * assert, but we're not going to disable the 13126 * probe, either. 13127 */ 13128 if (dtrace_err_verbose) { 13129 cmn_err(CE_WARN, "unloaded module '%s' had " 13130 "enabled probes", ctl->mod_modname); 13131 } 13132 13133 return; 13134 } 13135 } 13136 13137 probe = first; 13138 13139 for (first = NULL; probe != NULL; probe = next) { 13140 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 13141 13142 dtrace_probes[probe->dtpr_id - 1] = NULL; 13143 13144 next = probe->dtpr_nextmod; 13145 dtrace_hash_remove(dtrace_bymod, probe); 13146 dtrace_hash_remove(dtrace_byfunc, probe); 13147 dtrace_hash_remove(dtrace_byname, probe); 13148 13149 if (first == NULL) { 13150 first = probe; 13151 probe->dtpr_nextmod = NULL; 13152 } else { 13153 probe->dtpr_nextmod = first; 13154 first = probe; 13155 } 13156 } 13157 13158 /* 13159 * We've removed all of the module's probes from the hash chains and 13160 * from the probe array. Now issue a dtrace_sync() to be sure that 13161 * everyone has cleared out from any probe array processing. 13162 */ 13163 dtrace_sync(); 13164 13165 for (probe = first; probe != NULL; probe = first) { 13166 first = probe->dtpr_nextmod; 13167 prov = probe->dtpr_provider; 13168 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 13169 probe->dtpr_arg); 13170 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 13171 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 13172 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 13173 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 13174 kmem_free(probe, sizeof (dtrace_probe_t)); 13175 } 13176 13177 mutex_exit(&dtrace_lock); 13178 mutex_exit(&mod_lock); 13179 mutex_exit(&dtrace_provider_lock); 13180 } 13181 13182 void 13183 dtrace_suspend(void) 13184 { 13185 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 13186 } 13187 13188 void 13189 dtrace_resume(void) 13190 { 13191 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 13192 } 13193 13194 static int 13195 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 13196 { 13197 ASSERT(MUTEX_HELD(&cpu_lock)); 13198 mutex_enter(&dtrace_lock); 13199 13200 switch (what) { 13201 case CPU_CONFIG: { 13202 dtrace_state_t *state; 13203 dtrace_optval_t *opt, rs, c; 13204 13205 /* 13206 * For now, we only allocate a new buffer for anonymous state. 13207 */ 13208 if ((state = dtrace_anon.dta_state) == NULL) 13209 break; 13210 13211 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13212 break; 13213 13214 opt = state->dts_options; 13215 c = opt[DTRACEOPT_CPU]; 13216 13217 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 13218 break; 13219 13220 /* 13221 * Regardless of what the actual policy is, we're going to 13222 * temporarily set our resize policy to be manual. We're 13223 * also going to temporarily set our CPU option to denote 13224 * the newly configured CPU. 13225 */ 13226 rs = opt[DTRACEOPT_BUFRESIZE]; 13227 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 13228 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 13229 13230 (void) dtrace_state_buffers(state); 13231 13232 opt[DTRACEOPT_BUFRESIZE] = rs; 13233 opt[DTRACEOPT_CPU] = c; 13234 13235 break; 13236 } 13237 13238 case CPU_UNCONFIG: 13239 /* 13240 * We don't free the buffer in the CPU_UNCONFIG case. (The 13241 * buffer will be freed when the consumer exits.) 13242 */ 13243 break; 13244 13245 default: 13246 break; 13247 } 13248 13249 mutex_exit(&dtrace_lock); 13250 return (0); 13251 } 13252 13253 static void 13254 dtrace_cpu_setup_initial(processorid_t cpu) 13255 { 13256 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 13257 } 13258 13259 static void 13260 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 13261 { 13262 if (dtrace_toxranges >= dtrace_toxranges_max) { 13263 int osize, nsize; 13264 dtrace_toxrange_t *range; 13265 13266 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13267 13268 if (osize == 0) { 13269 ASSERT(dtrace_toxrange == NULL); 13270 ASSERT(dtrace_toxranges_max == 0); 13271 dtrace_toxranges_max = 1; 13272 } else { 13273 dtrace_toxranges_max <<= 1; 13274 } 13275 13276 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 13277 range = kmem_zalloc(nsize, KM_SLEEP); 13278 13279 if (dtrace_toxrange != NULL) { 13280 ASSERT(osize != 0); 13281 bcopy(dtrace_toxrange, range, osize); 13282 kmem_free(dtrace_toxrange, osize); 13283 } 13284 13285 dtrace_toxrange = range; 13286 } 13287 13288 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 13289 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 13290 13291 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 13292 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 13293 dtrace_toxranges++; 13294 } 13295 13296 /* 13297 * DTrace Driver Cookbook Functions 13298 */ 13299 /*ARGSUSED*/ 13300 static int 13301 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 13302 { 13303 dtrace_provider_id_t id; 13304 dtrace_state_t *state = NULL; 13305 dtrace_enabling_t *enab; 13306 13307 mutex_enter(&cpu_lock); 13308 mutex_enter(&dtrace_provider_lock); 13309 mutex_enter(&dtrace_lock); 13310 13311 if (ddi_soft_state_init(&dtrace_softstate, 13312 sizeof (dtrace_state_t), 0) != 0) { 13313 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 13314 mutex_exit(&cpu_lock); 13315 mutex_exit(&dtrace_provider_lock); 13316 mutex_exit(&dtrace_lock); 13317 return (DDI_FAILURE); 13318 } 13319 13320 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 13321 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 13322 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 13323 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 13324 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 13325 ddi_remove_minor_node(devi, NULL); 13326 ddi_soft_state_fini(&dtrace_softstate); 13327 mutex_exit(&cpu_lock); 13328 mutex_exit(&dtrace_provider_lock); 13329 mutex_exit(&dtrace_lock); 13330 return (DDI_FAILURE); 13331 } 13332 13333 ddi_report_dev(devi); 13334 dtrace_devi = devi; 13335 13336 dtrace_modload = dtrace_module_loaded; 13337 dtrace_modunload = dtrace_module_unloaded; 13338 dtrace_cpu_init = dtrace_cpu_setup_initial; 13339 dtrace_helpers_cleanup = dtrace_helpers_destroy; 13340 dtrace_helpers_fork = dtrace_helpers_duplicate; 13341 dtrace_cpustart_init = dtrace_suspend; 13342 dtrace_cpustart_fini = dtrace_resume; 13343 dtrace_debugger_init = dtrace_suspend; 13344 dtrace_debugger_fini = dtrace_resume; 13345 dtrace_kreloc_init = dtrace_suspend; 13346 dtrace_kreloc_fini = dtrace_resume; 13347 13348 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 13349 13350 ASSERT(MUTEX_HELD(&cpu_lock)); 13351 13352 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 13353 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13354 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 13355 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 13356 VM_SLEEP | VMC_IDENTIFIER); 13357 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 13358 1, INT_MAX, 0); 13359 13360 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 13361 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 13362 NULL, NULL, NULL, NULL, NULL, 0); 13363 13364 ASSERT(MUTEX_HELD(&cpu_lock)); 13365 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 13366 offsetof(dtrace_probe_t, dtpr_nextmod), 13367 offsetof(dtrace_probe_t, dtpr_prevmod)); 13368 13369 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 13370 offsetof(dtrace_probe_t, dtpr_nextfunc), 13371 offsetof(dtrace_probe_t, dtpr_prevfunc)); 13372 13373 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 13374 offsetof(dtrace_probe_t, dtpr_nextname), 13375 offsetof(dtrace_probe_t, dtpr_prevname)); 13376 13377 if (dtrace_retain_max < 1) { 13378 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 13379 "setting to 1", dtrace_retain_max); 13380 dtrace_retain_max = 1; 13381 } 13382 13383 /* 13384 * Now discover our toxic ranges. 13385 */ 13386 dtrace_toxic_ranges(dtrace_toxrange_add); 13387 13388 /* 13389 * Before we register ourselves as a provider to our own framework, 13390 * we would like to assert that dtrace_provider is NULL -- but that's 13391 * not true if we were loaded as a dependency of a DTrace provider. 13392 * Once we've registered, we can assert that dtrace_provider is our 13393 * pseudo provider. 13394 */ 13395 (void) dtrace_register("dtrace", &dtrace_provider_attr, 13396 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 13397 13398 ASSERT(dtrace_provider != NULL); 13399 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 13400 13401 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 13402 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 13403 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 13404 dtrace_provider, NULL, NULL, "END", 0, NULL); 13405 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 13406 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 13407 13408 dtrace_anon_property(); 13409 mutex_exit(&cpu_lock); 13410 13411 /* 13412 * If DTrace helper tracing is enabled, we need to allocate the 13413 * trace buffer and initialize the values. 13414 */ 13415 if (dtrace_helptrace_enabled) { 13416 ASSERT(dtrace_helptrace_buffer == NULL); 13417 dtrace_helptrace_buffer = 13418 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 13419 dtrace_helptrace_next = 0; 13420 } 13421 13422 /* 13423 * If there are already providers, we must ask them to provide their 13424 * probes, and then match any anonymous enabling against them. Note 13425 * that there should be no other retained enablings at this time: 13426 * the only retained enablings at this time should be the anonymous 13427 * enabling. 13428 */ 13429 if (dtrace_anon.dta_enabling != NULL) { 13430 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 13431 13432 dtrace_enabling_provide(NULL); 13433 state = dtrace_anon.dta_state; 13434 13435 /* 13436 * We couldn't hold cpu_lock across the above call to 13437 * dtrace_enabling_provide(), but we must hold it to actually 13438 * enable the probes. We have to drop all of our locks, pick 13439 * up cpu_lock, and regain our locks before matching the 13440 * retained anonymous enabling. 13441 */ 13442 mutex_exit(&dtrace_lock); 13443 mutex_exit(&dtrace_provider_lock); 13444 13445 mutex_enter(&cpu_lock); 13446 mutex_enter(&dtrace_provider_lock); 13447 mutex_enter(&dtrace_lock); 13448 13449 if ((enab = dtrace_anon.dta_enabling) != NULL) 13450 (void) dtrace_enabling_match(enab, NULL); 13451 13452 mutex_exit(&cpu_lock); 13453 } 13454 13455 mutex_exit(&dtrace_lock); 13456 mutex_exit(&dtrace_provider_lock); 13457 13458 if (state != NULL) { 13459 /* 13460 * If we created any anonymous state, set it going now. 13461 */ 13462 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 13463 } 13464 13465 return (DDI_SUCCESS); 13466 } 13467 13468 /*ARGSUSED*/ 13469 static int 13470 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 13471 { 13472 dtrace_state_t *state; 13473 uint32_t priv; 13474 uid_t uid; 13475 zoneid_t zoneid; 13476 13477 if (getminor(*devp) == DTRACEMNRN_HELPER) 13478 return (0); 13479 13480 /* 13481 * If this wasn't an open with the "helper" minor, then it must be 13482 * the "dtrace" minor. 13483 */ 13484 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 13485 13486 /* 13487 * If no DTRACE_PRIV_* bits are set in the credential, then the 13488 * caller lacks sufficient permission to do anything with DTrace. 13489 */ 13490 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 13491 if (priv == DTRACE_PRIV_NONE) 13492 return (EACCES); 13493 13494 /* 13495 * Ask all providers to provide all their probes. 13496 */ 13497 mutex_enter(&dtrace_provider_lock); 13498 dtrace_probe_provide(NULL, NULL); 13499 mutex_exit(&dtrace_provider_lock); 13500 13501 mutex_enter(&cpu_lock); 13502 mutex_enter(&dtrace_lock); 13503 dtrace_opens++; 13504 dtrace_membar_producer(); 13505 13506 /* 13507 * If the kernel debugger is active (that is, if the kernel debugger 13508 * modified text in some way), we won't allow the open. 13509 */ 13510 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13511 dtrace_opens--; 13512 mutex_exit(&cpu_lock); 13513 mutex_exit(&dtrace_lock); 13514 return (EBUSY); 13515 } 13516 13517 state = dtrace_state_create(devp, cred_p); 13518 mutex_exit(&cpu_lock); 13519 13520 if (state == NULL) { 13521 if (--dtrace_opens == 0) 13522 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 13523 mutex_exit(&dtrace_lock); 13524 return (EAGAIN); 13525 } 13526 13527 mutex_exit(&dtrace_lock); 13528 13529 return (0); 13530 } 13531 13532 /*ARGSUSED*/ 13533 static int 13534 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 13535 { 13536 minor_t minor = getminor(dev); 13537 dtrace_state_t *state; 13538 13539 if (minor == DTRACEMNRN_HELPER) 13540 return (0); 13541 13542 state = ddi_get_soft_state(dtrace_softstate, minor); 13543 13544 mutex_enter(&cpu_lock); 13545 mutex_enter(&dtrace_lock); 13546 13547 if (state->dts_anon) { 13548 /* 13549 * There is anonymous state. Destroy that first. 13550 */ 13551 ASSERT(dtrace_anon.dta_state == NULL); 13552 dtrace_state_destroy(state->dts_anon); 13553 } 13554 13555 dtrace_state_destroy(state); 13556 ASSERT(dtrace_opens > 0); 13557 if (--dtrace_opens == 0) 13558 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 13559 13560 mutex_exit(&dtrace_lock); 13561 mutex_exit(&cpu_lock); 13562 13563 return (0); 13564 } 13565 13566 /*ARGSUSED*/ 13567 static int 13568 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 13569 { 13570 int rval; 13571 dof_helper_t help, *dhp = NULL; 13572 13573 switch (cmd) { 13574 case DTRACEHIOC_ADDDOF: 13575 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 13576 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 13577 return (EFAULT); 13578 } 13579 13580 dhp = &help; 13581 arg = (intptr_t)help.dofhp_dof; 13582 /*FALLTHROUGH*/ 13583 13584 case DTRACEHIOC_ADD: { 13585 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 13586 13587 if (dof == NULL) 13588 return (rval); 13589 13590 mutex_enter(&dtrace_lock); 13591 13592 /* 13593 * dtrace_helper_slurp() takes responsibility for the dof -- 13594 * it may free it now or it may save it and free it later. 13595 */ 13596 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 13597 *rv = rval; 13598 rval = 0; 13599 } else { 13600 rval = EINVAL; 13601 } 13602 13603 mutex_exit(&dtrace_lock); 13604 return (rval); 13605 } 13606 13607 case DTRACEHIOC_REMOVE: { 13608 mutex_enter(&dtrace_lock); 13609 rval = dtrace_helper_destroygen(arg); 13610 mutex_exit(&dtrace_lock); 13611 13612 return (rval); 13613 } 13614 13615 default: 13616 break; 13617 } 13618 13619 return (ENOTTY); 13620 } 13621 13622 /*ARGSUSED*/ 13623 static int 13624 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 13625 { 13626 minor_t minor = getminor(dev); 13627 dtrace_state_t *state; 13628 int rval; 13629 13630 if (minor == DTRACEMNRN_HELPER) 13631 return (dtrace_ioctl_helper(cmd, arg, rv)); 13632 13633 state = ddi_get_soft_state(dtrace_softstate, minor); 13634 13635 if (state->dts_anon) { 13636 ASSERT(dtrace_anon.dta_state == NULL); 13637 state = state->dts_anon; 13638 } 13639 13640 switch (cmd) { 13641 case DTRACEIOC_PROVIDER: { 13642 dtrace_providerdesc_t pvd; 13643 dtrace_provider_t *pvp; 13644 13645 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 13646 return (EFAULT); 13647 13648 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 13649 mutex_enter(&dtrace_provider_lock); 13650 13651 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 13652 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 13653 break; 13654 } 13655 13656 mutex_exit(&dtrace_provider_lock); 13657 13658 if (pvp == NULL) 13659 return (ESRCH); 13660 13661 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 13662 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 13663 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 13664 return (EFAULT); 13665 13666 return (0); 13667 } 13668 13669 case DTRACEIOC_EPROBE: { 13670 dtrace_eprobedesc_t epdesc; 13671 dtrace_ecb_t *ecb; 13672 dtrace_action_t *act; 13673 void *buf; 13674 size_t size; 13675 uintptr_t dest; 13676 int nrecs; 13677 13678 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 13679 return (EFAULT); 13680 13681 mutex_enter(&dtrace_lock); 13682 13683 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 13684 mutex_exit(&dtrace_lock); 13685 return (EINVAL); 13686 } 13687 13688 if (ecb->dte_probe == NULL) { 13689 mutex_exit(&dtrace_lock); 13690 return (EINVAL); 13691 } 13692 13693 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 13694 epdesc.dtepd_uarg = ecb->dte_uarg; 13695 epdesc.dtepd_size = ecb->dte_size; 13696 13697 nrecs = epdesc.dtepd_nrecs; 13698 epdesc.dtepd_nrecs = 0; 13699 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 13700 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 13701 continue; 13702 13703 epdesc.dtepd_nrecs++; 13704 } 13705 13706 /* 13707 * Now that we have the size, we need to allocate a temporary 13708 * buffer in which to store the complete description. We need 13709 * the temporary buffer to be able to drop dtrace_lock() 13710 * across the copyout(), below. 13711 */ 13712 size = sizeof (dtrace_eprobedesc_t) + 13713 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 13714 13715 buf = kmem_alloc(size, KM_SLEEP); 13716 dest = (uintptr_t)buf; 13717 13718 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 13719 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 13720 13721 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 13722 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 13723 continue; 13724 13725 if (nrecs-- == 0) 13726 break; 13727 13728 bcopy(&act->dta_rec, (void *)dest, 13729 sizeof (dtrace_recdesc_t)); 13730 dest += sizeof (dtrace_recdesc_t); 13731 } 13732 13733 mutex_exit(&dtrace_lock); 13734 13735 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 13736 kmem_free(buf, size); 13737 return (EFAULT); 13738 } 13739 13740 kmem_free(buf, size); 13741 return (0); 13742 } 13743 13744 case DTRACEIOC_AGGDESC: { 13745 dtrace_aggdesc_t aggdesc; 13746 dtrace_action_t *act; 13747 dtrace_aggregation_t *agg; 13748 int nrecs; 13749 uint32_t offs; 13750 dtrace_recdesc_t *lrec; 13751 void *buf; 13752 size_t size; 13753 uintptr_t dest; 13754 13755 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 13756 return (EFAULT); 13757 13758 mutex_enter(&dtrace_lock); 13759 13760 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 13761 mutex_exit(&dtrace_lock); 13762 return (EINVAL); 13763 } 13764 13765 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 13766 13767 nrecs = aggdesc.dtagd_nrecs; 13768 aggdesc.dtagd_nrecs = 0; 13769 13770 offs = agg->dtag_base; 13771 lrec = &agg->dtag_action.dta_rec; 13772 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 13773 13774 for (act = agg->dtag_first; ; act = act->dta_next) { 13775 ASSERT(act->dta_intuple || 13776 DTRACEACT_ISAGG(act->dta_kind)); 13777 13778 /* 13779 * If this action has a record size of zero, it 13780 * denotes an argument to the aggregating action. 13781 * Because the presence of this record doesn't (or 13782 * shouldn't) affect the way the data is interpreted, 13783 * we don't copy it out to save user-level the 13784 * confusion of dealing with a zero-length record. 13785 */ 13786 if (act->dta_rec.dtrd_size == 0) { 13787 ASSERT(agg->dtag_hasarg); 13788 continue; 13789 } 13790 13791 aggdesc.dtagd_nrecs++; 13792 13793 if (act == &agg->dtag_action) 13794 break; 13795 } 13796 13797 /* 13798 * Now that we have the size, we need to allocate a temporary 13799 * buffer in which to store the complete description. We need 13800 * the temporary buffer to be able to drop dtrace_lock() 13801 * across the copyout(), below. 13802 */ 13803 size = sizeof (dtrace_aggdesc_t) + 13804 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 13805 13806 buf = kmem_alloc(size, KM_SLEEP); 13807 dest = (uintptr_t)buf; 13808 13809 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 13810 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 13811 13812 for (act = agg->dtag_first; ; act = act->dta_next) { 13813 dtrace_recdesc_t rec = act->dta_rec; 13814 13815 /* 13816 * See the comment in the above loop for why we pass 13817 * over zero-length records. 13818 */ 13819 if (rec.dtrd_size == 0) { 13820 ASSERT(agg->dtag_hasarg); 13821 continue; 13822 } 13823 13824 if (nrecs-- == 0) 13825 break; 13826 13827 rec.dtrd_offset -= offs; 13828 bcopy(&rec, (void *)dest, sizeof (rec)); 13829 dest += sizeof (dtrace_recdesc_t); 13830 13831 if (act == &agg->dtag_action) 13832 break; 13833 } 13834 13835 mutex_exit(&dtrace_lock); 13836 13837 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 13838 kmem_free(buf, size); 13839 return (EFAULT); 13840 } 13841 13842 kmem_free(buf, size); 13843 return (0); 13844 } 13845 13846 case DTRACEIOC_ENABLE: { 13847 dof_hdr_t *dof; 13848 dtrace_enabling_t *enab = NULL; 13849 dtrace_vstate_t *vstate; 13850 int err = 0; 13851 13852 *rv = 0; 13853 13854 /* 13855 * If a NULL argument has been passed, we take this as our 13856 * cue to reevaluate our enablings. 13857 */ 13858 if (arg == NULL) { 13859 mutex_enter(&cpu_lock); 13860 mutex_enter(&dtrace_lock); 13861 err = dtrace_enabling_matchstate(state, rv); 13862 mutex_exit(&dtrace_lock); 13863 mutex_exit(&cpu_lock); 13864 13865 return (err); 13866 } 13867 13868 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 13869 return (rval); 13870 13871 mutex_enter(&cpu_lock); 13872 mutex_enter(&dtrace_lock); 13873 vstate = &state->dts_vstate; 13874 13875 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13876 mutex_exit(&dtrace_lock); 13877 mutex_exit(&cpu_lock); 13878 dtrace_dof_destroy(dof); 13879 return (EBUSY); 13880 } 13881 13882 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 13883 mutex_exit(&dtrace_lock); 13884 mutex_exit(&cpu_lock); 13885 dtrace_dof_destroy(dof); 13886 return (EINVAL); 13887 } 13888 13889 if ((rval = dtrace_dof_options(dof, state)) != 0) { 13890 dtrace_enabling_destroy(enab); 13891 mutex_exit(&dtrace_lock); 13892 mutex_exit(&cpu_lock); 13893 dtrace_dof_destroy(dof); 13894 return (rval); 13895 } 13896 13897 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 13898 err = dtrace_enabling_retain(enab); 13899 } else { 13900 dtrace_enabling_destroy(enab); 13901 } 13902 13903 mutex_exit(&cpu_lock); 13904 mutex_exit(&dtrace_lock); 13905 dtrace_dof_destroy(dof); 13906 13907 return (err); 13908 } 13909 13910 case DTRACEIOC_REPLICATE: { 13911 dtrace_repldesc_t desc; 13912 dtrace_probedesc_t *match = &desc.dtrpd_match; 13913 dtrace_probedesc_t *create = &desc.dtrpd_create; 13914 int err; 13915 13916 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 13917 return (EFAULT); 13918 13919 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 13920 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 13921 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 13922 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 13923 13924 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 13925 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 13926 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 13927 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 13928 13929 mutex_enter(&dtrace_lock); 13930 err = dtrace_enabling_replicate(state, match, create); 13931 mutex_exit(&dtrace_lock); 13932 13933 return (err); 13934 } 13935 13936 case DTRACEIOC_PROBEMATCH: 13937 case DTRACEIOC_PROBES: { 13938 dtrace_probe_t *probe = NULL; 13939 dtrace_probedesc_t desc; 13940 dtrace_probekey_t pkey; 13941 dtrace_id_t i; 13942 int m = 0; 13943 uint32_t priv; 13944 uid_t uid; 13945 zoneid_t zoneid; 13946 13947 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 13948 return (EFAULT); 13949 13950 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 13951 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 13952 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 13953 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 13954 13955 /* 13956 * Before we attempt to match this probe, we want to give 13957 * all providers the opportunity to provide it. 13958 */ 13959 if (desc.dtpd_id == DTRACE_IDNONE) { 13960 mutex_enter(&dtrace_provider_lock); 13961 dtrace_probe_provide(&desc, NULL); 13962 mutex_exit(&dtrace_provider_lock); 13963 desc.dtpd_id++; 13964 } 13965 13966 if (cmd == DTRACEIOC_PROBEMATCH) { 13967 dtrace_probekey(&desc, &pkey); 13968 pkey.dtpk_id = DTRACE_IDNONE; 13969 } 13970 13971 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 13972 13973 mutex_enter(&dtrace_lock); 13974 13975 if (cmd == DTRACEIOC_PROBEMATCH) { 13976 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 13977 if ((probe = dtrace_probes[i - 1]) != NULL && 13978 (m = dtrace_match_probe(probe, &pkey, 13979 priv, uid, zoneid)) != 0) 13980 break; 13981 } 13982 13983 if (m < 0) { 13984 mutex_exit(&dtrace_lock); 13985 return (EINVAL); 13986 } 13987 13988 } else { 13989 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 13990 if ((probe = dtrace_probes[i - 1]) != NULL && 13991 dtrace_match_priv(probe, priv, uid, zoneid)) 13992 break; 13993 } 13994 } 13995 13996 if (probe == NULL) { 13997 mutex_exit(&dtrace_lock); 13998 return (ESRCH); 13999 } 14000 14001 dtrace_probe_description(probe, &desc); 14002 mutex_exit(&dtrace_lock); 14003 14004 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14005 return (EFAULT); 14006 14007 return (0); 14008 } 14009 14010 case DTRACEIOC_PROBEARG: { 14011 dtrace_argdesc_t desc; 14012 dtrace_probe_t *probe; 14013 dtrace_provider_t *prov; 14014 14015 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14016 return (EFAULT); 14017 14018 if (desc.dtargd_id == DTRACE_IDNONE) 14019 return (EINVAL); 14020 14021 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14022 return (EINVAL); 14023 14024 mutex_enter(&dtrace_provider_lock); 14025 mutex_enter(&mod_lock); 14026 mutex_enter(&dtrace_lock); 14027 14028 if (desc.dtargd_id > dtrace_nprobes) { 14029 mutex_exit(&dtrace_lock); 14030 mutex_exit(&mod_lock); 14031 mutex_exit(&dtrace_provider_lock); 14032 return (EINVAL); 14033 } 14034 14035 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14036 mutex_exit(&dtrace_lock); 14037 mutex_exit(&mod_lock); 14038 mutex_exit(&dtrace_provider_lock); 14039 return (EINVAL); 14040 } 14041 14042 mutex_exit(&dtrace_lock); 14043 14044 prov = probe->dtpr_provider; 14045 14046 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14047 /* 14048 * There isn't any typed information for this probe. 14049 * Set the argument number to DTRACE_ARGNONE. 14050 */ 14051 desc.dtargd_ndx = DTRACE_ARGNONE; 14052 } else { 14053 desc.dtargd_native[0] = '\0'; 14054 desc.dtargd_xlate[0] = '\0'; 14055 desc.dtargd_mapping = desc.dtargd_ndx; 14056 14057 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14058 probe->dtpr_id, probe->dtpr_arg, &desc); 14059 } 14060 14061 mutex_exit(&mod_lock); 14062 mutex_exit(&dtrace_provider_lock); 14063 14064 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14065 return (EFAULT); 14066 14067 return (0); 14068 } 14069 14070 case DTRACEIOC_GO: { 14071 processorid_t cpuid; 14072 rval = dtrace_state_go(state, &cpuid); 14073 14074 if (rval != 0) 14075 return (rval); 14076 14077 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14078 return (EFAULT); 14079 14080 return (0); 14081 } 14082 14083 case DTRACEIOC_STOP: { 14084 processorid_t cpuid; 14085 14086 mutex_enter(&dtrace_lock); 14087 rval = dtrace_state_stop(state, &cpuid); 14088 mutex_exit(&dtrace_lock); 14089 14090 if (rval != 0) 14091 return (rval); 14092 14093 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 14094 return (EFAULT); 14095 14096 return (0); 14097 } 14098 14099 case DTRACEIOC_DOFGET: { 14100 dof_hdr_t hdr, *dof; 14101 uint64_t len; 14102 14103 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 14104 return (EFAULT); 14105 14106 mutex_enter(&dtrace_lock); 14107 dof = dtrace_dof_create(state); 14108 mutex_exit(&dtrace_lock); 14109 14110 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 14111 rval = copyout(dof, (void *)arg, len); 14112 dtrace_dof_destroy(dof); 14113 14114 return (rval == 0 ? 0 : EFAULT); 14115 } 14116 14117 case DTRACEIOC_AGGSNAP: 14118 case DTRACEIOC_BUFSNAP: { 14119 dtrace_bufdesc_t desc; 14120 caddr_t cached; 14121 dtrace_buffer_t *buf; 14122 14123 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14124 return (EFAULT); 14125 14126 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 14127 return (EINVAL); 14128 14129 mutex_enter(&dtrace_lock); 14130 14131 if (cmd == DTRACEIOC_BUFSNAP) { 14132 buf = &state->dts_buffer[desc.dtbd_cpu]; 14133 } else { 14134 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 14135 } 14136 14137 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 14138 size_t sz = buf->dtb_offset; 14139 14140 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 14141 mutex_exit(&dtrace_lock); 14142 return (EBUSY); 14143 } 14144 14145 /* 14146 * If this buffer has already been consumed, we're 14147 * going to indicate that there's nothing left here 14148 * to consume. 14149 */ 14150 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 14151 mutex_exit(&dtrace_lock); 14152 14153 desc.dtbd_size = 0; 14154 desc.dtbd_drops = 0; 14155 desc.dtbd_errors = 0; 14156 desc.dtbd_oldest = 0; 14157 sz = sizeof (desc); 14158 14159 if (copyout(&desc, (void *)arg, sz) != 0) 14160 return (EFAULT); 14161 14162 return (0); 14163 } 14164 14165 /* 14166 * If this is a ring buffer that has wrapped, we want 14167 * to copy the whole thing out. 14168 */ 14169 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 14170 dtrace_buffer_polish(buf); 14171 sz = buf->dtb_size; 14172 } 14173 14174 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 14175 mutex_exit(&dtrace_lock); 14176 return (EFAULT); 14177 } 14178 14179 desc.dtbd_size = sz; 14180 desc.dtbd_drops = buf->dtb_drops; 14181 desc.dtbd_errors = buf->dtb_errors; 14182 desc.dtbd_oldest = buf->dtb_xamot_offset; 14183 14184 mutex_exit(&dtrace_lock); 14185 14186 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14187 return (EFAULT); 14188 14189 buf->dtb_flags |= DTRACEBUF_CONSUMED; 14190 14191 return (0); 14192 } 14193 14194 if (buf->dtb_tomax == NULL) { 14195 ASSERT(buf->dtb_xamot == NULL); 14196 mutex_exit(&dtrace_lock); 14197 return (ENOENT); 14198 } 14199 14200 cached = buf->dtb_tomax; 14201 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 14202 14203 dtrace_xcall(desc.dtbd_cpu, 14204 (dtrace_xcall_t)dtrace_buffer_switch, buf); 14205 14206 state->dts_errors += buf->dtb_xamot_errors; 14207 14208 /* 14209 * If the buffers did not actually switch, then the cross call 14210 * did not take place -- presumably because the given CPU is 14211 * not in the ready set. If this is the case, we'll return 14212 * ENOENT. 14213 */ 14214 if (buf->dtb_tomax == cached) { 14215 ASSERT(buf->dtb_xamot != cached); 14216 mutex_exit(&dtrace_lock); 14217 return (ENOENT); 14218 } 14219 14220 ASSERT(cached == buf->dtb_xamot); 14221 14222 /* 14223 * We have our snapshot; now copy it out. 14224 */ 14225 if (copyout(buf->dtb_xamot, desc.dtbd_data, 14226 buf->dtb_xamot_offset) != 0) { 14227 mutex_exit(&dtrace_lock); 14228 return (EFAULT); 14229 } 14230 14231 desc.dtbd_size = buf->dtb_xamot_offset; 14232 desc.dtbd_drops = buf->dtb_xamot_drops; 14233 desc.dtbd_errors = buf->dtb_xamot_errors; 14234 desc.dtbd_oldest = 0; 14235 14236 mutex_exit(&dtrace_lock); 14237 14238 /* 14239 * Finally, copy out the buffer description. 14240 */ 14241 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14242 return (EFAULT); 14243 14244 return (0); 14245 } 14246 14247 case DTRACEIOC_CONF: { 14248 dtrace_conf_t conf; 14249 14250 bzero(&conf, sizeof (conf)); 14251 conf.dtc_difversion = DIF_VERSION; 14252 conf.dtc_difintregs = DIF_DIR_NREGS; 14253 conf.dtc_diftupregs = DIF_DTR_NREGS; 14254 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 14255 14256 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 14257 return (EFAULT); 14258 14259 return (0); 14260 } 14261 14262 case DTRACEIOC_STATUS: { 14263 dtrace_status_t stat; 14264 dtrace_dstate_t *dstate; 14265 int i, j; 14266 uint64_t nerrs; 14267 14268 /* 14269 * See the comment in dtrace_state_deadman() for the reason 14270 * for setting dts_laststatus to INT64_MAX before setting 14271 * it to the correct value. 14272 */ 14273 state->dts_laststatus = INT64_MAX; 14274 dtrace_membar_producer(); 14275 state->dts_laststatus = dtrace_gethrtime(); 14276 14277 bzero(&stat, sizeof (stat)); 14278 14279 mutex_enter(&dtrace_lock); 14280 14281 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 14282 mutex_exit(&dtrace_lock); 14283 return (ENOENT); 14284 } 14285 14286 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 14287 stat.dtst_exiting = 1; 14288 14289 nerrs = state->dts_errors; 14290 dstate = &state->dts_vstate.dtvs_dynvars; 14291 14292 for (i = 0; i < NCPU; i++) { 14293 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 14294 14295 stat.dtst_dyndrops += dcpu->dtdsc_drops; 14296 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 14297 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 14298 14299 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 14300 stat.dtst_filled++; 14301 14302 nerrs += state->dts_buffer[i].dtb_errors; 14303 14304 for (j = 0; j < state->dts_nspeculations; j++) { 14305 dtrace_speculation_t *spec; 14306 dtrace_buffer_t *buf; 14307 14308 spec = &state->dts_speculations[j]; 14309 buf = &spec->dtsp_buffer[i]; 14310 stat.dtst_specdrops += buf->dtb_xamot_drops; 14311 } 14312 } 14313 14314 stat.dtst_specdrops_busy = state->dts_speculations_busy; 14315 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 14316 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 14317 stat.dtst_dblerrors = state->dts_dblerrors; 14318 stat.dtst_killed = 14319 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 14320 stat.dtst_errors = nerrs; 14321 14322 mutex_exit(&dtrace_lock); 14323 14324 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 14325 return (EFAULT); 14326 14327 return (0); 14328 } 14329 14330 case DTRACEIOC_FORMAT: { 14331 dtrace_fmtdesc_t fmt; 14332 char *str; 14333 int len; 14334 14335 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 14336 return (EFAULT); 14337 14338 mutex_enter(&dtrace_lock); 14339 14340 if (fmt.dtfd_format == 0 || 14341 fmt.dtfd_format > state->dts_nformats) { 14342 mutex_exit(&dtrace_lock); 14343 return (EINVAL); 14344 } 14345 14346 /* 14347 * Format strings are allocated contiguously and they are 14348 * never freed; if a format index is less than the number 14349 * of formats, we can assert that the format map is non-NULL 14350 * and that the format for the specified index is non-NULL. 14351 */ 14352 ASSERT(state->dts_formats != NULL); 14353 str = state->dts_formats[fmt.dtfd_format - 1]; 14354 ASSERT(str != NULL); 14355 14356 len = strlen(str) + 1; 14357 14358 if (len > fmt.dtfd_length) { 14359 fmt.dtfd_length = len; 14360 14361 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 14362 mutex_exit(&dtrace_lock); 14363 return (EINVAL); 14364 } 14365 } else { 14366 if (copyout(str, fmt.dtfd_string, len) != 0) { 14367 mutex_exit(&dtrace_lock); 14368 return (EINVAL); 14369 } 14370 } 14371 14372 mutex_exit(&dtrace_lock); 14373 return (0); 14374 } 14375 14376 default: 14377 break; 14378 } 14379 14380 return (ENOTTY); 14381 } 14382 14383 /*ARGSUSED*/ 14384 static int 14385 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 14386 { 14387 dtrace_state_t *state; 14388 14389 switch (cmd) { 14390 case DDI_DETACH: 14391 break; 14392 14393 case DDI_SUSPEND: 14394 return (DDI_SUCCESS); 14395 14396 default: 14397 return (DDI_FAILURE); 14398 } 14399 14400 mutex_enter(&cpu_lock); 14401 mutex_enter(&dtrace_provider_lock); 14402 mutex_enter(&dtrace_lock); 14403 14404 ASSERT(dtrace_opens == 0); 14405 14406 if (dtrace_helpers > 0) { 14407 mutex_exit(&dtrace_provider_lock); 14408 mutex_exit(&dtrace_lock); 14409 mutex_exit(&cpu_lock); 14410 return (DDI_FAILURE); 14411 } 14412 14413 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 14414 mutex_exit(&dtrace_provider_lock); 14415 mutex_exit(&dtrace_lock); 14416 mutex_exit(&cpu_lock); 14417 return (DDI_FAILURE); 14418 } 14419 14420 dtrace_provider = NULL; 14421 14422 if ((state = dtrace_anon_grab()) != NULL) { 14423 /* 14424 * If there were ECBs on this state, the provider should 14425 * have not been allowed to detach; assert that there is 14426 * none. 14427 */ 14428 ASSERT(state->dts_necbs == 0); 14429 dtrace_state_destroy(state); 14430 14431 /* 14432 * If we're being detached with anonymous state, we need to 14433 * indicate to the kernel debugger that DTrace is now inactive. 14434 */ 14435 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14436 } 14437 14438 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 14439 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14440 dtrace_cpu_init = NULL; 14441 dtrace_helpers_cleanup = NULL; 14442 dtrace_helpers_fork = NULL; 14443 dtrace_cpustart_init = NULL; 14444 dtrace_cpustart_fini = NULL; 14445 dtrace_debugger_init = NULL; 14446 dtrace_debugger_fini = NULL; 14447 dtrace_kreloc_init = NULL; 14448 dtrace_kreloc_fini = NULL; 14449 dtrace_modload = NULL; 14450 dtrace_modunload = NULL; 14451 14452 mutex_exit(&cpu_lock); 14453 14454 if (dtrace_helptrace_enabled) { 14455 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 14456 dtrace_helptrace_buffer = NULL; 14457 } 14458 14459 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 14460 dtrace_probes = NULL; 14461 dtrace_nprobes = 0; 14462 14463 dtrace_hash_destroy(dtrace_bymod); 14464 dtrace_hash_destroy(dtrace_byfunc); 14465 dtrace_hash_destroy(dtrace_byname); 14466 dtrace_bymod = NULL; 14467 dtrace_byfunc = NULL; 14468 dtrace_byname = NULL; 14469 14470 kmem_cache_destroy(dtrace_state_cache); 14471 vmem_destroy(dtrace_minor); 14472 vmem_destroy(dtrace_arena); 14473 14474 if (dtrace_toxrange != NULL) { 14475 kmem_free(dtrace_toxrange, 14476 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 14477 dtrace_toxrange = NULL; 14478 dtrace_toxranges = 0; 14479 dtrace_toxranges_max = 0; 14480 } 14481 14482 ddi_remove_minor_node(dtrace_devi, NULL); 14483 dtrace_devi = NULL; 14484 14485 ddi_soft_state_fini(&dtrace_softstate); 14486 14487 ASSERT(dtrace_vtime_references == 0); 14488 ASSERT(dtrace_opens == 0); 14489 ASSERT(dtrace_retained == NULL); 14490 14491 mutex_exit(&dtrace_lock); 14492 mutex_exit(&dtrace_provider_lock); 14493 14494 /* 14495 * We don't destroy the task queue until after we have dropped our 14496 * locks (taskq_destroy() may block on running tasks). To prevent 14497 * attempting to do work after we have effectively detached but before 14498 * the task queue has been destroyed, all tasks dispatched via the 14499 * task queue must check that DTrace is still attached before 14500 * performing any operation. 14501 */ 14502 taskq_destroy(dtrace_taskq); 14503 dtrace_taskq = NULL; 14504 14505 return (DDI_SUCCESS); 14506 } 14507 14508 /*ARGSUSED*/ 14509 static int 14510 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 14511 { 14512 int error; 14513 14514 switch (infocmd) { 14515 case DDI_INFO_DEVT2DEVINFO: 14516 *result = (void *)dtrace_devi; 14517 error = DDI_SUCCESS; 14518 break; 14519 case DDI_INFO_DEVT2INSTANCE: 14520 *result = (void *)0; 14521 error = DDI_SUCCESS; 14522 break; 14523 default: 14524 error = DDI_FAILURE; 14525 } 14526 return (error); 14527 } 14528 14529 static struct cb_ops dtrace_cb_ops = { 14530 dtrace_open, /* open */ 14531 dtrace_close, /* close */ 14532 nulldev, /* strategy */ 14533 nulldev, /* print */ 14534 nodev, /* dump */ 14535 nodev, /* read */ 14536 nodev, /* write */ 14537 dtrace_ioctl, /* ioctl */ 14538 nodev, /* devmap */ 14539 nodev, /* mmap */ 14540 nodev, /* segmap */ 14541 nochpoll, /* poll */ 14542 ddi_prop_op, /* cb_prop_op */ 14543 0, /* streamtab */ 14544 D_NEW | D_MP /* Driver compatibility flag */ 14545 }; 14546 14547 static struct dev_ops dtrace_ops = { 14548 DEVO_REV, /* devo_rev */ 14549 0, /* refcnt */ 14550 dtrace_info, /* get_dev_info */ 14551 nulldev, /* identify */ 14552 nulldev, /* probe */ 14553 dtrace_attach, /* attach */ 14554 dtrace_detach, /* detach */ 14555 nodev, /* reset */ 14556 &dtrace_cb_ops, /* driver operations */ 14557 NULL, /* bus operations */ 14558 nodev /* dev power */ 14559 }; 14560 14561 static struct modldrv modldrv = { 14562 &mod_driverops, /* module type (this is a pseudo driver) */ 14563 "Dynamic Tracing", /* name of module */ 14564 &dtrace_ops, /* driver ops */ 14565 }; 14566 14567 static struct modlinkage modlinkage = { 14568 MODREV_1, 14569 (void *)&modldrv, 14570 NULL 14571 }; 14572 14573 int 14574 _init(void) 14575 { 14576 return (mod_install(&modlinkage)); 14577 } 14578 14579 int 14580 _info(struct modinfo *modinfop) 14581 { 14582 return (mod_info(&modlinkage, modinfop)); 14583 } 14584 14585 int 14586 _fini(void) 14587 { 14588 return (mod_remove(&modlinkage)); 14589 } 14590