xref: /titanic_50/usr/src/uts/common/dtrace/dcpc.c (revision 9a5d73e03cd3312ddb571a748c40a63c58bd66e5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/errno.h>
28 #include <sys/cpuvar.h>
29 #include <sys/stat.h>
30 #include <sys/modctl.h>
31 #include <sys/cmn_err.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/ksynch.h>
35 #include <sys/conf.h>
36 #include <sys/kmem.h>
37 #include <sys/kcpc.h>
38 #include <sys/cpc_pcbe.h>
39 #include <sys/cpc_impl.h>
40 #include <sys/dtrace_impl.h>
41 
42 /*
43  * DTrace CPU Performance Counter Provider
44  * ---------------------------------------
45  *
46  * The DTrace cpc provider allows DTrace consumers to access the CPU
47  * performance counter overflow mechanism of a CPU. The configuration
48  * presented in a probe specification is programmed into the performance
49  * counter hardware of all available CPUs on a system. Programming the
50  * hardware causes a counter on each CPU to begin counting events of the
51  * given type. When the specified number of events have occurred, an overflow
52  * interrupt will be generated and the probe is fired.
53  *
54  * The required configuration for the performance counter is encoded into
55  * the probe specification and this includes the performance counter event
56  * name, processor mode, overflow rate and an optional unit mask.
57  *
58  * Most processors provide several counters (PICs) which can count all or a
59  * subset of the events available for a given CPU. However, when overflow
60  * profiling is being used, not all CPUs can detect which counter generated the
61  * overflow interrupt. In this case we cannot reliably determine which counter
62  * overflowed and we therefore only allow such CPUs to configure one event at
63  * a time. Processors that can determine the counter which overflowed are
64  * allowed to program as many events at one time as possible (in theory up to
65  * the number of instrumentation counters supported by that platform).
66  * Therefore, multiple consumers can enable multiple probes at the same time
67  * on such platforms. Platforms which cannot determine the source of an
68  * overflow interrupt are only allowed to program a single event at one time.
69  *
70  * The performance counter hardware is made available to consumers on a
71  * first-come, first-served basis. Only a finite amount of hardware resource
72  * is available and, while we make every attempt to accomodate requests from
73  * consumers, we must deny requests when hardware resources have been exhausted.
74  * A consumer will fail to enable probes when resources are currently in use.
75  *
76  * The cpc provider contends for shared hardware resources along with other
77  * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)).
78  * Only one such consumer can use the performance counters at any one time and
79  * counters are made available on a first-come, first-served basis. As with
80  * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g.
81  * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP
82  * counter contexts to be invalidated.
83  */
84 
85 typedef struct dcpc_probe {
86 	char		dcpc_event_name[CPC_MAX_EVENT_LEN];
87 	int		dcpc_flag;	/* flags (USER/SYS) */
88 	uint32_t	dcpc_ovfval;	/* overflow value */
89 	int64_t		dcpc_umask;	/* umask/emask for this event */
90 	int		dcpc_picno;	/* pic this event is programmed in */
91 	int		dcpc_enabled;	/* probe is actually enabled? */
92 	int		dcpc_disabling;	/* probe is currently being disabled */
93 	dtrace_id_t	dcpc_id;	/* probeid this request is enabling */
94 	int		dcpc_actv_req_idx;	/* idx into dcpc_actv_reqs[] */
95 } dcpc_probe_t;
96 
97 static dev_info_t			*dcpc_devi;
98 static dtrace_provider_id_t		dcpc_pid;
99 static dcpc_probe_t			**dcpc_actv_reqs;
100 static uint32_t				dcpc_enablings = 0;
101 static int				dcpc_ovf_mask = 0;
102 static int				dcpc_mult_ovf_cap = 0;
103 static int				dcpc_mask_type = 0;
104 
105 /*
106  * When the dcpc provider is loaded, dcpc_min_overflow is set to either
107  * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in
108  * the dcpc.conf file. Decrease this value to set probes with smaller
109  * overflow values. Remember that very small values could render a system
110  * unusable with frequently occurring events.
111  */
112 #define	DCPC_MIN_OVF_DEFAULT		5000
113 static uint32_t				dcpc_min_overflow;
114 
115 static int dcpc_aframes = 0;	/* override for artificial frame setting */
116 #if defined(__x86)
117 #define	DCPC_ARTIFICIAL_FRAMES	8
118 #elif defined(__sparc)
119 #define	DCPC_ARTIFICIAL_FRAMES	2
120 #endif
121 
122 /*
123  * Called from the platform overflow interrupt handler. 'bitmap' is a mask
124  * which contains the pic(s) that have overflowed.
125  */
126 static void
127 dcpc_fire(uint64_t bitmap)
128 {
129 	int i;
130 
131 	/*
132 	 * No counter was marked as overflowing. Shout about it and get out.
133 	 */
134 	if ((bitmap & dcpc_ovf_mask) == 0) {
135 		cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n");
136 		return;
137 	}
138 
139 	/*
140 	 * This is the common case of a processor that doesn't support
141 	 * multiple overflow events. Such systems are only allowed a single
142 	 * enabling and therefore we just look for the first entry in
143 	 * the active request array.
144 	 */
145 	if (!dcpc_mult_ovf_cap) {
146 		for (i = 0; i < cpc_ncounters; i++) {
147 			if (dcpc_actv_reqs[i] != NULL) {
148 				dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
149 				    CPU->cpu_cpcprofile_pc,
150 				    CPU->cpu_cpcprofile_upc, 0, 0, 0);
151 				return;
152 			}
153 		}
154 		return;
155 	}
156 
157 	/*
158 	 * This is a processor capable of handling multiple overflow events.
159 	 * Iterate over the array of active requests and locate the counters
160 	 * that overflowed (note: it is possible for more than one counter to
161 	 * have overflowed at the same time).
162 	 */
163 	for (i = 0; i < cpc_ncounters; i++) {
164 		if (dcpc_actv_reqs[i] != NULL &&
165 		    (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) {
166 			dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
167 			    CPU->cpu_cpcprofile_pc,
168 			    CPU->cpu_cpcprofile_upc, 0, 0, 0);
169 		}
170 	}
171 }
172 
173 static void
174 dcpc_create_probe(dtrace_provider_id_t id, const char *probename,
175     char *eventname, int64_t umask, uint32_t ovfval, char flag)
176 {
177 	dcpc_probe_t *pp;
178 	int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
179 
180 	if (dcpc_aframes)
181 		nr_frames = dcpc_aframes;
182 
183 	if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0)
184 		return;
185 
186 	pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP);
187 	(void) strncpy(pp->dcpc_event_name, eventname,
188 	    sizeof (pp->dcpc_event_name) - 1);
189 	pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0';
190 	pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT;
191 	pp->dcpc_ovfval = ovfval;
192 	pp->dcpc_umask = umask;
193 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
194 
195 	pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename,
196 	    nr_frames, pp);
197 }
198 
199 /*ARGSUSED*/
200 static void
201 dcpc_provide(void *arg, const dtrace_probedesc_t *desc)
202 {
203 	/*
204 	 * The format of a probe is:
205 	 *
206 	 *	event_name-mode-{optional_umask}-overflow_rate
207 	 * e.g.
208 	 *	DC_refill_from_system-user-0x1e-50000, or,
209 	 *	DC_refill_from_system-all-10000
210 	 *
211 	 */
212 	char *str, *end, *p;
213 	int i, flag = 0;
214 	char event[CPC_MAX_EVENT_LEN];
215 	long umask = -1, val = 0;
216 	size_t evlen, len;
217 
218 	/*
219 	 * The 'cpc' provider offers no probes by default.
220 	 */
221 	if (desc == NULL)
222 		return;
223 
224 	len = strlen(desc->dtpd_name);
225 	p = str = kmem_alloc(len + 1, KM_SLEEP);
226 	(void) strcpy(str, desc->dtpd_name);
227 
228 	/*
229 	 * We have a poor man's strtok() going on here. Replace any hyphens
230 	 * in the the probe name with NULL characters in order to make it
231 	 * easy to parse the string with regular string functions.
232 	 */
233 	for (i = 0; i < len; i++) {
234 		if (str[i] == '-')
235 			str[i] = '\0';
236 	}
237 
238 	/*
239 	 * The first part of the string must be either a platform event
240 	 * name or a generic event name.
241 	 */
242 	evlen = strlen(p);
243 	(void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1);
244 	event[CPC_MAX_EVENT_LEN - 1] = '\0';
245 
246 	/*
247 	 * The next part of the name is the mode specification. Valid
248 	 * settings are "user", "kernel" or "all".
249 	 */
250 	p += evlen + 1;
251 
252 	if (strcmp(p, "user") == 0)
253 		flag |= CPC_COUNT_USER;
254 	else if (strcmp(p, "kernel") == 0)
255 		flag |= CPC_COUNT_SYSTEM;
256 	else if (strcmp(p, "all") == 0)
257 		flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM;
258 	else
259 		goto err;
260 
261 	/*
262 	 * Next we either have a mask specification followed by an overflow
263 	 * rate or just an overflow rate on its own.
264 	 */
265 	p += strlen(p) + 1;
266 	if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
267 		/*
268 		 * A unit mask can only be specified if:
269 		 * 1) this performance counter back end supports masks.
270 		 * 2) the specified event is platform specific.
271 		 * 3) a valid hex number is converted.
272 		 * 4) no extraneous characters follow the mask specification.
273 		 */
274 		if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 &&
275 		    ddi_strtol(p, &end, 16, &umask) == 0 &&
276 		    end == p + strlen(p)) {
277 			p += strlen(p) + 1;
278 		} else {
279 			goto err;
280 		}
281 	}
282 
283 	/*
284 	 * This final part must be an overflow value which has to be greater
285 	 * than the minimum permissible overflow rate.
286 	 */
287 	if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) ||
288 	    val < dcpc_min_overflow)
289 		goto err;
290 
291 	/*
292 	 * Validate the event and create the probe.
293 	 */
294 	for (i = 0; i < cpc_ncounters; i++) {
295 		if (strstr(kcpc_list_events(i), event) != NULL)
296 			dcpc_create_probe(dcpc_pid, desc->dtpd_name, event,
297 			    umask, (uint32_t)val, flag);
298 	}
299 
300 err:
301 	kmem_free(str, len + 1);
302 }
303 
304 /*ARGSUSED*/
305 static void
306 dcpc_destroy(void *arg, dtrace_id_t id, void *parg)
307 {
308 	dcpc_probe_t *pp = parg;
309 
310 	ASSERT(pp->dcpc_enabled == 0);
311 	kmem_free(pp, sizeof (dcpc_probe_t));
312 }
313 
314 /*ARGSUSED*/
315 static int
316 dcpc_usermode(void *arg, dtrace_id_t id, void *parg)
317 {
318 	return (CPU->cpu_cpcprofile_pc == 0);
319 }
320 
321 static void
322 dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno)
323 {
324 	kcpc_set_t *oset;
325 	int i;
326 
327 	(void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name,
328 	    CPC_MAX_EVENT_LEN);
329 	set->ks_req[reqno].kr_config = NULL;
330 	set->ks_req[reqno].kr_index = reqno;
331 	set->ks_req[reqno].kr_picnum = -1;
332 	set->ks_req[reqno].kr_flags =  pp->dcpc_flag;
333 
334 	/*
335 	 * If a unit mask has been specified then detect which attribute
336 	 * the platform needs. For now, it's either "umask" or "emask".
337 	 */
338 	if (pp->dcpc_umask >= 0) {
339 		set->ks_req[reqno].kr_attr =
340 		    kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP);
341 		set->ks_req[reqno].kr_nattrs = 1;
342 		if (dcpc_mask_type & DCPC_UMASK)
343 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
344 			    "umask", 5);
345 		else
346 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
347 			    "emask", 5);
348 		set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask;
349 	} else {
350 		set->ks_req[reqno].kr_attr = NULL;
351 		set->ks_req[reqno].kr_nattrs = 0;
352 	}
353 
354 	/*
355 	 * If this probe is enabled, obtain its current countdown value
356 	 * and use that. The CPUs cpc context might not exist yet if we
357 	 * are dealing with a CPU that is just coming online.
358 	 */
359 	if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) {
360 		oset = c->cpu_cpc_ctx->kc_set;
361 
362 		for (i = 0; i < oset->ks_nreqs; i++) {
363 			if (strcmp(oset->ks_req[i].kr_event,
364 			    set->ks_req[reqno].kr_event) == 0) {
365 				set->ks_req[reqno].kr_preset =
366 				    *(oset->ks_req[i].kr_data);
367 			}
368 		}
369 	} else {
370 		set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval;
371 	}
372 
373 	set->ks_nreqs++;
374 }
375 
376 
377 /*
378  * Create a fresh request set for the enablings represented in the
379  * 'dcpc_actv_reqs' array which contains the probes we want to be
380  * in the set. This can be called for several reasons:
381  *
382  * 1)	We are on a single or multi overflow platform and we have no
383  *	current events so we can just create the set and initialize it.
384  * 2)	We are on a multi-overflow platform and we already have one or
385  *	more existing events and we are adding a new enabling. Create a
386  *	new set and copy old requests in and then add the new request.
387  * 3)	We are on a multi-overflow platform and we have just removed an
388  *	enabling but we still have enablings whch are valid. Create a new
389  *	set and copy in still valid requests.
390  */
391 static kcpc_set_t *
392 dcpc_create_set(cpu_t *c)
393 {
394 	int i, reqno = 0;
395 	int active_requests = 0;
396 	kcpc_set_t *set;
397 
398 	/*
399 	 * First get a count of the number of currently active requests.
400 	 * Note that dcpc_actv_reqs[] should always reflect which requests
401 	 * we want to be in the set that is to be created. It is the
402 	 * responsibility of the caller of dcpc_create_set() to adjust that
403 	 * array accordingly beforehand.
404 	 */
405 	for (i = 0; i < cpc_ncounters; i++) {
406 		if (dcpc_actv_reqs[i] != NULL)
407 			active_requests++;
408 	}
409 
410 	set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
411 
412 	set->ks_req =
413 	    kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP);
414 
415 	set->ks_data =
416 	    kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP);
417 
418 	/*
419 	 * Look for valid entries in the active requests array and populate
420 	 * the request set for any entries found.
421 	 */
422 	for (i = 0; i < cpc_ncounters; i++) {
423 		if (dcpc_actv_reqs[i] != NULL) {
424 			dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno);
425 			reqno++;
426 		}
427 	}
428 
429 	return (set);
430 }
431 
432 static int
433 dcpc_program_cpu_event(cpu_t *c)
434 {
435 	int i, j, subcode;
436 	kcpc_ctx_t *ctx, *octx;
437 	kcpc_set_t *set;
438 
439 	set = dcpc_create_set(c);
440 
441 	octx = NULL;
442 	set->ks_ctx = ctx = kcpc_ctx_alloc();
443 	ctx->kc_set = set;
444 	ctx->kc_cpuid = c->cpu_id;
445 
446 	if (kcpc_assign_reqs(set, ctx) != 0)
447 		goto err;
448 
449 	if (kcpc_configure_reqs(ctx, set, &subcode) != 0)
450 		goto err;
451 
452 	for (i = 0; i < set->ks_nreqs; i++) {
453 		for (j = 0; j < cpc_ncounters; j++) {
454 			if (dcpc_actv_reqs[j] != NULL &&
455 			    strcmp(set->ks_req[i].kr_event,
456 			    dcpc_actv_reqs[j]->dcpc_event_name) == 0) {
457 				dcpc_actv_reqs[j]->dcpc_picno =
458 				    set->ks_req[i].kr_picnum;
459 			}
460 		}
461 	}
462 
463 	/*
464 	 * If we already have an active enabling then save the current cpc
465 	 * context away.
466 	 */
467 	if (c->cpu_cpc_ctx != NULL)
468 		octx = c->cpu_cpc_ctx;
469 
470 	c->cpu_cpc_ctx = ctx;
471 	kcpc_remote_program(c);
472 
473 	if (octx != NULL) {
474 		kcpc_set_t *oset = octx->kc_set;
475 		kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t));
476 		kcpc_free_set(oset);
477 		kcpc_ctx_free(octx);
478 	}
479 
480 	return (0);
481 
482 err:
483 	/*
484 	 * We failed to configure this request up so free things up and
485 	 * get out.
486 	 */
487 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
488 	kcpc_free_set(set);
489 	kcpc_ctx_free(ctx);
490 
491 	return (-1);
492 }
493 
494 static void
495 dcpc_disable_cpu(cpu_t *c)
496 {
497 	kcpc_ctx_t *ctx;
498 	kcpc_set_t *set;
499 
500 	/*
501 	 * Leave this CPU alone if it's already offline.
502 	 */
503 	if (c->cpu_flags & CPU_OFFLINE)
504 		return;
505 
506 	kcpc_remote_stop(c);
507 
508 	ctx = c->cpu_cpc_ctx;
509 	set = ctx->kc_set;
510 
511 	kcpc_free_configs(set);
512 
513 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
514 	kcpc_free_set(set);
515 	kcpc_ctx_free(ctx);
516 	c->cpu_cpc_ctx = NULL;
517 }
518 
519 /*
520  * Stop overflow interrupts being actively processed so that per-CPU
521  * configuration state can be changed safely and correctly. Each CPU has a
522  * dcpc interrupt state byte which is transitioned from DCPC_INTR_FREE (the
523  * "free" state) to DCPC_INTR_CONFIG (the "configuration in process" state)
524  * before any configuration state is changed on any CPUs. The hardware overflow
525  * handler, kcpc_hw_overflow_intr(), will only process an interrupt when a
526  * configuration is not in process (i.e. the state is marked as free). During
527  * interrupt processing the state is set to DCPC_INTR_PROCESSING by the
528  * overflow handler.
529  */
530 static void
531 dcpc_block_interrupts(void)
532 {
533 	cpu_t *c;
534 	uint8_t *state;
535 
536 	c = cpu_list;
537 
538 	do {
539 		state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
540 
541 		while (atomic_cas_8(state, DCPC_INTR_FREE,
542 		    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
543 			continue;
544 
545 	} while ((c = c->cpu_next) != cpu_list);
546 }
547 
548 /*
549  * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that
550  * overflow interrupts can be processed safely.
551  */
552 static void
553 dcpc_release_interrupts(void)
554 {
555 	cpu_t *c = cpu_list;
556 
557 	do {
558 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
559 		membar_producer();
560 	} while ((c = c->cpu_next) != cpu_list);
561 }
562 
563 /*
564  * dcpc_program_event() can be called owing to a new enabling or if a multi
565  * overflow platform has disabled a request but needs to  program the requests
566  * that are still valid.
567  *
568  * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t
569  * and a new request set which contains the new enabling and any old enablings
570  * which are still valid (possible with multi-overflow platforms).
571  */
572 static int
573 dcpc_program_event(dcpc_probe_t *pp)
574 {
575 	cpu_t *c;
576 	int ret = 0;
577 
578 	ASSERT(MUTEX_HELD(&cpu_lock));
579 
580 	kpreempt_disable();
581 
582 	dcpc_block_interrupts();
583 
584 	c = cpu_list;
585 
586 	do {
587 		/*
588 		 * Skip CPUs that are currently offline.
589 		 */
590 		if (c->cpu_flags & CPU_OFFLINE)
591 			continue;
592 
593 		if (c->cpu_cpc_ctx != NULL)
594 			kcpc_remote_stop(c);
595 	} while ((c = c->cpu_next) != cpu_list);
596 
597 	dcpc_release_interrupts();
598 
599 	/*
600 	 * If this enabling is being removed (in the case of a multi event
601 	 * capable system with more than one active enabling), we can now
602 	 * update the active request array to reflect the enablings that need
603 	 * to be reprogrammed.
604 	 */
605 	if (pp->dcpc_disabling == 1)
606 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
607 
608 	do {
609 		/*
610 		 * Skip CPUs that are currently offline.
611 		 */
612 		if (c->cpu_flags & CPU_OFFLINE)
613 			continue;
614 
615 		ret = dcpc_program_cpu_event(c);
616 	} while ((c = c->cpu_next) != cpu_list && ret == 0);
617 
618 	/*
619 	 * If dcpc_program_cpu_event() fails then it is because we couldn't
620 	 * configure the requests in the set for the CPU and not because of
621 	 * an error programming the hardware. If we have a failure here then
622 	 * we assume no CPUs have been programmed in the above step as they
623 	 * are all configured identically.
624 	 */
625 	if (ret != 0) {
626 		pp->dcpc_enabled = 0;
627 		kpreempt_enable();
628 		return (-1);
629 	}
630 
631 	if (pp->dcpc_disabling != 1)
632 		pp->dcpc_enabled = 1;
633 
634 	kpreempt_enable();
635 
636 	return (0);
637 }
638 
639 /*ARGSUSED*/
640 static int
641 dcpc_enable(void *arg, dtrace_id_t id, void *parg)
642 {
643 	dcpc_probe_t *pp = parg;
644 	int i, found = 0;
645 	cpu_t *c;
646 
647 	ASSERT(MUTEX_HELD(&cpu_lock));
648 
649 	/*
650 	 * Bail out if the counters are being used by a libcpc consumer.
651 	 */
652 	rw_enter(&kcpc_cpuctx_lock, RW_READER);
653 	if (kcpc_cpuctx > 0) {
654 		rw_exit(&kcpc_cpuctx_lock);
655 		return (-1);
656 	}
657 
658 	dtrace_cpc_in_use++;
659 	rw_exit(&kcpc_cpuctx_lock);
660 
661 	/*
662 	 * Locate this enabling in the first free entry of the active
663 	 * request array.
664 	 */
665 	for (i = 0; i < cpc_ncounters; i++) {
666 		if (dcpc_actv_reqs[i] == NULL) {
667 			dcpc_actv_reqs[i] = pp;
668 			pp->dcpc_actv_req_idx = i;
669 			found = 1;
670 			break;
671 		}
672 	}
673 
674 	/*
675 	 * If we couldn't find a slot for this probe then there is no
676 	 * room at the inn.
677 	 */
678 	if (!found) {
679 		dtrace_cpc_in_use--;
680 		return (-1);
681 	}
682 
683 	ASSERT(pp->dcpc_actv_req_idx >= 0);
684 
685 	/*
686 	 * The following must hold true if we are to (attempt to) enable
687 	 * this request:
688 	 *
689 	 * 1) No enablings currently exist. We allow all platforms to
690 	 * proceed if this is true.
691 	 *
692 	 * OR
693 	 *
694 	 * 2) If the platform is multi overflow capable and there are
695 	 * less valid enablings than there are counters. There is no
696 	 * guarantee that a platform can accommodate as many events as
697 	 * it has counters for but we will at least try to program
698 	 * up to that many requests.
699 	 *
700 	 * The 'dcpc_enablings' variable is implictly protected by locking
701 	 * provided by the DTrace framework and the cpu management framework.
702 	 */
703 	if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap &&
704 	    dcpc_enablings < cpc_ncounters)) {
705 		/*
706 		 * Before attempting to program the first enabling we need to
707 		 * invalidate any lwp-based contexts.
708 		 */
709 		if (dcpc_enablings == 0)
710 			kcpc_invalidate_all();
711 
712 		if (dcpc_program_event(pp) == 0) {
713 			dcpc_enablings++;
714 			return (0);
715 		}
716 	}
717 
718 	/*
719 	 * If active enablings existed before we failed to enable this probe
720 	 * on a multi event capable platform then we need to restart counters
721 	 * as they will have been stopped in the attempted configuration. The
722 	 * context should now just contain the request prior to this failed
723 	 * enabling.
724 	 */
725 	if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) {
726 		c = cpu_list;
727 
728 		ASSERT(dcpc_mult_ovf_cap == 1);
729 		do {
730 			/*
731 			 * Skip CPUs that are currently offline.
732 			 */
733 			if (c->cpu_flags & CPU_OFFLINE)
734 				continue;
735 
736 			kcpc_remote_program(c);
737 		} while ((c = c->cpu_next) != cpu_list);
738 	}
739 
740 	dtrace_cpc_in_use--;
741 	dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
742 	pp->dcpc_actv_req_idx = pp->dcpc_picno = -1;
743 
744 	return (-1);
745 }
746 
747 /*
748  * If only one enabling is active then remove the context and free
749  * everything up. If there are multiple enablings active then remove this
750  * one, its associated meta-data and re-program the hardware.
751  */
752 /*ARGSUSED*/
753 static void
754 dcpc_disable(void *arg, dtrace_id_t id, void *parg)
755 {
756 	cpu_t *c;
757 	dcpc_probe_t *pp = parg;
758 
759 	ASSERT(MUTEX_HELD(&cpu_lock));
760 
761 	kpreempt_disable();
762 
763 	/*
764 	 * This probe didn't actually make it as far as being fully enabled
765 	 * so we needn't do anything with it.
766 	 */
767 	if (pp->dcpc_enabled == 0) {
768 		/*
769 		 * If we actually allocated this request a slot in the
770 		 * request array but failed to enabled it then remove the
771 		 * entry in the array.
772 		 */
773 		if (pp->dcpc_actv_req_idx >= 0) {
774 			dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
775 			pp->dcpc_actv_req_idx = pp->dcpc_picno =
776 			    pp->dcpc_disabling = -1;
777 		}
778 
779 		kpreempt_enable();
780 		return;
781 	}
782 
783 	/*
784 	 * If this is the only enabling then stop all the counters and
785 	 * free up the meta-data.
786 	 */
787 	if (dcpc_enablings == 1) {
788 		ASSERT(dtrace_cpc_in_use == 1);
789 
790 		dcpc_block_interrupts();
791 
792 		c = cpu_list;
793 
794 		do {
795 			dcpc_disable_cpu(c);
796 		} while ((c = c->cpu_next) != cpu_list);
797 
798 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
799 		dcpc_release_interrupts();
800 	} else {
801 		/*
802 		 * This platform can support multiple overflow events and
803 		 * the enabling being disabled is not the last one. Remove this
804 		 * enabling and re-program the hardware with the new config.
805 		 */
806 		ASSERT(dcpc_mult_ovf_cap);
807 		ASSERT(dcpc_enablings > 1);
808 
809 		pp->dcpc_disabling = 1;
810 		(void) dcpc_program_event(pp);
811 	}
812 
813 	kpreempt_enable();
814 
815 	dcpc_enablings--;
816 	dtrace_cpc_in_use--;
817 	pp->dcpc_enabled = 0;
818 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
819 }
820 
821 /*ARGSUSED*/
822 static int
823 dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg)
824 {
825 	cpu_t *c;
826 	uint8_t *state;
827 
828 	ASSERT(MUTEX_HELD(&cpu_lock));
829 
830 	switch (what) {
831 	case CPU_OFF:
832 		/*
833 		 * Offline CPUs are not allowed to take part so remove this
834 		 * CPU if we are actively tracing.
835 		 */
836 		if (dtrace_cpc_in_use) {
837 			c = cpu_get(cpu);
838 			state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
839 
840 			/*
841 			 * Indicate that a configuration is in process in
842 			 * order to stop overflow interrupts being processed
843 			 * on this CPU while we disable it.
844 			 */
845 			while (atomic_cas_8(state, DCPC_INTR_FREE,
846 			    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
847 				continue;
848 
849 			dcpc_disable_cpu(c);
850 
851 			/*
852 			 * Reset this CPUs interrupt state as the configuration
853 			 * has ended.
854 			 */
855 			cpu_core[c->cpu_id].cpuc_dcpc_intr_state =
856 			    DCPC_INTR_FREE;
857 			membar_producer();
858 		}
859 		break;
860 
861 	case CPU_ON:
862 	case CPU_SETUP:
863 		/*
864 		 * This CPU is being initialized or brought online so program
865 		 * it with the current request set if we are actively tracing.
866 		 */
867 		if (dtrace_cpc_in_use) {
868 			c = cpu_get(cpu);
869 
870 			(void) dcpc_program_cpu_event(c);
871 		}
872 		break;
873 
874 	default:
875 		break;
876 	}
877 
878 	return (0);
879 }
880 
881 static dtrace_pattr_t dcpc_attr = {
882 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
883 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
884 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
885 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
886 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
887 };
888 
889 static dtrace_pops_t dcpc_pops = {
890     dcpc_provide,
891     NULL,
892     dcpc_enable,
893     dcpc_disable,
894     NULL,
895     NULL,
896     NULL,
897     NULL,
898     dcpc_usermode,
899     dcpc_destroy
900 };
901 
902 /*ARGSUSED*/
903 static int
904 dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
905 {
906 	return (0);
907 }
908 
909 /*ARGSUSED*/
910 static int
911 dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
912 {
913 	int error;
914 
915 	switch (infocmd) {
916 	case DDI_INFO_DEVT2DEVINFO:
917 		*result = (void *)dcpc_devi;
918 		error = DDI_SUCCESS;
919 		break;
920 	case DDI_INFO_DEVT2INSTANCE:
921 		*result = (void *)0;
922 		error = DDI_SUCCESS;
923 		break;
924 	default:
925 		error = DDI_FAILURE;
926 	}
927 	return (error);
928 }
929 
930 static int
931 dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
932 {
933 	switch (cmd) {
934 	case DDI_DETACH:
935 		break;
936 	case DDI_SUSPEND:
937 		return (DDI_SUCCESS);
938 	default:
939 		return (DDI_FAILURE);
940 	}
941 
942 	if (dtrace_unregister(dcpc_pid) != 0)
943 		return (DDI_FAILURE);
944 
945 	ddi_remove_minor_node(devi, NULL);
946 
947 	mutex_enter(&cpu_lock);
948 	unregister_cpu_setup_func(dcpc_cpu_setup, NULL);
949 	mutex_exit(&cpu_lock);
950 
951 	kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *));
952 
953 	kcpc_unregister_dcpc();
954 
955 	return (DDI_SUCCESS);
956 }
957 
958 static int
959 dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
960 {
961 	uint_t caps;
962 	char *attrs;
963 
964 	switch (cmd) {
965 	case DDI_ATTACH:
966 		break;
967 	case DDI_RESUME:
968 		return (DDI_SUCCESS);
969 	default:
970 		return (DDI_FAILURE);
971 	}
972 
973 	if (kcpc_pcbe_loaded() == -1)
974 		return (DDI_FAILURE);
975 
976 	caps = kcpc_pcbe_capabilities();
977 
978 	if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) {
979 		cmn_err(CE_WARN, "dcpc: Counter Overflow not supported"\
980 		    " on this processor\n");
981 		return (DDI_FAILURE);
982 	}
983 
984 	if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0,
985 	    DDI_PSEUDO, NULL) == DDI_FAILURE ||
986 	    dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL,
987 	    NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) {
988 		ddi_remove_minor_node(devi, NULL);
989 		return (DDI_FAILURE);
990 	}
991 
992 	mutex_enter(&cpu_lock);
993 	register_cpu_setup_func(dcpc_cpu_setup, NULL);
994 	mutex_exit(&cpu_lock);
995 
996 	dcpc_ovf_mask = (1 << cpc_ncounters) - 1;
997 	ASSERT(dcpc_ovf_mask != 0);
998 
999 	if (caps & CPC_CAP_OVERFLOW_PRECISE)
1000 		dcpc_mult_ovf_cap = 1;
1001 
1002 	/*
1003 	 * Determine which, if any, mask attribute the back-end can use.
1004 	 */
1005 	attrs = kcpc_list_attrs();
1006 	if (strstr(attrs, "umask") != NULL)
1007 		dcpc_mask_type |= DCPC_UMASK;
1008 	else if (strstr(attrs, "emask") != NULL)
1009 		dcpc_mask_type |= DCPC_EMASK;
1010 
1011 	/*
1012 	 * The dcpc_actv_reqs array is used to store the requests that
1013 	 * we currently have programmed. The order of requests in this
1014 	 * array is not necessarily the order that the event appears in
1015 	 * the kcpc_request_t array. Once entered into a slot in the array
1016 	 * the entry is not moved until it's removed.
1017 	 */
1018 	dcpc_actv_reqs =
1019 	    kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP);
1020 
1021 	dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
1022 	    DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT);
1023 
1024 	kcpc_register_dcpc(dcpc_fire);
1025 
1026 	ddi_report_dev(devi);
1027 	dcpc_devi = devi;
1028 
1029 	return (DDI_SUCCESS);
1030 }
1031 
1032 static struct cb_ops dcpc_cb_ops = {
1033 	dcpc_open,		/* open */
1034 	nodev,			/* close */
1035 	nulldev,		/* strategy */
1036 	nulldev,		/* print */
1037 	nodev,			/* dump */
1038 	nodev,			/* read */
1039 	nodev,			/* write */
1040 	nodev,			/* ioctl */
1041 	nodev,			/* devmap */
1042 	nodev,			/* mmap */
1043 	nodev,			/* segmap */
1044 	nochpoll,		/* poll */
1045 	ddi_prop_op,		/* cb_prop_op */
1046 	0,			/* streamtab  */
1047 	D_NEW | D_MP		/* Driver compatibility flag */
1048 };
1049 
1050 static struct dev_ops dcpc_ops = {
1051 	DEVO_REV,		/* devo_rev, */
1052 	0,			/* refcnt  */
1053 	dcpc_info,		/* get_dev_info */
1054 	nulldev,		/* identify */
1055 	nulldev,		/* probe */
1056 	dcpc_attach,		/* attach */
1057 	dcpc_detach,		/* detach */
1058 	nodev,			/* reset */
1059 	&dcpc_cb_ops,		/* driver operations */
1060 	NULL,			/* bus operations */
1061 	nodev,			/* dev power */
1062 	ddi_quiesce_not_needed	/* quiesce */
1063 };
1064 
1065 /*
1066  * Module linkage information for the kernel.
1067  */
1068 static struct modldrv modldrv = {
1069 	&mod_driverops,		/* module type */
1070 	"DTrace CPC Module",	/* name of module */
1071 	&dcpc_ops,		/* driver ops */
1072 };
1073 
1074 static struct modlinkage modlinkage = {
1075 	MODREV_1,
1076 	(void *)&modldrv,
1077 	NULL
1078 };
1079 
1080 int
1081 _init(void)
1082 {
1083 	return (mod_install(&modlinkage));
1084 }
1085 
1086 int
1087 _info(struct modinfo *modinfop)
1088 {
1089 	return (mod_info(&modlinkage, modinfop));
1090 }
1091 
1092 int
1093 _fini(void)
1094 {
1095 	return (mod_remove(&modlinkage));
1096 }
1097