xref: /titanic_50/usr/src/uts/common/disp/thread.c (revision f9edfba4e2ac2531f0e52d0c4007976054e1023d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/signal.h>
32 #include <sys/stack.h>
33 #include <sys/pcb.h>
34 #include <sys/user.h>
35 #include <sys/systm.h>
36 #include <sys/sysinfo.h>
37 #include <sys/errno.h>
38 #include <sys/cmn_err.h>
39 #include <sys/cred.h>
40 #include <sys/resource.h>
41 #include <sys/task.h>
42 #include <sys/project.h>
43 #include <sys/proc.h>
44 #include <sys/debug.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <vm/seg_kmem.h>
48 #include <vm/seg_kp.h>
49 #include <sys/machlock.h>
50 #include <sys/kmem.h>
51 #include <sys/varargs.h>
52 #include <sys/turnstile.h>
53 #include <sys/poll.h>
54 #include <sys/vtrace.h>
55 #include <sys/callb.h>
56 #include <c2/audit.h>
57 #include <sys/tnf.h>
58 #include <sys/sobject.h>
59 #include <sys/cpupart.h>
60 #include <sys/pset.h>
61 #include <sys/door.h>
62 #include <sys/spl.h>
63 #include <sys/copyops.h>
64 #include <sys/rctl.h>
65 #include <sys/brand.h>
66 #include <sys/pool.h>
67 #include <sys/zone.h>
68 #include <sys/tsol/label.h>
69 #include <sys/tsol/tndb.h>
70 #include <sys/cpc_impl.h>
71 #include <sys/sdt.h>
72 #include <sys/reboot.h>
73 #include <sys/kdi.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 
78 struct kmem_cache *thread_cache;	/* cache of free threads */
79 struct kmem_cache *lwp_cache;		/* cache of free lwps */
80 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81 
82 /*
83  * allthreads is only for use by kmem_readers.  All kernel loops can use
84  * the current thread as a start/end point.
85  */
86 static kthread_t *allthreads = &t0;	/* circular list of all threads */
87 
88 static kcondvar_t reaper_cv;		/* synchronization var */
89 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92 kmutex_t	thread_free_lock;	/* protects clock from reaper */
93 int	thread_reapcnt = 0;		/* number of threads on deathrow */
94 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
95 int	reaplimit = 16;			/* delay reaping until reaplimit */
96 
97 extern int nthread;
98 
99 id_t	syscid;				/* system scheduling class ID */
100 void	*segkp_thread;			/* cookie for segkp pool */
101 
102 int lwp_cache_sz = 32;
103 int t_cache_sz = 8;
104 static kt_did_t next_t_id = 1;
105 
106 /*
107  * Min/Max stack sizes for stack size parameters
108  */
109 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
110 #define	MIN_STKSIZE	DEFAULTSTKSZ
111 
112 /*
113  * default_stksize overrides lwp_default_stksize if it is set.
114  */
115 int	default_stksize;
116 int	lwp_default_stksize;
117 
118 static zone_key_t zone_thread_key;
119 
120 /*
121  * forward declarations for internal thread specific data (tsd)
122  */
123 static void *tsd_realloc(void *, size_t, size_t);
124 
125 void thread_reaper(void);
126 
127 /*ARGSUSED*/
128 static int
129 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
130 {
131 	bzero(buf, sizeof (turnstile_t));
132 	return (0);
133 }
134 
135 /*ARGSUSED*/
136 static void
137 turnstile_destructor(void *buf, void *cdrarg)
138 {
139 	turnstile_t *ts = buf;
140 
141 	ASSERT(ts->ts_free == NULL);
142 	ASSERT(ts->ts_waiters == 0);
143 	ASSERT(ts->ts_inheritor == NULL);
144 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
145 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
146 }
147 
148 void
149 thread_init(void)
150 {
151 	kthread_t *tp;
152 	extern char sys_name[];
153 	extern void idle();
154 	struct cpu *cpu = CPU;
155 
156 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
157 
158 #if defined(__i386) || defined(__amd64)
159 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
160 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
161 
162 	/*
163 	 * "struct _klwp" includes a "struct pcb", which includes a
164 	 * "struct fpu", which needs to be 16-byte aligned on amd64
165 	 * (and even on i386 for fxsave/fxrstor).
166 	 */
167 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
168 	    16, NULL, NULL, NULL, NULL, NULL, 0);
169 #else
170 	/*
171 	 * Allocate thread structures from static_arena.  This prevents
172 	 * issues where a thread tries to relocate its own thread
173 	 * structure and touches it after the mapping has been suspended.
174 	 */
175 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
176 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
177 
178 	lwp_stk_cache_init();
179 
180 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
181 	    0, NULL, NULL, NULL, NULL, NULL, 0);
182 #endif
183 
184 	turnstile_cache = kmem_cache_create("turnstile_cache",
185 	    sizeof (turnstile_t), 0,
186 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
187 
188 	label_init();
189 	cred_init();
190 
191 	/*
192 	 * Initialize various resource management facilities.
193 	 */
194 	rctl_init();
195 	cpucaps_init();
196 	/*
197 	 * Zone_init() should be called before project_init() so that project ID
198 	 * for the first project is initialized correctly.
199 	 */
200 	zone_init();
201 	project_init();
202 	brand_init();
203 	kiconv_init();
204 	task_init();
205 	tcache_init();
206 	pool_init();
207 
208 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
209 
210 	/*
211 	 * Originally, we had two parameters to set default stack
212 	 * size: one for lwp's (lwp_default_stksize), and one for
213 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
214 	 * Now we have a third parameter that overrides both if it is
215 	 * set to a legal stack size, called default_stksize.
216 	 */
217 
218 	if (default_stksize == 0) {
219 		default_stksize = DEFAULTSTKSZ;
220 	} else if (default_stksize % PAGESIZE != 0 ||
221 	    default_stksize > MAX_STKSIZE ||
222 	    default_stksize < MIN_STKSIZE) {
223 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
224 		    (int)DEFAULTSTKSZ);
225 		default_stksize = DEFAULTSTKSZ;
226 	} else {
227 		lwp_default_stksize = default_stksize;
228 	}
229 
230 	if (lwp_default_stksize == 0) {
231 		lwp_default_stksize = default_stksize;
232 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
233 	    lwp_default_stksize > MAX_STKSIZE ||
234 	    lwp_default_stksize < MIN_STKSIZE) {
235 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
236 		    default_stksize);
237 		lwp_default_stksize = default_stksize;
238 	}
239 
240 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
241 	    lwp_default_stksize,
242 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
243 
244 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
245 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
246 
247 	(void) getcid(sys_name, &syscid);
248 	curthread->t_cid = syscid;	/* current thread is t0 */
249 
250 	/*
251 	 * Set up the first CPU's idle thread.
252 	 * It runs whenever the CPU has nothing worthwhile to do.
253 	 */
254 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
255 	cpu->cpu_idle_thread = tp;
256 	tp->t_preempt = 1;
257 	tp->t_disp_queue = cpu->cpu_disp;
258 	ASSERT(tp->t_disp_queue != NULL);
259 	tp->t_bound_cpu = cpu;
260 	tp->t_affinitycnt = 1;
261 
262 	/*
263 	 * Registering a thread in the callback table is usually
264 	 * done in the initialization code of the thread. In this
265 	 * case, we do it right after thread creation to avoid
266 	 * blocking idle thread while registering itself. It also
267 	 * avoids the possibility of reregistration in case a CPU
268 	 * restarts its idle thread.
269 	 */
270 	CALLB_CPR_INIT_SAFE(tp, "idle");
271 
272 	/*
273 	 * Create the thread_reaper daemon. From this point on, exited
274 	 * threads will get reaped.
275 	 */
276 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
277 	    NULL, 0, &p0, TS_RUN, minclsyspri);
278 
279 	/*
280 	 * Finish initializing the kernel memory allocator now that
281 	 * thread_create() is available.
282 	 */
283 	kmem_thread_init();
284 
285 	if (boothowto & RB_DEBUG)
286 		kdi_dvec_thravail();
287 }
288 
289 /*
290  * Create a thread.
291  *
292  * thread_create() blocks for memory if necessary.  It never fails.
293  *
294  * If stk is NULL, the thread is created at the base of the stack
295  * and cannot be swapped.
296  */
297 kthread_t *
298 thread_create(
299 	caddr_t	stk,
300 	size_t	stksize,
301 	void	(*proc)(),
302 	void	*arg,
303 	size_t	len,
304 	proc_t	 *pp,
305 	int	state,
306 	pri_t	pri)
307 {
308 	kthread_t *t;
309 	extern struct classfuncs sys_classfuncs;
310 	turnstile_t *ts;
311 
312 	/*
313 	 * Every thread keeps a turnstile around in case it needs to block.
314 	 * The only reason the turnstile is not simply part of the thread
315 	 * structure is that we may have to break the association whenever
316 	 * more than one thread blocks on a given synchronization object.
317 	 * From a memory-management standpoint, turnstiles are like the
318 	 * "attached mblks" that hang off dblks in the streams allocator.
319 	 */
320 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
321 
322 	if (stk == NULL) {
323 		/*
324 		 * alloc both thread and stack in segkp chunk
325 		 */
326 
327 		if (stksize < default_stksize)
328 			stksize = default_stksize;
329 
330 		if (stksize == default_stksize) {
331 			stk = (caddr_t)segkp_cache_get(segkp_thread);
332 		} else {
333 			stksize = roundup(stksize, PAGESIZE);
334 			stk = (caddr_t)segkp_get(segkp, stksize,
335 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
336 		}
337 
338 		ASSERT(stk != NULL);
339 
340 		/*
341 		 * The machine-dependent mutex code may require that
342 		 * thread pointers (since they may be used for mutex owner
343 		 * fields) have certain alignment requirements.
344 		 * PTR24_ALIGN is the size of the alignment quanta.
345 		 * XXX - assumes stack grows toward low addresses.
346 		 */
347 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
348 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
349 			    " too small to hold thread.");
350 #ifdef STACK_GROWTH_DOWN
351 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
352 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
353 		t = (kthread_t *)(stk + stksize);
354 		bzero(t, sizeof (kthread_t));
355 #ifdef	C2_AUDIT
356 		if (audit_active)
357 			audit_thread_create(t);
358 #endif
359 		t->t_stk = stk + stksize;
360 		t->t_stkbase = stk;
361 #else	/* stack grows to larger addresses */
362 		stksize -= SA(sizeof (kthread_t));
363 		t = (kthread_t *)(stk);
364 		bzero(t, sizeof (kthread_t));
365 		t->t_stk = stk + sizeof (kthread_t);
366 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
367 #endif	/* STACK_GROWTH_DOWN */
368 		t->t_flag |= T_TALLOCSTK;
369 		t->t_swap = stk;
370 	} else {
371 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
372 		bzero(t, sizeof (kthread_t));
373 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
374 #ifdef	C2_AUDIT
375 		if (audit_active)
376 			audit_thread_create(t);
377 #endif
378 		/*
379 		 * Initialize t_stk to the kernel stack pointer to use
380 		 * upon entry to the kernel
381 		 */
382 #ifdef STACK_GROWTH_DOWN
383 		t->t_stk = stk + stksize;
384 		t->t_stkbase = stk;
385 #else
386 		t->t_stk = stk;			/* 3b2-like */
387 		t->t_stkbase = stk + stksize;
388 #endif /* STACK_GROWTH_DOWN */
389 	}
390 
391 	/* set default stack flag */
392 	if (stksize == lwp_default_stksize)
393 		t->t_flag |= T_DFLTSTK;
394 
395 	t->t_ts = ts;
396 
397 	/*
398 	 * p_cred could be NULL if it thread_create is called before cred_init
399 	 * is called in main.
400 	 */
401 	mutex_enter(&pp->p_crlock);
402 	if (pp->p_cred)
403 		crhold(t->t_cred = pp->p_cred);
404 	mutex_exit(&pp->p_crlock);
405 	t->t_start = gethrestime_sec();
406 	t->t_startpc = proc;
407 	t->t_procp = pp;
408 	t->t_clfuncs = &sys_classfuncs.thread;
409 	t->t_cid = syscid;
410 	t->t_pri = pri;
411 	t->t_stime = lbolt;
412 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
413 	t->t_bind_cpu = PBIND_NONE;
414 	t->t_bind_pset = PS_NONE;
415 	t->t_plockp = &pp->p_lock;
416 	t->t_copyops = NULL;
417 	t->t_taskq = NULL;
418 	t->t_anttime = 0;
419 	t->t_hatdepth = 0;
420 
421 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
422 
423 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
424 #ifndef NPROBE
425 	/* Kernel probe */
426 	tnf_thread_create(t);
427 #endif /* NPROBE */
428 	LOCK_INIT_CLEAR(&t->t_lock);
429 
430 	/*
431 	 * Callers who give us a NULL proc must do their own
432 	 * stack initialization.  e.g. lwp_create()
433 	 */
434 	if (proc != NULL) {
435 		t->t_stk = thread_stk_init(t->t_stk);
436 		thread_load(t, proc, arg, len);
437 	}
438 
439 	/*
440 	 * Put a hold on project0. If this thread is actually in a
441 	 * different project, then t_proj will be changed later in
442 	 * lwp_create().  All kernel-only threads must be in project 0.
443 	 */
444 	t->t_proj = project_hold(proj0p);
445 
446 	lgrp_affinity_init(&t->t_lgrp_affinity);
447 
448 	mutex_enter(&pidlock);
449 	nthread++;
450 	t->t_did = next_t_id++;
451 	t->t_prev = curthread->t_prev;
452 	t->t_next = curthread;
453 
454 	/*
455 	 * Add the thread to the list of all threads, and initialize
456 	 * its t_cpu pointer.  We need to block preemption since
457 	 * cpu_offline walks the thread list looking for threads
458 	 * with t_cpu pointing to the CPU being offlined.  We want
459 	 * to make sure that the list is consistent and that if t_cpu
460 	 * is set, the thread is on the list.
461 	 */
462 	kpreempt_disable();
463 	curthread->t_prev->t_next = t;
464 	curthread->t_prev = t;
465 
466 	/*
467 	 * Threads should never have a NULL t_cpu pointer so assign it
468 	 * here.  If the thread is being created with state TS_RUN a
469 	 * better CPU may be chosen when it is placed on the run queue.
470 	 *
471 	 * We need to keep kernel preemption disabled when setting all
472 	 * three fields to keep them in sync.  Also, always create in
473 	 * the default partition since that's where kernel threads go
474 	 * (if this isn't a kernel thread, t_cpupart will be changed
475 	 * in lwp_create before setting the thread runnable).
476 	 */
477 	t->t_cpupart = &cp_default;
478 
479 	/*
480 	 * For now, affiliate this thread with the root lgroup.
481 	 * Since the kernel does not (presently) allocate its memory
482 	 * in a locality aware fashion, the root is an appropriate home.
483 	 * If this thread is later associated with an lwp, it will have
484 	 * it's lgroup re-assigned at that time.
485 	 */
486 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
487 
488 	/*
489 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
490 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
491 	 * is ready to run.
492 	 */
493 	if (CPU->cpu_part == &cp_default)
494 		t->t_cpu = CPU;
495 	else
496 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
497 		    t->t_pri, NULL);
498 
499 	t->t_disp_queue = t->t_cpu->cpu_disp;
500 	kpreempt_enable();
501 
502 	/*
503 	 * Initialize thread state and the dispatcher lock pointer.
504 	 * Need to hold onto pidlock to block allthreads walkers until
505 	 * the state is set.
506 	 */
507 	switch (state) {
508 	case TS_RUN:
509 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
510 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
511 		CL_SETRUN(t);
512 		thread_unlock(t);
513 		break;
514 
515 	case TS_ONPROC:
516 		THREAD_ONPROC(t, t->t_cpu);
517 		break;
518 
519 	case TS_FREE:
520 		/*
521 		 * Free state will be used for intr threads.
522 		 * The interrupt routine must set the thread dispatcher
523 		 * lock pointer (t_lockp) if starting on a CPU
524 		 * other than the current one.
525 		 */
526 		THREAD_FREEINTR(t, CPU);
527 		break;
528 
529 	case TS_STOPPED:
530 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
531 		break;
532 
533 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
534 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
535 	}
536 	mutex_exit(&pidlock);
537 	return (t);
538 }
539 
540 /*
541  * Move thread to project0 and take care of project reference counters.
542  */
543 void
544 thread_rele(kthread_t *t)
545 {
546 	kproject_t *kpj;
547 
548 	thread_lock(t);
549 
550 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
551 	kpj = ttoproj(t);
552 	t->t_proj = proj0p;
553 
554 	thread_unlock(t);
555 
556 	if (kpj != proj0p) {
557 		project_rele(kpj);
558 		(void) project_hold(proj0p);
559 	}
560 }
561 
562 void
563 thread_exit(void)
564 {
565 	kthread_t *t = curthread;
566 
567 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
568 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
569 
570 	tsd_exit();		/* Clean up this thread's TSD */
571 
572 	kcpc_passivate();	/* clean up performance counter state */
573 
574 	/*
575 	 * No kernel thread should have called poll() without arranging
576 	 * calling pollcleanup() here.
577 	 */
578 	ASSERT(t->t_pollstate == NULL);
579 	ASSERT(t->t_schedctl == NULL);
580 	if (t->t_door)
581 		door_slam();	/* in case thread did an upcall */
582 
583 #ifndef NPROBE
584 	/* Kernel probe */
585 	if (t->t_tnf_tpdp)
586 		tnf_thread_exit();
587 #endif /* NPROBE */
588 
589 	thread_rele(t);
590 	t->t_preempt++;
591 
592 	/*
593 	 * remove thread from the all threads list so that
594 	 * death-row can use the same pointers.
595 	 */
596 	mutex_enter(&pidlock);
597 	t->t_next->t_prev = t->t_prev;
598 	t->t_prev->t_next = t->t_next;
599 	ASSERT(allthreads != t);	/* t0 never exits */
600 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
601 	mutex_exit(&pidlock);
602 
603 	if (t->t_ctx != NULL)
604 		exitctx(t);
605 	if (t->t_procp->p_pctx != NULL)
606 		exitpctx(t->t_procp);
607 
608 	t->t_state = TS_ZOMB;	/* set zombie thread */
609 
610 	swtch_from_zombie();	/* give up the CPU */
611 	/* NOTREACHED */
612 }
613 
614 /*
615  * Check to see if the specified thread is active (defined as being on
616  * the thread list).  This is certainly a slow way to do this; if there's
617  * ever a reason to speed it up, we could maintain a hash table of active
618  * threads indexed by their t_did.
619  */
620 static kthread_t *
621 did_to_thread(kt_did_t tid)
622 {
623 	kthread_t *t;
624 
625 	ASSERT(MUTEX_HELD(&pidlock));
626 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
627 		if (t->t_did == tid)
628 			break;
629 	}
630 	if (t->t_did == tid)
631 		return (t);
632 	else
633 		return (NULL);
634 }
635 
636 /*
637  * Wait for specified thread to exit.  Returns immediately if the thread
638  * could not be found, meaning that it has either already exited or never
639  * existed.
640  */
641 void
642 thread_join(kt_did_t tid)
643 {
644 	kthread_t *t;
645 
646 	ASSERT(tid != curthread->t_did);
647 	ASSERT(tid != t0.t_did);
648 
649 	mutex_enter(&pidlock);
650 	/*
651 	 * Make sure we check that the thread is on the thread list
652 	 * before blocking on it; otherwise we could end up blocking on
653 	 * a cv that's already been freed.  In other words, don't cache
654 	 * the thread pointer across calls to cv_wait.
655 	 *
656 	 * The choice of loop invariant means that whenever a thread
657 	 * is taken off the allthreads list, a cv_broadcast must be
658 	 * performed on that thread's t_joincv to wake up any waiters.
659 	 * The broadcast doesn't have to happen right away, but it
660 	 * shouldn't be postponed indefinitely (e.g., by doing it in
661 	 * thread_free which may only be executed when the deathrow
662 	 * queue is processed.
663 	 */
664 	while (t = did_to_thread(tid))
665 		cv_wait(&t->t_joincv, &pidlock);
666 	mutex_exit(&pidlock);
667 }
668 
669 void
670 thread_free(kthread_t *t)
671 {
672 	ASSERT(t != &t0 && t->t_state == TS_FREE);
673 	ASSERT(t->t_door == NULL);
674 	ASSERT(t->t_schedctl == NULL);
675 	ASSERT(t->t_pollstate == NULL);
676 
677 	t->t_pri = 0;
678 	t->t_pc = 0;
679 	t->t_sp = 0;
680 	t->t_wchan0 = NULL;
681 	t->t_wchan = NULL;
682 	if (t->t_cred != NULL) {
683 		crfree(t->t_cred);
684 		t->t_cred = 0;
685 	}
686 	if (t->t_pdmsg) {
687 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
688 		t->t_pdmsg = NULL;
689 	}
690 #ifdef	C2_AUDIT
691 	if (audit_active)
692 		audit_thread_free(t);
693 #endif
694 #ifndef NPROBE
695 	if (t->t_tnf_tpdp)
696 		tnf_thread_free(t);
697 #endif /* NPROBE */
698 	if (t->t_cldata) {
699 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
700 	}
701 	if (t->t_rprof != NULL) {
702 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
703 		t->t_rprof = NULL;
704 	}
705 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
706 	if (t->t_lwp)
707 		lwp_freeregs(t->t_lwp, 0);
708 	if (t->t_ctx)
709 		freectx(t, 0);
710 	t->t_stk = NULL;
711 	if (t->t_lwp)
712 		lwp_stk_fini(t->t_lwp);
713 	lock_clear(&t->t_lock);
714 
715 	if (t->t_ts->ts_waiters > 0)
716 		panic("thread_free: turnstile still active");
717 
718 	kmem_cache_free(turnstile_cache, t->t_ts);
719 
720 	free_afd(&t->t_activefd);
721 
722 	/*
723 	 * Barrier for clock thread.  The clock holds this lock to
724 	 * keep the thread from going away while it's looking at it.
725 	 */
726 	mutex_enter(&thread_free_lock);
727 	mutex_exit(&thread_free_lock);
728 
729 	ASSERT(ttoproj(t) == proj0p);
730 	project_rele(ttoproj(t));
731 
732 	lgrp_affinity_free(&t->t_lgrp_affinity);
733 
734 	/*
735 	 * Free thread struct and its stack.
736 	 */
737 	if (t->t_flag & T_TALLOCSTK) {
738 		/* thread struct is embedded in stack */
739 		segkp_release(segkp, t->t_swap);
740 		mutex_enter(&pidlock);
741 		nthread--;
742 		mutex_exit(&pidlock);
743 	} else {
744 		if (t->t_swap) {
745 			segkp_release(segkp, t->t_swap);
746 			t->t_swap = NULL;
747 		}
748 		if (t->t_lwp) {
749 			kmem_cache_free(lwp_cache, t->t_lwp);
750 			t->t_lwp = NULL;
751 		}
752 		mutex_enter(&pidlock);
753 		nthread--;
754 		mutex_exit(&pidlock);
755 		kmem_cache_free(thread_cache, t);
756 	}
757 }
758 
759 /*
760  * Removes threads associated with the given zone from a deathrow queue.
761  * tp is a pointer to the head of the deathrow queue, and countp is a
762  * pointer to the current deathrow count.  Returns a linked list of
763  * threads removed from the list.
764  */
765 static kthread_t *
766 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
767 {
768 	kthread_t *tmp, *list = NULL;
769 	cred_t *cr;
770 
771 	ASSERT(MUTEX_HELD(&reaplock));
772 	while (*tp != NULL) {
773 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
774 			tmp = *tp;
775 			*tp = tmp->t_forw;
776 			tmp->t_forw = list;
777 			list = tmp;
778 			(*countp)--;
779 		} else {
780 			tp = &(*tp)->t_forw;
781 		}
782 	}
783 	return (list);
784 }
785 
786 static void
787 thread_reap_list(kthread_t *t)
788 {
789 	kthread_t *next;
790 
791 	while (t != NULL) {
792 		next = t->t_forw;
793 		thread_free(t);
794 		t = next;
795 	}
796 }
797 
798 /* ARGSUSED */
799 static void
800 thread_zone_destroy(zoneid_t zoneid, void *unused)
801 {
802 	kthread_t *t, *l;
803 
804 	mutex_enter(&reaplock);
805 	/*
806 	 * Pull threads and lwps associated with zone off deathrow lists.
807 	 */
808 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
809 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
810 	mutex_exit(&reaplock);
811 
812 	/*
813 	 * Reap threads
814 	 */
815 	thread_reap_list(t);
816 
817 	/*
818 	 * Reap lwps
819 	 */
820 	thread_reap_list(l);
821 }
822 
823 /*
824  * cleanup zombie threads that are on deathrow.
825  */
826 void
827 thread_reaper()
828 {
829 	kthread_t *t, *l;
830 	callb_cpr_t cprinfo;
831 
832 	/*
833 	 * Register callback to clean up threads when zone is destroyed.
834 	 */
835 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
836 
837 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
838 	for (;;) {
839 		mutex_enter(&reaplock);
840 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
841 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
842 			cv_wait(&reaper_cv, &reaplock);
843 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
844 		}
845 		t = thread_deathrow;
846 		l = lwp_deathrow;
847 		thread_deathrow = NULL;
848 		lwp_deathrow = NULL;
849 		thread_reapcnt = 0;
850 		lwp_reapcnt = 0;
851 		mutex_exit(&reaplock);
852 
853 		/*
854 		 * Reap threads
855 		 */
856 		thread_reap_list(t);
857 
858 		/*
859 		 * Reap lwps
860 		 */
861 		thread_reap_list(l);
862 	}
863 }
864 
865 /*
866  * This is called by resume() to put a zombie thread onto deathrow.
867  * The thread's state is changed to TS_FREE to indicate that is reapable.
868  * This is called from the idle thread so it must not block (just spin).
869  */
870 void
871 reapq_add(kthread_t *t)
872 {
873 	mutex_enter(&reaplock);
874 
875 	/*
876 	 * lwp_deathrow contains only threads with lwp linkage
877 	 * that are of the default stacksize. Anything else goes
878 	 * on thread_deathrow.
879 	 */
880 	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
881 		t->t_forw = lwp_deathrow;
882 		lwp_deathrow = t;
883 		lwp_reapcnt++;
884 	} else {
885 		t->t_forw = thread_deathrow;
886 		thread_deathrow = t;
887 		thread_reapcnt++;
888 	}
889 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
890 		cv_signal(&reaper_cv);	/* wake the reaper */
891 	t->t_state = TS_FREE;
892 	lock_clear(&t->t_lock);
893 
894 	/*
895 	 * Before we return, we need to grab and drop the thread lock for
896 	 * the dead thread.  At this point, the current thread is the idle
897 	 * thread, and the dead thread's CPU lock points to the current
898 	 * CPU -- and we must grab and drop the lock to synchronize with
899 	 * a racing thread walking a blocking chain that the zombie thread
900 	 * was recently in.  By this point, that blocking chain is (by
901 	 * definition) stale:  the dead thread is not holding any locks, and
902 	 * is therefore not in any blocking chains -- but if we do not regrab
903 	 * our lock before freeing the dead thread's data structures, the
904 	 * thread walking the (stale) blocking chain will die on memory
905 	 * corruption when it attempts to drop the dead thread's lock.  We
906 	 * only need do this once because there is no way for the dead thread
907 	 * to ever again be on a blocking chain:  once we have grabbed and
908 	 * dropped the thread lock, we are guaranteed that anyone that could
909 	 * have seen this thread in a blocking chain can no longer see it.
910 	 */
911 	thread_lock(t);
912 	thread_unlock(t);
913 
914 	mutex_exit(&reaplock);
915 }
916 
917 /*
918  * Install thread context ops for the current thread.
919  */
920 void
921 installctx(
922 	kthread_t *t,
923 	void	*arg,
924 	void	(*save)(void *),
925 	void	(*restore)(void *),
926 	void	(*fork)(void *, void *),
927 	void	(*lwp_create)(void *, void *),
928 	void	(*exit)(void *),
929 	void	(*free)(void *, int))
930 {
931 	struct ctxop *ctx;
932 
933 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
934 	ctx->save_op = save;
935 	ctx->restore_op = restore;
936 	ctx->fork_op = fork;
937 	ctx->lwp_create_op = lwp_create;
938 	ctx->exit_op = exit;
939 	ctx->free_op = free;
940 	ctx->arg = arg;
941 	ctx->next = t->t_ctx;
942 	t->t_ctx = ctx;
943 }
944 
945 /*
946  * Remove the thread context ops from a thread.
947  */
948 int
949 removectx(
950 	kthread_t *t,
951 	void	*arg,
952 	void	(*save)(void *),
953 	void	(*restore)(void *),
954 	void	(*fork)(void *, void *),
955 	void	(*lwp_create)(void *, void *),
956 	void	(*exit)(void *),
957 	void	(*free)(void *, int))
958 {
959 	struct ctxop *ctx, *prev_ctx;
960 
961 	/*
962 	 * The incoming kthread_t (which is the thread for which the
963 	 * context ops will be removed) should be one of the following:
964 	 *
965 	 * a) the current thread,
966 	 *
967 	 * b) a thread of a process that's being forked (SIDL),
968 	 *
969 	 * c) a thread that belongs to the same process as the current
970 	 *    thread and for which the current thread is the agent thread,
971 	 *
972 	 * d) a thread that is TS_STOPPED which is indicative of it
973 	 *    being (if curthread is not an agent) a thread being created
974 	 *    as part of an lwp creation.
975 	 */
976 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
977 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
978 
979 	/*
980 	 * Serialize modifications to t->t_ctx to prevent the agent thread
981 	 * and the target thread from racing with each other during lwp exit.
982 	 */
983 	mutex_enter(&t->t_ctx_lock);
984 	prev_ctx = NULL;
985 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
986 		if (ctx->save_op == save && ctx->restore_op == restore &&
987 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
988 		    ctx->exit_op == exit && ctx->free_op == free &&
989 		    ctx->arg == arg) {
990 			if (prev_ctx)
991 				prev_ctx->next = ctx->next;
992 			else
993 				t->t_ctx = ctx->next;
994 			mutex_exit(&t->t_ctx_lock);
995 			if (ctx->free_op != NULL)
996 				(ctx->free_op)(ctx->arg, 0);
997 			kmem_free(ctx, sizeof (struct ctxop));
998 			return (1);
999 		}
1000 		prev_ctx = ctx;
1001 	}
1002 	mutex_exit(&t->t_ctx_lock);
1003 
1004 	return (0);
1005 }
1006 
1007 void
1008 savectx(kthread_t *t)
1009 {
1010 	struct ctxop *ctx;
1011 
1012 	ASSERT(t == curthread);
1013 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1014 		if (ctx->save_op != NULL)
1015 			(ctx->save_op)(ctx->arg);
1016 }
1017 
1018 void
1019 restorectx(kthread_t *t)
1020 {
1021 	struct ctxop *ctx;
1022 
1023 	ASSERT(t == curthread);
1024 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1025 		if (ctx->restore_op != NULL)
1026 			(ctx->restore_op)(ctx->arg);
1027 }
1028 
1029 void
1030 forkctx(kthread_t *t, kthread_t *ct)
1031 {
1032 	struct ctxop *ctx;
1033 
1034 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1035 		if (ctx->fork_op != NULL)
1036 			(ctx->fork_op)(t, ct);
1037 }
1038 
1039 /*
1040  * Note that this operator is only invoked via the _lwp_create
1041  * system call.  The system may have other reasons to create lwps
1042  * e.g. the agent lwp or the doors unreferenced lwp.
1043  */
1044 void
1045 lwp_createctx(kthread_t *t, kthread_t *ct)
1046 {
1047 	struct ctxop *ctx;
1048 
1049 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1050 		if (ctx->lwp_create_op != NULL)
1051 			(ctx->lwp_create_op)(t, ct);
1052 }
1053 
1054 /*
1055  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1056  * needed when the thread/LWP leaves the processor for the last time. This
1057  * routine is not intended to deal with freeing memory; freectx() is used for
1058  * that purpose during thread_free(). This routine is provided to allow for
1059  * clean-up that can't wait until thread_free().
1060  */
1061 void
1062 exitctx(kthread_t *t)
1063 {
1064 	struct ctxop *ctx;
1065 
1066 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1067 		if (ctx->exit_op != NULL)
1068 			(ctx->exit_op)(t);
1069 }
1070 
1071 /*
1072  * freectx is called from thread_free() and exec() to get
1073  * rid of old thread context ops.
1074  */
1075 void
1076 freectx(kthread_t *t, int isexec)
1077 {
1078 	struct ctxop *ctx;
1079 
1080 	while ((ctx = t->t_ctx) != NULL) {
1081 		t->t_ctx = ctx->next;
1082 		if (ctx->free_op != NULL)
1083 			(ctx->free_op)(ctx->arg, isexec);
1084 		kmem_free(ctx, sizeof (struct ctxop));
1085 	}
1086 }
1087 
1088 /*
1089  * Set the thread running; arrange for it to be swapped in if necessary.
1090  */
1091 void
1092 setrun_locked(kthread_t *t)
1093 {
1094 	ASSERT(THREAD_LOCK_HELD(t));
1095 	if (t->t_state == TS_SLEEP) {
1096 		/*
1097 		 * Take off sleep queue.
1098 		 */
1099 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1100 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1101 		/*
1102 		 * Already on dispatcher queue.
1103 		 */
1104 		return;
1105 	} else if (t->t_state == TS_WAIT) {
1106 		waitq_setrun(t);
1107 	} else if (t->t_state == TS_STOPPED) {
1108 		/*
1109 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1110 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1111 		 * requested that the thread be run.
1112 		 * Just calling setrun() is not sufficient to set a stopped
1113 		 * thread running.  TP_TXSTART is always set if the thread
1114 		 * is not stopped by a jobcontrol stop signal.
1115 		 * TP_TPSTART is always set if /proc is not controlling it.
1116 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1117 		 * The thread won't be stopped unless one of these
1118 		 * three mechanisms did it.
1119 		 *
1120 		 * These flags must be set before calling setrun_locked(t).
1121 		 * They can't be passed as arguments because the streams
1122 		 * code calls setrun() indirectly and the mechanism for
1123 		 * doing so admits only one argument.  Note that the
1124 		 * thread must be locked in order to change t_schedflags.
1125 		 */
1126 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1127 			return;
1128 		/*
1129 		 * Process is no longer stopped (a thread is running).
1130 		 */
1131 		t->t_whystop = 0;
1132 		t->t_whatstop = 0;
1133 		/*
1134 		 * Strictly speaking, we do not have to clear these
1135 		 * flags here; they are cleared on entry to stop().
1136 		 * However, they are confusing when doing kernel
1137 		 * debugging or when they are revealed by ps(1).
1138 		 */
1139 		t->t_schedflag &= ~TS_ALLSTART;
1140 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1141 		ASSERT(t->t_lockp == &transition_lock);
1142 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1143 		/*
1144 		 * Let the class put the process on the dispatcher queue.
1145 		 */
1146 		CL_SETRUN(t);
1147 	}
1148 }
1149 
1150 void
1151 setrun(kthread_t *t)
1152 {
1153 	thread_lock(t);
1154 	setrun_locked(t);
1155 	thread_unlock(t);
1156 }
1157 
1158 /*
1159  * Unpin an interrupted thread.
1160  *	When an interrupt occurs, the interrupt is handled on the stack
1161  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1162  *
1163  *	When swtch() is switching away from an interrupt thread because it
1164  *	blocked or was preempted, this routine is called to complete the
1165  *	saving of the interrupted thread state, and returns the interrupted
1166  *	thread pointer so it may be resumed.
1167  *
1168  *	Called by swtch() only at high spl.
1169  */
1170 kthread_t *
1171 thread_unpin()
1172 {
1173 	kthread_t	*t = curthread;	/* current thread */
1174 	kthread_t	*itp;		/* interrupted thread */
1175 	int		i;		/* interrupt level */
1176 	extern int	intr_passivate();
1177 
1178 	ASSERT(t->t_intr != NULL);
1179 
1180 	itp = t->t_intr;		/* interrupted thread */
1181 	t->t_intr = NULL;		/* clear interrupt ptr */
1182 
1183 	/*
1184 	 * Get state from interrupt thread for the one
1185 	 * it interrupted.
1186 	 */
1187 
1188 	i = intr_passivate(t, itp);
1189 
1190 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1191 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1192 	    i, t, t, itp, itp);
1193 
1194 	/*
1195 	 * Dissociate the current thread from the interrupted thread's LWP.
1196 	 */
1197 	t->t_lwp = NULL;
1198 
1199 	/*
1200 	 * Interrupt handlers above the level that spinlocks block must
1201 	 * not block.
1202 	 */
1203 #if DEBUG
1204 	if (i < 0 || i > LOCK_LEVEL)
1205 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1206 #endif
1207 
1208 	/*
1209 	 * Compute the CPU's base interrupt level based on the active
1210 	 * interrupts.
1211 	 */
1212 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1213 	set_base_spl();
1214 
1215 	return (itp);
1216 }
1217 
1218 /*
1219  * Create and initialize an interrupt thread.
1220  *	Returns non-zero on error.
1221  *	Called at spl7() or better.
1222  */
1223 void
1224 thread_create_intr(struct cpu *cp)
1225 {
1226 	kthread_t *tp;
1227 
1228 	tp = thread_create(NULL, 0,
1229 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1230 
1231 	/*
1232 	 * Set the thread in the TS_FREE state.  The state will change
1233 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1234 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1235 	 * inactive interrupt threads out of debugger thread lists.
1236 	 *
1237 	 * We cannot call thread_create with TS_FREE because of the current
1238 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1239 	 */
1240 	THREAD_FREEINTR(tp, cp);
1241 
1242 	/*
1243 	 * Nobody should ever reference the credentials of an interrupt
1244 	 * thread so make it NULL to catch any such references.
1245 	 */
1246 	tp->t_cred = NULL;
1247 	tp->t_flag |= T_INTR_THREAD;
1248 	tp->t_cpu = cp;
1249 	tp->t_bound_cpu = cp;
1250 	tp->t_disp_queue = cp->cpu_disp;
1251 	tp->t_affinitycnt = 1;
1252 	tp->t_preempt = 1;
1253 
1254 	/*
1255 	 * Don't make a user-requested binding on this thread so that
1256 	 * the processor can be offlined.
1257 	 */
1258 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1259 	tp->t_bind_pset = PS_NONE;
1260 
1261 #if defined(__i386) || defined(__amd64)
1262 	tp->t_stk -= STACK_ALIGN;
1263 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1264 #endif
1265 
1266 	/*
1267 	 * Link onto CPU's interrupt pool.
1268 	 */
1269 	tp->t_link = cp->cpu_intr_thread;
1270 	cp->cpu_intr_thread = tp;
1271 }
1272 
1273 /*
1274  * TSD -- THREAD SPECIFIC DATA
1275  */
1276 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1277 static uint_t		tsd_nkeys;	 /* size of destructor array */
1278 /* per-key destructor funcs */
1279 static void 		(**tsd_destructor)(void *);
1280 /* list of tsd_thread's */
1281 static struct tsd_thread	*tsd_list;
1282 
1283 /*
1284  * Default destructor
1285  *	Needed because NULL destructor means that the key is unused
1286  */
1287 /* ARGSUSED */
1288 void
1289 tsd_defaultdestructor(void *value)
1290 {}
1291 
1292 /*
1293  * Create a key (index into per thread array)
1294  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1295  *	May allocate memory with lock held
1296  */
1297 void
1298 tsd_create(uint_t *keyp, void (*destructor)(void *))
1299 {
1300 	int	i;
1301 	uint_t	nkeys;
1302 
1303 	/*
1304 	 * if key is allocated, do nothing
1305 	 */
1306 	mutex_enter(&tsd_mutex);
1307 	if (*keyp) {
1308 		mutex_exit(&tsd_mutex);
1309 		return;
1310 	}
1311 	/*
1312 	 * find an unused key
1313 	 */
1314 	if (destructor == NULL)
1315 		destructor = tsd_defaultdestructor;
1316 
1317 	for (i = 0; i < tsd_nkeys; ++i)
1318 		if (tsd_destructor[i] == NULL)
1319 			break;
1320 
1321 	/*
1322 	 * if no unused keys, increase the size of the destructor array
1323 	 */
1324 	if (i == tsd_nkeys) {
1325 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1326 			nkeys = 1;
1327 		tsd_destructor =
1328 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1329 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1330 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1331 		tsd_nkeys = nkeys;
1332 	}
1333 
1334 	/*
1335 	 * allocate the next available unused key
1336 	 */
1337 	tsd_destructor[i] = destructor;
1338 	*keyp = i + 1;
1339 	mutex_exit(&tsd_mutex);
1340 }
1341 
1342 /*
1343  * Destroy a key -- this is for unloadable modules
1344  *
1345  * Assumes that the caller is preventing tsd_set and tsd_get
1346  * Locks out tsd_create, tsd_destroy, and tsd_exit
1347  * May free memory with lock held
1348  */
1349 void
1350 tsd_destroy(uint_t *keyp)
1351 {
1352 	uint_t key;
1353 	struct tsd_thread *tsd;
1354 
1355 	/*
1356 	 * protect the key namespace and our destructor lists
1357 	 */
1358 	mutex_enter(&tsd_mutex);
1359 	key = *keyp;
1360 	*keyp = 0;
1361 
1362 	ASSERT(key <= tsd_nkeys);
1363 
1364 	/*
1365 	 * if the key is valid
1366 	 */
1367 	if (key != 0) {
1368 		uint_t k = key - 1;
1369 		/*
1370 		 * for every thread with TSD, call key's destructor
1371 		 */
1372 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1373 			/*
1374 			 * no TSD for key in this thread
1375 			 */
1376 			if (key > tsd->ts_nkeys)
1377 				continue;
1378 			/*
1379 			 * call destructor for key
1380 			 */
1381 			if (tsd->ts_value[k] && tsd_destructor[k])
1382 				(*tsd_destructor[k])(tsd->ts_value[k]);
1383 			/*
1384 			 * reset value for key
1385 			 */
1386 			tsd->ts_value[k] = NULL;
1387 		}
1388 		/*
1389 		 * actually free the key (NULL destructor == unused)
1390 		 */
1391 		tsd_destructor[k] = NULL;
1392 	}
1393 
1394 	mutex_exit(&tsd_mutex);
1395 }
1396 
1397 /*
1398  * Quickly return the per thread value that was stored with the specified key
1399  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1400  */
1401 void *
1402 tsd_get(uint_t key)
1403 {
1404 	return (tsd_agent_get(curthread, key));
1405 }
1406 
1407 /*
1408  * Set a per thread value indexed with the specified key
1409  */
1410 int
1411 tsd_set(uint_t key, void *value)
1412 {
1413 	return (tsd_agent_set(curthread, key, value));
1414 }
1415 
1416 /*
1417  * Like tsd_get(), except that the agent lwp can get the tsd of
1418  * another thread in the same process (the agent thread only runs when the
1419  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1420  */
1421 void *
1422 tsd_agent_get(kthread_t *t, uint_t key)
1423 {
1424 	struct tsd_thread *tsd = t->t_tsd;
1425 
1426 	ASSERT(t == curthread ||
1427 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1428 
1429 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1430 		return (tsd->ts_value[key - 1]);
1431 	return (NULL);
1432 }
1433 
1434 /*
1435  * Like tsd_set(), except that the agent lwp can set the tsd of
1436  * another thread in the same process, or syslwp can set the tsd
1437  * of a thread it's in the middle of creating.
1438  *
1439  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1440  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1441  * lock held
1442  */
1443 int
1444 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1445 {
1446 	struct tsd_thread *tsd = t->t_tsd;
1447 
1448 	ASSERT(t == curthread ||
1449 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1450 
1451 	if (key == 0)
1452 		return (EINVAL);
1453 	if (tsd == NULL)
1454 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1455 	if (key <= tsd->ts_nkeys) {
1456 		tsd->ts_value[key - 1] = value;
1457 		return (0);
1458 	}
1459 
1460 	ASSERT(key <= tsd_nkeys);
1461 
1462 	/*
1463 	 * lock out tsd_destroy()
1464 	 */
1465 	mutex_enter(&tsd_mutex);
1466 	if (tsd->ts_nkeys == 0) {
1467 		/*
1468 		 * Link onto list of threads with TSD
1469 		 */
1470 		if ((tsd->ts_next = tsd_list) != NULL)
1471 			tsd_list->ts_prev = tsd;
1472 		tsd_list = tsd;
1473 	}
1474 
1475 	/*
1476 	 * Allocate thread local storage and set the value for key
1477 	 */
1478 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1479 	    tsd->ts_nkeys * sizeof (void *),
1480 	    key * sizeof (void *));
1481 	tsd->ts_nkeys = key;
1482 	tsd->ts_value[key - 1] = value;
1483 	mutex_exit(&tsd_mutex);
1484 
1485 	return (0);
1486 }
1487 
1488 
1489 /*
1490  * Return the per thread value that was stored with the specified key
1491  *	If necessary, create the key and the value
1492  *	Assumes the caller is protecting *keyp from tsd_destroy
1493  */
1494 void *
1495 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1496 {
1497 	void *value;
1498 	uint_t key = *keyp;
1499 	struct tsd_thread *tsd = curthread->t_tsd;
1500 
1501 	if (tsd == NULL)
1502 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1503 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1504 		return (value);
1505 	if (key == 0)
1506 		tsd_create(keyp, destroy);
1507 	(void) tsd_set(*keyp, value = (*allocate)());
1508 
1509 	return (value);
1510 }
1511 
1512 /*
1513  * Called from thread_exit() to run the destructor function for each tsd
1514  *	Locks out tsd_create and tsd_destroy
1515  *	Assumes that the destructor *DOES NOT* use tsd
1516  */
1517 void
1518 tsd_exit(void)
1519 {
1520 	int i;
1521 	struct tsd_thread *tsd = curthread->t_tsd;
1522 
1523 	if (tsd == NULL)
1524 		return;
1525 
1526 	if (tsd->ts_nkeys == 0) {
1527 		kmem_free(tsd, sizeof (*tsd));
1528 		curthread->t_tsd = NULL;
1529 		return;
1530 	}
1531 
1532 	/*
1533 	 * lock out tsd_create and tsd_destroy, call
1534 	 * the destructor, and mark the value as destroyed.
1535 	 */
1536 	mutex_enter(&tsd_mutex);
1537 
1538 	for (i = 0; i < tsd->ts_nkeys; i++) {
1539 		if (tsd->ts_value[i] && tsd_destructor[i])
1540 			(*tsd_destructor[i])(tsd->ts_value[i]);
1541 		tsd->ts_value[i] = NULL;
1542 	}
1543 
1544 	/*
1545 	 * remove from linked list of threads with TSD
1546 	 */
1547 	if (tsd->ts_next)
1548 		tsd->ts_next->ts_prev = tsd->ts_prev;
1549 	if (tsd->ts_prev)
1550 		tsd->ts_prev->ts_next = tsd->ts_next;
1551 	if (tsd_list == tsd)
1552 		tsd_list = tsd->ts_next;
1553 
1554 	mutex_exit(&tsd_mutex);
1555 
1556 	/*
1557 	 * free up the TSD
1558 	 */
1559 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1560 	kmem_free(tsd, sizeof (struct tsd_thread));
1561 	curthread->t_tsd = NULL;
1562 }
1563 
1564 /*
1565  * realloc
1566  */
1567 static void *
1568 tsd_realloc(void *old, size_t osize, size_t nsize)
1569 {
1570 	void *new;
1571 
1572 	new = kmem_zalloc(nsize, KM_SLEEP);
1573 	if (old) {
1574 		bcopy(old, new, osize);
1575 		kmem_free(old, osize);
1576 	}
1577 	return (new);
1578 }
1579 
1580 /*
1581  * Check to see if an interrupt thread might be active at a given ipl.
1582  * If so return true.
1583  * We must be conservative--it is ok to give a false yes, but a false no
1584  * will cause disaster.  (But if the situation changes after we check it is
1585  * ok--the caller is trying to ensure that an interrupt routine has been
1586  * exited).
1587  * This is used when trying to remove an interrupt handler from an autovector
1588  * list in avintr.c.
1589  */
1590 int
1591 intr_active(struct cpu *cp, int level)
1592 {
1593 	if (level <= LOCK_LEVEL)
1594 		return (cp->cpu_thread != cp->cpu_dispthread);
1595 	else
1596 		return (CPU_ON_INTR(cp));
1597 }
1598 
1599 /*
1600  * Return non-zero if an interrupt is being serviced.
1601  */
1602 int
1603 servicing_interrupt()
1604 {
1605 	int onintr = 0;
1606 
1607 	/* Are we an interrupt thread */
1608 	if (curthread->t_flag & T_INTR_THREAD)
1609 		return (1);
1610 	/* Are we servicing a high level interrupt? */
1611 	if (CPU_ON_INTR(CPU)) {
1612 		kpreempt_disable();
1613 		onintr = CPU_ON_INTR(CPU);
1614 		kpreempt_enable();
1615 	}
1616 	return (onintr);
1617 }
1618 
1619 
1620 /*
1621  * Change the dispatch priority of a thread in the system.
1622  * Used when raising or lowering a thread's priority.
1623  * (E.g., priority inheritance)
1624  *
1625  * Since threads are queued according to their priority, we
1626  * we must check the thread's state to determine whether it
1627  * is on a queue somewhere. If it is, we've got to:
1628  *
1629  *	o Dequeue the thread.
1630  *	o Change its effective priority.
1631  *	o Enqueue the thread.
1632  *
1633  * Assumptions: The thread whose priority we wish to change
1634  * must be locked before we call thread_change_(e)pri().
1635  * The thread_change(e)pri() function doesn't drop the thread
1636  * lock--that must be done by its caller.
1637  */
1638 void
1639 thread_change_epri(kthread_t *t, pri_t disp_pri)
1640 {
1641 	uint_t	state;
1642 
1643 	ASSERT(THREAD_LOCK_HELD(t));
1644 
1645 	/*
1646 	 * If the inherited priority hasn't actually changed,
1647 	 * just return.
1648 	 */
1649 	if (t->t_epri == disp_pri)
1650 		return;
1651 
1652 	state = t->t_state;
1653 
1654 	/*
1655 	 * If it's not on a queue, change the priority with
1656 	 * impunity.
1657 	 */
1658 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1659 		t->t_epri = disp_pri;
1660 
1661 		if (state == TS_ONPROC) {
1662 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1663 
1664 			if (t == cp->cpu_dispthread)
1665 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1666 		}
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * It's either on a sleep queue or a run queue.
1672 	 */
1673 	if (state == TS_SLEEP) {
1674 		/*
1675 		 * Take the thread out of its sleep queue.
1676 		 * Change the inherited priority.
1677 		 * Re-enqueue the thread.
1678 		 * Each synchronization object exports a function
1679 		 * to do this in an appropriate manner.
1680 		 */
1681 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1682 	} else if (state == TS_WAIT) {
1683 		/*
1684 		 * Re-enqueue a thread on the wait queue if its
1685 		 * effective priority needs to change.
1686 		 */
1687 		if (disp_pri != t->t_epri)
1688 			waitq_change_pri(t, disp_pri);
1689 	} else {
1690 		/*
1691 		 * The thread is on a run queue.
1692 		 * Note: setbackdq() may not put the thread
1693 		 * back on the same run queue where it originally
1694 		 * resided.
1695 		 */
1696 		(void) dispdeq(t);
1697 		t->t_epri = disp_pri;
1698 		setbackdq(t);
1699 	}
1700 }	/* end of thread_change_epri */
1701 
1702 /*
1703  * Function: Change the t_pri field of a thread.
1704  * Side Effects: Adjust the thread ordering on a run queue
1705  *		 or sleep queue, if necessary.
1706  * Returns: 1 if the thread was on a run queue, else 0.
1707  */
1708 int
1709 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1710 {
1711 	uint_t	state;
1712 	int	on_rq = 0;
1713 
1714 	ASSERT(THREAD_LOCK_HELD(t));
1715 
1716 	state = t->t_state;
1717 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1718 
1719 	/*
1720 	 * If it's not on a queue, change the priority with
1721 	 * impunity.
1722 	 */
1723 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1724 		t->t_pri = disp_pri;
1725 
1726 		if (state == TS_ONPROC) {
1727 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1728 
1729 			if (t == cp->cpu_dispthread)
1730 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1731 		}
1732 		return (0);
1733 	}
1734 
1735 	/*
1736 	 * It's either on a sleep queue or a run queue.
1737 	 */
1738 	if (state == TS_SLEEP) {
1739 		/*
1740 		 * If the priority has changed, take the thread out of
1741 		 * its sleep queue and change the priority.
1742 		 * Re-enqueue the thread.
1743 		 * Each synchronization object exports a function
1744 		 * to do this in an appropriate manner.
1745 		 */
1746 		if (disp_pri != t->t_pri)
1747 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1748 	} else if (state == TS_WAIT) {
1749 		/*
1750 		 * Re-enqueue a thread on the wait queue if its
1751 		 * priority needs to change.
1752 		 */
1753 		if (disp_pri != t->t_pri)
1754 			waitq_change_pri(t, disp_pri);
1755 	} else {
1756 		/*
1757 		 * The thread is on a run queue.
1758 		 * Note: setbackdq() may not put the thread
1759 		 * back on the same run queue where it originally
1760 		 * resided.
1761 		 *
1762 		 * We still requeue the thread even if the priority
1763 		 * is unchanged to preserve round-robin (and other)
1764 		 * effects between threads of the same priority.
1765 		 */
1766 		on_rq = dispdeq(t);
1767 		ASSERT(on_rq);
1768 		t->t_pri = disp_pri;
1769 		if (front) {
1770 			setfrontdq(t);
1771 		} else {
1772 			setbackdq(t);
1773 		}
1774 	}
1775 	return (on_rq);
1776 }
1777