xref: /titanic_50/usr/src/uts/common/disp/thread.c (revision f0b62587229842fad8c5df20795bf9bca17327bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 
78 struct kmem_cache *thread_cache;	/* cache of free threads */
79 struct kmem_cache *lwp_cache;		/* cache of free lwps */
80 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81 
82 /*
83  * allthreads is only for use by kmem_readers.  All kernel loops can use
84  * the current thread as a start/end point.
85  */
86 static kthread_t *allthreads = &t0;	/* circular list of all threads */
87 
88 static kcondvar_t reaper_cv;		/* synchronization var */
89 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92 int	thread_reapcnt = 0;		/* number of threads on deathrow */
93 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
94 int	reaplimit = 16;			/* delay reaping until reaplimit */
95 
96 thread_free_lock_t	*thread_free_lock;
97 					/* protects tick thread from reaper */
98 
99 extern int nthread;
100 
101 id_t	syscid;				/* system scheduling class ID */
102 void	*segkp_thread;			/* cookie for segkp pool */
103 
104 int lwp_cache_sz = 32;
105 int t_cache_sz = 8;
106 static kt_did_t next_t_id = 1;
107 
108 /* Default mode for thread binding to CPUs and processor sets */
109 int default_binding_mode = TB_ALLHARD;
110 
111 /*
112  * Min/Max stack sizes for stack size parameters
113  */
114 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
115 #define	MIN_STKSIZE	DEFAULTSTKSZ
116 
117 /*
118  * default_stksize overrides lwp_default_stksize if it is set.
119  */
120 int	default_stksize;
121 int	lwp_default_stksize;
122 
123 static zone_key_t zone_thread_key;
124 
125 unsigned int kmem_stackinfo;		/* stackinfo feature on-off */
126 kmem_stkinfo_t *kmem_stkinfo_log;	/* stackinfo circular log */
127 static kmutex_t kmem_stkinfo_lock;	/* protects kmem_stkinfo_log */
128 
129 /*
130  * forward declarations for internal thread specific data (tsd)
131  */
132 static void *tsd_realloc(void *, size_t, size_t);
133 
134 void thread_reaper(void);
135 
136 /* forward declarations for stackinfo feature */
137 static void stkinfo_begin(kthread_t *);
138 static void stkinfo_end(kthread_t *);
139 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
140 
141 /*ARGSUSED*/
142 static int
143 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
144 {
145 	bzero(buf, sizeof (turnstile_t));
146 	return (0);
147 }
148 
149 /*ARGSUSED*/
150 static void
151 turnstile_destructor(void *buf, void *cdrarg)
152 {
153 	turnstile_t *ts = buf;
154 
155 	ASSERT(ts->ts_free == NULL);
156 	ASSERT(ts->ts_waiters == 0);
157 	ASSERT(ts->ts_inheritor == NULL);
158 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
159 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
160 }
161 
162 void
163 thread_init(void)
164 {
165 	kthread_t *tp;
166 	extern char sys_name[];
167 	extern void idle();
168 	struct cpu *cpu = CPU;
169 	int i;
170 	kmutex_t *lp;
171 
172 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
173 	thread_free_lock =
174 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
175 	for (i = 0; i < THREAD_FREE_NUM; i++) {
176 		lp = &thread_free_lock[i].tf_lock;
177 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
178 	}
179 
180 #if defined(__i386) || defined(__amd64)
181 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
182 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
183 
184 	/*
185 	 * "struct _klwp" includes a "struct pcb", which includes a
186 	 * "struct fpu", which needs to be 16-byte aligned on amd64
187 	 * (and even on i386 for fxsave/fxrstor).
188 	 */
189 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
190 	    16, NULL, NULL, NULL, NULL, NULL, 0);
191 #else
192 	/*
193 	 * Allocate thread structures from static_arena.  This prevents
194 	 * issues where a thread tries to relocate its own thread
195 	 * structure and touches it after the mapping has been suspended.
196 	 */
197 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
198 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
199 
200 	lwp_stk_cache_init();
201 
202 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
203 	    0, NULL, NULL, NULL, NULL, NULL, 0);
204 #endif
205 
206 	turnstile_cache = kmem_cache_create("turnstile_cache",
207 	    sizeof (turnstile_t), 0,
208 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
209 
210 	label_init();
211 	cred_init();
212 
213 	/*
214 	 * Initialize various resource management facilities.
215 	 */
216 	rctl_init();
217 	cpucaps_init();
218 	/*
219 	 * Zone_init() should be called before project_init() so that project ID
220 	 * for the first project is initialized correctly.
221 	 */
222 	zone_init();
223 	project_init();
224 	brand_init();
225 	kiconv_init();
226 	task_init();
227 	tcache_init();
228 	pool_init();
229 
230 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
231 
232 	/*
233 	 * Originally, we had two parameters to set default stack
234 	 * size: one for lwp's (lwp_default_stksize), and one for
235 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
236 	 * Now we have a third parameter that overrides both if it is
237 	 * set to a legal stack size, called default_stksize.
238 	 */
239 
240 	if (default_stksize == 0) {
241 		default_stksize = DEFAULTSTKSZ;
242 	} else if (default_stksize % PAGESIZE != 0 ||
243 	    default_stksize > MAX_STKSIZE ||
244 	    default_stksize < MIN_STKSIZE) {
245 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
246 		    (int)DEFAULTSTKSZ);
247 		default_stksize = DEFAULTSTKSZ;
248 	} else {
249 		lwp_default_stksize = default_stksize;
250 	}
251 
252 	if (lwp_default_stksize == 0) {
253 		lwp_default_stksize = default_stksize;
254 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
255 	    lwp_default_stksize > MAX_STKSIZE ||
256 	    lwp_default_stksize < MIN_STKSIZE) {
257 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
258 		    default_stksize);
259 		lwp_default_stksize = default_stksize;
260 	}
261 
262 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
263 	    lwp_default_stksize,
264 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
265 
266 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
267 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
268 
269 	(void) getcid(sys_name, &syscid);
270 	curthread->t_cid = syscid;	/* current thread is t0 */
271 
272 	/*
273 	 * Set up the first CPU's idle thread.
274 	 * It runs whenever the CPU has nothing worthwhile to do.
275 	 */
276 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
277 	cpu->cpu_idle_thread = tp;
278 	tp->t_preempt = 1;
279 	tp->t_disp_queue = cpu->cpu_disp;
280 	ASSERT(tp->t_disp_queue != NULL);
281 	tp->t_bound_cpu = cpu;
282 	tp->t_affinitycnt = 1;
283 
284 	/*
285 	 * Registering a thread in the callback table is usually
286 	 * done in the initialization code of the thread. In this
287 	 * case, we do it right after thread creation to avoid
288 	 * blocking idle thread while registering itself. It also
289 	 * avoids the possibility of reregistration in case a CPU
290 	 * restarts its idle thread.
291 	 */
292 	CALLB_CPR_INIT_SAFE(tp, "idle");
293 
294 	/*
295 	 * Create the thread_reaper daemon. From this point on, exited
296 	 * threads will get reaped.
297 	 */
298 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
299 	    NULL, 0, &p0, TS_RUN, minclsyspri);
300 
301 	/*
302 	 * Finish initializing the kernel memory allocator now that
303 	 * thread_create() is available.
304 	 */
305 	kmem_thread_init();
306 
307 	if (boothowto & RB_DEBUG)
308 		kdi_dvec_thravail();
309 }
310 
311 /*
312  * Create a thread.
313  *
314  * thread_create() blocks for memory if necessary.  It never fails.
315  *
316  * If stk is NULL, the thread is created at the base of the stack
317  * and cannot be swapped.
318  */
319 kthread_t *
320 thread_create(
321 	caddr_t	stk,
322 	size_t	stksize,
323 	void	(*proc)(),
324 	void	*arg,
325 	size_t	len,
326 	proc_t	 *pp,
327 	int	state,
328 	pri_t	pri)
329 {
330 	kthread_t *t;
331 	extern struct classfuncs sys_classfuncs;
332 	turnstile_t *ts;
333 
334 	/*
335 	 * Every thread keeps a turnstile around in case it needs to block.
336 	 * The only reason the turnstile is not simply part of the thread
337 	 * structure is that we may have to break the association whenever
338 	 * more than one thread blocks on a given synchronization object.
339 	 * From a memory-management standpoint, turnstiles are like the
340 	 * "attached mblks" that hang off dblks in the streams allocator.
341 	 */
342 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
343 
344 	if (stk == NULL) {
345 		/*
346 		 * alloc both thread and stack in segkp chunk
347 		 */
348 
349 		if (stksize < default_stksize)
350 			stksize = default_stksize;
351 
352 		if (stksize == default_stksize) {
353 			stk = (caddr_t)segkp_cache_get(segkp_thread);
354 		} else {
355 			stksize = roundup(stksize, PAGESIZE);
356 			stk = (caddr_t)segkp_get(segkp, stksize,
357 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
358 		}
359 
360 		ASSERT(stk != NULL);
361 
362 		/*
363 		 * The machine-dependent mutex code may require that
364 		 * thread pointers (since they may be used for mutex owner
365 		 * fields) have certain alignment requirements.
366 		 * PTR24_ALIGN is the size of the alignment quanta.
367 		 * XXX - assumes stack grows toward low addresses.
368 		 */
369 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
370 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
371 			    " too small to hold thread.");
372 #ifdef STACK_GROWTH_DOWN
373 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
374 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
375 		t = (kthread_t *)(stk + stksize);
376 		bzero(t, sizeof (kthread_t));
377 		if (audit_active)
378 			audit_thread_create(t);
379 		t->t_stk = stk + stksize;
380 		t->t_stkbase = stk;
381 #else	/* stack grows to larger addresses */
382 		stksize -= SA(sizeof (kthread_t));
383 		t = (kthread_t *)(stk);
384 		bzero(t, sizeof (kthread_t));
385 		t->t_stk = stk + sizeof (kthread_t);
386 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
387 #endif	/* STACK_GROWTH_DOWN */
388 		t->t_flag |= T_TALLOCSTK;
389 		t->t_swap = stk;
390 	} else {
391 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
392 		bzero(t, sizeof (kthread_t));
393 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
394 		if (audit_active)
395 			audit_thread_create(t);
396 		/*
397 		 * Initialize t_stk to the kernel stack pointer to use
398 		 * upon entry to the kernel
399 		 */
400 #ifdef STACK_GROWTH_DOWN
401 		t->t_stk = stk + stksize;
402 		t->t_stkbase = stk;
403 #else
404 		t->t_stk = stk;			/* 3b2-like */
405 		t->t_stkbase = stk + stksize;
406 #endif /* STACK_GROWTH_DOWN */
407 	}
408 
409 	if (kmem_stackinfo != 0) {
410 		stkinfo_begin(t);
411 	}
412 
413 	/* set default stack flag */
414 	if (stksize == lwp_default_stksize)
415 		t->t_flag |= T_DFLTSTK;
416 
417 	t->t_ts = ts;
418 
419 	/*
420 	 * p_cred could be NULL if it thread_create is called before cred_init
421 	 * is called in main.
422 	 */
423 	mutex_enter(&pp->p_crlock);
424 	if (pp->p_cred)
425 		crhold(t->t_cred = pp->p_cred);
426 	mutex_exit(&pp->p_crlock);
427 	t->t_start = gethrestime_sec();
428 	t->t_startpc = proc;
429 	t->t_procp = pp;
430 	t->t_clfuncs = &sys_classfuncs.thread;
431 	t->t_cid = syscid;
432 	t->t_pri = pri;
433 	t->t_stime = ddi_get_lbolt();
434 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
435 	t->t_bind_cpu = PBIND_NONE;
436 	t->t_bindflag = (uchar_t)default_binding_mode;
437 	t->t_bind_pset = PS_NONE;
438 	t->t_plockp = &pp->p_lock;
439 	t->t_copyops = NULL;
440 	t->t_taskq = NULL;
441 	t->t_anttime = 0;
442 	t->t_hatdepth = 0;
443 
444 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
445 
446 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
447 #ifndef NPROBE
448 	/* Kernel probe */
449 	tnf_thread_create(t);
450 #endif /* NPROBE */
451 	LOCK_INIT_CLEAR(&t->t_lock);
452 
453 	/*
454 	 * Callers who give us a NULL proc must do their own
455 	 * stack initialization.  e.g. lwp_create()
456 	 */
457 	if (proc != NULL) {
458 		t->t_stk = thread_stk_init(t->t_stk);
459 		thread_load(t, proc, arg, len);
460 	}
461 
462 	/*
463 	 * Put a hold on project0. If this thread is actually in a
464 	 * different project, then t_proj will be changed later in
465 	 * lwp_create().  All kernel-only threads must be in project 0.
466 	 */
467 	t->t_proj = project_hold(proj0p);
468 
469 	lgrp_affinity_init(&t->t_lgrp_affinity);
470 
471 	mutex_enter(&pidlock);
472 	nthread++;
473 	t->t_did = next_t_id++;
474 	t->t_prev = curthread->t_prev;
475 	t->t_next = curthread;
476 
477 	/*
478 	 * Add the thread to the list of all threads, and initialize
479 	 * its t_cpu pointer.  We need to block preemption since
480 	 * cpu_offline walks the thread list looking for threads
481 	 * with t_cpu pointing to the CPU being offlined.  We want
482 	 * to make sure that the list is consistent and that if t_cpu
483 	 * is set, the thread is on the list.
484 	 */
485 	kpreempt_disable();
486 	curthread->t_prev->t_next = t;
487 	curthread->t_prev = t;
488 
489 	/*
490 	 * Threads should never have a NULL t_cpu pointer so assign it
491 	 * here.  If the thread is being created with state TS_RUN a
492 	 * better CPU may be chosen when it is placed on the run queue.
493 	 *
494 	 * We need to keep kernel preemption disabled when setting all
495 	 * three fields to keep them in sync.  Also, always create in
496 	 * the default partition since that's where kernel threads go
497 	 * (if this isn't a kernel thread, t_cpupart will be changed
498 	 * in lwp_create before setting the thread runnable).
499 	 */
500 	t->t_cpupart = &cp_default;
501 
502 	/*
503 	 * For now, affiliate this thread with the root lgroup.
504 	 * Since the kernel does not (presently) allocate its memory
505 	 * in a locality aware fashion, the root is an appropriate home.
506 	 * If this thread is later associated with an lwp, it will have
507 	 * it's lgroup re-assigned at that time.
508 	 */
509 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
510 
511 	/*
512 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
513 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
514 	 * is ready to run.
515 	 */
516 	if (CPU->cpu_part == &cp_default)
517 		t->t_cpu = CPU;
518 	else
519 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
520 		    t->t_pri, NULL);
521 
522 	t->t_disp_queue = t->t_cpu->cpu_disp;
523 	kpreempt_enable();
524 
525 	/*
526 	 * Initialize thread state and the dispatcher lock pointer.
527 	 * Need to hold onto pidlock to block allthreads walkers until
528 	 * the state is set.
529 	 */
530 	switch (state) {
531 	case TS_RUN:
532 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
533 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
534 		CL_SETRUN(t);
535 		thread_unlock(t);
536 		break;
537 
538 	case TS_ONPROC:
539 		THREAD_ONPROC(t, t->t_cpu);
540 		break;
541 
542 	case TS_FREE:
543 		/*
544 		 * Free state will be used for intr threads.
545 		 * The interrupt routine must set the thread dispatcher
546 		 * lock pointer (t_lockp) if starting on a CPU
547 		 * other than the current one.
548 		 */
549 		THREAD_FREEINTR(t, CPU);
550 		break;
551 
552 	case TS_STOPPED:
553 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
554 		break;
555 
556 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
557 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
558 	}
559 	mutex_exit(&pidlock);
560 	return (t);
561 }
562 
563 /*
564  * Move thread to project0 and take care of project reference counters.
565  */
566 void
567 thread_rele(kthread_t *t)
568 {
569 	kproject_t *kpj;
570 
571 	thread_lock(t);
572 
573 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
574 	kpj = ttoproj(t);
575 	t->t_proj = proj0p;
576 
577 	thread_unlock(t);
578 
579 	if (kpj != proj0p) {
580 		project_rele(kpj);
581 		(void) project_hold(proj0p);
582 	}
583 }
584 
585 void
586 thread_exit(void)
587 {
588 	kthread_t *t = curthread;
589 
590 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
591 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
592 
593 	tsd_exit();		/* Clean up this thread's TSD */
594 
595 	kcpc_passivate();	/* clean up performance counter state */
596 
597 	/*
598 	 * No kernel thread should have called poll() without arranging
599 	 * calling pollcleanup() here.
600 	 */
601 	ASSERT(t->t_pollstate == NULL);
602 	ASSERT(t->t_schedctl == NULL);
603 	if (t->t_door)
604 		door_slam();	/* in case thread did an upcall */
605 
606 #ifndef NPROBE
607 	/* Kernel probe */
608 	if (t->t_tnf_tpdp)
609 		tnf_thread_exit();
610 #endif /* NPROBE */
611 
612 	thread_rele(t);
613 	t->t_preempt++;
614 
615 	/*
616 	 * remove thread from the all threads list so that
617 	 * death-row can use the same pointers.
618 	 */
619 	mutex_enter(&pidlock);
620 	t->t_next->t_prev = t->t_prev;
621 	t->t_prev->t_next = t->t_next;
622 	ASSERT(allthreads != t);	/* t0 never exits */
623 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
624 	mutex_exit(&pidlock);
625 
626 	if (t->t_ctx != NULL)
627 		exitctx(t);
628 	if (t->t_procp->p_pctx != NULL)
629 		exitpctx(t->t_procp);
630 
631 	if (kmem_stackinfo != 0) {
632 		stkinfo_end(t);
633 	}
634 
635 	t->t_state = TS_ZOMB;	/* set zombie thread */
636 
637 	swtch_from_zombie();	/* give up the CPU */
638 	/* NOTREACHED */
639 }
640 
641 /*
642  * Check to see if the specified thread is active (defined as being on
643  * the thread list).  This is certainly a slow way to do this; if there's
644  * ever a reason to speed it up, we could maintain a hash table of active
645  * threads indexed by their t_did.
646  */
647 static kthread_t *
648 did_to_thread(kt_did_t tid)
649 {
650 	kthread_t *t;
651 
652 	ASSERT(MUTEX_HELD(&pidlock));
653 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
654 		if (t->t_did == tid)
655 			break;
656 	}
657 	if (t->t_did == tid)
658 		return (t);
659 	else
660 		return (NULL);
661 }
662 
663 /*
664  * Wait for specified thread to exit.  Returns immediately if the thread
665  * could not be found, meaning that it has either already exited or never
666  * existed.
667  */
668 void
669 thread_join(kt_did_t tid)
670 {
671 	kthread_t *t;
672 
673 	ASSERT(tid != curthread->t_did);
674 	ASSERT(tid != t0.t_did);
675 
676 	mutex_enter(&pidlock);
677 	/*
678 	 * Make sure we check that the thread is on the thread list
679 	 * before blocking on it; otherwise we could end up blocking on
680 	 * a cv that's already been freed.  In other words, don't cache
681 	 * the thread pointer across calls to cv_wait.
682 	 *
683 	 * The choice of loop invariant means that whenever a thread
684 	 * is taken off the allthreads list, a cv_broadcast must be
685 	 * performed on that thread's t_joincv to wake up any waiters.
686 	 * The broadcast doesn't have to happen right away, but it
687 	 * shouldn't be postponed indefinitely (e.g., by doing it in
688 	 * thread_free which may only be executed when the deathrow
689 	 * queue is processed.
690 	 */
691 	while (t = did_to_thread(tid))
692 		cv_wait(&t->t_joincv, &pidlock);
693 	mutex_exit(&pidlock);
694 }
695 
696 void
697 thread_free_prevent(kthread_t *t)
698 {
699 	kmutex_t *lp;
700 
701 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
702 	mutex_enter(lp);
703 }
704 
705 void
706 thread_free_allow(kthread_t *t)
707 {
708 	kmutex_t *lp;
709 
710 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
711 	mutex_exit(lp);
712 }
713 
714 static void
715 thread_free_barrier(kthread_t *t)
716 {
717 	kmutex_t *lp;
718 
719 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
720 	mutex_enter(lp);
721 	mutex_exit(lp);
722 }
723 
724 void
725 thread_free(kthread_t *t)
726 {
727 	ASSERT(t != &t0 && t->t_state == TS_FREE);
728 	ASSERT(t->t_door == NULL);
729 	ASSERT(t->t_schedctl == NULL);
730 	ASSERT(t->t_pollstate == NULL);
731 
732 	t->t_pri = 0;
733 	t->t_pc = 0;
734 	t->t_sp = 0;
735 	t->t_wchan0 = NULL;
736 	t->t_wchan = NULL;
737 	if (t->t_cred != NULL) {
738 		crfree(t->t_cred);
739 		t->t_cred = 0;
740 	}
741 	if (t->t_pdmsg) {
742 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
743 		t->t_pdmsg = NULL;
744 	}
745 	if (audit_active)
746 		audit_thread_free(t);
747 #ifndef NPROBE
748 	if (t->t_tnf_tpdp)
749 		tnf_thread_free(t);
750 #endif /* NPROBE */
751 	if (t->t_cldata) {
752 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
753 	}
754 	if (t->t_rprof != NULL) {
755 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
756 		t->t_rprof = NULL;
757 	}
758 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
759 	if (t->t_lwp)
760 		lwp_freeregs(t->t_lwp, 0);
761 	if (t->t_ctx)
762 		freectx(t, 0);
763 	t->t_stk = NULL;
764 	if (t->t_lwp)
765 		lwp_stk_fini(t->t_lwp);
766 	lock_clear(&t->t_lock);
767 
768 	if (t->t_ts->ts_waiters > 0)
769 		panic("thread_free: turnstile still active");
770 
771 	kmem_cache_free(turnstile_cache, t->t_ts);
772 
773 	free_afd(&t->t_activefd);
774 
775 	/*
776 	 * Barrier for the tick accounting code.  The tick accounting code
777 	 * holds this lock to keep the thread from going away while it's
778 	 * looking at it.
779 	 */
780 	thread_free_barrier(t);
781 
782 	ASSERT(ttoproj(t) == proj0p);
783 	project_rele(ttoproj(t));
784 
785 	lgrp_affinity_free(&t->t_lgrp_affinity);
786 
787 	/*
788 	 * Free thread struct and its stack.
789 	 */
790 	if (t->t_flag & T_TALLOCSTK) {
791 		/* thread struct is embedded in stack */
792 		segkp_release(segkp, t->t_swap);
793 		mutex_enter(&pidlock);
794 		nthread--;
795 		mutex_exit(&pidlock);
796 	} else {
797 		if (t->t_swap) {
798 			segkp_release(segkp, t->t_swap);
799 			t->t_swap = NULL;
800 		}
801 		if (t->t_lwp) {
802 			kmem_cache_free(lwp_cache, t->t_lwp);
803 			t->t_lwp = NULL;
804 		}
805 		mutex_enter(&pidlock);
806 		nthread--;
807 		mutex_exit(&pidlock);
808 		kmem_cache_free(thread_cache, t);
809 	}
810 }
811 
812 /*
813  * Removes threads associated with the given zone from a deathrow queue.
814  * tp is a pointer to the head of the deathrow queue, and countp is a
815  * pointer to the current deathrow count.  Returns a linked list of
816  * threads removed from the list.
817  */
818 static kthread_t *
819 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
820 {
821 	kthread_t *tmp, *list = NULL;
822 	cred_t *cr;
823 
824 	ASSERT(MUTEX_HELD(&reaplock));
825 	while (*tp != NULL) {
826 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
827 			tmp = *tp;
828 			*tp = tmp->t_forw;
829 			tmp->t_forw = list;
830 			list = tmp;
831 			(*countp)--;
832 		} else {
833 			tp = &(*tp)->t_forw;
834 		}
835 	}
836 	return (list);
837 }
838 
839 static void
840 thread_reap_list(kthread_t *t)
841 {
842 	kthread_t *next;
843 
844 	while (t != NULL) {
845 		next = t->t_forw;
846 		thread_free(t);
847 		t = next;
848 	}
849 }
850 
851 /* ARGSUSED */
852 static void
853 thread_zone_destroy(zoneid_t zoneid, void *unused)
854 {
855 	kthread_t *t, *l;
856 
857 	mutex_enter(&reaplock);
858 	/*
859 	 * Pull threads and lwps associated with zone off deathrow lists.
860 	 */
861 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
862 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
863 	mutex_exit(&reaplock);
864 
865 	/*
866 	 * Guard against race condition in mutex_owner_running:
867 	 * 	thread=owner(mutex)
868 	 * 	<interrupt>
869 	 * 				thread exits mutex
870 	 * 				thread exits
871 	 * 				thread reaped
872 	 * 				thread struct freed
873 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
874 	 * A cross call to all cpus will cause the interrupt handler
875 	 * to reset the PC if it is in mutex_owner_running, refreshing
876 	 * stale thread pointers.
877 	 */
878 	mutex_sync();   /* sync with mutex code */
879 
880 	/*
881 	 * Reap threads
882 	 */
883 	thread_reap_list(t);
884 
885 	/*
886 	 * Reap lwps
887 	 */
888 	thread_reap_list(l);
889 }
890 
891 /*
892  * cleanup zombie threads that are on deathrow.
893  */
894 void
895 thread_reaper()
896 {
897 	kthread_t *t, *l;
898 	callb_cpr_t cprinfo;
899 
900 	/*
901 	 * Register callback to clean up threads when zone is destroyed.
902 	 */
903 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
904 
905 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
906 	for (;;) {
907 		mutex_enter(&reaplock);
908 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
909 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
910 			cv_wait(&reaper_cv, &reaplock);
911 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
912 		}
913 		/*
914 		 * mutex_sync() needs to be called when reaping, but
915 		 * not too often.  We limit reaping rate to once
916 		 * per second.  Reaplimit is max rate at which threads can
917 		 * be freed. Does not impact thread destruction/creation.
918 		 */
919 		t = thread_deathrow;
920 		l = lwp_deathrow;
921 		thread_deathrow = NULL;
922 		lwp_deathrow = NULL;
923 		thread_reapcnt = 0;
924 		lwp_reapcnt = 0;
925 		mutex_exit(&reaplock);
926 
927 		/*
928 		 * Guard against race condition in mutex_owner_running:
929 		 * 	thread=owner(mutex)
930 		 * 	<interrupt>
931 		 * 				thread exits mutex
932 		 * 				thread exits
933 		 * 				thread reaped
934 		 * 				thread struct freed
935 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
936 		 * A cross call to all cpus will cause the interrupt handler
937 		 * to reset the PC if it is in mutex_owner_running, refreshing
938 		 * stale thread pointers.
939 		 */
940 		mutex_sync();   /* sync with mutex code */
941 		/*
942 		 * Reap threads
943 		 */
944 		thread_reap_list(t);
945 
946 		/*
947 		 * Reap lwps
948 		 */
949 		thread_reap_list(l);
950 		delay(hz);
951 	}
952 }
953 
954 /*
955  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
956  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
957  * that is reapable. The thread already holds the reaplock, and was already
958  * freed.
959  */
960 void
961 reapq_move_lq_to_tq(kthread_t *t)
962 {
963 	ASSERT(t->t_state == TS_FREE);
964 	ASSERT(MUTEX_HELD(&reaplock));
965 	t->t_forw = thread_deathrow;
966 	thread_deathrow = t;
967 	thread_reapcnt++;
968 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
969 		cv_signal(&reaper_cv);  /* wake the reaper */
970 }
971 
972 /*
973  * This is called by resume() to put a zombie thread onto deathrow.
974  * The thread's state is changed to TS_FREE to indicate that is reapable.
975  * This is called from the idle thread so it must not block - just spin.
976  */
977 void
978 reapq_add(kthread_t *t)
979 {
980 	mutex_enter(&reaplock);
981 
982 	/*
983 	 * lwp_deathrow contains only threads with lwp linkage
984 	 * that are of the default stacksize. Anything else goes
985 	 * on thread_deathrow.
986 	 */
987 	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
988 		t->t_forw = lwp_deathrow;
989 		lwp_deathrow = t;
990 		lwp_reapcnt++;
991 	} else {
992 		t->t_forw = thread_deathrow;
993 		thread_deathrow = t;
994 		thread_reapcnt++;
995 	}
996 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
997 		cv_signal(&reaper_cv);	/* wake the reaper */
998 	t->t_state = TS_FREE;
999 	lock_clear(&t->t_lock);
1000 
1001 	/*
1002 	 * Before we return, we need to grab and drop the thread lock for
1003 	 * the dead thread.  At this point, the current thread is the idle
1004 	 * thread, and the dead thread's CPU lock points to the current
1005 	 * CPU -- and we must grab and drop the lock to synchronize with
1006 	 * a racing thread walking a blocking chain that the zombie thread
1007 	 * was recently in.  By this point, that blocking chain is (by
1008 	 * definition) stale:  the dead thread is not holding any locks, and
1009 	 * is therefore not in any blocking chains -- but if we do not regrab
1010 	 * our lock before freeing the dead thread's data structures, the
1011 	 * thread walking the (stale) blocking chain will die on memory
1012 	 * corruption when it attempts to drop the dead thread's lock.  We
1013 	 * only need do this once because there is no way for the dead thread
1014 	 * to ever again be on a blocking chain:  once we have grabbed and
1015 	 * dropped the thread lock, we are guaranteed that anyone that could
1016 	 * have seen this thread in a blocking chain can no longer see it.
1017 	 */
1018 	thread_lock(t);
1019 	thread_unlock(t);
1020 
1021 	mutex_exit(&reaplock);
1022 }
1023 
1024 /*
1025  * Install thread context ops for the current thread.
1026  */
1027 void
1028 installctx(
1029 	kthread_t *t,
1030 	void	*arg,
1031 	void	(*save)(void *),
1032 	void	(*restore)(void *),
1033 	void	(*fork)(void *, void *),
1034 	void	(*lwp_create)(void *, void *),
1035 	void	(*exit)(void *),
1036 	void	(*free)(void *, int))
1037 {
1038 	struct ctxop *ctx;
1039 
1040 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1041 	ctx->save_op = save;
1042 	ctx->restore_op = restore;
1043 	ctx->fork_op = fork;
1044 	ctx->lwp_create_op = lwp_create;
1045 	ctx->exit_op = exit;
1046 	ctx->free_op = free;
1047 	ctx->arg = arg;
1048 	ctx->next = t->t_ctx;
1049 	t->t_ctx = ctx;
1050 }
1051 
1052 /*
1053  * Remove the thread context ops from a thread.
1054  */
1055 int
1056 removectx(
1057 	kthread_t *t,
1058 	void	*arg,
1059 	void	(*save)(void *),
1060 	void	(*restore)(void *),
1061 	void	(*fork)(void *, void *),
1062 	void	(*lwp_create)(void *, void *),
1063 	void	(*exit)(void *),
1064 	void	(*free)(void *, int))
1065 {
1066 	struct ctxop *ctx, *prev_ctx;
1067 
1068 	/*
1069 	 * The incoming kthread_t (which is the thread for which the
1070 	 * context ops will be removed) should be one of the following:
1071 	 *
1072 	 * a) the current thread,
1073 	 *
1074 	 * b) a thread of a process that's being forked (SIDL),
1075 	 *
1076 	 * c) a thread that belongs to the same process as the current
1077 	 *    thread and for which the current thread is the agent thread,
1078 	 *
1079 	 * d) a thread that is TS_STOPPED which is indicative of it
1080 	 *    being (if curthread is not an agent) a thread being created
1081 	 *    as part of an lwp creation.
1082 	 */
1083 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1084 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1085 
1086 	/*
1087 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1088 	 * and the target thread from racing with each other during lwp exit.
1089 	 */
1090 	mutex_enter(&t->t_ctx_lock);
1091 	prev_ctx = NULL;
1092 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1093 		if (ctx->save_op == save && ctx->restore_op == restore &&
1094 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1095 		    ctx->exit_op == exit && ctx->free_op == free &&
1096 		    ctx->arg == arg) {
1097 			if (prev_ctx)
1098 				prev_ctx->next = ctx->next;
1099 			else
1100 				t->t_ctx = ctx->next;
1101 			mutex_exit(&t->t_ctx_lock);
1102 			if (ctx->free_op != NULL)
1103 				(ctx->free_op)(ctx->arg, 0);
1104 			kmem_free(ctx, sizeof (struct ctxop));
1105 			return (1);
1106 		}
1107 		prev_ctx = ctx;
1108 	}
1109 	mutex_exit(&t->t_ctx_lock);
1110 
1111 	return (0);
1112 }
1113 
1114 void
1115 savectx(kthread_t *t)
1116 {
1117 	struct ctxop *ctx;
1118 
1119 	ASSERT(t == curthread);
1120 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1121 		if (ctx->save_op != NULL)
1122 			(ctx->save_op)(ctx->arg);
1123 }
1124 
1125 void
1126 restorectx(kthread_t *t)
1127 {
1128 	struct ctxop *ctx;
1129 
1130 	ASSERT(t == curthread);
1131 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1132 		if (ctx->restore_op != NULL)
1133 			(ctx->restore_op)(ctx->arg);
1134 }
1135 
1136 void
1137 forkctx(kthread_t *t, kthread_t *ct)
1138 {
1139 	struct ctxop *ctx;
1140 
1141 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1142 		if (ctx->fork_op != NULL)
1143 			(ctx->fork_op)(t, ct);
1144 }
1145 
1146 /*
1147  * Note that this operator is only invoked via the _lwp_create
1148  * system call.  The system may have other reasons to create lwps
1149  * e.g. the agent lwp or the doors unreferenced lwp.
1150  */
1151 void
1152 lwp_createctx(kthread_t *t, kthread_t *ct)
1153 {
1154 	struct ctxop *ctx;
1155 
1156 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1157 		if (ctx->lwp_create_op != NULL)
1158 			(ctx->lwp_create_op)(t, ct);
1159 }
1160 
1161 /*
1162  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1163  * needed when the thread/LWP leaves the processor for the last time. This
1164  * routine is not intended to deal with freeing memory; freectx() is used for
1165  * that purpose during thread_free(). This routine is provided to allow for
1166  * clean-up that can't wait until thread_free().
1167  */
1168 void
1169 exitctx(kthread_t *t)
1170 {
1171 	struct ctxop *ctx;
1172 
1173 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1174 		if (ctx->exit_op != NULL)
1175 			(ctx->exit_op)(t);
1176 }
1177 
1178 /*
1179  * freectx is called from thread_free() and exec() to get
1180  * rid of old thread context ops.
1181  */
1182 void
1183 freectx(kthread_t *t, int isexec)
1184 {
1185 	struct ctxop *ctx;
1186 
1187 	while ((ctx = t->t_ctx) != NULL) {
1188 		t->t_ctx = ctx->next;
1189 		if (ctx->free_op != NULL)
1190 			(ctx->free_op)(ctx->arg, isexec);
1191 		kmem_free(ctx, sizeof (struct ctxop));
1192 	}
1193 }
1194 
1195 /*
1196  * freectx_ctx is called from lwp_create() when lwp is reused from
1197  * lwp_deathrow and its thread structure is added to thread_deathrow.
1198  * The thread structure to which this ctx was attached may be already
1199  * freed by the thread reaper so free_op implementations shouldn't rely
1200  * on thread structure to which this ctx was attached still being around.
1201  */
1202 void
1203 freectx_ctx(struct ctxop *ctx)
1204 {
1205 	struct ctxop *nctx;
1206 
1207 	ASSERT(ctx != NULL);
1208 
1209 	do {
1210 		nctx = ctx->next;
1211 		if (ctx->free_op != NULL)
1212 			(ctx->free_op)(ctx->arg, 0);
1213 		kmem_free(ctx, sizeof (struct ctxop));
1214 	} while ((ctx = nctx) != NULL);
1215 }
1216 
1217 /*
1218  * Set the thread running; arrange for it to be swapped in if necessary.
1219  */
1220 void
1221 setrun_locked(kthread_t *t)
1222 {
1223 	ASSERT(THREAD_LOCK_HELD(t));
1224 	if (t->t_state == TS_SLEEP) {
1225 		/*
1226 		 * Take off sleep queue.
1227 		 */
1228 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1229 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1230 		/*
1231 		 * Already on dispatcher queue.
1232 		 */
1233 		return;
1234 	} else if (t->t_state == TS_WAIT) {
1235 		waitq_setrun(t);
1236 	} else if (t->t_state == TS_STOPPED) {
1237 		/*
1238 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1239 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1240 		 * requested that the thread be run.
1241 		 * Just calling setrun() is not sufficient to set a stopped
1242 		 * thread running.  TP_TXSTART is always set if the thread
1243 		 * is not stopped by a jobcontrol stop signal.
1244 		 * TP_TPSTART is always set if /proc is not controlling it.
1245 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1246 		 * The thread won't be stopped unless one of these
1247 		 * three mechanisms did it.
1248 		 *
1249 		 * These flags must be set before calling setrun_locked(t).
1250 		 * They can't be passed as arguments because the streams
1251 		 * code calls setrun() indirectly and the mechanism for
1252 		 * doing so admits only one argument.  Note that the
1253 		 * thread must be locked in order to change t_schedflags.
1254 		 */
1255 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1256 			return;
1257 		/*
1258 		 * Process is no longer stopped (a thread is running).
1259 		 */
1260 		t->t_whystop = 0;
1261 		t->t_whatstop = 0;
1262 		/*
1263 		 * Strictly speaking, we do not have to clear these
1264 		 * flags here; they are cleared on entry to stop().
1265 		 * However, they are confusing when doing kernel
1266 		 * debugging or when they are revealed by ps(1).
1267 		 */
1268 		t->t_schedflag &= ~TS_ALLSTART;
1269 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1270 		ASSERT(t->t_lockp == &transition_lock);
1271 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1272 		/*
1273 		 * Let the class put the process on the dispatcher queue.
1274 		 */
1275 		CL_SETRUN(t);
1276 	}
1277 }
1278 
1279 void
1280 setrun(kthread_t *t)
1281 {
1282 	thread_lock(t);
1283 	setrun_locked(t);
1284 	thread_unlock(t);
1285 }
1286 
1287 /*
1288  * Unpin an interrupted thread.
1289  *	When an interrupt occurs, the interrupt is handled on the stack
1290  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1291  *
1292  *	When swtch() is switching away from an interrupt thread because it
1293  *	blocked or was preempted, this routine is called to complete the
1294  *	saving of the interrupted thread state, and returns the interrupted
1295  *	thread pointer so it may be resumed.
1296  *
1297  *	Called by swtch() only at high spl.
1298  */
1299 kthread_t *
1300 thread_unpin()
1301 {
1302 	kthread_t	*t = curthread;	/* current thread */
1303 	kthread_t	*itp;		/* interrupted thread */
1304 	int		i;		/* interrupt level */
1305 	extern int	intr_passivate();
1306 
1307 	ASSERT(t->t_intr != NULL);
1308 
1309 	itp = t->t_intr;		/* interrupted thread */
1310 	t->t_intr = NULL;		/* clear interrupt ptr */
1311 
1312 	/*
1313 	 * Get state from interrupt thread for the one
1314 	 * it interrupted.
1315 	 */
1316 
1317 	i = intr_passivate(t, itp);
1318 
1319 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1320 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1321 	    i, t, t, itp, itp);
1322 
1323 	/*
1324 	 * Dissociate the current thread from the interrupted thread's LWP.
1325 	 */
1326 	t->t_lwp = NULL;
1327 
1328 	/*
1329 	 * Interrupt handlers above the level that spinlocks block must
1330 	 * not block.
1331 	 */
1332 #if DEBUG
1333 	if (i < 0 || i > LOCK_LEVEL)
1334 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1335 #endif
1336 
1337 	/*
1338 	 * Compute the CPU's base interrupt level based on the active
1339 	 * interrupts.
1340 	 */
1341 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1342 	set_base_spl();
1343 
1344 	return (itp);
1345 }
1346 
1347 /*
1348  * Create and initialize an interrupt thread.
1349  *	Returns non-zero on error.
1350  *	Called at spl7() or better.
1351  */
1352 void
1353 thread_create_intr(struct cpu *cp)
1354 {
1355 	kthread_t *tp;
1356 
1357 	tp = thread_create(NULL, 0,
1358 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1359 
1360 	/*
1361 	 * Set the thread in the TS_FREE state.  The state will change
1362 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1363 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1364 	 * inactive interrupt threads out of debugger thread lists.
1365 	 *
1366 	 * We cannot call thread_create with TS_FREE because of the current
1367 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1368 	 */
1369 	THREAD_FREEINTR(tp, cp);
1370 
1371 	/*
1372 	 * Nobody should ever reference the credentials of an interrupt
1373 	 * thread so make it NULL to catch any such references.
1374 	 */
1375 	tp->t_cred = NULL;
1376 	tp->t_flag |= T_INTR_THREAD;
1377 	tp->t_cpu = cp;
1378 	tp->t_bound_cpu = cp;
1379 	tp->t_disp_queue = cp->cpu_disp;
1380 	tp->t_affinitycnt = 1;
1381 	tp->t_preempt = 1;
1382 
1383 	/*
1384 	 * Don't make a user-requested binding on this thread so that
1385 	 * the processor can be offlined.
1386 	 */
1387 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1388 	tp->t_bind_pset = PS_NONE;
1389 
1390 #if defined(__i386) || defined(__amd64)
1391 	tp->t_stk -= STACK_ALIGN;
1392 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1393 #endif
1394 
1395 	/*
1396 	 * Link onto CPU's interrupt pool.
1397 	 */
1398 	tp->t_link = cp->cpu_intr_thread;
1399 	cp->cpu_intr_thread = tp;
1400 }
1401 
1402 /*
1403  * TSD -- THREAD SPECIFIC DATA
1404  */
1405 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1406 static uint_t		tsd_nkeys;	 /* size of destructor array */
1407 /* per-key destructor funcs */
1408 static void 		(**tsd_destructor)(void *);
1409 /* list of tsd_thread's */
1410 static struct tsd_thread	*tsd_list;
1411 
1412 /*
1413  * Default destructor
1414  *	Needed because NULL destructor means that the key is unused
1415  */
1416 /* ARGSUSED */
1417 void
1418 tsd_defaultdestructor(void *value)
1419 {}
1420 
1421 /*
1422  * Create a key (index into per thread array)
1423  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1424  *	May allocate memory with lock held
1425  */
1426 void
1427 tsd_create(uint_t *keyp, void (*destructor)(void *))
1428 {
1429 	int	i;
1430 	uint_t	nkeys;
1431 
1432 	/*
1433 	 * if key is allocated, do nothing
1434 	 */
1435 	mutex_enter(&tsd_mutex);
1436 	if (*keyp) {
1437 		mutex_exit(&tsd_mutex);
1438 		return;
1439 	}
1440 	/*
1441 	 * find an unused key
1442 	 */
1443 	if (destructor == NULL)
1444 		destructor = tsd_defaultdestructor;
1445 
1446 	for (i = 0; i < tsd_nkeys; ++i)
1447 		if (tsd_destructor[i] == NULL)
1448 			break;
1449 
1450 	/*
1451 	 * if no unused keys, increase the size of the destructor array
1452 	 */
1453 	if (i == tsd_nkeys) {
1454 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1455 			nkeys = 1;
1456 		tsd_destructor =
1457 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1458 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1459 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1460 		tsd_nkeys = nkeys;
1461 	}
1462 
1463 	/*
1464 	 * allocate the next available unused key
1465 	 */
1466 	tsd_destructor[i] = destructor;
1467 	*keyp = i + 1;
1468 	mutex_exit(&tsd_mutex);
1469 }
1470 
1471 /*
1472  * Destroy a key -- this is for unloadable modules
1473  *
1474  * Assumes that the caller is preventing tsd_set and tsd_get
1475  * Locks out tsd_create, tsd_destroy, and tsd_exit
1476  * May free memory with lock held
1477  */
1478 void
1479 tsd_destroy(uint_t *keyp)
1480 {
1481 	uint_t key;
1482 	struct tsd_thread *tsd;
1483 
1484 	/*
1485 	 * protect the key namespace and our destructor lists
1486 	 */
1487 	mutex_enter(&tsd_mutex);
1488 	key = *keyp;
1489 	*keyp = 0;
1490 
1491 	ASSERT(key <= tsd_nkeys);
1492 
1493 	/*
1494 	 * if the key is valid
1495 	 */
1496 	if (key != 0) {
1497 		uint_t k = key - 1;
1498 		/*
1499 		 * for every thread with TSD, call key's destructor
1500 		 */
1501 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1502 			/*
1503 			 * no TSD for key in this thread
1504 			 */
1505 			if (key > tsd->ts_nkeys)
1506 				continue;
1507 			/*
1508 			 * call destructor for key
1509 			 */
1510 			if (tsd->ts_value[k] && tsd_destructor[k])
1511 				(*tsd_destructor[k])(tsd->ts_value[k]);
1512 			/*
1513 			 * reset value for key
1514 			 */
1515 			tsd->ts_value[k] = NULL;
1516 		}
1517 		/*
1518 		 * actually free the key (NULL destructor == unused)
1519 		 */
1520 		tsd_destructor[k] = NULL;
1521 	}
1522 
1523 	mutex_exit(&tsd_mutex);
1524 }
1525 
1526 /*
1527  * Quickly return the per thread value that was stored with the specified key
1528  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1529  */
1530 void *
1531 tsd_get(uint_t key)
1532 {
1533 	return (tsd_agent_get(curthread, key));
1534 }
1535 
1536 /*
1537  * Set a per thread value indexed with the specified key
1538  */
1539 int
1540 tsd_set(uint_t key, void *value)
1541 {
1542 	return (tsd_agent_set(curthread, key, value));
1543 }
1544 
1545 /*
1546  * Like tsd_get(), except that the agent lwp can get the tsd of
1547  * another thread in the same process (the agent thread only runs when the
1548  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1549  */
1550 void *
1551 tsd_agent_get(kthread_t *t, uint_t key)
1552 {
1553 	struct tsd_thread *tsd = t->t_tsd;
1554 
1555 	ASSERT(t == curthread ||
1556 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1557 
1558 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1559 		return (tsd->ts_value[key - 1]);
1560 	return (NULL);
1561 }
1562 
1563 /*
1564  * Like tsd_set(), except that the agent lwp can set the tsd of
1565  * another thread in the same process, or syslwp can set the tsd
1566  * of a thread it's in the middle of creating.
1567  *
1568  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1569  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1570  * lock held
1571  */
1572 int
1573 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1574 {
1575 	struct tsd_thread *tsd = t->t_tsd;
1576 
1577 	ASSERT(t == curthread ||
1578 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1579 
1580 	if (key == 0)
1581 		return (EINVAL);
1582 	if (tsd == NULL)
1583 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1584 	if (key <= tsd->ts_nkeys) {
1585 		tsd->ts_value[key - 1] = value;
1586 		return (0);
1587 	}
1588 
1589 	ASSERT(key <= tsd_nkeys);
1590 
1591 	/*
1592 	 * lock out tsd_destroy()
1593 	 */
1594 	mutex_enter(&tsd_mutex);
1595 	if (tsd->ts_nkeys == 0) {
1596 		/*
1597 		 * Link onto list of threads with TSD
1598 		 */
1599 		if ((tsd->ts_next = tsd_list) != NULL)
1600 			tsd_list->ts_prev = tsd;
1601 		tsd_list = tsd;
1602 	}
1603 
1604 	/*
1605 	 * Allocate thread local storage and set the value for key
1606 	 */
1607 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1608 	    tsd->ts_nkeys * sizeof (void *),
1609 	    key * sizeof (void *));
1610 	tsd->ts_nkeys = key;
1611 	tsd->ts_value[key - 1] = value;
1612 	mutex_exit(&tsd_mutex);
1613 
1614 	return (0);
1615 }
1616 
1617 
1618 /*
1619  * Return the per thread value that was stored with the specified key
1620  *	If necessary, create the key and the value
1621  *	Assumes the caller is protecting *keyp from tsd_destroy
1622  */
1623 void *
1624 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1625 {
1626 	void *value;
1627 	uint_t key = *keyp;
1628 	struct tsd_thread *tsd = curthread->t_tsd;
1629 
1630 	if (tsd == NULL)
1631 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1632 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1633 		return (value);
1634 	if (key == 0)
1635 		tsd_create(keyp, destroy);
1636 	(void) tsd_set(*keyp, value = (*allocate)());
1637 
1638 	return (value);
1639 }
1640 
1641 /*
1642  * Called from thread_exit() to run the destructor function for each tsd
1643  *	Locks out tsd_create and tsd_destroy
1644  *	Assumes that the destructor *DOES NOT* use tsd
1645  */
1646 void
1647 tsd_exit(void)
1648 {
1649 	int i;
1650 	struct tsd_thread *tsd = curthread->t_tsd;
1651 
1652 	if (tsd == NULL)
1653 		return;
1654 
1655 	if (tsd->ts_nkeys == 0) {
1656 		kmem_free(tsd, sizeof (*tsd));
1657 		curthread->t_tsd = NULL;
1658 		return;
1659 	}
1660 
1661 	/*
1662 	 * lock out tsd_create and tsd_destroy, call
1663 	 * the destructor, and mark the value as destroyed.
1664 	 */
1665 	mutex_enter(&tsd_mutex);
1666 
1667 	for (i = 0; i < tsd->ts_nkeys; i++) {
1668 		if (tsd->ts_value[i] && tsd_destructor[i])
1669 			(*tsd_destructor[i])(tsd->ts_value[i]);
1670 		tsd->ts_value[i] = NULL;
1671 	}
1672 
1673 	/*
1674 	 * remove from linked list of threads with TSD
1675 	 */
1676 	if (tsd->ts_next)
1677 		tsd->ts_next->ts_prev = tsd->ts_prev;
1678 	if (tsd->ts_prev)
1679 		tsd->ts_prev->ts_next = tsd->ts_next;
1680 	if (tsd_list == tsd)
1681 		tsd_list = tsd->ts_next;
1682 
1683 	mutex_exit(&tsd_mutex);
1684 
1685 	/*
1686 	 * free up the TSD
1687 	 */
1688 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1689 	kmem_free(tsd, sizeof (struct tsd_thread));
1690 	curthread->t_tsd = NULL;
1691 }
1692 
1693 /*
1694  * realloc
1695  */
1696 static void *
1697 tsd_realloc(void *old, size_t osize, size_t nsize)
1698 {
1699 	void *new;
1700 
1701 	new = kmem_zalloc(nsize, KM_SLEEP);
1702 	if (old) {
1703 		bcopy(old, new, osize);
1704 		kmem_free(old, osize);
1705 	}
1706 	return (new);
1707 }
1708 
1709 /*
1710  * Return non-zero if an interrupt is being serviced.
1711  */
1712 int
1713 servicing_interrupt()
1714 {
1715 	int onintr = 0;
1716 
1717 	/* Are we an interrupt thread */
1718 	if (curthread->t_flag & T_INTR_THREAD)
1719 		return (1);
1720 	/* Are we servicing a high level interrupt? */
1721 	if (CPU_ON_INTR(CPU)) {
1722 		kpreempt_disable();
1723 		onintr = CPU_ON_INTR(CPU);
1724 		kpreempt_enable();
1725 	}
1726 	return (onintr);
1727 }
1728 
1729 
1730 /*
1731  * Change the dispatch priority of a thread in the system.
1732  * Used when raising or lowering a thread's priority.
1733  * (E.g., priority inheritance)
1734  *
1735  * Since threads are queued according to their priority, we
1736  * we must check the thread's state to determine whether it
1737  * is on a queue somewhere. If it is, we've got to:
1738  *
1739  *	o Dequeue the thread.
1740  *	o Change its effective priority.
1741  *	o Enqueue the thread.
1742  *
1743  * Assumptions: The thread whose priority we wish to change
1744  * must be locked before we call thread_change_(e)pri().
1745  * The thread_change(e)pri() function doesn't drop the thread
1746  * lock--that must be done by its caller.
1747  */
1748 void
1749 thread_change_epri(kthread_t *t, pri_t disp_pri)
1750 {
1751 	uint_t	state;
1752 
1753 	ASSERT(THREAD_LOCK_HELD(t));
1754 
1755 	/*
1756 	 * If the inherited priority hasn't actually changed,
1757 	 * just return.
1758 	 */
1759 	if (t->t_epri == disp_pri)
1760 		return;
1761 
1762 	state = t->t_state;
1763 
1764 	/*
1765 	 * If it's not on a queue, change the priority with impunity.
1766 	 */
1767 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1768 		t->t_epri = disp_pri;
1769 		if (state == TS_ONPROC) {
1770 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1771 
1772 			if (t == cp->cpu_dispthread)
1773 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1774 		}
1775 	} else if (state == TS_SLEEP) {
1776 		/*
1777 		 * Take the thread out of its sleep queue.
1778 		 * Change the inherited priority.
1779 		 * Re-enqueue the thread.
1780 		 * Each synchronization object exports a function
1781 		 * to do this in an appropriate manner.
1782 		 */
1783 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1784 	} else if (state == TS_WAIT) {
1785 		/*
1786 		 * Re-enqueue a thread on the wait queue if its
1787 		 * effective priority needs to change.
1788 		 */
1789 		if (disp_pri != t->t_epri)
1790 			waitq_change_pri(t, disp_pri);
1791 	} else {
1792 		/*
1793 		 * The thread is on a run queue.
1794 		 * Note: setbackdq() may not put the thread
1795 		 * back on the same run queue where it originally
1796 		 * resided.
1797 		 */
1798 		(void) dispdeq(t);
1799 		t->t_epri = disp_pri;
1800 		setbackdq(t);
1801 	}
1802 	schedctl_set_cidpri(t);
1803 }
1804 
1805 /*
1806  * Function: Change the t_pri field of a thread.
1807  * Side Effects: Adjust the thread ordering on a run queue
1808  *		 or sleep queue, if necessary.
1809  * Returns: 1 if the thread was on a run queue, else 0.
1810  */
1811 int
1812 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1813 {
1814 	uint_t	state;
1815 	int	on_rq = 0;
1816 
1817 	ASSERT(THREAD_LOCK_HELD(t));
1818 
1819 	state = t->t_state;
1820 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1821 
1822 	/*
1823 	 * If it's not on a queue, change the priority with impunity.
1824 	 */
1825 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1826 		t->t_pri = disp_pri;
1827 
1828 		if (state == TS_ONPROC) {
1829 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1830 
1831 			if (t == cp->cpu_dispthread)
1832 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1833 		}
1834 	} else if (state == TS_SLEEP) {
1835 		/*
1836 		 * If the priority has changed, take the thread out of
1837 		 * its sleep queue and change the priority.
1838 		 * Re-enqueue the thread.
1839 		 * Each synchronization object exports a function
1840 		 * to do this in an appropriate manner.
1841 		 */
1842 		if (disp_pri != t->t_pri)
1843 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1844 	} else if (state == TS_WAIT) {
1845 		/*
1846 		 * Re-enqueue a thread on the wait queue if its
1847 		 * priority needs to change.
1848 		 */
1849 		if (disp_pri != t->t_pri)
1850 			waitq_change_pri(t, disp_pri);
1851 	} else {
1852 		/*
1853 		 * The thread is on a run queue.
1854 		 * Note: setbackdq() may not put the thread
1855 		 * back on the same run queue where it originally
1856 		 * resided.
1857 		 *
1858 		 * We still requeue the thread even if the priority
1859 		 * is unchanged to preserve round-robin (and other)
1860 		 * effects between threads of the same priority.
1861 		 */
1862 		on_rq = dispdeq(t);
1863 		ASSERT(on_rq);
1864 		t->t_pri = disp_pri;
1865 		if (front) {
1866 			setfrontdq(t);
1867 		} else {
1868 			setbackdq(t);
1869 		}
1870 	}
1871 	schedctl_set_cidpri(t);
1872 	return (on_rq);
1873 }
1874 
1875 /*
1876  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1877  * specific pattern.
1878  */
1879 static void
1880 stkinfo_begin(kthread_t *t)
1881 {
1882 	caddr_t	start;	/* stack start */
1883 	caddr_t	end;	/* stack end  */
1884 	uint64_t *ptr;	/* pattern pointer */
1885 
1886 	/*
1887 	 * Stack grows up or down, see thread_create(),
1888 	 * compute stack memory area start and end (start < end).
1889 	 */
1890 	if (t->t_stk > t->t_stkbase) {
1891 		/* stack grows down */
1892 		start = t->t_stkbase;
1893 		end = t->t_stk;
1894 	} else {
1895 		/* stack grows up */
1896 		start = t->t_stk;
1897 		end = t->t_stkbase;
1898 	}
1899 
1900 	/*
1901 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1902 	 * alignement for start and end in stack area boundaries
1903 	 * (protection against corrupt t_stkbase/t_stk data).
1904 	 */
1905 	if ((((uintptr_t)start) & 0x7) != 0) {
1906 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1907 	}
1908 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1909 
1910 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1911 		/* negative or stack size > 1 meg, assume bogus */
1912 		return;
1913 	}
1914 
1915 	/* fill stack area with a pattern (instead of zeros) */
1916 	ptr = (uint64_t *)((void *)start);
1917 	while (ptr < (uint64_t *)((void *)end)) {
1918 		*ptr++ = KMEM_STKINFO_PATTERN;
1919 	}
1920 }
1921 
1922 
1923 /*
1924  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1925  * compute the percentage of kernel stack really used, and set in the log
1926  * if it's the latest highest percentage.
1927  */
1928 static void
1929 stkinfo_end(kthread_t *t)
1930 {
1931 	caddr_t	start;	/* stack start */
1932 	caddr_t	end;	/* stack end  */
1933 	uint64_t *ptr;	/* pattern pointer */
1934 	size_t stksz;	/* stack size */
1935 	size_t smallest = 0;
1936 	size_t percent = 0;
1937 	uint_t index = 0;
1938 	uint_t i;
1939 	static size_t smallest_percent = (size_t)-1;
1940 	static uint_t full = 0;
1941 
1942 	/* create the stackinfo log, if doesn't already exist */
1943 	mutex_enter(&kmem_stkinfo_lock);
1944 	if (kmem_stkinfo_log == NULL) {
1945 		kmem_stkinfo_log = (kmem_stkinfo_t *)
1946 		    kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1947 		    (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1948 		if (kmem_stkinfo_log == NULL) {
1949 			mutex_exit(&kmem_stkinfo_lock);
1950 			return;
1951 		}
1952 	}
1953 	mutex_exit(&kmem_stkinfo_lock);
1954 
1955 	/*
1956 	 * Stack grows up or down, see thread_create(),
1957 	 * compute stack memory area start and end (start < end).
1958 	 */
1959 	if (t->t_stk > t->t_stkbase) {
1960 		/* stack grows down */
1961 		start = t->t_stkbase;
1962 		end = t->t_stk;
1963 	} else {
1964 		/* stack grows up */
1965 		start = t->t_stk;
1966 		end = t->t_stkbase;
1967 	}
1968 
1969 	/* stack size as found in kthread_t */
1970 	stksz = end - start;
1971 
1972 	/*
1973 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1974 	 * alignement for start and end in stack area boundaries
1975 	 * (protection against corrupt t_stkbase/t_stk data).
1976 	 */
1977 	if ((((uintptr_t)start) & 0x7) != 0) {
1978 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1979 	}
1980 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1981 
1982 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1983 		/* negative or stack size > 1 meg, assume bogus */
1984 		return;
1985 	}
1986 
1987 	/* search until no pattern in the stack */
1988 	if (t->t_stk > t->t_stkbase) {
1989 		/* stack grows down */
1990 #if defined(__i386) || defined(__amd64)
1991 		/*
1992 		 * 6 longs are pushed on stack, see thread_load(). Skip
1993 		 * them, so if kthread has never run, percent is zero.
1994 		 * 8 bytes alignement is preserved for a 32 bit kernel,
1995 		 * 6 x 4 = 24, 24 is a multiple of 8.
1996 		 *
1997 		 */
1998 		end -= (6 * sizeof (long));
1999 #endif
2000 		ptr = (uint64_t *)((void *)start);
2001 		while (ptr < (uint64_t *)((void *)end)) {
2002 			if (*ptr != KMEM_STKINFO_PATTERN) {
2003 				percent = stkinfo_percent(end,
2004 				    start, (caddr_t)ptr);
2005 				break;
2006 			}
2007 			ptr++;
2008 		}
2009 	} else {
2010 		/* stack grows up */
2011 		ptr = (uint64_t *)((void *)end);
2012 		ptr--;
2013 		while (ptr >= (uint64_t *)((void *)start)) {
2014 			if (*ptr != KMEM_STKINFO_PATTERN) {
2015 				percent = stkinfo_percent(start,
2016 				    end, (caddr_t)ptr);
2017 				break;
2018 			}
2019 			ptr--;
2020 		}
2021 	}
2022 
2023 	DTRACE_PROBE3(stack__usage, kthread_t *, t,
2024 	    size_t, stksz, size_t, percent);
2025 
2026 	if (percent == 0) {
2027 		return;
2028 	}
2029 
2030 	mutex_enter(&kmem_stkinfo_lock);
2031 	if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2032 		/*
2033 		 * The log is full and already contains the highest values
2034 		 */
2035 		mutex_exit(&kmem_stkinfo_lock);
2036 		return;
2037 	}
2038 
2039 	/* keep a log of the highest used stack */
2040 	for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2041 		if (kmem_stkinfo_log[i].percent == 0) {
2042 			index = i;
2043 			full++;
2044 			break;
2045 		}
2046 		if (smallest == 0) {
2047 			smallest = kmem_stkinfo_log[i].percent;
2048 			index = i;
2049 			continue;
2050 		}
2051 		if (kmem_stkinfo_log[i].percent < smallest) {
2052 			smallest = kmem_stkinfo_log[i].percent;
2053 			index = i;
2054 		}
2055 	}
2056 
2057 	if (percent >= kmem_stkinfo_log[index].percent) {
2058 		kmem_stkinfo_log[index].kthread = (caddr_t)t;
2059 		kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2060 		kmem_stkinfo_log[index].start = start;
2061 		kmem_stkinfo_log[index].stksz = stksz;
2062 		kmem_stkinfo_log[index].percent = percent;
2063 		kmem_stkinfo_log[index].t_tid = t->t_tid;
2064 		kmem_stkinfo_log[index].cmd[0] = '\0';
2065 		if (t->t_tid != 0) {
2066 			stksz = strlen((t->t_procp)->p_user.u_comm);
2067 			if (stksz >= KMEM_STKINFO_STR_SIZE) {
2068 				stksz = KMEM_STKINFO_STR_SIZE - 1;
2069 				kmem_stkinfo_log[index].cmd[stksz] = '\0';
2070 			} else {
2071 				stksz += 1;
2072 			}
2073 			(void) memcpy(kmem_stkinfo_log[index].cmd,
2074 			    (t->t_procp)->p_user.u_comm, stksz);
2075 		}
2076 		if (percent < smallest_percent) {
2077 			smallest_percent = percent;
2078 		}
2079 	}
2080 	mutex_exit(&kmem_stkinfo_lock);
2081 }
2082 
2083 /*
2084  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2085  */
2086 static size_t
2087 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2088 {
2089 	size_t percent;
2090 	size_t s;
2091 
2092 	if (t_stk > t_stkbase) {
2093 		/* stack grows down */
2094 		if (sp > t_stk) {
2095 			return (0);
2096 		}
2097 		if (sp < t_stkbase) {
2098 			return (100);
2099 		}
2100 		percent = t_stk - sp + 1;
2101 		s = t_stk - t_stkbase + 1;
2102 	} else {
2103 		/* stack grows up */
2104 		if (sp < t_stk) {
2105 			return (0);
2106 		}
2107 		if (sp > t_stkbase) {
2108 			return (100);
2109 		}
2110 		percent = sp - t_stk + 1;
2111 		s = t_stkbase - t_stk + 1;
2112 	}
2113 	percent = ((100 * percent) / s) + 1;
2114 	if (percent > 100) {
2115 		percent = 100;
2116 	}
2117 	return (percent);
2118 }
2119