1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/brand.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tndb.h> 72 #include <sys/cpc_impl.h> 73 #include <sys/sdt.h> 74 #include <sys/reboot.h> 75 #include <sys/kdi.h> 76 #include <sys/waitq.h> 77 #include <sys/cpucaps.h> 78 79 struct kmem_cache *thread_cache; /* cache of free threads */ 80 struct kmem_cache *lwp_cache; /* cache of free lwps */ 81 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 82 83 /* 84 * allthreads is only for use by kmem_readers. All kernel loops can use 85 * the current thread as a start/end point. 86 */ 87 static kthread_t *allthreads = &t0; /* circular list of all threads */ 88 89 static kcondvar_t reaper_cv; /* synchronization var */ 90 kthread_t *thread_deathrow; /* circular list of reapable threads */ 91 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 92 kmutex_t reaplock; /* protects lwp and thread deathrows */ 93 kmutex_t thread_free_lock; /* protects clock from reaper */ 94 int thread_reapcnt = 0; /* number of threads on deathrow */ 95 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 96 int reaplimit = 16; /* delay reaping until reaplimit */ 97 98 extern int nthread; 99 100 id_t syscid; /* system scheduling class ID */ 101 void *segkp_thread; /* cookie for segkp pool */ 102 103 int lwp_cache_sz = 32; 104 int t_cache_sz = 8; 105 static kt_did_t next_t_id = 1; 106 107 /* 108 * Min/Max stack sizes for stack size parameters 109 */ 110 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 111 #define MIN_STKSIZE DEFAULTSTKSZ 112 113 /* 114 * default_stksize overrides lwp_default_stksize if it is set. 115 */ 116 int default_stksize; 117 int lwp_default_stksize; 118 119 static zone_key_t zone_thread_key; 120 121 /* 122 * forward declarations for internal thread specific data (tsd) 123 */ 124 static void *tsd_realloc(void *, size_t, size_t); 125 126 void thread_reaper(void); 127 128 /*ARGSUSED*/ 129 static int 130 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 131 { 132 bzero(buf, sizeof (turnstile_t)); 133 return (0); 134 } 135 136 /*ARGSUSED*/ 137 static void 138 turnstile_destructor(void *buf, void *cdrarg) 139 { 140 turnstile_t *ts = buf; 141 142 ASSERT(ts->ts_free == NULL); 143 ASSERT(ts->ts_waiters == 0); 144 ASSERT(ts->ts_inheritor == NULL); 145 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 146 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 147 } 148 149 void 150 thread_init(void) 151 { 152 kthread_t *tp; 153 extern char sys_name[]; 154 extern void idle(); 155 struct cpu *cpu = CPU; 156 157 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 158 159 #if defined(__i386) || defined(__amd64) 160 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 161 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 162 163 /* 164 * "struct _klwp" includes a "struct pcb", which includes a 165 * "struct fpu", which needs to be 16-byte aligned on amd64 166 * (and even on i386 for fxsave/fxrstor). 167 */ 168 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 169 16, NULL, NULL, NULL, NULL, NULL, 0); 170 #else 171 /* 172 * Allocate thread structures from static_arena. This prevents 173 * issues where a thread tries to relocate its own thread 174 * structure and touches it after the mapping has been suspended. 175 */ 176 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 177 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 178 179 lwp_stk_cache_init(); 180 181 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 182 0, NULL, NULL, NULL, NULL, NULL, 0); 183 #endif 184 185 turnstile_cache = kmem_cache_create("turnstile_cache", 186 sizeof (turnstile_t), 0, 187 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 188 189 label_init(); 190 cred_init(); 191 192 /* 193 * Initialize various resource management facilities. 194 */ 195 rctl_init(); 196 cpucaps_init(); 197 /* 198 * Zone_init() should be called before project_init() so that project ID 199 * for the first project is initialized correctly. 200 */ 201 zone_init(); 202 project_init(); 203 brand_init(); 204 task_init(); 205 tcache_init(); 206 pool_init(); 207 208 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 209 210 /* 211 * Originally, we had two parameters to set default stack 212 * size: one for lwp's (lwp_default_stksize), and one for 213 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 214 * Now we have a third parameter that overrides both if it is 215 * set to a legal stack size, called default_stksize. 216 */ 217 218 if (default_stksize == 0) { 219 default_stksize = DEFAULTSTKSZ; 220 } else if (default_stksize % PAGESIZE != 0 || 221 default_stksize > MAX_STKSIZE || 222 default_stksize < MIN_STKSIZE) { 223 cmn_err(CE_WARN, "Illegal stack size. Using %d", 224 (int)DEFAULTSTKSZ); 225 default_stksize = DEFAULTSTKSZ; 226 } else { 227 lwp_default_stksize = default_stksize; 228 } 229 230 if (lwp_default_stksize == 0) { 231 lwp_default_stksize = default_stksize; 232 } else if (lwp_default_stksize % PAGESIZE != 0 || 233 lwp_default_stksize > MAX_STKSIZE || 234 lwp_default_stksize < MIN_STKSIZE) { 235 cmn_err(CE_WARN, "Illegal stack size. Using %d", 236 default_stksize); 237 lwp_default_stksize = default_stksize; 238 } 239 240 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 241 lwp_default_stksize, 242 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 243 244 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 245 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 246 247 (void) getcid(sys_name, &syscid); 248 curthread->t_cid = syscid; /* current thread is t0 */ 249 250 /* 251 * Set up the first CPU's idle thread. 252 * It runs whenever the CPU has nothing worthwhile to do. 253 */ 254 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 255 cpu->cpu_idle_thread = tp; 256 tp->t_preempt = 1; 257 tp->t_disp_queue = cpu->cpu_disp; 258 ASSERT(tp->t_disp_queue != NULL); 259 tp->t_bound_cpu = cpu; 260 tp->t_affinitycnt = 1; 261 262 /* 263 * Registering a thread in the callback table is usually 264 * done in the initialization code of the thread. In this 265 * case, we do it right after thread creation to avoid 266 * blocking idle thread while registering itself. It also 267 * avoids the possibility of reregistration in case a CPU 268 * restarts its idle thread. 269 */ 270 CALLB_CPR_INIT_SAFE(tp, "idle"); 271 272 /* 273 * Create the thread_reaper daemon. From this point on, exited 274 * threads will get reaped. 275 */ 276 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 277 NULL, 0, &p0, TS_RUN, minclsyspri); 278 279 /* 280 * Finish initializing the kernel memory allocator now that 281 * thread_create() is available. 282 */ 283 kmem_thread_init(); 284 285 if (boothowto & RB_DEBUG) 286 kdi_dvec_thravail(); 287 } 288 289 /* 290 * Create a thread. 291 * 292 * thread_create() blocks for memory if necessary. It never fails. 293 * 294 * If stk is NULL, the thread is created at the base of the stack 295 * and cannot be swapped. 296 */ 297 kthread_t * 298 thread_create( 299 caddr_t stk, 300 size_t stksize, 301 void (*proc)(), 302 void *arg, 303 size_t len, 304 proc_t *pp, 305 int state, 306 pri_t pri) 307 { 308 kthread_t *t; 309 extern struct classfuncs sys_classfuncs; 310 turnstile_t *ts; 311 312 /* 313 * Every thread keeps a turnstile around in case it needs to block. 314 * The only reason the turnstile is not simply part of the thread 315 * structure is that we may have to break the association whenever 316 * more than one thread blocks on a given synchronization object. 317 * From a memory-management standpoint, turnstiles are like the 318 * "attached mblks" that hang off dblks in the streams allocator. 319 */ 320 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 321 322 if (stk == NULL) { 323 /* 324 * alloc both thread and stack in segkp chunk 325 */ 326 327 if (stksize < default_stksize) 328 stksize = default_stksize; 329 330 if (stksize == default_stksize) { 331 stk = (caddr_t)segkp_cache_get(segkp_thread); 332 } else { 333 stksize = roundup(stksize, PAGESIZE); 334 stk = (caddr_t)segkp_get(segkp, stksize, 335 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 336 } 337 338 ASSERT(stk != NULL); 339 340 /* 341 * The machine-dependent mutex code may require that 342 * thread pointers (since they may be used for mutex owner 343 * fields) have certain alignment requirements. 344 * PTR24_ALIGN is the size of the alignment quanta. 345 * XXX - assumes stack grows toward low addresses. 346 */ 347 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 348 cmn_err(CE_PANIC, "thread_create: proposed stack size" 349 " too small to hold thread."); 350 #ifdef STACK_GROWTH_DOWN 351 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 352 stksize &= -PTR24_ALIGN; /* make thread aligned */ 353 t = (kthread_t *)(stk + stksize); 354 bzero(t, sizeof (kthread_t)); 355 #ifdef C2_AUDIT 356 if (audit_active) 357 audit_thread_create(t); 358 #endif 359 t->t_stk = stk + stksize; 360 t->t_stkbase = stk; 361 #else /* stack grows to larger addresses */ 362 stksize -= SA(sizeof (kthread_t)); 363 t = (kthread_t *)(stk); 364 bzero(t, sizeof (kthread_t)); 365 t->t_stk = stk + sizeof (kthread_t); 366 t->t_stkbase = stk + stksize + sizeof (kthread_t); 367 #endif /* STACK_GROWTH_DOWN */ 368 t->t_flag |= T_TALLOCSTK; 369 t->t_swap = stk; 370 } else { 371 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 372 bzero(t, sizeof (kthread_t)); 373 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 374 #ifdef C2_AUDIT 375 if (audit_active) 376 audit_thread_create(t); 377 #endif 378 /* 379 * Initialize t_stk to the kernel stack pointer to use 380 * upon entry to the kernel 381 */ 382 #ifdef STACK_GROWTH_DOWN 383 t->t_stk = stk + stksize; 384 t->t_stkbase = stk; 385 #else 386 t->t_stk = stk; /* 3b2-like */ 387 t->t_stkbase = stk + stksize; 388 #endif /* STACK_GROWTH_DOWN */ 389 } 390 391 /* set default stack flag */ 392 if (stksize == lwp_default_stksize) 393 t->t_flag |= T_DFLTSTK; 394 395 t->t_ts = ts; 396 397 /* 398 * p_cred could be NULL if it thread_create is called before cred_init 399 * is called in main. 400 */ 401 mutex_enter(&pp->p_crlock); 402 if (pp->p_cred) 403 crhold(t->t_cred = pp->p_cred); 404 mutex_exit(&pp->p_crlock); 405 t->t_start = gethrestime_sec(); 406 t->t_startpc = proc; 407 t->t_procp = pp; 408 t->t_clfuncs = &sys_classfuncs.thread; 409 t->t_cid = syscid; 410 t->t_pri = pri; 411 t->t_stime = lbolt; 412 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 413 t->t_bind_cpu = PBIND_NONE; 414 t->t_bind_pset = PS_NONE; 415 t->t_plockp = &pp->p_lock; 416 t->t_copyops = NULL; 417 t->t_taskq = NULL; 418 t->t_anttime = 0; 419 t->t_hatdepth = 0; 420 421 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 422 423 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 424 #ifndef NPROBE 425 /* Kernel probe */ 426 tnf_thread_create(t); 427 #endif /* NPROBE */ 428 LOCK_INIT_CLEAR(&t->t_lock); 429 430 /* 431 * Callers who give us a NULL proc must do their own 432 * stack initialization. e.g. lwp_create() 433 */ 434 if (proc != NULL) { 435 t->t_stk = thread_stk_init(t->t_stk); 436 thread_load(t, proc, arg, len); 437 } 438 439 /* 440 * Put a hold on project0. If this thread is actually in a 441 * different project, then t_proj will be changed later in 442 * lwp_create(). All kernel-only threads must be in project 0. 443 */ 444 t->t_proj = project_hold(proj0p); 445 446 lgrp_affinity_init(&t->t_lgrp_affinity); 447 448 mutex_enter(&pidlock); 449 nthread++; 450 t->t_did = next_t_id++; 451 t->t_prev = curthread->t_prev; 452 t->t_next = curthread; 453 454 /* 455 * Add the thread to the list of all threads, and initialize 456 * its t_cpu pointer. We need to block preemption since 457 * cpu_offline walks the thread list looking for threads 458 * with t_cpu pointing to the CPU being offlined. We want 459 * to make sure that the list is consistent and that if t_cpu 460 * is set, the thread is on the list. 461 */ 462 kpreempt_disable(); 463 curthread->t_prev->t_next = t; 464 curthread->t_prev = t; 465 466 /* 467 * Threads should never have a NULL t_cpu pointer so assign it 468 * here. If the thread is being created with state TS_RUN a 469 * better CPU may be chosen when it is placed on the run queue. 470 * 471 * We need to keep kernel preemption disabled when setting all 472 * three fields to keep them in sync. Also, always create in 473 * the default partition since that's where kernel threads go 474 * (if this isn't a kernel thread, t_cpupart will be changed 475 * in lwp_create before setting the thread runnable). 476 */ 477 t->t_cpupart = &cp_default; 478 479 /* 480 * For now, affiliate this thread with the root lgroup. 481 * Since the kernel does not (presently) allocate its memory 482 * in a locality aware fashion, the root is an appropriate home. 483 * If this thread is later associated with an lwp, it will have 484 * it's lgroup re-assigned at that time. 485 */ 486 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 487 488 /* 489 * Inherit the current cpu. If this cpu isn't part of the chosen 490 * lgroup, a new cpu will be chosen by cpu_choose when the thread 491 * is ready to run. 492 */ 493 if (CPU->cpu_part == &cp_default) 494 t->t_cpu = CPU; 495 else 496 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 497 t->t_pri, NULL); 498 499 t->t_disp_queue = t->t_cpu->cpu_disp; 500 kpreempt_enable(); 501 502 /* 503 * Initialize thread state and the dispatcher lock pointer. 504 * Need to hold onto pidlock to block allthreads walkers until 505 * the state is set. 506 */ 507 switch (state) { 508 case TS_RUN: 509 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 510 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 511 CL_SETRUN(t); 512 thread_unlock(t); 513 break; 514 515 case TS_ONPROC: 516 THREAD_ONPROC(t, t->t_cpu); 517 break; 518 519 case TS_FREE: 520 /* 521 * Free state will be used for intr threads. 522 * The interrupt routine must set the thread dispatcher 523 * lock pointer (t_lockp) if starting on a CPU 524 * other than the current one. 525 */ 526 THREAD_FREEINTR(t, CPU); 527 break; 528 529 case TS_STOPPED: 530 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 531 break; 532 533 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 534 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 535 } 536 mutex_exit(&pidlock); 537 return (t); 538 } 539 540 /* 541 * Move thread to project0 and take care of project reference counters. 542 */ 543 void 544 thread_rele(kthread_t *t) 545 { 546 kproject_t *kpj; 547 548 thread_lock(t); 549 550 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 551 kpj = ttoproj(t); 552 t->t_proj = proj0p; 553 554 thread_unlock(t); 555 556 if (kpj != proj0p) { 557 project_rele(kpj); 558 (void) project_hold(proj0p); 559 } 560 } 561 562 563 void (*ip_cleanup_func)(void); 564 565 void 566 thread_exit() 567 { 568 kthread_t *t = curthread; 569 570 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 571 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 572 573 if (ip_cleanup_func != NULL) 574 (*ip_cleanup_func)(); 575 576 tsd_exit(); /* Clean up this thread's TSD */ 577 578 kcpc_passivate(); /* clean up performance counter state */ 579 580 /* 581 * No kernel thread should have called poll() without arranging 582 * calling pollcleanup() here. 583 */ 584 ASSERT(t->t_pollstate == NULL); 585 ASSERT(t->t_schedctl == NULL); 586 if (t->t_door) 587 door_slam(); /* in case thread did an upcall */ 588 589 #ifndef NPROBE 590 /* Kernel probe */ 591 if (t->t_tnf_tpdp) 592 tnf_thread_exit(); 593 #endif /* NPROBE */ 594 595 thread_rele(t); 596 t->t_preempt++; 597 598 /* 599 * remove thread from the all threads list so that 600 * death-row can use the same pointers. 601 */ 602 mutex_enter(&pidlock); 603 t->t_next->t_prev = t->t_prev; 604 t->t_prev->t_next = t->t_next; 605 ASSERT(allthreads != t); /* t0 never exits */ 606 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 607 mutex_exit(&pidlock); 608 609 if (t->t_ctx != NULL) 610 exitctx(t); 611 if (t->t_procp->p_pctx != NULL) 612 exitpctx(t->t_procp); 613 614 t->t_state = TS_ZOMB; /* set zombie thread */ 615 616 swtch_from_zombie(); /* give up the CPU */ 617 /* NOTREACHED */ 618 } 619 620 /* 621 * Check to see if the specified thread is active (defined as being on 622 * the thread list). This is certainly a slow way to do this; if there's 623 * ever a reason to speed it up, we could maintain a hash table of active 624 * threads indexed by their t_did. 625 */ 626 static kthread_t * 627 did_to_thread(kt_did_t tid) 628 { 629 kthread_t *t; 630 631 ASSERT(MUTEX_HELD(&pidlock)); 632 for (t = curthread->t_next; t != curthread; t = t->t_next) { 633 if (t->t_did == tid) 634 break; 635 } 636 if (t->t_did == tid) 637 return (t); 638 else 639 return (NULL); 640 } 641 642 /* 643 * Wait for specified thread to exit. Returns immediately if the thread 644 * could not be found, meaning that it has either already exited or never 645 * existed. 646 */ 647 void 648 thread_join(kt_did_t tid) 649 { 650 kthread_t *t; 651 652 ASSERT(tid != curthread->t_did); 653 ASSERT(tid != t0.t_did); 654 655 mutex_enter(&pidlock); 656 /* 657 * Make sure we check that the thread is on the thread list 658 * before blocking on it; otherwise we could end up blocking on 659 * a cv that's already been freed. In other words, don't cache 660 * the thread pointer across calls to cv_wait. 661 * 662 * The choice of loop invariant means that whenever a thread 663 * is taken off the allthreads list, a cv_broadcast must be 664 * performed on that thread's t_joincv to wake up any waiters. 665 * The broadcast doesn't have to happen right away, but it 666 * shouldn't be postponed indefinitely (e.g., by doing it in 667 * thread_free which may only be executed when the deathrow 668 * queue is processed. 669 */ 670 while (t = did_to_thread(tid)) 671 cv_wait(&t->t_joincv, &pidlock); 672 mutex_exit(&pidlock); 673 } 674 675 void 676 thread_free(kthread_t *t) 677 { 678 ASSERT(t != &t0 && t->t_state == TS_FREE); 679 ASSERT(t->t_door == NULL); 680 ASSERT(t->t_schedctl == NULL); 681 ASSERT(t->t_pollstate == NULL); 682 683 t->t_pri = 0; 684 t->t_pc = 0; 685 t->t_sp = 0; 686 t->t_wchan0 = NULL; 687 t->t_wchan = NULL; 688 if (t->t_cred != NULL) { 689 crfree(t->t_cred); 690 t->t_cred = 0; 691 } 692 if (t->t_pdmsg) { 693 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 694 t->t_pdmsg = NULL; 695 } 696 #ifdef C2_AUDIT 697 if (audit_active) 698 audit_thread_free(t); 699 #endif 700 #ifndef NPROBE 701 if (t->t_tnf_tpdp) 702 tnf_thread_free(t); 703 #endif /* NPROBE */ 704 if (t->t_cldata) { 705 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 706 } 707 if (t->t_rprof != NULL) { 708 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 709 t->t_rprof = NULL; 710 } 711 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 712 if (t->t_lwp) 713 lwp_freeregs(t->t_lwp, 0); 714 if (t->t_ctx) 715 freectx(t, 0); 716 t->t_stk = NULL; 717 if (t->t_lwp) 718 lwp_stk_fini(t->t_lwp); 719 lock_clear(&t->t_lock); 720 721 if (t->t_ts->ts_waiters > 0) 722 panic("thread_free: turnstile still active"); 723 724 kmem_cache_free(turnstile_cache, t->t_ts); 725 726 free_afd(&t->t_activefd); 727 728 /* 729 * Barrier for clock thread. The clock holds this lock to 730 * keep the thread from going away while it's looking at it. 731 */ 732 mutex_enter(&thread_free_lock); 733 mutex_exit(&thread_free_lock); 734 735 ASSERT(ttoproj(t) == proj0p); 736 project_rele(ttoproj(t)); 737 738 lgrp_affinity_free(&t->t_lgrp_affinity); 739 740 /* 741 * Free thread struct and its stack. 742 */ 743 if (t->t_flag & T_TALLOCSTK) { 744 /* thread struct is embedded in stack */ 745 segkp_release(segkp, t->t_swap); 746 mutex_enter(&pidlock); 747 nthread--; 748 mutex_exit(&pidlock); 749 } else { 750 if (t->t_swap) { 751 segkp_release(segkp, t->t_swap); 752 t->t_swap = NULL; 753 } 754 if (t->t_lwp) { 755 kmem_cache_free(lwp_cache, t->t_lwp); 756 t->t_lwp = NULL; 757 } 758 mutex_enter(&pidlock); 759 nthread--; 760 mutex_exit(&pidlock); 761 kmem_cache_free(thread_cache, t); 762 } 763 } 764 765 /* 766 * Removes threads associated with the given zone from a deathrow queue. 767 * tp is a pointer to the head of the deathrow queue, and countp is a 768 * pointer to the current deathrow count. Returns a linked list of 769 * threads removed from the list. 770 */ 771 static kthread_t * 772 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 773 { 774 kthread_t *tmp, *list = NULL; 775 cred_t *cr; 776 777 ASSERT(MUTEX_HELD(&reaplock)); 778 while (*tp != NULL) { 779 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 780 tmp = *tp; 781 *tp = tmp->t_forw; 782 tmp->t_forw = list; 783 list = tmp; 784 (*countp)--; 785 } else { 786 tp = &(*tp)->t_forw; 787 } 788 } 789 return (list); 790 } 791 792 static void 793 thread_reap_list(kthread_t *t) 794 { 795 kthread_t *next; 796 797 while (t != NULL) { 798 next = t->t_forw; 799 thread_free(t); 800 t = next; 801 } 802 } 803 804 /* ARGSUSED */ 805 static void 806 thread_zone_destroy(zoneid_t zoneid, void *unused) 807 { 808 kthread_t *t, *l; 809 810 mutex_enter(&reaplock); 811 /* 812 * Pull threads and lwps associated with zone off deathrow lists. 813 */ 814 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 815 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 816 mutex_exit(&reaplock); 817 818 /* 819 * Reap threads 820 */ 821 thread_reap_list(t); 822 823 /* 824 * Reap lwps 825 */ 826 thread_reap_list(l); 827 } 828 829 /* 830 * cleanup zombie threads that are on deathrow. 831 */ 832 void 833 thread_reaper() 834 { 835 kthread_t *t, *l; 836 callb_cpr_t cprinfo; 837 838 /* 839 * Register callback to clean up threads when zone is destroyed. 840 */ 841 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 842 843 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 844 for (;;) { 845 mutex_enter(&reaplock); 846 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 847 CALLB_CPR_SAFE_BEGIN(&cprinfo); 848 cv_wait(&reaper_cv, &reaplock); 849 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 850 } 851 t = thread_deathrow; 852 l = lwp_deathrow; 853 thread_deathrow = NULL; 854 lwp_deathrow = NULL; 855 thread_reapcnt = 0; 856 lwp_reapcnt = 0; 857 mutex_exit(&reaplock); 858 859 /* 860 * Reap threads 861 */ 862 thread_reap_list(t); 863 864 /* 865 * Reap lwps 866 */ 867 thread_reap_list(l); 868 } 869 } 870 871 /* 872 * This is called by resume() to put a zombie thread onto deathrow. 873 * The thread's state is changed to TS_FREE to indicate that is reapable. 874 * This is called from the idle thread so it must not block (just spin). 875 */ 876 void 877 reapq_add(kthread_t *t) 878 { 879 mutex_enter(&reaplock); 880 881 /* 882 * lwp_deathrow contains only threads with lwp linkage 883 * that are of the default stacksize. Anything else goes 884 * on thread_deathrow. 885 */ 886 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 887 t->t_forw = lwp_deathrow; 888 lwp_deathrow = t; 889 lwp_reapcnt++; 890 } else { 891 t->t_forw = thread_deathrow; 892 thread_deathrow = t; 893 thread_reapcnt++; 894 } 895 if (lwp_reapcnt + thread_reapcnt > reaplimit) 896 cv_signal(&reaper_cv); /* wake the reaper */ 897 t->t_state = TS_FREE; 898 lock_clear(&t->t_lock); 899 mutex_exit(&reaplock); 900 } 901 902 /* 903 * Install thread context ops for the current thread. 904 */ 905 void 906 installctx( 907 kthread_t *t, 908 void *arg, 909 void (*save)(void *), 910 void (*restore)(void *), 911 void (*fork)(void *, void *), 912 void (*lwp_create)(void *, void *), 913 void (*exit)(void *), 914 void (*free)(void *, int)) 915 { 916 struct ctxop *ctx; 917 918 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 919 ctx->save_op = save; 920 ctx->restore_op = restore; 921 ctx->fork_op = fork; 922 ctx->lwp_create_op = lwp_create; 923 ctx->exit_op = exit; 924 ctx->free_op = free; 925 ctx->arg = arg; 926 ctx->next = t->t_ctx; 927 t->t_ctx = ctx; 928 } 929 930 /* 931 * Remove the thread context ops from a thread. 932 */ 933 int 934 removectx( 935 kthread_t *t, 936 void *arg, 937 void (*save)(void *), 938 void (*restore)(void *), 939 void (*fork)(void *, void *), 940 void (*lwp_create)(void *, void *), 941 void (*exit)(void *), 942 void (*free)(void *, int)) 943 { 944 struct ctxop *ctx, *prev_ctx; 945 946 /* 947 * The incoming kthread_t (which is the thread for which the 948 * context ops will be removed) should be one of the following: 949 * 950 * a) the current thread, 951 * 952 * b) a thread of a process that's being forked (SIDL), 953 * 954 * c) a thread that belongs to the same process as the current 955 * thread and for which the current thread is the agent thread, 956 * 957 * d) a thread that is TS_STOPPED which is indicative of it 958 * being (if curthread is not an agent) a thread being created 959 * as part of an lwp creation. 960 */ 961 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 962 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 963 964 /* 965 * Serialize modifications to t->t_ctx to prevent the agent thread 966 * and the target thread from racing with each other during lwp exit. 967 */ 968 mutex_enter(&t->t_ctx_lock); 969 prev_ctx = NULL; 970 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 971 if (ctx->save_op == save && ctx->restore_op == restore && 972 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 973 ctx->exit_op == exit && ctx->free_op == free && 974 ctx->arg == arg) { 975 if (prev_ctx) 976 prev_ctx->next = ctx->next; 977 else 978 t->t_ctx = ctx->next; 979 mutex_exit(&t->t_ctx_lock); 980 if (ctx->free_op != NULL) 981 (ctx->free_op)(ctx->arg, 0); 982 kmem_free(ctx, sizeof (struct ctxop)); 983 return (1); 984 } 985 prev_ctx = ctx; 986 } 987 mutex_exit(&t->t_ctx_lock); 988 989 return (0); 990 } 991 992 void 993 savectx(kthread_t *t) 994 { 995 struct ctxop *ctx; 996 997 ASSERT(t == curthread); 998 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 999 if (ctx->save_op != NULL) 1000 (ctx->save_op)(ctx->arg); 1001 } 1002 1003 void 1004 restorectx(kthread_t *t) 1005 { 1006 struct ctxop *ctx; 1007 1008 ASSERT(t == curthread); 1009 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1010 if (ctx->restore_op != NULL) 1011 (ctx->restore_op)(ctx->arg); 1012 } 1013 1014 void 1015 forkctx(kthread_t *t, kthread_t *ct) 1016 { 1017 struct ctxop *ctx; 1018 1019 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1020 if (ctx->fork_op != NULL) 1021 (ctx->fork_op)(t, ct); 1022 } 1023 1024 /* 1025 * Note that this operator is only invoked via the _lwp_create 1026 * system call. The system may have other reasons to create lwps 1027 * e.g. the agent lwp or the doors unreferenced lwp. 1028 */ 1029 void 1030 lwp_createctx(kthread_t *t, kthread_t *ct) 1031 { 1032 struct ctxop *ctx; 1033 1034 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1035 if (ctx->lwp_create_op != NULL) 1036 (ctx->lwp_create_op)(t, ct); 1037 } 1038 1039 /* 1040 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1041 * needed when the thread/LWP leaves the processor for the last time. This 1042 * routine is not intended to deal with freeing memory; freectx() is used for 1043 * that purpose during thread_free(). This routine is provided to allow for 1044 * clean-up that can't wait until thread_free(). 1045 */ 1046 void 1047 exitctx(kthread_t *t) 1048 { 1049 struct ctxop *ctx; 1050 1051 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1052 if (ctx->exit_op != NULL) 1053 (ctx->exit_op)(t); 1054 } 1055 1056 /* 1057 * freectx is called from thread_free() and exec() to get 1058 * rid of old thread context ops. 1059 */ 1060 void 1061 freectx(kthread_t *t, int isexec) 1062 { 1063 struct ctxop *ctx; 1064 1065 while ((ctx = t->t_ctx) != NULL) { 1066 t->t_ctx = ctx->next; 1067 if (ctx->free_op != NULL) 1068 (ctx->free_op)(ctx->arg, isexec); 1069 kmem_free(ctx, sizeof (struct ctxop)); 1070 } 1071 } 1072 1073 /* 1074 * Set the thread running; arrange for it to be swapped in if necessary. 1075 */ 1076 void 1077 setrun_locked(kthread_t *t) 1078 { 1079 ASSERT(THREAD_LOCK_HELD(t)); 1080 if (t->t_state == TS_SLEEP) { 1081 /* 1082 * Take off sleep queue. 1083 */ 1084 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1085 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1086 /* 1087 * Already on dispatcher queue. 1088 */ 1089 return; 1090 } else if (t->t_state == TS_WAIT) { 1091 waitq_setrun(t); 1092 } else if (t->t_state == TS_STOPPED) { 1093 /* 1094 * All of the sending of SIGCONT (TC_XSTART) and /proc 1095 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1096 * requested that the thread be run. 1097 * Just calling setrun() is not sufficient to set a stopped 1098 * thread running. TP_TXSTART is always set if the thread 1099 * is not stopped by a jobcontrol stop signal. 1100 * TP_TPSTART is always set if /proc is not controlling it. 1101 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1102 * The thread won't be stopped unless one of these 1103 * three mechanisms did it. 1104 * 1105 * These flags must be set before calling setrun_locked(t). 1106 * They can't be passed as arguments because the streams 1107 * code calls setrun() indirectly and the mechanism for 1108 * doing so admits only one argument. Note that the 1109 * thread must be locked in order to change t_schedflags. 1110 */ 1111 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1112 return; 1113 /* 1114 * Process is no longer stopped (a thread is running). 1115 */ 1116 t->t_whystop = 0; 1117 t->t_whatstop = 0; 1118 /* 1119 * Strictly speaking, we do not have to clear these 1120 * flags here; they are cleared on entry to stop(). 1121 * However, they are confusing when doing kernel 1122 * debugging or when they are revealed by ps(1). 1123 */ 1124 t->t_schedflag &= ~TS_ALLSTART; 1125 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1126 ASSERT(t->t_lockp == &transition_lock); 1127 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1128 /* 1129 * Let the class put the process on the dispatcher queue. 1130 */ 1131 CL_SETRUN(t); 1132 } 1133 } 1134 1135 void 1136 setrun(kthread_t *t) 1137 { 1138 thread_lock(t); 1139 setrun_locked(t); 1140 thread_unlock(t); 1141 } 1142 1143 /* 1144 * Unpin an interrupted thread. 1145 * When an interrupt occurs, the interrupt is handled on the stack 1146 * of an interrupt thread, taken from a pool linked to the CPU structure. 1147 * 1148 * When swtch() is switching away from an interrupt thread because it 1149 * blocked or was preempted, this routine is called to complete the 1150 * saving of the interrupted thread state, and returns the interrupted 1151 * thread pointer so it may be resumed. 1152 * 1153 * Called by swtch() only at high spl. 1154 */ 1155 kthread_t * 1156 thread_unpin() 1157 { 1158 kthread_t *t = curthread; /* current thread */ 1159 kthread_t *itp; /* interrupted thread */ 1160 int i; /* interrupt level */ 1161 extern int intr_passivate(); 1162 1163 ASSERT(t->t_intr != NULL); 1164 1165 itp = t->t_intr; /* interrupted thread */ 1166 t->t_intr = NULL; /* clear interrupt ptr */ 1167 1168 /* 1169 * Get state from interrupt thread for the one 1170 * it interrupted. 1171 */ 1172 1173 i = intr_passivate(t, itp); 1174 1175 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1176 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1177 i, t, t, itp, itp); 1178 1179 /* 1180 * Dissociate the current thread from the interrupted thread's LWP. 1181 */ 1182 t->t_lwp = NULL; 1183 1184 /* 1185 * Interrupt handlers above the level that spinlocks block must 1186 * not block. 1187 */ 1188 #if DEBUG 1189 if (i < 0 || i > LOCK_LEVEL) 1190 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1191 #endif 1192 1193 /* 1194 * Compute the CPU's base interrupt level based on the active 1195 * interrupts. 1196 */ 1197 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1198 set_base_spl(); 1199 1200 return (itp); 1201 } 1202 1203 /* 1204 * Create and initialize an interrupt thread. 1205 * Returns non-zero on error. 1206 * Called at spl7() or better. 1207 */ 1208 void 1209 thread_create_intr(struct cpu *cp) 1210 { 1211 kthread_t *tp; 1212 1213 tp = thread_create(NULL, 0, 1214 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1215 1216 /* 1217 * Set the thread in the TS_FREE state. The state will change 1218 * to TS_ONPROC only while the interrupt is active. Think of these 1219 * as being on a private free list for the CPU. Being TS_FREE keeps 1220 * inactive interrupt threads out of debugger thread lists. 1221 * 1222 * We cannot call thread_create with TS_FREE because of the current 1223 * checks there for ONPROC. Fix this when thread_create takes flags. 1224 */ 1225 THREAD_FREEINTR(tp, cp); 1226 1227 /* 1228 * Nobody should ever reference the credentials of an interrupt 1229 * thread so make it NULL to catch any such references. 1230 */ 1231 tp->t_cred = NULL; 1232 tp->t_flag |= T_INTR_THREAD; 1233 tp->t_cpu = cp; 1234 tp->t_bound_cpu = cp; 1235 tp->t_disp_queue = cp->cpu_disp; 1236 tp->t_affinitycnt = 1; 1237 tp->t_preempt = 1; 1238 1239 /* 1240 * Don't make a user-requested binding on this thread so that 1241 * the processor can be offlined. 1242 */ 1243 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1244 tp->t_bind_pset = PS_NONE; 1245 1246 #if defined(__i386) || defined(__amd64) 1247 tp->t_stk -= STACK_ALIGN; 1248 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1249 #endif 1250 1251 /* 1252 * Link onto CPU's interrupt pool. 1253 */ 1254 tp->t_link = cp->cpu_intr_thread; 1255 cp->cpu_intr_thread = tp; 1256 } 1257 1258 /* 1259 * TSD -- THREAD SPECIFIC DATA 1260 */ 1261 static kmutex_t tsd_mutex; /* linked list spin lock */ 1262 static uint_t tsd_nkeys; /* size of destructor array */ 1263 /* per-key destructor funcs */ 1264 static void (**tsd_destructor)(void *); 1265 /* list of tsd_thread's */ 1266 static struct tsd_thread *tsd_list; 1267 1268 /* 1269 * Default destructor 1270 * Needed because NULL destructor means that the key is unused 1271 */ 1272 /* ARGSUSED */ 1273 void 1274 tsd_defaultdestructor(void *value) 1275 {} 1276 1277 /* 1278 * Create a key (index into per thread array) 1279 * Locks out tsd_create, tsd_destroy, and tsd_exit 1280 * May allocate memory with lock held 1281 */ 1282 void 1283 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1284 { 1285 int i; 1286 uint_t nkeys; 1287 1288 /* 1289 * if key is allocated, do nothing 1290 */ 1291 mutex_enter(&tsd_mutex); 1292 if (*keyp) { 1293 mutex_exit(&tsd_mutex); 1294 return; 1295 } 1296 /* 1297 * find an unused key 1298 */ 1299 if (destructor == NULL) 1300 destructor = tsd_defaultdestructor; 1301 1302 for (i = 0; i < tsd_nkeys; ++i) 1303 if (tsd_destructor[i] == NULL) 1304 break; 1305 1306 /* 1307 * if no unused keys, increase the size of the destructor array 1308 */ 1309 if (i == tsd_nkeys) { 1310 if ((nkeys = (tsd_nkeys << 1)) == 0) 1311 nkeys = 1; 1312 tsd_destructor = 1313 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1314 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1315 (size_t)(nkeys * sizeof (void (*)(void *)))); 1316 tsd_nkeys = nkeys; 1317 } 1318 1319 /* 1320 * allocate the next available unused key 1321 */ 1322 tsd_destructor[i] = destructor; 1323 *keyp = i + 1; 1324 mutex_exit(&tsd_mutex); 1325 } 1326 1327 /* 1328 * Destroy a key -- this is for unloadable modules 1329 * 1330 * Assumes that the caller is preventing tsd_set and tsd_get 1331 * Locks out tsd_create, tsd_destroy, and tsd_exit 1332 * May free memory with lock held 1333 */ 1334 void 1335 tsd_destroy(uint_t *keyp) 1336 { 1337 uint_t key; 1338 struct tsd_thread *tsd; 1339 1340 /* 1341 * protect the key namespace and our destructor lists 1342 */ 1343 mutex_enter(&tsd_mutex); 1344 key = *keyp; 1345 *keyp = 0; 1346 1347 ASSERT(key <= tsd_nkeys); 1348 1349 /* 1350 * if the key is valid 1351 */ 1352 if (key != 0) { 1353 uint_t k = key - 1; 1354 /* 1355 * for every thread with TSD, call key's destructor 1356 */ 1357 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1358 /* 1359 * no TSD for key in this thread 1360 */ 1361 if (key > tsd->ts_nkeys) 1362 continue; 1363 /* 1364 * call destructor for key 1365 */ 1366 if (tsd->ts_value[k] && tsd_destructor[k]) 1367 (*tsd_destructor[k])(tsd->ts_value[k]); 1368 /* 1369 * reset value for key 1370 */ 1371 tsd->ts_value[k] = NULL; 1372 } 1373 /* 1374 * actually free the key (NULL destructor == unused) 1375 */ 1376 tsd_destructor[k] = NULL; 1377 } 1378 1379 mutex_exit(&tsd_mutex); 1380 } 1381 1382 /* 1383 * Quickly return the per thread value that was stored with the specified key 1384 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1385 */ 1386 void * 1387 tsd_get(uint_t key) 1388 { 1389 return (tsd_agent_get(curthread, key)); 1390 } 1391 1392 /* 1393 * Set a per thread value indexed with the specified key 1394 */ 1395 int 1396 tsd_set(uint_t key, void *value) 1397 { 1398 return (tsd_agent_set(curthread, key, value)); 1399 } 1400 1401 /* 1402 * Like tsd_get(), except that the agent lwp can get the tsd of 1403 * another thread in the same process (the agent thread only runs when the 1404 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1405 */ 1406 void * 1407 tsd_agent_get(kthread_t *t, uint_t key) 1408 { 1409 struct tsd_thread *tsd = t->t_tsd; 1410 1411 ASSERT(t == curthread || 1412 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1413 1414 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1415 return (tsd->ts_value[key - 1]); 1416 return (NULL); 1417 } 1418 1419 /* 1420 * Like tsd_set(), except that the agent lwp can set the tsd of 1421 * another thread in the same process, or syslwp can set the tsd 1422 * of a thread it's in the middle of creating. 1423 * 1424 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1425 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1426 * lock held 1427 */ 1428 int 1429 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1430 { 1431 struct tsd_thread *tsd = t->t_tsd; 1432 1433 ASSERT(t == curthread || 1434 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1435 1436 if (key == 0) 1437 return (EINVAL); 1438 if (tsd == NULL) 1439 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1440 if (key <= tsd->ts_nkeys) { 1441 tsd->ts_value[key - 1] = value; 1442 return (0); 1443 } 1444 1445 ASSERT(key <= tsd_nkeys); 1446 1447 /* 1448 * lock out tsd_destroy() 1449 */ 1450 mutex_enter(&tsd_mutex); 1451 if (tsd->ts_nkeys == 0) { 1452 /* 1453 * Link onto list of threads with TSD 1454 */ 1455 if ((tsd->ts_next = tsd_list) != NULL) 1456 tsd_list->ts_prev = tsd; 1457 tsd_list = tsd; 1458 } 1459 1460 /* 1461 * Allocate thread local storage and set the value for key 1462 */ 1463 tsd->ts_value = tsd_realloc(tsd->ts_value, 1464 tsd->ts_nkeys * sizeof (void *), 1465 key * sizeof (void *)); 1466 tsd->ts_nkeys = key; 1467 tsd->ts_value[key - 1] = value; 1468 mutex_exit(&tsd_mutex); 1469 1470 return (0); 1471 } 1472 1473 1474 /* 1475 * Return the per thread value that was stored with the specified key 1476 * If necessary, create the key and the value 1477 * Assumes the caller is protecting *keyp from tsd_destroy 1478 */ 1479 void * 1480 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1481 { 1482 void *value; 1483 uint_t key = *keyp; 1484 struct tsd_thread *tsd = curthread->t_tsd; 1485 1486 if (tsd == NULL) 1487 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1488 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1489 return (value); 1490 if (key == 0) 1491 tsd_create(keyp, destroy); 1492 (void) tsd_set(*keyp, value = (*allocate)()); 1493 1494 return (value); 1495 } 1496 1497 /* 1498 * Called from thread_exit() to run the destructor function for each tsd 1499 * Locks out tsd_create and tsd_destroy 1500 * Assumes that the destructor *DOES NOT* use tsd 1501 */ 1502 void 1503 tsd_exit(void) 1504 { 1505 int i; 1506 struct tsd_thread *tsd = curthread->t_tsd; 1507 1508 if (tsd == NULL) 1509 return; 1510 1511 if (tsd->ts_nkeys == 0) { 1512 kmem_free(tsd, sizeof (*tsd)); 1513 curthread->t_tsd = NULL; 1514 return; 1515 } 1516 1517 /* 1518 * lock out tsd_create and tsd_destroy, call 1519 * the destructor, and mark the value as destroyed. 1520 */ 1521 mutex_enter(&tsd_mutex); 1522 1523 for (i = 0; i < tsd->ts_nkeys; i++) { 1524 if (tsd->ts_value[i] && tsd_destructor[i]) 1525 (*tsd_destructor[i])(tsd->ts_value[i]); 1526 tsd->ts_value[i] = NULL; 1527 } 1528 1529 /* 1530 * remove from linked list of threads with TSD 1531 */ 1532 if (tsd->ts_next) 1533 tsd->ts_next->ts_prev = tsd->ts_prev; 1534 if (tsd->ts_prev) 1535 tsd->ts_prev->ts_next = tsd->ts_next; 1536 if (tsd_list == tsd) 1537 tsd_list = tsd->ts_next; 1538 1539 mutex_exit(&tsd_mutex); 1540 1541 /* 1542 * free up the TSD 1543 */ 1544 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1545 kmem_free(tsd, sizeof (struct tsd_thread)); 1546 curthread->t_tsd = NULL; 1547 } 1548 1549 /* 1550 * realloc 1551 */ 1552 static void * 1553 tsd_realloc(void *old, size_t osize, size_t nsize) 1554 { 1555 void *new; 1556 1557 new = kmem_zalloc(nsize, KM_SLEEP); 1558 if (old) { 1559 bcopy(old, new, osize); 1560 kmem_free(old, osize); 1561 } 1562 return (new); 1563 } 1564 1565 /* 1566 * Check to see if an interrupt thread might be active at a given ipl. 1567 * If so return true. 1568 * We must be conservative--it is ok to give a false yes, but a false no 1569 * will cause disaster. (But if the situation changes after we check it is 1570 * ok--the caller is trying to ensure that an interrupt routine has been 1571 * exited). 1572 * This is used when trying to remove an interrupt handler from an autovector 1573 * list in avintr.c. 1574 */ 1575 int 1576 intr_active(struct cpu *cp, int level) 1577 { 1578 if (level <= LOCK_LEVEL) 1579 return (cp->cpu_thread != cp->cpu_dispthread); 1580 else 1581 return (CPU_ON_INTR(cp)); 1582 } 1583 1584 /* 1585 * Return non-zero if an interrupt is being serviced. 1586 */ 1587 int 1588 servicing_interrupt() 1589 { 1590 int onintr = 0; 1591 1592 /* Are we an interrupt thread */ 1593 if (curthread->t_flag & T_INTR_THREAD) 1594 return (1); 1595 /* Are we servicing a high level interrupt? */ 1596 if (CPU_ON_INTR(CPU)) { 1597 kpreempt_disable(); 1598 onintr = CPU_ON_INTR(CPU); 1599 kpreempt_enable(); 1600 } 1601 return (onintr); 1602 } 1603 1604 1605 /* 1606 * Change the dispatch priority of a thread in the system. 1607 * Used when raising or lowering a thread's priority. 1608 * (E.g., priority inheritance) 1609 * 1610 * Since threads are queued according to their priority, we 1611 * we must check the thread's state to determine whether it 1612 * is on a queue somewhere. If it is, we've got to: 1613 * 1614 * o Dequeue the thread. 1615 * o Change its effective priority. 1616 * o Enqueue the thread. 1617 * 1618 * Assumptions: The thread whose priority we wish to change 1619 * must be locked before we call thread_change_(e)pri(). 1620 * The thread_change(e)pri() function doesn't drop the thread 1621 * lock--that must be done by its caller. 1622 */ 1623 void 1624 thread_change_epri(kthread_t *t, pri_t disp_pri) 1625 { 1626 uint_t state; 1627 1628 ASSERT(THREAD_LOCK_HELD(t)); 1629 1630 /* 1631 * If the inherited priority hasn't actually changed, 1632 * just return. 1633 */ 1634 if (t->t_epri == disp_pri) 1635 return; 1636 1637 state = t->t_state; 1638 1639 /* 1640 * If it's not on a queue, change the priority with 1641 * impunity. 1642 */ 1643 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1644 t->t_epri = disp_pri; 1645 1646 if (state == TS_ONPROC) { 1647 cpu_t *cp = t->t_disp_queue->disp_cpu; 1648 1649 if (t == cp->cpu_dispthread) 1650 cp->cpu_dispatch_pri = DISP_PRIO(t); 1651 } 1652 return; 1653 } 1654 1655 /* 1656 * It's either on a sleep queue or a run queue. 1657 */ 1658 if (state == TS_SLEEP) { 1659 /* 1660 * Take the thread out of its sleep queue. 1661 * Change the inherited priority. 1662 * Re-enqueue the thread. 1663 * Each synchronization object exports a function 1664 * to do this in an appropriate manner. 1665 */ 1666 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1667 } else if (state == TS_WAIT) { 1668 /* 1669 * Re-enqueue a thread on the wait queue if its 1670 * effective priority needs to change. 1671 */ 1672 if (disp_pri != t->t_epri) 1673 waitq_change_pri(t, disp_pri); 1674 } else { 1675 /* 1676 * The thread is on a run queue. 1677 * Note: setbackdq() may not put the thread 1678 * back on the same run queue where it originally 1679 * resided. 1680 */ 1681 (void) dispdeq(t); 1682 t->t_epri = disp_pri; 1683 setbackdq(t); 1684 } 1685 } /* end of thread_change_epri */ 1686 1687 /* 1688 * Function: Change the t_pri field of a thread. 1689 * Side Effects: Adjust the thread ordering on a run queue 1690 * or sleep queue, if necessary. 1691 * Returns: 1 if the thread was on a run queue, else 0. 1692 */ 1693 int 1694 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1695 { 1696 uint_t state; 1697 int on_rq = 0; 1698 1699 ASSERT(THREAD_LOCK_HELD(t)); 1700 1701 state = t->t_state; 1702 THREAD_WILLCHANGE_PRI(t, disp_pri); 1703 1704 /* 1705 * If it's not on a queue, change the priority with 1706 * impunity. 1707 */ 1708 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1709 t->t_pri = disp_pri; 1710 1711 if (state == TS_ONPROC) { 1712 cpu_t *cp = t->t_disp_queue->disp_cpu; 1713 1714 if (t == cp->cpu_dispthread) 1715 cp->cpu_dispatch_pri = DISP_PRIO(t); 1716 } 1717 return (0); 1718 } 1719 1720 /* 1721 * It's either on a sleep queue or a run queue. 1722 */ 1723 if (state == TS_SLEEP) { 1724 /* 1725 * If the priority has changed, take the thread out of 1726 * its sleep queue and change the priority. 1727 * Re-enqueue the thread. 1728 * Each synchronization object exports a function 1729 * to do this in an appropriate manner. 1730 */ 1731 if (disp_pri != t->t_pri) 1732 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1733 } else if (state == TS_WAIT) { 1734 /* 1735 * Re-enqueue a thread on the wait queue if its 1736 * priority needs to change. 1737 */ 1738 if (disp_pri != t->t_pri) 1739 waitq_change_pri(t, disp_pri); 1740 } else { 1741 /* 1742 * The thread is on a run queue. 1743 * Note: setbackdq() may not put the thread 1744 * back on the same run queue where it originally 1745 * resided. 1746 * 1747 * We still requeue the thread even if the priority 1748 * is unchanged to preserve round-robin (and other) 1749 * effects between threads of the same priority. 1750 */ 1751 on_rq = dispdeq(t); 1752 ASSERT(on_rq); 1753 t->t_pri = disp_pri; 1754 if (front) { 1755 setfrontdq(t); 1756 } else { 1757 setbackdq(t); 1758 } 1759 } 1760 return (on_rq); 1761 } 1762