1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/resource.h> 41 #include <sys/task.h> 42 #include <sys/project.h> 43 #include <sys/proc.h> 44 #include <sys/debug.h> 45 #include <sys/disp.h> 46 #include <sys/class.h> 47 #include <vm/seg_kmem.h> 48 #include <vm/seg_kp.h> 49 #include <sys/machlock.h> 50 #include <sys/kmem.h> 51 #include <sys/varargs.h> 52 #include <sys/turnstile.h> 53 #include <sys/poll.h> 54 #include <sys/vtrace.h> 55 #include <sys/callb.h> 56 #include <c2/audit.h> 57 #include <sys/tnf.h> 58 #include <sys/sobject.h> 59 #include <sys/cpupart.h> 60 #include <sys/pset.h> 61 #include <sys/door.h> 62 #include <sys/spl.h> 63 #include <sys/copyops.h> 64 #include <sys/rctl.h> 65 #include <sys/brand.h> 66 #include <sys/pool.h> 67 #include <sys/zone.h> 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tndb.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 78 struct kmem_cache *thread_cache; /* cache of free threads */ 79 struct kmem_cache *lwp_cache; /* cache of free lwps */ 80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 81 82 /* 83 * allthreads is only for use by kmem_readers. All kernel loops can use 84 * the current thread as a start/end point. 85 */ 86 static kthread_t *allthreads = &t0; /* circular list of all threads */ 87 88 static kcondvar_t reaper_cv; /* synchronization var */ 89 kthread_t *thread_deathrow; /* circular list of reapable threads */ 90 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 91 kmutex_t reaplock; /* protects lwp and thread deathrows */ 92 kmutex_t thread_free_lock; /* protects clock from reaper */ 93 int thread_reapcnt = 0; /* number of threads on deathrow */ 94 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 95 int reaplimit = 16; /* delay reaping until reaplimit */ 96 97 extern int nthread; 98 99 id_t syscid; /* system scheduling class ID */ 100 void *segkp_thread; /* cookie for segkp pool */ 101 102 int lwp_cache_sz = 32; 103 int t_cache_sz = 8; 104 static kt_did_t next_t_id = 1; 105 106 /* 107 * Min/Max stack sizes for stack size parameters 108 */ 109 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 110 #define MIN_STKSIZE DEFAULTSTKSZ 111 112 /* 113 * default_stksize overrides lwp_default_stksize if it is set. 114 */ 115 int default_stksize; 116 int lwp_default_stksize; 117 118 static zone_key_t zone_thread_key; 119 120 /* 121 * forward declarations for internal thread specific data (tsd) 122 */ 123 static void *tsd_realloc(void *, size_t, size_t); 124 125 void thread_reaper(void); 126 127 /*ARGSUSED*/ 128 static int 129 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 130 { 131 bzero(buf, sizeof (turnstile_t)); 132 return (0); 133 } 134 135 /*ARGSUSED*/ 136 static void 137 turnstile_destructor(void *buf, void *cdrarg) 138 { 139 turnstile_t *ts = buf; 140 141 ASSERT(ts->ts_free == NULL); 142 ASSERT(ts->ts_waiters == 0); 143 ASSERT(ts->ts_inheritor == NULL); 144 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 145 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 146 } 147 148 void 149 thread_init(void) 150 { 151 kthread_t *tp; 152 extern char sys_name[]; 153 extern void idle(); 154 struct cpu *cpu = CPU; 155 156 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 157 158 #if defined(__i386) || defined(__amd64) 159 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 160 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 161 162 /* 163 * "struct _klwp" includes a "struct pcb", which includes a 164 * "struct fpu", which needs to be 16-byte aligned on amd64 165 * (and even on i386 for fxsave/fxrstor). 166 */ 167 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 168 16, NULL, NULL, NULL, NULL, NULL, 0); 169 #else 170 /* 171 * Allocate thread structures from static_arena. This prevents 172 * issues where a thread tries to relocate its own thread 173 * structure and touches it after the mapping has been suspended. 174 */ 175 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 176 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 177 178 lwp_stk_cache_init(); 179 180 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 181 0, NULL, NULL, NULL, NULL, NULL, 0); 182 #endif 183 184 turnstile_cache = kmem_cache_create("turnstile_cache", 185 sizeof (turnstile_t), 0, 186 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 187 188 label_init(); 189 cred_init(); 190 191 /* 192 * Initialize various resource management facilities. 193 */ 194 rctl_init(); 195 cpucaps_init(); 196 /* 197 * Zone_init() should be called before project_init() so that project ID 198 * for the first project is initialized correctly. 199 */ 200 zone_init(); 201 project_init(); 202 brand_init(); 203 kiconv_init(); 204 task_init(); 205 tcache_init(); 206 pool_init(); 207 208 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 209 210 /* 211 * Originally, we had two parameters to set default stack 212 * size: one for lwp's (lwp_default_stksize), and one for 213 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 214 * Now we have a third parameter that overrides both if it is 215 * set to a legal stack size, called default_stksize. 216 */ 217 218 if (default_stksize == 0) { 219 default_stksize = DEFAULTSTKSZ; 220 } else if (default_stksize % PAGESIZE != 0 || 221 default_stksize > MAX_STKSIZE || 222 default_stksize < MIN_STKSIZE) { 223 cmn_err(CE_WARN, "Illegal stack size. Using %d", 224 (int)DEFAULTSTKSZ); 225 default_stksize = DEFAULTSTKSZ; 226 } else { 227 lwp_default_stksize = default_stksize; 228 } 229 230 if (lwp_default_stksize == 0) { 231 lwp_default_stksize = default_stksize; 232 } else if (lwp_default_stksize % PAGESIZE != 0 || 233 lwp_default_stksize > MAX_STKSIZE || 234 lwp_default_stksize < MIN_STKSIZE) { 235 cmn_err(CE_WARN, "Illegal stack size. Using %d", 236 default_stksize); 237 lwp_default_stksize = default_stksize; 238 } 239 240 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 241 lwp_default_stksize, 242 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 243 244 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 245 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 246 247 (void) getcid(sys_name, &syscid); 248 curthread->t_cid = syscid; /* current thread is t0 */ 249 250 /* 251 * Set up the first CPU's idle thread. 252 * It runs whenever the CPU has nothing worthwhile to do. 253 */ 254 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 255 cpu->cpu_idle_thread = tp; 256 tp->t_preempt = 1; 257 tp->t_disp_queue = cpu->cpu_disp; 258 ASSERT(tp->t_disp_queue != NULL); 259 tp->t_bound_cpu = cpu; 260 tp->t_affinitycnt = 1; 261 262 /* 263 * Registering a thread in the callback table is usually 264 * done in the initialization code of the thread. In this 265 * case, we do it right after thread creation to avoid 266 * blocking idle thread while registering itself. It also 267 * avoids the possibility of reregistration in case a CPU 268 * restarts its idle thread. 269 */ 270 CALLB_CPR_INIT_SAFE(tp, "idle"); 271 272 /* 273 * Create the thread_reaper daemon. From this point on, exited 274 * threads will get reaped. 275 */ 276 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 277 NULL, 0, &p0, TS_RUN, minclsyspri); 278 279 /* 280 * Finish initializing the kernel memory allocator now that 281 * thread_create() is available. 282 */ 283 kmem_thread_init(); 284 285 if (boothowto & RB_DEBUG) 286 kdi_dvec_thravail(); 287 } 288 289 /* 290 * Create a thread. 291 * 292 * thread_create() blocks for memory if necessary. It never fails. 293 * 294 * If stk is NULL, the thread is created at the base of the stack 295 * and cannot be swapped. 296 */ 297 kthread_t * 298 thread_create( 299 caddr_t stk, 300 size_t stksize, 301 void (*proc)(), 302 void *arg, 303 size_t len, 304 proc_t *pp, 305 int state, 306 pri_t pri) 307 { 308 kthread_t *t; 309 extern struct classfuncs sys_classfuncs; 310 turnstile_t *ts; 311 312 /* 313 * Every thread keeps a turnstile around in case it needs to block. 314 * The only reason the turnstile is not simply part of the thread 315 * structure is that we may have to break the association whenever 316 * more than one thread blocks on a given synchronization object. 317 * From a memory-management standpoint, turnstiles are like the 318 * "attached mblks" that hang off dblks in the streams allocator. 319 */ 320 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 321 322 if (stk == NULL) { 323 /* 324 * alloc both thread and stack in segkp chunk 325 */ 326 327 if (stksize < default_stksize) 328 stksize = default_stksize; 329 330 if (stksize == default_stksize) { 331 stk = (caddr_t)segkp_cache_get(segkp_thread); 332 } else { 333 stksize = roundup(stksize, PAGESIZE); 334 stk = (caddr_t)segkp_get(segkp, stksize, 335 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 336 } 337 338 ASSERT(stk != NULL); 339 340 /* 341 * The machine-dependent mutex code may require that 342 * thread pointers (since they may be used for mutex owner 343 * fields) have certain alignment requirements. 344 * PTR24_ALIGN is the size of the alignment quanta. 345 * XXX - assumes stack grows toward low addresses. 346 */ 347 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 348 cmn_err(CE_PANIC, "thread_create: proposed stack size" 349 " too small to hold thread."); 350 #ifdef STACK_GROWTH_DOWN 351 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 352 stksize &= -PTR24_ALIGN; /* make thread aligned */ 353 t = (kthread_t *)(stk + stksize); 354 bzero(t, sizeof (kthread_t)); 355 if (audit_active) 356 audit_thread_create(t); 357 t->t_stk = stk + stksize; 358 t->t_stkbase = stk; 359 #else /* stack grows to larger addresses */ 360 stksize -= SA(sizeof (kthread_t)); 361 t = (kthread_t *)(stk); 362 bzero(t, sizeof (kthread_t)); 363 t->t_stk = stk + sizeof (kthread_t); 364 t->t_stkbase = stk + stksize + sizeof (kthread_t); 365 #endif /* STACK_GROWTH_DOWN */ 366 t->t_flag |= T_TALLOCSTK; 367 t->t_swap = stk; 368 } else { 369 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 370 bzero(t, sizeof (kthread_t)); 371 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 372 if (audit_active) 373 audit_thread_create(t); 374 /* 375 * Initialize t_stk to the kernel stack pointer to use 376 * upon entry to the kernel 377 */ 378 #ifdef STACK_GROWTH_DOWN 379 t->t_stk = stk + stksize; 380 t->t_stkbase = stk; 381 #else 382 t->t_stk = stk; /* 3b2-like */ 383 t->t_stkbase = stk + stksize; 384 #endif /* STACK_GROWTH_DOWN */ 385 } 386 387 /* set default stack flag */ 388 if (stksize == lwp_default_stksize) 389 t->t_flag |= T_DFLTSTK; 390 391 t->t_ts = ts; 392 393 /* 394 * p_cred could be NULL if it thread_create is called before cred_init 395 * is called in main. 396 */ 397 mutex_enter(&pp->p_crlock); 398 if (pp->p_cred) 399 crhold(t->t_cred = pp->p_cred); 400 mutex_exit(&pp->p_crlock); 401 t->t_start = gethrestime_sec(); 402 t->t_startpc = proc; 403 t->t_procp = pp; 404 t->t_clfuncs = &sys_classfuncs.thread; 405 t->t_cid = syscid; 406 t->t_pri = pri; 407 t->t_stime = lbolt; 408 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 409 t->t_bind_cpu = PBIND_NONE; 410 t->t_bind_pset = PS_NONE; 411 t->t_plockp = &pp->p_lock; 412 t->t_copyops = NULL; 413 t->t_taskq = NULL; 414 t->t_anttime = 0; 415 t->t_hatdepth = 0; 416 417 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 418 419 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 420 #ifndef NPROBE 421 /* Kernel probe */ 422 tnf_thread_create(t); 423 #endif /* NPROBE */ 424 LOCK_INIT_CLEAR(&t->t_lock); 425 426 /* 427 * Callers who give us a NULL proc must do their own 428 * stack initialization. e.g. lwp_create() 429 */ 430 if (proc != NULL) { 431 t->t_stk = thread_stk_init(t->t_stk); 432 thread_load(t, proc, arg, len); 433 } 434 435 /* 436 * Put a hold on project0. If this thread is actually in a 437 * different project, then t_proj will be changed later in 438 * lwp_create(). All kernel-only threads must be in project 0. 439 */ 440 t->t_proj = project_hold(proj0p); 441 442 lgrp_affinity_init(&t->t_lgrp_affinity); 443 444 mutex_enter(&pidlock); 445 nthread++; 446 t->t_did = next_t_id++; 447 t->t_prev = curthread->t_prev; 448 t->t_next = curthread; 449 450 /* 451 * Add the thread to the list of all threads, and initialize 452 * its t_cpu pointer. We need to block preemption since 453 * cpu_offline walks the thread list looking for threads 454 * with t_cpu pointing to the CPU being offlined. We want 455 * to make sure that the list is consistent and that if t_cpu 456 * is set, the thread is on the list. 457 */ 458 kpreempt_disable(); 459 curthread->t_prev->t_next = t; 460 curthread->t_prev = t; 461 462 /* 463 * Threads should never have a NULL t_cpu pointer so assign it 464 * here. If the thread is being created with state TS_RUN a 465 * better CPU may be chosen when it is placed on the run queue. 466 * 467 * We need to keep kernel preemption disabled when setting all 468 * three fields to keep them in sync. Also, always create in 469 * the default partition since that's where kernel threads go 470 * (if this isn't a kernel thread, t_cpupart will be changed 471 * in lwp_create before setting the thread runnable). 472 */ 473 t->t_cpupart = &cp_default; 474 475 /* 476 * For now, affiliate this thread with the root lgroup. 477 * Since the kernel does not (presently) allocate its memory 478 * in a locality aware fashion, the root is an appropriate home. 479 * If this thread is later associated with an lwp, it will have 480 * it's lgroup re-assigned at that time. 481 */ 482 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 483 484 /* 485 * Inherit the current cpu. If this cpu isn't part of the chosen 486 * lgroup, a new cpu will be chosen by cpu_choose when the thread 487 * is ready to run. 488 */ 489 if (CPU->cpu_part == &cp_default) 490 t->t_cpu = CPU; 491 else 492 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 493 t->t_pri, NULL); 494 495 t->t_disp_queue = t->t_cpu->cpu_disp; 496 kpreempt_enable(); 497 498 /* 499 * Initialize thread state and the dispatcher lock pointer. 500 * Need to hold onto pidlock to block allthreads walkers until 501 * the state is set. 502 */ 503 switch (state) { 504 case TS_RUN: 505 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 506 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 507 CL_SETRUN(t); 508 thread_unlock(t); 509 break; 510 511 case TS_ONPROC: 512 THREAD_ONPROC(t, t->t_cpu); 513 break; 514 515 case TS_FREE: 516 /* 517 * Free state will be used for intr threads. 518 * The interrupt routine must set the thread dispatcher 519 * lock pointer (t_lockp) if starting on a CPU 520 * other than the current one. 521 */ 522 THREAD_FREEINTR(t, CPU); 523 break; 524 525 case TS_STOPPED: 526 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 527 break; 528 529 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 530 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 531 } 532 mutex_exit(&pidlock); 533 return (t); 534 } 535 536 /* 537 * Move thread to project0 and take care of project reference counters. 538 */ 539 void 540 thread_rele(kthread_t *t) 541 { 542 kproject_t *kpj; 543 544 thread_lock(t); 545 546 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 547 kpj = ttoproj(t); 548 t->t_proj = proj0p; 549 550 thread_unlock(t); 551 552 if (kpj != proj0p) { 553 project_rele(kpj); 554 (void) project_hold(proj0p); 555 } 556 } 557 558 void 559 thread_exit(void) 560 { 561 kthread_t *t = curthread; 562 563 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 564 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 565 566 tsd_exit(); /* Clean up this thread's TSD */ 567 568 kcpc_passivate(); /* clean up performance counter state */ 569 570 /* 571 * No kernel thread should have called poll() without arranging 572 * calling pollcleanup() here. 573 */ 574 ASSERT(t->t_pollstate == NULL); 575 ASSERT(t->t_schedctl == NULL); 576 if (t->t_door) 577 door_slam(); /* in case thread did an upcall */ 578 579 #ifndef NPROBE 580 /* Kernel probe */ 581 if (t->t_tnf_tpdp) 582 tnf_thread_exit(); 583 #endif /* NPROBE */ 584 585 thread_rele(t); 586 t->t_preempt++; 587 588 /* 589 * remove thread from the all threads list so that 590 * death-row can use the same pointers. 591 */ 592 mutex_enter(&pidlock); 593 t->t_next->t_prev = t->t_prev; 594 t->t_prev->t_next = t->t_next; 595 ASSERT(allthreads != t); /* t0 never exits */ 596 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 597 mutex_exit(&pidlock); 598 599 if (t->t_ctx != NULL) 600 exitctx(t); 601 if (t->t_procp->p_pctx != NULL) 602 exitpctx(t->t_procp); 603 604 t->t_state = TS_ZOMB; /* set zombie thread */ 605 606 swtch_from_zombie(); /* give up the CPU */ 607 /* NOTREACHED */ 608 } 609 610 /* 611 * Check to see if the specified thread is active (defined as being on 612 * the thread list). This is certainly a slow way to do this; if there's 613 * ever a reason to speed it up, we could maintain a hash table of active 614 * threads indexed by their t_did. 615 */ 616 static kthread_t * 617 did_to_thread(kt_did_t tid) 618 { 619 kthread_t *t; 620 621 ASSERT(MUTEX_HELD(&pidlock)); 622 for (t = curthread->t_next; t != curthread; t = t->t_next) { 623 if (t->t_did == tid) 624 break; 625 } 626 if (t->t_did == tid) 627 return (t); 628 else 629 return (NULL); 630 } 631 632 /* 633 * Wait for specified thread to exit. Returns immediately if the thread 634 * could not be found, meaning that it has either already exited or never 635 * existed. 636 */ 637 void 638 thread_join(kt_did_t tid) 639 { 640 kthread_t *t; 641 642 ASSERT(tid != curthread->t_did); 643 ASSERT(tid != t0.t_did); 644 645 mutex_enter(&pidlock); 646 /* 647 * Make sure we check that the thread is on the thread list 648 * before blocking on it; otherwise we could end up blocking on 649 * a cv that's already been freed. In other words, don't cache 650 * the thread pointer across calls to cv_wait. 651 * 652 * The choice of loop invariant means that whenever a thread 653 * is taken off the allthreads list, a cv_broadcast must be 654 * performed on that thread's t_joincv to wake up any waiters. 655 * The broadcast doesn't have to happen right away, but it 656 * shouldn't be postponed indefinitely (e.g., by doing it in 657 * thread_free which may only be executed when the deathrow 658 * queue is processed. 659 */ 660 while (t = did_to_thread(tid)) 661 cv_wait(&t->t_joincv, &pidlock); 662 mutex_exit(&pidlock); 663 } 664 665 void 666 thread_free(kthread_t *t) 667 { 668 ASSERT(t != &t0 && t->t_state == TS_FREE); 669 ASSERT(t->t_door == NULL); 670 ASSERT(t->t_schedctl == NULL); 671 ASSERT(t->t_pollstate == NULL); 672 673 t->t_pri = 0; 674 t->t_pc = 0; 675 t->t_sp = 0; 676 t->t_wchan0 = NULL; 677 t->t_wchan = NULL; 678 if (t->t_cred != NULL) { 679 crfree(t->t_cred); 680 t->t_cred = 0; 681 } 682 if (t->t_pdmsg) { 683 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 684 t->t_pdmsg = NULL; 685 } 686 if (audit_active) 687 audit_thread_free(t); 688 #ifndef NPROBE 689 if (t->t_tnf_tpdp) 690 tnf_thread_free(t); 691 #endif /* NPROBE */ 692 if (t->t_cldata) { 693 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 694 } 695 if (t->t_rprof != NULL) { 696 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 697 t->t_rprof = NULL; 698 } 699 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 700 if (t->t_lwp) 701 lwp_freeregs(t->t_lwp, 0); 702 if (t->t_ctx) 703 freectx(t, 0); 704 t->t_stk = NULL; 705 if (t->t_lwp) 706 lwp_stk_fini(t->t_lwp); 707 lock_clear(&t->t_lock); 708 709 if (t->t_ts->ts_waiters > 0) 710 panic("thread_free: turnstile still active"); 711 712 kmem_cache_free(turnstile_cache, t->t_ts); 713 714 free_afd(&t->t_activefd); 715 716 /* 717 * Barrier for clock thread. The clock holds this lock to 718 * keep the thread from going away while it's looking at it. 719 */ 720 mutex_enter(&thread_free_lock); 721 mutex_exit(&thread_free_lock); 722 723 ASSERT(ttoproj(t) == proj0p); 724 project_rele(ttoproj(t)); 725 726 lgrp_affinity_free(&t->t_lgrp_affinity); 727 728 /* 729 * Free thread struct and its stack. 730 */ 731 if (t->t_flag & T_TALLOCSTK) { 732 /* thread struct is embedded in stack */ 733 segkp_release(segkp, t->t_swap); 734 mutex_enter(&pidlock); 735 nthread--; 736 mutex_exit(&pidlock); 737 } else { 738 if (t->t_swap) { 739 segkp_release(segkp, t->t_swap); 740 t->t_swap = NULL; 741 } 742 if (t->t_lwp) { 743 kmem_cache_free(lwp_cache, t->t_lwp); 744 t->t_lwp = NULL; 745 } 746 mutex_enter(&pidlock); 747 nthread--; 748 mutex_exit(&pidlock); 749 kmem_cache_free(thread_cache, t); 750 } 751 } 752 753 /* 754 * Removes threads associated with the given zone from a deathrow queue. 755 * tp is a pointer to the head of the deathrow queue, and countp is a 756 * pointer to the current deathrow count. Returns a linked list of 757 * threads removed from the list. 758 */ 759 static kthread_t * 760 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 761 { 762 kthread_t *tmp, *list = NULL; 763 cred_t *cr; 764 765 ASSERT(MUTEX_HELD(&reaplock)); 766 while (*tp != NULL) { 767 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 768 tmp = *tp; 769 *tp = tmp->t_forw; 770 tmp->t_forw = list; 771 list = tmp; 772 (*countp)--; 773 } else { 774 tp = &(*tp)->t_forw; 775 } 776 } 777 return (list); 778 } 779 780 static void 781 thread_reap_list(kthread_t *t) 782 { 783 kthread_t *next; 784 785 while (t != NULL) { 786 next = t->t_forw; 787 thread_free(t); 788 t = next; 789 } 790 } 791 792 /* ARGSUSED */ 793 static void 794 thread_zone_destroy(zoneid_t zoneid, void *unused) 795 { 796 kthread_t *t, *l; 797 798 mutex_enter(&reaplock); 799 /* 800 * Pull threads and lwps associated with zone off deathrow lists. 801 */ 802 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 803 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 804 mutex_exit(&reaplock); 805 806 /* 807 * Reap threads 808 */ 809 thread_reap_list(t); 810 811 /* 812 * Reap lwps 813 */ 814 thread_reap_list(l); 815 } 816 817 /* 818 * cleanup zombie threads that are on deathrow. 819 */ 820 void 821 thread_reaper() 822 { 823 kthread_t *t, *l; 824 callb_cpr_t cprinfo; 825 826 /* 827 * Register callback to clean up threads when zone is destroyed. 828 */ 829 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 830 831 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 832 for (;;) { 833 mutex_enter(&reaplock); 834 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 835 CALLB_CPR_SAFE_BEGIN(&cprinfo); 836 cv_wait(&reaper_cv, &reaplock); 837 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 838 } 839 t = thread_deathrow; 840 l = lwp_deathrow; 841 thread_deathrow = NULL; 842 lwp_deathrow = NULL; 843 thread_reapcnt = 0; 844 lwp_reapcnt = 0; 845 mutex_exit(&reaplock); 846 847 /* 848 * Reap threads 849 */ 850 thread_reap_list(t); 851 852 /* 853 * Reap lwps 854 */ 855 thread_reap_list(l); 856 } 857 } 858 859 /* 860 * This is called by resume() to put a zombie thread onto deathrow. 861 * The thread's state is changed to TS_FREE to indicate that is reapable. 862 * This is called from the idle thread so it must not block (just spin). 863 */ 864 void 865 reapq_add(kthread_t *t) 866 { 867 mutex_enter(&reaplock); 868 869 /* 870 * lwp_deathrow contains only threads with lwp linkage 871 * that are of the default stacksize. Anything else goes 872 * on thread_deathrow. 873 */ 874 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 875 t->t_forw = lwp_deathrow; 876 lwp_deathrow = t; 877 lwp_reapcnt++; 878 } else { 879 t->t_forw = thread_deathrow; 880 thread_deathrow = t; 881 thread_reapcnt++; 882 } 883 if (lwp_reapcnt + thread_reapcnt > reaplimit) 884 cv_signal(&reaper_cv); /* wake the reaper */ 885 t->t_state = TS_FREE; 886 lock_clear(&t->t_lock); 887 888 /* 889 * Before we return, we need to grab and drop the thread lock for 890 * the dead thread. At this point, the current thread is the idle 891 * thread, and the dead thread's CPU lock points to the current 892 * CPU -- and we must grab and drop the lock to synchronize with 893 * a racing thread walking a blocking chain that the zombie thread 894 * was recently in. By this point, that blocking chain is (by 895 * definition) stale: the dead thread is not holding any locks, and 896 * is therefore not in any blocking chains -- but if we do not regrab 897 * our lock before freeing the dead thread's data structures, the 898 * thread walking the (stale) blocking chain will die on memory 899 * corruption when it attempts to drop the dead thread's lock. We 900 * only need do this once because there is no way for the dead thread 901 * to ever again be on a blocking chain: once we have grabbed and 902 * dropped the thread lock, we are guaranteed that anyone that could 903 * have seen this thread in a blocking chain can no longer see it. 904 */ 905 thread_lock(t); 906 thread_unlock(t); 907 908 mutex_exit(&reaplock); 909 } 910 911 /* 912 * Install thread context ops for the current thread. 913 */ 914 void 915 installctx( 916 kthread_t *t, 917 void *arg, 918 void (*save)(void *), 919 void (*restore)(void *), 920 void (*fork)(void *, void *), 921 void (*lwp_create)(void *, void *), 922 void (*exit)(void *), 923 void (*free)(void *, int)) 924 { 925 struct ctxop *ctx; 926 927 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 928 ctx->save_op = save; 929 ctx->restore_op = restore; 930 ctx->fork_op = fork; 931 ctx->lwp_create_op = lwp_create; 932 ctx->exit_op = exit; 933 ctx->free_op = free; 934 ctx->arg = arg; 935 ctx->next = t->t_ctx; 936 t->t_ctx = ctx; 937 } 938 939 /* 940 * Remove the thread context ops from a thread. 941 */ 942 int 943 removectx( 944 kthread_t *t, 945 void *arg, 946 void (*save)(void *), 947 void (*restore)(void *), 948 void (*fork)(void *, void *), 949 void (*lwp_create)(void *, void *), 950 void (*exit)(void *), 951 void (*free)(void *, int)) 952 { 953 struct ctxop *ctx, *prev_ctx; 954 955 /* 956 * The incoming kthread_t (which is the thread for which the 957 * context ops will be removed) should be one of the following: 958 * 959 * a) the current thread, 960 * 961 * b) a thread of a process that's being forked (SIDL), 962 * 963 * c) a thread that belongs to the same process as the current 964 * thread and for which the current thread is the agent thread, 965 * 966 * d) a thread that is TS_STOPPED which is indicative of it 967 * being (if curthread is not an agent) a thread being created 968 * as part of an lwp creation. 969 */ 970 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 971 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 972 973 /* 974 * Serialize modifications to t->t_ctx to prevent the agent thread 975 * and the target thread from racing with each other during lwp exit. 976 */ 977 mutex_enter(&t->t_ctx_lock); 978 prev_ctx = NULL; 979 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 980 if (ctx->save_op == save && ctx->restore_op == restore && 981 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 982 ctx->exit_op == exit && ctx->free_op == free && 983 ctx->arg == arg) { 984 if (prev_ctx) 985 prev_ctx->next = ctx->next; 986 else 987 t->t_ctx = ctx->next; 988 mutex_exit(&t->t_ctx_lock); 989 if (ctx->free_op != NULL) 990 (ctx->free_op)(ctx->arg, 0); 991 kmem_free(ctx, sizeof (struct ctxop)); 992 return (1); 993 } 994 prev_ctx = ctx; 995 } 996 mutex_exit(&t->t_ctx_lock); 997 998 return (0); 999 } 1000 1001 void 1002 savectx(kthread_t *t) 1003 { 1004 struct ctxop *ctx; 1005 1006 ASSERT(t == curthread); 1007 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1008 if (ctx->save_op != NULL) 1009 (ctx->save_op)(ctx->arg); 1010 } 1011 1012 void 1013 restorectx(kthread_t *t) 1014 { 1015 struct ctxop *ctx; 1016 1017 ASSERT(t == curthread); 1018 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1019 if (ctx->restore_op != NULL) 1020 (ctx->restore_op)(ctx->arg); 1021 } 1022 1023 void 1024 forkctx(kthread_t *t, kthread_t *ct) 1025 { 1026 struct ctxop *ctx; 1027 1028 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1029 if (ctx->fork_op != NULL) 1030 (ctx->fork_op)(t, ct); 1031 } 1032 1033 /* 1034 * Note that this operator is only invoked via the _lwp_create 1035 * system call. The system may have other reasons to create lwps 1036 * e.g. the agent lwp or the doors unreferenced lwp. 1037 */ 1038 void 1039 lwp_createctx(kthread_t *t, kthread_t *ct) 1040 { 1041 struct ctxop *ctx; 1042 1043 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1044 if (ctx->lwp_create_op != NULL) 1045 (ctx->lwp_create_op)(t, ct); 1046 } 1047 1048 /* 1049 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1050 * needed when the thread/LWP leaves the processor for the last time. This 1051 * routine is not intended to deal with freeing memory; freectx() is used for 1052 * that purpose during thread_free(). This routine is provided to allow for 1053 * clean-up that can't wait until thread_free(). 1054 */ 1055 void 1056 exitctx(kthread_t *t) 1057 { 1058 struct ctxop *ctx; 1059 1060 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1061 if (ctx->exit_op != NULL) 1062 (ctx->exit_op)(t); 1063 } 1064 1065 /* 1066 * freectx is called from thread_free() and exec() to get 1067 * rid of old thread context ops. 1068 */ 1069 void 1070 freectx(kthread_t *t, int isexec) 1071 { 1072 struct ctxop *ctx; 1073 1074 while ((ctx = t->t_ctx) != NULL) { 1075 t->t_ctx = ctx->next; 1076 if (ctx->free_op != NULL) 1077 (ctx->free_op)(ctx->arg, isexec); 1078 kmem_free(ctx, sizeof (struct ctxop)); 1079 } 1080 } 1081 1082 /* 1083 * Set the thread running; arrange for it to be swapped in if necessary. 1084 */ 1085 void 1086 setrun_locked(kthread_t *t) 1087 { 1088 ASSERT(THREAD_LOCK_HELD(t)); 1089 if (t->t_state == TS_SLEEP) { 1090 /* 1091 * Take off sleep queue. 1092 */ 1093 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1094 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1095 /* 1096 * Already on dispatcher queue. 1097 */ 1098 return; 1099 } else if (t->t_state == TS_WAIT) { 1100 waitq_setrun(t); 1101 } else if (t->t_state == TS_STOPPED) { 1102 /* 1103 * All of the sending of SIGCONT (TC_XSTART) and /proc 1104 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1105 * requested that the thread be run. 1106 * Just calling setrun() is not sufficient to set a stopped 1107 * thread running. TP_TXSTART is always set if the thread 1108 * is not stopped by a jobcontrol stop signal. 1109 * TP_TPSTART is always set if /proc is not controlling it. 1110 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1111 * The thread won't be stopped unless one of these 1112 * three mechanisms did it. 1113 * 1114 * These flags must be set before calling setrun_locked(t). 1115 * They can't be passed as arguments because the streams 1116 * code calls setrun() indirectly and the mechanism for 1117 * doing so admits only one argument. Note that the 1118 * thread must be locked in order to change t_schedflags. 1119 */ 1120 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1121 return; 1122 /* 1123 * Process is no longer stopped (a thread is running). 1124 */ 1125 t->t_whystop = 0; 1126 t->t_whatstop = 0; 1127 /* 1128 * Strictly speaking, we do not have to clear these 1129 * flags here; they are cleared on entry to stop(). 1130 * However, they are confusing when doing kernel 1131 * debugging or when they are revealed by ps(1). 1132 */ 1133 t->t_schedflag &= ~TS_ALLSTART; 1134 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1135 ASSERT(t->t_lockp == &transition_lock); 1136 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1137 /* 1138 * Let the class put the process on the dispatcher queue. 1139 */ 1140 CL_SETRUN(t); 1141 } 1142 } 1143 1144 void 1145 setrun(kthread_t *t) 1146 { 1147 thread_lock(t); 1148 setrun_locked(t); 1149 thread_unlock(t); 1150 } 1151 1152 /* 1153 * Unpin an interrupted thread. 1154 * When an interrupt occurs, the interrupt is handled on the stack 1155 * of an interrupt thread, taken from a pool linked to the CPU structure. 1156 * 1157 * When swtch() is switching away from an interrupt thread because it 1158 * blocked or was preempted, this routine is called to complete the 1159 * saving of the interrupted thread state, and returns the interrupted 1160 * thread pointer so it may be resumed. 1161 * 1162 * Called by swtch() only at high spl. 1163 */ 1164 kthread_t * 1165 thread_unpin() 1166 { 1167 kthread_t *t = curthread; /* current thread */ 1168 kthread_t *itp; /* interrupted thread */ 1169 int i; /* interrupt level */ 1170 extern int intr_passivate(); 1171 1172 ASSERT(t->t_intr != NULL); 1173 1174 itp = t->t_intr; /* interrupted thread */ 1175 t->t_intr = NULL; /* clear interrupt ptr */ 1176 1177 /* 1178 * Get state from interrupt thread for the one 1179 * it interrupted. 1180 */ 1181 1182 i = intr_passivate(t, itp); 1183 1184 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1185 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1186 i, t, t, itp, itp); 1187 1188 /* 1189 * Dissociate the current thread from the interrupted thread's LWP. 1190 */ 1191 t->t_lwp = NULL; 1192 1193 /* 1194 * Interrupt handlers above the level that spinlocks block must 1195 * not block. 1196 */ 1197 #if DEBUG 1198 if (i < 0 || i > LOCK_LEVEL) 1199 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1200 #endif 1201 1202 /* 1203 * Compute the CPU's base interrupt level based on the active 1204 * interrupts. 1205 */ 1206 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1207 set_base_spl(); 1208 1209 return (itp); 1210 } 1211 1212 /* 1213 * Create and initialize an interrupt thread. 1214 * Returns non-zero on error. 1215 * Called at spl7() or better. 1216 */ 1217 void 1218 thread_create_intr(struct cpu *cp) 1219 { 1220 kthread_t *tp; 1221 1222 tp = thread_create(NULL, 0, 1223 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1224 1225 /* 1226 * Set the thread in the TS_FREE state. The state will change 1227 * to TS_ONPROC only while the interrupt is active. Think of these 1228 * as being on a private free list for the CPU. Being TS_FREE keeps 1229 * inactive interrupt threads out of debugger thread lists. 1230 * 1231 * We cannot call thread_create with TS_FREE because of the current 1232 * checks there for ONPROC. Fix this when thread_create takes flags. 1233 */ 1234 THREAD_FREEINTR(tp, cp); 1235 1236 /* 1237 * Nobody should ever reference the credentials of an interrupt 1238 * thread so make it NULL to catch any such references. 1239 */ 1240 tp->t_cred = NULL; 1241 tp->t_flag |= T_INTR_THREAD; 1242 tp->t_cpu = cp; 1243 tp->t_bound_cpu = cp; 1244 tp->t_disp_queue = cp->cpu_disp; 1245 tp->t_affinitycnt = 1; 1246 tp->t_preempt = 1; 1247 1248 /* 1249 * Don't make a user-requested binding on this thread so that 1250 * the processor can be offlined. 1251 */ 1252 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1253 tp->t_bind_pset = PS_NONE; 1254 1255 #if defined(__i386) || defined(__amd64) 1256 tp->t_stk -= STACK_ALIGN; 1257 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1258 #endif 1259 1260 /* 1261 * Link onto CPU's interrupt pool. 1262 */ 1263 tp->t_link = cp->cpu_intr_thread; 1264 cp->cpu_intr_thread = tp; 1265 } 1266 1267 /* 1268 * TSD -- THREAD SPECIFIC DATA 1269 */ 1270 static kmutex_t tsd_mutex; /* linked list spin lock */ 1271 static uint_t tsd_nkeys; /* size of destructor array */ 1272 /* per-key destructor funcs */ 1273 static void (**tsd_destructor)(void *); 1274 /* list of tsd_thread's */ 1275 static struct tsd_thread *tsd_list; 1276 1277 /* 1278 * Default destructor 1279 * Needed because NULL destructor means that the key is unused 1280 */ 1281 /* ARGSUSED */ 1282 void 1283 tsd_defaultdestructor(void *value) 1284 {} 1285 1286 /* 1287 * Create a key (index into per thread array) 1288 * Locks out tsd_create, tsd_destroy, and tsd_exit 1289 * May allocate memory with lock held 1290 */ 1291 void 1292 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1293 { 1294 int i; 1295 uint_t nkeys; 1296 1297 /* 1298 * if key is allocated, do nothing 1299 */ 1300 mutex_enter(&tsd_mutex); 1301 if (*keyp) { 1302 mutex_exit(&tsd_mutex); 1303 return; 1304 } 1305 /* 1306 * find an unused key 1307 */ 1308 if (destructor == NULL) 1309 destructor = tsd_defaultdestructor; 1310 1311 for (i = 0; i < tsd_nkeys; ++i) 1312 if (tsd_destructor[i] == NULL) 1313 break; 1314 1315 /* 1316 * if no unused keys, increase the size of the destructor array 1317 */ 1318 if (i == tsd_nkeys) { 1319 if ((nkeys = (tsd_nkeys << 1)) == 0) 1320 nkeys = 1; 1321 tsd_destructor = 1322 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1323 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1324 (size_t)(nkeys * sizeof (void (*)(void *)))); 1325 tsd_nkeys = nkeys; 1326 } 1327 1328 /* 1329 * allocate the next available unused key 1330 */ 1331 tsd_destructor[i] = destructor; 1332 *keyp = i + 1; 1333 mutex_exit(&tsd_mutex); 1334 } 1335 1336 /* 1337 * Destroy a key -- this is for unloadable modules 1338 * 1339 * Assumes that the caller is preventing tsd_set and tsd_get 1340 * Locks out tsd_create, tsd_destroy, and tsd_exit 1341 * May free memory with lock held 1342 */ 1343 void 1344 tsd_destroy(uint_t *keyp) 1345 { 1346 uint_t key; 1347 struct tsd_thread *tsd; 1348 1349 /* 1350 * protect the key namespace and our destructor lists 1351 */ 1352 mutex_enter(&tsd_mutex); 1353 key = *keyp; 1354 *keyp = 0; 1355 1356 ASSERT(key <= tsd_nkeys); 1357 1358 /* 1359 * if the key is valid 1360 */ 1361 if (key != 0) { 1362 uint_t k = key - 1; 1363 /* 1364 * for every thread with TSD, call key's destructor 1365 */ 1366 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1367 /* 1368 * no TSD for key in this thread 1369 */ 1370 if (key > tsd->ts_nkeys) 1371 continue; 1372 /* 1373 * call destructor for key 1374 */ 1375 if (tsd->ts_value[k] && tsd_destructor[k]) 1376 (*tsd_destructor[k])(tsd->ts_value[k]); 1377 /* 1378 * reset value for key 1379 */ 1380 tsd->ts_value[k] = NULL; 1381 } 1382 /* 1383 * actually free the key (NULL destructor == unused) 1384 */ 1385 tsd_destructor[k] = NULL; 1386 } 1387 1388 mutex_exit(&tsd_mutex); 1389 } 1390 1391 /* 1392 * Quickly return the per thread value that was stored with the specified key 1393 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1394 */ 1395 void * 1396 tsd_get(uint_t key) 1397 { 1398 return (tsd_agent_get(curthread, key)); 1399 } 1400 1401 /* 1402 * Set a per thread value indexed with the specified key 1403 */ 1404 int 1405 tsd_set(uint_t key, void *value) 1406 { 1407 return (tsd_agent_set(curthread, key, value)); 1408 } 1409 1410 /* 1411 * Like tsd_get(), except that the agent lwp can get the tsd of 1412 * another thread in the same process (the agent thread only runs when the 1413 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1414 */ 1415 void * 1416 tsd_agent_get(kthread_t *t, uint_t key) 1417 { 1418 struct tsd_thread *tsd = t->t_tsd; 1419 1420 ASSERT(t == curthread || 1421 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1422 1423 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1424 return (tsd->ts_value[key - 1]); 1425 return (NULL); 1426 } 1427 1428 /* 1429 * Like tsd_set(), except that the agent lwp can set the tsd of 1430 * another thread in the same process, or syslwp can set the tsd 1431 * of a thread it's in the middle of creating. 1432 * 1433 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1434 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1435 * lock held 1436 */ 1437 int 1438 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1439 { 1440 struct tsd_thread *tsd = t->t_tsd; 1441 1442 ASSERT(t == curthread || 1443 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1444 1445 if (key == 0) 1446 return (EINVAL); 1447 if (tsd == NULL) 1448 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1449 if (key <= tsd->ts_nkeys) { 1450 tsd->ts_value[key - 1] = value; 1451 return (0); 1452 } 1453 1454 ASSERT(key <= tsd_nkeys); 1455 1456 /* 1457 * lock out tsd_destroy() 1458 */ 1459 mutex_enter(&tsd_mutex); 1460 if (tsd->ts_nkeys == 0) { 1461 /* 1462 * Link onto list of threads with TSD 1463 */ 1464 if ((tsd->ts_next = tsd_list) != NULL) 1465 tsd_list->ts_prev = tsd; 1466 tsd_list = tsd; 1467 } 1468 1469 /* 1470 * Allocate thread local storage and set the value for key 1471 */ 1472 tsd->ts_value = tsd_realloc(tsd->ts_value, 1473 tsd->ts_nkeys * sizeof (void *), 1474 key * sizeof (void *)); 1475 tsd->ts_nkeys = key; 1476 tsd->ts_value[key - 1] = value; 1477 mutex_exit(&tsd_mutex); 1478 1479 return (0); 1480 } 1481 1482 1483 /* 1484 * Return the per thread value that was stored with the specified key 1485 * If necessary, create the key and the value 1486 * Assumes the caller is protecting *keyp from tsd_destroy 1487 */ 1488 void * 1489 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1490 { 1491 void *value; 1492 uint_t key = *keyp; 1493 struct tsd_thread *tsd = curthread->t_tsd; 1494 1495 if (tsd == NULL) 1496 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1497 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1498 return (value); 1499 if (key == 0) 1500 tsd_create(keyp, destroy); 1501 (void) tsd_set(*keyp, value = (*allocate)()); 1502 1503 return (value); 1504 } 1505 1506 /* 1507 * Called from thread_exit() to run the destructor function for each tsd 1508 * Locks out tsd_create and tsd_destroy 1509 * Assumes that the destructor *DOES NOT* use tsd 1510 */ 1511 void 1512 tsd_exit(void) 1513 { 1514 int i; 1515 struct tsd_thread *tsd = curthread->t_tsd; 1516 1517 if (tsd == NULL) 1518 return; 1519 1520 if (tsd->ts_nkeys == 0) { 1521 kmem_free(tsd, sizeof (*tsd)); 1522 curthread->t_tsd = NULL; 1523 return; 1524 } 1525 1526 /* 1527 * lock out tsd_create and tsd_destroy, call 1528 * the destructor, and mark the value as destroyed. 1529 */ 1530 mutex_enter(&tsd_mutex); 1531 1532 for (i = 0; i < tsd->ts_nkeys; i++) { 1533 if (tsd->ts_value[i] && tsd_destructor[i]) 1534 (*tsd_destructor[i])(tsd->ts_value[i]); 1535 tsd->ts_value[i] = NULL; 1536 } 1537 1538 /* 1539 * remove from linked list of threads with TSD 1540 */ 1541 if (tsd->ts_next) 1542 tsd->ts_next->ts_prev = tsd->ts_prev; 1543 if (tsd->ts_prev) 1544 tsd->ts_prev->ts_next = tsd->ts_next; 1545 if (tsd_list == tsd) 1546 tsd_list = tsd->ts_next; 1547 1548 mutex_exit(&tsd_mutex); 1549 1550 /* 1551 * free up the TSD 1552 */ 1553 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1554 kmem_free(tsd, sizeof (struct tsd_thread)); 1555 curthread->t_tsd = NULL; 1556 } 1557 1558 /* 1559 * realloc 1560 */ 1561 static void * 1562 tsd_realloc(void *old, size_t osize, size_t nsize) 1563 { 1564 void *new; 1565 1566 new = kmem_zalloc(nsize, KM_SLEEP); 1567 if (old) { 1568 bcopy(old, new, osize); 1569 kmem_free(old, osize); 1570 } 1571 return (new); 1572 } 1573 1574 /* 1575 * Check to see if an interrupt thread might be active at a given ipl. 1576 * If so return true. 1577 * We must be conservative--it is ok to give a false yes, but a false no 1578 * will cause disaster. (But if the situation changes after we check it is 1579 * ok--the caller is trying to ensure that an interrupt routine has been 1580 * exited). 1581 * This is used when trying to remove an interrupt handler from an autovector 1582 * list in avintr.c. 1583 */ 1584 int 1585 intr_active(struct cpu *cp, int level) 1586 { 1587 if (level <= LOCK_LEVEL) 1588 return (cp->cpu_thread != cp->cpu_dispthread); 1589 else 1590 return (CPU_ON_INTR(cp)); 1591 } 1592 1593 /* 1594 * Return non-zero if an interrupt is being serviced. 1595 */ 1596 int 1597 servicing_interrupt() 1598 { 1599 int onintr = 0; 1600 1601 /* Are we an interrupt thread */ 1602 if (curthread->t_flag & T_INTR_THREAD) 1603 return (1); 1604 /* Are we servicing a high level interrupt? */ 1605 if (CPU_ON_INTR(CPU)) { 1606 kpreempt_disable(); 1607 onintr = CPU_ON_INTR(CPU); 1608 kpreempt_enable(); 1609 } 1610 return (onintr); 1611 } 1612 1613 1614 /* 1615 * Change the dispatch priority of a thread in the system. 1616 * Used when raising or lowering a thread's priority. 1617 * (E.g., priority inheritance) 1618 * 1619 * Since threads are queued according to their priority, we 1620 * we must check the thread's state to determine whether it 1621 * is on a queue somewhere. If it is, we've got to: 1622 * 1623 * o Dequeue the thread. 1624 * o Change its effective priority. 1625 * o Enqueue the thread. 1626 * 1627 * Assumptions: The thread whose priority we wish to change 1628 * must be locked before we call thread_change_(e)pri(). 1629 * The thread_change(e)pri() function doesn't drop the thread 1630 * lock--that must be done by its caller. 1631 */ 1632 void 1633 thread_change_epri(kthread_t *t, pri_t disp_pri) 1634 { 1635 uint_t state; 1636 1637 ASSERT(THREAD_LOCK_HELD(t)); 1638 1639 /* 1640 * If the inherited priority hasn't actually changed, 1641 * just return. 1642 */ 1643 if (t->t_epri == disp_pri) 1644 return; 1645 1646 state = t->t_state; 1647 1648 /* 1649 * If it's not on a queue, change the priority with 1650 * impunity. 1651 */ 1652 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1653 t->t_epri = disp_pri; 1654 1655 if (state == TS_ONPROC) { 1656 cpu_t *cp = t->t_disp_queue->disp_cpu; 1657 1658 if (t == cp->cpu_dispthread) 1659 cp->cpu_dispatch_pri = DISP_PRIO(t); 1660 } 1661 return; 1662 } 1663 1664 /* 1665 * It's either on a sleep queue or a run queue. 1666 */ 1667 if (state == TS_SLEEP) { 1668 /* 1669 * Take the thread out of its sleep queue. 1670 * Change the inherited priority. 1671 * Re-enqueue the thread. 1672 * Each synchronization object exports a function 1673 * to do this in an appropriate manner. 1674 */ 1675 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1676 } else if (state == TS_WAIT) { 1677 /* 1678 * Re-enqueue a thread on the wait queue if its 1679 * effective priority needs to change. 1680 */ 1681 if (disp_pri != t->t_epri) 1682 waitq_change_pri(t, disp_pri); 1683 } else { 1684 /* 1685 * The thread is on a run queue. 1686 * Note: setbackdq() may not put the thread 1687 * back on the same run queue where it originally 1688 * resided. 1689 */ 1690 (void) dispdeq(t); 1691 t->t_epri = disp_pri; 1692 setbackdq(t); 1693 } 1694 } /* end of thread_change_epri */ 1695 1696 /* 1697 * Function: Change the t_pri field of a thread. 1698 * Side Effects: Adjust the thread ordering on a run queue 1699 * or sleep queue, if necessary. 1700 * Returns: 1 if the thread was on a run queue, else 0. 1701 */ 1702 int 1703 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1704 { 1705 uint_t state; 1706 int on_rq = 0; 1707 1708 ASSERT(THREAD_LOCK_HELD(t)); 1709 1710 state = t->t_state; 1711 THREAD_WILLCHANGE_PRI(t, disp_pri); 1712 1713 /* 1714 * If it's not on a queue, change the priority with 1715 * impunity. 1716 */ 1717 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1718 t->t_pri = disp_pri; 1719 1720 if (state == TS_ONPROC) { 1721 cpu_t *cp = t->t_disp_queue->disp_cpu; 1722 1723 if (t == cp->cpu_dispthread) 1724 cp->cpu_dispatch_pri = DISP_PRIO(t); 1725 } 1726 return (0); 1727 } 1728 1729 /* 1730 * It's either on a sleep queue or a run queue. 1731 */ 1732 if (state == TS_SLEEP) { 1733 /* 1734 * If the priority has changed, take the thread out of 1735 * its sleep queue and change the priority. 1736 * Re-enqueue the thread. 1737 * Each synchronization object exports a function 1738 * to do this in an appropriate manner. 1739 */ 1740 if (disp_pri != t->t_pri) 1741 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1742 } else if (state == TS_WAIT) { 1743 /* 1744 * Re-enqueue a thread on the wait queue if its 1745 * priority needs to change. 1746 */ 1747 if (disp_pri != t->t_pri) 1748 waitq_change_pri(t, disp_pri); 1749 } else { 1750 /* 1751 * The thread is on a run queue. 1752 * Note: setbackdq() may not put the thread 1753 * back on the same run queue where it originally 1754 * resided. 1755 * 1756 * We still requeue the thread even if the priority 1757 * is unchanged to preserve round-robin (and other) 1758 * effects between threads of the same priority. 1759 */ 1760 on_rq = dispdeq(t); 1761 ASSERT(on_rq); 1762 t->t_pri = disp_pri; 1763 if (front) { 1764 setfrontdq(t); 1765 } else { 1766 setbackdq(t); 1767 } 1768 } 1769 return (on_rq); 1770 } 1771