xref: /titanic_50/usr/src/uts/common/disp/thread.c (revision 918a0d8ae0916c29c35aae9b95c22b02a0c6e390)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/stack.h>
34 #include <sys/pcb.h>
35 #include <sys/user.h>
36 #include <sys/systm.h>
37 #include <sys/sysinfo.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/cred.h>
41 #include <sys/resource.h>
42 #include <sys/task.h>
43 #include <sys/project.h>
44 #include <sys/proc.h>
45 #include <sys/debug.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kp.h>
50 #include <sys/machlock.h>
51 #include <sys/kmem.h>
52 #include <sys/varargs.h>
53 #include <sys/turnstile.h>
54 #include <sys/poll.h>
55 #include <sys/vtrace.h>
56 #include <sys/callb.h>
57 #include <c2/audit.h>
58 #include <sys/tnf.h>
59 #include <sys/sobject.h>
60 #include <sys/cpupart.h>
61 #include <sys/pset.h>
62 #include <sys/door.h>
63 #include <sys/spl.h>
64 #include <sys/copyops.h>
65 #include <sys/rctl.h>
66 #include <sys/brand.h>
67 #include <sys/pool.h>
68 #include <sys/zone.h>
69 #include <sys/tsol/label.h>
70 #include <sys/tsol/tndb.h>
71 #include <sys/cpc_impl.h>
72 #include <sys/sdt.h>
73 #include <sys/reboot.h>
74 #include <sys/kdi.h>
75 #include <sys/schedctl.h>
76 #include <sys/waitq.h>
77 #include <sys/cpucaps.h>
78 #include <sys/kiconv.h>
79 
80 struct kmem_cache *thread_cache;	/* cache of free threads */
81 struct kmem_cache *lwp_cache;		/* cache of free lwps */
82 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
83 
84 /*
85  * allthreads is only for use by kmem_readers.  All kernel loops can use
86  * the current thread as a start/end point.
87  */
88 static kthread_t *allthreads = &t0;	/* circular list of all threads */
89 
90 static kcondvar_t reaper_cv;		/* synchronization var */
91 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
92 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
93 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
94 int	thread_reapcnt = 0;		/* number of threads on deathrow */
95 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
96 int	reaplimit = 16;			/* delay reaping until reaplimit */
97 
98 thread_free_lock_t	*thread_free_lock;
99 					/* protects tick thread from reaper */
100 
101 extern int nthread;
102 
103 id_t	syscid;				/* system scheduling class ID */
104 void	*segkp_thread;			/* cookie for segkp pool */
105 
106 int lwp_cache_sz = 32;
107 int t_cache_sz = 8;
108 static kt_did_t next_t_id = 1;
109 
110 /* Default mode for thread binding to CPUs and processor sets */
111 int default_binding_mode = TB_ALLHARD;
112 
113 /*
114  * Min/Max stack sizes for stack size parameters
115  */
116 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
117 #define	MIN_STKSIZE	DEFAULTSTKSZ
118 
119 /*
120  * default_stksize overrides lwp_default_stksize if it is set.
121  */
122 int	default_stksize;
123 int	lwp_default_stksize;
124 
125 static zone_key_t zone_thread_key;
126 
127 /*
128  * forward declarations for internal thread specific data (tsd)
129  */
130 static void *tsd_realloc(void *, size_t, size_t);
131 
132 void thread_reaper(void);
133 
134 /*ARGSUSED*/
135 static int
136 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
137 {
138 	bzero(buf, sizeof (turnstile_t));
139 	return (0);
140 }
141 
142 /*ARGSUSED*/
143 static void
144 turnstile_destructor(void *buf, void *cdrarg)
145 {
146 	turnstile_t *ts = buf;
147 
148 	ASSERT(ts->ts_free == NULL);
149 	ASSERT(ts->ts_waiters == 0);
150 	ASSERT(ts->ts_inheritor == NULL);
151 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
152 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
153 }
154 
155 void
156 thread_init(void)
157 {
158 	kthread_t *tp;
159 	extern char sys_name[];
160 	extern void idle();
161 	struct cpu *cpu = CPU;
162 	int i;
163 	kmutex_t *lp;
164 
165 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
166 	thread_free_lock =
167 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
168 	for (i = 0; i < THREAD_FREE_NUM; i++) {
169 		lp = &thread_free_lock[i].tf_lock;
170 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
171 	}
172 
173 #if defined(__i386) || defined(__amd64)
174 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
175 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
176 
177 	/*
178 	 * "struct _klwp" includes a "struct pcb", which includes a
179 	 * "struct fpu", which needs to be 16-byte aligned on amd64
180 	 * (and even on i386 for fxsave/fxrstor).
181 	 */
182 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
183 	    16, NULL, NULL, NULL, NULL, NULL, 0);
184 #else
185 	/*
186 	 * Allocate thread structures from static_arena.  This prevents
187 	 * issues where a thread tries to relocate its own thread
188 	 * structure and touches it after the mapping has been suspended.
189 	 */
190 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
191 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
192 
193 	lwp_stk_cache_init();
194 
195 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
196 	    0, NULL, NULL, NULL, NULL, NULL, 0);
197 #endif
198 
199 	turnstile_cache = kmem_cache_create("turnstile_cache",
200 	    sizeof (turnstile_t), 0,
201 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
202 
203 	label_init();
204 	cred_init();
205 
206 	/*
207 	 * Initialize various resource management facilities.
208 	 */
209 	rctl_init();
210 	cpucaps_init();
211 	/*
212 	 * Zone_init() should be called before project_init() so that project ID
213 	 * for the first project is initialized correctly.
214 	 */
215 	zone_init();
216 	project_init();
217 	brand_init();
218 	kiconv_init();
219 	task_init();
220 	tcache_init();
221 	pool_init();
222 
223 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
224 
225 	/*
226 	 * Originally, we had two parameters to set default stack
227 	 * size: one for lwp's (lwp_default_stksize), and one for
228 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
229 	 * Now we have a third parameter that overrides both if it is
230 	 * set to a legal stack size, called default_stksize.
231 	 */
232 
233 	if (default_stksize == 0) {
234 		default_stksize = DEFAULTSTKSZ;
235 	} else if (default_stksize % PAGESIZE != 0 ||
236 	    default_stksize > MAX_STKSIZE ||
237 	    default_stksize < MIN_STKSIZE) {
238 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
239 		    (int)DEFAULTSTKSZ);
240 		default_stksize = DEFAULTSTKSZ;
241 	} else {
242 		lwp_default_stksize = default_stksize;
243 	}
244 
245 	if (lwp_default_stksize == 0) {
246 		lwp_default_stksize = default_stksize;
247 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
248 	    lwp_default_stksize > MAX_STKSIZE ||
249 	    lwp_default_stksize < MIN_STKSIZE) {
250 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
251 		    default_stksize);
252 		lwp_default_stksize = default_stksize;
253 	}
254 
255 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
256 	    lwp_default_stksize,
257 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
258 
259 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
260 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
261 
262 	(void) getcid(sys_name, &syscid);
263 	curthread->t_cid = syscid;	/* current thread is t0 */
264 
265 	/*
266 	 * Set up the first CPU's idle thread.
267 	 * It runs whenever the CPU has nothing worthwhile to do.
268 	 */
269 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
270 	cpu->cpu_idle_thread = tp;
271 	tp->t_preempt = 1;
272 	tp->t_disp_queue = cpu->cpu_disp;
273 	ASSERT(tp->t_disp_queue != NULL);
274 	tp->t_bound_cpu = cpu;
275 	tp->t_affinitycnt = 1;
276 
277 	/*
278 	 * Registering a thread in the callback table is usually
279 	 * done in the initialization code of the thread. In this
280 	 * case, we do it right after thread creation to avoid
281 	 * blocking idle thread while registering itself. It also
282 	 * avoids the possibility of reregistration in case a CPU
283 	 * restarts its idle thread.
284 	 */
285 	CALLB_CPR_INIT_SAFE(tp, "idle");
286 
287 	/*
288 	 * Create the thread_reaper daemon. From this point on, exited
289 	 * threads will get reaped.
290 	 */
291 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
292 	    NULL, 0, &p0, TS_RUN, minclsyspri);
293 
294 	/*
295 	 * Finish initializing the kernel memory allocator now that
296 	 * thread_create() is available.
297 	 */
298 	kmem_thread_init();
299 
300 	if (boothowto & RB_DEBUG)
301 		kdi_dvec_thravail();
302 }
303 
304 /*
305  * Create a thread.
306  *
307  * thread_create() blocks for memory if necessary.  It never fails.
308  *
309  * If stk is NULL, the thread is created at the base of the stack
310  * and cannot be swapped.
311  */
312 kthread_t *
313 thread_create(
314 	caddr_t	stk,
315 	size_t	stksize,
316 	void	(*proc)(),
317 	void	*arg,
318 	size_t	len,
319 	proc_t	 *pp,
320 	int	state,
321 	pri_t	pri)
322 {
323 	kthread_t *t;
324 	extern struct classfuncs sys_classfuncs;
325 	turnstile_t *ts;
326 
327 	/*
328 	 * Every thread keeps a turnstile around in case it needs to block.
329 	 * The only reason the turnstile is not simply part of the thread
330 	 * structure is that we may have to break the association whenever
331 	 * more than one thread blocks on a given synchronization object.
332 	 * From a memory-management standpoint, turnstiles are like the
333 	 * "attached mblks" that hang off dblks in the streams allocator.
334 	 */
335 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
336 
337 	if (stk == NULL) {
338 		/*
339 		 * alloc both thread and stack in segkp chunk
340 		 */
341 
342 		if (stksize < default_stksize)
343 			stksize = default_stksize;
344 
345 		if (stksize == default_stksize) {
346 			stk = (caddr_t)segkp_cache_get(segkp_thread);
347 		} else {
348 			stksize = roundup(stksize, PAGESIZE);
349 			stk = (caddr_t)segkp_get(segkp, stksize,
350 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
351 		}
352 
353 		ASSERT(stk != NULL);
354 
355 		/*
356 		 * The machine-dependent mutex code may require that
357 		 * thread pointers (since they may be used for mutex owner
358 		 * fields) have certain alignment requirements.
359 		 * PTR24_ALIGN is the size of the alignment quanta.
360 		 * XXX - assumes stack grows toward low addresses.
361 		 */
362 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
363 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
364 			    " too small to hold thread.");
365 #ifdef STACK_GROWTH_DOWN
366 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
367 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
368 		t = (kthread_t *)(stk + stksize);
369 		bzero(t, sizeof (kthread_t));
370 		if (audit_active)
371 			audit_thread_create(t);
372 		t->t_stk = stk + stksize;
373 		t->t_stkbase = stk;
374 #else	/* stack grows to larger addresses */
375 		stksize -= SA(sizeof (kthread_t));
376 		t = (kthread_t *)(stk);
377 		bzero(t, sizeof (kthread_t));
378 		t->t_stk = stk + sizeof (kthread_t);
379 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
380 #endif	/* STACK_GROWTH_DOWN */
381 		t->t_flag |= T_TALLOCSTK;
382 		t->t_swap = stk;
383 	} else {
384 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
385 		bzero(t, sizeof (kthread_t));
386 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
387 		if (audit_active)
388 			audit_thread_create(t);
389 		/*
390 		 * Initialize t_stk to the kernel stack pointer to use
391 		 * upon entry to the kernel
392 		 */
393 #ifdef STACK_GROWTH_DOWN
394 		t->t_stk = stk + stksize;
395 		t->t_stkbase = stk;
396 #else
397 		t->t_stk = stk;			/* 3b2-like */
398 		t->t_stkbase = stk + stksize;
399 #endif /* STACK_GROWTH_DOWN */
400 	}
401 
402 	/* set default stack flag */
403 	if (stksize == lwp_default_stksize)
404 		t->t_flag |= T_DFLTSTK;
405 
406 	t->t_ts = ts;
407 
408 	/*
409 	 * p_cred could be NULL if it thread_create is called before cred_init
410 	 * is called in main.
411 	 */
412 	mutex_enter(&pp->p_crlock);
413 	if (pp->p_cred)
414 		crhold(t->t_cred = pp->p_cred);
415 	mutex_exit(&pp->p_crlock);
416 	t->t_start = gethrestime_sec();
417 	t->t_startpc = proc;
418 	t->t_procp = pp;
419 	t->t_clfuncs = &sys_classfuncs.thread;
420 	t->t_cid = syscid;
421 	t->t_pri = pri;
422 	t->t_stime = lbolt;
423 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
424 	t->t_bind_cpu = PBIND_NONE;
425 	t->t_bindflag = (uchar_t)default_binding_mode;
426 	t->t_bind_pset = PS_NONE;
427 	t->t_plockp = &pp->p_lock;
428 	t->t_copyops = NULL;
429 	t->t_taskq = NULL;
430 	t->t_anttime = 0;
431 	t->t_hatdepth = 0;
432 
433 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
434 
435 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
436 #ifndef NPROBE
437 	/* Kernel probe */
438 	tnf_thread_create(t);
439 #endif /* NPROBE */
440 	LOCK_INIT_CLEAR(&t->t_lock);
441 
442 	/*
443 	 * Callers who give us a NULL proc must do their own
444 	 * stack initialization.  e.g. lwp_create()
445 	 */
446 	if (proc != NULL) {
447 		t->t_stk = thread_stk_init(t->t_stk);
448 		thread_load(t, proc, arg, len);
449 	}
450 
451 	/*
452 	 * Put a hold on project0. If this thread is actually in a
453 	 * different project, then t_proj will be changed later in
454 	 * lwp_create().  All kernel-only threads must be in project 0.
455 	 */
456 	t->t_proj = project_hold(proj0p);
457 
458 	lgrp_affinity_init(&t->t_lgrp_affinity);
459 
460 	mutex_enter(&pidlock);
461 	nthread++;
462 	t->t_did = next_t_id++;
463 	t->t_prev = curthread->t_prev;
464 	t->t_next = curthread;
465 
466 	/*
467 	 * Add the thread to the list of all threads, and initialize
468 	 * its t_cpu pointer.  We need to block preemption since
469 	 * cpu_offline walks the thread list looking for threads
470 	 * with t_cpu pointing to the CPU being offlined.  We want
471 	 * to make sure that the list is consistent and that if t_cpu
472 	 * is set, the thread is on the list.
473 	 */
474 	kpreempt_disable();
475 	curthread->t_prev->t_next = t;
476 	curthread->t_prev = t;
477 
478 	/*
479 	 * Threads should never have a NULL t_cpu pointer so assign it
480 	 * here.  If the thread is being created with state TS_RUN a
481 	 * better CPU may be chosen when it is placed on the run queue.
482 	 *
483 	 * We need to keep kernel preemption disabled when setting all
484 	 * three fields to keep them in sync.  Also, always create in
485 	 * the default partition since that's where kernel threads go
486 	 * (if this isn't a kernel thread, t_cpupart will be changed
487 	 * in lwp_create before setting the thread runnable).
488 	 */
489 	t->t_cpupart = &cp_default;
490 
491 	/*
492 	 * For now, affiliate this thread with the root lgroup.
493 	 * Since the kernel does not (presently) allocate its memory
494 	 * in a locality aware fashion, the root is an appropriate home.
495 	 * If this thread is later associated with an lwp, it will have
496 	 * it's lgroup re-assigned at that time.
497 	 */
498 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
499 
500 	/*
501 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
502 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
503 	 * is ready to run.
504 	 */
505 	if (CPU->cpu_part == &cp_default)
506 		t->t_cpu = CPU;
507 	else
508 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
509 		    t->t_pri, NULL);
510 
511 	t->t_disp_queue = t->t_cpu->cpu_disp;
512 	kpreempt_enable();
513 
514 	/*
515 	 * Initialize thread state and the dispatcher lock pointer.
516 	 * Need to hold onto pidlock to block allthreads walkers until
517 	 * the state is set.
518 	 */
519 	switch (state) {
520 	case TS_RUN:
521 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
522 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
523 		CL_SETRUN(t);
524 		thread_unlock(t);
525 		break;
526 
527 	case TS_ONPROC:
528 		THREAD_ONPROC(t, t->t_cpu);
529 		break;
530 
531 	case TS_FREE:
532 		/*
533 		 * Free state will be used for intr threads.
534 		 * The interrupt routine must set the thread dispatcher
535 		 * lock pointer (t_lockp) if starting on a CPU
536 		 * other than the current one.
537 		 */
538 		THREAD_FREEINTR(t, CPU);
539 		break;
540 
541 	case TS_STOPPED:
542 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
543 		break;
544 
545 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
546 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
547 	}
548 	mutex_exit(&pidlock);
549 	return (t);
550 }
551 
552 /*
553  * Move thread to project0 and take care of project reference counters.
554  */
555 void
556 thread_rele(kthread_t *t)
557 {
558 	kproject_t *kpj;
559 
560 	thread_lock(t);
561 
562 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
563 	kpj = ttoproj(t);
564 	t->t_proj = proj0p;
565 
566 	thread_unlock(t);
567 
568 	if (kpj != proj0p) {
569 		project_rele(kpj);
570 		(void) project_hold(proj0p);
571 	}
572 }
573 
574 void
575 thread_exit(void)
576 {
577 	kthread_t *t = curthread;
578 
579 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
580 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
581 
582 	tsd_exit();		/* Clean up this thread's TSD */
583 
584 	kcpc_passivate();	/* clean up performance counter state */
585 
586 	/*
587 	 * No kernel thread should have called poll() without arranging
588 	 * calling pollcleanup() here.
589 	 */
590 	ASSERT(t->t_pollstate == NULL);
591 	ASSERT(t->t_schedctl == NULL);
592 	if (t->t_door)
593 		door_slam();	/* in case thread did an upcall */
594 
595 #ifndef NPROBE
596 	/* Kernel probe */
597 	if (t->t_tnf_tpdp)
598 		tnf_thread_exit();
599 #endif /* NPROBE */
600 
601 	thread_rele(t);
602 	t->t_preempt++;
603 
604 	/*
605 	 * remove thread from the all threads list so that
606 	 * death-row can use the same pointers.
607 	 */
608 	mutex_enter(&pidlock);
609 	t->t_next->t_prev = t->t_prev;
610 	t->t_prev->t_next = t->t_next;
611 	ASSERT(allthreads != t);	/* t0 never exits */
612 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
613 	mutex_exit(&pidlock);
614 
615 	if (t->t_ctx != NULL)
616 		exitctx(t);
617 	if (t->t_procp->p_pctx != NULL)
618 		exitpctx(t->t_procp);
619 
620 	t->t_state = TS_ZOMB;	/* set zombie thread */
621 
622 	swtch_from_zombie();	/* give up the CPU */
623 	/* NOTREACHED */
624 }
625 
626 /*
627  * Check to see if the specified thread is active (defined as being on
628  * the thread list).  This is certainly a slow way to do this; if there's
629  * ever a reason to speed it up, we could maintain a hash table of active
630  * threads indexed by their t_did.
631  */
632 static kthread_t *
633 did_to_thread(kt_did_t tid)
634 {
635 	kthread_t *t;
636 
637 	ASSERT(MUTEX_HELD(&pidlock));
638 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
639 		if (t->t_did == tid)
640 			break;
641 	}
642 	if (t->t_did == tid)
643 		return (t);
644 	else
645 		return (NULL);
646 }
647 
648 /*
649  * Wait for specified thread to exit.  Returns immediately if the thread
650  * could not be found, meaning that it has either already exited or never
651  * existed.
652  */
653 void
654 thread_join(kt_did_t tid)
655 {
656 	kthread_t *t;
657 
658 	ASSERT(tid != curthread->t_did);
659 	ASSERT(tid != t0.t_did);
660 
661 	mutex_enter(&pidlock);
662 	/*
663 	 * Make sure we check that the thread is on the thread list
664 	 * before blocking on it; otherwise we could end up blocking on
665 	 * a cv that's already been freed.  In other words, don't cache
666 	 * the thread pointer across calls to cv_wait.
667 	 *
668 	 * The choice of loop invariant means that whenever a thread
669 	 * is taken off the allthreads list, a cv_broadcast must be
670 	 * performed on that thread's t_joincv to wake up any waiters.
671 	 * The broadcast doesn't have to happen right away, but it
672 	 * shouldn't be postponed indefinitely (e.g., by doing it in
673 	 * thread_free which may only be executed when the deathrow
674 	 * queue is processed.
675 	 */
676 	while (t = did_to_thread(tid))
677 		cv_wait(&t->t_joincv, &pidlock);
678 	mutex_exit(&pidlock);
679 }
680 
681 void
682 thread_free_prevent(kthread_t *t)
683 {
684 	kmutex_t *lp;
685 
686 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
687 	mutex_enter(lp);
688 }
689 
690 void
691 thread_free_allow(kthread_t *t)
692 {
693 	kmutex_t *lp;
694 
695 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
696 	mutex_exit(lp);
697 }
698 
699 static void
700 thread_free_barrier(kthread_t *t)
701 {
702 	kmutex_t *lp;
703 
704 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
705 	mutex_enter(lp);
706 	mutex_exit(lp);
707 }
708 
709 void
710 thread_free(kthread_t *t)
711 {
712 	ASSERT(t != &t0 && t->t_state == TS_FREE);
713 	ASSERT(t->t_door == NULL);
714 	ASSERT(t->t_schedctl == NULL);
715 	ASSERT(t->t_pollstate == NULL);
716 
717 	t->t_pri = 0;
718 	t->t_pc = 0;
719 	t->t_sp = 0;
720 	t->t_wchan0 = NULL;
721 	t->t_wchan = NULL;
722 	if (t->t_cred != NULL) {
723 		crfree(t->t_cred);
724 		t->t_cred = 0;
725 	}
726 	if (t->t_pdmsg) {
727 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
728 		t->t_pdmsg = NULL;
729 	}
730 	if (audit_active)
731 		audit_thread_free(t);
732 #ifndef NPROBE
733 	if (t->t_tnf_tpdp)
734 		tnf_thread_free(t);
735 #endif /* NPROBE */
736 	if (t->t_cldata) {
737 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
738 	}
739 	if (t->t_rprof != NULL) {
740 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
741 		t->t_rprof = NULL;
742 	}
743 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
744 	if (t->t_lwp)
745 		lwp_freeregs(t->t_lwp, 0);
746 	if (t->t_ctx)
747 		freectx(t, 0);
748 	t->t_stk = NULL;
749 	if (t->t_lwp)
750 		lwp_stk_fini(t->t_lwp);
751 	lock_clear(&t->t_lock);
752 
753 	if (t->t_ts->ts_waiters > 0)
754 		panic("thread_free: turnstile still active");
755 
756 	kmem_cache_free(turnstile_cache, t->t_ts);
757 
758 	free_afd(&t->t_activefd);
759 
760 	/*
761 	 * Barrier for the tick accounting code.  The tick accounting code
762 	 * holds this lock to keep the thread from going away while it's
763 	 * looking at it.
764 	 */
765 	thread_free_barrier(t);
766 
767 	ASSERT(ttoproj(t) == proj0p);
768 	project_rele(ttoproj(t));
769 
770 	lgrp_affinity_free(&t->t_lgrp_affinity);
771 
772 	/*
773 	 * Free thread struct and its stack.
774 	 */
775 	if (t->t_flag & T_TALLOCSTK) {
776 		/* thread struct is embedded in stack */
777 		segkp_release(segkp, t->t_swap);
778 		mutex_enter(&pidlock);
779 		nthread--;
780 		mutex_exit(&pidlock);
781 	} else {
782 		if (t->t_swap) {
783 			segkp_release(segkp, t->t_swap);
784 			t->t_swap = NULL;
785 		}
786 		if (t->t_lwp) {
787 			kmem_cache_free(lwp_cache, t->t_lwp);
788 			t->t_lwp = NULL;
789 		}
790 		mutex_enter(&pidlock);
791 		nthread--;
792 		mutex_exit(&pidlock);
793 		kmem_cache_free(thread_cache, t);
794 	}
795 }
796 
797 /*
798  * Removes threads associated with the given zone from a deathrow queue.
799  * tp is a pointer to the head of the deathrow queue, and countp is a
800  * pointer to the current deathrow count.  Returns a linked list of
801  * threads removed from the list.
802  */
803 static kthread_t *
804 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
805 {
806 	kthread_t *tmp, *list = NULL;
807 	cred_t *cr;
808 
809 	ASSERT(MUTEX_HELD(&reaplock));
810 	while (*tp != NULL) {
811 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
812 			tmp = *tp;
813 			*tp = tmp->t_forw;
814 			tmp->t_forw = list;
815 			list = tmp;
816 			(*countp)--;
817 		} else {
818 			tp = &(*tp)->t_forw;
819 		}
820 	}
821 	return (list);
822 }
823 
824 static void
825 thread_reap_list(kthread_t *t)
826 {
827 	kthread_t *next;
828 
829 	while (t != NULL) {
830 		next = t->t_forw;
831 		thread_free(t);
832 		t = next;
833 	}
834 }
835 
836 /* ARGSUSED */
837 static void
838 thread_zone_destroy(zoneid_t zoneid, void *unused)
839 {
840 	kthread_t *t, *l;
841 
842 	mutex_enter(&reaplock);
843 	/*
844 	 * Pull threads and lwps associated with zone off deathrow lists.
845 	 */
846 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
847 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
848 	mutex_exit(&reaplock);
849 
850 	/*
851 	 * Guard against race condition in mutex_owner_running:
852 	 * 	thread=owner(mutex)
853 	 * 	<interrupt>
854 	 * 				thread exits mutex
855 	 * 				thread exits
856 	 * 				thread reaped
857 	 * 				thread struct freed
858 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
859 	 * A cross call to all cpus will cause the interrupt handler
860 	 * to reset the PC if it is in mutex_owner_running, refreshing
861 	 * stale thread pointers.
862 	 */
863 	mutex_sync();   /* sync with mutex code */
864 
865 	/*
866 	 * Reap threads
867 	 */
868 	thread_reap_list(t);
869 
870 	/*
871 	 * Reap lwps
872 	 */
873 	thread_reap_list(l);
874 }
875 
876 /*
877  * cleanup zombie threads that are on deathrow.
878  */
879 void
880 thread_reaper()
881 {
882 	kthread_t *t, *l;
883 	callb_cpr_t cprinfo;
884 
885 	/*
886 	 * Register callback to clean up threads when zone is destroyed.
887 	 */
888 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
889 
890 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
891 	for (;;) {
892 		mutex_enter(&reaplock);
893 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
894 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
895 			cv_wait(&reaper_cv, &reaplock);
896 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
897 		}
898 		/*
899 		 * mutex_sync() needs to be called when reaping, but
900 		 * not too often.  We limit reaping rate to once
901 		 * per second.  Reaplimit is max rate at which threads can
902 		 * be freed. Does not impact thread destruction/creation.
903 		 */
904 		t = thread_deathrow;
905 		l = lwp_deathrow;
906 		thread_deathrow = NULL;
907 		lwp_deathrow = NULL;
908 		thread_reapcnt = 0;
909 		lwp_reapcnt = 0;
910 		mutex_exit(&reaplock);
911 
912 		/*
913 		 * Guard against race condition in mutex_owner_running:
914 		 * 	thread=owner(mutex)
915 		 * 	<interrupt>
916 		 * 				thread exits mutex
917 		 * 				thread exits
918 		 * 				thread reaped
919 		 * 				thread struct freed
920 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
921 		 * A cross call to all cpus will cause the interrupt handler
922 		 * to reset the PC if it is in mutex_owner_running, refreshing
923 		 * stale thread pointers.
924 		 */
925 		mutex_sync();   /* sync with mutex code */
926 		/*
927 		 * Reap threads
928 		 */
929 		thread_reap_list(t);
930 
931 		/*
932 		 * Reap lwps
933 		 */
934 		thread_reap_list(l);
935 		delay(hz);
936 	}
937 }
938 
939 /*
940  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
941  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
942  * that is reapable. The thread already holds the reaplock, and was already
943  * freed.
944  */
945 void
946 reapq_move_lq_to_tq(kthread_t *t)
947 {
948 	ASSERT(t->t_state == TS_FREE);
949 	ASSERT(MUTEX_HELD(&reaplock));
950 	t->t_forw = thread_deathrow;
951 	thread_deathrow = t;
952 	thread_reapcnt++;
953 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
954 		cv_signal(&reaper_cv);  /* wake the reaper */
955 }
956 
957 /*
958  * This is called by resume() to put a zombie thread onto deathrow.
959  * The thread's state is changed to TS_FREE to indicate that is reapable.
960  * This is called from the idle thread so it must not block - just spin.
961  */
962 void
963 reapq_add(kthread_t *t)
964 {
965 	mutex_enter(&reaplock);
966 
967 	/*
968 	 * lwp_deathrow contains only threads with lwp linkage
969 	 * that are of the default stacksize. Anything else goes
970 	 * on thread_deathrow.
971 	 */
972 	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
973 		t->t_forw = lwp_deathrow;
974 		lwp_deathrow = t;
975 		lwp_reapcnt++;
976 	} else {
977 		t->t_forw = thread_deathrow;
978 		thread_deathrow = t;
979 		thread_reapcnt++;
980 	}
981 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
982 		cv_signal(&reaper_cv);	/* wake the reaper */
983 	t->t_state = TS_FREE;
984 	lock_clear(&t->t_lock);
985 
986 	/*
987 	 * Before we return, we need to grab and drop the thread lock for
988 	 * the dead thread.  At this point, the current thread is the idle
989 	 * thread, and the dead thread's CPU lock points to the current
990 	 * CPU -- and we must grab and drop the lock to synchronize with
991 	 * a racing thread walking a blocking chain that the zombie thread
992 	 * was recently in.  By this point, that blocking chain is (by
993 	 * definition) stale:  the dead thread is not holding any locks, and
994 	 * is therefore not in any blocking chains -- but if we do not regrab
995 	 * our lock before freeing the dead thread's data structures, the
996 	 * thread walking the (stale) blocking chain will die on memory
997 	 * corruption when it attempts to drop the dead thread's lock.  We
998 	 * only need do this once because there is no way for the dead thread
999 	 * to ever again be on a blocking chain:  once we have grabbed and
1000 	 * dropped the thread lock, we are guaranteed that anyone that could
1001 	 * have seen this thread in a blocking chain can no longer see it.
1002 	 */
1003 	thread_lock(t);
1004 	thread_unlock(t);
1005 
1006 	mutex_exit(&reaplock);
1007 }
1008 
1009 /*
1010  * Install thread context ops for the current thread.
1011  */
1012 void
1013 installctx(
1014 	kthread_t *t,
1015 	void	*arg,
1016 	void	(*save)(void *),
1017 	void	(*restore)(void *),
1018 	void	(*fork)(void *, void *),
1019 	void	(*lwp_create)(void *, void *),
1020 	void	(*exit)(void *),
1021 	void	(*free)(void *, int))
1022 {
1023 	struct ctxop *ctx;
1024 
1025 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1026 	ctx->save_op = save;
1027 	ctx->restore_op = restore;
1028 	ctx->fork_op = fork;
1029 	ctx->lwp_create_op = lwp_create;
1030 	ctx->exit_op = exit;
1031 	ctx->free_op = free;
1032 	ctx->arg = arg;
1033 	ctx->next = t->t_ctx;
1034 	t->t_ctx = ctx;
1035 }
1036 
1037 /*
1038  * Remove the thread context ops from a thread.
1039  */
1040 int
1041 removectx(
1042 	kthread_t *t,
1043 	void	*arg,
1044 	void	(*save)(void *),
1045 	void	(*restore)(void *),
1046 	void	(*fork)(void *, void *),
1047 	void	(*lwp_create)(void *, void *),
1048 	void	(*exit)(void *),
1049 	void	(*free)(void *, int))
1050 {
1051 	struct ctxop *ctx, *prev_ctx;
1052 
1053 	/*
1054 	 * The incoming kthread_t (which is the thread for which the
1055 	 * context ops will be removed) should be one of the following:
1056 	 *
1057 	 * a) the current thread,
1058 	 *
1059 	 * b) a thread of a process that's being forked (SIDL),
1060 	 *
1061 	 * c) a thread that belongs to the same process as the current
1062 	 *    thread and for which the current thread is the agent thread,
1063 	 *
1064 	 * d) a thread that is TS_STOPPED which is indicative of it
1065 	 *    being (if curthread is not an agent) a thread being created
1066 	 *    as part of an lwp creation.
1067 	 */
1068 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1069 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1070 
1071 	/*
1072 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1073 	 * and the target thread from racing with each other during lwp exit.
1074 	 */
1075 	mutex_enter(&t->t_ctx_lock);
1076 	prev_ctx = NULL;
1077 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1078 		if (ctx->save_op == save && ctx->restore_op == restore &&
1079 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1080 		    ctx->exit_op == exit && ctx->free_op == free &&
1081 		    ctx->arg == arg) {
1082 			if (prev_ctx)
1083 				prev_ctx->next = ctx->next;
1084 			else
1085 				t->t_ctx = ctx->next;
1086 			mutex_exit(&t->t_ctx_lock);
1087 			if (ctx->free_op != NULL)
1088 				(ctx->free_op)(ctx->arg, 0);
1089 			kmem_free(ctx, sizeof (struct ctxop));
1090 			return (1);
1091 		}
1092 		prev_ctx = ctx;
1093 	}
1094 	mutex_exit(&t->t_ctx_lock);
1095 
1096 	return (0);
1097 }
1098 
1099 void
1100 savectx(kthread_t *t)
1101 {
1102 	struct ctxop *ctx;
1103 
1104 	ASSERT(t == curthread);
1105 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1106 		if (ctx->save_op != NULL)
1107 			(ctx->save_op)(ctx->arg);
1108 }
1109 
1110 void
1111 restorectx(kthread_t *t)
1112 {
1113 	struct ctxop *ctx;
1114 
1115 	ASSERT(t == curthread);
1116 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1117 		if (ctx->restore_op != NULL)
1118 			(ctx->restore_op)(ctx->arg);
1119 }
1120 
1121 void
1122 forkctx(kthread_t *t, kthread_t *ct)
1123 {
1124 	struct ctxop *ctx;
1125 
1126 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1127 		if (ctx->fork_op != NULL)
1128 			(ctx->fork_op)(t, ct);
1129 }
1130 
1131 /*
1132  * Note that this operator is only invoked via the _lwp_create
1133  * system call.  The system may have other reasons to create lwps
1134  * e.g. the agent lwp or the doors unreferenced lwp.
1135  */
1136 void
1137 lwp_createctx(kthread_t *t, kthread_t *ct)
1138 {
1139 	struct ctxop *ctx;
1140 
1141 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1142 		if (ctx->lwp_create_op != NULL)
1143 			(ctx->lwp_create_op)(t, ct);
1144 }
1145 
1146 /*
1147  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1148  * needed when the thread/LWP leaves the processor for the last time. This
1149  * routine is not intended to deal with freeing memory; freectx() is used for
1150  * that purpose during thread_free(). This routine is provided to allow for
1151  * clean-up that can't wait until thread_free().
1152  */
1153 void
1154 exitctx(kthread_t *t)
1155 {
1156 	struct ctxop *ctx;
1157 
1158 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1159 		if (ctx->exit_op != NULL)
1160 			(ctx->exit_op)(t);
1161 }
1162 
1163 /*
1164  * freectx is called from thread_free() and exec() to get
1165  * rid of old thread context ops.
1166  */
1167 void
1168 freectx(kthread_t *t, int isexec)
1169 {
1170 	struct ctxop *ctx;
1171 
1172 	while ((ctx = t->t_ctx) != NULL) {
1173 		t->t_ctx = ctx->next;
1174 		if (ctx->free_op != NULL)
1175 			(ctx->free_op)(ctx->arg, isexec);
1176 		kmem_free(ctx, sizeof (struct ctxop));
1177 	}
1178 }
1179 
1180 /*
1181  * freectx_ctx is called from lwp_create() when lwp is reused from
1182  * lwp_deathrow and its thread structure is added to thread_deathrow.
1183  * The thread structure to which this ctx was attached may be already
1184  * freed by the thread reaper so free_op implementations shouldn't rely
1185  * on thread structure to which this ctx was attached still being around.
1186  */
1187 void
1188 freectx_ctx(struct ctxop *ctx)
1189 {
1190 	struct ctxop *nctx;
1191 
1192 	ASSERT(ctx != NULL);
1193 
1194 	do {
1195 		nctx = ctx->next;
1196 		if (ctx->free_op != NULL)
1197 			(ctx->free_op)(ctx->arg, 0);
1198 		kmem_free(ctx, sizeof (struct ctxop));
1199 	} while ((ctx = nctx) != NULL);
1200 }
1201 
1202 /*
1203  * Set the thread running; arrange for it to be swapped in if necessary.
1204  */
1205 void
1206 setrun_locked(kthread_t *t)
1207 {
1208 	ASSERT(THREAD_LOCK_HELD(t));
1209 	if (t->t_state == TS_SLEEP) {
1210 		/*
1211 		 * Take off sleep queue.
1212 		 */
1213 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1214 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1215 		/*
1216 		 * Already on dispatcher queue.
1217 		 */
1218 		return;
1219 	} else if (t->t_state == TS_WAIT) {
1220 		waitq_setrun(t);
1221 	} else if (t->t_state == TS_STOPPED) {
1222 		/*
1223 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1224 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1225 		 * requested that the thread be run.
1226 		 * Just calling setrun() is not sufficient to set a stopped
1227 		 * thread running.  TP_TXSTART is always set if the thread
1228 		 * is not stopped by a jobcontrol stop signal.
1229 		 * TP_TPSTART is always set if /proc is not controlling it.
1230 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1231 		 * The thread won't be stopped unless one of these
1232 		 * three mechanisms did it.
1233 		 *
1234 		 * These flags must be set before calling setrun_locked(t).
1235 		 * They can't be passed as arguments because the streams
1236 		 * code calls setrun() indirectly and the mechanism for
1237 		 * doing so admits only one argument.  Note that the
1238 		 * thread must be locked in order to change t_schedflags.
1239 		 */
1240 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1241 			return;
1242 		/*
1243 		 * Process is no longer stopped (a thread is running).
1244 		 */
1245 		t->t_whystop = 0;
1246 		t->t_whatstop = 0;
1247 		/*
1248 		 * Strictly speaking, we do not have to clear these
1249 		 * flags here; they are cleared on entry to stop().
1250 		 * However, they are confusing when doing kernel
1251 		 * debugging or when they are revealed by ps(1).
1252 		 */
1253 		t->t_schedflag &= ~TS_ALLSTART;
1254 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1255 		ASSERT(t->t_lockp == &transition_lock);
1256 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1257 		/*
1258 		 * Let the class put the process on the dispatcher queue.
1259 		 */
1260 		CL_SETRUN(t);
1261 	}
1262 }
1263 
1264 void
1265 setrun(kthread_t *t)
1266 {
1267 	thread_lock(t);
1268 	setrun_locked(t);
1269 	thread_unlock(t);
1270 }
1271 
1272 /*
1273  * Unpin an interrupted thread.
1274  *	When an interrupt occurs, the interrupt is handled on the stack
1275  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1276  *
1277  *	When swtch() is switching away from an interrupt thread because it
1278  *	blocked or was preempted, this routine is called to complete the
1279  *	saving of the interrupted thread state, and returns the interrupted
1280  *	thread pointer so it may be resumed.
1281  *
1282  *	Called by swtch() only at high spl.
1283  */
1284 kthread_t *
1285 thread_unpin()
1286 {
1287 	kthread_t	*t = curthread;	/* current thread */
1288 	kthread_t	*itp;		/* interrupted thread */
1289 	int		i;		/* interrupt level */
1290 	extern int	intr_passivate();
1291 
1292 	ASSERT(t->t_intr != NULL);
1293 
1294 	itp = t->t_intr;		/* interrupted thread */
1295 	t->t_intr = NULL;		/* clear interrupt ptr */
1296 
1297 	/*
1298 	 * Get state from interrupt thread for the one
1299 	 * it interrupted.
1300 	 */
1301 
1302 	i = intr_passivate(t, itp);
1303 
1304 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1305 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1306 	    i, t, t, itp, itp);
1307 
1308 	/*
1309 	 * Dissociate the current thread from the interrupted thread's LWP.
1310 	 */
1311 	t->t_lwp = NULL;
1312 
1313 	/*
1314 	 * Interrupt handlers above the level that spinlocks block must
1315 	 * not block.
1316 	 */
1317 #if DEBUG
1318 	if (i < 0 || i > LOCK_LEVEL)
1319 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1320 #endif
1321 
1322 	/*
1323 	 * Compute the CPU's base interrupt level based on the active
1324 	 * interrupts.
1325 	 */
1326 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1327 	set_base_spl();
1328 
1329 	return (itp);
1330 }
1331 
1332 /*
1333  * Create and initialize an interrupt thread.
1334  *	Returns non-zero on error.
1335  *	Called at spl7() or better.
1336  */
1337 void
1338 thread_create_intr(struct cpu *cp)
1339 {
1340 	kthread_t *tp;
1341 
1342 	tp = thread_create(NULL, 0,
1343 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1344 
1345 	/*
1346 	 * Set the thread in the TS_FREE state.  The state will change
1347 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1348 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1349 	 * inactive interrupt threads out of debugger thread lists.
1350 	 *
1351 	 * We cannot call thread_create with TS_FREE because of the current
1352 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1353 	 */
1354 	THREAD_FREEINTR(tp, cp);
1355 
1356 	/*
1357 	 * Nobody should ever reference the credentials of an interrupt
1358 	 * thread so make it NULL to catch any such references.
1359 	 */
1360 	tp->t_cred = NULL;
1361 	tp->t_flag |= T_INTR_THREAD;
1362 	tp->t_cpu = cp;
1363 	tp->t_bound_cpu = cp;
1364 	tp->t_disp_queue = cp->cpu_disp;
1365 	tp->t_affinitycnt = 1;
1366 	tp->t_preempt = 1;
1367 
1368 	/*
1369 	 * Don't make a user-requested binding on this thread so that
1370 	 * the processor can be offlined.
1371 	 */
1372 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1373 	tp->t_bind_pset = PS_NONE;
1374 
1375 #if defined(__i386) || defined(__amd64)
1376 	tp->t_stk -= STACK_ALIGN;
1377 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1378 #endif
1379 
1380 	/*
1381 	 * Link onto CPU's interrupt pool.
1382 	 */
1383 	tp->t_link = cp->cpu_intr_thread;
1384 	cp->cpu_intr_thread = tp;
1385 }
1386 
1387 /*
1388  * TSD -- THREAD SPECIFIC DATA
1389  */
1390 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1391 static uint_t		tsd_nkeys;	 /* size of destructor array */
1392 /* per-key destructor funcs */
1393 static void 		(**tsd_destructor)(void *);
1394 /* list of tsd_thread's */
1395 static struct tsd_thread	*tsd_list;
1396 
1397 /*
1398  * Default destructor
1399  *	Needed because NULL destructor means that the key is unused
1400  */
1401 /* ARGSUSED */
1402 void
1403 tsd_defaultdestructor(void *value)
1404 {}
1405 
1406 /*
1407  * Create a key (index into per thread array)
1408  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1409  *	May allocate memory with lock held
1410  */
1411 void
1412 tsd_create(uint_t *keyp, void (*destructor)(void *))
1413 {
1414 	int	i;
1415 	uint_t	nkeys;
1416 
1417 	/*
1418 	 * if key is allocated, do nothing
1419 	 */
1420 	mutex_enter(&tsd_mutex);
1421 	if (*keyp) {
1422 		mutex_exit(&tsd_mutex);
1423 		return;
1424 	}
1425 	/*
1426 	 * find an unused key
1427 	 */
1428 	if (destructor == NULL)
1429 		destructor = tsd_defaultdestructor;
1430 
1431 	for (i = 0; i < tsd_nkeys; ++i)
1432 		if (tsd_destructor[i] == NULL)
1433 			break;
1434 
1435 	/*
1436 	 * if no unused keys, increase the size of the destructor array
1437 	 */
1438 	if (i == tsd_nkeys) {
1439 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1440 			nkeys = 1;
1441 		tsd_destructor =
1442 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1443 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1444 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1445 		tsd_nkeys = nkeys;
1446 	}
1447 
1448 	/*
1449 	 * allocate the next available unused key
1450 	 */
1451 	tsd_destructor[i] = destructor;
1452 	*keyp = i + 1;
1453 	mutex_exit(&tsd_mutex);
1454 }
1455 
1456 /*
1457  * Destroy a key -- this is for unloadable modules
1458  *
1459  * Assumes that the caller is preventing tsd_set and tsd_get
1460  * Locks out tsd_create, tsd_destroy, and tsd_exit
1461  * May free memory with lock held
1462  */
1463 void
1464 tsd_destroy(uint_t *keyp)
1465 {
1466 	uint_t key;
1467 	struct tsd_thread *tsd;
1468 
1469 	/*
1470 	 * protect the key namespace and our destructor lists
1471 	 */
1472 	mutex_enter(&tsd_mutex);
1473 	key = *keyp;
1474 	*keyp = 0;
1475 
1476 	ASSERT(key <= tsd_nkeys);
1477 
1478 	/*
1479 	 * if the key is valid
1480 	 */
1481 	if (key != 0) {
1482 		uint_t k = key - 1;
1483 		/*
1484 		 * for every thread with TSD, call key's destructor
1485 		 */
1486 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1487 			/*
1488 			 * no TSD for key in this thread
1489 			 */
1490 			if (key > tsd->ts_nkeys)
1491 				continue;
1492 			/*
1493 			 * call destructor for key
1494 			 */
1495 			if (tsd->ts_value[k] && tsd_destructor[k])
1496 				(*tsd_destructor[k])(tsd->ts_value[k]);
1497 			/*
1498 			 * reset value for key
1499 			 */
1500 			tsd->ts_value[k] = NULL;
1501 		}
1502 		/*
1503 		 * actually free the key (NULL destructor == unused)
1504 		 */
1505 		tsd_destructor[k] = NULL;
1506 	}
1507 
1508 	mutex_exit(&tsd_mutex);
1509 }
1510 
1511 /*
1512  * Quickly return the per thread value that was stored with the specified key
1513  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1514  */
1515 void *
1516 tsd_get(uint_t key)
1517 {
1518 	return (tsd_agent_get(curthread, key));
1519 }
1520 
1521 /*
1522  * Set a per thread value indexed with the specified key
1523  */
1524 int
1525 tsd_set(uint_t key, void *value)
1526 {
1527 	return (tsd_agent_set(curthread, key, value));
1528 }
1529 
1530 /*
1531  * Like tsd_get(), except that the agent lwp can get the tsd of
1532  * another thread in the same process (the agent thread only runs when the
1533  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1534  */
1535 void *
1536 tsd_agent_get(kthread_t *t, uint_t key)
1537 {
1538 	struct tsd_thread *tsd = t->t_tsd;
1539 
1540 	ASSERT(t == curthread ||
1541 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1542 
1543 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1544 		return (tsd->ts_value[key - 1]);
1545 	return (NULL);
1546 }
1547 
1548 /*
1549  * Like tsd_set(), except that the agent lwp can set the tsd of
1550  * another thread in the same process, or syslwp can set the tsd
1551  * of a thread it's in the middle of creating.
1552  *
1553  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1554  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1555  * lock held
1556  */
1557 int
1558 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1559 {
1560 	struct tsd_thread *tsd = t->t_tsd;
1561 
1562 	ASSERT(t == curthread ||
1563 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1564 
1565 	if (key == 0)
1566 		return (EINVAL);
1567 	if (tsd == NULL)
1568 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1569 	if (key <= tsd->ts_nkeys) {
1570 		tsd->ts_value[key - 1] = value;
1571 		return (0);
1572 	}
1573 
1574 	ASSERT(key <= tsd_nkeys);
1575 
1576 	/*
1577 	 * lock out tsd_destroy()
1578 	 */
1579 	mutex_enter(&tsd_mutex);
1580 	if (tsd->ts_nkeys == 0) {
1581 		/*
1582 		 * Link onto list of threads with TSD
1583 		 */
1584 		if ((tsd->ts_next = tsd_list) != NULL)
1585 			tsd_list->ts_prev = tsd;
1586 		tsd_list = tsd;
1587 	}
1588 
1589 	/*
1590 	 * Allocate thread local storage and set the value for key
1591 	 */
1592 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1593 	    tsd->ts_nkeys * sizeof (void *),
1594 	    key * sizeof (void *));
1595 	tsd->ts_nkeys = key;
1596 	tsd->ts_value[key - 1] = value;
1597 	mutex_exit(&tsd_mutex);
1598 
1599 	return (0);
1600 }
1601 
1602 
1603 /*
1604  * Return the per thread value that was stored with the specified key
1605  *	If necessary, create the key and the value
1606  *	Assumes the caller is protecting *keyp from tsd_destroy
1607  */
1608 void *
1609 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1610 {
1611 	void *value;
1612 	uint_t key = *keyp;
1613 	struct tsd_thread *tsd = curthread->t_tsd;
1614 
1615 	if (tsd == NULL)
1616 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1617 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1618 		return (value);
1619 	if (key == 0)
1620 		tsd_create(keyp, destroy);
1621 	(void) tsd_set(*keyp, value = (*allocate)());
1622 
1623 	return (value);
1624 }
1625 
1626 /*
1627  * Called from thread_exit() to run the destructor function for each tsd
1628  *	Locks out tsd_create and tsd_destroy
1629  *	Assumes that the destructor *DOES NOT* use tsd
1630  */
1631 void
1632 tsd_exit(void)
1633 {
1634 	int i;
1635 	struct tsd_thread *tsd = curthread->t_tsd;
1636 
1637 	if (tsd == NULL)
1638 		return;
1639 
1640 	if (tsd->ts_nkeys == 0) {
1641 		kmem_free(tsd, sizeof (*tsd));
1642 		curthread->t_tsd = NULL;
1643 		return;
1644 	}
1645 
1646 	/*
1647 	 * lock out tsd_create and tsd_destroy, call
1648 	 * the destructor, and mark the value as destroyed.
1649 	 */
1650 	mutex_enter(&tsd_mutex);
1651 
1652 	for (i = 0; i < tsd->ts_nkeys; i++) {
1653 		if (tsd->ts_value[i] && tsd_destructor[i])
1654 			(*tsd_destructor[i])(tsd->ts_value[i]);
1655 		tsd->ts_value[i] = NULL;
1656 	}
1657 
1658 	/*
1659 	 * remove from linked list of threads with TSD
1660 	 */
1661 	if (tsd->ts_next)
1662 		tsd->ts_next->ts_prev = tsd->ts_prev;
1663 	if (tsd->ts_prev)
1664 		tsd->ts_prev->ts_next = tsd->ts_next;
1665 	if (tsd_list == tsd)
1666 		tsd_list = tsd->ts_next;
1667 
1668 	mutex_exit(&tsd_mutex);
1669 
1670 	/*
1671 	 * free up the TSD
1672 	 */
1673 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1674 	kmem_free(tsd, sizeof (struct tsd_thread));
1675 	curthread->t_tsd = NULL;
1676 }
1677 
1678 /*
1679  * realloc
1680  */
1681 static void *
1682 tsd_realloc(void *old, size_t osize, size_t nsize)
1683 {
1684 	void *new;
1685 
1686 	new = kmem_zalloc(nsize, KM_SLEEP);
1687 	if (old) {
1688 		bcopy(old, new, osize);
1689 		kmem_free(old, osize);
1690 	}
1691 	return (new);
1692 }
1693 
1694 /*
1695  * Check to see if an interrupt thread might be active at a given ipl.
1696  * If so return true.
1697  * We must be conservative--it is ok to give a false yes, but a false no
1698  * will cause disaster.  (But if the situation changes after we check it is
1699  * ok--the caller is trying to ensure that an interrupt routine has been
1700  * exited).
1701  * This is used when trying to remove an interrupt handler from an autovector
1702  * list in avintr.c.
1703  */
1704 int
1705 intr_active(struct cpu *cp, int level)
1706 {
1707 	if (level <= LOCK_LEVEL)
1708 		return (cp->cpu_thread != cp->cpu_dispthread);
1709 	else
1710 		return (CPU_ON_INTR(cp));
1711 }
1712 
1713 /*
1714  * Return non-zero if an interrupt is being serviced.
1715  */
1716 int
1717 servicing_interrupt()
1718 {
1719 	int onintr = 0;
1720 
1721 	/* Are we an interrupt thread */
1722 	if (curthread->t_flag & T_INTR_THREAD)
1723 		return (1);
1724 	/* Are we servicing a high level interrupt? */
1725 	if (CPU_ON_INTR(CPU)) {
1726 		kpreempt_disable();
1727 		onintr = CPU_ON_INTR(CPU);
1728 		kpreempt_enable();
1729 	}
1730 	return (onintr);
1731 }
1732 
1733 
1734 /*
1735  * Change the dispatch priority of a thread in the system.
1736  * Used when raising or lowering a thread's priority.
1737  * (E.g., priority inheritance)
1738  *
1739  * Since threads are queued according to their priority, we
1740  * we must check the thread's state to determine whether it
1741  * is on a queue somewhere. If it is, we've got to:
1742  *
1743  *	o Dequeue the thread.
1744  *	o Change its effective priority.
1745  *	o Enqueue the thread.
1746  *
1747  * Assumptions: The thread whose priority we wish to change
1748  * must be locked before we call thread_change_(e)pri().
1749  * The thread_change(e)pri() function doesn't drop the thread
1750  * lock--that must be done by its caller.
1751  */
1752 void
1753 thread_change_epri(kthread_t *t, pri_t disp_pri)
1754 {
1755 	uint_t	state;
1756 
1757 	ASSERT(THREAD_LOCK_HELD(t));
1758 
1759 	/*
1760 	 * If the inherited priority hasn't actually changed,
1761 	 * just return.
1762 	 */
1763 	if (t->t_epri == disp_pri)
1764 		return;
1765 
1766 	state = t->t_state;
1767 
1768 	/*
1769 	 * If it's not on a queue, change the priority with impunity.
1770 	 */
1771 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1772 		t->t_epri = disp_pri;
1773 		if (state == TS_ONPROC) {
1774 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1775 
1776 			if (t == cp->cpu_dispthread)
1777 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1778 		}
1779 	} else if (state == TS_SLEEP) {
1780 		/*
1781 		 * Take the thread out of its sleep queue.
1782 		 * Change the inherited priority.
1783 		 * Re-enqueue the thread.
1784 		 * Each synchronization object exports a function
1785 		 * to do this in an appropriate manner.
1786 		 */
1787 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1788 	} else if (state == TS_WAIT) {
1789 		/*
1790 		 * Re-enqueue a thread on the wait queue if its
1791 		 * effective priority needs to change.
1792 		 */
1793 		if (disp_pri != t->t_epri)
1794 			waitq_change_pri(t, disp_pri);
1795 	} else {
1796 		/*
1797 		 * The thread is on a run queue.
1798 		 * Note: setbackdq() may not put the thread
1799 		 * back on the same run queue where it originally
1800 		 * resided.
1801 		 */
1802 		(void) dispdeq(t);
1803 		t->t_epri = disp_pri;
1804 		setbackdq(t);
1805 	}
1806 	schedctl_set_cidpri(t);
1807 }
1808 
1809 /*
1810  * Function: Change the t_pri field of a thread.
1811  * Side Effects: Adjust the thread ordering on a run queue
1812  *		 or sleep queue, if necessary.
1813  * Returns: 1 if the thread was on a run queue, else 0.
1814  */
1815 int
1816 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1817 {
1818 	uint_t	state;
1819 	int	on_rq = 0;
1820 
1821 	ASSERT(THREAD_LOCK_HELD(t));
1822 
1823 	state = t->t_state;
1824 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1825 
1826 	/*
1827 	 * If it's not on a queue, change the priority with impunity.
1828 	 */
1829 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1830 		t->t_pri = disp_pri;
1831 
1832 		if (state == TS_ONPROC) {
1833 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1834 
1835 			if (t == cp->cpu_dispthread)
1836 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1837 		}
1838 	} else if (state == TS_SLEEP) {
1839 		/*
1840 		 * If the priority has changed, take the thread out of
1841 		 * its sleep queue and change the priority.
1842 		 * Re-enqueue the thread.
1843 		 * Each synchronization object exports a function
1844 		 * to do this in an appropriate manner.
1845 		 */
1846 		if (disp_pri != t->t_pri)
1847 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1848 	} else if (state == TS_WAIT) {
1849 		/*
1850 		 * Re-enqueue a thread on the wait queue if its
1851 		 * priority needs to change.
1852 		 */
1853 		if (disp_pri != t->t_pri)
1854 			waitq_change_pri(t, disp_pri);
1855 	} else {
1856 		/*
1857 		 * The thread is on a run queue.
1858 		 * Note: setbackdq() may not put the thread
1859 		 * back on the same run queue where it originally
1860 		 * resided.
1861 		 *
1862 		 * We still requeue the thread even if the priority
1863 		 * is unchanged to preserve round-robin (and other)
1864 		 * effects between threads of the same priority.
1865 		 */
1866 		on_rq = dispdeq(t);
1867 		ASSERT(on_rq);
1868 		t->t_pri = disp_pri;
1869 		if (front) {
1870 			setfrontdq(t);
1871 		} else {
1872 			setbackdq(t);
1873 		}
1874 	}
1875 	schedctl_set_cidpri(t);
1876 	return (on_rq);
1877 }
1878