xref: /titanic_50/usr/src/uts/common/disp/fx.c (revision ecd343b647e2ba2d0bf8f09646e721f05eb752aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/cred.h>
32 #include <sys/proc.h>
33 #include <sys/session.h>
34 #include <sys/strsubr.h>
35 #include <sys/user.h>
36 #include <sys/priocntl.h>
37 #include <sys/class.h>
38 #include <sys/disp.h>
39 #include <sys/procset.h>
40 #include <sys/debug.h>
41 #include <sys/kmem.h>
42 #include <sys/errno.h>
43 #include <sys/fx.h>
44 #include <sys/fxpriocntl.h>
45 #include <sys/cpuvar.h>
46 #include <sys/systm.h>
47 #include <sys/vtrace.h>
48 #include <sys/schedctl.h>
49 #include <sys/tnf_probe.h>
50 #include <sys/sunddi.h>
51 #include <sys/spl.h>
52 #include <sys/modctl.h>
53 #include <sys/policy.h>
54 #include <sys/sdt.h>
55 #include <sys/cpupart.h>
56 #include <sys/cpucaps.h>
57 
58 static pri_t fx_init(id_t, int, classfuncs_t **);
59 
60 static struct sclass csw = {
61 	"FX",
62 	fx_init,
63 	0
64 };
65 
66 static struct modlsched modlsched = {
67 	&mod_schedops, "Fixed priority sched class", &csw
68 };
69 
70 static struct modlinkage modlinkage = {
71 	MODREV_1, (void *)&modlsched, NULL
72 };
73 
74 
75 /*
76  * control flags (kparms->fx_cflags).
77  */
78 #define	FX_DOUPRILIM	0x01    /* change user priority limit */
79 #define	FX_DOUPRI	0x02    /* change user priority */
80 #define	FX_DOTQ		0x04    /* change FX time quantum */
81 
82 
83 #define	FXMAXUPRI 60		/* maximum user priority setting */
84 
85 #define	FX_MAX_UNPRIV_PRI	0	/* maximum unpriviledge priority */
86 
87 /*
88  * The fxproc_t structures that have a registered callback vector,
89  * are also kept in an array of circular doubly linked lists. A hash on
90  * the thread id (from ddi_get_kt_did()) is used to determine which list
91  * each of such fxproc structures should be placed. Each list has a dummy
92  * "head" which is never removed, so the list is never empty.
93  */
94 
95 #define	FX_CB_LISTS 16		/* number of lists, must be power of 2 */
96 #define	FX_CB_LIST_HASH(ktid)	((uint_t)ktid & (FX_CB_LISTS - 1))
97 
98 /* Insert fxproc into callback list */
99 #define	FX_CB_LIST_INSERT(fxpp)						\
100 {									\
101 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
102 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
103 	fxproc_t *headp = &fx_cb_plisthead[index];			\
104 	mutex_enter(lockp);						\
105 	fxpp->fx_cb_next = headp->fx_cb_next;				\
106 	fxpp->fx_cb_prev = headp;					\
107 	headp->fx_cb_next->fx_cb_prev = fxpp;				\
108 	headp->fx_cb_next = fxpp;					\
109 	mutex_exit(lockp);						\
110 }
111 
112 /*
113  * Remove thread from callback list.
114  */
115 #define	FX_CB_LIST_DELETE(fxpp)						\
116 {									\
117 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
118 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
119 	mutex_enter(lockp);						\
120 	fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next;		\
121 	fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev;		\
122 	mutex_exit(lockp);						\
123 }
124 
125 #define	FX_HAS_CB(fxpp)	(fxpp->fx_callback != NULL)
126 
127 /* adjust x to be between 0 and fx_maxumdpri */
128 
129 #define	FX_ADJUST_PRI(pri)						\
130 {									\
131 	if (pri < 0)							\
132 		pri = 0;  						\
133 	else if (pri > fx_maxumdpri) 					\
134 		pri = fx_maxumdpri;  					\
135 }
136 
137 #define	FX_ADJUST_QUANTUM(q)						\
138 {									\
139 	if (q > INT_MAX)						\
140 		q = INT_MAX;						\
141 	else if (q <= 0)						\
142 		q = FX_TQINF;						\
143 }
144 
145 #define	FX_ISVALID(pri, quantum) \
146 	(((pri >= 0) || (pri == FX_CB_NOCHANGE)) &&			\
147 	    ((quantum >= 0) || (quantum == FX_NOCHANGE) ||		\
148 		(quantum == FX_TQDEF) || (quantum == FX_TQINF)))
149 
150 
151 static id_t	fx_cid;		/* fixed priority class ID */
152 static fxdpent_t *fx_dptbl;	/* fixed priority disp parameter table */
153 
154 static pri_t	fx_maxupri = FXMAXUPRI;
155 static pri_t	fx_maxumdpri;	/* max user mode fixed priority */
156 
157 static pri_t	fx_maxglobpri;	/* maximum global priority used by fx class */
158 static kmutex_t	fx_dptblock;	/* protects fixed priority dispatch table */
159 
160 
161 static kmutex_t	fx_cb_list_lock[FX_CB_LISTS];	/* protects list of fxprocs */
162 						/* that have callbacks */
163 static fxproc_t	fx_cb_plisthead[FX_CB_LISTS];	/* dummy fxproc at head of */
164 						/* list of fxprocs with */
165 						/* callbacks */
166 
167 static int	fx_admin(caddr_t, cred_t *);
168 static int	fx_getclinfo(void *);
169 static int	fx_parmsin(void *);
170 static int	fx_parmsout(void *, pc_vaparms_t *);
171 static int	fx_vaparmsin(void *, pc_vaparms_t *);
172 static int	fx_vaparmsout(void *, pc_vaparms_t *);
173 static int	fx_getclpri(pcpri_t *);
174 static int	fx_alloc(void **, int);
175 static void	fx_free(void *);
176 static int	fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
177 static void	fx_exitclass(void *);
178 static int	fx_canexit(kthread_t *, cred_t *);
179 static int	fx_fork(kthread_t *, kthread_t *, void *);
180 static void	fx_forkret(kthread_t *, kthread_t *);
181 static void	fx_parmsget(kthread_t *, void *);
182 static int	fx_parmsset(kthread_t *, void *, id_t, cred_t *);
183 static void	fx_stop(kthread_t *, int, int);
184 static void	fx_exit(kthread_t *);
185 static pri_t	fx_swapin(kthread_t *, int);
186 static pri_t	fx_swapout(kthread_t *, int);
187 static void	fx_trapret(kthread_t *);
188 static void	fx_preempt(kthread_t *);
189 static void	fx_setrun(kthread_t *);
190 static void	fx_sleep(kthread_t *);
191 static void	fx_tick(kthread_t *);
192 static void	fx_wakeup(kthread_t *);
193 static int	fx_donice(kthread_t *, cred_t *, int, int *);
194 static pri_t	fx_globpri(kthread_t *);
195 static void	fx_yield(kthread_t *);
196 static void	fx_nullsys();
197 
198 extern fxdpent_t *fx_getdptbl(void);
199 
200 static void	fx_change_priority(kthread_t *, fxproc_t *);
201 static fxproc_t *fx_list_lookup(kt_did_t);
202 static void fx_list_release(fxproc_t *);
203 
204 
205 static struct classfuncs fx_classfuncs = {
206 	/* class functions */
207 	fx_admin,
208 	fx_getclinfo,
209 	fx_parmsin,
210 	fx_parmsout,
211 	fx_vaparmsin,
212 	fx_vaparmsout,
213 	fx_getclpri,
214 	fx_alloc,
215 	fx_free,
216 
217 	/* thread functions */
218 	fx_enterclass,
219 	fx_exitclass,
220 	fx_canexit,
221 	fx_fork,
222 	fx_forkret,
223 	fx_parmsget,
224 	fx_parmsset,
225 	fx_stop,
226 	fx_exit,
227 	fx_nullsys,	/* active */
228 	fx_nullsys,	/* inactive */
229 	fx_swapin,
230 	fx_swapout,
231 	fx_trapret,
232 	fx_preempt,
233 	fx_setrun,
234 	fx_sleep,
235 	fx_tick,
236 	fx_wakeup,
237 	fx_donice,
238 	fx_globpri,
239 	fx_nullsys,	/* set_process_group */
240 	fx_yield,
241 };
242 
243 
244 int
245 _init()
246 {
247 	return (mod_install(&modlinkage));
248 }
249 
250 int
251 _fini()
252 {
253 	return (EBUSY);
254 }
255 
256 int
257 _info(struct modinfo *modinfop)
258 {
259 	return (mod_info(&modlinkage, modinfop));
260 }
261 
262 /*
263  * Fixed priority class initialization. Called by dispinit() at boot time.
264  * We can ignore the clparmsz argument since we know that the smallest
265  * possible parameter buffer is big enough for us.
266  */
267 /* ARGSUSED */
268 static pri_t
269 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
270 {
271 	int i;
272 	extern pri_t fx_getmaxumdpri(void);
273 
274 	fx_dptbl = fx_getdptbl();
275 	fx_maxumdpri = fx_getmaxumdpri();
276 	fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
277 
278 	fx_cid = cid;		/* Record our class ID */
279 
280 	/*
281 	 * Initialize the hash table for fxprocs with callbacks
282 	 */
283 	for (i = 0; i < FX_CB_LISTS; i++) {
284 		fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
285 			&fx_cb_plisthead[i];
286 	}
287 
288 	/*
289 	 * We're required to return a pointer to our classfuncs
290 	 * structure and the highest global priority value we use.
291 	 */
292 	*clfuncspp = &fx_classfuncs;
293 	return (fx_maxglobpri);
294 }
295 
296 /*
297  * Get or reset the fx_dptbl values per the user's request.
298  */
299 static int
300 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
301 {
302 	fxadmin_t	fxadmin;
303 	fxdpent_t	*tmpdpp;
304 	int		userdpsz;
305 	int		i;
306 	size_t		fxdpsz;
307 
308 	if (get_udatamodel() == DATAMODEL_NATIVE) {
309 		if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
310 			return (EFAULT);
311 	}
312 #ifdef _SYSCALL32_IMPL
313 	else {
314 		/* get fxadmin struct from ILP32 caller */
315 		fxadmin32_t fxadmin32;
316 		if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
317 			return (EFAULT);
318 		fxadmin.fx_dpents =
319 		    (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
320 		fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
321 		fxadmin.fx_cmd = fxadmin32.fx_cmd;
322 	}
323 #endif /* _SYSCALL32_IMPL */
324 
325 	fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
326 
327 	switch (fxadmin.fx_cmd) {
328 	case FX_GETDPSIZE:
329 		fxadmin.fx_ndpents = fx_maxumdpri + 1;
330 
331 		if (get_udatamodel() == DATAMODEL_NATIVE) {
332 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
333 				return (EFAULT);
334 		}
335 #ifdef _SYSCALL32_IMPL
336 		else {
337 			/* return fxadmin struct to ILP32 caller */
338 			fxadmin32_t fxadmin32;
339 			fxadmin32.fx_dpents =
340 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
341 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
342 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
343 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
344 				return (EFAULT);
345 		}
346 #endif /* _SYSCALL32_IMPL */
347 		break;
348 
349 	case FX_GETDPTBL:
350 		userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
351 		    fxdpsz);
352 		if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
353 			return (EFAULT);
354 
355 		fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
356 
357 		if (get_udatamodel() == DATAMODEL_NATIVE) {
358 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
359 				return (EFAULT);
360 		}
361 #ifdef _SYSCALL32_IMPL
362 		else {
363 			/* return fxadmin struct to ILP32 callers */
364 			fxadmin32_t fxadmin32;
365 			fxadmin32.fx_dpents =
366 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
367 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
368 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
369 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
370 				return (EFAULT);
371 		}
372 #endif /* _SYSCALL32_IMPL */
373 		break;
374 
375 	case FX_SETDPTBL:
376 		/*
377 		 * We require that the requesting process has sufficient
378 		 * privileges. We also require that the table supplied by
379 		 * the user exactly match the current fx_dptbl in size.
380 		 */
381 		if (secpolicy_dispadm(reqpcredp) != 0) {
382 			return (EPERM);
383 		}
384 		if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
385 			return (EINVAL);
386 		}
387 
388 		/*
389 		 * We read the user supplied table into a temporary buffer
390 		 * where it is validated before being copied over the
391 		 * fx_dptbl.
392 		 */
393 		tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
394 		if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
395 			kmem_free(tmpdpp, fxdpsz);
396 			return (EFAULT);
397 		}
398 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
399 
400 			/*
401 			 * Validate the user supplied values. All we are doing
402 			 * here is verifying that the values are within their
403 			 * allowable ranges and will not panic the system. We
404 			 * make no attempt to ensure that the resulting
405 			 * configuration makes sense or results in reasonable
406 			 * performance.
407 			 */
408 			if (tmpdpp[i].fx_quantum <= 0 &&
409 			    tmpdpp[i].fx_quantum != FX_TQINF) {
410 				kmem_free(tmpdpp, fxdpsz);
411 				return (EINVAL);
412 			}
413 		}
414 
415 		/*
416 		 * Copy the user supplied values over the current fx_dptbl
417 		 * values. The fx_globpri member is read-only so we don't
418 		 * overwrite it.
419 		 */
420 		mutex_enter(&fx_dptblock);
421 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
422 			fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
423 		}
424 		mutex_exit(&fx_dptblock);
425 		kmem_free(tmpdpp, fxdpsz);
426 		break;
427 
428 	default:
429 		return (EINVAL);
430 	}
431 	return (0);
432 }
433 
434 /*
435  * Allocate a fixed priority class specific thread structure and
436  * initialize it with the parameters supplied. Also move the thread
437  * to specified priority.
438  */
439 static int
440 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
441     void *bufp)
442 {
443 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
444 	fxproc_t	*fxpp;
445 	pri_t		reqfxupri;
446 	pri_t		reqfxuprilim;
447 
448 	fxpp = (fxproc_t *)bufp;
449 	ASSERT(fxpp != NULL);
450 
451 	/*
452 	 * Initialize the fxproc structure.
453 	 */
454 	fxpp->fx_flags = 0;
455 	fxpp->fx_callback = NULL;
456 	fxpp->fx_cookie = NULL;
457 
458 	if (fxkparmsp == NULL) {
459 		/*
460 		 * Use default values.
461 		 */
462 		fxpp->fx_pri = fxpp->fx_uprilim = 0;
463 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
464 		fxpp->fx_nice =  NZERO;
465 	} else {
466 		/*
467 		 * Use supplied values.
468 		 */
469 
470 		if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
471 			reqfxuprilim = 0;
472 		} else {
473 			if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
474 			    secpolicy_setpriority(reqpcredp) != 0)
475 				return (EPERM);
476 			reqfxuprilim = fxkparmsp->fx_uprilim;
477 			FX_ADJUST_PRI(reqfxuprilim);
478 		}
479 
480 		if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
481 			reqfxupri = reqfxuprilim;
482 		} else {
483 			if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
484 			    secpolicy_setpriority(reqpcredp) != 0)
485 				return (EPERM);
486 			/*
487 			 * Set the user priority to the requested value
488 			 * or the upri limit, whichever is lower.
489 			 */
490 			reqfxupri = fxkparmsp->fx_upri;
491 			FX_ADJUST_PRI(reqfxupri);
492 
493 			if (reqfxupri > reqfxuprilim)
494 				reqfxupri = reqfxuprilim;
495 		}
496 
497 
498 		fxpp->fx_uprilim = reqfxuprilim;
499 		fxpp->fx_pri = reqfxupri;
500 
501 		fxpp->fx_nice = NZERO - (NZERO * reqfxupri)
502 			/ fx_maxupri;
503 
504 		if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
505 		    (fxkparmsp->fx_tqntm == FX_TQDEF)) {
506 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
507 		} else {
508 			if (secpolicy_setpriority(reqpcredp) != 0)
509 				return (EPERM);
510 
511 			if (fxkparmsp->fx_tqntm == FX_TQINF)
512 				fxpp->fx_pquantum = FX_TQINF;
513 			else {
514 				fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
515 			}
516 		}
517 
518 	}
519 
520 	fxpp->fx_timeleft = fxpp->fx_pquantum;
521 	cpucaps_sc_init(&fxpp->fx_caps);
522 	fxpp->fx_tp = t;
523 
524 	thread_lock(t);			/* get dispatcher lock on thread */
525 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
526 	t->t_cid = cid;
527 	t->t_cldata = (void *)fxpp;
528 	t->t_schedflag &= ~TS_RUNQMATCH;
529 	fx_change_priority(t, fxpp);
530 	thread_unlock(t);
531 
532 	return (0);
533 }
534 
535 /*
536  * The thread is exiting.
537  */
538 static void
539 fx_exit(kthread_t *t)
540 {
541 	fxproc_t *fxpp;
542 
543 	thread_lock(t);
544 	fxpp = (fxproc_t *)(t->t_cldata);
545 
546 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
547 
548 	if (FX_HAS_CB(fxpp)) {
549 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
550 		fxpp->fx_callback = NULL;
551 		fxpp->fx_cookie = NULL;
552 		thread_unlock(t);
553 		FX_CB_LIST_DELETE(fxpp);
554 		return;
555 	}
556 
557 	thread_unlock(t);
558 }
559 
560 /*
561  * Exiting the class. Free fxproc structure of thread.
562  */
563 static void
564 fx_exitclass(void *procp)
565 {
566 	fxproc_t *fxpp = (fxproc_t *)procp;
567 
568 	thread_lock(fxpp->fx_tp);
569 	if (FX_HAS_CB(fxpp)) {
570 
571 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
572 
573 		fxpp->fx_callback = NULL;
574 		fxpp->fx_cookie = NULL;
575 		thread_unlock(fxpp->fx_tp);
576 		FX_CB_LIST_DELETE(fxpp);
577 	} else
578 		thread_unlock(fxpp->fx_tp);
579 
580 	kmem_free(fxpp, sizeof (fxproc_t));
581 }
582 
583 /* ARGSUSED */
584 static int
585 fx_canexit(kthread_t *t, cred_t *cred)
586 {
587 	/*
588 	 * A thread can always leave the FX class
589 	 */
590 	return (0);
591 }
592 
593 /*
594  * Initialize fixed-priority class specific proc structure for a child.
595  * callbacks are not inherited upon fork.
596  */
597 static int
598 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
599 {
600 	fxproc_t	*pfxpp;		/* ptr to parent's fxproc structure */
601 	fxproc_t	*cfxpp;		/* ptr to child's fxproc structure */
602 
603 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
604 
605 	cfxpp = (fxproc_t *)bufp;
606 	ASSERT(cfxpp != NULL);
607 	thread_lock(t);
608 	pfxpp = (fxproc_t *)t->t_cldata;
609 	/*
610 	 * Initialize child's fxproc structure.
611 	 */
612 	cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
613 	cfxpp->fx_pri = pfxpp->fx_pri;
614 	cfxpp->fx_uprilim = pfxpp->fx_uprilim;
615 	cfxpp->fx_nice = pfxpp->fx_nice;
616 	cfxpp->fx_callback = NULL;
617 	cfxpp->fx_cookie = NULL;
618 	cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
619 	cpucaps_sc_init(&cfxpp->fx_caps);
620 
621 	cfxpp->fx_tp = ct;
622 	ct->t_cldata = (void *)cfxpp;
623 	thread_unlock(t);
624 
625 	/*
626 	 * Link new structure into fxproc list.
627 	 */
628 	return (0);
629 }
630 
631 
632 /*
633  * Child is placed at back of dispatcher queue and parent gives
634  * up processor so that the child runs first after the fork.
635  * This allows the child immediately execing to break the multiple
636  * use of copy on write pages with no disk home. The parent will
637  * get to steal them back rather than uselessly copying them.
638  */
639 static void
640 fx_forkret(kthread_t *t, kthread_t *ct)
641 {
642 	proc_t	*pp = ttoproc(t);
643 	proc_t	*cp = ttoproc(ct);
644 	fxproc_t *fxpp;
645 
646 	ASSERT(t == curthread);
647 	ASSERT(MUTEX_HELD(&pidlock));
648 
649 	/*
650 	 * Grab the child's p_lock before dropping pidlock to ensure
651 	 * the process does not disappear before we set it running.
652 	 */
653 	mutex_enter(&cp->p_lock);
654 	mutex_exit(&pidlock);
655 	continuelwps(cp);
656 	mutex_exit(&cp->p_lock);
657 
658 	mutex_enter(&pp->p_lock);
659 	continuelwps(pp);
660 	mutex_exit(&pp->p_lock);
661 
662 	thread_lock(t);
663 	fxpp = (fxproc_t *)(t->t_cldata);
664 	t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
665 	ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
666 	THREAD_TRANSITION(t);
667 	fx_setrun(t);
668 	thread_unlock(t);
669 
670 	swtch();
671 }
672 
673 
674 /*
675  * Get information about the fixed-priority class into the buffer
676  * pointed to by fxinfop. The maximum configured user priority
677  * is the only information we supply.
678  */
679 static int
680 fx_getclinfo(void *infop)
681 {
682 	fxinfo_t *fxinfop = (fxinfo_t *)infop;
683 	fxinfop->fx_maxupri = fx_maxupri;
684 	return (0);
685 }
686 
687 
688 
689 /*
690  * Return the global scheduling priority ranges for the fixed-priority
691  * class in pcpri_t structure.
692  */
693 static int
694 fx_getclpri(pcpri_t *pcprip)
695 {
696 	pcprip->pc_clpmax = fx_dptbl[fx_maxumdpri].fx_globpri;
697 	pcprip->pc_clpmin = fx_dptbl[0].fx_globpri;
698 	return (0);
699 }
700 
701 
702 static void
703 fx_nullsys()
704 {}
705 
706 
707 /*
708  * Get the fixed-priority parameters of the thread pointed to by
709  * fxprocp into the buffer pointed to by fxparmsp.
710  */
711 static void
712 fx_parmsget(kthread_t *t, void *parmsp)
713 {
714 	fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
715 	fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
716 
717 	fxkparmsp->fx_upri = fxpp->fx_pri;
718 	fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
719 	fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
720 }
721 
722 
723 
724 /*
725  * Check the validity of the fixed-priority parameters in the buffer
726  * pointed to by fxparmsp.
727  */
728 static int
729 fx_parmsin(void *parmsp)
730 {
731 	fxparms_t	*fxparmsp = (fxparms_t *)parmsp;
732 	uint_t		cflags;
733 	longlong_t	ticks;
734 	/*
735 	 * Check validity of parameters.
736 	 */
737 
738 	if ((fxparmsp->fx_uprilim > fx_maxupri ||
739 	    fxparmsp->fx_uprilim < 0) &&
740 	    fxparmsp->fx_uprilim != FX_NOCHANGE)
741 		return (EINVAL);
742 
743 	if ((fxparmsp->fx_upri > fx_maxupri ||
744 	    fxparmsp->fx_upri < 0) &&
745 	    fxparmsp->fx_upri != FX_NOCHANGE)
746 		return (EINVAL);
747 
748 	if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
749 		fxparmsp->fx_tqnsecs >= NANOSEC)
750 		return (EINVAL);
751 
752 	cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
753 
754 	if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
755 		cflags |= FX_DOUPRILIM;
756 	}
757 
758 	if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
759 		cflags |= FX_DOTQ;
760 
761 	/*
762 	 * convert the buffer to kernel format.
763 	 */
764 
765 	if (fxparmsp->fx_tqnsecs >= 0) {
766 		if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
767 		    NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
768 			return (ERANGE);
769 
770 		((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
771 	} else {
772 		if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
773 		    (fxparmsp->fx_tqnsecs != FX_TQINF) &&
774 		    (fxparmsp->fx_tqnsecs != FX_TQDEF))
775 			return (EINVAL);
776 		((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
777 	}
778 
779 	((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
780 
781 	return (0);
782 }
783 
784 
785 /*
786  * Check the validity of the fixed-priority parameters in the pc_vaparms_t
787  * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
788  * pc_vaparms_t contains (key, value) pairs of parameter.
789  */
790 static int
791 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
792 {
793 	uint_t		secs = 0;
794 	uint_t		cnt;
795 	int		nsecs = 0;
796 	int		priflag, secflag, nsecflag, limflag;
797 	longlong_t	ticks;
798 	fxkparms_t	*fxprmsp = (fxkparms_t *)prmsp;
799 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
800 
801 
802 	/*
803 	 * First check the validity of parameters and convert them
804 	 * from the user supplied format to the internal format.
805 	 */
806 	priflag = secflag = nsecflag = limflag = 0;
807 
808 	fxprmsp->fx_cflags = 0;
809 
810 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
811 		return (EINVAL);
812 
813 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
814 
815 		switch (vpp->pc_key) {
816 		case FX_KY_UPRILIM:
817 			if (limflag++)
818 				return (EINVAL);
819 			fxprmsp->fx_cflags |= FX_DOUPRILIM;
820 			fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
821 			if (fxprmsp->fx_uprilim > fx_maxupri ||
822 			    fxprmsp->fx_uprilim < 0)
823 				return (EINVAL);
824 			break;
825 
826 		case FX_KY_UPRI:
827 			if (priflag++)
828 				return (EINVAL);
829 			fxprmsp->fx_cflags |= FX_DOUPRI;
830 			fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
831 			if (fxprmsp->fx_upri > fx_maxupri ||
832 			    fxprmsp->fx_upri < 0)
833 				return (EINVAL);
834 			break;
835 
836 		case FX_KY_TQSECS:
837 			if (secflag++)
838 				return (EINVAL);
839 			fxprmsp->fx_cflags |= FX_DOTQ;
840 			secs = (uint_t)vpp->pc_parm;
841 			break;
842 
843 		case FX_KY_TQNSECS:
844 			if (nsecflag++)
845 				return (EINVAL);
846 			fxprmsp->fx_cflags |= FX_DOTQ;
847 			nsecs = (int)vpp->pc_parm;
848 			break;
849 
850 		default:
851 			return (EINVAL);
852 		}
853 	}
854 
855 	if (vaparmsp->pc_vaparmscnt == 0) {
856 		/*
857 		 * Use default parameters.
858 		 */
859 		fxprmsp->fx_upri = 0;
860 		fxprmsp->fx_uprilim = 0;
861 		fxprmsp->fx_tqntm = FX_TQDEF;
862 		fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
863 	} else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
864 		if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
865 			return (EINVAL);
866 
867 		if (nsecs >= 0) {
868 			if ((ticks = SEC_TO_TICK((longlong_t)secs) +
869 			    NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
870 				return (ERANGE);
871 
872 			fxprmsp->fx_tqntm = (int)ticks;
873 		} else {
874 			if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
875 				return (EINVAL);
876 			fxprmsp->fx_tqntm = nsecs;
877 		}
878 	}
879 
880 	return (0);
881 }
882 
883 
884 /*
885  * Nothing to do here but return success.
886  */
887 /* ARGSUSED */
888 static int
889 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
890 {
891 	register fxkparms_t	*fxkprmsp = (fxkparms_t *)parmsp;
892 
893 	if (vaparmsp != NULL)
894 		return (0);
895 
896 	if (fxkprmsp->fx_tqntm < 0) {
897 		/*
898 		 * Quantum field set to special value (e.g. FX_TQINF)
899 		 */
900 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
901 		((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
902 
903 	} else {
904 		/* Convert quantum from ticks to seconds-nanoseconds */
905 
906 		timestruc_t ts;
907 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
908 		((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
909 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
910 	}
911 
912 	return (0);
913 }
914 
915 
916 /*
917  * Copy all selected fixed-priority class parameters to the user.
918  * The parameters are specified by a key.
919  */
920 static int
921 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
922 {
923 	fxkparms_t	*fxkprmsp = (fxkparms_t *)prmsp;
924 	timestruc_t	ts;
925 	uint_t		cnt;
926 	uint_t		secs;
927 	int		nsecs;
928 	int		priflag, secflag, nsecflag, limflag;
929 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
930 
931 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
932 
933 	priflag = secflag = nsecflag = limflag = 0;
934 
935 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
936 		return (EINVAL);
937 
938 	if (fxkprmsp->fx_tqntm < 0) {
939 		/*
940 		 * Quantum field set to special value (e.g. FX_TQINF).
941 		 */
942 		secs = 0;
943 		nsecs = fxkprmsp->fx_tqntm;
944 	} else {
945 		/*
946 		 * Convert quantum from ticks to seconds-nanoseconds.
947 		 */
948 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
949 		secs = ts.tv_sec;
950 		nsecs = ts.tv_nsec;
951 	}
952 
953 
954 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
955 
956 		switch (vpp->pc_key) {
957 		case FX_KY_UPRILIM:
958 			if (limflag++)
959 				return (EINVAL);
960 			if (copyout(&fxkprmsp->fx_uprilim,
961 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
962 				return (EFAULT);
963 			break;
964 
965 		case FX_KY_UPRI:
966 			if (priflag++)
967 				return (EINVAL);
968 			if (copyout(&fxkprmsp->fx_upri,
969 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
970 				return (EFAULT);
971 			break;
972 
973 		case FX_KY_TQSECS:
974 			if (secflag++)
975 				return (EINVAL);
976 			if (copyout(&secs,
977 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
978 				return (EFAULT);
979 			break;
980 
981 		case FX_KY_TQNSECS:
982 			if (nsecflag++)
983 				return (EINVAL);
984 			if (copyout(&nsecs,
985 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
986 				return (EFAULT);
987 			break;
988 
989 		default:
990 			return (EINVAL);
991 		}
992 	}
993 
994 	return (0);
995 }
996 
997 /*
998  * Set the scheduling parameters of the thread pointed to by fxprocp
999  * to those specified in the buffer pointed to by fxparmsp.
1000  */
1001 /* ARGSUSED */
1002 static int
1003 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1004 {
1005 	char		nice;
1006 	pri_t		reqfxuprilim;
1007 	pri_t		reqfxupri;
1008 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
1009 	fxproc_t	*fxpp;
1010 
1011 
1012 	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1013 
1014 	thread_lock(tx);
1015 	fxpp = (fxproc_t *)tx->t_cldata;
1016 
1017 	if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1018 		reqfxuprilim = fxpp->fx_uprilim;
1019 	else
1020 		reqfxuprilim = fxkparmsp->fx_uprilim;
1021 
1022 	/*
1023 	 * Basic permissions enforced by generic kernel code
1024 	 * for all classes require that a thread attempting
1025 	 * to change the scheduling parameters of a target
1026 	 * thread be privileged or have a real or effective
1027 	 * UID matching that of the target thread. We are not
1028 	 * called unless these basic permission checks have
1029 	 * already passed. The fixed priority class requires in
1030 	 * addition that the calling thread be privileged if it
1031 	 * is attempting to raise the pri above its current
1032 	 * value This may have been checked previously but if our
1033 	 * caller passed us a non-NULL credential pointer we assume
1034 	 * it hasn't and we check it here.
1035 	 */
1036 
1037 	if ((reqpcredp != NULL) &&
1038 	    (reqfxuprilim > fxpp->fx_uprilim ||
1039 	    ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1040 	    secpolicy_setpriority(reqpcredp) != 0) {
1041 		thread_unlock(tx);
1042 		return (EPERM);
1043 	}
1044 
1045 	FX_ADJUST_PRI(reqfxuprilim);
1046 
1047 	if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1048 		reqfxupri = fxpp->fx_pri;
1049 	else
1050 		reqfxupri = fxkparmsp->fx_upri;
1051 
1052 
1053 	/*
1054 	 * Make sure the user priority doesn't exceed the upri limit.
1055 	 */
1056 	if (reqfxupri > reqfxuprilim)
1057 		reqfxupri = reqfxuprilim;
1058 
1059 	/*
1060 	 * Set fx_nice to the nice value corresponding to the user
1061 	 * priority we are setting.  Note that setting the nice field
1062 	 * of the parameter struct won't affect upri or nice.
1063 	 */
1064 
1065 	nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1066 
1067 	if (nice > NZERO)
1068 		nice = NZERO;
1069 
1070 	fxpp->fx_uprilim = reqfxuprilim;
1071 	fxpp->fx_pri = reqfxupri;
1072 
1073 	if (fxkparmsp->fx_tqntm == FX_TQINF)
1074 		fxpp->fx_pquantum = FX_TQINF;
1075 	else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1076 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1077 	else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1078 		fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1079 
1080 	fxpp->fx_nice = nice;
1081 
1082 	fx_change_priority(tx, fxpp);
1083 	thread_unlock(tx);
1084 	return (0);
1085 }
1086 
1087 
1088 /*
1089  * Return the global scheduling priority that would be assigned
1090  * to a thread entering the fixed-priority class with the fx_upri.
1091  */
1092 static pri_t
1093 fx_globpri(kthread_t *t)
1094 {
1095 	fxproc_t *fxpp;
1096 
1097 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1098 
1099 	fxpp = (fxproc_t *)t->t_cldata;
1100 	return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1101 
1102 }
1103 
1104 /*
1105  * Arrange for thread to be placed in appropriate location
1106  * on dispatcher queue.
1107  *
1108  * This is called with the current thread in TS_ONPROC and locked.
1109  */
1110 static void
1111 fx_preempt(kthread_t *t)
1112 {
1113 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1114 
1115 	ASSERT(t == curthread);
1116 	ASSERT(THREAD_LOCK_HELD(curthread));
1117 
1118 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
1119 
1120 	/*
1121 	 * Check to see if we're doing "preemption control" here.  If
1122 	 * we are, and if the user has requested that this thread not
1123 	 * be preempted, and if preemptions haven't been put off for
1124 	 * too long, let the preemption happen here but try to make
1125 	 * sure the thread is rescheduled as soon as possible.  We do
1126 	 * this by putting it on the front of the highest priority run
1127 	 * queue in the FX class.  If the preemption has been put off
1128 	 * for too long, clear the "nopreempt" bit and let the thread
1129 	 * be preempted.
1130 	 */
1131 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1132 		if (fxpp->fx_pquantum == FX_TQINF ||
1133 		    fxpp->fx_timeleft > -SC_MAX_TICKS) {
1134 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1135 			schedctl_set_yield(t, 1);
1136 			setfrontdq(t);
1137 			return;
1138 		} else {
1139 			schedctl_set_nopreempt(t, 0);
1140 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1141 			TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
1142 			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1143 			    tnf_lwpid, lwpid, t->t_tid);
1144 			/*
1145 			 * Fall through and be preempted below.
1146 			 */
1147 		}
1148 	}
1149 
1150 	if (FX_HAS_CB(fxpp)) {
1151 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1152 		pri_t	newpri = fxpp->fx_pri;
1153 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1154 			&new_quantum, &newpri);
1155 		FX_ADJUST_QUANTUM(new_quantum);
1156 		if ((int)new_quantum != fxpp->fx_pquantum) {
1157 			fxpp->fx_pquantum = (int)new_quantum;
1158 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1159 		}
1160 		FX_ADJUST_PRI(newpri);
1161 		fxpp->fx_pri = newpri;
1162 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1163 	}
1164 
1165 	/*
1166 	 * This thread may be placed on wait queue by CPU Caps. In this case we
1167 	 * do not need to do anything until it is removed from the wait queue.
1168 	 */
1169 	if (CPUCAPS_ENFORCE(t)) {
1170 		return;
1171 	}
1172 
1173 	if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1174 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1175 		fxpp->fx_flags &= ~FXBACKQ;
1176 		setbackdq(t);
1177 	} else {
1178 		setfrontdq(t);
1179 	}
1180 }
1181 
1182 static void
1183 fx_setrun(kthread_t *t)
1184 {
1185 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1186 
1187 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1188 	fxpp->fx_flags &= ~FXBACKQ;
1189 
1190 	if (t->t_disp_time != lbolt)
1191 		setbackdq(t);
1192 	else
1193 		setfrontdq(t);
1194 }
1195 
1196 
1197 /*
1198  * Prepare thread for sleep. We reset the thread priority so it will
1199  * run at the kernel priority level when it wakes up.
1200  */
1201 static void
1202 fx_sleep(kthread_t *t)
1203 {
1204 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1205 
1206 	ASSERT(t == curthread);
1207 	ASSERT(THREAD_LOCK_HELD(t));
1208 
1209 	/*
1210 	 * Account for time spent on CPU before going to sleep.
1211 	 */
1212 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
1213 
1214 	if (FX_HAS_CB(fxpp)) {
1215 		FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1216 	}
1217 	t->t_stime = lbolt;		/* time stamp for the swapper */
1218 }
1219 
1220 
1221 /*
1222  * Return Values:
1223  *
1224  *	-1 if the thread is loaded or is not eligible to be swapped in.
1225  *
1226  * FX and RT threads are designed so that they don't swapout; however,
1227  * it is possible that while the thread is swapped out and in another class, it
1228  * can be changed to FX or RT.  Since these threads should be swapped in
1229  * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1230  * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1231  * RT threads.
1232  */
1233 /* ARGSUSED */
1234 static pri_t
1235 fx_swapin(kthread_t *t, int flags)
1236 {
1237 	pri_t	tpri = -1;
1238 
1239 	ASSERT(THREAD_LOCK_HELD(t));
1240 
1241 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1242 		tpri = (pri_t)SHRT_MAX - 1;
1243 	}
1244 
1245 	return (tpri);
1246 }
1247 
1248 /*
1249  * Return Values
1250  *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1251  */
1252 /* ARGSUSED */
1253 static pri_t
1254 fx_swapout(kthread_t *t, int flags)
1255 {
1256 	ASSERT(THREAD_LOCK_HELD(t));
1257 
1258 	return (-1);
1259 
1260 }
1261 
1262 /* ARGSUSED */
1263 static void
1264 fx_stop(kthread_t *t, int why, int what)
1265 {
1266 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1267 
1268 	ASSERT(THREAD_LOCK_HELD(t));
1269 
1270 	if (FX_HAS_CB(fxpp)) {
1271 		FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1272 	}
1273 }
1274 
1275 /*
1276  * Check for time slice expiration.  If time slice has expired
1277  * set runrun to cause preemption.
1278  */
1279 static void
1280 fx_tick(kthread_t *t)
1281 {
1282 	boolean_t call_cpu_surrender = B_FALSE;
1283 	fxproc_t *fxpp;
1284 
1285 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1286 
1287 	thread_lock(t);
1288 
1289 	fxpp = (fxproc_t *)(t->t_cldata);
1290 
1291 	if (FX_HAS_CB(fxpp)) {
1292 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1293 		pri_t	newpri = fxpp->fx_pri;
1294 		FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1295 			&new_quantum, &newpri);
1296 		FX_ADJUST_QUANTUM(new_quantum);
1297 		if ((int)new_quantum != fxpp->fx_pquantum) {
1298 			fxpp->fx_pquantum = (int)new_quantum;
1299 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1300 		}
1301 		FX_ADJUST_PRI(newpri);
1302 		if (newpri != fxpp->fx_pri) {
1303 			fxpp->fx_pri = newpri;
1304 			fx_change_priority(t, fxpp);
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * Keep track of thread's project CPU usage.  Note that projects
1310 	 * get charged even when threads are running in the kernel.
1311 	 */
1312 	call_cpu_surrender =  CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1313 	    CPUCAPS_CHARGE_ENFORCE);
1314 
1315 	if ((fxpp->fx_pquantum != FX_TQINF) &&
1316 	    (--fxpp->fx_timeleft <= 0)) {
1317 		pri_t	new_pri;
1318 
1319 		/*
1320 		 * If we're doing preemption control and trying to
1321 		 * avoid preempting this thread, just note that
1322 		 * the thread should yield soon and let it keep
1323 		 * running (unless it's been a while).
1324 		 */
1325 		if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1326 			if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1327 				DTRACE_SCHED1(schedctl__nopreempt,
1328 				    kthread_t *, t);
1329 				schedctl_set_yield(t, 1);
1330 				thread_unlock_nopreempt(t);
1331 				return;
1332 			}
1333 			TNF_PROBE_2(schedctl_failsafe,
1334 			    "schedctl FX fx_tick", /* CSTYLED */,
1335 			    tnf_pid, pid, ttoproc(t)->p_pid,
1336 			    tnf_lwpid, lwpid, t->t_tid);
1337 		}
1338 		new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1339 		ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1340 		/*
1341 		 * When the priority of a thread is changed,
1342 		 * it may be necessary to adjust its position
1343 		 * on a sleep queue or dispatch queue. Even
1344 		 * when the priority is not changed, we need
1345 		 * to preserve round robin on dispatch queue.
1346 		 * The function thread_change_pri accomplishes
1347 		 * this.
1348 		 */
1349 		if (thread_change_pri(t, new_pri, 0)) {
1350 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1351 		} else {
1352 			call_cpu_surrender = B_TRUE;
1353 		}
1354 	} else if (t->t_state == TS_ONPROC &&
1355 		    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1356 		call_cpu_surrender = B_TRUE;
1357 	}
1358 
1359 	if (call_cpu_surrender) {
1360 		fxpp->fx_flags |= FXBACKQ;
1361 		cpu_surrender(t);
1362 	}
1363 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1364 }
1365 
1366 
1367 static void
1368 fx_trapret(kthread_t *t)
1369 {
1370 	cpu_t		*cp = CPU;
1371 
1372 	ASSERT(THREAD_LOCK_HELD(t));
1373 	ASSERT(t == curthread);
1374 	ASSERT(cp->cpu_dispthread == t);
1375 	ASSERT(t->t_state == TS_ONPROC);
1376 }
1377 
1378 
1379 /*
1380  * Processes waking up go to the back of their queue.
1381  */
1382 static void
1383 fx_wakeup(kthread_t *t)
1384 {
1385 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1386 
1387 	ASSERT(THREAD_LOCK_HELD(t));
1388 
1389 	t->t_stime = lbolt;		/* time stamp for the swapper */
1390 	if (FX_HAS_CB(fxpp)) {
1391 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1392 		pri_t	newpri = fxpp->fx_pri;
1393 		FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1394 			&new_quantum, &newpri);
1395 		FX_ADJUST_QUANTUM(new_quantum);
1396 		if ((int)new_quantum != fxpp->fx_pquantum) {
1397 			fxpp->fx_pquantum = (int)new_quantum;
1398 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1399 		}
1400 
1401 		FX_ADJUST_PRI(newpri);
1402 		if (newpri != fxpp->fx_pri) {
1403 			fxpp->fx_pri = newpri;
1404 			THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1405 		}
1406 	}
1407 
1408 	fxpp->fx_flags &= ~FXBACKQ;
1409 
1410 	if (t->t_disp_time != lbolt)
1411 		setbackdq(t);
1412 	else
1413 		setfrontdq(t);
1414 }
1415 
1416 
1417 /*
1418  * When a thread yields, put it on the back of the run queue.
1419  */
1420 static void
1421 fx_yield(kthread_t *t)
1422 {
1423 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1424 
1425 	ASSERT(t == curthread);
1426 	ASSERT(THREAD_LOCK_HELD(t));
1427 
1428 	/*
1429 	 * Collect CPU usage spent before yielding CPU.
1430 	 */
1431 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
1432 
1433 	if (FX_HAS_CB(fxpp))  {
1434 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1435 		pri_t	newpri = fxpp->fx_pri;
1436 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1437 				&new_quantum, &newpri);
1438 		FX_ADJUST_QUANTUM(new_quantum);
1439 		if ((int)new_quantum != fxpp->fx_pquantum) {
1440 			fxpp->fx_pquantum = (int)new_quantum;
1441 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1442 		}
1443 		FX_ADJUST_PRI(newpri);
1444 		fxpp->fx_pri = newpri;
1445 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1446 	}
1447 
1448 	/*
1449 	 * Clear the preemption control "yield" bit since the user is
1450 	 * doing a yield.
1451 	 */
1452 	if (t->t_schedctl)
1453 		schedctl_set_yield(t, 0);
1454 
1455 	if (fxpp->fx_timeleft <= 0) {
1456 		/*
1457 		 * Time slice was artificially extended to avoid
1458 		 * preemption, so pretend we're preempting it now.
1459 		 */
1460 		DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1461 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1462 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1463 		ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1464 	}
1465 
1466 	fxpp->fx_flags &= ~FXBACKQ;
1467 	setbackdq(t);
1468 }
1469 
1470 
1471 /*
1472  * Increment the nice value of the specified thread by incr and
1473  * return the new value in *retvalp.
1474  */
1475 static int
1476 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1477 {
1478 	int		newnice;
1479 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1480 	fxkparms_t	fxkparms;
1481 
1482 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1483 
1484 	/* If there's no change to priority, just return current setting */
1485 	if (incr == 0) {
1486 		if (retvalp) {
1487 			*retvalp = fxpp->fx_nice - NZERO;
1488 		}
1489 		return (0);
1490 	}
1491 
1492 	if ((incr < 0 || incr > 2 * NZERO) &&
1493 	    secpolicy_setpriority(cr) != 0)
1494 		return (EPERM);
1495 
1496 	/*
1497 	 * Specifying a nice increment greater than the upper limit of
1498 	 * 2 * NZERO - 1 will result in the thread's nice value being
1499 	 * set to the upper limit.  We check for this before computing
1500 	 * the new value because otherwise we could get overflow
1501 	 * if a privileged user specified some ridiculous increment.
1502 	 */
1503 	if (incr > 2 * NZERO - 1)
1504 		incr = 2 * NZERO - 1;
1505 
1506 	newnice = fxpp->fx_nice + incr;
1507 	if (newnice > NZERO)
1508 		newnice = NZERO;
1509 	else if (newnice < 0)
1510 		newnice = 0;
1511 
1512 	fxkparms.fx_uprilim = fxkparms.fx_upri =
1513 		-((newnice - NZERO) * fx_maxupri) / NZERO;
1514 
1515 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1516 
1517 	fxkparms.fx_tqntm = FX_TQDEF;
1518 
1519 	/*
1520 	 * Reset the uprilim and upri values of the thread. Adjust
1521 	 * time quantum accordingly.
1522 	 */
1523 
1524 	(void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1525 
1526 	/*
1527 	 * Although fx_parmsset already reset fx_nice it may
1528 	 * not have been set to precisely the value calculated above
1529 	 * because fx_parmsset determines the nice value from the
1530 	 * user priority and we may have truncated during the integer
1531 	 * conversion from nice value to user priority and back.
1532 	 * We reset fx_nice to the value we calculated above.
1533 	 */
1534 	fxpp->fx_nice = (char)newnice;
1535 
1536 	if (retvalp)
1537 		*retvalp = newnice - NZERO;
1538 
1539 	return (0);
1540 }
1541 
1542 static void
1543 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1544 {
1545 	pri_t	new_pri;
1546 
1547 	ASSERT(THREAD_LOCK_HELD(t));
1548 	new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1549 	ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1550 	if (t == curthread || t->t_state == TS_ONPROC) {
1551 		/* curthread is always onproc */
1552 		cpu_t	*cp = t->t_disp_queue->disp_cpu;
1553 		THREAD_CHANGE_PRI(t, new_pri);
1554 		if (t == cp->cpu_dispthread)
1555 			cp->cpu_dispatch_pri = DISP_PRIO(t);
1556 		if (DISP_MUST_SURRENDER(t)) {
1557 			fxpp->fx_flags |= FXBACKQ;
1558 			cpu_surrender(t);
1559 		} else {
1560 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1561 		}
1562 	} else {
1563 		/*
1564 		 * When the priority of a thread is changed,
1565 		 * it may be necessary to adjust its position
1566 		 * on a sleep queue or dispatch queue.
1567 		 * The function thread_change_pri accomplishes
1568 		 * this.
1569 		 */
1570 		if (thread_change_pri(t, new_pri, 0)) {
1571 			/*
1572 			 * The thread was on a run queue. Reset
1573 			 * its CPU timeleft from the quantum
1574 			 * associated with the new priority.
1575 			 */
1576 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1577 		} else {
1578 			fxpp->fx_flags |= FXBACKQ;
1579 		}
1580 	}
1581 }
1582 
1583 static int
1584 fx_alloc(void **p, int flag)
1585 {
1586 	void *bufp;
1587 
1588 	bufp = kmem_alloc(sizeof (fxproc_t), flag);
1589 	if (bufp == NULL) {
1590 		return (ENOMEM);
1591 	} else {
1592 		*p = bufp;
1593 		return (0);
1594 	}
1595 }
1596 
1597 static void
1598 fx_free(void *bufp)
1599 {
1600 	if (bufp)
1601 		kmem_free(bufp, sizeof (fxproc_t));
1602 }
1603 
1604 /*
1605  * Release the callback list mutex after successful lookup
1606  */
1607 void
1608 fx_list_release(fxproc_t *fxpp)
1609 {
1610 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1611 	kmutex_t *lockp = &fx_cb_list_lock[index];
1612 	mutex_exit(lockp);
1613 }
1614 
1615 fxproc_t *
1616 fx_list_lookup(kt_did_t ktid)
1617 {
1618 	int index = FX_CB_LIST_HASH(ktid);
1619 	kmutex_t *lockp = &fx_cb_list_lock[index];
1620 	fxproc_t *fxpp;
1621 
1622 	mutex_enter(lockp);
1623 
1624 	for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1625 	    fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1626 		if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1627 		    fxpp->fx_callback != NULL) {
1628 			/*
1629 			 * The caller is responsible for calling
1630 			 * fx_list_release to drop the lock upon
1631 			 * successful lookup
1632 			 */
1633 			return (fxpp);
1634 		}
1635 	}
1636 	mutex_exit(lockp);
1637 	return ((fxproc_t *)NULL);
1638 }
1639 
1640 
1641 /*
1642  * register a callback set of routines for current thread
1643  * thread should already be in FX class
1644  */
1645 int
1646 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1647 	pri_t pri, clock_t quantum)
1648 {
1649 
1650 	fxproc_t	*fxpp;
1651 
1652 	if (fx_callback == NULL)
1653 		return (EINVAL);
1654 
1655 	if (secpolicy_dispadm(CRED()) != 0)
1656 		return (EPERM);
1657 
1658 	if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1659 		return (EINVAL);
1660 
1661 	if (!FX_ISVALID(pri, quantum))
1662 		return (EINVAL);
1663 
1664 	thread_lock(curthread);		/* get dispatcher lock on thread */
1665 
1666 	if (curthread->t_cid != fx_cid) {
1667 		thread_unlock(curthread);
1668 		return (EINVAL);
1669 	}
1670 
1671 	fxpp = (fxproc_t *)(curthread->t_cldata);
1672 	ASSERT(fxpp != NULL);
1673 	if (FX_HAS_CB(fxpp)) {
1674 		thread_unlock(curthread);
1675 		return (EINVAL);
1676 	}
1677 
1678 	fxpp->fx_callback = fx_callback;
1679 	fxpp->fx_cookie = cookie;
1680 
1681 	if (pri != FX_CB_NOCHANGE) {
1682 		fxpp->fx_pri = pri;
1683 		FX_ADJUST_PRI(fxpp->fx_pri);
1684 		if (quantum == FX_TQDEF) {
1685 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1686 		} else if (quantum == FX_TQINF) {
1687 			fxpp->fx_pquantum = FX_TQINF;
1688 		} else if (quantum != FX_NOCHANGE) {
1689 			FX_ADJUST_QUANTUM(quantum);
1690 			fxpp->fx_pquantum = quantum;
1691 		}
1692 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1693 		if (quantum == FX_TQINF)
1694 			fxpp->fx_pquantum = FX_TQINF;
1695 		else {
1696 			FX_ADJUST_QUANTUM(quantum);
1697 			fxpp->fx_pquantum = quantum;
1698 		}
1699 	}
1700 
1701 	fxpp->fx_ktid = ddi_get_kt_did();
1702 
1703 	fx_change_priority(curthread, fxpp);
1704 
1705 	thread_unlock(curthread);
1706 
1707 	/*
1708 	 * Link new structure into fxproc list.
1709 	 */
1710 	FX_CB_LIST_INSERT(fxpp);
1711 	return (0);
1712 }
1713 
1714 /* unregister a callback set of routines for current thread */
1715 int
1716 fx_unregister_callbacks()
1717 {
1718 	fxproc_t	*fxpp;
1719 
1720 	if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1721 		/*
1722 		 * did not have a registered callback;
1723 		 */
1724 		return (EINVAL);
1725 	}
1726 
1727 	thread_lock(fxpp->fx_tp);
1728 	fxpp->fx_callback = NULL;
1729 	fxpp->fx_cookie = NULL;
1730 	thread_unlock(fxpp->fx_tp);
1731 	fx_list_release(fxpp);
1732 
1733 	FX_CB_LIST_DELETE(fxpp);
1734 	return (0);
1735 }
1736 
1737 /*
1738  * modify priority and/or quantum value of a thread with callback
1739  */
1740 int
1741 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1742 {
1743 	fxproc_t	*fxpp;
1744 
1745 	if (!FX_ISVALID(pri, quantum))
1746 		return (EINVAL);
1747 
1748 	if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1749 		/*
1750 		 * either thread had exited or did not have a registered
1751 		 * callback;
1752 		 */
1753 		return (ESRCH);
1754 	}
1755 
1756 	thread_lock(fxpp->fx_tp);
1757 
1758 	if (pri != FX_CB_NOCHANGE) {
1759 		fxpp->fx_pri = pri;
1760 		FX_ADJUST_PRI(fxpp->fx_pri);
1761 		if (quantum == FX_TQDEF) {
1762 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1763 		} else if (quantum == FX_TQINF) {
1764 			fxpp->fx_pquantum = FX_TQINF;
1765 		} else if (quantum != FX_NOCHANGE) {
1766 			FX_ADJUST_QUANTUM(quantum);
1767 			fxpp->fx_pquantum = quantum;
1768 		}
1769 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1770 		if (quantum == FX_TQINF) {
1771 			fxpp->fx_pquantum = FX_TQINF;
1772 		} else {
1773 			FX_ADJUST_QUANTUM(quantum);
1774 			fxpp->fx_pquantum = quantum;
1775 		}
1776 	}
1777 
1778 	fx_change_priority(fxpp->fx_tp, fxpp);
1779 
1780 	thread_unlock(fxpp->fx_tp);
1781 	fx_list_release(fxpp);
1782 	return (0);
1783 }
1784 
1785 
1786 /*
1787  * return an iblock cookie for mutex initialization to be used in callbacks
1788  */
1789 void *
1790 fx_get_mutex_cookie()
1791 {
1792 	return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1793 }
1794 
1795 /*
1796  * return maximum relative priority
1797  */
1798 pri_t
1799 fx_get_maxpri()
1800 {
1801 	return (fx_maxumdpri);
1802 }
1803