xref: /titanic_50/usr/src/uts/common/disp/fss.c (revision 80c94ecd7a524eb933a4bb221a9618b9dc490e76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent, Inc. All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cred.h>
31 #include <sys/proc.h>
32 #include <sys/strsubr.h>
33 #include <sys/priocntl.h>
34 #include <sys/class.h>
35 #include <sys/disp.h>
36 #include <sys/procset.h>
37 #include <sys/debug.h>
38 #include <sys/kmem.h>
39 #include <sys/errno.h>
40 #include <sys/systm.h>
41 #include <sys/schedctl.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/project.h>
45 #include <sys/modctl.h>
46 #include <sys/fss.h>
47 #include <sys/fsspriocntl.h>
48 #include <sys/cpupart.h>
49 #include <sys/zone.h>
50 #include <vm/rm.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/tnf_probe.h>
53 #include <sys/policy.h>
54 #include <sys/sdt.h>
55 #include <sys/cpucaps.h>
56 
57 /*
58  * FSS Data Structures:
59  *
60  *                 fsszone
61  *                  -----           -----
62  *  -----          |     |         |     |
63  * |     |-------->|     |<------->|     |<---->...
64  * |     |          -----           -----
65  * |     |          ^    ^            ^
66  * |     |---       |     \            \
67  *  -----    |      |      \            \
68  * fsspset   |      |       \            \
69  *           |      |        \            \
70  *           |    -----       -----       -----
71  *            -->|     |<--->|     |<--->|     |
72  *               |     |     |     |     |     |
73  *                -----       -----       -----
74  *               fssproj
75  *
76  *
77  * That is, fsspsets contain a list of fsszone's that are currently active in
78  * the pset, and a list of fssproj's, corresponding to projects with runnable
79  * threads on the pset.  fssproj's in turn point to the fsszone which they
80  * are a member of.
81  *
82  * An fssproj_t is removed when there are no threads in it.
83  *
84  * An fsszone_t is removed when there are no projects with threads in it.
85  *
86  * Projects in a zone compete with each other for cpu time, receiving cpu
87  * allocation within a zone proportional to fssproj->fssp_shares
88  * (project.cpu-shares); at a higher level zones compete with each other,
89  * receiving allocation in a pset proportional to fsszone->fssz_shares
90  * (zone.cpu-shares).  See fss_decay_usage() for the precise formula.
91  */
92 
93 static pri_t fss_init(id_t, int, classfuncs_t **);
94 
95 static struct sclass fss = {
96 	"FSS",
97 	fss_init,
98 	0
99 };
100 
101 extern struct mod_ops mod_schedops;
102 
103 /*
104  * Module linkage information for the kernel.
105  */
106 static struct modlsched modlsched = {
107 	&mod_schedops, "fair share scheduling class", &fss
108 };
109 
110 static struct modlinkage modlinkage = {
111 	MODREV_1, (void *)&modlsched, NULL
112 };
113 
114 #define	FSS_MAXUPRI	60
115 
116 /*
117  * The fssproc_t structures are kept in an array of circular doubly linked
118  * lists.  A hash on the thread pointer is used to determine which list each
119  * thread should be placed in.  Each list has a dummy "head" which is never
120  * removed, so the list is never empty.  fss_update traverses these lists to
121  * update the priorities of threads that have been waiting on the run queue.
122  */
123 #define	FSS_LISTS		16 /* number of lists, must be power of 2 */
124 #define	FSS_LIST_HASH(t)	(((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
125 #define	FSS_LIST_NEXT(i)	(((i) + 1) & (FSS_LISTS - 1))
126 
127 #define	FSS_LIST_INSERT(fssproc)				\
128 {								\
129 	int index = FSS_LIST_HASH(fssproc->fss_tp);		\
130 	kmutex_t *lockp = &fss_listlock[index];			\
131 	fssproc_t *headp = &fss_listhead[index];		\
132 	mutex_enter(lockp);					\
133 	fssproc->fss_next = headp->fss_next;			\
134 	fssproc->fss_prev = headp;				\
135 	headp->fss_next->fss_prev = fssproc;			\
136 	headp->fss_next = fssproc;				\
137 	mutex_exit(lockp);					\
138 }
139 
140 #define	FSS_LIST_DELETE(fssproc)				\
141 {								\
142 	int index = FSS_LIST_HASH(fssproc->fss_tp);		\
143 	kmutex_t *lockp = &fss_listlock[index];			\
144 	mutex_enter(lockp);					\
145 	fssproc->fss_prev->fss_next = fssproc->fss_next;	\
146 	fssproc->fss_next->fss_prev = fssproc->fss_prev;	\
147 	mutex_exit(lockp);					\
148 }
149 
150 #define	FSS_TICK_COST	1000	/* tick cost for threads with nice level = 0 */
151 
152 /*
153  * Decay rate percentages are based on n/128 rather than n/100 so  that
154  * calculations can avoid having to do an integer divide by 100 (divide
155  * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
156  *
157  * FSS_DECAY_MIN	=  83/128 ~= 65%
158  * FSS_DECAY_MAX	= 108/128 ~= 85%
159  * FSS_DECAY_USG	=  96/128 ~= 75%
160  */
161 #define	FSS_DECAY_MIN	83	/* fsspri decay pct for threads w/ nice -20 */
162 #define	FSS_DECAY_MAX	108	/* fsspri decay pct for threads w/ nice +19 */
163 #define	FSS_DECAY_USG	96	/* fssusage decay pct for projects */
164 #define	FSS_DECAY_BASE	128	/* base for decay percentages above */
165 
166 #define	FSS_NICE_MIN	0
167 #define	FSS_NICE_MAX	(2 * NZERO - 1)
168 #define	FSS_NICE_RANGE	(FSS_NICE_MAX - FSS_NICE_MIN + 1)
169 
170 static int	fss_nice_tick[FSS_NICE_RANGE];
171 static int	fss_nice_decay[FSS_NICE_RANGE];
172 
173 static pri_t	fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
174 static pri_t	fss_maxumdpri; /* maximum user mode fss priority */
175 static pri_t	fss_maxglobpri;	/* maximum global priority used by fss class */
176 static pri_t	fss_minglobpri;	/* minimum global priority */
177 
178 static fssproc_t fss_listhead[FSS_LISTS];
179 static kmutex_t	fss_listlock[FSS_LISTS];
180 
181 static fsspset_t *fsspsets;
182 static kmutex_t fsspsets_lock;	/* protects fsspsets */
183 
184 static id_t	fss_cid;
185 
186 static time_t	fss_minrun = 2;	/* t_pri becomes 59 within 2 secs */
187 static time_t	fss_minslp = 2;	/* min time on sleep queue for hardswap */
188 static int	fss_quantum = 11;
189 
190 static void	fss_newpri(fssproc_t *);
191 static void	fss_update(void *);
192 static int	fss_update_list(int);
193 static void	fss_change_priority(kthread_t *, fssproc_t *);
194 
195 static int	fss_admin(caddr_t, cred_t *);
196 static int	fss_getclinfo(void *);
197 static int	fss_parmsin(void *);
198 static int	fss_parmsout(void *, pc_vaparms_t *);
199 static int	fss_vaparmsin(void *, pc_vaparms_t *);
200 static int	fss_vaparmsout(void *, pc_vaparms_t *);
201 static int	fss_getclpri(pcpri_t *);
202 static int	fss_alloc(void **, int);
203 static void	fss_free(void *);
204 
205 static int	fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
206 static void	fss_exitclass(void *);
207 static int	fss_canexit(kthread_t *, cred_t *);
208 static int	fss_fork(kthread_t *, kthread_t *, void *);
209 static void	fss_forkret(kthread_t *, kthread_t *);
210 static void	fss_parmsget(kthread_t *, void *);
211 static int	fss_parmsset(kthread_t *, void *, id_t, cred_t *);
212 static void	fss_stop(kthread_t *, int, int);
213 static void	fss_exit(kthread_t *);
214 static void	fss_active(kthread_t *);
215 static void	fss_inactive(kthread_t *);
216 static pri_t	fss_swapin(kthread_t *, int);
217 static pri_t	fss_swapout(kthread_t *, int);
218 static void	fss_trapret(kthread_t *);
219 static void	fss_preempt(kthread_t *);
220 static void	fss_setrun(kthread_t *);
221 static void	fss_sleep(kthread_t *);
222 static void	fss_tick(kthread_t *);
223 static void	fss_wakeup(kthread_t *);
224 static int	fss_donice(kthread_t *, cred_t *, int, int *);
225 static int	fss_doprio(kthread_t *, cred_t *, int, int *);
226 static pri_t	fss_globpri(kthread_t *);
227 static void	fss_yield(kthread_t *);
228 static void	fss_nullsys();
229 
230 static struct classfuncs fss_classfuncs = {
231 	/* class functions */
232 	fss_admin,
233 	fss_getclinfo,
234 	fss_parmsin,
235 	fss_parmsout,
236 	fss_vaparmsin,
237 	fss_vaparmsout,
238 	fss_getclpri,
239 	fss_alloc,
240 	fss_free,
241 
242 	/* thread functions */
243 	fss_enterclass,
244 	fss_exitclass,
245 	fss_canexit,
246 	fss_fork,
247 	fss_forkret,
248 	fss_parmsget,
249 	fss_parmsset,
250 	fss_stop,
251 	fss_exit,
252 	fss_active,
253 	fss_inactive,
254 	fss_swapin,
255 	fss_swapout,
256 	fss_trapret,
257 	fss_preempt,
258 	fss_setrun,
259 	fss_sleep,
260 	fss_tick,
261 	fss_wakeup,
262 	fss_donice,
263 	fss_globpri,
264 	fss_nullsys,	/* set_process_group */
265 	fss_yield,
266 	fss_doprio,
267 };
268 
269 int
270 _init()
271 {
272 	return (mod_install(&modlinkage));
273 }
274 
275 int
276 _fini()
277 {
278 	return (EBUSY);
279 }
280 
281 int
282 _info(struct modinfo *modinfop)
283 {
284 	return (mod_info(&modlinkage, modinfop));
285 }
286 
287 /*ARGSUSED*/
288 static int
289 fss_project_walker(kproject_t *kpj, void *buf)
290 {
291 	return (0);
292 }
293 
294 void *
295 fss_allocbuf(int op, int type)
296 {
297 	fssbuf_t *fssbuf;
298 	void **fsslist;
299 	int cnt;
300 	int i;
301 	size_t size;
302 
303 	ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
304 	ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
305 	ASSERT(MUTEX_HELD(&cpu_lock));
306 
307 	fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
308 	switch (op) {
309 	case FSS_NPSET_BUF:
310 		cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
311 		break;
312 	case FSS_NPROJ_BUF:
313 		cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
314 		break;
315 	case FSS_ONE_BUF:
316 		cnt = 1;
317 		break;
318 	}
319 
320 	switch (type) {
321 	case FSS_ALLOC_PROJ:
322 		size = sizeof (fssproj_t);
323 		break;
324 	case FSS_ALLOC_ZONE:
325 		size = sizeof (fsszone_t);
326 		break;
327 	}
328 	fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
329 	fssbuf->fssb_size = cnt;
330 	fssbuf->fssb_list = fsslist;
331 	for (i = 0; i < cnt; i++)
332 		fsslist[i] = kmem_zalloc(size, KM_SLEEP);
333 	return (fssbuf);
334 }
335 
336 void
337 fss_freebuf(fssbuf_t *fssbuf, int type)
338 {
339 	void **fsslist;
340 	int i;
341 	size_t size;
342 
343 	ASSERT(fssbuf != NULL);
344 	ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
345 	fsslist = fssbuf->fssb_list;
346 
347 	switch (type) {
348 	case FSS_ALLOC_PROJ:
349 		size = sizeof (fssproj_t);
350 		break;
351 	case FSS_ALLOC_ZONE:
352 		size = sizeof (fsszone_t);
353 		break;
354 	}
355 
356 	for (i = 0; i < fssbuf->fssb_size; i++) {
357 		if (fsslist[i] != NULL)
358 			kmem_free(fsslist[i], size);
359 	}
360 	kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
361 	kmem_free(fssbuf, sizeof (fssbuf_t));
362 }
363 
364 static fsspset_t *
365 fss_find_fsspset(cpupart_t *cpupart)
366 {
367 	int i;
368 	fsspset_t *fsspset = NULL;
369 	int found = 0;
370 
371 	ASSERT(cpupart != NULL);
372 	ASSERT(MUTEX_HELD(&fsspsets_lock));
373 
374 	/*
375 	 * Search for the cpupart pointer in the array of fsspsets.
376 	 */
377 	for (i = 0; i < max_ncpus; i++) {
378 		fsspset = &fsspsets[i];
379 		if (fsspset->fssps_cpupart == cpupart) {
380 			ASSERT(fsspset->fssps_nproj > 0);
381 			found = 1;
382 			break;
383 		}
384 	}
385 	if (found == 0) {
386 		/*
387 		 * If we didn't find anything, then use the first
388 		 * available slot in the fsspsets array.
389 		 */
390 		for (i = 0; i < max_ncpus; i++) {
391 			fsspset = &fsspsets[i];
392 			if (fsspset->fssps_cpupart == NULL) {
393 				ASSERT(fsspset->fssps_nproj == 0);
394 				found = 1;
395 				break;
396 			}
397 		}
398 		fsspset->fssps_cpupart = cpupart;
399 	}
400 	ASSERT(found == 1);
401 	return (fsspset);
402 }
403 
404 static void
405 fss_del_fsspset(fsspset_t *fsspset)
406 {
407 	ASSERT(MUTEX_HELD(&fsspsets_lock));
408 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
409 	ASSERT(fsspset->fssps_nproj == 0);
410 	ASSERT(fsspset->fssps_list == NULL);
411 	ASSERT(fsspset->fssps_zones == NULL);
412 	fsspset->fssps_cpupart = NULL;
413 	fsspset->fssps_maxfsspri = 0;
414 	fsspset->fssps_shares = 0;
415 }
416 
417 /*
418  * The following routine returns a pointer to the fsszone structure which
419  * belongs to zone "zone" and cpu partition fsspset, if such structure exists.
420  */
421 static fsszone_t *
422 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
423 {
424 	fsszone_t *fsszone;
425 
426 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
427 
428 	if (fsspset->fssps_list != NULL) {
429 		/*
430 		 * There are projects/zones active on this cpu partition
431 		 * already.  Try to find our zone among them.
432 		 */
433 		fsszone = fsspset->fssps_zones;
434 		do {
435 			if (fsszone->fssz_zone == zone) {
436 				return (fsszone);
437 			}
438 			fsszone = fsszone->fssz_next;
439 		} while (fsszone != fsspset->fssps_zones);
440 	}
441 	return (NULL);
442 }
443 
444 /*
445  * The following routine links new fsszone structure into doubly linked list of
446  * zones active on the specified cpu partition.
447  */
448 static void
449 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
450 {
451 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
452 
453 	fsszone->fssz_zone = zone;
454 	fsszone->fssz_rshares = zone->zone_shares;
455 
456 	if (fsspset->fssps_zones == NULL) {
457 		/*
458 		 * This will be the first fsszone for this fsspset
459 		 */
460 		fsszone->fssz_next = fsszone->fssz_prev = fsszone;
461 		fsspset->fssps_zones = fsszone;
462 	} else {
463 		/*
464 		 * Insert this fsszone to the doubly linked list.
465 		 */
466 		fsszone_t *fssz_head = fsspset->fssps_zones;
467 
468 		fsszone->fssz_next = fssz_head;
469 		fsszone->fssz_prev = fssz_head->fssz_prev;
470 		fssz_head->fssz_prev->fssz_next = fsszone;
471 		fssz_head->fssz_prev = fsszone;
472 		fsspset->fssps_zones = fsszone;
473 	}
474 }
475 
476 /*
477  * The following routine removes a single fsszone structure from the doubly
478  * linked list of zones active on the specified cpu partition.  Note that
479  * global fsspsets_lock must be held in case this fsszone structure is the last
480  * on the above mentioned list.  Also note that the fsszone structure is not
481  * freed here, it is the responsibility of the caller to call kmem_free for it.
482  */
483 static void
484 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
485 {
486 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
487 	ASSERT(fsszone->fssz_nproj == 0);
488 	ASSERT(fsszone->fssz_shares == 0);
489 	ASSERT(fsszone->fssz_runnable == 0);
490 
491 	if (fsszone->fssz_next != fsszone) {
492 		/*
493 		 * This is not the last zone in the list.
494 		 */
495 		fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
496 		fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
497 		if (fsspset->fssps_zones == fsszone)
498 			fsspset->fssps_zones = fsszone->fssz_next;
499 	} else {
500 		/*
501 		 * This was the last zone active in this cpu partition.
502 		 */
503 		fsspset->fssps_zones = NULL;
504 	}
505 }
506 
507 /*
508  * The following routine returns a pointer to the fssproj structure
509  * which belongs to project kpj and cpu partition fsspset, if such structure
510  * exists.
511  */
512 static fssproj_t *
513 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
514 {
515 	fssproj_t *fssproj;
516 
517 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
518 
519 	if (fsspset->fssps_list != NULL) {
520 		/*
521 		 * There are projects running on this cpu partition already.
522 		 * Try to find our project among them.
523 		 */
524 		fssproj = fsspset->fssps_list;
525 		do {
526 			if (fssproj->fssp_proj == kpj) {
527 				ASSERT(fssproj->fssp_pset == fsspset);
528 				return (fssproj);
529 			}
530 			fssproj = fssproj->fssp_next;
531 		} while (fssproj != fsspset->fssps_list);
532 	}
533 	return (NULL);
534 }
535 
536 /*
537  * The following routine links new fssproj structure into doubly linked list
538  * of projects running on the specified cpu partition.
539  */
540 static void
541 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
542     fssproj_t *fssproj)
543 {
544 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
545 
546 	fssproj->fssp_pset = fsspset;
547 	fssproj->fssp_proj = kpj;
548 	fssproj->fssp_shares = kpj->kpj_shares;
549 
550 	fsspset->fssps_nproj++;
551 
552 	if (fsspset->fssps_list == NULL) {
553 		/*
554 		 * This will be the first fssproj for this fsspset
555 		 */
556 		fssproj->fssp_next = fssproj->fssp_prev = fssproj;
557 		fsspset->fssps_list = fssproj;
558 	} else {
559 		/*
560 		 * Insert this fssproj to the doubly linked list.
561 		 */
562 		fssproj_t *fssp_head = fsspset->fssps_list;
563 
564 		fssproj->fssp_next = fssp_head;
565 		fssproj->fssp_prev = fssp_head->fssp_prev;
566 		fssp_head->fssp_prev->fssp_next = fssproj;
567 		fssp_head->fssp_prev = fssproj;
568 		fsspset->fssps_list = fssproj;
569 	}
570 	fssproj->fssp_fsszone = fsszone;
571 	fsszone->fssz_nproj++;
572 	ASSERT(fsszone->fssz_nproj != 0);
573 }
574 
575 /*
576  * The following routine removes a single fssproj structure from the doubly
577  * linked list of projects running on the specified cpu partition.  Note that
578  * global fsspsets_lock must be held in case if this fssproj structure is the
579  * last on the above mentioned list.  Also note that the fssproj structure is
580  * not freed here, it is the responsibility of the caller to call kmem_free
581  * for it.
582  */
583 static void
584 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
585 {
586 	fsszone_t *fsszone;
587 
588 	ASSERT(MUTEX_HELD(&fsspsets_lock));
589 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
590 	ASSERT(fssproj->fssp_runnable == 0);
591 
592 	fsspset->fssps_nproj--;
593 
594 	fsszone = fssproj->fssp_fsszone;
595 	fsszone->fssz_nproj--;
596 
597 	if (fssproj->fssp_next != fssproj) {
598 		/*
599 		 * This is not the last part in the list.
600 		 */
601 		fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
602 		fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
603 		if (fsspset->fssps_list == fssproj)
604 			fsspset->fssps_list = fssproj->fssp_next;
605 		if (fsszone->fssz_nproj == 0)
606 			fss_remove_fsszone(fsspset, fsszone);
607 	} else {
608 		/*
609 		 * This was the last project part running
610 		 * at this cpu partition.
611 		 */
612 		fsspset->fssps_list = NULL;
613 		ASSERT(fsspset->fssps_nproj == 0);
614 		ASSERT(fsszone->fssz_nproj == 0);
615 		fss_remove_fsszone(fsspset, fsszone);
616 		fss_del_fsspset(fsspset);
617 	}
618 }
619 
620 static void
621 fss_inactive(kthread_t *t)
622 {
623 	fssproc_t *fssproc;
624 	fssproj_t *fssproj;
625 	fsspset_t *fsspset;
626 	fsszone_t *fsszone;
627 
628 	ASSERT(THREAD_LOCK_HELD(t));
629 	fssproc = FSSPROC(t);
630 	fssproj = FSSPROC2FSSPROJ(fssproc);
631 	if (fssproj == NULL)	/* if this thread already exited */
632 		return;
633 	fsspset = FSSPROJ2FSSPSET(fssproj);
634 	fsszone = fssproj->fssp_fsszone;
635 	disp_lock_enter_high(&fsspset->fssps_displock);
636 	ASSERT(fssproj->fssp_runnable > 0);
637 	if (--fssproj->fssp_runnable == 0) {
638 		fsszone->fssz_shares -= fssproj->fssp_shares;
639 		if (--fsszone->fssz_runnable == 0)
640 			fsspset->fssps_shares -= fsszone->fssz_rshares;
641 	}
642 	ASSERT(fssproc->fss_runnable == 1);
643 	fssproc->fss_runnable = 0;
644 	disp_lock_exit_high(&fsspset->fssps_displock);
645 }
646 
647 static void
648 fss_active(kthread_t *t)
649 {
650 	fssproc_t *fssproc;
651 	fssproj_t *fssproj;
652 	fsspset_t *fsspset;
653 	fsszone_t *fsszone;
654 
655 	ASSERT(THREAD_LOCK_HELD(t));
656 	fssproc = FSSPROC(t);
657 	fssproj = FSSPROC2FSSPROJ(fssproc);
658 	if (fssproj == NULL)	/* if this thread already exited */
659 		return;
660 	fsspset = FSSPROJ2FSSPSET(fssproj);
661 	fsszone = fssproj->fssp_fsszone;
662 	disp_lock_enter_high(&fsspset->fssps_displock);
663 	if (++fssproj->fssp_runnable == 1) {
664 		fsszone->fssz_shares += fssproj->fssp_shares;
665 		if (++fsszone->fssz_runnable == 1)
666 			fsspset->fssps_shares += fsszone->fssz_rshares;
667 	}
668 	ASSERT(fssproc->fss_runnable == 0);
669 	fssproc->fss_runnable = 1;
670 	disp_lock_exit_high(&fsspset->fssps_displock);
671 }
672 
673 /*
674  * Fair share scheduler initialization. Called by dispinit() at boot time.
675  * We can ignore clparmsz argument since we know that the smallest possible
676  * parameter buffer is big enough for us.
677  */
678 /*ARGSUSED*/
679 static pri_t
680 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
681 {
682 	int i;
683 
684 	ASSERT(MUTEX_HELD(&cpu_lock));
685 
686 	fss_cid = cid;
687 	fss_maxumdpri = minclsyspri - 1;
688 	fss_maxglobpri = minclsyspri;
689 	fss_minglobpri = 0;
690 	fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
691 
692 	/*
693 	 * Initialize the fssproc hash table.
694 	 */
695 	for (i = 0; i < FSS_LISTS; i++)
696 		fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
697 		    &fss_listhead[i];
698 
699 	*clfuncspp = &fss_classfuncs;
700 
701 	/*
702 	 * Fill in fss_nice_tick and fss_nice_decay arrays:
703 	 * The cost of a tick is lower at positive nice values (so that it
704 	 * will not increase its project's usage as much as normal) with 50%
705 	 * drop at the maximum level and 50% increase at the minimum level.
706 	 * The fsspri decay is slower at positive nice values.  fsspri values
707 	 * of processes with negative nice levels must decay faster to receive
708 	 * time slices more frequently than normal.
709 	 */
710 	for (i = 0; i < FSS_NICE_RANGE; i++) {
711 		fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
712 		    - i)) / FSS_NICE_RANGE;
713 		fss_nice_decay[i] = FSS_DECAY_MIN +
714 		    ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
715 		    (FSS_NICE_RANGE - 1);
716 	}
717 
718 	return (fss_maxglobpri);
719 }
720 
721 /*
722  * Calculate the new cpupri based on the usage, the number of shares and
723  * the number of active threads.  Reset the tick counter for this thread.
724  */
725 static void
726 fss_newpri(fssproc_t *fssproc)
727 {
728 	kthread_t *tp;
729 	fssproj_t *fssproj;
730 	fsspset_t *fsspset;
731 	fsszone_t *fsszone;
732 	fsspri_t fsspri, maxfsspri;
733 	pri_t invpri;
734 	uint32_t ticks;
735 
736 	tp = fssproc->fss_tp;
737 	ASSERT(tp != NULL);
738 
739 	if (tp->t_cid != fss_cid)
740 		return;
741 
742 	ASSERT(THREAD_LOCK_HELD(tp));
743 
744 	fssproj = FSSPROC2FSSPROJ(fssproc);
745 	fsszone = FSSPROJ2FSSZONE(fssproj);
746 	if (fssproj == NULL)
747 		/*
748 		 * No need to change priority of exited threads.
749 		 */
750 		return;
751 
752 	fsspset = FSSPROJ2FSSPSET(fssproj);
753 	disp_lock_enter_high(&fsspset->fssps_displock);
754 
755 	if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
756 		/*
757 		 * Special case: threads with no shares.
758 		 */
759 		fssproc->fss_umdpri = fss_minglobpri;
760 		fssproc->fss_ticks = 0;
761 		disp_lock_exit_high(&fsspset->fssps_displock);
762 		return;
763 	}
764 
765 	/*
766 	 * fsspri += shusage * nrunnable * ticks
767 	 */
768 	ticks = fssproc->fss_ticks;
769 	fssproc->fss_ticks = 0;
770 	fsspri = fssproc->fss_fsspri;
771 	fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks;
772 	fssproc->fss_fsspri = fsspri;
773 
774 	if (fsspri < fss_maxumdpri)
775 		fsspri = fss_maxumdpri;	/* so that maxfsspri is != 0 */
776 
777 	/*
778 	 * The general priority formula:
779 	 *
780 	 *			(fsspri * umdprirange)
781 	 *   pri = maxumdpri - ------------------------
782 	 *				maxfsspri
783 	 *
784 	 * If this thread's fsspri is greater than the previous largest
785 	 * fsspri, then record it as the new high and priority for this
786 	 * thread will be one (the lowest priority assigned to a thread
787 	 * that has non-zero shares).
788 	 * Note that this formula cannot produce out of bounds priority
789 	 * values; if it is changed, additional checks may need  to  be
790 	 * added.
791 	 */
792 	maxfsspri = fsspset->fssps_maxfsspri;
793 	if (fsspri >= maxfsspri) {
794 		fsspset->fssps_maxfsspri = fsspri;
795 		disp_lock_exit_high(&fsspset->fssps_displock);
796 		fssproc->fss_umdpri = 1;
797 	} else {
798 		disp_lock_exit_high(&fsspset->fssps_displock);
799 		invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
800 		fssproc->fss_umdpri = fss_maxumdpri - invpri;
801 	}
802 }
803 
804 /*
805  * Decays usages of all running projects and resets their tick counters.
806  * Called once per second from fss_update() after updating priorities.
807  */
808 static void
809 fss_decay_usage()
810 {
811 	uint32_t zone_ext_shares, zone_int_shares;
812 	uint32_t kpj_shares, pset_shares;
813 	fsspset_t *fsspset;
814 	fssproj_t *fssproj;
815 	fsszone_t *fsszone;
816 	fsspri_t maxfsspri;
817 	int psetid;
818 
819 	mutex_enter(&fsspsets_lock);
820 	/*
821 	 * Go through all active processor sets and decay usages of projects
822 	 * running on them.
823 	 */
824 	for (psetid = 0; psetid < max_ncpus; psetid++) {
825 		fsspset = &fsspsets[psetid];
826 		mutex_enter(&fsspset->fssps_lock);
827 
828 		if (fsspset->fssps_cpupart == NULL ||
829 		    (fssproj = fsspset->fssps_list) == NULL) {
830 			mutex_exit(&fsspset->fssps_lock);
831 			continue;
832 		}
833 
834 		/*
835 		 * Decay maxfsspri for this cpu partition with the
836 		 * fastest possible decay rate.
837 		 */
838 		disp_lock_enter(&fsspset->fssps_displock);
839 
840 		maxfsspri = (fsspset->fssps_maxfsspri *
841 		    fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
842 		if (maxfsspri < fss_maxumdpri)
843 			maxfsspri = fss_maxumdpri;
844 		fsspset->fssps_maxfsspri = maxfsspri;
845 
846 		do {
847 			/*
848 			 * Decay usage for each project running on
849 			 * this cpu partition.
850 			 */
851 			fssproj->fssp_usage =
852 			    (fssproj->fssp_usage * FSS_DECAY_USG) /
853 			    FSS_DECAY_BASE + fssproj->fssp_ticks;
854 			fssproj->fssp_ticks = 0;
855 
856 			fsszone = fssproj->fssp_fsszone;
857 			/*
858 			 * Readjust the project's number of shares if it has
859 			 * changed since we checked it last time.
860 			 */
861 			kpj_shares = fssproj->fssp_proj->kpj_shares;
862 			if (fssproj->fssp_shares != kpj_shares) {
863 				if (fssproj->fssp_runnable != 0) {
864 					fsszone->fssz_shares -=
865 					    fssproj->fssp_shares;
866 					fsszone->fssz_shares += kpj_shares;
867 				}
868 				fssproj->fssp_shares = kpj_shares;
869 			}
870 
871 			/*
872 			 * Readjust the zone's number of shares if it
873 			 * has changed since we checked it last time.
874 			 */
875 			zone_ext_shares = fsszone->fssz_zone->zone_shares;
876 			if (fsszone->fssz_rshares != zone_ext_shares) {
877 				if (fsszone->fssz_runnable != 0) {
878 					fsspset->fssps_shares -=
879 					    fsszone->fssz_rshares;
880 					fsspset->fssps_shares +=
881 					    zone_ext_shares;
882 				}
883 				fsszone->fssz_rshares = zone_ext_shares;
884 			}
885 			zone_int_shares = fsszone->fssz_shares;
886 			pset_shares = fsspset->fssps_shares;
887 			/*
888 			 * Calculate fssp_shusage value to be used
889 			 * for fsspri increments for the next second.
890 			 */
891 			if (kpj_shares == 0 || zone_ext_shares == 0) {
892 				fssproj->fssp_shusage = 0;
893 			} else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
894 				/*
895 				 * Project 0 in the global zone has 50%
896 				 * of its zone.
897 				 */
898 				fssproj->fssp_shusage = (fssproj->fssp_usage *
899 				    zone_int_shares * zone_int_shares) /
900 				    (zone_ext_shares * zone_ext_shares);
901 			} else {
902 				/*
903 				 * Thread's priority is based on its project's
904 				 * normalized usage (shusage) value which gets
905 				 * calculated this way:
906 				 *
907 				 *	   pset_shares^2    zone_int_shares^2
908 				 * usage * ------------- * ------------------
909 				 *	   kpj_shares^2	    zone_ext_shares^2
910 				 *
911 				 * Where zone_int_shares is the sum of shares
912 				 * of all active projects within the zone (and
913 				 * the pset), and zone_ext_shares is the number
914 				 * of zone shares (ie, zone.cpu-shares).
915 				 *
916 				 * If there is only one zone active on the pset
917 				 * the above reduces to:
918 				 *
919 				 * 			zone_int_shares^2
920 				 * shusage = usage * ---------------------
921 				 * 			kpj_shares^2
922 				 *
923 				 * If there's only one project active in the
924 				 * zone this formula reduces to:
925 				 *
926 				 *			pset_shares^2
927 				 * shusage = usage * ----------------------
928 				 *			zone_ext_shares^2
929 				 */
930 				fssproj->fssp_shusage = fssproj->fssp_usage *
931 				    pset_shares * zone_int_shares;
932 				fssproj->fssp_shusage /=
933 				    kpj_shares * zone_ext_shares;
934 				fssproj->fssp_shusage *=
935 				    pset_shares * zone_int_shares;
936 				fssproj->fssp_shusage /=
937 				    kpj_shares * zone_ext_shares;
938 			}
939 			fssproj = fssproj->fssp_next;
940 		} while (fssproj != fsspset->fssps_list);
941 
942 		disp_lock_exit(&fsspset->fssps_displock);
943 		mutex_exit(&fsspset->fssps_lock);
944 	}
945 	mutex_exit(&fsspsets_lock);
946 }
947 
948 static void
949 fss_change_priority(kthread_t *t, fssproc_t *fssproc)
950 {
951 	pri_t new_pri;
952 
953 	ASSERT(THREAD_LOCK_HELD(t));
954 	new_pri = fssproc->fss_umdpri;
955 	ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
956 
957 	t->t_cpri = fssproc->fss_upri;
958 	fssproc->fss_flags &= ~FSSRESTORE;
959 	if (t == curthread || t->t_state == TS_ONPROC) {
960 		/*
961 		 * curthread is always onproc
962 		 */
963 		cpu_t *cp = t->t_disp_queue->disp_cpu;
964 		THREAD_CHANGE_PRI(t, new_pri);
965 		if (t == cp->cpu_dispthread)
966 			cp->cpu_dispatch_pri = DISP_PRIO(t);
967 		if (DISP_MUST_SURRENDER(t)) {
968 			fssproc->fss_flags |= FSSBACKQ;
969 			cpu_surrender(t);
970 		} else {
971 			fssproc->fss_timeleft = fss_quantum;
972 		}
973 	} else {
974 		/*
975 		 * When the priority of a thread is changed, it may be
976 		 * necessary to adjust its position on a sleep queue or
977 		 * dispatch queue.  The function thread_change_pri accomplishes
978 		 * this.
979 		 */
980 		if (thread_change_pri(t, new_pri, 0)) {
981 			/*
982 			 * The thread was on a run queue.
983 			 */
984 			fssproc->fss_timeleft = fss_quantum;
985 		} else {
986 			fssproc->fss_flags |= FSSBACKQ;
987 		}
988 	}
989 }
990 
991 /*
992  * Update priorities of all fair-sharing threads that are currently runnable
993  * at a user mode priority based on the number of shares and current usage.
994  * Called once per second via timeout which we reset here.
995  *
996  * There are several lists of fair-sharing threads broken up by a hash on the
997  * thread pointer.  Each list has its own lock.  This avoids blocking all
998  * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
999  * fss_update traverses each list in turn.
1000  */
1001 static void
1002 fss_update(void *arg)
1003 {
1004 	int i;
1005 	int new_marker = -1;
1006 	static int fss_update_marker;
1007 
1008 	/*
1009 	 * Decay and update usages for all projects.
1010 	 */
1011 	fss_decay_usage();
1012 
1013 	/*
1014 	 * Start with the fss_update_marker list, then do the rest.
1015 	 */
1016 	i = fss_update_marker;
1017 
1018 	/*
1019 	 * Go around all threads, set new priorities and decay
1020 	 * per-thread CPU usages.
1021 	 */
1022 	do {
1023 		/*
1024 		 * If this is the first list after the current marker to have
1025 		 * threads with priorities updates, advance the marker to this
1026 		 * list for the next time fss_update runs.
1027 		 */
1028 		if (fss_update_list(i) &&
1029 		    new_marker == -1 && i != fss_update_marker)
1030 			new_marker = i;
1031 	} while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
1032 
1033 	/*
1034 	 * Advance marker for the next fss_update call
1035 	 */
1036 	if (new_marker != -1)
1037 		fss_update_marker = new_marker;
1038 
1039 	(void) timeout(fss_update, arg, hz);
1040 }
1041 
1042 /*
1043  * Updates priority for a list of threads.  Returns 1 if the priority of one
1044  * of the threads was actually updated, 0 if none were for various reasons
1045  * (thread is no longer in the FSS class, is not runnable, has the preemption
1046  * control no-preempt bit set, etc.)
1047  */
1048 static int
1049 fss_update_list(int i)
1050 {
1051 	fssproc_t *fssproc;
1052 	fssproj_t *fssproj;
1053 	fsspri_t fsspri;
1054 	kthread_t *t;
1055 	int updated = 0;
1056 
1057 	mutex_enter(&fss_listlock[i]);
1058 	for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
1059 	    fssproc = fssproc->fss_next) {
1060 		t = fssproc->fss_tp;
1061 		/*
1062 		 * Lock the thread and verify the state.
1063 		 */
1064 		thread_lock(t);
1065 		/*
1066 		 * Skip the thread if it is no longer in the FSS class or
1067 		 * is running with kernel mode priority.
1068 		 */
1069 		if (t->t_cid != fss_cid)
1070 			goto next;
1071 		if ((fssproc->fss_flags & FSSKPRI) != 0)
1072 			goto next;
1073 
1074 		fssproj = FSSPROC2FSSPROJ(fssproc);
1075 		if (fssproj == NULL)
1076 			goto next;
1077 		if (fssproj->fssp_shares != 0) {
1078 			/*
1079 			 * Decay fsspri value.
1080 			 */
1081 			fsspri = fssproc->fss_fsspri;
1082 			fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
1083 			    FSS_DECAY_BASE;
1084 			fssproc->fss_fsspri = fsspri;
1085 		}
1086 
1087 		if (t->t_schedctl && schedctl_get_nopreempt(t))
1088 			goto next;
1089 		if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
1090 			/*
1091 			 * Make next syscall/trap call fss_trapret
1092 			 */
1093 			t->t_trapret = 1;
1094 			aston(t);
1095 			goto next;
1096 		}
1097 		fss_newpri(fssproc);
1098 		updated = 1;
1099 
1100 		/*
1101 		 * Only dequeue the thread if it needs to be moved; otherwise
1102 		 * it should just round-robin here.
1103 		 */
1104 		if (t->t_pri != fssproc->fss_umdpri)
1105 			fss_change_priority(t, fssproc);
1106 next:
1107 		thread_unlock(t);
1108 	}
1109 	mutex_exit(&fss_listlock[i]);
1110 	return (updated);
1111 }
1112 
1113 /*ARGSUSED*/
1114 static int
1115 fss_admin(caddr_t uaddr, cred_t *reqpcredp)
1116 {
1117 	fssadmin_t fssadmin;
1118 
1119 	if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
1120 		return (EFAULT);
1121 
1122 	switch (fssadmin.fss_cmd) {
1123 	case FSS_SETADMIN:
1124 		if (secpolicy_dispadm(reqpcredp) != 0)
1125 			return (EPERM);
1126 		if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
1127 			return (EINVAL);
1128 		fss_quantum = fssadmin.fss_quantum;
1129 		break;
1130 	case FSS_GETADMIN:
1131 		fssadmin.fss_quantum = fss_quantum;
1132 		if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
1133 			return (EFAULT);
1134 		break;
1135 	default:
1136 		return (EINVAL);
1137 	}
1138 	return (0);
1139 }
1140 
1141 static int
1142 fss_getclinfo(void *infop)
1143 {
1144 	fssinfo_t *fssinfo = (fssinfo_t *)infop;
1145 	fssinfo->fss_maxupri = fss_maxupri;
1146 	return (0);
1147 }
1148 
1149 static int
1150 fss_parmsin(void *parmsp)
1151 {
1152 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1153 
1154 	/*
1155 	 * Check validity of parameters.
1156 	 */
1157 	if ((fssparmsp->fss_uprilim > fss_maxupri ||
1158 	    fssparmsp->fss_uprilim < -fss_maxupri) &&
1159 	    fssparmsp->fss_uprilim != FSS_NOCHANGE)
1160 		return (EINVAL);
1161 
1162 	if ((fssparmsp->fss_upri > fss_maxupri ||
1163 	    fssparmsp->fss_upri < -fss_maxupri) &&
1164 	    fssparmsp->fss_upri != FSS_NOCHANGE)
1165 		return (EINVAL);
1166 
1167 	return (0);
1168 }
1169 
1170 /*ARGSUSED*/
1171 static int
1172 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1173 {
1174 	return (0);
1175 }
1176 
1177 static int
1178 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
1179 {
1180 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1181 	int priflag = 0;
1182 	int limflag = 0;
1183 	uint_t cnt;
1184 	pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1185 
1186 	/*
1187 	 * FSS_NOCHANGE (-32768) is outside of the range of values for
1188 	 * fss_uprilim and fss_upri.  If the structure fssparms_t is changed,
1189 	 * FSS_NOCHANGE should be replaced by a flag word.
1190 	 */
1191 	fssparmsp->fss_uprilim = FSS_NOCHANGE;
1192 	fssparmsp->fss_upri = FSS_NOCHANGE;
1193 
1194 	/*
1195 	 * Get the varargs parameter and check validity of parameters.
1196 	 */
1197 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1198 		return (EINVAL);
1199 
1200 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1201 		switch (vpp->pc_key) {
1202 		case FSS_KY_UPRILIM:
1203 			if (limflag++)
1204 				return (EINVAL);
1205 			fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
1206 			if (fssparmsp->fss_uprilim > fss_maxupri ||
1207 			    fssparmsp->fss_uprilim < -fss_maxupri)
1208 				return (EINVAL);
1209 			break;
1210 		case FSS_KY_UPRI:
1211 			if (priflag++)
1212 				return (EINVAL);
1213 			fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
1214 			if (fssparmsp->fss_upri > fss_maxupri ||
1215 			    fssparmsp->fss_upri < -fss_maxupri)
1216 				return (EINVAL);
1217 			break;
1218 		default:
1219 			return (EINVAL);
1220 		}
1221 	}
1222 
1223 	if (vaparmsp->pc_vaparmscnt == 0) {
1224 		/*
1225 		 * Use default parameters.
1226 		 */
1227 		fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
1228 	}
1229 
1230 	return (0);
1231 }
1232 
1233 /*
1234  * Copy all selected fair-sharing class parameters to the user.  The parameters
1235  * are specified by a key.
1236  */
1237 static int
1238 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1239 {
1240 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1241 	int priflag = 0;
1242 	int limflag = 0;
1243 	uint_t cnt;
1244 	pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1245 
1246 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1247 
1248 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1249 		return (EINVAL);
1250 
1251 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1252 		switch (vpp->pc_key) {
1253 		case FSS_KY_UPRILIM:
1254 			if (limflag++)
1255 				return (EINVAL);
1256 			if (copyout(&fssparmsp->fss_uprilim,
1257 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1258 				return (EFAULT);
1259 			break;
1260 		case FSS_KY_UPRI:
1261 			if (priflag++)
1262 				return (EINVAL);
1263 			if (copyout(&fssparmsp->fss_upri,
1264 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1265 				return (EFAULT);
1266 			break;
1267 		default:
1268 			return (EINVAL);
1269 		}
1270 	}
1271 
1272 	return (0);
1273 }
1274 
1275 /*
1276  * Return the user mode scheduling priority range.
1277  */
1278 static int
1279 fss_getclpri(pcpri_t *pcprip)
1280 {
1281 	pcprip->pc_clpmax = fss_maxupri;
1282 	pcprip->pc_clpmin = -fss_maxupri;
1283 	return (0);
1284 }
1285 
1286 static int
1287 fss_alloc(void **p, int flag)
1288 {
1289 	void *bufp;
1290 
1291 	if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
1292 		return (ENOMEM);
1293 	} else {
1294 		*p = bufp;
1295 		return (0);
1296 	}
1297 }
1298 
1299 static void
1300 fss_free(void *bufp)
1301 {
1302 	if (bufp)
1303 		kmem_free(bufp, sizeof (fssproc_t));
1304 }
1305 
1306 /*
1307  * Thread functions
1308  */
1309 static int
1310 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
1311     void *bufp)
1312 {
1313 	fssparms_t	*fssparmsp = (fssparms_t *)parmsp;
1314 	fssproc_t	*fssproc;
1315 	pri_t		reqfssuprilim;
1316 	pri_t		reqfssupri;
1317 	static uint32_t fssexists = 0;
1318 	fsspset_t	*fsspset;
1319 	fssproj_t	*fssproj;
1320 	fsszone_t	*fsszone;
1321 	kproject_t	*kpj;
1322 	zone_t		*zone;
1323 	int		fsszone_allocated = 0;
1324 
1325 	fssproc = (fssproc_t *)bufp;
1326 	ASSERT(fssproc != NULL);
1327 
1328 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1329 
1330 	/*
1331 	 * Only root can move threads to FSS class.
1332 	 */
1333 	if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
1334 		return (EPERM);
1335 	/*
1336 	 * Initialize the fssproc structure.
1337 	 */
1338 	fssproc->fss_umdpri = fss_maxumdpri / 2;
1339 
1340 	if (fssparmsp == NULL) {
1341 		/*
1342 		 * Use default values.
1343 		 */
1344 		fssproc->fss_nice = NZERO;
1345 		fssproc->fss_uprilim = fssproc->fss_upri = 0;
1346 	} else {
1347 		/*
1348 		 * Use supplied values.
1349 		 */
1350 		if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
1351 			reqfssuprilim = 0;
1352 		} else {
1353 			if (fssparmsp->fss_uprilim > 0 &&
1354 			    secpolicy_setpriority(reqpcredp) != 0)
1355 				return (EPERM);
1356 			reqfssuprilim = fssparmsp->fss_uprilim;
1357 		}
1358 		if (fssparmsp->fss_upri == FSS_NOCHANGE) {
1359 			reqfssupri = reqfssuprilim;
1360 		} else {
1361 			if (fssparmsp->fss_upri > 0 &&
1362 			    secpolicy_setpriority(reqpcredp) != 0)
1363 				return (EPERM);
1364 			/*
1365 			 * Set the user priority to the requested value or
1366 			 * the upri limit, whichever is lower.
1367 			 */
1368 			reqfssupri = fssparmsp->fss_upri;
1369 			if (reqfssupri > reqfssuprilim)
1370 				reqfssupri = reqfssuprilim;
1371 		}
1372 		fssproc->fss_uprilim = reqfssuprilim;
1373 		fssproc->fss_upri = reqfssupri;
1374 		fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
1375 		if (fssproc->fss_nice > FSS_NICE_MAX)
1376 			fssproc->fss_nice = FSS_NICE_MAX;
1377 	}
1378 
1379 	fssproc->fss_timeleft = fss_quantum;
1380 	fssproc->fss_tp = t;
1381 	cpucaps_sc_init(&fssproc->fss_caps);
1382 
1383 	/*
1384 	 * Put a lock on our fsspset structure.
1385 	 */
1386 	mutex_enter(&fsspsets_lock);
1387 	fsspset = fss_find_fsspset(t->t_cpupart);
1388 	mutex_enter(&fsspset->fssps_lock);
1389 	mutex_exit(&fsspsets_lock);
1390 
1391 	zone = ttoproc(t)->p_zone;
1392 	if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
1393 		if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
1394 		    == NULL) {
1395 			mutex_exit(&fsspset->fssps_lock);
1396 			return (ENOMEM);
1397 		} else {
1398 			fsszone_allocated = 1;
1399 			fss_insert_fsszone(fsspset, zone, fsszone);
1400 		}
1401 	}
1402 	kpj = ttoproj(t);
1403 	if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
1404 		if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
1405 		    == NULL) {
1406 			if (fsszone_allocated) {
1407 				fss_remove_fsszone(fsspset, fsszone);
1408 				kmem_free(fsszone, sizeof (fsszone_t));
1409 			}
1410 			mutex_exit(&fsspset->fssps_lock);
1411 			return (ENOMEM);
1412 		} else {
1413 			fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
1414 		}
1415 	}
1416 	fssproj->fssp_threads++;
1417 	fssproc->fss_proj = fssproj;
1418 
1419 	/*
1420 	 * Reset priority. Process goes to a "user mode" priority here
1421 	 * regardless of whether or not it has slept since entering the kernel.
1422 	 */
1423 	thread_lock(t);
1424 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1425 	t->t_cid = cid;
1426 	t->t_cldata = (void *)fssproc;
1427 	t->t_schedflag |= TS_RUNQMATCH;
1428 	fss_change_priority(t, fssproc);
1429 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
1430 	    t->t_state == TS_WAIT)
1431 		fss_active(t);
1432 	thread_unlock(t);
1433 
1434 	mutex_exit(&fsspset->fssps_lock);
1435 
1436 	/*
1437 	 * Link new structure into fssproc list.
1438 	 */
1439 	FSS_LIST_INSERT(fssproc);
1440 
1441 	/*
1442 	 * If this is the first fair-sharing thread to occur since boot,
1443 	 * we set up the initial call to fss_update() here. Use an atomic
1444 	 * compare-and-swap since that's easier and faster than a mutex
1445 	 * (but check with an ordinary load first since most of the time
1446 	 * this will already be done).
1447 	 */
1448 	if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0)
1449 		(void) timeout(fss_update, NULL, hz);
1450 
1451 	return (0);
1452 }
1453 
1454 /*
1455  * Remove fssproc_t from the list.
1456  */
1457 static void
1458 fss_exitclass(void *procp)
1459 {
1460 	fssproc_t *fssproc = (fssproc_t *)procp;
1461 	fssproj_t *fssproj;
1462 	fsspset_t *fsspset;
1463 	fsszone_t *fsszone;
1464 	kthread_t *t = fssproc->fss_tp;
1465 
1466 	/*
1467 	 * We should be either getting this thread off the deathrow or
1468 	 * this thread has already moved to another scheduling class and
1469 	 * we're being called with its old cldata buffer pointer.  In both
1470 	 * cases, the content of this buffer can not be changed while we're
1471 	 * here.
1472 	 */
1473 	mutex_enter(&fsspsets_lock);
1474 	thread_lock(t);
1475 	if (t->t_cid != fss_cid) {
1476 		/*
1477 		 * We're being called as a result of the priocntl() system
1478 		 * call -- someone is trying to move our thread to another
1479 		 * scheduling class. We can't call fss_inactive() here
1480 		 * because our thread's t_cldata pointer already points
1481 		 * to another scheduling class specific data.
1482 		 */
1483 		ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1484 
1485 		fssproj = FSSPROC2FSSPROJ(fssproc);
1486 		fsspset = FSSPROJ2FSSPSET(fssproj);
1487 		fsszone = fssproj->fssp_fsszone;
1488 
1489 		if (fssproc->fss_runnable) {
1490 			disp_lock_enter_high(&fsspset->fssps_displock);
1491 			if (--fssproj->fssp_runnable == 0) {
1492 				fsszone->fssz_shares -= fssproj->fssp_shares;
1493 				if (--fsszone->fssz_runnable == 0)
1494 					fsspset->fssps_shares -=
1495 					    fsszone->fssz_rshares;
1496 			}
1497 			disp_lock_exit_high(&fsspset->fssps_displock);
1498 		}
1499 		thread_unlock(t);
1500 
1501 		mutex_enter(&fsspset->fssps_lock);
1502 		if (--fssproj->fssp_threads == 0) {
1503 			fss_remove_fssproj(fsspset, fssproj);
1504 			if (fsszone->fssz_nproj == 0)
1505 				kmem_free(fsszone, sizeof (fsszone_t));
1506 			kmem_free(fssproj, sizeof (fssproj_t));
1507 		}
1508 		mutex_exit(&fsspset->fssps_lock);
1509 
1510 	} else {
1511 		ASSERT(t->t_state == TS_FREE);
1512 		/*
1513 		 * We're being called from thread_free() when our thread
1514 		 * is removed from the deathrow. There is nothing we need
1515 		 * do here since everything should've been done earlier
1516 		 * in fss_exit().
1517 		 */
1518 		thread_unlock(t);
1519 	}
1520 	mutex_exit(&fsspsets_lock);
1521 
1522 	FSS_LIST_DELETE(fssproc);
1523 	fss_free(fssproc);
1524 }
1525 
1526 /*ARGSUSED*/
1527 static int
1528 fss_canexit(kthread_t *t, cred_t *credp)
1529 {
1530 	/*
1531 	 * A thread is allowed to exit FSS only if we have sufficient
1532 	 * privileges.
1533 	 */
1534 	if (credp != NULL && secpolicy_setpriority(credp) != 0)
1535 		return (EPERM);
1536 	else
1537 		return (0);
1538 }
1539 
1540 /*
1541  * Initialize fair-share class specific proc structure for a child.
1542  */
1543 static int
1544 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
1545 {
1546 	fssproc_t *pfssproc;	/* ptr to parent's fssproc structure	*/
1547 	fssproc_t *cfssproc;	/* ptr to child's fssproc structure	*/
1548 	fssproj_t *fssproj;
1549 	fsspset_t *fsspset;
1550 
1551 	ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
1552 	ASSERT(ct->t_state == TS_STOPPED);
1553 
1554 	cfssproc = (fssproc_t *)bufp;
1555 	ASSERT(cfssproc != NULL);
1556 	bzero(cfssproc, sizeof (fssproc_t));
1557 
1558 	thread_lock(pt);
1559 	pfssproc = FSSPROC(pt);
1560 	fssproj = FSSPROC2FSSPROJ(pfssproc);
1561 	fsspset = FSSPROJ2FSSPSET(fssproj);
1562 	thread_unlock(pt);
1563 
1564 	mutex_enter(&fsspset->fssps_lock);
1565 	/*
1566 	 * Initialize child's fssproc structure.
1567 	 */
1568 	thread_lock(pt);
1569 	ASSERT(FSSPROJ(pt) == fssproj);
1570 	cfssproc->fss_proj = fssproj;
1571 	cfssproc->fss_timeleft = fss_quantum;
1572 	cfssproc->fss_umdpri = pfssproc->fss_umdpri;
1573 	cfssproc->fss_fsspri = 0;
1574 	cfssproc->fss_uprilim = pfssproc->fss_uprilim;
1575 	cfssproc->fss_upri = pfssproc->fss_upri;
1576 	cfssproc->fss_tp = ct;
1577 	cfssproc->fss_nice = pfssproc->fss_nice;
1578 	cpucaps_sc_init(&cfssproc->fss_caps);
1579 
1580 	cfssproc->fss_flags =
1581 	    pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE);
1582 	ct->t_cldata = (void *)cfssproc;
1583 	ct->t_schedflag |= TS_RUNQMATCH;
1584 	thread_unlock(pt);
1585 
1586 	fssproj->fssp_threads++;
1587 	mutex_exit(&fsspset->fssps_lock);
1588 
1589 	/*
1590 	 * Link new structure into fssproc hash table.
1591 	 */
1592 	FSS_LIST_INSERT(cfssproc);
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Child is placed at back of dispatcher queue and parent gives up processor
1598  * so that the child runs first after the fork. This allows the child
1599  * immediately execing to break the multiple use of copy on write pages with no
1600  * disk home. The parent will get to steal them back rather than uselessly
1601  * copying them.
1602  */
1603 static void
1604 fss_forkret(kthread_t *t, kthread_t *ct)
1605 {
1606 	proc_t *pp = ttoproc(t);
1607 	proc_t *cp = ttoproc(ct);
1608 	fssproc_t *fssproc;
1609 
1610 	ASSERT(t == curthread);
1611 	ASSERT(MUTEX_HELD(&pidlock));
1612 
1613 	/*
1614 	 * Grab the child's p_lock before dropping pidlock to ensure the
1615 	 * process does not disappear before we set it running.
1616 	 */
1617 	mutex_enter(&cp->p_lock);
1618 	continuelwps(cp);
1619 	mutex_exit(&cp->p_lock);
1620 
1621 	mutex_enter(&pp->p_lock);
1622 	mutex_exit(&pidlock);
1623 	continuelwps(pp);
1624 
1625 	thread_lock(t);
1626 
1627 	fssproc = FSSPROC(t);
1628 	fss_newpri(fssproc);
1629 	fssproc->fss_timeleft = fss_quantum;
1630 	t->t_pri = fssproc->fss_umdpri;
1631 	ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1632 	fssproc->fss_flags &= ~FSSKPRI;
1633 	THREAD_TRANSITION(t);
1634 
1635 	/*
1636 	 * We don't want to call fss_setrun(t) here because it may call
1637 	 * fss_active, which we don't need.
1638 	 */
1639 	fssproc->fss_flags &= ~FSSBACKQ;
1640 
1641 	if (t->t_disp_time != ddi_get_lbolt())
1642 		setbackdq(t);
1643 	else
1644 		setfrontdq(t);
1645 
1646 	thread_unlock(t);
1647 	/*
1648 	 * Safe to drop p_lock now since it is safe to change
1649 	 * the scheduling class after this point.
1650 	 */
1651 	mutex_exit(&pp->p_lock);
1652 
1653 	swtch();
1654 }
1655 
1656 /*
1657  * Get the fair-sharing parameters of the thread pointed to by fssprocp into
1658  * the buffer pointed by fssparmsp.
1659  */
1660 static void
1661 fss_parmsget(kthread_t *t, void *parmsp)
1662 {
1663 	fssproc_t *fssproc = FSSPROC(t);
1664 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1665 
1666 	fssparmsp->fss_uprilim = fssproc->fss_uprilim;
1667 	fssparmsp->fss_upri = fssproc->fss_upri;
1668 }
1669 
1670 /*ARGSUSED*/
1671 static int
1672 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1673 {
1674 	char		nice;
1675 	pri_t		reqfssuprilim;
1676 	pri_t		reqfssupri;
1677 	fssproc_t	*fssproc = FSSPROC(t);
1678 	fssparms_t	*fssparmsp = (fssparms_t *)parmsp;
1679 
1680 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1681 
1682 	if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
1683 		reqfssuprilim = fssproc->fss_uprilim;
1684 	else
1685 		reqfssuprilim = fssparmsp->fss_uprilim;
1686 
1687 	if (fssparmsp->fss_upri == FSS_NOCHANGE)
1688 		reqfssupri = fssproc->fss_upri;
1689 	else
1690 		reqfssupri = fssparmsp->fss_upri;
1691 
1692 	/*
1693 	 * Make sure the user priority doesn't exceed the upri limit.
1694 	 */
1695 	if (reqfssupri > reqfssuprilim)
1696 		reqfssupri = reqfssuprilim;
1697 
1698 	/*
1699 	 * Basic permissions enforced by generic kernel code for all classes
1700 	 * require that a thread attempting to change the scheduling parameters
1701 	 * of a target thread be privileged or have a real or effective UID
1702 	 * matching that of the target thread. We are not called unless these
1703 	 * basic permission checks have already passed. The fair-sharing class
1704 	 * requires in addition that the calling thread be privileged if it
1705 	 * is attempting to raise the upri limit above its current value.
1706 	 * This may have been checked previously but if our caller passed us
1707 	 * a non-NULL credential pointer we assume it hasn't and we check it
1708 	 * here.
1709 	 */
1710 	if ((reqpcredp != NULL) &&
1711 	    (reqfssuprilim > fssproc->fss_uprilim) &&
1712 	    secpolicy_raisepriority(reqpcredp) != 0)
1713 		return (EPERM);
1714 
1715 	/*
1716 	 * Set fss_nice to the nice value corresponding to the user priority we
1717 	 * are setting.  Note that setting the nice field of the parameter
1718 	 * struct won't affect upri or nice.
1719 	 */
1720 	nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
1721 	if (nice > FSS_NICE_MAX)
1722 		nice = FSS_NICE_MAX;
1723 
1724 	thread_lock(t);
1725 
1726 	fssproc->fss_uprilim = reqfssuprilim;
1727 	fssproc->fss_upri = reqfssupri;
1728 	fssproc->fss_nice = nice;
1729 	fss_newpri(fssproc);
1730 
1731 	if ((fssproc->fss_flags & FSSKPRI) != 0) {
1732 		thread_unlock(t);
1733 		return (0);
1734 	}
1735 
1736 	fss_change_priority(t, fssproc);
1737 	thread_unlock(t);
1738 	return (0);
1739 
1740 }
1741 
1742 /*
1743  * The thread is being stopped.
1744  */
1745 /*ARGSUSED*/
1746 static void
1747 fss_stop(kthread_t *t, int why, int what)
1748 {
1749 	ASSERT(THREAD_LOCK_HELD(t));
1750 	ASSERT(t == curthread);
1751 
1752 	fss_inactive(t);
1753 }
1754 
1755 /*
1756  * The current thread is exiting, do necessary adjustments to its project
1757  */
1758 static void
1759 fss_exit(kthread_t *t)
1760 {
1761 	fsspset_t *fsspset;
1762 	fssproj_t *fssproj;
1763 	fssproc_t *fssproc;
1764 	fsszone_t *fsszone;
1765 	int free = 0;
1766 
1767 	/*
1768 	 * Thread t here is either a current thread (in which case we hold
1769 	 * its process' p_lock), or a thread being destroyed by forklwp_fail(),
1770 	 * in which case we hold pidlock and thread is no longer on the
1771 	 * thread list.
1772 	 */
1773 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
1774 
1775 	fssproc = FSSPROC(t);
1776 	fssproj = FSSPROC2FSSPROJ(fssproc);
1777 	fsspset = FSSPROJ2FSSPSET(fssproj);
1778 	fsszone = fssproj->fssp_fsszone;
1779 
1780 	mutex_enter(&fsspsets_lock);
1781 	mutex_enter(&fsspset->fssps_lock);
1782 
1783 	thread_lock(t);
1784 	disp_lock_enter_high(&fsspset->fssps_displock);
1785 	if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
1786 		if (--fssproj->fssp_runnable == 0) {
1787 			fsszone->fssz_shares -= fssproj->fssp_shares;
1788 			if (--fsszone->fssz_runnable == 0)
1789 				fsspset->fssps_shares -= fsszone->fssz_rshares;
1790 		}
1791 		ASSERT(fssproc->fss_runnable == 1);
1792 		fssproc->fss_runnable = 0;
1793 	}
1794 	if (--fssproj->fssp_threads == 0) {
1795 		fss_remove_fssproj(fsspset, fssproj);
1796 		free = 1;
1797 	}
1798 	disp_lock_exit_high(&fsspset->fssps_displock);
1799 	fssproc->fss_proj = NULL;	/* mark this thread as already exited */
1800 	thread_unlock(t);
1801 
1802 	if (free) {
1803 		if (fsszone->fssz_nproj == 0)
1804 			kmem_free(fsszone, sizeof (fsszone_t));
1805 		kmem_free(fssproj, sizeof (fssproj_t));
1806 	}
1807 	mutex_exit(&fsspset->fssps_lock);
1808 	mutex_exit(&fsspsets_lock);
1809 
1810 	/*
1811 	 * A thread could be exiting in between clock ticks, so we need to
1812 	 * calculate how much CPU time it used since it was charged last time.
1813 	 *
1814 	 * CPU caps are not enforced on exiting processes - it is usually
1815 	 * desirable to exit as soon as possible to free resources.
1816 	 */
1817 	if (CPUCAPS_ON()) {
1818 		thread_lock(t);
1819 		fssproc = FSSPROC(t);
1820 		(void) cpucaps_charge(t, &fssproc->fss_caps,
1821 		    CPUCAPS_CHARGE_ONLY);
1822 		thread_unlock(t);
1823 	}
1824 }
1825 
1826 static void
1827 fss_nullsys()
1828 {
1829 }
1830 
1831 /*
1832  * fss_swapin() returns -1 if the thread is loaded or is not eligible to be
1833  * swapped in. Otherwise, it returns the thread's effective priority based
1834  * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX).
1835  */
1836 /*ARGSUSED*/
1837 static pri_t
1838 fss_swapin(kthread_t *t, int flags)
1839 {
1840 	fssproc_t *fssproc = FSSPROC(t);
1841 	long epri = -1;
1842 	proc_t *pp = ttoproc(t);
1843 
1844 	ASSERT(THREAD_LOCK_HELD(t));
1845 
1846 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1847 		time_t swapout_time;
1848 
1849 		swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1850 		if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) {
1851 			epri = (long)DISP_PRIO(t) + swapout_time;
1852 		} else {
1853 			/*
1854 			 * Threads which have been out for a long time,
1855 			 * have high user mode priority and are associated
1856 			 * with a small address space are more deserving.
1857 			 */
1858 			epri = fssproc->fss_umdpri;
1859 			ASSERT(epri >= 0 && epri <= fss_maxumdpri);
1860 			epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1861 		}
1862 		/*
1863 		 * Scale epri so that SHRT_MAX / 2 represents zero priority.
1864 		 */
1865 		epri += SHRT_MAX / 2;
1866 		if (epri < 0)
1867 			epri = 0;
1868 		else if (epri > SHRT_MAX)
1869 			epri = SHRT_MAX;
1870 	}
1871 	return ((pri_t)epri);
1872 }
1873 
1874 /*
1875  * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to
1876  * be swapped out. Otherwise, it returns the thread's effective priority
1877  * based on if the swapper is in softswap or hardswap mode.
1878  */
1879 static pri_t
1880 fss_swapout(kthread_t *t, int flags)
1881 {
1882 	fssproc_t *fssproc = FSSPROC(t);
1883 	long epri = -1;
1884 	proc_t *pp = ttoproc(t);
1885 	time_t swapin_time;
1886 
1887 	ASSERT(THREAD_LOCK_HELD(t));
1888 
1889 	if (INHERITED(t) ||
1890 	    (fssproc->fss_flags & FSSKPRI) ||
1891 	    (t->t_proc_flag & TP_LWPEXIT) ||
1892 	    (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) ||
1893 	    !(t->t_schedflag & TS_LOAD) ||
1894 	    !(SWAP_OK(t)))
1895 		return (-1);
1896 
1897 	ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1898 
1899 	swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1900 
1901 	if (flags == SOFTSWAP) {
1902 		if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1903 			epri = 0;
1904 		} else {
1905 			return ((pri_t)epri);
1906 		}
1907 	} else {
1908 		pri_t pri;
1909 
1910 		if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) ||
1911 		    (t->t_state == TS_RUN && swapin_time > fss_minrun)) {
1912 			pri = fss_maxumdpri;
1913 			epri = swapin_time -
1914 			    (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1915 		} else {
1916 			return ((pri_t)epri);
1917 		}
1918 	}
1919 
1920 	/*
1921 	 * Scale epri so that SHRT_MAX / 2 represents zero priority.
1922 	 */
1923 	epri += SHRT_MAX / 2;
1924 	if (epri < 0)
1925 		epri = 0;
1926 	else if (epri > SHRT_MAX)
1927 		epri = SHRT_MAX;
1928 
1929 	return ((pri_t)epri);
1930 }
1931 
1932 /*
1933  * If thread is currently at a kernel mode priority (has slept) and is
1934  * returning to the userland we assign it the appropriate user mode priority
1935  * and time quantum here.  If we're lowering the thread's priority below that
1936  * of other runnable threads then we will set runrun via cpu_surrender() to
1937  * cause preemption.
1938  */
1939 static void
1940 fss_trapret(kthread_t *t)
1941 {
1942 	fssproc_t *fssproc = FSSPROC(t);
1943 	cpu_t *cp = CPU;
1944 
1945 	ASSERT(THREAD_LOCK_HELD(t));
1946 	ASSERT(t == curthread);
1947 	ASSERT(cp->cpu_dispthread == t);
1948 	ASSERT(t->t_state == TS_ONPROC);
1949 
1950 	t->t_kpri_req = 0;
1951 	if (fssproc->fss_flags & FSSKPRI) {
1952 		/*
1953 		 * If thread has blocked in the kernel
1954 		 */
1955 		THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
1956 		cp->cpu_dispatch_pri = DISP_PRIO(t);
1957 		ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1958 		fssproc->fss_flags &= ~FSSKPRI;
1959 
1960 		if (DISP_MUST_SURRENDER(t))
1961 			cpu_surrender(t);
1962 	}
1963 
1964 	/*
1965 	 * Swapout lwp if the swapper is waiting for this thread to reach
1966 	 * a safe point.
1967 	 */
1968 	if (t->t_schedflag & TS_SWAPENQ) {
1969 		thread_unlock(t);
1970 		swapout_lwp(ttolwp(t));
1971 		thread_lock(t);
1972 	}
1973 }
1974 
1975 /*
1976  * Arrange for thread to be placed in appropriate location on dispatcher queue.
1977  * This is called with the current thread in TS_ONPROC and locked.
1978  */
1979 static void
1980 fss_preempt(kthread_t *t)
1981 {
1982 	fssproc_t *fssproc = FSSPROC(t);
1983 	klwp_t *lwp;
1984 	uint_t flags;
1985 
1986 	ASSERT(t == curthread);
1987 	ASSERT(THREAD_LOCK_HELD(curthread));
1988 	ASSERT(t->t_state == TS_ONPROC);
1989 
1990 	/*
1991 	 * If preempted in the kernel, make sure the thread has a kernel
1992 	 * priority if needed.
1993 	 */
1994 	lwp = curthread->t_lwp;
1995 	if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) {
1996 		fssproc->fss_flags |= FSSKPRI;
1997 		THREAD_CHANGE_PRI(t, minclsyspri);
1998 		ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1999 		t->t_trapret = 1;	/* so that fss_trapret will run */
2000 		aston(t);
2001 	}
2002 
2003 	/*
2004 	 * This thread may be placed on wait queue by CPU Caps. In this case we
2005 	 * do not need to do anything until it is removed from the wait queue.
2006 	 * Do not enforce CPU caps on threads running at a kernel priority
2007 	 */
2008 	if (CPUCAPS_ON()) {
2009 		(void) cpucaps_charge(t, &fssproc->fss_caps,
2010 		    CPUCAPS_CHARGE_ENFORCE);
2011 
2012 		if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t))
2013 			return;
2014 	}
2015 
2016 	/*
2017 	 * If preempted in user-land mark the thread as swappable because it
2018 	 * cannot be holding any kernel locks.
2019 	 */
2020 	ASSERT(t->t_schedflag & TS_DONT_SWAP);
2021 	if (lwp != NULL && lwp->lwp_state == LWP_USER)
2022 		t->t_schedflag &= ~TS_DONT_SWAP;
2023 
2024 	/*
2025 	 * Check to see if we're doing "preemption control" here.  If
2026 	 * we are, and if the user has requested that this thread not
2027 	 * be preempted, and if preemptions haven't been put off for
2028 	 * too long, let the preemption happen here but try to make
2029 	 * sure the thread is rescheduled as soon as possible.  We do
2030 	 * this by putting it on the front of the highest priority run
2031 	 * queue in the FSS class.  If the preemption has been put off
2032 	 * for too long, clear the "nopreempt" bit and let the thread
2033 	 * be preempted.
2034 	 */
2035 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2036 		if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2037 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
2038 			if (!(fssproc->fss_flags & FSSKPRI)) {
2039 				/*
2040 				 * If not already remembered, remember current
2041 				 * priority for restoration in fss_yield().
2042 				 */
2043 				if (!(fssproc->fss_flags & FSSRESTORE)) {
2044 					fssproc->fss_scpri = t->t_pri;
2045 					fssproc->fss_flags |= FSSRESTORE;
2046 				}
2047 				THREAD_CHANGE_PRI(t, fss_maxumdpri);
2048 				t->t_schedflag |= TS_DONT_SWAP;
2049 			}
2050 			schedctl_set_yield(t, 1);
2051 			setfrontdq(t);
2052 			return;
2053 		} else {
2054 			if (fssproc->fss_flags & FSSRESTORE) {
2055 				THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2056 				fssproc->fss_flags &= ~FSSRESTORE;
2057 			}
2058 			schedctl_set_nopreempt(t, 0);
2059 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
2060 			/*
2061 			 * Fall through and be preempted below.
2062 			 */
2063 		}
2064 	}
2065 
2066 	flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI);
2067 
2068 	if (flags == FSSBACKQ) {
2069 		fssproc->fss_timeleft = fss_quantum;
2070 		fssproc->fss_flags &= ~FSSBACKQ;
2071 		setbackdq(t);
2072 	} else if (flags == (FSSBACKQ | FSSKPRI)) {
2073 		fssproc->fss_flags &= ~FSSBACKQ;
2074 		setbackdq(t);
2075 	} else {
2076 		setfrontdq(t);
2077 	}
2078 }
2079 
2080 /*
2081  * Called when a thread is waking up and is to be placed on the run queue.
2082  */
2083 static void
2084 fss_setrun(kthread_t *t)
2085 {
2086 	fssproc_t *fssproc = FSSPROC(t);
2087 
2088 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
2089 
2090 	if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
2091 		fss_active(t);
2092 
2093 	fssproc->fss_timeleft = fss_quantum;
2094 
2095 	fssproc->fss_flags &= ~FSSBACKQ;
2096 	/*
2097 	 * If previously were running at the kernel priority then keep that
2098 	 * priority and the fss_timeleft doesn't matter.
2099 	 */
2100 	if ((fssproc->fss_flags & FSSKPRI) == 0)
2101 		THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2102 
2103 	if (t->t_disp_time != ddi_get_lbolt())
2104 		setbackdq(t);
2105 	else
2106 		setfrontdq(t);
2107 }
2108 
2109 /*
2110  * Prepare thread for sleep. We reset the thread priority so it will run at the
2111  * kernel priority level when it wakes up.
2112  */
2113 static void
2114 fss_sleep(kthread_t *t)
2115 {
2116 	fssproc_t *fssproc = FSSPROC(t);
2117 
2118 	ASSERT(t == curthread);
2119 	ASSERT(THREAD_LOCK_HELD(t));
2120 
2121 	ASSERT(t->t_state == TS_ONPROC);
2122 
2123 	/*
2124 	 * Account for time spent on CPU before going to sleep.
2125 	 */
2126 	(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2127 
2128 	fss_inactive(t);
2129 
2130 	/*
2131 	 * Assign a system priority to the thread and arrange for it to be
2132 	 * retained when the thread is next placed on the run queue (i.e.,
2133 	 * when it wakes up) instead of being given a new pri.  Also arrange
2134 	 * for trapret processing as the thread leaves the system call so it
2135 	 * will drop back to normal priority range.
2136 	 */
2137 	if (t->t_kpri_req) {
2138 		THREAD_CHANGE_PRI(t, minclsyspri);
2139 		fssproc->fss_flags |= FSSKPRI;
2140 		t->t_trapret = 1;	/* so that fss_trapret will run */
2141 		aston(t);
2142 	} else if (fssproc->fss_flags & FSSKPRI) {
2143 		/*
2144 		 * The thread has done a THREAD_KPRI_REQUEST(), slept, then
2145 		 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again),
2146 		 * then slept again all without finishing the current system
2147 		 * call so trapret won't have cleared FSSKPRI
2148 		 */
2149 		fssproc->fss_flags &= ~FSSKPRI;
2150 		THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2151 		if (DISP_MUST_SURRENDER(curthread))
2152 			cpu_surrender(t);
2153 	}
2154 	t->t_stime = ddi_get_lbolt();	/* time stamp for the swapper */
2155 }
2156 
2157 /*
2158  * A tick interrupt has ocurrend on a running thread. Check to see if our
2159  * time slice has expired.  We must also clear the TS_DONT_SWAP flag in
2160  * t_schedflag if the thread is eligible to be swapped out.
2161  */
2162 static void
2163 fss_tick(kthread_t *t)
2164 {
2165 	fssproc_t *fssproc;
2166 	fssproj_t *fssproj;
2167 	klwp_t *lwp;
2168 	boolean_t call_cpu_surrender = B_FALSE;
2169 	boolean_t cpucaps_enforce = B_FALSE;
2170 
2171 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2172 
2173 	/*
2174 	 * It's safe to access fsspset and fssproj structures because we're
2175 	 * holding our p_lock here.
2176 	 */
2177 	thread_lock(t);
2178 	fssproc = FSSPROC(t);
2179 	fssproj = FSSPROC2FSSPROJ(fssproc);
2180 	if (fssproj != NULL) {
2181 		fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
2182 		disp_lock_enter_high(&fsspset->fssps_displock);
2183 		fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
2184 		fssproc->fss_ticks++;
2185 		disp_lock_exit_high(&fsspset->fssps_displock);
2186 	}
2187 
2188 	/*
2189 	 * Keep track of thread's project CPU usage.  Note that projects
2190 	 * get charged even when threads are running in the kernel.
2191 	 * Do not surrender CPU if running in the SYS class.
2192 	 */
2193 	if (CPUCAPS_ON()) {
2194 		cpucaps_enforce = cpucaps_charge(t,
2195 		    &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) &&
2196 		    !(fssproc->fss_flags & FSSKPRI);
2197 	}
2198 
2199 	/*
2200 	 * A thread's execution time for threads running in the SYS class
2201 	 * is not tracked.
2202 	 */
2203 	if ((fssproc->fss_flags & FSSKPRI) == 0) {
2204 		/*
2205 		 * If thread is not in kernel mode, decrement its fss_timeleft
2206 		 */
2207 		if (--fssproc->fss_timeleft <= 0) {
2208 			pri_t new_pri;
2209 
2210 			/*
2211 			 * If we're doing preemption control and trying to
2212 			 * avoid preempting this thread, just note that the
2213 			 * thread should yield soon and let it keep running
2214 			 * (unless it's been a while).
2215 			 */
2216 			if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2217 				if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2218 					DTRACE_SCHED1(schedctl__nopreempt,
2219 					    kthread_t *, t);
2220 					schedctl_set_yield(t, 1);
2221 					thread_unlock_nopreempt(t);
2222 					return;
2223 				}
2224 			}
2225 			fssproc->fss_flags &= ~FSSRESTORE;
2226 
2227 			fss_newpri(fssproc);
2228 			new_pri = fssproc->fss_umdpri;
2229 			ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
2230 
2231 			/*
2232 			 * When the priority of a thread is changed, it may
2233 			 * be necessary to adjust its position on a sleep queue
2234 			 * or dispatch queue. The function thread_change_pri
2235 			 * accomplishes this.
2236 			 */
2237 			if (thread_change_pri(t, new_pri, 0)) {
2238 				if ((t->t_schedflag & TS_LOAD) &&
2239 				    (lwp = t->t_lwp) &&
2240 				    lwp->lwp_state == LWP_USER)
2241 					t->t_schedflag &= ~TS_DONT_SWAP;
2242 				fssproc->fss_timeleft = fss_quantum;
2243 			} else {
2244 				call_cpu_surrender = B_TRUE;
2245 			}
2246 		} else if (t->t_state == TS_ONPROC &&
2247 		    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
2248 			/*
2249 			 * If there is a higher-priority thread which is
2250 			 * waiting for a processor, then thread surrenders
2251 			 * the processor.
2252 			 */
2253 			call_cpu_surrender = B_TRUE;
2254 		}
2255 	}
2256 
2257 	if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
2258 		/*
2259 		 * The thread used more than half of its quantum, so assume that
2260 		 * it used the whole quantum.
2261 		 *
2262 		 * Update thread's priority just before putting it on the wait
2263 		 * queue so that it gets charged for the CPU time from its
2264 		 * quantum even before that quantum expires.
2265 		 */
2266 		fss_newpri(fssproc);
2267 		if (t->t_pri != fssproc->fss_umdpri)
2268 			fss_change_priority(t, fssproc);
2269 
2270 		/*
2271 		 * We need to call cpu_surrender for this thread due to cpucaps
2272 		 * enforcement, but fss_change_priority may have already done
2273 		 * so. In this case FSSBACKQ is set and there is no need to call
2274 		 * cpu-surrender again.
2275 		 */
2276 		if (!(fssproc->fss_flags & FSSBACKQ))
2277 			call_cpu_surrender = B_TRUE;
2278 	}
2279 
2280 	if (call_cpu_surrender) {
2281 		fssproc->fss_flags |= FSSBACKQ;
2282 		cpu_surrender(t);
2283 	}
2284 
2285 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
2286 }
2287 
2288 /*
2289  * Processes waking up go to the back of their queue.  We don't need to assign
2290  * a time quantum here because thread is still at a kernel mode priority and
2291  * the time slicing is not done for threads running in the kernel after
2292  * sleeping.  The proper time quantum will be assigned by fss_trapret before the
2293  * thread returns to user mode.
2294  */
2295 static void
2296 fss_wakeup(kthread_t *t)
2297 {
2298 	fssproc_t *fssproc;
2299 
2300 	ASSERT(THREAD_LOCK_HELD(t));
2301 	ASSERT(t->t_state == TS_SLEEP);
2302 
2303 	fss_active(t);
2304 
2305 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
2306 	fssproc = FSSPROC(t);
2307 	fssproc->fss_flags &= ~FSSBACKQ;
2308 
2309 	if (fssproc->fss_flags & FSSKPRI) {
2310 		/*
2311 		 * If we already have a kernel priority assigned, then we
2312 		 * just use it.
2313 		 */
2314 		setbackdq(t);
2315 	} else if (t->t_kpri_req) {
2316 		/*
2317 		 * Give thread a priority boost if we were asked.
2318 		 */
2319 		fssproc->fss_flags |= FSSKPRI;
2320 		THREAD_CHANGE_PRI(t, minclsyspri);
2321 		setbackdq(t);
2322 		t->t_trapret = 1;	/* so that fss_trapret will run */
2323 		aston(t);
2324 	} else {
2325 		/*
2326 		 * Otherwise, we recalculate the priority.
2327 		 */
2328 		if (t->t_disp_time == ddi_get_lbolt()) {
2329 			setfrontdq(t);
2330 		} else {
2331 			fssproc->fss_timeleft = fss_quantum;
2332 			THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2333 			setbackdq(t);
2334 		}
2335 	}
2336 }
2337 
2338 /*
2339  * fss_donice() is called when a nice(1) command is issued on the thread to
2340  * alter the priority. The nice(1) command exists in Solaris for compatibility.
2341  * Thread priority adjustments should be done via priocntl(1).
2342  */
2343 static int
2344 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2345 {
2346 	int newnice;
2347 	fssproc_t *fssproc = FSSPROC(t);
2348 	fssparms_t fssparms;
2349 
2350 	/*
2351 	 * If there is no change to priority, just return current setting.
2352 	 */
2353 	if (incr == 0) {
2354 		if (retvalp)
2355 			*retvalp = fssproc->fss_nice - NZERO;
2356 		return (0);
2357 	}
2358 
2359 	if ((incr < 0 || incr > 2 * NZERO) && secpolicy_raisepriority(cr) != 0)
2360 		return (EPERM);
2361 
2362 	/*
2363 	 * Specifying a nice increment greater than the upper limit of
2364 	 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
2365 	 * value being set to the upper limit.  We check for this before
2366 	 * computing the new value because otherwise we could get overflow
2367 	 * if a privileged user specified some ridiculous increment.
2368 	 */
2369 	if (incr > FSS_NICE_MAX)
2370 		incr = FSS_NICE_MAX;
2371 
2372 	newnice = fssproc->fss_nice + incr;
2373 	if (newnice > FSS_NICE_MAX)
2374 		newnice = FSS_NICE_MAX;
2375 	else if (newnice < FSS_NICE_MIN)
2376 		newnice = FSS_NICE_MIN;
2377 
2378 	fssparms.fss_uprilim = fssparms.fss_upri =
2379 	    -((newnice - NZERO) * fss_maxupri) / NZERO;
2380 
2381 	/*
2382 	 * Reset the uprilim and upri values of the thread.
2383 	 */
2384 	(void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
2385 
2386 	/*
2387 	 * Although fss_parmsset already reset fss_nice it may not have been
2388 	 * set to precisely the value calculated above because fss_parmsset
2389 	 * determines the nice value from the user priority and we may have
2390 	 * truncated during the integer conversion from nice value to user
2391 	 * priority and back. We reset fss_nice to the value we calculated
2392 	 * above.
2393 	 */
2394 	fssproc->fss_nice = (char)newnice;
2395 
2396 	if (retvalp)
2397 		*retvalp = newnice - NZERO;
2398 	return (0);
2399 }
2400 
2401 /*
2402  * Increment the priority of the specified thread by incr and
2403  * return the new value in *retvalp.
2404  */
2405 static int
2406 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2407 {
2408 	int newpri;
2409 	fssproc_t *fssproc = FSSPROC(t);
2410 	fssparms_t fssparms;
2411 
2412 	/*
2413 	 * If there is no change to priority, just return current setting.
2414 	 */
2415 	if (incr == 0) {
2416 		*retvalp = fssproc->fss_upri;
2417 		return (0);
2418 	}
2419 
2420 	newpri = fssproc->fss_upri + incr;
2421 	if (newpri > fss_maxupri || newpri < -fss_maxupri)
2422 		return (EINVAL);
2423 
2424 	*retvalp = newpri;
2425 	fssparms.fss_uprilim = fssparms.fss_upri = newpri;
2426 
2427 	/*
2428 	 * Reset the uprilim and upri values of the thread.
2429 	 */
2430 	return (fss_parmsset(t, &fssparms, (id_t)0, cr));
2431 }
2432 
2433 /*
2434  * Return the global scheduling priority that would be assigned to a thread
2435  * entering the fair-sharing class with the fss_upri.
2436  */
2437 /*ARGSUSED*/
2438 static pri_t
2439 fss_globpri(kthread_t *t)
2440 {
2441 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2442 
2443 	return (fss_maxumdpri / 2);
2444 }
2445 
2446 /*
2447  * Called from the yield(2) system call when a thread is yielding (surrendering)
2448  * the processor. The kernel thread is placed at the back of a dispatch queue.
2449  */
2450 static void
2451 fss_yield(kthread_t *t)
2452 {
2453 	fssproc_t *fssproc = FSSPROC(t);
2454 
2455 	ASSERT(t == curthread);
2456 	ASSERT(THREAD_LOCK_HELD(t));
2457 
2458 	/*
2459 	 * Collect CPU usage spent before yielding
2460 	 */
2461 	(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2462 
2463 	/*
2464 	 * Clear the preemption control "yield" bit since the user is
2465 	 * doing a yield.
2466 	 */
2467 	if (t->t_schedctl)
2468 		schedctl_set_yield(t, 0);
2469 	/*
2470 	 * If fss_preempt() artifically increased the thread's priority
2471 	 * to avoid preemption, restore the original priority now.
2472 	 */
2473 	if (fssproc->fss_flags & FSSRESTORE) {
2474 		THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2475 		fssproc->fss_flags &= ~FSSRESTORE;
2476 	}
2477 	if (fssproc->fss_timeleft < 0) {
2478 		/*
2479 		 * Time slice was artificially extended to avoid preemption,
2480 		 * so pretend we're preempting it now.
2481 		 */
2482 		DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
2483 		fssproc->fss_timeleft = fss_quantum;
2484 	}
2485 	fssproc->fss_flags &= ~FSSBACKQ;
2486 	setbackdq(t);
2487 }
2488 
2489 void
2490 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
2491     fssbuf_t *zonebuf)
2492 {
2493 	kproject_t *kpj_new = kp;
2494 	zone_t *zone = zp;
2495 	fssproj_t *fssproj_old, *fssproj_new;
2496 	fsspset_t *fsspset;
2497 	kproject_t *kpj_old;
2498 	fssproc_t *fssproc;
2499 	fsszone_t *fsszone_old, *fsszone_new;
2500 	int free = 0;
2501 	int id;
2502 
2503 	ASSERT(MUTEX_HELD(&cpu_lock));
2504 	ASSERT(MUTEX_HELD(&pidlock));
2505 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2506 
2507 	if (t->t_cid != fss_cid)
2508 		return;
2509 
2510 	fssproc = FSSPROC(t);
2511 	mutex_enter(&fsspsets_lock);
2512 	fssproj_old = FSSPROC2FSSPROJ(fssproc);
2513 	if (fssproj_old == NULL) {
2514 		mutex_exit(&fsspsets_lock);
2515 		return;
2516 	}
2517 
2518 	fsspset = FSSPROJ2FSSPSET(fssproj_old);
2519 	mutex_enter(&fsspset->fssps_lock);
2520 	kpj_old = FSSPROJ2KPROJ(fssproj_old);
2521 	fsszone_old = fssproj_old->fssp_fsszone;
2522 
2523 	ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
2524 
2525 	if (kpj_old == kpj_new) {
2526 		mutex_exit(&fsspset->fssps_lock);
2527 		mutex_exit(&fsspsets_lock);
2528 		return;
2529 	}
2530 
2531 	if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
2532 		/*
2533 		 * If the zone for the new project is not currently active on
2534 		 * the cpu partition we're on, get one of the pre-allocated
2535 		 * buffers and link it in our per-pset zone list.  Such buffers
2536 		 * should already exist.
2537 		 */
2538 		for (id = 0; id < zonebuf->fssb_size; id++) {
2539 			if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2540 				fss_insert_fsszone(fsspset, zone, fsszone_new);
2541 				zonebuf->fssb_list[id] = NULL;
2542 				break;
2543 			}
2544 		}
2545 	}
2546 	ASSERT(fsszone_new != NULL);
2547 	if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
2548 		/*
2549 		 * If our new project is not currently running
2550 		 * on the cpu partition we're on, get one of the
2551 		 * pre-allocated buffers and link it in our new cpu
2552 		 * partition doubly linked list. Such buffers should already
2553 		 * exist.
2554 		 */
2555 		for (id = 0; id < projbuf->fssb_size; id++) {
2556 			if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2557 				fss_insert_fssproj(fsspset, kpj_new,
2558 				    fsszone_new, fssproj_new);
2559 				projbuf->fssb_list[id] = NULL;
2560 				break;
2561 			}
2562 		}
2563 	}
2564 	ASSERT(fssproj_new != NULL);
2565 
2566 	thread_lock(t);
2567 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2568 	    t->t_state == TS_WAIT)
2569 		fss_inactive(t);
2570 	ASSERT(fssproj_old->fssp_threads > 0);
2571 	if (--fssproj_old->fssp_threads == 0) {
2572 		fss_remove_fssproj(fsspset, fssproj_old);
2573 		free = 1;
2574 	}
2575 	fssproc->fss_proj = fssproj_new;
2576 	fssproc->fss_fsspri = 0;
2577 	fssproj_new->fssp_threads++;
2578 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2579 	    t->t_state == TS_WAIT)
2580 		fss_active(t);
2581 	thread_unlock(t);
2582 	if (free) {
2583 		if (fsszone_old->fssz_nproj == 0)
2584 			kmem_free(fsszone_old, sizeof (fsszone_t));
2585 		kmem_free(fssproj_old, sizeof (fssproj_t));
2586 	}
2587 
2588 	mutex_exit(&fsspset->fssps_lock);
2589 	mutex_exit(&fsspsets_lock);
2590 }
2591 
2592 void
2593 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
2594     fssbuf_t *zonebuf)
2595 {
2596 	fsspset_t *fsspset_old, *fsspset_new;
2597 	fssproj_t *fssproj_old, *fssproj_new;
2598 	fsszone_t *fsszone_old, *fsszone_new;
2599 	fssproc_t *fssproc;
2600 	kproject_t *kpj;
2601 	zone_t *zone;
2602 	int id;
2603 
2604 	ASSERT(MUTEX_HELD(&cpu_lock));
2605 	ASSERT(MUTEX_HELD(&pidlock));
2606 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2607 
2608 	if (t->t_cid != fss_cid)
2609 		return;
2610 
2611 	fssproc = FSSPROC(t);
2612 	zone = ttoproc(t)->p_zone;
2613 	mutex_enter(&fsspsets_lock);
2614 	fssproj_old = FSSPROC2FSSPROJ(fssproc);
2615 	if (fssproj_old == NULL) {
2616 		mutex_exit(&fsspsets_lock);
2617 		return;
2618 	}
2619 	fsszone_old = fssproj_old->fssp_fsszone;
2620 	fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
2621 	kpj = FSSPROJ2KPROJ(fssproj_old);
2622 
2623 	if (fsspset_old->fssps_cpupart == newcp) {
2624 		mutex_exit(&fsspsets_lock);
2625 		return;
2626 	}
2627 
2628 	ASSERT(ttoproj(t) == kpj);
2629 
2630 	fsspset_new = fss_find_fsspset(newcp);
2631 
2632 	mutex_enter(&fsspset_new->fssps_lock);
2633 	if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
2634 		for (id = 0; id < zonebuf->fssb_size; id++) {
2635 			if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2636 				fss_insert_fsszone(fsspset_new, zone,
2637 				    fsszone_new);
2638 				zonebuf->fssb_list[id] = NULL;
2639 				break;
2640 			}
2641 		}
2642 	}
2643 	ASSERT(fsszone_new != NULL);
2644 	if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
2645 		for (id = 0; id < projbuf->fssb_size; id++) {
2646 			if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2647 				fss_insert_fssproj(fsspset_new, kpj,
2648 				    fsszone_new, fssproj_new);
2649 				projbuf->fssb_list[id] = NULL;
2650 				break;
2651 			}
2652 		}
2653 	}
2654 	ASSERT(fssproj_new != NULL);
2655 
2656 	fssproj_new->fssp_threads++;
2657 	thread_lock(t);
2658 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2659 	    t->t_state == TS_WAIT)
2660 		fss_inactive(t);
2661 	fssproc->fss_proj = fssproj_new;
2662 	fssproc->fss_fsspri = 0;
2663 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2664 	    t->t_state == TS_WAIT)
2665 		fss_active(t);
2666 	thread_unlock(t);
2667 	mutex_exit(&fsspset_new->fssps_lock);
2668 
2669 	mutex_enter(&fsspset_old->fssps_lock);
2670 	if (--fssproj_old->fssp_threads == 0) {
2671 		fss_remove_fssproj(fsspset_old, fssproj_old);
2672 		if (fsszone_old->fssz_nproj == 0)
2673 			kmem_free(fsszone_old, sizeof (fsszone_t));
2674 		kmem_free(fssproj_old, sizeof (fssproj_t));
2675 	}
2676 	mutex_exit(&fsspset_old->fssps_lock);
2677 
2678 	mutex_exit(&fsspsets_lock);
2679 }
2680