xref: /titanic_50/usr/src/uts/common/disp/fss.c (revision 2f01c39fcf75cc920b923046072008ee84cf5994)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cred.h>
31 #include <sys/proc.h>
32 #include <sys/strsubr.h>
33 #include <sys/priocntl.h>
34 #include <sys/class.h>
35 #include <sys/disp.h>
36 #include <sys/procset.h>
37 #include <sys/debug.h>
38 #include <sys/kmem.h>
39 #include <sys/errno.h>
40 #include <sys/systm.h>
41 #include <sys/schedctl.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/project.h>
45 #include <sys/modctl.h>
46 #include <sys/fss.h>
47 #include <sys/fsspriocntl.h>
48 #include <sys/cpupart.h>
49 #include <sys/zone.h>
50 #include <vm/rm.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/tnf_probe.h>
53 #include <sys/policy.h>
54 #include <sys/sdt.h>
55 #include <sys/cpucaps.h>
56 
57 /*
58  * The fair share scheduling class ensures that collections of processes
59  * (zones and projects) each get their configured share of CPU.  This is in
60  * contrast to the TS class which considers individual processes.
61  *
62  * The FSS cpu-share is set on zones using the zone.cpu-shares rctl and on
63  * projects using the project.cpu-shares rctl.  By default the value is 1
64  * and it can range from 0 - 64k.  A value of 0 means that processes in the
65  * collection will only get CPU resources when there are no other processes
66  * that need CPU. The cpu-share is used as one of the inputs to calculate a
67  * thread's "user-mode" priority (umdpri) for the scheduler.  The umdpri falls
68  * in the range 0-59.  FSS calculates other, internal, priorities which are not
69  * visible outside of the FSS class.
70  *
71  * The FSS class should approximate TS behavior when there are excess CPU
72  * resources.  When there is a backlog of runnable processes, then the share
73  * is used as input into the runnable process's priority calculation, where
74  * the final umdpri is used by the scheduler to determine when the process runs.
75  *
76  * Projects in a zone compete with each other for CPU time, receiving CPU
77  * allocation within a zone proportional to the project's share; at a higher
78  * level zones compete with each other, receiving allocation in a pset
79  * proportional to the zone's share.
80  *
81  * The FSS priority calculation consists of several parts.
82  *
83  * 1) Once per second the fss_update function runs. The first thing it does is
84  *    call fss_decay_usage. This function does three things.
85  *
86  * a) fss_decay_usage first decays the maxfsspri value for the pset.  This
87  *    value is used in the per-process priority calculation described in step
88  *    (2b).  The maxfsspri is decayed using the following formula:
89  *
90  *                      maxfsspri * fss_nice_decay[NZERO])
91  *        maxfsspri =  ------------------------------------
92  *                            FSS_DECAY_BASE
93  *
94  *
95  *     - NZERO is the default process priority (i.e. 20)
96  *
97  *    The fss_nice_decay array is a fixed set of values used to adjust the
98  *    decay rate of processes based on their nice value.  Entries in this
99  *    array are initialized in fss_init using the following formula:
100  *
101  *                        (FSS_DECAY_MAX - FSS_DECAY_MIN) * i
102  *       FSS_DECAY_MIN + -------------------------------------
103  *                               FSS_NICE_RANGE - 1
104  *
105  *     - FSS_DECAY_MIN is 82 = approximates 65% (82/128)
106  *     - FSS_DECAY_MAX is 108 = approximates 85% (108/128)
107  *     - FSS_NICE_RANGE is 40 (range is 0 - 39)
108  *
109  * b) The second thing fss_decay_usage does is update each project's "usage"
110  *    for the last second and then recalculates the project's "share usage".
111  *
112  *    The usage value is the recent CPU usage for all of the threads in the
113  *    project. It is decayed and updated this way:
114  *
115  *                  (usage * FSS_DECAY_USG)
116  *        usage =  ------------------------- + ticks;
117  *                       FSS_DECAY_BASE
118  *
119  *     - FSS_DECAY_BASE is 128 - used instead of 100 so we can shift vs divide
120  *     - FSS_DECAY_USG is 96 - approximates 75% (96/128)
121  *     - ticks is updated whenever a process in this project is running
122  *       when the scheduler's tick processing fires. This is not a simple
123  *       counter, the values are based on the entries in the fss_nice_tick
124  *       array (see section 3 below). ticks is then reset to 0 so it can track
125  *       the next seconds worth of nice-adjusted time for the project.
126  *
127  * c) The third thing fss_decay_usage does is update each project's "share
128  *    usage" (shusage). This is the normalized usage value for the project and
129  *    is calculated this way:
130  *
131  *                pset_shares^2    zone_int_shares^2
132  *        usage * ------------- * ------------------
133  *                kpj_shares^2	   zone_ext_shares^2
134  *
135  *    - usage - see (1b) for more details
136  *    - pset_shares is the total of all *active* zone shares in the pset (by
137  *      default there is only one pset)
138  *    - kpj_shares is the individual project's share (project.cpu-shares rctl)
139  *    - zone_int_shares is the sum of shares of all active projects within the
140  *      zone (the zone-internal total)
141  *    - zone_ext_shares is the share value for the zone (zone.cpu-shares rctl)
142  *
143  *    The shusage is used in step (2b) to calculate the thread's new internal
144  *    priority. A larger shusage value leads to a lower priority.
145  *
146  * 2) The fss_update function then calls fss_update_list to update the priority
147  *    of all threads. This does two things.
148  *
149  * a) First the thread's internal priority is decayed using the following
150  *    formula:
151  *
152  *                  fsspri * fss_nice_decay[nice_value])
153  *        fsspri =  ------------------------------------
154  *                            FSS_DECAY_BASE
155  *
156  *     - FSS_DECAY_BASE is 128 as described above
157  *
158  * b) Second, if the thread is runnable (TS_RUN or TS_WAIT) calls fss_newpri
159  *    to update the user-mode priority (umdpri) of the runnable thread.
160  *    Threads that are running (TS_ONPROC) or waiting for an event (TS_SLEEP)
161  *    are not updated at this time. The updated user-mode priority can cause
162  *    threads to change their position in the run queue.
163  *
164  *    The process's new internal fsspri is calculated using the following
165  *    formula. All runnable threads in the project will use the same shusage
166  *    and nrunnable values in their calculation.
167  *
168  *        fsspri += shusage * nrunnable * ticks
169  *
170  *     - shusage is the project's share usage, calculated in (1c)
171  *     - nrunnable is the number of runnable threads in the project
172  *     - ticks is the number of ticks this thread ran since the last fss_newpri
173  *       invocation.
174  *
175  *    Finally the process's new user-mode priority is calculated using the
176  *    following formula:
177  *
178  *                              (fsspri * umdprirange)
179  *        umdpri = maxumdpri - ------------------------
180  *                                    maxfsspri
181  *
182  *     - maxumdpri is MINCLSYSPRI - 1 (i.e. 59)
183  *     - umdprirange is maxumdpri - 1 (i.e. 58)
184  *     - maxfsspri is the largest fsspri seen so far, as we're iterating all
185  *       runnable processes
186  *
187  *    Thus, a higher internal priority (fsspri) leads to a lower user-mode
188  *    priority which means the thread runs less. The fsspri is higher when
189  *    the project's normalized share usage is higher, when the project has
190  *    more runnable threads, or when the thread has accumulated more run-time.
191  *
192  *    This code has various checks to ensure the resulting umdpri is in the
193  *    range 1-59.  See fss_newpri for more details.
194  *
195  * To reiterate, the above processing is performed once per second to recompute
196  * the runnable thread user-mode priorities.
197  *
198  * 3) The final major component in the priority calculation is the tick
199  *    processing which occurs on a thread that is running when the clock
200  *    calls fss_tick.
201  *
202  *    A thread can run continuously in user-land (compute-bound) for the
203  *    fss_quantum (see "dispadmin -c FSS -g" for the configurable properties).
204  *    The fss_quantum defaults to 11 (i.e. 11 ticks).
205  *
206  *    Once the quantum has been consumed, the thread will call fss_newpri to
207  *    recompute its umdpri priority, as described above in (2b). Threads that
208  *    were T_ONPROC at the one second interval when runnable thread priorities
209  *    were recalculated will have their umdpri priority recalculated when their
210  *    quanta expires.
211  *
212  *    To ensure that runnable threads within a project see the expected
213  *    round-robin behavior, there is a special case in fss_newpri for a thread
214  *    that has run for its quanta within the one second update interval.  See
215  *    the handling for the quanta_up parameter within fss_newpri.
216  *
217  *    Also of interest, the fss_tick code increments the project's tick value
218  *    using the fss_nice_tick array entry for the thread's nice value. The idea
219  *    behind the fss_nice_tick array is that the cost of a tick is lower at
220  *    positive nice values (so that it doesn't increase the project's usage
221  *    as much as normal) with a 50% drop at the maximum level and a 50%
222  *    increase at the minimum level. See (1b). The fss_nice_tick array is
223  *    initialized in fss_init using the following formula:
224  *
225  *         FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) - i)
226  *        --------------------------------------------------
227  *                          FSS_NICE_RANGE
228  *
229  *     - FSS_TICK_COST is 1000, the tick cost for threads with nice level 0
230  *
231  * FSS Data Structures:
232  *
233  *                 fsszone
234  *                  -----           -----
235  *  -----          |     |         |     |
236  * |     |-------->|     |<------->|     |<---->...
237  * |     |          -----           -----
238  * |     |          ^    ^            ^
239  * |     |---       |     \            \
240  *  -----    |      |      \            \
241  * fsspset   |      |       \            \
242  *           |      |        \            \
243  *           |    -----       -----       -----
244  *            -->|     |<--->|     |<--->|     |
245  *               |     |     |     |     |     |
246  *                -----       -----       -----
247  *               fssproj
248  *
249  * That is, fsspsets contain a list of fsszone's that are currently active in
250  * the pset, and a list of fssproj's, corresponding to projects with runnable
251  * threads on the pset.  fssproj's in turn point to the fsszone which they
252  * are a member of.
253  *
254  * An fssproj_t is removed when there are no threads in it.
255  *
256  * An fsszone_t is removed when there are no projects with threads in it.
257  */
258 
259 static pri_t fss_init(id_t, int, classfuncs_t **);
260 
261 static struct sclass fss = {
262 	"FSS",
263 	fss_init,
264 	0
265 };
266 
267 extern struct mod_ops mod_schedops;
268 
269 /*
270  * Module linkage information for the kernel.
271  */
272 static struct modlsched modlsched = {
273 	&mod_schedops, "fair share scheduling class", &fss
274 };
275 
276 static struct modlinkage modlinkage = {
277 	MODREV_1, (void *)&modlsched, NULL
278 };
279 
280 #define	FSS_MAXUPRI	60
281 
282 /*
283  * The fssproc_t structures are kept in an array of circular doubly linked
284  * lists.  A hash on the thread pointer is used to determine which list each
285  * thread should be placed in.  Each list has a dummy "head" which is never
286  * removed, so the list is never empty.  fss_update traverses these lists to
287  * update the priorities of threads that have been waiting on the run queue.
288  */
289 #define	FSS_LISTS		16 /* number of lists, must be power of 2 */
290 #define	FSS_LIST_HASH(t)	(((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
291 #define	FSS_LIST_NEXT(i)	(((i) + 1) & (FSS_LISTS - 1))
292 
293 #define	FSS_LIST_INSERT(fssproc)				\
294 {								\
295 	int index = FSS_LIST_HASH(fssproc->fss_tp);		\
296 	kmutex_t *lockp = &fss_listlock[index];			\
297 	fssproc_t *headp = &fss_listhead[index];		\
298 	mutex_enter(lockp);					\
299 	fssproc->fss_next = headp->fss_next;			\
300 	fssproc->fss_prev = headp;				\
301 	headp->fss_next->fss_prev = fssproc;			\
302 	headp->fss_next = fssproc;				\
303 	mutex_exit(lockp);					\
304 }
305 
306 #define	FSS_LIST_DELETE(fssproc)				\
307 {								\
308 	int index = FSS_LIST_HASH(fssproc->fss_tp);		\
309 	kmutex_t *lockp = &fss_listlock[index];			\
310 	mutex_enter(lockp);					\
311 	fssproc->fss_prev->fss_next = fssproc->fss_next;	\
312 	fssproc->fss_next->fss_prev = fssproc->fss_prev;	\
313 	mutex_exit(lockp);					\
314 }
315 
316 #define	FSS_TICK_COST	1000	/* tick cost for threads with nice level = 0 */
317 
318 /*
319  * Decay rate percentages are based on n/128 rather than n/100 so  that
320  * calculations can avoid having to do an integer divide by 100 (divide
321  * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
322  *
323  * FSS_DECAY_MIN	=  83/128 ~= 65%
324  * FSS_DECAY_MAX	= 108/128 ~= 85%
325  * FSS_DECAY_USG	=  96/128 ~= 75%
326  */
327 #define	FSS_DECAY_MIN	83	/* fsspri decay pct for threads w/ nice -20 */
328 #define	FSS_DECAY_MAX	108	/* fsspri decay pct for threads w/ nice +19 */
329 #define	FSS_DECAY_USG	96	/* fssusage decay pct for projects */
330 #define	FSS_DECAY_BASE	128	/* base for decay percentages above */
331 
332 #define	FSS_NICE_MIN	0
333 #define	FSS_NICE_MAX	(2 * NZERO - 1)
334 #define	FSS_NICE_RANGE	(FSS_NICE_MAX - FSS_NICE_MIN + 1)
335 
336 static int	fss_nice_tick[FSS_NICE_RANGE];
337 static int	fss_nice_decay[FSS_NICE_RANGE];
338 
339 static pri_t	fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
340 static pri_t	fss_maxumdpri; /* maximum user mode fss priority */
341 static pri_t	fss_maxglobpri;	/* maximum global priority used by fss class */
342 static pri_t	fss_minglobpri;	/* minimum global priority */
343 
344 static fssproc_t fss_listhead[FSS_LISTS];
345 static kmutex_t	fss_listlock[FSS_LISTS];
346 
347 static fsspset_t *fsspsets;
348 static kmutex_t fsspsets_lock;	/* protects fsspsets */
349 
350 static id_t	fss_cid;
351 
352 static time_t	fss_minrun = 2;	/* t_pri becomes 59 within 2 secs */
353 static time_t	fss_minslp = 2;	/* min time on sleep queue for hardswap */
354 static int	fss_quantum = 11;
355 
356 static void	fss_newpri(fssproc_t *, boolean_t);
357 static void	fss_update(void *);
358 static int	fss_update_list(int);
359 static void	fss_change_priority(kthread_t *, fssproc_t *);
360 
361 static int	fss_admin(caddr_t, cred_t *);
362 static int	fss_getclinfo(void *);
363 static int	fss_parmsin(void *);
364 static int	fss_parmsout(void *, pc_vaparms_t *);
365 static int	fss_vaparmsin(void *, pc_vaparms_t *);
366 static int	fss_vaparmsout(void *, pc_vaparms_t *);
367 static int	fss_getclpri(pcpri_t *);
368 static int	fss_alloc(void **, int);
369 static void	fss_free(void *);
370 
371 static int	fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
372 static void	fss_exitclass(void *);
373 static int	fss_canexit(kthread_t *, cred_t *);
374 static int	fss_fork(kthread_t *, kthread_t *, void *);
375 static void	fss_forkret(kthread_t *, kthread_t *);
376 static void	fss_parmsget(kthread_t *, void *);
377 static int	fss_parmsset(kthread_t *, void *, id_t, cred_t *);
378 static void	fss_stop(kthread_t *, int, int);
379 static void	fss_exit(kthread_t *);
380 static void	fss_active(kthread_t *);
381 static void	fss_inactive(kthread_t *);
382 static pri_t	fss_swapin(kthread_t *, int);
383 static pri_t	fss_swapout(kthread_t *, int);
384 static void	fss_trapret(kthread_t *);
385 static void	fss_preempt(kthread_t *);
386 static void	fss_setrun(kthread_t *);
387 static void	fss_sleep(kthread_t *);
388 static void	fss_tick(kthread_t *);
389 static void	fss_wakeup(kthread_t *);
390 static int	fss_donice(kthread_t *, cred_t *, int, int *);
391 static int	fss_doprio(kthread_t *, cred_t *, int, int *);
392 static pri_t	fss_globpri(kthread_t *);
393 static void	fss_yield(kthread_t *);
394 static void	fss_nullsys();
395 
396 static struct classfuncs fss_classfuncs = {
397 	/* class functions */
398 	fss_admin,
399 	fss_getclinfo,
400 	fss_parmsin,
401 	fss_parmsout,
402 	fss_vaparmsin,
403 	fss_vaparmsout,
404 	fss_getclpri,
405 	fss_alloc,
406 	fss_free,
407 
408 	/* thread functions */
409 	fss_enterclass,
410 	fss_exitclass,
411 	fss_canexit,
412 	fss_fork,
413 	fss_forkret,
414 	fss_parmsget,
415 	fss_parmsset,
416 	fss_stop,
417 	fss_exit,
418 	fss_active,
419 	fss_inactive,
420 	fss_swapin,
421 	fss_swapout,
422 	fss_trapret,
423 	fss_preempt,
424 	fss_setrun,
425 	fss_sleep,
426 	fss_tick,
427 	fss_wakeup,
428 	fss_donice,
429 	fss_globpri,
430 	fss_nullsys,	/* set_process_group */
431 	fss_yield,
432 	fss_doprio,
433 };
434 
435 int
436 _init()
437 {
438 	return (mod_install(&modlinkage));
439 }
440 
441 int
442 _fini()
443 {
444 	return (EBUSY);
445 }
446 
447 int
448 _info(struct modinfo *modinfop)
449 {
450 	return (mod_info(&modlinkage, modinfop));
451 }
452 
453 /*ARGSUSED*/
454 static int
455 fss_project_walker(kproject_t *kpj, void *buf)
456 {
457 	return (0);
458 }
459 
460 void *
461 fss_allocbuf(int op, int type)
462 {
463 	fssbuf_t *fssbuf;
464 	void **fsslist;
465 	int cnt;
466 	int i;
467 	size_t size;
468 
469 	ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
470 	ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
471 	ASSERT(MUTEX_HELD(&cpu_lock));
472 
473 	fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
474 	switch (op) {
475 	case FSS_NPSET_BUF:
476 		cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
477 		break;
478 	case FSS_NPROJ_BUF:
479 		cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
480 		break;
481 	case FSS_ONE_BUF:
482 		cnt = 1;
483 		break;
484 	}
485 
486 	switch (type) {
487 	case FSS_ALLOC_PROJ:
488 		size = sizeof (fssproj_t);
489 		break;
490 	case FSS_ALLOC_ZONE:
491 		size = sizeof (fsszone_t);
492 		break;
493 	}
494 	fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
495 	fssbuf->fssb_size = cnt;
496 	fssbuf->fssb_list = fsslist;
497 	for (i = 0; i < cnt; i++)
498 		fsslist[i] = kmem_zalloc(size, KM_SLEEP);
499 	return (fssbuf);
500 }
501 
502 void
503 fss_freebuf(fssbuf_t *fssbuf, int type)
504 {
505 	void **fsslist;
506 	int i;
507 	size_t size;
508 
509 	ASSERT(fssbuf != NULL);
510 	ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
511 	fsslist = fssbuf->fssb_list;
512 
513 	switch (type) {
514 	case FSS_ALLOC_PROJ:
515 		size = sizeof (fssproj_t);
516 		break;
517 	case FSS_ALLOC_ZONE:
518 		size = sizeof (fsszone_t);
519 		break;
520 	}
521 
522 	for (i = 0; i < fssbuf->fssb_size; i++) {
523 		if (fsslist[i] != NULL)
524 			kmem_free(fsslist[i], size);
525 	}
526 	kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
527 	kmem_free(fssbuf, sizeof (fssbuf_t));
528 }
529 
530 static fsspset_t *
531 fss_find_fsspset(cpupart_t *cpupart)
532 {
533 	int i;
534 	fsspset_t *fsspset = NULL;
535 	int found = 0;
536 
537 	ASSERT(cpupart != NULL);
538 	ASSERT(MUTEX_HELD(&fsspsets_lock));
539 
540 	/*
541 	 * Search for the cpupart pointer in the array of fsspsets.
542 	 */
543 	for (i = 0; i < max_ncpus; i++) {
544 		fsspset = &fsspsets[i];
545 		if (fsspset->fssps_cpupart == cpupart) {
546 			ASSERT(fsspset->fssps_nproj > 0);
547 			found = 1;
548 			break;
549 		}
550 	}
551 	if (found == 0) {
552 		/*
553 		 * If we didn't find anything, then use the first
554 		 * available slot in the fsspsets array.
555 		 */
556 		for (i = 0; i < max_ncpus; i++) {
557 			fsspset = &fsspsets[i];
558 			if (fsspset->fssps_cpupart == NULL) {
559 				ASSERT(fsspset->fssps_nproj == 0);
560 				found = 1;
561 				break;
562 			}
563 		}
564 		fsspset->fssps_cpupart = cpupart;
565 	}
566 	ASSERT(found == 1);
567 	return (fsspset);
568 }
569 
570 static void
571 fss_del_fsspset(fsspset_t *fsspset)
572 {
573 	ASSERT(MUTEX_HELD(&fsspsets_lock));
574 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
575 	ASSERT(fsspset->fssps_nproj == 0);
576 	ASSERT(fsspset->fssps_list == NULL);
577 	ASSERT(fsspset->fssps_zones == NULL);
578 	fsspset->fssps_cpupart = NULL;
579 	fsspset->fssps_maxfsspri = 0;
580 	fsspset->fssps_shares = 0;
581 }
582 
583 /*
584  * The following routine returns a pointer to the fsszone structure which
585  * belongs to zone "zone" and cpu partition fsspset, if such structure exists.
586  */
587 static fsszone_t *
588 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
589 {
590 	fsszone_t *fsszone;
591 
592 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
593 
594 	if (fsspset->fssps_list != NULL) {
595 		/*
596 		 * There are projects/zones active on this cpu partition
597 		 * already.  Try to find our zone among them.
598 		 */
599 		fsszone = fsspset->fssps_zones;
600 		do {
601 			if (fsszone->fssz_zone == zone) {
602 				return (fsszone);
603 			}
604 			fsszone = fsszone->fssz_next;
605 		} while (fsszone != fsspset->fssps_zones);
606 	}
607 	return (NULL);
608 }
609 
610 /*
611  * The following routine links new fsszone structure into doubly linked list of
612  * zones active on the specified cpu partition.
613  */
614 static void
615 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
616 {
617 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
618 
619 	fsszone->fssz_zone = zone;
620 	fsszone->fssz_rshares = zone->zone_shares;
621 
622 	if (fsspset->fssps_zones == NULL) {
623 		/*
624 		 * This will be the first fsszone for this fsspset
625 		 */
626 		fsszone->fssz_next = fsszone->fssz_prev = fsszone;
627 		fsspset->fssps_zones = fsszone;
628 	} else {
629 		/*
630 		 * Insert this fsszone to the doubly linked list.
631 		 */
632 		fsszone_t *fssz_head = fsspset->fssps_zones;
633 
634 		fsszone->fssz_next = fssz_head;
635 		fsszone->fssz_prev = fssz_head->fssz_prev;
636 		fssz_head->fssz_prev->fssz_next = fsszone;
637 		fssz_head->fssz_prev = fsszone;
638 		fsspset->fssps_zones = fsszone;
639 	}
640 }
641 
642 /*
643  * The following routine removes a single fsszone structure from the doubly
644  * linked list of zones active on the specified cpu partition.  Note that
645  * global fsspsets_lock must be held in case this fsszone structure is the last
646  * on the above mentioned list.  Also note that the fsszone structure is not
647  * freed here, it is the responsibility of the caller to call kmem_free for it.
648  */
649 static void
650 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
651 {
652 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
653 	ASSERT(fsszone->fssz_nproj == 0);
654 	ASSERT(fsszone->fssz_shares == 0);
655 	ASSERT(fsszone->fssz_runnable == 0);
656 
657 	if (fsszone->fssz_next != fsszone) {
658 		/*
659 		 * This is not the last zone in the list.
660 		 */
661 		fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
662 		fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
663 		if (fsspset->fssps_zones == fsszone)
664 			fsspset->fssps_zones = fsszone->fssz_next;
665 	} else {
666 		/*
667 		 * This was the last zone active in this cpu partition.
668 		 */
669 		fsspset->fssps_zones = NULL;
670 	}
671 }
672 
673 /*
674  * The following routine returns a pointer to the fssproj structure
675  * which belongs to project kpj and cpu partition fsspset, if such structure
676  * exists.
677  */
678 static fssproj_t *
679 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
680 {
681 	fssproj_t *fssproj;
682 
683 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
684 
685 	if (fsspset->fssps_list != NULL) {
686 		/*
687 		 * There are projects running on this cpu partition already.
688 		 * Try to find our project among them.
689 		 */
690 		fssproj = fsspset->fssps_list;
691 		do {
692 			if (fssproj->fssp_proj == kpj) {
693 				ASSERT(fssproj->fssp_pset == fsspset);
694 				return (fssproj);
695 			}
696 			fssproj = fssproj->fssp_next;
697 		} while (fssproj != fsspset->fssps_list);
698 	}
699 	return (NULL);
700 }
701 
702 /*
703  * The following routine links new fssproj structure into doubly linked list
704  * of projects running on the specified cpu partition.
705  */
706 static void
707 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
708     fssproj_t *fssproj)
709 {
710 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
711 
712 	fssproj->fssp_pset = fsspset;
713 	fssproj->fssp_proj = kpj;
714 	fssproj->fssp_shares = kpj->kpj_shares;
715 
716 	fsspset->fssps_nproj++;
717 
718 	if (fsspset->fssps_list == NULL) {
719 		/*
720 		 * This will be the first fssproj for this fsspset
721 		 */
722 		fssproj->fssp_next = fssproj->fssp_prev = fssproj;
723 		fsspset->fssps_list = fssproj;
724 	} else {
725 		/*
726 		 * Insert this fssproj to the doubly linked list.
727 		 */
728 		fssproj_t *fssp_head = fsspset->fssps_list;
729 
730 		fssproj->fssp_next = fssp_head;
731 		fssproj->fssp_prev = fssp_head->fssp_prev;
732 		fssp_head->fssp_prev->fssp_next = fssproj;
733 		fssp_head->fssp_prev = fssproj;
734 		fsspset->fssps_list = fssproj;
735 	}
736 	fssproj->fssp_fsszone = fsszone;
737 	fsszone->fssz_nproj++;
738 	ASSERT(fsszone->fssz_nproj != 0);
739 }
740 
741 /*
742  * The following routine removes a single fssproj structure from the doubly
743  * linked list of projects running on the specified cpu partition.  Note that
744  * global fsspsets_lock must be held in case if this fssproj structure is the
745  * last on the above mentioned list.  Also note that the fssproj structure is
746  * not freed here, it is the responsibility of the caller to call kmem_free
747  * for it.
748  */
749 static void
750 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
751 {
752 	fsszone_t *fsszone;
753 
754 	ASSERT(MUTEX_HELD(&fsspsets_lock));
755 	ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
756 	ASSERT(fssproj->fssp_runnable == 0);
757 
758 	fsspset->fssps_nproj--;
759 
760 	fsszone = fssproj->fssp_fsszone;
761 	fsszone->fssz_nproj--;
762 
763 	if (fssproj->fssp_next != fssproj) {
764 		/*
765 		 * This is not the last part in the list.
766 		 */
767 		fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
768 		fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
769 		if (fsspset->fssps_list == fssproj)
770 			fsspset->fssps_list = fssproj->fssp_next;
771 		if (fsszone->fssz_nproj == 0)
772 			fss_remove_fsszone(fsspset, fsszone);
773 	} else {
774 		/*
775 		 * This was the last project part running
776 		 * at this cpu partition.
777 		 */
778 		fsspset->fssps_list = NULL;
779 		ASSERT(fsspset->fssps_nproj == 0);
780 		ASSERT(fsszone->fssz_nproj == 0);
781 		fss_remove_fsszone(fsspset, fsszone);
782 		fss_del_fsspset(fsspset);
783 	}
784 }
785 
786 static void
787 fss_inactive(kthread_t *t)
788 {
789 	fssproc_t *fssproc;
790 	fssproj_t *fssproj;
791 	fsspset_t *fsspset;
792 	fsszone_t *fsszone;
793 
794 	ASSERT(THREAD_LOCK_HELD(t));
795 	fssproc = FSSPROC(t);
796 	fssproj = FSSPROC2FSSPROJ(fssproc);
797 	if (fssproj == NULL)	/* if this thread already exited */
798 		return;
799 	fsspset = FSSPROJ2FSSPSET(fssproj);
800 	fsszone = fssproj->fssp_fsszone;
801 	disp_lock_enter_high(&fsspset->fssps_displock);
802 	ASSERT(fssproj->fssp_runnable > 0);
803 	if (--fssproj->fssp_runnable == 0) {
804 		fsszone->fssz_shares -= fssproj->fssp_shares;
805 		if (--fsszone->fssz_runnable == 0)
806 			fsspset->fssps_shares -= fsszone->fssz_rshares;
807 	}
808 	ASSERT(fssproc->fss_runnable == 1);
809 	fssproc->fss_runnable = 0;
810 	disp_lock_exit_high(&fsspset->fssps_displock);
811 }
812 
813 static void
814 fss_active(kthread_t *t)
815 {
816 	fssproc_t *fssproc;
817 	fssproj_t *fssproj;
818 	fsspset_t *fsspset;
819 	fsszone_t *fsszone;
820 
821 	ASSERT(THREAD_LOCK_HELD(t));
822 	fssproc = FSSPROC(t);
823 	fssproj = FSSPROC2FSSPROJ(fssproc);
824 	if (fssproj == NULL)	/* if this thread already exited */
825 		return;
826 	fsspset = FSSPROJ2FSSPSET(fssproj);
827 	fsszone = fssproj->fssp_fsszone;
828 	disp_lock_enter_high(&fsspset->fssps_displock);
829 	if (++fssproj->fssp_runnable == 1) {
830 		fsszone->fssz_shares += fssproj->fssp_shares;
831 		if (++fsszone->fssz_runnable == 1)
832 			fsspset->fssps_shares += fsszone->fssz_rshares;
833 	}
834 	ASSERT(fssproc->fss_runnable == 0);
835 	fssproc->fss_runnable = 1;
836 	disp_lock_exit_high(&fsspset->fssps_displock);
837 }
838 
839 /*
840  * Fair share scheduler initialization. Called by dispinit() at boot time.
841  * We can ignore clparmsz argument since we know that the smallest possible
842  * parameter buffer is big enough for us.
843  */
844 /*ARGSUSED*/
845 static pri_t
846 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
847 {
848 	int i;
849 
850 	ASSERT(MUTEX_HELD(&cpu_lock));
851 
852 	fss_cid = cid;
853 	fss_maxumdpri = minclsyspri - 1;
854 	fss_maxglobpri = minclsyspri;
855 	fss_minglobpri = 0;
856 	fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
857 
858 	/*
859 	 * Initialize the fssproc hash table.
860 	 */
861 	for (i = 0; i < FSS_LISTS; i++)
862 		fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
863 		    &fss_listhead[i];
864 
865 	*clfuncspp = &fss_classfuncs;
866 
867 	/*
868 	 * Fill in fss_nice_tick and fss_nice_decay arrays:
869 	 * The cost of a tick is lower at positive nice values (so that it
870 	 * will not increase its project's usage as much as normal) with 50%
871 	 * drop at the maximum level and 50% increase at the minimum level.
872 	 * The fsspri decay is slower at positive nice values.  fsspri values
873 	 * of processes with negative nice levels must decay faster to receive
874 	 * time slices more frequently than normal.
875 	 */
876 	for (i = 0; i < FSS_NICE_RANGE; i++) {
877 		fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
878 		    - i)) / FSS_NICE_RANGE;
879 		fss_nice_decay[i] = FSS_DECAY_MIN +
880 		    ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
881 		    (FSS_NICE_RANGE - 1);
882 	}
883 
884 	return (fss_maxglobpri);
885 }
886 
887 /*
888  * Calculate the new fss_umdpri based on the usage, the normalized share usage
889  * and the number of active threads.  Reset the tick counter for this thread.
890  *
891  * When calculating the new priority using the standard formula we can hit
892  * a scenario where we don't have good round-robin behavior.  This would be
893  * most commonly seen when there is a zone with lots of runnable threads.
894  * In the bad scenario we will see the following behavior when using the
895  * standard formula and these conditions:
896  *
897  *	- there are multiple runnable threads in the zone (project)
898  *	- the fssps_maxfsspri is a very large value
899  *	- (we also know all of these threads will use the project's
900  *	    fssp_shusage)
901  *
902  * Under these conditions, a thread with a low fss_fsspri value is chosen
903  * to run and the thread gets a high fss_umdpri.  This thread can run for
904  * its full quanta (fss_timeleft) at which time fss_newpri is called to
905  * calculate the thread's new priority.
906  *
907  * In this case, because the newly calculated fsspri value is much smaller
908  * (orders of magnitude) than the fssps_maxfsspri value, if we used the
909  * standard formula the thread will still get a high fss_umdpri value and
910  * will run again for another quanta, even though there are other runnable
911  * threads in the project.
912  *
913  * For a thread that is runnable for a long time, the thread can continue
914  * to run for many quanta (totaling many seconds) before the thread's fsspri
915  * exceeds the fssps_maxfsspri and the thread's fss_umdpri is reset back
916  * down to 1.  This behavior also keeps the fssps_maxfsspr at a high value,
917  * so that the next runnable thread might repeat this cycle.
918  *
919  * This leads to the case where we don't have round-robin behavior at quanta
920  * granularity, but instead, runnable threads within the project only run
921  * at several second intervals.
922  *
923  * To prevent this scenario from occuring, when a thread has consumed its
924  * quanta and there are multiple runnable threads in the project, we
925  * immediately cause the thread to hit fssps_maxfsspri so that it gets
926  * reset back to 1 and another runnable thread in the project can run.
927  */
928 static void
929 fss_newpri(fssproc_t *fssproc, boolean_t quanta_up)
930 {
931 	kthread_t *tp;
932 	fssproj_t *fssproj;
933 	fsspset_t *fsspset;
934 	fsszone_t *fsszone;
935 	fsspri_t fsspri, maxfsspri;
936 	uint32_t n_runnable;
937 	pri_t invpri;
938 	uint32_t ticks;
939 
940 	tp = fssproc->fss_tp;
941 	ASSERT(tp != NULL);
942 
943 	if (tp->t_cid != fss_cid)
944 		return;
945 
946 	ASSERT(THREAD_LOCK_HELD(tp));
947 
948 	fssproj = FSSPROC2FSSPROJ(fssproc);
949 	fsszone = FSSPROJ2FSSZONE(fssproj);
950 	if (fssproj == NULL)
951 		/*
952 		 * No need to change priority of exited threads.
953 		 */
954 		return;
955 
956 	fsspset = FSSPROJ2FSSPSET(fssproj);
957 	disp_lock_enter_high(&fsspset->fssps_displock);
958 
959 	ticks = fssproc->fss_ticks;
960 	fssproc->fss_ticks = 0;
961 
962 	if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
963 		/*
964 		 * Special case: threads with no shares.
965 		 */
966 		fssproc->fss_umdpri = fss_minglobpri;
967 		disp_lock_exit_high(&fsspset->fssps_displock);
968 		return;
969 	}
970 
971 	maxfsspri = fsspset->fssps_maxfsspri;
972 	n_runnable = fssproj->fssp_runnable;
973 
974 	if (quanta_up && n_runnable > 1) {
975 		fsspri = maxfsspri;
976 	} else {
977 		/*
978 		 * fsspri += fssp_shusage * nrunnable * ticks
979 		 * If all three values are non-0, this typically calculates to
980 		 * a large number (sometimes > 1M, sometimes > 100B) due to
981 		 * fssp_shusage which can be > 1T.
982 		 */
983 		fsspri = fssproc->fss_fsspri;
984 		fsspri += fssproj->fssp_shusage * n_runnable * ticks;
985 	}
986 
987 	fssproc->fss_fsspri = fsspri;
988 
989 	/*
990 	 * fss_maxumdpri is normally 59, since FSS priorities are 0-59.
991 	 * If the previous calculation resulted in 0 (e.g. was 0 and added 0
992 	 * because ticks == 0), then instead of 0, we use the largest priority,
993 	 * which is still small in comparison to the large numbers we typically
994 	 * see.
995 	 */
996 	if (fsspri < fss_maxumdpri)
997 		fsspri = fss_maxumdpri;	/* so that maxfsspri is != 0 */
998 
999 	/*
1000 	 * The general priority formula:
1001 	 *
1002 	 *			(fsspri * umdprirange)
1003 	 *   pri = maxumdpri - ------------------------
1004 	 *				maxfsspri
1005 	 *
1006 	 * If this thread's fsspri is greater than the previous largest
1007 	 * fsspri, then record it as the new high and priority for this
1008 	 * thread will be one (the lowest priority assigned to a thread
1009 	 * that has non-zero shares). Because of this check, maxfsspri can
1010 	 * change as this function is called via the
1011 	 * fss_update -> fss_update_list -> fss_newpri code path to update
1012 	 * all runnable threads. See the code in fss_update for how we
1013 	 * mitigate this issue.
1014 	 *
1015 	 * Note that this formula cannot produce out of bounds priority
1016 	 * values (0-59); if it is changed, additional checks may need to be
1017 	 * added.
1018 	 */
1019 	if (fsspri >= maxfsspri) {
1020 		fsspset->fssps_maxfsspri = fsspri;
1021 		disp_lock_exit_high(&fsspset->fssps_displock);
1022 		fssproc->fss_umdpri = 1;
1023 	} else {
1024 		disp_lock_exit_high(&fsspset->fssps_displock);
1025 		invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
1026 		fssproc->fss_umdpri = fss_maxumdpri - invpri;
1027 	}
1028 }
1029 
1030 /*
1031  * Decays usages of all running projects, resets their tick counters and
1032  * calcluates the projects normalized share usage. Called once per second from
1033  * fss_update().
1034  */
1035 static void
1036 fss_decay_usage()
1037 {
1038 	uint32_t zone_ext_shares, zone_int_shares;
1039 	uint32_t kpj_shares, pset_shares;
1040 	fsspset_t *fsspset;
1041 	fssproj_t *fssproj;
1042 	fsszone_t *fsszone;
1043 	fsspri_t maxfsspri;
1044 	int psetid;
1045 	struct zone *zp;
1046 
1047 	mutex_enter(&fsspsets_lock);
1048 	/*
1049 	 * Go through all active processor sets and decay usages of projects
1050 	 * running on them.
1051 	 */
1052 	for (psetid = 0; psetid < max_ncpus; psetid++) {
1053 		fsspset = &fsspsets[psetid];
1054 		mutex_enter(&fsspset->fssps_lock);
1055 
1056 		fsspset->fssps_gen++;
1057 
1058 		if (fsspset->fssps_cpupart == NULL ||
1059 		    (fssproj = fsspset->fssps_list) == NULL) {
1060 			mutex_exit(&fsspset->fssps_lock);
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * Decay maxfsspri for this cpu partition with the
1066 		 * fastest possible decay rate.
1067 		 */
1068 		disp_lock_enter(&fsspset->fssps_displock);
1069 
1070 		pset_shares = fsspset->fssps_shares;
1071 
1072 		maxfsspri = (fsspset->fssps_maxfsspri *
1073 		    fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
1074 		if (maxfsspri < fss_maxumdpri)
1075 			maxfsspri = fss_maxumdpri;
1076 		fsspset->fssps_maxfsspri = maxfsspri;
1077 
1078 		do {
1079 			fsszone = fssproj->fssp_fsszone;
1080 			zp = fsszone->fssz_zone;
1081 
1082 			/*
1083 			 * Reset zone's FSS stats if they are from a
1084 			 * previous cycle.
1085 			 */
1086 			if (fsspset->fssps_gen != zp->zone_fss_gen) {
1087 				zp->zone_fss_gen = fsspset->fssps_gen;
1088 				zp->zone_run_ticks = 0;
1089 			}
1090 
1091 			/*
1092 			 * Decay project usage, then add in this cycle's
1093 			 * nice tick value.
1094 			 */
1095 			fssproj->fssp_usage =
1096 			    (fssproj->fssp_usage * FSS_DECAY_USG) /
1097 			    FSS_DECAY_BASE +
1098 			    fssproj->fssp_ticks;
1099 
1100 			fssproj->fssp_ticks = 0;
1101 			zp->zone_run_ticks += fssproj->fssp_tick_cnt;
1102 			fssproj->fssp_tick_cnt = 0;
1103 
1104 			/*
1105 			 * Readjust the project's number of shares if it has
1106 			 * changed since we checked it last time.
1107 			 */
1108 			kpj_shares = fssproj->fssp_proj->kpj_shares;
1109 			if (fssproj->fssp_shares != kpj_shares) {
1110 				if (fssproj->fssp_runnable != 0) {
1111 					fsszone->fssz_shares -=
1112 					    fssproj->fssp_shares;
1113 					fsszone->fssz_shares += kpj_shares;
1114 				}
1115 				fssproj->fssp_shares = kpj_shares;
1116 			}
1117 
1118 			/*
1119 			 * Readjust the zone's number of shares if it
1120 			 * has changed since we checked it last time.
1121 			 */
1122 			zone_ext_shares = zp->zone_shares;
1123 			if (fsszone->fssz_rshares != zone_ext_shares) {
1124 				if (fsszone->fssz_runnable != 0) {
1125 					fsspset->fssps_shares -=
1126 					    fsszone->fssz_rshares;
1127 					fsspset->fssps_shares +=
1128 					    zone_ext_shares;
1129 					pset_shares = fsspset->fssps_shares;
1130 				}
1131 				fsszone->fssz_rshares = zone_ext_shares;
1132 			}
1133 			zone_int_shares = fsszone->fssz_shares;
1134 
1135 			/*
1136 			 * If anything is runnable in the project, track the
1137 			 * overall project share percent for monitoring useage.
1138 			 */
1139 			if (fssproj->fssp_runnable > 0) {
1140 				uint32_t zone_shr_pct;
1141 				uint32_t int_shr_pct;
1142 
1143 				/*
1144 				 * Times 1000 to get tenths of a percent
1145 				 *
1146 				 *		  zone_ext_shares
1147 				 * zone_shr_pct = ---------------
1148 				 *		  pset_shares
1149 				 *
1150 				 *		  kpj_shares
1151 				 * int_shr_pct =  ---------------
1152 				 *		  zone_int_shares
1153 				 */
1154 				if (pset_shares == 0 || zone_int_shares == 0) {
1155 					fssproj->fssp_shr_pct = 0;
1156 				} else {
1157 					zone_shr_pct =
1158 					    (zone_ext_shares * 1000) /
1159 					    pset_shares;
1160 					int_shr_pct = (kpj_shares * 1000) /
1161 					    zone_int_shares;
1162 					fssproj->fssp_shr_pct =
1163 					    (zone_shr_pct * int_shr_pct) /
1164 					    1000;
1165 				}
1166 			} else {
1167 				DTRACE_PROBE1(fss__prj__norun, fssproj_t *,
1168 				    fssproj);
1169 			}
1170 
1171 			/*
1172 			 * Calculate fssp_shusage value to be used
1173 			 * for fsspri increments for the next second.
1174 			 */
1175 			if (kpj_shares == 0 || zone_ext_shares == 0) {
1176 				fssproj->fssp_shusage = 0;
1177 			} else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
1178 				uint32_t zone_shr_pct;
1179 
1180 				/*
1181 				 * Project 0 in the global zone has 50%
1182 				 * of its zone. See calculation above for
1183 				 * the zone's share percent.
1184 				 */
1185 				if (pset_shares == 0)
1186 					zone_shr_pct = 1000;
1187 				else
1188 					zone_shr_pct =
1189 					    (zone_ext_shares * 1000) /
1190 					    pset_shares;
1191 
1192 				fssproj->fssp_shr_pct = zone_shr_pct / 2;
1193 
1194 				fssproj->fssp_shusage = (fssproj->fssp_usage *
1195 				    zone_int_shares * zone_int_shares) /
1196 				    (zone_ext_shares * zone_ext_shares);
1197 			} else {
1198 				/*
1199 				 * Thread's priority is based on its project's
1200 				 * normalized usage (shusage) value which gets
1201 				 * calculated this way:
1202 				 *
1203 				 *	   pset_shares^2    zone_int_shares^2
1204 				 * usage * ------------- * ------------------
1205 				 *	   kpj_shares^2	    zone_ext_shares^2
1206 				 *
1207 				 * Where zone_int_shares is the sum of shares
1208 				 * of all active projects within the zone (and
1209 				 * the pset), and zone_ext_shares is the number
1210 				 * of zone shares (ie, zone.cpu-shares).
1211 				 *
1212 				 * If there is only one zone active on the pset
1213 				 * the above reduces to:
1214 				 *
1215 				 *			zone_int_shares^2
1216 				 * shusage = usage * ---------------------
1217 				 *			kpj_shares^2
1218 				 *
1219 				 * If there's only one project active in the
1220 				 * zone this formula reduces to:
1221 				 *
1222 				 *			pset_shares^2
1223 				 * shusage = usage * ----------------------
1224 				 *			zone_ext_shares^2
1225 				 *
1226 				 * shusage is one input to calculating fss_pri
1227 				 * in fss_newpri(). Larger values tend toward
1228 				 * lower priorities for processes in the proj.
1229 				 */
1230 				fssproj->fssp_shusage = fssproj->fssp_usage *
1231 				    pset_shares * zone_int_shares;
1232 				fssproj->fssp_shusage /=
1233 				    kpj_shares * zone_ext_shares;
1234 				fssproj->fssp_shusage *=
1235 				    pset_shares * zone_int_shares;
1236 				fssproj->fssp_shusage /=
1237 				    kpj_shares * zone_ext_shares;
1238 			}
1239 			fssproj = fssproj->fssp_next;
1240 		} while (fssproj != fsspset->fssps_list);
1241 
1242 		disp_lock_exit(&fsspset->fssps_displock);
1243 		mutex_exit(&fsspset->fssps_lock);
1244 	}
1245 	mutex_exit(&fsspsets_lock);
1246 }
1247 
1248 static void
1249 fss_change_priority(kthread_t *t, fssproc_t *fssproc)
1250 {
1251 	pri_t new_pri;
1252 
1253 	ASSERT(THREAD_LOCK_HELD(t));
1254 	new_pri = fssproc->fss_umdpri;
1255 	ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
1256 
1257 	t->t_cpri = fssproc->fss_upri;
1258 	fssproc->fss_flags &= ~FSSRESTORE;
1259 	if (t == curthread || t->t_state == TS_ONPROC) {
1260 		/*
1261 		 * curthread is always onproc
1262 		 */
1263 		cpu_t *cp = t->t_disp_queue->disp_cpu;
1264 		THREAD_CHANGE_PRI(t, new_pri);
1265 		if (t == cp->cpu_dispthread)
1266 			cp->cpu_dispatch_pri = DISP_PRIO(t);
1267 		if (DISP_MUST_SURRENDER(t)) {
1268 			fssproc->fss_flags |= FSSBACKQ;
1269 			cpu_surrender(t);
1270 		} else {
1271 			fssproc->fss_timeleft = fss_quantum;
1272 		}
1273 	} else {
1274 		/*
1275 		 * When the priority of a thread is changed, it may be
1276 		 * necessary to adjust its position on a sleep queue or
1277 		 * dispatch queue.  The function thread_change_pri accomplishes
1278 		 * this.
1279 		 */
1280 		if (thread_change_pri(t, new_pri, 0)) {
1281 			/*
1282 			 * The thread was on a run queue.
1283 			 */
1284 			fssproc->fss_timeleft = fss_quantum;
1285 		} else {
1286 			fssproc->fss_flags |= FSSBACKQ;
1287 		}
1288 	}
1289 }
1290 
1291 /*
1292  * Update priorities of all fair-sharing threads that are currently runnable
1293  * at a user mode priority based on the number of shares and current usage.
1294  * Called once per second via timeout which we reset here.
1295  *
1296  * There are several lists of fair-sharing threads broken up by a hash on the
1297  * thread pointer.  Each list has its own lock.  This avoids blocking all
1298  * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
1299  * fss_update traverses each list in turn.
1300  *
1301  * Each time we're run (once/second) we may start at the next list and iterate
1302  * through all of the lists. By starting with a different list, we mitigate any
1303  * effects we would see updating the fssps_maxfsspri value in fss_newpri.
1304  */
1305 static void
1306 fss_update(void *arg)
1307 {
1308 	int i;
1309 	int new_marker = -1;
1310 	static int fss_update_marker;
1311 
1312 	/*
1313 	 * Decay and update usages for all projects.
1314 	 */
1315 	fss_decay_usage();
1316 
1317 	/*
1318 	 * Start with the fss_update_marker list, then do the rest.
1319 	 */
1320 	i = fss_update_marker;
1321 
1322 	/*
1323 	 * Go around all threads, set new priorities and decay
1324 	 * per-thread CPU usages.
1325 	 */
1326 	do {
1327 		/*
1328 		 * If this is the first list after the current marker to have
1329 		 * threads with priority updates, advance the marker to this
1330 		 * list for the next time fss_update runs.
1331 		 */
1332 		if (fss_update_list(i) &&
1333 		    new_marker == -1 && i != fss_update_marker)
1334 			new_marker = i;
1335 	} while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
1336 
1337 	/*
1338 	 * Advance marker for the next fss_update call
1339 	 */
1340 	if (new_marker != -1)
1341 		fss_update_marker = new_marker;
1342 
1343 	(void) timeout(fss_update, arg, hz);
1344 }
1345 
1346 /*
1347  * Updates priority for a list of threads.  Returns 1 if the priority of one
1348  * of the threads was actually updated, 0 if none were for various reasons
1349  * (thread is no longer in the FSS class, is not runnable, has the preemption
1350  * control no-preempt bit set, etc.)
1351  */
1352 static int
1353 fss_update_list(int i)
1354 {
1355 	fssproc_t *fssproc;
1356 	fssproj_t *fssproj;
1357 	fsspri_t fsspri;
1358 	pri_t fss_umdpri;
1359 	kthread_t *t;
1360 	int updated = 0;
1361 
1362 	mutex_enter(&fss_listlock[i]);
1363 	for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
1364 	    fssproc = fssproc->fss_next) {
1365 		t = fssproc->fss_tp;
1366 		/*
1367 		 * Lock the thread and verify the state.
1368 		 */
1369 		thread_lock(t);
1370 		/*
1371 		 * Skip the thread if it is no longer in the FSS class or
1372 		 * is running with kernel mode priority.
1373 		 */
1374 		if (t->t_cid != fss_cid)
1375 			goto next;
1376 
1377 		fssproj = FSSPROC2FSSPROJ(fssproc);
1378 		if (fssproj == NULL)
1379 			goto next;
1380 
1381 		if (fssproj->fssp_shares != 0) {
1382 			/*
1383 			 * Decay fsspri value.
1384 			 */
1385 			fsspri = fssproc->fss_fsspri;
1386 			fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
1387 			    FSS_DECAY_BASE;
1388 			fssproc->fss_fsspri = fsspri;
1389 		}
1390 
1391 		if (t->t_schedctl && schedctl_get_nopreempt(t))
1392 			goto next;
1393 		if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
1394 			/*
1395 			 * Make next syscall/trap call fss_trapret
1396 			 */
1397 			t->t_trapret = 1;
1398 			aston(t);
1399 			if (t->t_state == TS_ONPROC)
1400 				DTRACE_PROBE1(fss__onproc, fssproc_t *,
1401 				    fssproc);
1402 			goto next;
1403 		}
1404 		fss_newpri(fssproc, B_FALSE);
1405 		updated = 1;
1406 
1407 		fss_umdpri = fssproc->fss_umdpri;
1408 
1409 		/*
1410 		 * Only dequeue the thread if it needs to be moved; otherwise
1411 		 * it should just round-robin here.
1412 		 */
1413 		if (t->t_pri != fss_umdpri)
1414 			fss_change_priority(t, fssproc);
1415 next:
1416 		thread_unlock(t);
1417 	}
1418 	mutex_exit(&fss_listlock[i]);
1419 	return (updated);
1420 }
1421 
1422 /*ARGSUSED*/
1423 static int
1424 fss_admin(caddr_t uaddr, cred_t *reqpcredp)
1425 {
1426 	fssadmin_t fssadmin;
1427 
1428 	if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
1429 		return (EFAULT);
1430 
1431 	switch (fssadmin.fss_cmd) {
1432 	case FSS_SETADMIN:
1433 		if (secpolicy_dispadm(reqpcredp) != 0)
1434 			return (EPERM);
1435 		if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
1436 			return (EINVAL);
1437 		fss_quantum = fssadmin.fss_quantum;
1438 		break;
1439 	case FSS_GETADMIN:
1440 		fssadmin.fss_quantum = fss_quantum;
1441 		if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
1442 			return (EFAULT);
1443 		break;
1444 	default:
1445 		return (EINVAL);
1446 	}
1447 	return (0);
1448 }
1449 
1450 static int
1451 fss_getclinfo(void *infop)
1452 {
1453 	fssinfo_t *fssinfo = (fssinfo_t *)infop;
1454 	fssinfo->fss_maxupri = fss_maxupri;
1455 	return (0);
1456 }
1457 
1458 static int
1459 fss_parmsin(void *parmsp)
1460 {
1461 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1462 
1463 	/*
1464 	 * Check validity of parameters.
1465 	 */
1466 	if ((fssparmsp->fss_uprilim > fss_maxupri ||
1467 	    fssparmsp->fss_uprilim < -fss_maxupri) &&
1468 	    fssparmsp->fss_uprilim != FSS_NOCHANGE)
1469 		return (EINVAL);
1470 
1471 	if ((fssparmsp->fss_upri > fss_maxupri ||
1472 	    fssparmsp->fss_upri < -fss_maxupri) &&
1473 	    fssparmsp->fss_upri != FSS_NOCHANGE)
1474 		return (EINVAL);
1475 
1476 	return (0);
1477 }
1478 
1479 /*ARGSUSED*/
1480 static int
1481 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1482 {
1483 	return (0);
1484 }
1485 
1486 static int
1487 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
1488 {
1489 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1490 	int priflag = 0;
1491 	int limflag = 0;
1492 	uint_t cnt;
1493 	pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1494 
1495 	/*
1496 	 * FSS_NOCHANGE (-32768) is outside of the range of values for
1497 	 * fss_uprilim and fss_upri.  If the structure fssparms_t is changed,
1498 	 * FSS_NOCHANGE should be replaced by a flag word.
1499 	 */
1500 	fssparmsp->fss_uprilim = FSS_NOCHANGE;
1501 	fssparmsp->fss_upri = FSS_NOCHANGE;
1502 
1503 	/*
1504 	 * Get the varargs parameter and check validity of parameters.
1505 	 */
1506 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1507 		return (EINVAL);
1508 
1509 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1510 		switch (vpp->pc_key) {
1511 		case FSS_KY_UPRILIM:
1512 			if (limflag++)
1513 				return (EINVAL);
1514 			fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
1515 			if (fssparmsp->fss_uprilim > fss_maxupri ||
1516 			    fssparmsp->fss_uprilim < -fss_maxupri)
1517 				return (EINVAL);
1518 			break;
1519 		case FSS_KY_UPRI:
1520 			if (priflag++)
1521 				return (EINVAL);
1522 			fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
1523 			if (fssparmsp->fss_upri > fss_maxupri ||
1524 			    fssparmsp->fss_upri < -fss_maxupri)
1525 				return (EINVAL);
1526 			break;
1527 		default:
1528 			return (EINVAL);
1529 		}
1530 	}
1531 
1532 	if (vaparmsp->pc_vaparmscnt == 0) {
1533 		/*
1534 		 * Use default parameters.
1535 		 */
1536 		fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
1537 	}
1538 
1539 	return (0);
1540 }
1541 
1542 /*
1543  * Copy all selected fair-sharing class parameters to the user.  The parameters
1544  * are specified by a key.
1545  */
1546 static int
1547 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1548 {
1549 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1550 	int priflag = 0;
1551 	int limflag = 0;
1552 	uint_t cnt;
1553 	pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1554 
1555 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1556 
1557 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1558 		return (EINVAL);
1559 
1560 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1561 		switch (vpp->pc_key) {
1562 		case FSS_KY_UPRILIM:
1563 			if (limflag++)
1564 				return (EINVAL);
1565 			if (copyout(&fssparmsp->fss_uprilim,
1566 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1567 				return (EFAULT);
1568 			break;
1569 		case FSS_KY_UPRI:
1570 			if (priflag++)
1571 				return (EINVAL);
1572 			if (copyout(&fssparmsp->fss_upri,
1573 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1574 				return (EFAULT);
1575 			break;
1576 		default:
1577 			return (EINVAL);
1578 		}
1579 	}
1580 
1581 	return (0);
1582 }
1583 
1584 /*
1585  * Return the user mode scheduling priority range.
1586  */
1587 static int
1588 fss_getclpri(pcpri_t *pcprip)
1589 {
1590 	pcprip->pc_clpmax = fss_maxupri;
1591 	pcprip->pc_clpmin = -fss_maxupri;
1592 	return (0);
1593 }
1594 
1595 static int
1596 fss_alloc(void **p, int flag)
1597 {
1598 	void *bufp;
1599 
1600 	if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
1601 		return (ENOMEM);
1602 	} else {
1603 		*p = bufp;
1604 		return (0);
1605 	}
1606 }
1607 
1608 static void
1609 fss_free(void *bufp)
1610 {
1611 	if (bufp)
1612 		kmem_free(bufp, sizeof (fssproc_t));
1613 }
1614 
1615 /*
1616  * Thread functions
1617  */
1618 static int
1619 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
1620     void *bufp)
1621 {
1622 	fssparms_t	*fssparmsp = (fssparms_t *)parmsp;
1623 	fssproc_t	*fssproc;
1624 	pri_t		reqfssuprilim;
1625 	pri_t		reqfssupri;
1626 	static uint32_t fssexists = 0;
1627 	fsspset_t	*fsspset;
1628 	fssproj_t	*fssproj;
1629 	fsszone_t	*fsszone;
1630 	kproject_t	*kpj;
1631 	zone_t		*zone;
1632 	int		fsszone_allocated = 0;
1633 
1634 	fssproc = (fssproc_t *)bufp;
1635 	ASSERT(fssproc != NULL);
1636 
1637 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1638 
1639 	/*
1640 	 * Only root can move threads to FSS class.
1641 	 */
1642 	if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
1643 		return (EPERM);
1644 	/*
1645 	 * Initialize the fssproc structure.
1646 	 */
1647 	fssproc->fss_umdpri = fss_maxumdpri / 2;
1648 
1649 	if (fssparmsp == NULL) {
1650 		/*
1651 		 * Use default values.
1652 		 */
1653 		fssproc->fss_nice = NZERO;
1654 		fssproc->fss_uprilim = fssproc->fss_upri = 0;
1655 	} else {
1656 		/*
1657 		 * Use supplied values.
1658 		 */
1659 		if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
1660 			reqfssuprilim = 0;
1661 		} else {
1662 			if (fssparmsp->fss_uprilim > 0 &&
1663 			    secpolicy_setpriority(reqpcredp) != 0)
1664 				return (EPERM);
1665 			reqfssuprilim = fssparmsp->fss_uprilim;
1666 		}
1667 		if (fssparmsp->fss_upri == FSS_NOCHANGE) {
1668 			reqfssupri = reqfssuprilim;
1669 		} else {
1670 			if (fssparmsp->fss_upri > 0 &&
1671 			    secpolicy_setpriority(reqpcredp) != 0)
1672 				return (EPERM);
1673 			/*
1674 			 * Set the user priority to the requested value or
1675 			 * the upri limit, whichever is lower.
1676 			 */
1677 			reqfssupri = fssparmsp->fss_upri;
1678 			if (reqfssupri > reqfssuprilim)
1679 				reqfssupri = reqfssuprilim;
1680 		}
1681 		fssproc->fss_uprilim = reqfssuprilim;
1682 		fssproc->fss_upri = reqfssupri;
1683 		fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
1684 		if (fssproc->fss_nice > FSS_NICE_MAX)
1685 			fssproc->fss_nice = FSS_NICE_MAX;
1686 	}
1687 
1688 	fssproc->fss_timeleft = fss_quantum;
1689 	fssproc->fss_tp = t;
1690 	cpucaps_sc_init(&fssproc->fss_caps);
1691 
1692 	/*
1693 	 * Put a lock on our fsspset structure.
1694 	 */
1695 	mutex_enter(&fsspsets_lock);
1696 	fsspset = fss_find_fsspset(t->t_cpupart);
1697 	mutex_enter(&fsspset->fssps_lock);
1698 	mutex_exit(&fsspsets_lock);
1699 
1700 	zone = ttoproc(t)->p_zone;
1701 	if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
1702 		if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
1703 		    == NULL) {
1704 			mutex_exit(&fsspset->fssps_lock);
1705 			return (ENOMEM);
1706 		} else {
1707 			fsszone_allocated = 1;
1708 			fss_insert_fsszone(fsspset, zone, fsszone);
1709 		}
1710 	}
1711 	kpj = ttoproj(t);
1712 	if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
1713 		if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
1714 		    == NULL) {
1715 			if (fsszone_allocated) {
1716 				fss_remove_fsszone(fsspset, fsszone);
1717 				kmem_free(fsszone, sizeof (fsszone_t));
1718 			}
1719 			mutex_exit(&fsspset->fssps_lock);
1720 			return (ENOMEM);
1721 		} else {
1722 			fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
1723 		}
1724 	}
1725 	fssproj->fssp_threads++;
1726 	fssproc->fss_proj = fssproj;
1727 
1728 	/*
1729 	 * Reset priority. Process goes to a "user mode" priority here
1730 	 * regardless of whether or not it has slept since entering the kernel.
1731 	 */
1732 	thread_lock(t);
1733 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1734 	t->t_cid = cid;
1735 	t->t_cldata = (void *)fssproc;
1736 	t->t_schedflag |= TS_RUNQMATCH;
1737 	fss_change_priority(t, fssproc);
1738 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
1739 	    t->t_state == TS_WAIT)
1740 		fss_active(t);
1741 	thread_unlock(t);
1742 
1743 	mutex_exit(&fsspset->fssps_lock);
1744 
1745 	/*
1746 	 * Link new structure into fssproc list.
1747 	 */
1748 	FSS_LIST_INSERT(fssproc);
1749 
1750 	/*
1751 	 * If this is the first fair-sharing thread to occur since boot,
1752 	 * we set up the initial call to fss_update() here. Use an atomic
1753 	 * compare-and-swap since that's easier and faster than a mutex
1754 	 * (but check with an ordinary load first since most of the time
1755 	 * this will already be done).
1756 	 */
1757 	if (fssexists == 0 && atomic_cas_32(&fssexists, 0, 1) == 0)
1758 		(void) timeout(fss_update, NULL, hz);
1759 
1760 	return (0);
1761 }
1762 
1763 /*
1764  * Remove fssproc_t from the list.
1765  */
1766 static void
1767 fss_exitclass(void *procp)
1768 {
1769 	fssproc_t *fssproc = (fssproc_t *)procp;
1770 	fssproj_t *fssproj;
1771 	fsspset_t *fsspset;
1772 	fsszone_t *fsszone;
1773 	kthread_t *t = fssproc->fss_tp;
1774 
1775 	/*
1776 	 * We should be either getting this thread off the deathrow or
1777 	 * this thread has already moved to another scheduling class and
1778 	 * we're being called with its old cldata buffer pointer.  In both
1779 	 * cases, the content of this buffer can not be changed while we're
1780 	 * here.
1781 	 */
1782 	mutex_enter(&fsspsets_lock);
1783 	thread_lock(t);
1784 	if (t->t_cid != fss_cid) {
1785 		/*
1786 		 * We're being called as a result of the priocntl() system
1787 		 * call -- someone is trying to move our thread to another
1788 		 * scheduling class. We can't call fss_inactive() here
1789 		 * because our thread's t_cldata pointer already points
1790 		 * to another scheduling class specific data.
1791 		 */
1792 		ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1793 
1794 		fssproj = FSSPROC2FSSPROJ(fssproc);
1795 		fsspset = FSSPROJ2FSSPSET(fssproj);
1796 		fsszone = fssproj->fssp_fsszone;
1797 
1798 		if (fssproc->fss_runnable) {
1799 			disp_lock_enter_high(&fsspset->fssps_displock);
1800 			if (--fssproj->fssp_runnable == 0) {
1801 				fsszone->fssz_shares -= fssproj->fssp_shares;
1802 				if (--fsszone->fssz_runnable == 0)
1803 					fsspset->fssps_shares -=
1804 					    fsszone->fssz_rshares;
1805 			}
1806 			disp_lock_exit_high(&fsspset->fssps_displock);
1807 		}
1808 		thread_unlock(t);
1809 
1810 		mutex_enter(&fsspset->fssps_lock);
1811 		if (--fssproj->fssp_threads == 0) {
1812 			fss_remove_fssproj(fsspset, fssproj);
1813 			if (fsszone->fssz_nproj == 0)
1814 				kmem_free(fsszone, sizeof (fsszone_t));
1815 			kmem_free(fssproj, sizeof (fssproj_t));
1816 		}
1817 		mutex_exit(&fsspset->fssps_lock);
1818 
1819 	} else {
1820 		ASSERT(t->t_state == TS_FREE);
1821 		/*
1822 		 * We're being called from thread_free() when our thread
1823 		 * is removed from the deathrow. There is nothing we need
1824 		 * do here since everything should've been done earlier
1825 		 * in fss_exit().
1826 		 */
1827 		thread_unlock(t);
1828 	}
1829 	mutex_exit(&fsspsets_lock);
1830 
1831 	FSS_LIST_DELETE(fssproc);
1832 	fss_free(fssproc);
1833 }
1834 
1835 /*ARGSUSED*/
1836 static int
1837 fss_canexit(kthread_t *t, cred_t *credp)
1838 {
1839 	/*
1840 	 * A thread is allowed to exit FSS only if we have sufficient
1841 	 * privileges.
1842 	 */
1843 	if (credp != NULL && secpolicy_setpriority(credp) != 0)
1844 		return (EPERM);
1845 	else
1846 		return (0);
1847 }
1848 
1849 /*
1850  * Initialize fair-share class specific proc structure for a child.
1851  */
1852 static int
1853 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
1854 {
1855 	fssproc_t *pfssproc;	/* ptr to parent's fssproc structure	*/
1856 	fssproc_t *cfssproc;	/* ptr to child's fssproc structure	*/
1857 	fssproj_t *fssproj;
1858 	fsspset_t *fsspset;
1859 
1860 	ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
1861 	ASSERT(ct->t_state == TS_STOPPED);
1862 
1863 	cfssproc = (fssproc_t *)bufp;
1864 	ASSERT(cfssproc != NULL);
1865 	bzero(cfssproc, sizeof (fssproc_t));
1866 
1867 	thread_lock(pt);
1868 	pfssproc = FSSPROC(pt);
1869 	fssproj = FSSPROC2FSSPROJ(pfssproc);
1870 	fsspset = FSSPROJ2FSSPSET(fssproj);
1871 	thread_unlock(pt);
1872 
1873 	mutex_enter(&fsspset->fssps_lock);
1874 	/*
1875 	 * Initialize child's fssproc structure.
1876 	 */
1877 	thread_lock(pt);
1878 	ASSERT(FSSPROJ(pt) == fssproj);
1879 	cfssproc->fss_proj = fssproj;
1880 	cfssproc->fss_timeleft = fss_quantum;
1881 	cfssproc->fss_umdpri = pfssproc->fss_umdpri;
1882 	cfssproc->fss_fsspri = 0;
1883 	cfssproc->fss_uprilim = pfssproc->fss_uprilim;
1884 	cfssproc->fss_upri = pfssproc->fss_upri;
1885 	cfssproc->fss_tp = ct;
1886 	cfssproc->fss_nice = pfssproc->fss_nice;
1887 	cpucaps_sc_init(&cfssproc->fss_caps);
1888 
1889 	cfssproc->fss_flags =
1890 	    pfssproc->fss_flags & ~(FSSBACKQ | FSSRESTORE);
1891 	ct->t_cldata = (void *)cfssproc;
1892 	ct->t_schedflag |= TS_RUNQMATCH;
1893 	thread_unlock(pt);
1894 
1895 	fssproj->fssp_threads++;
1896 	mutex_exit(&fsspset->fssps_lock);
1897 
1898 	/*
1899 	 * Link new structure into fssproc hash table.
1900 	 */
1901 	FSS_LIST_INSERT(cfssproc);
1902 	return (0);
1903 }
1904 
1905 /*
1906  * Child is placed at back of dispatcher queue and parent gives up processor
1907  * so that the child runs first after the fork. This allows the child
1908  * immediately execing to break the multiple use of copy on write pages with no
1909  * disk home. The parent will get to steal them back rather than uselessly
1910  * copying them.
1911  */
1912 static void
1913 fss_forkret(kthread_t *t, kthread_t *ct)
1914 {
1915 	proc_t *pp = ttoproc(t);
1916 	proc_t *cp = ttoproc(ct);
1917 	fssproc_t *fssproc;
1918 
1919 	ASSERT(t == curthread);
1920 	ASSERT(MUTEX_HELD(&pidlock));
1921 
1922 	/*
1923 	 * Grab the child's p_lock before dropping pidlock to ensure the
1924 	 * process does not disappear before we set it running.
1925 	 */
1926 	mutex_enter(&cp->p_lock);
1927 	continuelwps(cp);
1928 	mutex_exit(&cp->p_lock);
1929 
1930 	mutex_enter(&pp->p_lock);
1931 	mutex_exit(&pidlock);
1932 	continuelwps(pp);
1933 
1934 	thread_lock(t);
1935 
1936 	fssproc = FSSPROC(t);
1937 	fss_newpri(fssproc, B_FALSE);
1938 	fssproc->fss_timeleft = fss_quantum;
1939 	t->t_pri = fssproc->fss_umdpri;
1940 	ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1941 	THREAD_TRANSITION(t);
1942 
1943 	/*
1944 	 * We don't want to call fss_setrun(t) here because it may call
1945 	 * fss_active, which we don't need.
1946 	 */
1947 	fssproc->fss_flags &= ~FSSBACKQ;
1948 
1949 	if (t->t_disp_time != ddi_get_lbolt())
1950 		setbackdq(t);
1951 	else
1952 		setfrontdq(t);
1953 
1954 	thread_unlock(t);
1955 	/*
1956 	 * Safe to drop p_lock now since it is safe to change
1957 	 * the scheduling class after this point.
1958 	 */
1959 	mutex_exit(&pp->p_lock);
1960 
1961 	swtch();
1962 }
1963 
1964 /*
1965  * Get the fair-sharing parameters of the thread pointed to by fssprocp into
1966  * the buffer pointed by fssparmsp.
1967  */
1968 static void
1969 fss_parmsget(kthread_t *t, void *parmsp)
1970 {
1971 	fssproc_t *fssproc = FSSPROC(t);
1972 	fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1973 
1974 	fssparmsp->fss_uprilim = fssproc->fss_uprilim;
1975 	fssparmsp->fss_upri = fssproc->fss_upri;
1976 }
1977 
1978 /*ARGSUSED*/
1979 static int
1980 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1981 {
1982 	char		nice;
1983 	pri_t		reqfssuprilim;
1984 	pri_t		reqfssupri;
1985 	fssproc_t	*fssproc = FSSPROC(t);
1986 	fssparms_t	*fssparmsp = (fssparms_t *)parmsp;
1987 
1988 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1989 
1990 	if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
1991 		reqfssuprilim = fssproc->fss_uprilim;
1992 	else
1993 		reqfssuprilim = fssparmsp->fss_uprilim;
1994 
1995 	if (fssparmsp->fss_upri == FSS_NOCHANGE)
1996 		reqfssupri = fssproc->fss_upri;
1997 	else
1998 		reqfssupri = fssparmsp->fss_upri;
1999 
2000 	/*
2001 	 * Make sure the user priority doesn't exceed the upri limit.
2002 	 */
2003 	if (reqfssupri > reqfssuprilim)
2004 		reqfssupri = reqfssuprilim;
2005 
2006 	/*
2007 	 * Basic permissions enforced by generic kernel code for all classes
2008 	 * require that a thread attempting to change the scheduling parameters
2009 	 * of a target thread be privileged or have a real or effective UID
2010 	 * matching that of the target thread. We are not called unless these
2011 	 * basic permission checks have already passed. The fair-sharing class
2012 	 * requires in addition that the calling thread be privileged if it
2013 	 * is attempting to raise the upri limit above its current value.
2014 	 * This may have been checked previously but if our caller passed us
2015 	 * a non-NULL credential pointer we assume it hasn't and we check it
2016 	 * here.
2017 	 */
2018 	if ((reqpcredp != NULL) &&
2019 	    (reqfssuprilim > fssproc->fss_uprilim) &&
2020 	    secpolicy_raisepriority(reqpcredp) != 0)
2021 		return (EPERM);
2022 
2023 	/*
2024 	 * Set fss_nice to the nice value corresponding to the user priority we
2025 	 * are setting.  Note that setting the nice field of the parameter
2026 	 * struct won't affect upri or nice.
2027 	 */
2028 	nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
2029 	if (nice > FSS_NICE_MAX)
2030 		nice = FSS_NICE_MAX;
2031 
2032 	thread_lock(t);
2033 
2034 	fssproc->fss_uprilim = reqfssuprilim;
2035 	fssproc->fss_upri = reqfssupri;
2036 	fssproc->fss_nice = nice;
2037 	fss_newpri(fssproc, B_FALSE);
2038 
2039 	fss_change_priority(t, fssproc);
2040 	thread_unlock(t);
2041 	return (0);
2042 
2043 }
2044 
2045 /*
2046  * The thread is being stopped.
2047  */
2048 /*ARGSUSED*/
2049 static void
2050 fss_stop(kthread_t *t, int why, int what)
2051 {
2052 	ASSERT(THREAD_LOCK_HELD(t));
2053 	ASSERT(t == curthread);
2054 
2055 	fss_inactive(t);
2056 }
2057 
2058 /*
2059  * The current thread is exiting, do necessary adjustments to its project
2060  */
2061 static void
2062 fss_exit(kthread_t *t)
2063 {
2064 	fsspset_t *fsspset;
2065 	fssproj_t *fssproj;
2066 	fssproc_t *fssproc;
2067 	fsszone_t *fsszone;
2068 	int free = 0;
2069 
2070 	/*
2071 	 * Thread t here is either a current thread (in which case we hold
2072 	 * its process' p_lock), or a thread being destroyed by forklwp_fail(),
2073 	 * in which case we hold pidlock and thread is no longer on the
2074 	 * thread list.
2075 	 */
2076 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
2077 
2078 	fssproc = FSSPROC(t);
2079 	fssproj = FSSPROC2FSSPROJ(fssproc);
2080 	fsspset = FSSPROJ2FSSPSET(fssproj);
2081 	fsszone = fssproj->fssp_fsszone;
2082 
2083 	mutex_enter(&fsspsets_lock);
2084 	mutex_enter(&fsspset->fssps_lock);
2085 
2086 	thread_lock(t);
2087 	disp_lock_enter_high(&fsspset->fssps_displock);
2088 	if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
2089 		if (--fssproj->fssp_runnable == 0) {
2090 			fsszone->fssz_shares -= fssproj->fssp_shares;
2091 			if (--fsszone->fssz_runnable == 0)
2092 				fsspset->fssps_shares -= fsszone->fssz_rshares;
2093 		}
2094 		ASSERT(fssproc->fss_runnable == 1);
2095 		fssproc->fss_runnable = 0;
2096 	}
2097 	if (--fssproj->fssp_threads == 0) {
2098 		fss_remove_fssproj(fsspset, fssproj);
2099 		free = 1;
2100 	}
2101 	disp_lock_exit_high(&fsspset->fssps_displock);
2102 	fssproc->fss_proj = NULL;	/* mark this thread as already exited */
2103 	thread_unlock(t);
2104 
2105 	if (free) {
2106 		if (fsszone->fssz_nproj == 0)
2107 			kmem_free(fsszone, sizeof (fsszone_t));
2108 		kmem_free(fssproj, sizeof (fssproj_t));
2109 	}
2110 	mutex_exit(&fsspset->fssps_lock);
2111 	mutex_exit(&fsspsets_lock);
2112 
2113 	/*
2114 	 * A thread could be exiting in between clock ticks, so we need to
2115 	 * calculate how much CPU time it used since it was charged last time.
2116 	 *
2117 	 * CPU caps are not enforced on exiting processes - it is usually
2118 	 * desirable to exit as soon as possible to free resources.
2119 	 */
2120 	if (CPUCAPS_ON()) {
2121 		thread_lock(t);
2122 		fssproc = FSSPROC(t);
2123 		(void) cpucaps_charge(t, &fssproc->fss_caps,
2124 		    CPUCAPS_CHARGE_ONLY);
2125 		thread_unlock(t);
2126 	}
2127 }
2128 
2129 static void
2130 fss_nullsys()
2131 {
2132 }
2133 
2134 /*
2135  * fss_swapin() returns -1 if the thread is loaded or is not eligible to be
2136  * swapped in. Otherwise, it returns the thread's effective priority based
2137  * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX).
2138  */
2139 /*ARGSUSED*/
2140 static pri_t
2141 fss_swapin(kthread_t *t, int flags)
2142 {
2143 	fssproc_t *fssproc = FSSPROC(t);
2144 	long epri = -1;
2145 	proc_t *pp = ttoproc(t);
2146 
2147 	ASSERT(THREAD_LOCK_HELD(t));
2148 
2149 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
2150 		time_t swapout_time;
2151 
2152 		swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
2153 		if (INHERITED(t)) {
2154 			epri = (long)DISP_PRIO(t) + swapout_time;
2155 		} else {
2156 			/*
2157 			 * Threads which have been out for a long time,
2158 			 * have high user mode priority and are associated
2159 			 * with a small address space are more deserving.
2160 			 */
2161 			epri = fssproc->fss_umdpri;
2162 			ASSERT(epri >= 0 && epri <= fss_maxumdpri);
2163 			epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
2164 		}
2165 		/*
2166 		 * Scale epri so that SHRT_MAX / 2 represents zero priority.
2167 		 */
2168 		epri += SHRT_MAX / 2;
2169 		if (epri < 0)
2170 			epri = 0;
2171 		else if (epri > SHRT_MAX)
2172 			epri = SHRT_MAX;
2173 	}
2174 	return ((pri_t)epri);
2175 }
2176 
2177 /*
2178  * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to
2179  * be swapped out. Otherwise, it returns the thread's effective priority
2180  * based on if the swapper is in softswap or hardswap mode.
2181  */
2182 static pri_t
2183 fss_swapout(kthread_t *t, int flags)
2184 {
2185 	long epri = -1;
2186 	proc_t *pp = ttoproc(t);
2187 	time_t swapin_time;
2188 
2189 	ASSERT(THREAD_LOCK_HELD(t));
2190 
2191 	if (INHERITED(t) ||
2192 	    (t->t_proc_flag & TP_LWPEXIT) ||
2193 	    (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) ||
2194 	    !(t->t_schedflag & TS_LOAD) ||
2195 	    !(SWAP_OK(t)))
2196 		return (-1);
2197 
2198 	ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
2199 
2200 	swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
2201 
2202 	if (flags == SOFTSWAP) {
2203 		if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
2204 			epri = 0;
2205 		} else {
2206 			return ((pri_t)epri);
2207 		}
2208 	} else {
2209 		pri_t pri;
2210 
2211 		if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) ||
2212 		    (t->t_state == TS_RUN && swapin_time > fss_minrun)) {
2213 			pri = fss_maxumdpri;
2214 			epri = swapin_time -
2215 			    (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
2216 		} else {
2217 			return ((pri_t)epri);
2218 		}
2219 	}
2220 
2221 	/*
2222 	 * Scale epri so that SHRT_MAX / 2 represents zero priority.
2223 	 */
2224 	epri += SHRT_MAX / 2;
2225 	if (epri < 0)
2226 		epri = 0;
2227 	else if (epri > SHRT_MAX)
2228 		epri = SHRT_MAX;
2229 
2230 	return ((pri_t)epri);
2231 }
2232 
2233 /*
2234  * Run swap-out checks when returning to userspace.
2235  */
2236 static void
2237 fss_trapret(kthread_t *t)
2238 {
2239 	cpu_t *cp = CPU;
2240 
2241 	ASSERT(THREAD_LOCK_HELD(t));
2242 	ASSERT(t == curthread);
2243 	ASSERT(cp->cpu_dispthread == t);
2244 	ASSERT(t->t_state == TS_ONPROC);
2245 
2246 	/*
2247 	 * Swapout lwp if the swapper is waiting for this thread to reach
2248 	 * a safe point.
2249 	 */
2250 	if (t->t_schedflag & TS_SWAPENQ) {
2251 		thread_unlock(t);
2252 		swapout_lwp(ttolwp(t));
2253 		thread_lock(t);
2254 	}
2255 }
2256 
2257 /*
2258  * Arrange for thread to be placed in appropriate location on dispatcher queue.
2259  * This is called with the current thread in TS_ONPROC and locked.
2260  */
2261 static void
2262 fss_preempt(kthread_t *t)
2263 {
2264 	fssproc_t *fssproc = FSSPROC(t);
2265 	klwp_t *lwp;
2266 	uint_t flags;
2267 
2268 	ASSERT(t == curthread);
2269 	ASSERT(THREAD_LOCK_HELD(curthread));
2270 	ASSERT(t->t_state == TS_ONPROC);
2271 
2272 	/*
2273 	 * This thread may be placed on wait queue by CPU Caps. In this case we
2274 	 * do not need to do anything until it is removed from the wait queue.
2275 	 * Do not enforce CPU caps on threads running at a kernel priority
2276 	 */
2277 	if (CPUCAPS_ON()) {
2278 		(void) cpucaps_charge(t, &fssproc->fss_caps,
2279 		    CPUCAPS_CHARGE_ENFORCE);
2280 
2281 		if (CPUCAPS_ENFORCE(t))
2282 			return;
2283 	}
2284 
2285 	/*
2286 	 * If preempted in user-land mark the thread as swappable because it
2287 	 * cannot be holding any kernel locks.
2288 	 */
2289 	ASSERT(t->t_schedflag & TS_DONT_SWAP);
2290 	lwp = ttolwp(t);
2291 	if (lwp != NULL && lwp->lwp_state == LWP_USER)
2292 		t->t_schedflag &= ~TS_DONT_SWAP;
2293 
2294 	/*
2295 	 * Check to see if we're doing "preemption control" here.  If
2296 	 * we are, and if the user has requested that this thread not
2297 	 * be preempted, and if preemptions haven't been put off for
2298 	 * too long, let the preemption happen here but try to make
2299 	 * sure the thread is rescheduled as soon as possible.  We do
2300 	 * this by putting it on the front of the highest priority run
2301 	 * queue in the FSS class.  If the preemption has been put off
2302 	 * for too long, clear the "nopreempt" bit and let the thread
2303 	 * be preempted.
2304 	 */
2305 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2306 		if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2307 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
2308 			/*
2309 			 * If not already remembered, remember current
2310 			 * priority for restoration in fss_yield().
2311 			 */
2312 			if (!(fssproc->fss_flags & FSSRESTORE)) {
2313 				fssproc->fss_scpri = t->t_pri;
2314 				fssproc->fss_flags |= FSSRESTORE;
2315 			}
2316 			THREAD_CHANGE_PRI(t, fss_maxumdpri);
2317 			t->t_schedflag |= TS_DONT_SWAP;
2318 			schedctl_set_yield(t, 1);
2319 			setfrontdq(t);
2320 			return;
2321 		} else {
2322 			if (fssproc->fss_flags & FSSRESTORE) {
2323 				THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2324 				fssproc->fss_flags &= ~FSSRESTORE;
2325 			}
2326 			schedctl_set_nopreempt(t, 0);
2327 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
2328 			/*
2329 			 * Fall through and be preempted below.
2330 			 */
2331 		}
2332 	}
2333 
2334 	flags = fssproc->fss_flags & FSSBACKQ;
2335 
2336 	if (flags == FSSBACKQ) {
2337 		fssproc->fss_timeleft = fss_quantum;
2338 		fssproc->fss_flags &= ~FSSBACKQ;
2339 		setbackdq(t);
2340 	} else {
2341 		setfrontdq(t);
2342 	}
2343 }
2344 
2345 /*
2346  * Called when a thread is waking up and is to be placed on the run queue.
2347  */
2348 static void
2349 fss_setrun(kthread_t *t)
2350 {
2351 	fssproc_t *fssproc = FSSPROC(t);
2352 
2353 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
2354 
2355 	if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
2356 		fss_active(t);
2357 
2358 	fssproc->fss_timeleft = fss_quantum;
2359 
2360 	fssproc->fss_flags &= ~FSSBACKQ;
2361 	THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2362 
2363 	if (t->t_disp_time != ddi_get_lbolt())
2364 		setbackdq(t);
2365 	else
2366 		setfrontdq(t);
2367 }
2368 
2369 /*
2370  * Prepare thread for sleep.
2371  */
2372 static void
2373 fss_sleep(kthread_t *t)
2374 {
2375 	fssproc_t *fssproc = FSSPROC(t);
2376 
2377 	ASSERT(t == curthread);
2378 	ASSERT(THREAD_LOCK_HELD(t));
2379 
2380 	ASSERT(t->t_state == TS_ONPROC);
2381 
2382 	/*
2383 	 * Account for time spent on CPU before going to sleep.
2384 	 */
2385 	(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2386 
2387 	fss_inactive(t);
2388 	t->t_stime = ddi_get_lbolt();	/* time stamp for the swapper */
2389 }
2390 
2391 /*
2392  * A tick interrupt has ocurrend on a running thread. Check to see if our
2393  * time slice has expired.  We must also clear the TS_DONT_SWAP flag in
2394  * t_schedflag if the thread is eligible to be swapped out.
2395  */
2396 static void
2397 fss_tick(kthread_t *t)
2398 {
2399 	fssproc_t *fssproc;
2400 	fssproj_t *fssproj;
2401 	klwp_t *lwp;
2402 	boolean_t call_cpu_surrender = B_FALSE;
2403 	boolean_t cpucaps_enforce = B_FALSE;
2404 
2405 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2406 
2407 	/*
2408 	 * It's safe to access fsspset and fssproj structures because we're
2409 	 * holding our p_lock here.
2410 	 */
2411 	thread_lock(t);
2412 	fssproc = FSSPROC(t);
2413 	fssproj = FSSPROC2FSSPROJ(fssproc);
2414 	if (fssproj != NULL) {
2415 		fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
2416 		disp_lock_enter_high(&fsspset->fssps_displock);
2417 		fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
2418 		fssproj->fssp_tick_cnt++;
2419 		fssproc->fss_ticks++;
2420 		disp_lock_exit_high(&fsspset->fssps_displock);
2421 	}
2422 
2423 	/*
2424 	 * Keep track of thread's project CPU usage.  Note that projects
2425 	 * get charged even when threads are running in the kernel.
2426 	 * Do not surrender CPU if running in the SYS class.
2427 	 */
2428 	if (CPUCAPS_ON()) {
2429 		cpucaps_enforce = cpucaps_charge(t, &fssproc->fss_caps,
2430 		    CPUCAPS_CHARGE_ENFORCE);
2431 	}
2432 
2433 	if (--fssproc->fss_timeleft <= 0) {
2434 		pri_t new_pri;
2435 
2436 		/*
2437 		 * If we're doing preemption control and trying to avoid
2438 		 * preempting this thread, just note that the thread should
2439 		 * yield soon and let it keep running (unless it's been a
2440 		 * while).
2441 		 */
2442 		if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2443 			if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2444 				DTRACE_SCHED1(schedctl__nopreempt,
2445 				    kthread_t *, t);
2446 				schedctl_set_yield(t, 1);
2447 				thread_unlock_nopreempt(t);
2448 				return;
2449 			}
2450 		}
2451 		fssproc->fss_flags &= ~FSSRESTORE;
2452 
2453 		fss_newpri(fssproc, B_TRUE);
2454 		new_pri = fssproc->fss_umdpri;
2455 		ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
2456 
2457 		/*
2458 		 * When the priority of a thread is changed, it may be
2459 		 * necessary to adjust its position on a sleep queue or
2460 		 * dispatch queue. The function thread_change_pri accomplishes
2461 		 * this.
2462 		 */
2463 		if (thread_change_pri(t, new_pri, 0)) {
2464 			if ((t->t_schedflag & TS_LOAD) &&
2465 			    (lwp = t->t_lwp) &&
2466 			    lwp->lwp_state == LWP_USER)
2467 				t->t_schedflag &= ~TS_DONT_SWAP;
2468 			fssproc->fss_timeleft = fss_quantum;
2469 		} else {
2470 			call_cpu_surrender = B_TRUE;
2471 		}
2472 	} else if (t->t_state == TS_ONPROC &&
2473 	    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
2474 		/*
2475 		 * If there is a higher-priority thread which is waiting for a
2476 		 * processor, then thread surrenders the processor.
2477 		 */
2478 		call_cpu_surrender = B_TRUE;
2479 	}
2480 
2481 	if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
2482 		/*
2483 		 * The thread used more than half of its quantum, so assume that
2484 		 * it used the whole quantum.
2485 		 *
2486 		 * Update thread's priority just before putting it on the wait
2487 		 * queue so that it gets charged for the CPU time from its
2488 		 * quantum even before that quantum expires.
2489 		 */
2490 		fss_newpri(fssproc, B_FALSE);
2491 		if (t->t_pri != fssproc->fss_umdpri)
2492 			fss_change_priority(t, fssproc);
2493 
2494 		/*
2495 		 * We need to call cpu_surrender for this thread due to cpucaps
2496 		 * enforcement, but fss_change_priority may have already done
2497 		 * so. In this case FSSBACKQ is set and there is no need to call
2498 		 * cpu-surrender again.
2499 		 */
2500 		if (!(fssproc->fss_flags & FSSBACKQ))
2501 			call_cpu_surrender = B_TRUE;
2502 	}
2503 
2504 	if (call_cpu_surrender) {
2505 		fssproc->fss_flags |= FSSBACKQ;
2506 		cpu_surrender(t);
2507 	}
2508 
2509 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
2510 }
2511 
2512 /*
2513  * Processes waking up go to the back of their queue.  We don't need to assign
2514  * a time quantum here because thread is still at a kernel mode priority and
2515  * the time slicing is not done for threads running in the kernel after
2516  * sleeping.  The proper time quantum will be assigned by fss_trapret before the
2517  * thread returns to user mode.
2518  */
2519 static void
2520 fss_wakeup(kthread_t *t)
2521 {
2522 	fssproc_t *fssproc;
2523 
2524 	ASSERT(THREAD_LOCK_HELD(t));
2525 	ASSERT(t->t_state == TS_SLEEP);
2526 
2527 	fss_active(t);
2528 
2529 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
2530 	fssproc = FSSPROC(t);
2531 	fssproc->fss_flags &= ~FSSBACKQ;
2532 
2533 	/* Recalculate the priority. */
2534 	if (t->t_disp_time == ddi_get_lbolt()) {
2535 		setfrontdq(t);
2536 	} else {
2537 		fssproc->fss_timeleft = fss_quantum;
2538 		THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2539 		setbackdq(t);
2540 	}
2541 }
2542 
2543 /*
2544  * fss_donice() is called when a nice(1) command is issued on the thread to
2545  * alter the priority. The nice(1) command exists in Solaris for compatibility.
2546  * Thread priority adjustments should be done via priocntl(1).
2547  */
2548 static int
2549 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2550 {
2551 	int newnice;
2552 	fssproc_t *fssproc = FSSPROC(t);
2553 	fssparms_t fssparms;
2554 
2555 	/*
2556 	 * If there is no change to priority, just return current setting.
2557 	 */
2558 	if (incr == 0) {
2559 		if (retvalp)
2560 			*retvalp = fssproc->fss_nice - NZERO;
2561 		return (0);
2562 	}
2563 
2564 	if ((incr < 0 || incr > 2 * NZERO) && secpolicy_raisepriority(cr) != 0)
2565 		return (EPERM);
2566 
2567 	/*
2568 	 * Specifying a nice increment greater than the upper limit of
2569 	 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
2570 	 * value being set to the upper limit.  We check for this before
2571 	 * computing the new value because otherwise we could get overflow
2572 	 * if a privileged user specified some ridiculous increment.
2573 	 */
2574 	if (incr > FSS_NICE_MAX)
2575 		incr = FSS_NICE_MAX;
2576 
2577 	newnice = fssproc->fss_nice + incr;
2578 	if (newnice > FSS_NICE_MAX)
2579 		newnice = FSS_NICE_MAX;
2580 	else if (newnice < FSS_NICE_MIN)
2581 		newnice = FSS_NICE_MIN;
2582 
2583 	fssparms.fss_uprilim = fssparms.fss_upri =
2584 	    -((newnice - NZERO) * fss_maxupri) / NZERO;
2585 
2586 	/*
2587 	 * Reset the uprilim and upri values of the thread.
2588 	 */
2589 	(void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
2590 
2591 	/*
2592 	 * Although fss_parmsset already reset fss_nice it may not have been
2593 	 * set to precisely the value calculated above because fss_parmsset
2594 	 * determines the nice value from the user priority and we may have
2595 	 * truncated during the integer conversion from nice value to user
2596 	 * priority and back. We reset fss_nice to the value we calculated
2597 	 * above.
2598 	 */
2599 	fssproc->fss_nice = (char)newnice;
2600 
2601 	if (retvalp)
2602 		*retvalp = newnice - NZERO;
2603 	return (0);
2604 }
2605 
2606 /*
2607  * Increment the priority of the specified thread by incr and
2608  * return the new value in *retvalp.
2609  */
2610 static int
2611 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2612 {
2613 	int newpri;
2614 	fssproc_t *fssproc = FSSPROC(t);
2615 	fssparms_t fssparms;
2616 
2617 	/*
2618 	 * If there is no change to priority, just return current setting.
2619 	 */
2620 	if (incr == 0) {
2621 		*retvalp = fssproc->fss_upri;
2622 		return (0);
2623 	}
2624 
2625 	newpri = fssproc->fss_upri + incr;
2626 	if (newpri > fss_maxupri || newpri < -fss_maxupri)
2627 		return (EINVAL);
2628 
2629 	*retvalp = newpri;
2630 	fssparms.fss_uprilim = fssparms.fss_upri = newpri;
2631 
2632 	/*
2633 	 * Reset the uprilim and upri values of the thread.
2634 	 */
2635 	return (fss_parmsset(t, &fssparms, (id_t)0, cr));
2636 }
2637 
2638 /*
2639  * Return the global scheduling priority that would be assigned to a thread
2640  * entering the fair-sharing class with the fss_upri.
2641  */
2642 /*ARGSUSED*/
2643 static pri_t
2644 fss_globpri(kthread_t *t)
2645 {
2646 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2647 
2648 	return (fss_maxumdpri / 2);
2649 }
2650 
2651 /*
2652  * Called from the yield(2) system call when a thread is yielding (surrendering)
2653  * the processor. The kernel thread is placed at the back of a dispatch queue.
2654  */
2655 static void
2656 fss_yield(kthread_t *t)
2657 {
2658 	fssproc_t *fssproc = FSSPROC(t);
2659 
2660 	ASSERT(t == curthread);
2661 	ASSERT(THREAD_LOCK_HELD(t));
2662 
2663 	/*
2664 	 * Collect CPU usage spent before yielding
2665 	 */
2666 	(void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2667 
2668 	/*
2669 	 * Clear the preemption control "yield" bit since the user is
2670 	 * doing a yield.
2671 	 */
2672 	if (t->t_schedctl)
2673 		schedctl_set_yield(t, 0);
2674 	/*
2675 	 * If fss_preempt() artifically increased the thread's priority
2676 	 * to avoid preemption, restore the original priority now.
2677 	 */
2678 	if (fssproc->fss_flags & FSSRESTORE) {
2679 		THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2680 		fssproc->fss_flags &= ~FSSRESTORE;
2681 	}
2682 	if (fssproc->fss_timeleft < 0) {
2683 		/*
2684 		 * Time slice was artificially extended to avoid preemption,
2685 		 * so pretend we're preempting it now.
2686 		 */
2687 		DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
2688 		fssproc->fss_timeleft = fss_quantum;
2689 	}
2690 	fssproc->fss_flags &= ~FSSBACKQ;
2691 	setbackdq(t);
2692 }
2693 
2694 void
2695 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
2696     fssbuf_t *zonebuf)
2697 {
2698 	kproject_t *kpj_new = kp;
2699 	zone_t *zone = zp;
2700 	fssproj_t *fssproj_old, *fssproj_new;
2701 	fsspset_t *fsspset;
2702 	kproject_t *kpj_old;
2703 	fssproc_t *fssproc;
2704 	fsszone_t *fsszone_old, *fsszone_new;
2705 	int free = 0;
2706 	int id;
2707 
2708 	ASSERT(MUTEX_HELD(&cpu_lock));
2709 	ASSERT(MUTEX_HELD(&pidlock));
2710 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2711 
2712 	if (t->t_cid != fss_cid)
2713 		return;
2714 
2715 	fssproc = FSSPROC(t);
2716 	mutex_enter(&fsspsets_lock);
2717 	fssproj_old = FSSPROC2FSSPROJ(fssproc);
2718 	if (fssproj_old == NULL) {
2719 		mutex_exit(&fsspsets_lock);
2720 		return;
2721 	}
2722 
2723 	fsspset = FSSPROJ2FSSPSET(fssproj_old);
2724 	mutex_enter(&fsspset->fssps_lock);
2725 	kpj_old = FSSPROJ2KPROJ(fssproj_old);
2726 	fsszone_old = fssproj_old->fssp_fsszone;
2727 
2728 	ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
2729 
2730 	if (kpj_old == kpj_new) {
2731 		mutex_exit(&fsspset->fssps_lock);
2732 		mutex_exit(&fsspsets_lock);
2733 		return;
2734 	}
2735 
2736 	if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
2737 		/*
2738 		 * If the zone for the new project is not currently active on
2739 		 * the cpu partition we're on, get one of the pre-allocated
2740 		 * buffers and link it in our per-pset zone list.  Such buffers
2741 		 * should already exist.
2742 		 */
2743 		for (id = 0; id < zonebuf->fssb_size; id++) {
2744 			if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2745 				fss_insert_fsszone(fsspset, zone, fsszone_new);
2746 				zonebuf->fssb_list[id] = NULL;
2747 				break;
2748 			}
2749 		}
2750 	}
2751 	ASSERT(fsszone_new != NULL);
2752 	if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
2753 		/*
2754 		 * If our new project is not currently running
2755 		 * on the cpu partition we're on, get one of the
2756 		 * pre-allocated buffers and link it in our new cpu
2757 		 * partition doubly linked list. Such buffers should already
2758 		 * exist.
2759 		 */
2760 		for (id = 0; id < projbuf->fssb_size; id++) {
2761 			if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2762 				fss_insert_fssproj(fsspset, kpj_new,
2763 				    fsszone_new, fssproj_new);
2764 				projbuf->fssb_list[id] = NULL;
2765 				break;
2766 			}
2767 		}
2768 	}
2769 	ASSERT(fssproj_new != NULL);
2770 
2771 	thread_lock(t);
2772 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2773 	    t->t_state == TS_WAIT)
2774 		fss_inactive(t);
2775 	ASSERT(fssproj_old->fssp_threads > 0);
2776 	if (--fssproj_old->fssp_threads == 0) {
2777 		fss_remove_fssproj(fsspset, fssproj_old);
2778 		free = 1;
2779 	}
2780 	fssproc->fss_proj = fssproj_new;
2781 	fssproc->fss_fsspri = 0;
2782 	fssproj_new->fssp_threads++;
2783 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2784 	    t->t_state == TS_WAIT)
2785 		fss_active(t);
2786 	thread_unlock(t);
2787 	if (free) {
2788 		if (fsszone_old->fssz_nproj == 0)
2789 			kmem_free(fsszone_old, sizeof (fsszone_t));
2790 		kmem_free(fssproj_old, sizeof (fssproj_t));
2791 	}
2792 
2793 	mutex_exit(&fsspset->fssps_lock);
2794 	mutex_exit(&fsspsets_lock);
2795 }
2796 
2797 void
2798 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
2799     fssbuf_t *zonebuf)
2800 {
2801 	fsspset_t *fsspset_old, *fsspset_new;
2802 	fssproj_t *fssproj_old, *fssproj_new;
2803 	fsszone_t *fsszone_old, *fsszone_new;
2804 	fssproc_t *fssproc;
2805 	kproject_t *kpj;
2806 	zone_t *zone;
2807 	int id;
2808 
2809 	ASSERT(MUTEX_HELD(&cpu_lock));
2810 	ASSERT(MUTEX_HELD(&pidlock));
2811 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2812 
2813 	if (t->t_cid != fss_cid)
2814 		return;
2815 
2816 	fssproc = FSSPROC(t);
2817 	zone = ttoproc(t)->p_zone;
2818 	mutex_enter(&fsspsets_lock);
2819 	fssproj_old = FSSPROC2FSSPROJ(fssproc);
2820 	if (fssproj_old == NULL) {
2821 		mutex_exit(&fsspsets_lock);
2822 		return;
2823 	}
2824 	fsszone_old = fssproj_old->fssp_fsszone;
2825 	fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
2826 	kpj = FSSPROJ2KPROJ(fssproj_old);
2827 
2828 	if (fsspset_old->fssps_cpupart == newcp) {
2829 		mutex_exit(&fsspsets_lock);
2830 		return;
2831 	}
2832 
2833 	ASSERT(ttoproj(t) == kpj);
2834 
2835 	fsspset_new = fss_find_fsspset(newcp);
2836 
2837 	mutex_enter(&fsspset_new->fssps_lock);
2838 	if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
2839 		for (id = 0; id < zonebuf->fssb_size; id++) {
2840 			if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2841 				fss_insert_fsszone(fsspset_new, zone,
2842 				    fsszone_new);
2843 				zonebuf->fssb_list[id] = NULL;
2844 				break;
2845 			}
2846 		}
2847 	}
2848 	ASSERT(fsszone_new != NULL);
2849 	if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
2850 		for (id = 0; id < projbuf->fssb_size; id++) {
2851 			if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2852 				fss_insert_fssproj(fsspset_new, kpj,
2853 				    fsszone_new, fssproj_new);
2854 				projbuf->fssb_list[id] = NULL;
2855 				break;
2856 			}
2857 		}
2858 	}
2859 	ASSERT(fssproj_new != NULL);
2860 
2861 	fssproj_new->fssp_threads++;
2862 	thread_lock(t);
2863 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2864 	    t->t_state == TS_WAIT)
2865 		fss_inactive(t);
2866 	fssproc->fss_proj = fssproj_new;
2867 	fssproc->fss_fsspri = 0;
2868 	if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2869 	    t->t_state == TS_WAIT)
2870 		fss_active(t);
2871 	thread_unlock(t);
2872 	mutex_exit(&fsspset_new->fssps_lock);
2873 
2874 	mutex_enter(&fsspset_old->fssps_lock);
2875 	if (--fssproj_old->fssp_threads == 0) {
2876 		fss_remove_fssproj(fsspset_old, fssproj_old);
2877 		if (fsszone_old->fssz_nproj == 0)
2878 			kmem_free(fsszone_old, sizeof (fsszone_t));
2879 		kmem_free(fssproj_old, sizeof (fssproj_t));
2880 	}
2881 	mutex_exit(&fsspset_old->fssps_lock);
2882 
2883 	mutex_exit(&fsspsets_lock);
2884 }
2885