xref: /titanic_50/usr/src/uts/common/disp/cmt.c (revision ce0ce47a28e767d5bf7dec161e16b4f621aa39a1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/cpupart.h>
32 #include <sys/kmem.h>
33 #include <sys/cmn_err.h>
34 #include <sys/kstat.h>
35 #include <sys/processor.h>
36 #include <sys/disp.h>
37 #include <sys/group.h>
38 #include <sys/pghw.h>
39 #include <sys/bitset.h>
40 #include <sys/lgrp.h>
41 #include <sys/cmt.h>
42 
43 /*
44  * CMT scheduler / dispatcher support
45  *
46  * This file implements CMT scheduler support using Processor Groups.
47  * The CMT processor group class creates and maintains the CMT class
48  * specific processor group pg_cmt_t.
49  *
50  * ---------------------------- <-- pg_cmt_t *
51  * | pghw_t                   |
52  * ----------------------------
53  * | CMT class specific data  |
54  * | - hierarchy linkage      |
55  * | - CMT load balancing data|
56  * | - active CPU group/bitset|
57  * ----------------------------
58  *
59  * The scheduler/dispatcher leverages knowledge of the performance
60  * relevant CMT sharing relationships existing between cpus to implement
61  * optimized affinity and load balancing policies.
62  *
63  * Load balancing policy seeks to improve performance by minimizing
64  * contention over shared processor resources / facilities, while the
65  * affinity policies seek to improve cache and TLB utilization.
66  *
67  * The CMT PGs created by this class are already arranged into a
68  * hierarchy (which is done in the pghw layer). To implement the top-down
69  * CMT load balancing algorithm, the CMT PGs additionally maintain
70  * parent, child and sibling hierarchy relationships.
71  * Parent PGs always contain a superset of their children(s) resources,
72  * each PG can have at most one parent, and siblings are the group of PGs
73  * sharing the same parent.
74  *
75  * On NUMA systems, the CMT load balancing algorithm balances across the
76  * CMT PGs within their respective lgroups. On UMA based system, there
77  * exists a top level group of PGs to balance across. On NUMA systems multiple
78  * top level groups are instantiated, where the top level balancing begins by
79  * balancng across the CMT PGs within their respective (per lgroup) top level
80  * groups.
81  */
82 typedef struct cmt_lgrp {
83 	group_t		cl_pgs;		/* Top level group of active CMT PGs */
84 	int		cl_npgs;	/* # of top level PGs in the lgroup */
85 	lgrp_handle_t	cl_hand;	/* lgroup's platform handle */
86 	struct cmt_lgrp *cl_next;	/* next cmt_lgrp */
87 } cmt_lgrp_t;
88 
89 static cmt_lgrp_t	*cmt_lgrps = NULL;	/* cmt_lgrps list head */
90 static cmt_lgrp_t	*cpu0_lgrp = NULL;	/* boot CPU's initial lgrp */
91 						/* used for null_proc_lpa */
92 static cmt_lgrp_t	*cmt_root = NULL;	/* Reference to root cmt pg */
93 
94 static int		is_cpu0 = 1; /* true if this is boot CPU context */
95 
96 /*
97  * Set this to non-zero to disable CMT scheduling
98  * This must be done via kmdb -d, as /etc/system will be too late
99  */
100 static int		cmt_sched_disabled = 0;
101 
102 static pg_cid_t		pg_cmt_class_id;		/* PG class id */
103 
104 static pg_t		*pg_cmt_alloc();
105 static void		pg_cmt_free(pg_t *);
106 static void		pg_cmt_cpu_init(cpu_t *);
107 static void		pg_cmt_cpu_fini(cpu_t *);
108 static void		pg_cmt_cpu_active(cpu_t *);
109 static void		pg_cmt_cpu_inactive(cpu_t *);
110 static void		pg_cmt_cpupart_in(cpu_t *, cpupart_t *);
111 static void		pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *);
112 static void		pg_cmt_hier_pack(void **, int);
113 static int		pg_cmt_cpu_belongs(pg_t *, cpu_t *);
114 static int		pg_cmt_hw(pghw_type_t);
115 static cmt_lgrp_t	*pg_cmt_find_lgrp(lgrp_handle_t);
116 static cmt_lgrp_t	*pg_cmt_lgrp_create(lgrp_handle_t);
117 
118 /*
119  * Macro to test if PG is managed by the CMT PG class
120  */
121 #define	IS_CMT_PG(pg)	(((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id)
122 
123 /*
124  * CMT PG ops
125  */
126 struct pg_ops pg_ops_cmt = {
127 	pg_cmt_alloc,
128 	pg_cmt_free,
129 	pg_cmt_cpu_init,
130 	pg_cmt_cpu_fini,
131 	pg_cmt_cpu_active,
132 	pg_cmt_cpu_inactive,
133 	pg_cmt_cpupart_in,
134 	NULL,			/* cpupart_out */
135 	pg_cmt_cpupart_move,
136 	pg_cmt_cpu_belongs,
137 };
138 
139 /*
140  * Initialize the CMT PG class
141  */
142 void
143 pg_cmt_class_init(void)
144 {
145 	if (cmt_sched_disabled)
146 		return;
147 
148 	pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL);
149 }
150 
151 /*
152  * Called to indicate a new CPU has started up so
153  * that either t0 or the slave startup thread can
154  * be accounted for.
155  */
156 void
157 pg_cmt_cpu_startup(cpu_t *cp)
158 {
159 	PG_NRUN_UPDATE(cp, 1);
160 }
161 
162 /*
163  * Adjust the CMT load in the CMT PGs in which the CPU belongs
164  * Note that "n" can be positive in the case of increasing
165  * load, or negative in the case of decreasing load.
166  */
167 void
168 pg_cmt_load(cpu_t *cp, int n)
169 {
170 	pg_cmt_t	*pg;
171 
172 	pg = (pg_cmt_t *)cp->cpu_pg->cmt_lineage;
173 	while (pg != NULL) {
174 		ASSERT(IS_CMT_PG(pg));
175 		atomic_add_32(&pg->cmt_nrunning, n);
176 		pg = pg->cmt_parent;
177 	}
178 }
179 
180 /*
181  * Return non-zero if thread can migrate between "from" and "to"
182  * without a performance penalty
183  */
184 int
185 pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
186 {
187 	if (from->cpu_physid->cpu_cacheid ==
188 	    to->cpu_physid->cpu_cacheid)
189 		return (1);
190 	return (0);
191 }
192 
193 /*
194  * CMT class specific PG allocation
195  */
196 static pg_t *
197 pg_cmt_alloc(void)
198 {
199 	return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP));
200 }
201 
202 /*
203  * Class specific PG de-allocation
204  */
205 static void
206 pg_cmt_free(pg_t *pg)
207 {
208 	ASSERT(pg != NULL);
209 	ASSERT(IS_CMT_PG(pg));
210 
211 	kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t));
212 }
213 
214 /*
215  * Return 1 if CMT scheduling policies should be impelmented
216  * for the specified hardware sharing relationship.
217  */
218 static int
219 pg_cmt_hw(pghw_type_t hw)
220 {
221 	return (pg_plat_cmt_load_bal_hw(hw) ||
222 	    pg_plat_cmt_affinity_hw(hw));
223 }
224 
225 /*
226  * CMT class callback for a new CPU entering the system
227  */
228 static void
229 pg_cmt_cpu_init(cpu_t *cp)
230 {
231 	pg_cmt_t	*pg;
232 	group_t		*cmt_pgs;
233 	int		level, max_level, nlevels;
234 	pghw_type_t	hw;
235 	pg_t		*pg_cache = NULL;
236 	pg_cmt_t	*cpu_cmt_hier[PGHW_NUM_COMPONENTS];
237 	lgrp_handle_t	lgrp_handle;
238 	cmt_lgrp_t	*lgrp;
239 
240 	ASSERT(MUTEX_HELD(&cpu_lock));
241 
242 	/*
243 	 * A new CPU is coming into the system.
244 	 * Interrogate the platform to see if the CPU
245 	 * has any performance relevant CMT sharing
246 	 * relationships
247 	 */
248 	cmt_pgs = &cp->cpu_pg->cmt_pgs;
249 	cp->cpu_pg->cmt_lineage = NULL;
250 
251 	bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier));
252 	max_level = nlevels = 0;
253 	for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) {
254 
255 		/*
256 		 * We're only interested in CMT hw sharing relationships
257 		 */
258 		if (pg_cmt_hw(hw) == 0 || pg_plat_hw_shared(cp, hw) == 0)
259 			continue;
260 
261 		/*
262 		 * Find (or create) the PG associated with
263 		 * the hw sharing relationship in which cp
264 		 * belongs.
265 		 *
266 		 * Determine if a suitable PG already
267 		 * exists, or if one needs to be created.
268 		 */
269 		pg = (pg_cmt_t *)pghw_place_cpu(cp, hw);
270 		if (pg == NULL) {
271 			/*
272 			 * Create a new one.
273 			 * Initialize the common...
274 			 */
275 			pg = (pg_cmt_t *)pg_create(pg_cmt_class_id);
276 
277 			/* ... physical ... */
278 			pghw_init((pghw_t *)pg, cp, hw);
279 
280 			/*
281 			 * ... and CMT specific portions of the
282 			 * structure.
283 			 */
284 			bitset_init(&pg->cmt_cpus_actv_set);
285 			group_create(&pg->cmt_cpus_actv);
286 		} else {
287 			ASSERT(IS_CMT_PG(pg));
288 		}
289 
290 		/* Add the CPU to the PG */
291 		pg_cpu_add((pg_t *)pg, cp);
292 
293 		/*
294 		 * Ensure capacity of the active CPU group/bitset
295 		 */
296 		group_expand(&pg->cmt_cpus_actv,
297 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
298 
299 		if (cp->cpu_seqid >=
300 		    bitset_capacity(&pg->cmt_cpus_actv_set)) {
301 			bitset_resize(&pg->cmt_cpus_actv_set,
302 			    cp->cpu_seqid + 1);
303 		}
304 
305 		/*
306 		 * Build a lineage of CMT PGs for load balancing
307 		 */
308 		if (pg_plat_cmt_load_bal_hw(hw)) {
309 			level = pghw_level(hw);
310 			cpu_cmt_hier[level] = pg;
311 			if (level > max_level)
312 				max_level = level;
313 			nlevels++;
314 		}
315 
316 		/* Cache this for later */
317 		if (hw == PGHW_CACHE)
318 			pg_cache = (pg_t *)pg;
319 	}
320 
321 	/*
322 	 * Pack out any gaps in the constructed lineage,
323 	 * then size it out.
324 	 *
325 	 * Gaps may exist where the architecture knows
326 	 * about a hardware sharing relationship, but such a
327 	 * relationship either isn't relevant for load
328 	 * balancing or doesn't exist between CPUs on the system.
329 	 */
330 	pg_cmt_hier_pack((void **)cpu_cmt_hier, max_level + 1);
331 	group_expand(cmt_pgs, nlevels);
332 
333 
334 	if (cmt_root == NULL)
335 		cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand());
336 
337 	/*
338 	 * Find the lgrp that encapsulates this CPU's CMT hierarchy.
339 	 * and locate/create a suitable cmt_lgrp_t.
340 	 */
341 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
342 	if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL)
343 		lgrp = pg_cmt_lgrp_create(lgrp_handle);
344 
345 	/*
346 	 * For each of the PGs in the CPU's lineage:
347 	 *	- Add an entry in the CPU's CMT PG group
348 	 *	  which is used by the dispatcher to implement load balancing
349 	 *	  policy.
350 	 *	- Tie the PG into the CMT hierarchy by connecting
351 	 *	  it to it's parent and siblings.
352 	 */
353 	for (level = 0; level < nlevels; level++) {
354 		uint_t		children;
355 		int		err;
356 
357 		pg = cpu_cmt_hier[level];
358 		err = group_add_at(cmt_pgs, pg, nlevels - level - 1);
359 		ASSERT(err == 0);
360 
361 		if (level == 0)
362 			cp->cpu_pg->cmt_lineage = (pg_t *)pg;
363 
364 		if (pg->cmt_siblings != NULL) {
365 			/* Already initialized */
366 			ASSERT(pg->cmt_parent == NULL ||
367 			    pg->cmt_parent == cpu_cmt_hier[level + 1]);
368 			ASSERT(pg->cmt_siblings == &lgrp->cl_pgs ||
369 			    ((pg->cmt_parent != NULL) &&
370 			    pg->cmt_siblings == pg->cmt_parent->cmt_children));
371 			continue;
372 		}
373 
374 		if ((level + 1) == nlevels) {
375 			pg->cmt_parent = NULL;
376 
377 			pg->cmt_siblings = &lgrp->cl_pgs;
378 			children = ++lgrp->cl_npgs;
379 			cmt_root->cl_npgs++;
380 		} else {
381 			pg->cmt_parent = cpu_cmt_hier[level + 1];
382 
383 			/*
384 			 * A good parent keeps track of their children.
385 			 * The parent's children group is also the PG's
386 			 * siblings.
387 			 */
388 			if (pg->cmt_parent->cmt_children == NULL) {
389 				pg->cmt_parent->cmt_children =
390 				    kmem_zalloc(sizeof (group_t), KM_SLEEP);
391 				group_create(pg->cmt_parent->cmt_children);
392 			}
393 			pg->cmt_siblings = pg->cmt_parent->cmt_children;
394 			children = ++pg->cmt_parent->cmt_nchildren;
395 		}
396 
397 		group_expand(pg->cmt_siblings, children);
398 		group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs);
399 	}
400 
401 	/*
402 	 * Cache the chip and core IDs in the cpu_t->cpu_physid structure
403 	 * for fast lookups later.
404 	 */
405 	if (cp->cpu_physid) {
406 		cp->cpu_physid->cpu_chipid =
407 		    pg_plat_hw_instance_id(cp, PGHW_CHIP);
408 		cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp);
409 
410 		/*
411 		 * If this cpu has a PG representing shared cache, then set
412 		 * cpu_cacheid to that PG's logical id
413 		 */
414 		if (pg_cache)
415 			cp->cpu_physid->cpu_cacheid = pg_cache->pg_id;
416 	}
417 
418 	/* CPU0 only initialization */
419 	if (is_cpu0) {
420 		pg_cmt_cpu_startup(cp);
421 		is_cpu0 = 0;
422 		cpu0_lgrp = lgrp;
423 	}
424 
425 }
426 
427 /*
428  * Class callback when a CPU is leaving the system (deletion)
429  */
430 static void
431 pg_cmt_cpu_fini(cpu_t *cp)
432 {
433 	group_iter_t	i;
434 	pg_cmt_t	*pg;
435 	group_t		*pgs, *cmt_pgs;
436 	lgrp_handle_t	lgrp_handle;
437 	cmt_lgrp_t	*lgrp;
438 
439 	pgs = &cp->cpu_pg->pgs;
440 	cmt_pgs = &cp->cpu_pg->cmt_pgs;
441 
442 	/*
443 	 * Find the lgroup that encapsulates this CPU's CMT hierarchy
444 	 */
445 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
446 
447 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
448 	if (lgrp == NULL) {
449 		/*
450 		 * This is a bit of a special case.
451 		 * The only way this can happen is if the CPU's lgrp
452 		 * handle changed out from underneath us, which is what
453 		 * happens with null_proc_lpa on starcat systems.
454 		 *
455 		 * Use the initial boot CPU lgrp, since this is what
456 		 * we need to tear down.
457 		 */
458 		lgrp = cpu0_lgrp;
459 	}
460 
461 	/*
462 	 * First, clean up anything load balancing specific for each of
463 	 * the CPU's PGs that participated in CMT load balancing
464 	 */
465 	pg = (pg_cmt_t *)cp->cpu_pg->cmt_lineage;
466 	while (pg != NULL) {
467 
468 		/*
469 		 * Remove the PG from the CPU's load balancing lineage
470 		 */
471 		(void) group_remove(cmt_pgs, pg, GRP_RESIZE);
472 
473 		/*
474 		 * If it's about to become empty, destroy it's children
475 		 * group, and remove it's reference from it's siblings.
476 		 * This is done here (rather than below) to avoid removing
477 		 * our reference from a PG that we just eliminated.
478 		 */
479 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) {
480 			if (pg->cmt_children != NULL)
481 				group_destroy(pg->cmt_children);
482 			if (pg->cmt_siblings != NULL) {
483 				if (pg->cmt_siblings == &lgrp->cl_pgs)
484 					lgrp->cl_npgs--;
485 				else
486 					pg->cmt_parent->cmt_nchildren--;
487 			}
488 		}
489 		pg = pg->cmt_parent;
490 	}
491 	ASSERT(GROUP_SIZE(cmt_pgs) == 0);
492 
493 	/*
494 	 * Now that the load balancing lineage updates have happened,
495 	 * remove the CPU from all it's PGs (destroying any that become
496 	 * empty).
497 	 */
498 	group_iter_init(&i);
499 	while ((pg = group_iterate(pgs, &i)) != NULL) {
500 		if (IS_CMT_PG(pg) == 0)
501 			continue;
502 
503 		pg_cpu_delete((pg_t *)pg, cp);
504 		/*
505 		 * Deleting the CPU from the PG changes the CPU's
506 		 * PG group over which we are actively iterating
507 		 * Re-initialize the iteration
508 		 */
509 		group_iter_init(&i);
510 
511 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) {
512 
513 			/*
514 			 * The PG has become zero sized, so destroy it.
515 			 */
516 			group_destroy(&pg->cmt_cpus_actv);
517 			bitset_fini(&pg->cmt_cpus_actv_set);
518 			pghw_fini((pghw_t *)pg);
519 
520 			pg_destroy((pg_t *)pg);
521 		}
522 	}
523 }
524 
525 /*
526  * Class callback when a CPU is entering a cpu partition
527  */
528 static void
529 pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp)
530 {
531 	group_t		*pgs;
532 	pg_t		*pg;
533 	group_iter_t	i;
534 
535 	ASSERT(MUTEX_HELD(&cpu_lock));
536 
537 	pgs = &cp->cpu_pg->pgs;
538 
539 	/*
540 	 * Ensure that the new partition's PG bitset
541 	 * is large enough for all CMT PG's to which cp
542 	 * belongs
543 	 */
544 	group_iter_init(&i);
545 	while ((pg = group_iterate(pgs, &i)) != NULL) {
546 		if (IS_CMT_PG(pg) == 0)
547 			continue;
548 
549 		if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id)
550 			bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1);
551 	}
552 }
553 
554 /*
555  * Class callback when a CPU is actually moving partitions
556  */
557 static void
558 pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
559 {
560 	cpu_t		*cpp;
561 	group_t		*pgs;
562 	pg_t		*pg;
563 	group_iter_t	pg_iter;
564 	pg_cpu_itr_t	cpu_iter;
565 	boolean_t	found;
566 
567 	ASSERT(MUTEX_HELD(&cpu_lock));
568 
569 	pgs = &cp->cpu_pg->pgs;
570 	group_iter_init(&pg_iter);
571 
572 	/*
573 	 * Iterate over the CPUs CMT PGs
574 	 */
575 	while ((pg = group_iterate(pgs, &pg_iter)) != NULL) {
576 
577 		if (IS_CMT_PG(pg) == 0)
578 			continue;
579 
580 		/*
581 		 * Add the PG to the bitset in the new partition.
582 		 */
583 		bitset_add(&newpp->cp_cmt_pgs, pg->pg_id);
584 
585 		/*
586 		 * Remove the PG from the bitset in the old partition
587 		 * if the last of the PG's CPUs have left.
588 		 */
589 		found = B_FALSE;
590 		PG_CPU_ITR_INIT(pg, cpu_iter);
591 		while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) {
592 			if (cpp == cp)
593 				continue;
594 			if (CPU_ACTIVE(cpp) &&
595 			    cpp->cpu_part->cp_id == oldpp->cp_id) {
596 				found = B_TRUE;
597 				break;
598 			}
599 		}
600 		if (!found)
601 			bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id);
602 	}
603 }
604 
605 /*
606  * Class callback when a CPU becomes active (online)
607  *
608  * This is called in a context where CPUs are paused
609  */
610 static void
611 pg_cmt_cpu_active(cpu_t *cp)
612 {
613 	int		err;
614 	group_iter_t	i;
615 	pg_cmt_t	*pg;
616 	group_t		*pgs;
617 
618 	ASSERT(MUTEX_HELD(&cpu_lock));
619 
620 	pgs = &cp->cpu_pg->pgs;
621 	group_iter_init(&i);
622 
623 	/*
624 	 * Iterate over the CPU's PGs
625 	 */
626 	while ((pg = group_iterate(pgs, &i)) != NULL) {
627 
628 		if (IS_CMT_PG(pg) == 0)
629 			continue;
630 
631 		err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
632 		ASSERT(err == 0);
633 
634 		/*
635 		 * If this is the first active CPU in the PG, and it
636 		 * represents a hardware sharing relationship over which
637 		 * CMT load balancing is performed, add it as a candidate
638 		 * for balancing with it's siblings.
639 		 */
640 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 &&
641 		    pg_plat_cmt_load_bal_hw(((pghw_t *)pg)->pghw_hw)) {
642 			err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE);
643 			ASSERT(err == 0);
644 
645 			/*
646 			 * If this is a top level PG, add it as a balancing
647 			 * candidate when balancing within the root lgroup
648 			 */
649 			if (pg->cmt_parent == NULL) {
650 				err = group_add(&cmt_root->cl_pgs, pg,
651 				    GRP_NORESIZE);
652 				ASSERT(err == 0);
653 			}
654 		}
655 
656 		/*
657 		 * Notate the CPU in the PGs active CPU bitset.
658 		 * Also notate the PG as being active in it's associated
659 		 * partition
660 		 */
661 		bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
662 		bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id);
663 	}
664 }
665 
666 /*
667  * Class callback when a CPU goes inactive (offline)
668  *
669  * This is called in a context where CPUs are paused
670  */
671 static void
672 pg_cmt_cpu_inactive(cpu_t *cp)
673 {
674 	int		err;
675 	group_t		*pgs;
676 	pg_cmt_t	*pg;
677 	cpu_t		*cpp;
678 	group_iter_t	i;
679 	pg_cpu_itr_t	cpu_itr;
680 	boolean_t	found;
681 
682 	ASSERT(MUTEX_HELD(&cpu_lock));
683 
684 	pgs = &cp->cpu_pg->pgs;
685 	group_iter_init(&i);
686 
687 	while ((pg = group_iterate(pgs, &i)) != NULL) {
688 
689 		if (IS_CMT_PG(pg) == 0)
690 			continue;
691 
692 		/*
693 		 * Remove the CPU from the CMT PGs active CPU group
694 		 * bitmap
695 		 */
696 		err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
697 		ASSERT(err == 0);
698 
699 		bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
700 
701 		/*
702 		 * If there are no more active CPUs in this PG over which
703 		 * load was balanced, remove it as a balancing candidate.
704 		 */
705 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 &&
706 		    pg_plat_cmt_load_bal_hw(((pghw_t *)pg)->pghw_hw)) {
707 			err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
708 			ASSERT(err == 0);
709 
710 			if (pg->cmt_parent == NULL) {
711 				err = group_remove(&cmt_root->cl_pgs, pg,
712 				    GRP_NORESIZE);
713 				ASSERT(err == 0);
714 			}
715 		}
716 
717 		/*
718 		 * Assert the number of active CPUs does not exceed
719 		 * the total number of CPUs in the PG
720 		 */
721 		ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <=
722 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
723 
724 		/*
725 		 * Update the PG bitset in the CPU's old partition
726 		 */
727 		found = B_FALSE;
728 		PG_CPU_ITR_INIT(pg, cpu_itr);
729 		while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) {
730 			if (cpp == cp)
731 				continue;
732 			if (CPU_ACTIVE(cpp) &&
733 			    cpp->cpu_part->cp_id == cp->cpu_part->cp_id) {
734 				found = B_TRUE;
735 				break;
736 			}
737 		}
738 		if (!found) {
739 			bitset_del(&cp->cpu_part->cp_cmt_pgs,
740 			    ((pg_t *)pg)->pg_id);
741 		}
742 	}
743 }
744 
745 /*
746  * Return non-zero if the CPU belongs in the given PG
747  */
748 static int
749 pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp)
750 {
751 	cpu_t	*pg_cpu;
752 
753 	pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0);
754 
755 	ASSERT(pg_cpu != NULL);
756 
757 	/*
758 	 * The CPU belongs if, given the nature of the hardware sharing
759 	 * relationship represented by the PG, the CPU has that
760 	 * relationship with some other CPU already in the PG
761 	 */
762 	if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw))
763 		return (1);
764 
765 	return (0);
766 }
767 
768 /*
769  * Hierarchy packing utility routine. The hierarchy order is preserved.
770  */
771 static void
772 pg_cmt_hier_pack(void *hier[], int sz)
773 {
774 	int	i, j;
775 
776 	for (i = 0; i < sz; i++) {
777 		if (hier[i] != NULL)
778 			continue;
779 
780 		for (j = i; j < sz; j++) {
781 			if (hier[j] != NULL) {
782 				hier[i] = hier[j];
783 				hier[j] = NULL;
784 				break;
785 			}
786 		}
787 		if (j == sz)
788 			break;
789 	}
790 }
791 
792 /*
793  * Return a cmt_lgrp_t * given an lgroup handle.
794  */
795 static cmt_lgrp_t *
796 pg_cmt_find_lgrp(lgrp_handle_t hand)
797 {
798 	cmt_lgrp_t	*lgrp;
799 
800 	ASSERT(MUTEX_HELD(&cpu_lock));
801 
802 	lgrp = cmt_lgrps;
803 	while (lgrp != NULL) {
804 		if (lgrp->cl_hand == hand)
805 			break;
806 		lgrp = lgrp->cl_next;
807 	}
808 	return (lgrp);
809 }
810 
811 /*
812  * Create a cmt_lgrp_t with the specified handle.
813  */
814 static cmt_lgrp_t *
815 pg_cmt_lgrp_create(lgrp_handle_t hand)
816 {
817 	cmt_lgrp_t	*lgrp;
818 
819 	ASSERT(MUTEX_HELD(&cpu_lock));
820 
821 	lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP);
822 
823 	lgrp->cl_hand = hand;
824 	lgrp->cl_npgs = 0;
825 	lgrp->cl_next = cmt_lgrps;
826 	cmt_lgrps = lgrp;
827 	group_create(&lgrp->cl_pgs);
828 
829 	return (lgrp);
830 }
831 
832 /*
833  * Perform multi-level CMT load balancing of running threads.
834  *
835  * tp is the thread being enqueued.
836  * cp is a hint CPU, against which CMT load balancing will be performed.
837  *
838  * Returns cp, or a CPU better than cp with respect to balancing
839  * running thread load.
840  */
841 cpu_t *
842 cmt_balance(kthread_t *tp, cpu_t *cp)
843 {
844 	int		hint, i, cpu, nsiblings;
845 	int		self = 0;
846 	group_t		*cmt_pgs, *siblings;
847 	pg_cmt_t	*pg, *pg_tmp, *tpg = NULL;
848 	int		pg_nrun, tpg_nrun;
849 	int		level = 0;
850 	cpu_t		*newcp;
851 
852 	ASSERT(THREAD_LOCK_HELD(tp));
853 
854 	cmt_pgs = &cp->cpu_pg->cmt_pgs;
855 
856 	if (GROUP_SIZE(cmt_pgs) == 0)
857 		return (cp);	/* nothing to do */
858 
859 	if (tp == curthread)
860 		self = 1;
861 
862 	/*
863 	 * Balance across siblings in the CPUs CMT lineage
864 	 * If the thread is homed to the root lgroup, perform
865 	 * top level balancing against other top level PGs
866 	 * in the system. Otherwise, start with the default
867 	 * top level siblings group, which is within the leaf lgroup
868 	 */
869 	pg = GROUP_ACCESS(cmt_pgs, level);
870 	if (tp->t_lpl->lpl_lgrpid == LGRP_ROOTID)
871 		siblings = &cmt_root->cl_pgs;
872 	else
873 		siblings = pg->cmt_siblings;
874 
875 	/*
876 	 * Traverse down the lineage until we find a level that needs
877 	 * balancing, or we get to the end.
878 	 */
879 	for (;;) {
880 		nsiblings = GROUP_SIZE(siblings);	/* self inclusive */
881 		if (nsiblings == 1)
882 			goto next_level;
883 
884 		pg_nrun = pg->cmt_nrunning;
885 		if (self &&
886 		    bitset_in_set(&pg->cmt_cpus_actv_set, CPU->cpu_seqid))
887 			pg_nrun--;	/* Ignore curthread's effect */
888 
889 		hint = CPU_PSEUDO_RANDOM() % nsiblings;
890 
891 		/*
892 		 * Find a balancing candidate from among our siblings
893 		 * "hint" is a hint for where to start looking
894 		 */
895 		i = hint;
896 		do {
897 			ASSERT(i < nsiblings);
898 			pg_tmp = GROUP_ACCESS(siblings, i);
899 
900 			/*
901 			 * The candidate must not be us, and must
902 			 * have some CPU resources in the thread's
903 			 * partition
904 			 */
905 			if (pg_tmp != pg &&
906 			    bitset_in_set(&tp->t_cpupart->cp_cmt_pgs,
907 			    ((pg_t *)pg_tmp)->pg_id)) {
908 				tpg = pg_tmp;
909 				break;
910 			}
911 
912 			if (++i >= nsiblings)
913 				i = 0;
914 		} while (i != hint);
915 
916 		if (!tpg)
917 			goto next_level; /* no candidates at this level */
918 
919 		/*
920 		 * Check if the balancing target is underloaded
921 		 * Decide to balance if the target is running fewer
922 		 * threads, or if it's running the same number of threads
923 		 * with more online CPUs
924 		 */
925 		tpg_nrun = tpg->cmt_nrunning;
926 		if (pg_nrun > tpg_nrun ||
927 		    (pg_nrun == tpg_nrun &&
928 		    (GROUP_SIZE(&tpg->cmt_cpus_actv) >
929 		    GROUP_SIZE(&pg->cmt_cpus_actv)))) {
930 			break;
931 		}
932 		tpg = NULL;
933 
934 next_level:
935 		if (++level == GROUP_SIZE(cmt_pgs))
936 			break;
937 
938 		pg = GROUP_ACCESS(cmt_pgs, level);
939 		siblings = pg->cmt_siblings;
940 	}
941 
942 	if (tpg) {
943 		uint_t	tgt_size = GROUP_SIZE(&tpg->cmt_cpus_actv);
944 
945 		/*
946 		 * Select an idle CPU from the target
947 		 */
948 		hint = CPU_PSEUDO_RANDOM() % tgt_size;
949 		cpu = hint;
950 		do {
951 			newcp = GROUP_ACCESS(&tpg->cmt_cpus_actv, cpu);
952 			if (newcp->cpu_part == tp->t_cpupart &&
953 			    newcp->cpu_dispatch_pri == -1) {
954 				cp = newcp;
955 				break;
956 			}
957 			if (++cpu == tgt_size)
958 				cpu = 0;
959 		} while (cpu != hint);
960 	}
961 
962 	return (cp);
963 }
964