xref: /titanic_50/usr/src/uts/common/disp/cmt.c (revision c416da2df96208d341897ed123ac29f7f4e4f9b9)
1fb2f18f8Sesaxe /*
2fb2f18f8Sesaxe  * CDDL HEADER START
3fb2f18f8Sesaxe  *
4fb2f18f8Sesaxe  * The contents of this file are subject to the terms of the
5fb2f18f8Sesaxe  * Common Development and Distribution License (the "License").
6fb2f18f8Sesaxe  * You may not use this file except in compliance with the License.
7fb2f18f8Sesaxe  *
8fb2f18f8Sesaxe  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fb2f18f8Sesaxe  * or http://www.opensolaris.org/os/licensing.
10fb2f18f8Sesaxe  * See the License for the specific language governing permissions
11fb2f18f8Sesaxe  * and limitations under the License.
12fb2f18f8Sesaxe  *
13fb2f18f8Sesaxe  * When distributing Covered Code, include this CDDL HEADER in each
14fb2f18f8Sesaxe  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fb2f18f8Sesaxe  * If applicable, add the following below this CDDL HEADER, with the
16fb2f18f8Sesaxe  * fields enclosed by brackets "[]" replaced with your own identifying
17fb2f18f8Sesaxe  * information: Portions Copyright [yyyy] [name of copyright owner]
18fb2f18f8Sesaxe  *
19fb2f18f8Sesaxe  * CDDL HEADER END
20fb2f18f8Sesaxe  */
21fb2f18f8Sesaxe /*
22*c416da2dSjb145095  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23fb2f18f8Sesaxe  * Use is subject to license terms.
24fb2f18f8Sesaxe  */
25fb2f18f8Sesaxe 
26fb2f18f8Sesaxe #pragma ident	"%Z%%M%	%I%	%E% SMI"
27fb2f18f8Sesaxe 
28fb2f18f8Sesaxe #include <sys/systm.h>
29fb2f18f8Sesaxe #include <sys/types.h>
30fb2f18f8Sesaxe #include <sys/param.h>
31fb2f18f8Sesaxe #include <sys/thread.h>
32fb2f18f8Sesaxe #include <sys/cpuvar.h>
33fb2f18f8Sesaxe #include <sys/cpupart.h>
34fb2f18f8Sesaxe #include <sys/kmem.h>
35fb2f18f8Sesaxe #include <sys/cmn_err.h>
36fb2f18f8Sesaxe #include <sys/kstat.h>
37fb2f18f8Sesaxe #include <sys/processor.h>
38fb2f18f8Sesaxe #include <sys/disp.h>
39fb2f18f8Sesaxe #include <sys/group.h>
40fb2f18f8Sesaxe #include <sys/pghw.h>
41fb2f18f8Sesaxe #include <sys/bitset.h>
42fb2f18f8Sesaxe #include <sys/lgrp.h>
43fb2f18f8Sesaxe #include <sys/cmt.h>
44fb2f18f8Sesaxe 
45fb2f18f8Sesaxe /*
46fb2f18f8Sesaxe  * CMT scheduler / dispatcher support
47fb2f18f8Sesaxe  *
48fb2f18f8Sesaxe  * This file implements CMT scheduler support using Processor Groups.
49fb2f18f8Sesaxe  * The CMT processor group class creates and maintains the CMT class
50fb2f18f8Sesaxe  * specific processor group pg_cmt_t.
51fb2f18f8Sesaxe  *
52fb2f18f8Sesaxe  * ---------------------------- <-- pg_cmt_t *
53fb2f18f8Sesaxe  * | pghw_t                   |
54fb2f18f8Sesaxe  * ----------------------------
55fb2f18f8Sesaxe  * | CMT class specific data  |
56fb2f18f8Sesaxe  * | - hierarchy linkage      |
57fb2f18f8Sesaxe  * | - CMT load balancing data|
58fb2f18f8Sesaxe  * | - active CPU group/bitset|
59fb2f18f8Sesaxe  * ----------------------------
60fb2f18f8Sesaxe  *
61fb2f18f8Sesaxe  * The scheduler/dispatcher leverages knowledge of the performance
62fb2f18f8Sesaxe  * relevant CMT sharing relationships existing between cpus to implement
63fb2f18f8Sesaxe  * optimized affinity and load balancing policies.
64fb2f18f8Sesaxe  *
65fb2f18f8Sesaxe  * Load balancing policy seeks to improve performance by minimizing
66fb2f18f8Sesaxe  * contention over shared processor resources / facilities, while the
67fb2f18f8Sesaxe  * affinity policies seek to improve cache and TLB utilization.
68fb2f18f8Sesaxe  *
69fb2f18f8Sesaxe  * The CMT PGs created by this class are already arranged into a
70fb2f18f8Sesaxe  * hierarchy (which is done in the pghw layer). To implement the top-down
71fb2f18f8Sesaxe  * CMT load balancing algorithm, the CMT PGs additionally maintain
72fb2f18f8Sesaxe  * parent, child and sibling hierarchy relationships.
73fb2f18f8Sesaxe  * Parent PGs always contain a superset of their children(s) resources,
74fb2f18f8Sesaxe  * each PG can have at most one parent, and siblings are the group of PGs
75fb2f18f8Sesaxe  * sharing the same parent.
76fb2f18f8Sesaxe  *
77fb2f18f8Sesaxe  * On NUMA systems, the CMT load balancing algorithm balances across the
78fb2f18f8Sesaxe  * CMT PGs within their respective lgroups. On UMA based system, there
79fb2f18f8Sesaxe  * exists a top level group of PGs to balance across. On NUMA systems multiple
80fb2f18f8Sesaxe  * top level groups are instantiated, where the top level balancing begins by
81fb2f18f8Sesaxe  * balancng across the CMT PGs within their respective (per lgroup) top level
82fb2f18f8Sesaxe  * groups.
83fb2f18f8Sesaxe  */
84fb2f18f8Sesaxe 
85fb2f18f8Sesaxe typedef struct cmt_lgrp {
86fb2f18f8Sesaxe 	group_t		cl_pgs;		/* Top level group of active CMT PGs */
87fb2f18f8Sesaxe 	int		cl_npgs;	/* # of top level PGs in the lgroup */
88fb2f18f8Sesaxe 	lgrp_handle_t	cl_hand;	/* lgroup's platform handle */
89fb2f18f8Sesaxe 	struct cmt_lgrp *cl_next;	/* next cmt_lgrp */
90fb2f18f8Sesaxe } cmt_lgrp_t;
91fb2f18f8Sesaxe 
92a6604450Sesaxe static cmt_lgrp_t	*cmt_lgrps = NULL;	/* cmt_lgrps list head */
93a6604450Sesaxe static cmt_lgrp_t	*cpu0_lgrp = NULL;	/* boot CPU's initial lgrp */
94a6604450Sesaxe 						/* used for null_proc_lpa */
95fb2f18f8Sesaxe 
96a6604450Sesaxe static int		is_cpu0 = 1; /* true if this is boot CPU context */
97a6604450Sesaxe 
98a6604450Sesaxe /*
99a6604450Sesaxe  * Set this to non-zero to disable CMT scheduling
100a6604450Sesaxe  * This must be done via kmdb -d, as /etc/system will be too late
101a6604450Sesaxe  */
102fb2f18f8Sesaxe static int		cmt_sched_disabled = 0;
103fb2f18f8Sesaxe 
104fb2f18f8Sesaxe static pg_cid_t		pg_cmt_class_id;		/* PG class id */
105fb2f18f8Sesaxe 
106fb2f18f8Sesaxe static pg_t		*pg_cmt_alloc();
107fb2f18f8Sesaxe static void		pg_cmt_free(pg_t *);
108fb2f18f8Sesaxe static void		pg_cmt_cpu_init(cpu_t *);
109fb2f18f8Sesaxe static void		pg_cmt_cpu_fini(cpu_t *);
110fb2f18f8Sesaxe static void		pg_cmt_cpu_active(cpu_t *);
111fb2f18f8Sesaxe static void		pg_cmt_cpu_inactive(cpu_t *);
112fb2f18f8Sesaxe static void		pg_cmt_cpupart_in(cpu_t *, cpupart_t *);
113fb2f18f8Sesaxe static void		pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *);
114fb2f18f8Sesaxe static void		pg_cmt_hier_pack(pg_cmt_t **, int);
115fb2f18f8Sesaxe static int		pg_cmt_cpu_belongs(pg_t *, cpu_t *);
116fb2f18f8Sesaxe static int		pg_cmt_hw(pghw_type_t);
117fb2f18f8Sesaxe static cmt_lgrp_t	*pg_cmt_find_lgrp(lgrp_handle_t);
118a6604450Sesaxe static cmt_lgrp_t	*pg_cmt_lgrp_create(lgrp_handle_t);
119fb2f18f8Sesaxe 
120fb2f18f8Sesaxe /*
121fb2f18f8Sesaxe  * Macro to test if PG is managed by the CMT PG class
122fb2f18f8Sesaxe  */
123fb2f18f8Sesaxe #define	IS_CMT_PG(pg)	(((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id)
124fb2f18f8Sesaxe 
125fb2f18f8Sesaxe /*
126fb2f18f8Sesaxe  * CMT PG ops
127fb2f18f8Sesaxe  */
128fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = {
129fb2f18f8Sesaxe 	pg_cmt_alloc,
130fb2f18f8Sesaxe 	pg_cmt_free,
131fb2f18f8Sesaxe 	pg_cmt_cpu_init,
132fb2f18f8Sesaxe 	pg_cmt_cpu_fini,
133fb2f18f8Sesaxe 	pg_cmt_cpu_active,
134fb2f18f8Sesaxe 	pg_cmt_cpu_inactive,
135fb2f18f8Sesaxe 	pg_cmt_cpupart_in,
136fb2f18f8Sesaxe 	NULL,			/* cpupart_out */
137fb2f18f8Sesaxe 	pg_cmt_cpupart_move,
138fb2f18f8Sesaxe 	pg_cmt_cpu_belongs,
139fb2f18f8Sesaxe };
140fb2f18f8Sesaxe 
141fb2f18f8Sesaxe /*
142fb2f18f8Sesaxe  * Initialize the CMT PG class
143fb2f18f8Sesaxe  */
144fb2f18f8Sesaxe void
145fb2f18f8Sesaxe pg_cmt_class_init(void)
146fb2f18f8Sesaxe {
147fb2f18f8Sesaxe 	if (cmt_sched_disabled)
148fb2f18f8Sesaxe 		return;
149fb2f18f8Sesaxe 
150fb2f18f8Sesaxe 	pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL);
151fb2f18f8Sesaxe }
152fb2f18f8Sesaxe 
153fb2f18f8Sesaxe /*
154fb2f18f8Sesaxe  * Called to indicate a new CPU has started up so
155fb2f18f8Sesaxe  * that either t0 or the slave startup thread can
156fb2f18f8Sesaxe  * be accounted for.
157fb2f18f8Sesaxe  */
158fb2f18f8Sesaxe void
159fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp)
160fb2f18f8Sesaxe {
161fb2f18f8Sesaxe 	PG_NRUN_UPDATE(cp, 1);
162fb2f18f8Sesaxe }
163fb2f18f8Sesaxe 
164fb2f18f8Sesaxe /*
165fb2f18f8Sesaxe  * Adjust the CMT load in the CMT PGs in which the CPU belongs
166fb2f18f8Sesaxe  * Note that "n" can be positive in the case of increasing
167fb2f18f8Sesaxe  * load, or negative in the case of decreasing load.
168fb2f18f8Sesaxe  */
169fb2f18f8Sesaxe void
170fb2f18f8Sesaxe pg_cmt_load(cpu_t *cp, int n)
171fb2f18f8Sesaxe {
172fb2f18f8Sesaxe 	pg_cmt_t	*pg;
173fb2f18f8Sesaxe 
174fb2f18f8Sesaxe 	pg = (pg_cmt_t *)cp->cpu_pg->cmt_lineage;
175fb2f18f8Sesaxe 	while (pg != NULL) {
176fb2f18f8Sesaxe 		ASSERT(IS_CMT_PG(pg));
177fb2f18f8Sesaxe 		atomic_add_32(&pg->cmt_nrunning, n);
178fb2f18f8Sesaxe 		pg = pg->cmt_parent;
179fb2f18f8Sesaxe 	}
180fb2f18f8Sesaxe }
181fb2f18f8Sesaxe 
182fb2f18f8Sesaxe /*
183fb2f18f8Sesaxe  * Return non-zero if thread can migrate between "from" and "to"
184fb2f18f8Sesaxe  * without a performance penalty
185fb2f18f8Sesaxe  */
186fb2f18f8Sesaxe int
187fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
188fb2f18f8Sesaxe {
189fb2f18f8Sesaxe 	if (from->cpu_physid->cpu_cacheid ==
190fb2f18f8Sesaxe 	    to->cpu_physid->cpu_cacheid)
191fb2f18f8Sesaxe 		return (1);
192fb2f18f8Sesaxe 	return (0);
193fb2f18f8Sesaxe }
194fb2f18f8Sesaxe 
195fb2f18f8Sesaxe /*
196fb2f18f8Sesaxe  * CMT class specific PG allocation
197fb2f18f8Sesaxe  */
198fb2f18f8Sesaxe static pg_t *
199fb2f18f8Sesaxe pg_cmt_alloc(void)
200fb2f18f8Sesaxe {
201fb2f18f8Sesaxe 	return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP));
202fb2f18f8Sesaxe }
203fb2f18f8Sesaxe 
204fb2f18f8Sesaxe /*
205fb2f18f8Sesaxe  * Class specific PG de-allocation
206fb2f18f8Sesaxe  */
207fb2f18f8Sesaxe static void
208fb2f18f8Sesaxe pg_cmt_free(pg_t *pg)
209fb2f18f8Sesaxe {
210fb2f18f8Sesaxe 	ASSERT(pg != NULL);
211fb2f18f8Sesaxe 	ASSERT(IS_CMT_PG(pg));
212fb2f18f8Sesaxe 
213fb2f18f8Sesaxe 	kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t));
214fb2f18f8Sesaxe }
215fb2f18f8Sesaxe 
216fb2f18f8Sesaxe /*
217fb2f18f8Sesaxe  * Return 1 if CMT scheduling policies should be impelmented
218fb2f18f8Sesaxe  * for the specified hardware sharing relationship.
219fb2f18f8Sesaxe  */
220fb2f18f8Sesaxe static int
221fb2f18f8Sesaxe pg_cmt_hw(pghw_type_t hw)
222fb2f18f8Sesaxe {
223d129bde2Sesaxe 	return (pg_plat_cmt_load_bal_hw(hw) ||
224d129bde2Sesaxe 	    pg_plat_cmt_affinity_hw(hw));
225fb2f18f8Sesaxe }
226fb2f18f8Sesaxe 
227fb2f18f8Sesaxe /*
228fb2f18f8Sesaxe  * CMT class callback for a new CPU entering the system
229fb2f18f8Sesaxe  */
230fb2f18f8Sesaxe static void
231fb2f18f8Sesaxe pg_cmt_cpu_init(cpu_t *cp)
232fb2f18f8Sesaxe {
233fb2f18f8Sesaxe 	pg_cmt_t	*pg;
234fb2f18f8Sesaxe 	group_t		*cmt_pgs;
235fb2f18f8Sesaxe 	int		level, max_level, nlevels;
236fb2f18f8Sesaxe 	pghw_type_t	hw;
237fb2f18f8Sesaxe 	pg_t		*pg_cache = NULL;
238fb2f18f8Sesaxe 	pg_cmt_t	*cpu_cmt_hier[PGHW_NUM_COMPONENTS];
239fb2f18f8Sesaxe 	lgrp_handle_t	lgrp_handle;
240fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
241fb2f18f8Sesaxe 
242fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
243fb2f18f8Sesaxe 
244fb2f18f8Sesaxe 	/*
245fb2f18f8Sesaxe 	 * A new CPU is coming into the system.
246fb2f18f8Sesaxe 	 * Interrogate the platform to see if the CPU
247fb2f18f8Sesaxe 	 * has any performance relevant CMT sharing
248fb2f18f8Sesaxe 	 * relationships
249fb2f18f8Sesaxe 	 */
250fb2f18f8Sesaxe 	cmt_pgs = &cp->cpu_pg->cmt_pgs;
251fb2f18f8Sesaxe 	cp->cpu_pg->cmt_lineage = NULL;
252fb2f18f8Sesaxe 
253fb2f18f8Sesaxe 	bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier));
254fb2f18f8Sesaxe 	max_level = nlevels = 0;
255fb2f18f8Sesaxe 	for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) {
256fb2f18f8Sesaxe 
257fb2f18f8Sesaxe 		/*
258fb2f18f8Sesaxe 		 * We're only interested in CMT hw sharing relationships
259fb2f18f8Sesaxe 		 */
260fb2f18f8Sesaxe 		if (pg_cmt_hw(hw) == 0 || pg_plat_hw_shared(cp, hw) == 0)
261fb2f18f8Sesaxe 			continue;
262fb2f18f8Sesaxe 
263fb2f18f8Sesaxe 		/*
264fb2f18f8Sesaxe 		 * Find (or create) the PG associated with
265fb2f18f8Sesaxe 		 * the hw sharing relationship in which cp
266fb2f18f8Sesaxe 		 * belongs.
267fb2f18f8Sesaxe 		 *
268fb2f18f8Sesaxe 		 * Determine if a suitable PG already
269fb2f18f8Sesaxe 		 * exists, or if one needs to be created.
270fb2f18f8Sesaxe 		 */
271fb2f18f8Sesaxe 		pg = (pg_cmt_t *)pghw_place_cpu(cp, hw);
272fb2f18f8Sesaxe 		if (pg == NULL) {
273fb2f18f8Sesaxe 			/*
274fb2f18f8Sesaxe 			 * Create a new one.
275fb2f18f8Sesaxe 			 * Initialize the common...
276fb2f18f8Sesaxe 			 */
277fb2f18f8Sesaxe 			pg = (pg_cmt_t *)pg_create(pg_cmt_class_id);
278fb2f18f8Sesaxe 
279fb2f18f8Sesaxe 			/* ... physical ... */
280fb2f18f8Sesaxe 			pghw_init((pghw_t *)pg, cp, hw);
281fb2f18f8Sesaxe 
282fb2f18f8Sesaxe 			/*
283fb2f18f8Sesaxe 			 * ... and CMT specific portions of the
284fb2f18f8Sesaxe 			 * structure.
285fb2f18f8Sesaxe 			 */
286fb2f18f8Sesaxe 			bitset_init(&pg->cmt_cpus_actv_set);
287fb2f18f8Sesaxe 			group_create(&pg->cmt_cpus_actv);
288fb2f18f8Sesaxe 		} else {
289fb2f18f8Sesaxe 			ASSERT(IS_CMT_PG(pg));
290fb2f18f8Sesaxe 		}
291fb2f18f8Sesaxe 
292fb2f18f8Sesaxe 		/* Add the CPU to the PG */
293fb2f18f8Sesaxe 		pg_cpu_add((pg_t *)pg, cp);
294fb2f18f8Sesaxe 
295fb2f18f8Sesaxe 		/*
296fb2f18f8Sesaxe 		 * Ensure capacity of the active CPUs group/bitset
297fb2f18f8Sesaxe 		 */
298fb2f18f8Sesaxe 		group_expand(&pg->cmt_cpus_actv,
299fb2f18f8Sesaxe 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
300fb2f18f8Sesaxe 
301fb2f18f8Sesaxe 		if (cp->cpu_seqid >=
302fb2f18f8Sesaxe 		    bitset_capacity(&pg->cmt_cpus_actv_set)) {
303fb2f18f8Sesaxe 			bitset_resize(&pg->cmt_cpus_actv_set,
304fb2f18f8Sesaxe 			    cp->cpu_seqid + 1);
305fb2f18f8Sesaxe 		}
306fb2f18f8Sesaxe 
307fb2f18f8Sesaxe 		/*
308fb2f18f8Sesaxe 		 * Build a lineage of CMT PGs for load balancing
309fb2f18f8Sesaxe 		 */
310d129bde2Sesaxe 		if (pg_plat_cmt_load_bal_hw(hw)) {
311fb2f18f8Sesaxe 			level = pghw_level(hw);
312fb2f18f8Sesaxe 			cpu_cmt_hier[level] = pg;
313fb2f18f8Sesaxe 			if (level > max_level)
314fb2f18f8Sesaxe 				max_level = level;
315fb2f18f8Sesaxe 			nlevels++;
316fb2f18f8Sesaxe 		}
317fb2f18f8Sesaxe 
318fb2f18f8Sesaxe 		/* Cache this for later */
319fb2f18f8Sesaxe 		if (hw == PGHW_CACHE)
320fb2f18f8Sesaxe 			pg_cache = (pg_t *)pg;
321fb2f18f8Sesaxe 	}
322fb2f18f8Sesaxe 
323fb2f18f8Sesaxe 	/*
324fb2f18f8Sesaxe 	 * Pack out any gaps in the constructed lineage.
325fb2f18f8Sesaxe 	 * Gaps may exist where the architecture knows
326fb2f18f8Sesaxe 	 * about a hardware sharing relationship, but such a
327fb2f18f8Sesaxe 	 * relationship either isn't relevant for load
328fb2f18f8Sesaxe 	 * balancing or doesn't exist between CPUs on the system.
329fb2f18f8Sesaxe 	 */
330fb2f18f8Sesaxe 	pg_cmt_hier_pack(cpu_cmt_hier, max_level + 1);
331fb2f18f8Sesaxe 
332fb2f18f8Sesaxe 	/*
333fb2f18f8Sesaxe 	 * For each of the PGs int the CPU's lineage:
334fb2f18f8Sesaxe 	 *	- Add an entry in the CPU sorted CMT PG group
335fb2f18f8Sesaxe 	 *	  which is used for top down CMT load balancing
336fb2f18f8Sesaxe 	 *	- Tie the PG into the CMT hierarchy by connecting
337fb2f18f8Sesaxe 	 *	  it to it's parent and siblings.
338fb2f18f8Sesaxe 	 */
339fb2f18f8Sesaxe 	group_expand(cmt_pgs, nlevels);
340fb2f18f8Sesaxe 
341fb2f18f8Sesaxe 	/*
342fb2f18f8Sesaxe 	 * Find the lgrp that encapsulates this CPU's CMT hierarchy
343fb2f18f8Sesaxe 	 */
344fb2f18f8Sesaxe 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
345fb2f18f8Sesaxe 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
346a6604450Sesaxe 	if (lgrp == NULL)
347a6604450Sesaxe 		lgrp = pg_cmt_lgrp_create(lgrp_handle);
348fb2f18f8Sesaxe 
349fb2f18f8Sesaxe 	for (level = 0; level < nlevels; level++) {
350fb2f18f8Sesaxe 		uint_t		children;
351fb2f18f8Sesaxe 		int		err;
352fb2f18f8Sesaxe 
353fb2f18f8Sesaxe 		pg = cpu_cmt_hier[level];
354fb2f18f8Sesaxe 		err = group_add_at(cmt_pgs, pg, nlevels - level - 1);
355fb2f18f8Sesaxe 		ASSERT(err == 0);
356fb2f18f8Sesaxe 
357fb2f18f8Sesaxe 		if (level == 0)
358fb2f18f8Sesaxe 			cp->cpu_pg->cmt_lineage = (pg_t *)pg;
359fb2f18f8Sesaxe 
360fb2f18f8Sesaxe 		if (pg->cmt_siblings != NULL) {
361fb2f18f8Sesaxe 			/* Already initialized */
362fb2f18f8Sesaxe 			ASSERT(pg->cmt_parent == NULL ||
363fb2f18f8Sesaxe 			    pg->cmt_parent == cpu_cmt_hier[level + 1]);
364fb2f18f8Sesaxe 			ASSERT(pg->cmt_siblings == &lgrp->cl_pgs ||
365*c416da2dSjb145095 			    ((pg->cmt_parent != NULL) &&
366*c416da2dSjb145095 			    pg->cmt_siblings == pg->cmt_parent->cmt_children));
367fb2f18f8Sesaxe 			continue;
368fb2f18f8Sesaxe 		}
369fb2f18f8Sesaxe 
370fb2f18f8Sesaxe 		if ((level + 1) == nlevels) {
371fb2f18f8Sesaxe 			pg->cmt_parent = NULL;
372fb2f18f8Sesaxe 			pg->cmt_siblings = &lgrp->cl_pgs;
373fb2f18f8Sesaxe 			children = ++lgrp->cl_npgs;
374fb2f18f8Sesaxe 		} else {
375fb2f18f8Sesaxe 			pg->cmt_parent = cpu_cmt_hier[level + 1];
376fb2f18f8Sesaxe 
377fb2f18f8Sesaxe 			/*
378fb2f18f8Sesaxe 			 * A good parent keeps track of their children.
379fb2f18f8Sesaxe 			 * The parent's children group is also the PG's
380fb2f18f8Sesaxe 			 * siblings.
381fb2f18f8Sesaxe 			 */
382fb2f18f8Sesaxe 			if (pg->cmt_parent->cmt_children == NULL) {
383fb2f18f8Sesaxe 				pg->cmt_parent->cmt_children =
384fb2f18f8Sesaxe 				    kmem_zalloc(sizeof (group_t), KM_SLEEP);
385fb2f18f8Sesaxe 				group_create(pg->cmt_parent->cmt_children);
386fb2f18f8Sesaxe 			}
387fb2f18f8Sesaxe 			pg->cmt_siblings = pg->cmt_parent->cmt_children;
388fb2f18f8Sesaxe 			children = ++pg->cmt_parent->cmt_nchildren;
389fb2f18f8Sesaxe 		}
390fb2f18f8Sesaxe 		pg->cmt_hint = 0;
391fb2f18f8Sesaxe 		group_expand(pg->cmt_siblings, children);
392fb2f18f8Sesaxe 	}
393fb2f18f8Sesaxe 
394fb2f18f8Sesaxe 	/*
395fb2f18f8Sesaxe 	 * Cache the chip and core IDs in the cpu_t->cpu_physid structure
396fb2f18f8Sesaxe 	 * for fast lookups later.
397fb2f18f8Sesaxe 	 */
398fb2f18f8Sesaxe 	if (cp->cpu_physid) {
399fb2f18f8Sesaxe 		cp->cpu_physid->cpu_chipid =
400fb2f18f8Sesaxe 		    pg_plat_hw_instance_id(cp, PGHW_CHIP);
401fb2f18f8Sesaxe 		cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp);
402fb2f18f8Sesaxe 
403fb2f18f8Sesaxe 		/*
404fb2f18f8Sesaxe 		 * If this cpu has a PG representing shared cache, then set
405fb2f18f8Sesaxe 		 * cpu_cacheid to that PG's logical id
406fb2f18f8Sesaxe 		 */
407fb2f18f8Sesaxe 		if (pg_cache)
408fb2f18f8Sesaxe 			cp->cpu_physid->cpu_cacheid = pg_cache->pg_id;
409fb2f18f8Sesaxe 	}
410fb2f18f8Sesaxe 
411fb2f18f8Sesaxe 	/* CPU0 only initialization */
412fb2f18f8Sesaxe 	if (is_cpu0) {
413fb2f18f8Sesaxe 		pg_cmt_cpu_startup(cp);
414fb2f18f8Sesaxe 		is_cpu0 = 0;
415a6604450Sesaxe 		cpu0_lgrp = lgrp;
416fb2f18f8Sesaxe 	}
417fb2f18f8Sesaxe 
418fb2f18f8Sesaxe }
419fb2f18f8Sesaxe 
420fb2f18f8Sesaxe /*
421fb2f18f8Sesaxe  * Class callback when a CPU is leaving the system (deletion)
422fb2f18f8Sesaxe  */
423fb2f18f8Sesaxe static void
424fb2f18f8Sesaxe pg_cmt_cpu_fini(cpu_t *cp)
425fb2f18f8Sesaxe {
426fb2f18f8Sesaxe 	group_iter_t	i;
427fb2f18f8Sesaxe 	pg_cmt_t	*pg;
428fb2f18f8Sesaxe 	group_t		*pgs, *cmt_pgs;
429fb2f18f8Sesaxe 	lgrp_handle_t	lgrp_handle;
430fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
431fb2f18f8Sesaxe 
432fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
433fb2f18f8Sesaxe 	cmt_pgs = &cp->cpu_pg->cmt_pgs;
434fb2f18f8Sesaxe 
435fb2f18f8Sesaxe 	/*
436fb2f18f8Sesaxe 	 * Find the lgroup that encapsulates this CPU's CMT hierarchy
437fb2f18f8Sesaxe 	 */
438fb2f18f8Sesaxe 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
439a6604450Sesaxe 
440fb2f18f8Sesaxe 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
441a6604450Sesaxe 	if (lgrp == NULL) {
442a6604450Sesaxe 		/*
443a6604450Sesaxe 		 * This is a bit of a special case.
444a6604450Sesaxe 		 * The only way this can happen is if the CPU's lgrp
445a6604450Sesaxe 		 * handle changed out from underneath us, which is what
446a6604450Sesaxe 		 * happens with null_proc_lpa on starcat systems.
447a6604450Sesaxe 		 *
448a6604450Sesaxe 		 * Use the initial boot CPU lgrp, since this is what
449a6604450Sesaxe 		 * we need to tear down.
450a6604450Sesaxe 		 */
451a6604450Sesaxe 		lgrp = cpu0_lgrp;
452a6604450Sesaxe 	}
453fb2f18f8Sesaxe 
454fb2f18f8Sesaxe 	/*
455fb2f18f8Sesaxe 	 * First, clean up anything load balancing specific for each of
456fb2f18f8Sesaxe 	 * the CPU's PGs that participated in CMT load balancing
457fb2f18f8Sesaxe 	 */
458fb2f18f8Sesaxe 	pg = (pg_cmt_t *)cp->cpu_pg->cmt_lineage;
459fb2f18f8Sesaxe 	while (pg != NULL) {
460fb2f18f8Sesaxe 
461fb2f18f8Sesaxe 		/*
462fb2f18f8Sesaxe 		 * Remove the PG from the CPU's load balancing lineage
463fb2f18f8Sesaxe 		 */
464fb2f18f8Sesaxe 		(void) group_remove(cmt_pgs, pg, GRP_RESIZE);
465fb2f18f8Sesaxe 
466fb2f18f8Sesaxe 		/*
467fb2f18f8Sesaxe 		 * If it's about to become empty, destroy it's children
468fb2f18f8Sesaxe 		 * group, and remove it's reference from it's siblings.
469fb2f18f8Sesaxe 		 * This is done here (rather than below) to avoid removing
470fb2f18f8Sesaxe 		 * our reference from a PG that we just eliminated.
471fb2f18f8Sesaxe 		 */
472fb2f18f8Sesaxe 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) {
473fb2f18f8Sesaxe 			if (pg->cmt_children != NULL)
474fb2f18f8Sesaxe 				group_destroy(pg->cmt_children);
475fb2f18f8Sesaxe 			if (pg->cmt_siblings != NULL) {
476fb2f18f8Sesaxe 				if (pg->cmt_siblings == &lgrp->cl_pgs)
477fb2f18f8Sesaxe 					lgrp->cl_npgs--;
478fb2f18f8Sesaxe 				else
479fb2f18f8Sesaxe 					pg->cmt_parent->cmt_nchildren--;
480fb2f18f8Sesaxe 			}
481fb2f18f8Sesaxe 		}
482fb2f18f8Sesaxe 		pg = pg->cmt_parent;
483fb2f18f8Sesaxe 	}
484fb2f18f8Sesaxe 
485fb2f18f8Sesaxe 	ASSERT(GROUP_SIZE(cmt_pgs) == 0);
486fb2f18f8Sesaxe 
487fb2f18f8Sesaxe 	/*
488fb2f18f8Sesaxe 	 * Now that the load balancing lineage updates have happened,
489fb2f18f8Sesaxe 	 * remove the CPU from all it's PGs (destroying any that become
490fb2f18f8Sesaxe 	 * empty).
491fb2f18f8Sesaxe 	 */
492fb2f18f8Sesaxe 	group_iter_init(&i);
493fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
494fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
495fb2f18f8Sesaxe 			continue;
496fb2f18f8Sesaxe 
497fb2f18f8Sesaxe 		pg_cpu_delete((pg_t *)pg, cp);
498fb2f18f8Sesaxe 		/*
499fb2f18f8Sesaxe 		 * Deleting the CPU from the PG changes the CPU's
500fb2f18f8Sesaxe 		 * PG group over which we are actively iterating
501fb2f18f8Sesaxe 		 * Re-initialize the iteration
502fb2f18f8Sesaxe 		 */
503fb2f18f8Sesaxe 		group_iter_init(&i);
504fb2f18f8Sesaxe 
505fb2f18f8Sesaxe 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) {
506fb2f18f8Sesaxe 
507fb2f18f8Sesaxe 			/*
508fb2f18f8Sesaxe 			 * The PG has become zero sized, so destroy it.
509fb2f18f8Sesaxe 			 */
510fb2f18f8Sesaxe 			group_destroy(&pg->cmt_cpus_actv);
511fb2f18f8Sesaxe 			bitset_fini(&pg->cmt_cpus_actv_set);
512fb2f18f8Sesaxe 			pghw_fini((pghw_t *)pg);
513fb2f18f8Sesaxe 
514fb2f18f8Sesaxe 			pg_destroy((pg_t *)pg);
515fb2f18f8Sesaxe 		}
516fb2f18f8Sesaxe 	}
517fb2f18f8Sesaxe }
518fb2f18f8Sesaxe 
519fb2f18f8Sesaxe /*
520fb2f18f8Sesaxe  * Class callback when a CPU is entering a cpu partition
521fb2f18f8Sesaxe  */
522fb2f18f8Sesaxe static void
523fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp)
524fb2f18f8Sesaxe {
525fb2f18f8Sesaxe 	group_t		*pgs;
526fb2f18f8Sesaxe 	pg_t		*pg;
527fb2f18f8Sesaxe 	group_iter_t	i;
528fb2f18f8Sesaxe 
529fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
530fb2f18f8Sesaxe 
531fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
532fb2f18f8Sesaxe 
533fb2f18f8Sesaxe 	/*
534fb2f18f8Sesaxe 	 * Ensure that the new partition's PG bitset
535fb2f18f8Sesaxe 	 * is large enough for all CMT PG's to which cp
536fb2f18f8Sesaxe 	 * belongs
537fb2f18f8Sesaxe 	 */
538fb2f18f8Sesaxe 	group_iter_init(&i);
539fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
540fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
541fb2f18f8Sesaxe 			continue;
542fb2f18f8Sesaxe 
543fb2f18f8Sesaxe 		if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id)
544fb2f18f8Sesaxe 			bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1);
545fb2f18f8Sesaxe 	}
546fb2f18f8Sesaxe }
547fb2f18f8Sesaxe 
548fb2f18f8Sesaxe /*
549fb2f18f8Sesaxe  * Class callback when a CPU is actually moving partitions
550fb2f18f8Sesaxe  */
551fb2f18f8Sesaxe static void
552fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
553fb2f18f8Sesaxe {
554fb2f18f8Sesaxe 	cpu_t		*cpp;
555fb2f18f8Sesaxe 	group_t		*pgs;
556fb2f18f8Sesaxe 	pg_t		*pg;
557fb2f18f8Sesaxe 	group_iter_t	pg_iter;
558fb2f18f8Sesaxe 	pg_cpu_itr_t	cpu_iter;
559fb2f18f8Sesaxe 	boolean_t	found;
560fb2f18f8Sesaxe 
561fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
562fb2f18f8Sesaxe 
563fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
564fb2f18f8Sesaxe 	group_iter_init(&pg_iter);
565fb2f18f8Sesaxe 
566fb2f18f8Sesaxe 	/*
567fb2f18f8Sesaxe 	 * Iterate over the CPUs CMT PGs
568fb2f18f8Sesaxe 	 */
569fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &pg_iter)) != NULL) {
570fb2f18f8Sesaxe 
571fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
572fb2f18f8Sesaxe 			continue;
573fb2f18f8Sesaxe 
574fb2f18f8Sesaxe 		/*
575fb2f18f8Sesaxe 		 * Add the PG to the bitset in the new partition.
576fb2f18f8Sesaxe 		 */
577fb2f18f8Sesaxe 		bitset_add(&newpp->cp_cmt_pgs, pg->pg_id);
578fb2f18f8Sesaxe 
579fb2f18f8Sesaxe 		/*
580fb2f18f8Sesaxe 		 * Remove the PG from the bitset in the old partition
581fb2f18f8Sesaxe 		 * if the last of the PG's CPUs have left.
582fb2f18f8Sesaxe 		 */
583fb2f18f8Sesaxe 		found = B_FALSE;
584fb2f18f8Sesaxe 		PG_CPU_ITR_INIT(pg, cpu_iter);
585fb2f18f8Sesaxe 		while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) {
586fb2f18f8Sesaxe 			if (cpp == cp)
587fb2f18f8Sesaxe 				continue;
588a6604450Sesaxe 			if (CPU_ACTIVE(cpp) &&
589a6604450Sesaxe 			    cpp->cpu_part->cp_id == oldpp->cp_id) {
590fb2f18f8Sesaxe 				found = B_TRUE;
591fb2f18f8Sesaxe 				break;
592fb2f18f8Sesaxe 			}
593fb2f18f8Sesaxe 		}
594fb2f18f8Sesaxe 		if (!found)
595fb2f18f8Sesaxe 			bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id);
596fb2f18f8Sesaxe 	}
597fb2f18f8Sesaxe }
598fb2f18f8Sesaxe 
599fb2f18f8Sesaxe /*
600fb2f18f8Sesaxe  * Class callback when a CPU becomes active (online)
601fb2f18f8Sesaxe  *
602fb2f18f8Sesaxe  * This is called in a context where CPUs are paused
603fb2f18f8Sesaxe  */
604fb2f18f8Sesaxe static void
605fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp)
606fb2f18f8Sesaxe {
607fb2f18f8Sesaxe 	int		err;
608fb2f18f8Sesaxe 	group_iter_t	i;
609fb2f18f8Sesaxe 	pg_cmt_t	*pg;
610fb2f18f8Sesaxe 	group_t		*pgs;
611fb2f18f8Sesaxe 
612fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
613fb2f18f8Sesaxe 
614fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
615fb2f18f8Sesaxe 	group_iter_init(&i);
616fb2f18f8Sesaxe 
617fb2f18f8Sesaxe 	/*
618fb2f18f8Sesaxe 	 * Iterate over the CPU's PGs
619fb2f18f8Sesaxe 	 */
620fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
621fb2f18f8Sesaxe 
622fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
623fb2f18f8Sesaxe 			continue;
624fb2f18f8Sesaxe 
625fb2f18f8Sesaxe 		err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
626fb2f18f8Sesaxe 		ASSERT(err == 0);
627fb2f18f8Sesaxe 
628fb2f18f8Sesaxe 		/*
629fb2f18f8Sesaxe 		 * If this is the first active CPU in the PG, and it
630fb2f18f8Sesaxe 		 * represents a hardware sharing relationship over which
631fb2f18f8Sesaxe 		 * CMT load balancing is performed, add it as a candidate
632fb2f18f8Sesaxe 		 * for balancing with it's siblings.
633fb2f18f8Sesaxe 		 */
634fb2f18f8Sesaxe 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 &&
635d129bde2Sesaxe 		    pg_plat_cmt_load_bal_hw(((pghw_t *)pg)->pghw_hw)) {
636fb2f18f8Sesaxe 			err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE);
637fb2f18f8Sesaxe 			ASSERT(err == 0);
638fb2f18f8Sesaxe 		}
639fb2f18f8Sesaxe 
640fb2f18f8Sesaxe 		/*
641fb2f18f8Sesaxe 		 * Notate the CPU in the PGs active CPU bitset.
642fb2f18f8Sesaxe 		 * Also notate the PG as being active in it's associated
643fb2f18f8Sesaxe 		 * partition
644fb2f18f8Sesaxe 		 */
645fb2f18f8Sesaxe 		bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
646fb2f18f8Sesaxe 		bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id);
647fb2f18f8Sesaxe 	}
648fb2f18f8Sesaxe }
649fb2f18f8Sesaxe 
650fb2f18f8Sesaxe /*
651fb2f18f8Sesaxe  * Class callback when a CPU goes inactive (offline)
652fb2f18f8Sesaxe  *
653fb2f18f8Sesaxe  * This is called in a context where CPUs are paused
654fb2f18f8Sesaxe  */
655fb2f18f8Sesaxe static void
656fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp)
657fb2f18f8Sesaxe {
658fb2f18f8Sesaxe 	int		err;
659fb2f18f8Sesaxe 	group_t		*pgs;
660fb2f18f8Sesaxe 	pg_cmt_t	*pg;
661fb2f18f8Sesaxe 	cpu_t		*cpp;
662fb2f18f8Sesaxe 	group_iter_t	i;
663fb2f18f8Sesaxe 	pg_cpu_itr_t	cpu_itr;
664fb2f18f8Sesaxe 	boolean_t	found;
665fb2f18f8Sesaxe 
666fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
667fb2f18f8Sesaxe 
668fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
669fb2f18f8Sesaxe 	group_iter_init(&i);
670fb2f18f8Sesaxe 
671fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
672fb2f18f8Sesaxe 
673fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
674fb2f18f8Sesaxe 			continue;
675fb2f18f8Sesaxe 
676fb2f18f8Sesaxe 		/*
677fb2f18f8Sesaxe 		 * Remove the CPU from the CMT PGs active CPU group
678fb2f18f8Sesaxe 		 * bitmap
679fb2f18f8Sesaxe 		 */
680fb2f18f8Sesaxe 		err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
681fb2f18f8Sesaxe 		ASSERT(err == 0);
682fb2f18f8Sesaxe 
683fb2f18f8Sesaxe 		bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
684fb2f18f8Sesaxe 
685fb2f18f8Sesaxe 		/*
686fb2f18f8Sesaxe 		 * If there are no more active CPUs in this PG over which
687fb2f18f8Sesaxe 		 * load was balanced, remove it as a balancing candidate.
688fb2f18f8Sesaxe 		 */
689fb2f18f8Sesaxe 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 &&
690d129bde2Sesaxe 		    pg_plat_cmt_load_bal_hw(((pghw_t *)pg)->pghw_hw)) {
691fb2f18f8Sesaxe 			err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
692fb2f18f8Sesaxe 			ASSERT(err == 0);
693fb2f18f8Sesaxe 		}
694fb2f18f8Sesaxe 
695fb2f18f8Sesaxe 		/*
696fb2f18f8Sesaxe 		 * Assert the number of active CPUs does not exceed
697fb2f18f8Sesaxe 		 * the total number of CPUs in the PG
698fb2f18f8Sesaxe 		 */
699fb2f18f8Sesaxe 		ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <=
700fb2f18f8Sesaxe 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
701fb2f18f8Sesaxe 
702fb2f18f8Sesaxe 		/*
703fb2f18f8Sesaxe 		 * Update the PG bitset in the CPU's old partition
704fb2f18f8Sesaxe 		 */
705fb2f18f8Sesaxe 		found = B_FALSE;
706fb2f18f8Sesaxe 		PG_CPU_ITR_INIT(pg, cpu_itr);
707fb2f18f8Sesaxe 		while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) {
708fb2f18f8Sesaxe 			if (cpp == cp)
709fb2f18f8Sesaxe 				continue;
710a6604450Sesaxe 			if (CPU_ACTIVE(cpp) &&
711a6604450Sesaxe 			    cpp->cpu_part->cp_id == cp->cpu_part->cp_id) {
712fb2f18f8Sesaxe 				found = B_TRUE;
713fb2f18f8Sesaxe 				break;
714fb2f18f8Sesaxe 			}
715fb2f18f8Sesaxe 		}
716fb2f18f8Sesaxe 		if (!found) {
717fb2f18f8Sesaxe 			bitset_del(&cp->cpu_part->cp_cmt_pgs,
718fb2f18f8Sesaxe 			    ((pg_t *)pg)->pg_id);
719fb2f18f8Sesaxe 		}
720fb2f18f8Sesaxe 	}
721fb2f18f8Sesaxe }
722fb2f18f8Sesaxe 
723fb2f18f8Sesaxe /*
724fb2f18f8Sesaxe  * Return non-zero if the CPU belongs in the given PG
725fb2f18f8Sesaxe  */
726fb2f18f8Sesaxe static int
727fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp)
728fb2f18f8Sesaxe {
729fb2f18f8Sesaxe 	cpu_t	*pg_cpu;
730fb2f18f8Sesaxe 
731fb2f18f8Sesaxe 	pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0);
732fb2f18f8Sesaxe 
733fb2f18f8Sesaxe 	ASSERT(pg_cpu != NULL);
734fb2f18f8Sesaxe 
735fb2f18f8Sesaxe 	/*
736fb2f18f8Sesaxe 	 * The CPU belongs if, given the nature of the hardware sharing
737fb2f18f8Sesaxe 	 * relationship represented by the PG, the CPU has that
738fb2f18f8Sesaxe 	 * relationship with some other CPU already in the PG
739fb2f18f8Sesaxe 	 */
740fb2f18f8Sesaxe 	if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw))
741fb2f18f8Sesaxe 		return (1);
742fb2f18f8Sesaxe 
743fb2f18f8Sesaxe 	return (0);
744fb2f18f8Sesaxe }
745fb2f18f8Sesaxe 
746fb2f18f8Sesaxe /*
747fb2f18f8Sesaxe  * Pack the CPUs CMT hierarchy
748fb2f18f8Sesaxe  * The hierarchy order is preserved
749fb2f18f8Sesaxe  */
750fb2f18f8Sesaxe static void
751fb2f18f8Sesaxe pg_cmt_hier_pack(pg_cmt_t *hier[], int sz)
752fb2f18f8Sesaxe {
753fb2f18f8Sesaxe 	int	i, j;
754fb2f18f8Sesaxe 
755fb2f18f8Sesaxe 	for (i = 0; i < sz; i++) {
756fb2f18f8Sesaxe 		if (hier[i] != NULL)
757fb2f18f8Sesaxe 			continue;
758fb2f18f8Sesaxe 
759fb2f18f8Sesaxe 		for (j = i; j < sz; j++) {
760fb2f18f8Sesaxe 			if (hier[j] != NULL) {
761fb2f18f8Sesaxe 				hier[i] = hier[j];
762fb2f18f8Sesaxe 				hier[j] = NULL;
763fb2f18f8Sesaxe 				break;
764fb2f18f8Sesaxe 			}
765fb2f18f8Sesaxe 		}
766fb2f18f8Sesaxe 		if (j == sz)
767fb2f18f8Sesaxe 			break;
768fb2f18f8Sesaxe 	}
769fb2f18f8Sesaxe }
770fb2f18f8Sesaxe 
771fb2f18f8Sesaxe /*
772fb2f18f8Sesaxe  * Return a cmt_lgrp_t * given an lgroup handle.
773fb2f18f8Sesaxe  */
774fb2f18f8Sesaxe static cmt_lgrp_t *
775fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand)
776fb2f18f8Sesaxe {
777fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
778fb2f18f8Sesaxe 
779fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
780fb2f18f8Sesaxe 
781fb2f18f8Sesaxe 	lgrp = cmt_lgrps;
782fb2f18f8Sesaxe 	while (lgrp != NULL) {
783fb2f18f8Sesaxe 		if (lgrp->cl_hand == hand)
784a6604450Sesaxe 			break;
785fb2f18f8Sesaxe 		lgrp = lgrp->cl_next;
786fb2f18f8Sesaxe 	}
787a6604450Sesaxe 	return (lgrp);
788a6604450Sesaxe }
789fb2f18f8Sesaxe 
790fb2f18f8Sesaxe /*
791a6604450Sesaxe  * Create a cmt_lgrp_t with the specified handle.
792fb2f18f8Sesaxe  */
793a6604450Sesaxe static cmt_lgrp_t *
794a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand)
795a6604450Sesaxe {
796a6604450Sesaxe 	cmt_lgrp_t	*lgrp;
797a6604450Sesaxe 
798a6604450Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
799a6604450Sesaxe 
800fb2f18f8Sesaxe 	lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP);
801fb2f18f8Sesaxe 
802fb2f18f8Sesaxe 	lgrp->cl_hand = hand;
803fb2f18f8Sesaxe 	lgrp->cl_npgs = 0;
804fb2f18f8Sesaxe 	lgrp->cl_next = cmt_lgrps;
805fb2f18f8Sesaxe 	cmt_lgrps = lgrp;
806fb2f18f8Sesaxe 	group_create(&lgrp->cl_pgs);
807fb2f18f8Sesaxe 
808fb2f18f8Sesaxe 	return (lgrp);
809fb2f18f8Sesaxe }
810