xref: /titanic_50/usr/src/uts/common/disp/cmt.c (revision b025faee7670ae718ed421b9eeb6650fd219e5e3)
1fb2f18f8Sesaxe /*
2fb2f18f8Sesaxe  * CDDL HEADER START
3fb2f18f8Sesaxe  *
4fb2f18f8Sesaxe  * The contents of this file are subject to the terms of the
5fb2f18f8Sesaxe  * Common Development and Distribution License (the "License").
6fb2f18f8Sesaxe  * You may not use this file except in compliance with the License.
7fb2f18f8Sesaxe  *
8fb2f18f8Sesaxe  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fb2f18f8Sesaxe  * or http://www.opensolaris.org/os/licensing.
10fb2f18f8Sesaxe  * See the License for the specific language governing permissions
11fb2f18f8Sesaxe  * and limitations under the License.
12fb2f18f8Sesaxe  *
13fb2f18f8Sesaxe  * When distributing Covered Code, include this CDDL HEADER in each
14fb2f18f8Sesaxe  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fb2f18f8Sesaxe  * If applicable, add the following below this CDDL HEADER, with the
16fb2f18f8Sesaxe  * fields enclosed by brackets "[]" replaced with your own identifying
17fb2f18f8Sesaxe  * information: Portions Copyright [yyyy] [name of copyright owner]
18fb2f18f8Sesaxe  *
19fb2f18f8Sesaxe  * CDDL HEADER END
20fb2f18f8Sesaxe  */
21fb2f18f8Sesaxe /*
223e81cacfSEric Saxe  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23fb2f18f8Sesaxe  * Use is subject to license terms.
24fb2f18f8Sesaxe  */
25fb2f18f8Sesaxe 
26fb2f18f8Sesaxe #include <sys/systm.h>
27fb2f18f8Sesaxe #include <sys/types.h>
28fb2f18f8Sesaxe #include <sys/param.h>
29fb2f18f8Sesaxe #include <sys/thread.h>
30fb2f18f8Sesaxe #include <sys/cpuvar.h>
31fb2f18f8Sesaxe #include <sys/cpupart.h>
32fb2f18f8Sesaxe #include <sys/kmem.h>
33fb2f18f8Sesaxe #include <sys/cmn_err.h>
34fb2f18f8Sesaxe #include <sys/kstat.h>
35fb2f18f8Sesaxe #include <sys/processor.h>
36fb2f18f8Sesaxe #include <sys/disp.h>
37fb2f18f8Sesaxe #include <sys/group.h>
38fb2f18f8Sesaxe #include <sys/pghw.h>
39fb2f18f8Sesaxe #include <sys/bitset.h>
40fb2f18f8Sesaxe #include <sys/lgrp.h>
41fb2f18f8Sesaxe #include <sys/cmt.h>
420e751525SEric Saxe #include <sys/cpu_pm.h>
43fb2f18f8Sesaxe 
44fb2f18f8Sesaxe /*
45fb2f18f8Sesaxe  * CMT scheduler / dispatcher support
46fb2f18f8Sesaxe  *
47fb2f18f8Sesaxe  * This file implements CMT scheduler support using Processor Groups.
48fb2f18f8Sesaxe  * The CMT processor group class creates and maintains the CMT class
49fb2f18f8Sesaxe  * specific processor group pg_cmt_t.
50fb2f18f8Sesaxe  *
51fb2f18f8Sesaxe  * ---------------------------- <-- pg_cmt_t *
52fb2f18f8Sesaxe  * | pghw_t                   |
53fb2f18f8Sesaxe  * ----------------------------
54fb2f18f8Sesaxe  * | CMT class specific data  |
55fb2f18f8Sesaxe  * | - hierarchy linkage      |
56fb2f18f8Sesaxe  * | - CMT load balancing data|
57fb2f18f8Sesaxe  * | - active CPU group/bitset|
58fb2f18f8Sesaxe  * ----------------------------
59fb2f18f8Sesaxe  *
60fb2f18f8Sesaxe  * The scheduler/dispatcher leverages knowledge of the performance
61fb2f18f8Sesaxe  * relevant CMT sharing relationships existing between cpus to implement
620e751525SEric Saxe  * optimized affinity, load balancing, and coalescence policies.
63fb2f18f8Sesaxe  *
64fb2f18f8Sesaxe  * Load balancing policy seeks to improve performance by minimizing
650e751525SEric Saxe  * contention over shared processor resources / facilities, Affinity
660e751525SEric Saxe  * policies seek to improve cache and TLB utilization. Coalescence
670e751525SEric Saxe  * policies improve resource utilization and ultimately power efficiency.
68fb2f18f8Sesaxe  *
69fb2f18f8Sesaxe  * The CMT PGs created by this class are already arranged into a
70fb2f18f8Sesaxe  * hierarchy (which is done in the pghw layer). To implement the top-down
71fb2f18f8Sesaxe  * CMT load balancing algorithm, the CMT PGs additionally maintain
72fb2f18f8Sesaxe  * parent, child and sibling hierarchy relationships.
73fb2f18f8Sesaxe  * Parent PGs always contain a superset of their children(s) resources,
74fb2f18f8Sesaxe  * each PG can have at most one parent, and siblings are the group of PGs
75fb2f18f8Sesaxe  * sharing the same parent.
76fb2f18f8Sesaxe  *
77d0e93b69SEric Saxe  * On UMA based systems, the CMT load balancing algorithm begins by balancing
78d0e93b69SEric Saxe  * load across the group of top level PGs in the system hierarchy.
79d0e93b69SEric Saxe  * On NUMA systems, the CMT load balancing algorithm balances load across the
80d0e93b69SEric Saxe  * group of top level PGs in each leaf lgroup...but for root homed threads,
81d0e93b69SEric Saxe  * is willing to balance against all the top level PGs in the system.
82d0e93b69SEric Saxe  *
83d0e93b69SEric Saxe  * Groups of top level PGs are maintained to implement the above, one for each
84d0e93b69SEric Saxe  * leaf lgroup (containing the top level PGs in that lgroup), and one (for the
85d0e93b69SEric Saxe  * root lgroup) that contains all the top level PGs in the system.
86fb2f18f8Sesaxe  */
87a6604450Sesaxe static cmt_lgrp_t	*cmt_lgrps = NULL;	/* cmt_lgrps list head */
88a6604450Sesaxe static cmt_lgrp_t	*cpu0_lgrp = NULL;	/* boot CPU's initial lgrp */
89a6604450Sesaxe 						/* used for null_proc_lpa */
900e751525SEric Saxe cmt_lgrp_t		*cmt_root = NULL;	/* Reference to root cmt pg */
91fb2f18f8Sesaxe 
92a6604450Sesaxe static int		is_cpu0 = 1; /* true if this is boot CPU context */
93a6604450Sesaxe 
94a6604450Sesaxe /*
950e751525SEric Saxe  * Array of hardware sharing relationships that are blacklisted.
96d0e93b69SEric Saxe  * CMT scheduling optimizations won't be performed for blacklisted sharing
97d0e93b69SEric Saxe  * relationships.
980e751525SEric Saxe  */
990e751525SEric Saxe static int		cmt_hw_blacklisted[PGHW_NUM_COMPONENTS];
1000e751525SEric Saxe 
1010e751525SEric Saxe /*
102a6604450Sesaxe  * Set this to non-zero to disable CMT scheduling
103a6604450Sesaxe  * This must be done via kmdb -d, as /etc/system will be too late
104a6604450Sesaxe  */
1050e751525SEric Saxe int			cmt_sched_disabled = 0;
106fb2f18f8Sesaxe 
107ef4f35d8SEric Saxe /*
108ef4f35d8SEric Saxe  * Status codes for CMT lineage validation
109ef4f35d8SEric Saxe  * See pg_cmt_lineage_validate() below
110ef4f35d8SEric Saxe  */
111ef4f35d8SEric Saxe typedef enum cmt_lineage_validation {
112ef4f35d8SEric Saxe 	CMT_LINEAGE_VALID,
113ef4f35d8SEric Saxe 	CMT_LINEAGE_NON_CONCENTRIC,
114ef4f35d8SEric Saxe 	CMT_LINEAGE_PG_SPANS_LGRPS,
115ef4f35d8SEric Saxe 	CMT_LINEAGE_NON_PROMOTABLE,
116ef4f35d8SEric Saxe 	CMT_LINEAGE_REPAIRED,
117ef4f35d8SEric Saxe 	CMT_LINEAGE_UNRECOVERABLE
118ef4f35d8SEric Saxe } cmt_lineage_validation_t;
119ef4f35d8SEric Saxe 
120ef4f35d8SEric Saxe /*
121ef4f35d8SEric Saxe  * Status of the current lineage under construction.
122ef4f35d8SEric Saxe  * One must be holding cpu_lock to change this.
123ef4f35d8SEric Saxe  */
124ef4f35d8SEric Saxe cmt_lineage_validation_t	cmt_lineage_status = CMT_LINEAGE_VALID;
125ef4f35d8SEric Saxe 
126ef4f35d8SEric Saxe /*
127ef4f35d8SEric Saxe  * Power domain definitions (on x86) are defined by ACPI, and
128ef4f35d8SEric Saxe  * therefore may be subject to BIOS bugs.
129ef4f35d8SEric Saxe  */
130ef4f35d8SEric Saxe #define	PG_CMT_HW_SUSPECT(hw)	PGHW_IS_PM_DOMAIN(hw)
131ef4f35d8SEric Saxe 
132ef4f35d8SEric Saxe /*
133ef4f35d8SEric Saxe  * Macro to test if PG is managed by the CMT PG class
134ef4f35d8SEric Saxe  */
135ef4f35d8SEric Saxe #define	IS_CMT_PG(pg)	(((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id)
136ef4f35d8SEric Saxe 
137fb2f18f8Sesaxe static pg_cid_t		pg_cmt_class_id;		/* PG class id */
138fb2f18f8Sesaxe 
139fb2f18f8Sesaxe static pg_t		*pg_cmt_alloc();
140fb2f18f8Sesaxe static void		pg_cmt_free(pg_t *);
14147ab0c7cSEric Saxe static void		pg_cmt_cpu_init(cpu_t *, cpu_pg_t *);
14247ab0c7cSEric Saxe static void		pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *);
143fb2f18f8Sesaxe static void		pg_cmt_cpu_active(cpu_t *);
144fb2f18f8Sesaxe static void		pg_cmt_cpu_inactive(cpu_t *);
145fb2f18f8Sesaxe static void		pg_cmt_cpupart_in(cpu_t *, cpupart_t *);
146fb2f18f8Sesaxe static void		pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *);
1470e751525SEric Saxe static char		*pg_cmt_policy_name(pg_t *);
1480e751525SEric Saxe static void		pg_cmt_hier_sort(pg_cmt_t **, int);
1490e751525SEric Saxe static pg_cmt_t		*pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *);
150fb2f18f8Sesaxe static int		pg_cmt_cpu_belongs(pg_t *, cpu_t *);
151fb2f18f8Sesaxe static int		pg_cmt_hw(pghw_type_t);
152fb2f18f8Sesaxe static cmt_lgrp_t	*pg_cmt_find_lgrp(lgrp_handle_t);
153a6604450Sesaxe static cmt_lgrp_t	*pg_cmt_lgrp_create(lgrp_handle_t);
1540e751525SEric Saxe static void		cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t,
1550e751525SEric Saxe 			    kthread_t *, kthread_t *);
1560e751525SEric Saxe static void		cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t,
1570e751525SEric Saxe 			    kthread_t *, kthread_t *);
1580e751525SEric Saxe static void		cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *);
1591a77c24bSEric Saxe static cmt_lineage_validation_t	pg_cmt_lineage_validate(pg_cmt_t **, int *,
1601a77c24bSEric Saxe 			    cpu_pg_t *);
161fb2f18f8Sesaxe 
1620e751525SEric Saxe 
1630e751525SEric Saxe /*
164fb2f18f8Sesaxe  * CMT PG ops
165fb2f18f8Sesaxe  */
166fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = {
167fb2f18f8Sesaxe 	pg_cmt_alloc,
168fb2f18f8Sesaxe 	pg_cmt_free,
169fb2f18f8Sesaxe 	pg_cmt_cpu_init,
170fb2f18f8Sesaxe 	pg_cmt_cpu_fini,
171fb2f18f8Sesaxe 	pg_cmt_cpu_active,
172fb2f18f8Sesaxe 	pg_cmt_cpu_inactive,
173fb2f18f8Sesaxe 	pg_cmt_cpupart_in,
174fb2f18f8Sesaxe 	NULL,			/* cpupart_out */
175fb2f18f8Sesaxe 	pg_cmt_cpupart_move,
176fb2f18f8Sesaxe 	pg_cmt_cpu_belongs,
1770e751525SEric Saxe 	pg_cmt_policy_name,
178fb2f18f8Sesaxe };
179fb2f18f8Sesaxe 
180fb2f18f8Sesaxe /*
181fb2f18f8Sesaxe  * Initialize the CMT PG class
182fb2f18f8Sesaxe  */
183fb2f18f8Sesaxe void
184fb2f18f8Sesaxe pg_cmt_class_init(void)
185fb2f18f8Sesaxe {
186fb2f18f8Sesaxe 	if (cmt_sched_disabled)
187fb2f18f8Sesaxe 		return;
188fb2f18f8Sesaxe 
189fb2f18f8Sesaxe 	pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL);
190fb2f18f8Sesaxe }
191fb2f18f8Sesaxe 
192fb2f18f8Sesaxe /*
193fb2f18f8Sesaxe  * Called to indicate a new CPU has started up so
194fb2f18f8Sesaxe  * that either t0 or the slave startup thread can
195fb2f18f8Sesaxe  * be accounted for.
196fb2f18f8Sesaxe  */
197fb2f18f8Sesaxe void
198fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp)
199fb2f18f8Sesaxe {
2000e751525SEric Saxe 	pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread,
2010e751525SEric Saxe 	    cp->cpu_thread);
202fb2f18f8Sesaxe }
203fb2f18f8Sesaxe 
204fb2f18f8Sesaxe /*
205fb2f18f8Sesaxe  * Return non-zero if thread can migrate between "from" and "to"
206fb2f18f8Sesaxe  * without a performance penalty
207fb2f18f8Sesaxe  */
208fb2f18f8Sesaxe int
209fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
210fb2f18f8Sesaxe {
211fb2f18f8Sesaxe 	if (from->cpu_physid->cpu_cacheid ==
212fb2f18f8Sesaxe 	    to->cpu_physid->cpu_cacheid)
213fb2f18f8Sesaxe 		return (1);
214fb2f18f8Sesaxe 	return (0);
215fb2f18f8Sesaxe }
216fb2f18f8Sesaxe 
217fb2f18f8Sesaxe /*
218fb2f18f8Sesaxe  * CMT class specific PG allocation
219fb2f18f8Sesaxe  */
220fb2f18f8Sesaxe static pg_t *
221fb2f18f8Sesaxe pg_cmt_alloc(void)
222fb2f18f8Sesaxe {
223fb2f18f8Sesaxe 	return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP));
224fb2f18f8Sesaxe }
225fb2f18f8Sesaxe 
226fb2f18f8Sesaxe /*
227fb2f18f8Sesaxe  * Class specific PG de-allocation
228fb2f18f8Sesaxe  */
229fb2f18f8Sesaxe static void
230fb2f18f8Sesaxe pg_cmt_free(pg_t *pg)
231fb2f18f8Sesaxe {
232fb2f18f8Sesaxe 	ASSERT(pg != NULL);
233fb2f18f8Sesaxe 	ASSERT(IS_CMT_PG(pg));
234fb2f18f8Sesaxe 
235fb2f18f8Sesaxe 	kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t));
236fb2f18f8Sesaxe }
237fb2f18f8Sesaxe 
238fb2f18f8Sesaxe /*
2390e751525SEric Saxe  * Given a hardware sharing relationship, return which dispatcher
2400e751525SEric Saxe  * policies should be implemented to optimize performance and efficiency
241fb2f18f8Sesaxe  */
2420e751525SEric Saxe static pg_cmt_policy_t
2430e751525SEric Saxe pg_cmt_policy(pghw_type_t hw)
244fb2f18f8Sesaxe {
2450e751525SEric Saxe 	pg_cmt_policy_t p;
2460e751525SEric Saxe 
2470e751525SEric Saxe 	/*
2480e751525SEric Saxe 	 * Give the platform a chance to override the default
2490e751525SEric Saxe 	 */
2500e751525SEric Saxe 	if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY)
2510e751525SEric Saxe 		return (p);
2520e751525SEric Saxe 
2530e751525SEric Saxe 	switch (hw) {
2540e751525SEric Saxe 	case PGHW_IPIPE:
2550e751525SEric Saxe 	case PGHW_FPU:
2568031591dSSrihari Venkatesan 	case PGHW_PROCNODE:
2570e751525SEric Saxe 	case PGHW_CHIP:
2580e751525SEric Saxe 		return (CMT_BALANCE);
2590e751525SEric Saxe 	case PGHW_CACHE:
2600e751525SEric Saxe 		return (CMT_AFFINITY);
2610e751525SEric Saxe 	case PGHW_POW_ACTIVE:
2620e751525SEric Saxe 	case PGHW_POW_IDLE:
2630e751525SEric Saxe 		return (CMT_BALANCE);
2640e751525SEric Saxe 	default:
2650e751525SEric Saxe 		return (CMT_NO_POLICY);
2660e751525SEric Saxe 	}
2670e751525SEric Saxe }
2680e751525SEric Saxe 
2690e751525SEric Saxe /*
2700e751525SEric Saxe  * Rank the importance of optimizing for the pg1 relationship vs.
2710e751525SEric Saxe  * the pg2 relationship.
2720e751525SEric Saxe  */
2730e751525SEric Saxe static pg_cmt_t *
2740e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2)
2750e751525SEric Saxe {
2760e751525SEric Saxe 	pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw;
2770e751525SEric Saxe 	pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw;
2780e751525SEric Saxe 
2790e751525SEric Saxe 	/*
2800e751525SEric Saxe 	 * A power domain is only important if CPUPM is enabled.
2810e751525SEric Saxe 	 */
2820e751525SEric Saxe 	if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) {
2830e751525SEric Saxe 		if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2))
2840e751525SEric Saxe 			return (pg2);
2850e751525SEric Saxe 		if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1))
2860e751525SEric Saxe 			return (pg1);
2870e751525SEric Saxe 	}
2880e751525SEric Saxe 
2890e751525SEric Saxe 	/*
2900e751525SEric Saxe 	 * Otherwise, ask the platform
2910e751525SEric Saxe 	 */
2920e751525SEric Saxe 	if (pg_plat_hw_rank(hw1, hw2) == hw1)
2930e751525SEric Saxe 		return (pg1);
2940e751525SEric Saxe 	else
2950e751525SEric Saxe 		return (pg2);
2960e751525SEric Saxe }
2970e751525SEric Saxe 
2980e751525SEric Saxe /*
2990e751525SEric Saxe  * Initialize CMT callbacks for the given PG
3000e751525SEric Saxe  */
3010e751525SEric Saxe static void
3020e751525SEric Saxe cmt_callback_init(pg_t *pg)
3030e751525SEric Saxe {
304d0e93b69SEric Saxe 	/*
305d0e93b69SEric Saxe 	 * Stick with the default callbacks if there isn't going to be
306d0e93b69SEric Saxe 	 * any CMT thread placement optimizations implemented.
307d0e93b69SEric Saxe 	 */
308d0e93b69SEric Saxe 	if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY)
309d0e93b69SEric Saxe 		return;
310d0e93b69SEric Saxe 
3110e751525SEric Saxe 	switch (((pghw_t *)pg)->pghw_hw) {
3120e751525SEric Saxe 	case PGHW_POW_ACTIVE:
3130e751525SEric Saxe 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr;
3140e751525SEric Saxe 		pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr;
3150e751525SEric Saxe 		break;
3160e751525SEric Saxe 	default:
3170e751525SEric Saxe 		pg->pg_cb.thread_swtch = cmt_ev_thread_swtch;
3180e751525SEric Saxe 
3190e751525SEric Saxe 	}
3200e751525SEric Saxe }
3210e751525SEric Saxe 
3220e751525SEric Saxe /*
3230e751525SEric Saxe  * Promote PG above it's current parent.
3241a77c24bSEric Saxe  * This is only legal if PG has an equal or greater number of CPUs than its
3251a77c24bSEric Saxe  * parent.
3261a77c24bSEric Saxe  *
3271a77c24bSEric Saxe  * This routine operates on the CPU specific processor group data (for the CPUs
3281a77c24bSEric Saxe  * in the PG being promoted), and may be invoked from a context where one CPU's
3291a77c24bSEric Saxe  * PG data is under construction. In this case the argument "pgdata", if not
3301a77c24bSEric Saxe  * NULL, is a reference to the CPU's under-construction PG data.
3310e751525SEric Saxe  */
3320e751525SEric Saxe static void
3331a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata)
3340e751525SEric Saxe {
3350e751525SEric Saxe 	pg_cmt_t	*parent;
3360e751525SEric Saxe 	group_t		*children;
3370e751525SEric Saxe 	cpu_t		*cpu;
3380e751525SEric Saxe 	group_iter_t	iter;
3390e751525SEric Saxe 	pg_cpu_itr_t	cpu_iter;
3400e751525SEric Saxe 	int		r;
3410e751525SEric Saxe 	int		err;
342*b025faeeSEric Saxe 	int		nchildren;
3430e751525SEric Saxe 
3440e751525SEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
3450e751525SEric Saxe 
3460e751525SEric Saxe 	parent = pg->cmt_parent;
3470e751525SEric Saxe 	if (parent == NULL) {
3480e751525SEric Saxe 		/*
3490e751525SEric Saxe 		 * Nothing to do
3500e751525SEric Saxe 		 */
3510e751525SEric Saxe 		return;
3520e751525SEric Saxe 	}
3530e751525SEric Saxe 
3540e751525SEric Saxe 	ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent));
3550e751525SEric Saxe 
3560e751525SEric Saxe 	/*
3570e751525SEric Saxe 	 * We're changing around the hierarchy, which is actively traversed
3580e751525SEric Saxe 	 * by the dispatcher. Pause CPUS to ensure exclusivity.
3590e751525SEric Saxe 	 */
3600e751525SEric Saxe 	pause_cpus(NULL);
3610e751525SEric Saxe 
3620e751525SEric Saxe 	/*
3630e751525SEric Saxe 	 * If necessary, update the parent's sibling set, replacing parent
3640e751525SEric Saxe 	 * with PG.
3650e751525SEric Saxe 	 */
3660e751525SEric Saxe 	if (parent->cmt_siblings) {
3670e751525SEric Saxe 		if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE)
3680e751525SEric Saxe 		    != -1) {
3690e751525SEric Saxe 			r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE);
3700e751525SEric Saxe 			ASSERT(r != -1);
3710e751525SEric Saxe 		}
3720e751525SEric Saxe 	}
3730e751525SEric Saxe 
3740e751525SEric Saxe 	/*
3750e751525SEric Saxe 	 * If the parent is at the top of the hierarchy, replace it's entry
3760e751525SEric Saxe 	 * in the root lgroup's group of top level PGs.
3770e751525SEric Saxe 	 */
3780e751525SEric Saxe 	if (parent->cmt_parent == NULL &&
3790e751525SEric Saxe 	    parent->cmt_siblings != &cmt_root->cl_pgs) {
3800e751525SEric Saxe 		if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE)
3810e751525SEric Saxe 		    != -1) {
3820e751525SEric Saxe 			r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE);
3830e751525SEric Saxe 			ASSERT(r != -1);
3840e751525SEric Saxe 		}
3850e751525SEric Saxe 	}
3860e751525SEric Saxe 
3870e751525SEric Saxe 	/*
3880e751525SEric Saxe 	 * We assume (and therefore assert) that the PG being promoted is an
3890e751525SEric Saxe 	 * only child of it's parent. Update the parent's children set
3900e751525SEric Saxe 	 * replacing PG's entry with the parent (since the parent is becoming
391*b025faeeSEric Saxe 	 * the child). Then have PG and the parent swap children sets and
392*b025faeeSEric Saxe 	 * children counts.
3930e751525SEric Saxe 	 */
3940e751525SEric Saxe 	ASSERT(GROUP_SIZE(parent->cmt_children) <= 1);
3950e751525SEric Saxe 	if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) {
3960e751525SEric Saxe 		r = group_add(parent->cmt_children, parent, GRP_NORESIZE);
3970e751525SEric Saxe 		ASSERT(r != -1);
3980e751525SEric Saxe 	}
3990e751525SEric Saxe 
4000e751525SEric Saxe 	children = pg->cmt_children;
4010e751525SEric Saxe 	pg->cmt_children = parent->cmt_children;
4020e751525SEric Saxe 	parent->cmt_children = children;
4030e751525SEric Saxe 
404*b025faeeSEric Saxe 	nchildren = pg->cmt_nchildren;
405*b025faeeSEric Saxe 	pg->cmt_nchildren = parent->cmt_nchildren;
406*b025faeeSEric Saxe 	parent->cmt_nchildren = nchildren;
407*b025faeeSEric Saxe 
4080e751525SEric Saxe 	/*
4090e751525SEric Saxe 	 * Update the sibling references for PG and it's parent
4100e751525SEric Saxe 	 */
4110e751525SEric Saxe 	pg->cmt_siblings = parent->cmt_siblings;
4120e751525SEric Saxe 	parent->cmt_siblings = pg->cmt_children;
4130e751525SEric Saxe 
4140e751525SEric Saxe 	/*
4150e751525SEric Saxe 	 * Update any cached lineages in the per CPU pg data.
4160e751525SEric Saxe 	 */
4170e751525SEric Saxe 	PG_CPU_ITR_INIT(pg, cpu_iter);
4180e751525SEric Saxe 	while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
4190e751525SEric Saxe 		int		idx;
420*b025faeeSEric Saxe 		int		sz;
4210e751525SEric Saxe 		pg_cmt_t	*cpu_pg;
4221a77c24bSEric Saxe 		cpu_pg_t	*pgd;	/* CPU's PG data */
4231a77c24bSEric Saxe 
4241a77c24bSEric Saxe 		/*
4251a77c24bSEric Saxe 		 * The CPU's whose lineage is under construction still
4261a77c24bSEric Saxe 		 * references the bootstrap CPU PG data structure.
4271a77c24bSEric Saxe 		 */
4281a77c24bSEric Saxe 		if (pg_cpu_is_bootstrapped(cpu))
4291a77c24bSEric Saxe 			pgd = pgdata;
4301a77c24bSEric Saxe 		else
4311a77c24bSEric Saxe 			pgd = cpu->cpu_pg;
4320e751525SEric Saxe 
4330e751525SEric Saxe 		/*
4340e751525SEric Saxe 		 * Iterate over the CPU's PGs updating the children
4350e751525SEric Saxe 		 * of the PG being promoted, since they have a new parent.
4360e751525SEric Saxe 		 */
4370e751525SEric Saxe 		group_iter_init(&iter);
4381a77c24bSEric Saxe 		while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) {
4390e751525SEric Saxe 			if (cpu_pg->cmt_parent == pg) {
4400e751525SEric Saxe 				cpu_pg->cmt_parent = parent;
4410e751525SEric Saxe 			}
4420e751525SEric Saxe 		}
4430e751525SEric Saxe 
4440e751525SEric Saxe 		/*
4450e751525SEric Saxe 		 * Update the CMT load balancing lineage
4460e751525SEric Saxe 		 */
4471a77c24bSEric Saxe 		if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) {
4480e751525SEric Saxe 			/*
4490e751525SEric Saxe 			 * Unless this is the CPU who's lineage is being
4500e751525SEric Saxe 			 * constructed, the PG being promoted should be
4510e751525SEric Saxe 			 * in the lineage.
4520e751525SEric Saxe 			 */
4531a77c24bSEric Saxe 			ASSERT(pg_cpu_is_bootstrapped(cpu));
4540e751525SEric Saxe 			continue;
4550e751525SEric Saxe 		}
4560e751525SEric Saxe 
4570e751525SEric Saxe 		ASSERT(idx > 0);
458*b025faeeSEric Saxe 		ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent);
4590e751525SEric Saxe 
4600e751525SEric Saxe 		/*
4610e751525SEric Saxe 		 * Have the child and the parent swap places in the CPU's
4620e751525SEric Saxe 		 * lineage
4630e751525SEric Saxe 		 */
4641a77c24bSEric Saxe 		group_remove_at(&pgd->cmt_pgs, idx);
4651a77c24bSEric Saxe 		group_remove_at(&pgd->cmt_pgs, idx - 1);
4661a77c24bSEric Saxe 		err = group_add_at(&pgd->cmt_pgs, parent, idx);
4670e751525SEric Saxe 		ASSERT(err == 0);
4681a77c24bSEric Saxe 		err = group_add_at(&pgd->cmt_pgs, pg, idx - 1);
4690e751525SEric Saxe 		ASSERT(err == 0);
470*b025faeeSEric Saxe 
471*b025faeeSEric Saxe 		/*
472*b025faeeSEric Saxe 		 * Ensure cmt_lineage references CPU's leaf PG.
473*b025faeeSEric Saxe 		 * Since cmt_pgs is top-down ordered, the bottom is the last
474*b025faeeSEric Saxe 		 * element.
475*b025faeeSEric Saxe 		 */
476*b025faeeSEric Saxe 		if ((sz = GROUP_SIZE(&pgd->cmt_pgs)) > 0)
477*b025faeeSEric Saxe 			pgd->cmt_lineage = GROUP_ACCESS(&pgd->cmt_pgs, sz - 1);
4780e751525SEric Saxe 	}
4790e751525SEric Saxe 
4800e751525SEric Saxe 	/*
4810e751525SEric Saxe 	 * Update the parent references for PG and it's parent
4820e751525SEric Saxe 	 */
4830e751525SEric Saxe 	pg->cmt_parent = parent->cmt_parent;
4840e751525SEric Saxe 	parent->cmt_parent = pg;
4850e751525SEric Saxe 
4860e751525SEric Saxe 	start_cpus();
487fb2f18f8Sesaxe }
488fb2f18f8Sesaxe 
489fb2f18f8Sesaxe /*
490fb2f18f8Sesaxe  * CMT class callback for a new CPU entering the system
4911a77c24bSEric Saxe  *
4921a77c24bSEric Saxe  * This routine operates on the CPU specific processor group data (for the CPU
4931a77c24bSEric Saxe  * being initialized). The argument "pgdata" is a reference to the CPU's PG
4941a77c24bSEric Saxe  * data to be constructed.
4951a77c24bSEric Saxe  *
4961a77c24bSEric Saxe  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
4971a77c24bSEric Saxe  * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it
4981a77c24bSEric Saxe  * calls must be careful to operate only on the "pgdata" argument, and not
4991a77c24bSEric Saxe  * cp->cpu_pg.
500fb2f18f8Sesaxe  */
501fb2f18f8Sesaxe static void
5021a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata)
503fb2f18f8Sesaxe {
504fb2f18f8Sesaxe 	pg_cmt_t	*pg;
505fb2f18f8Sesaxe 	group_t		*cmt_pgs;
5060e751525SEric Saxe 	int		levels, level;
507fb2f18f8Sesaxe 	pghw_type_t	hw;
508fb2f18f8Sesaxe 	pg_t		*pg_cache = NULL;
509fb2f18f8Sesaxe 	pg_cmt_t	*cpu_cmt_hier[PGHW_NUM_COMPONENTS];
510fb2f18f8Sesaxe 	lgrp_handle_t	lgrp_handle;
511fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
512ef4f35d8SEric Saxe 	cmt_lineage_validation_t	lineage_status;
513fb2f18f8Sesaxe 
514fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
5151a77c24bSEric Saxe 	ASSERT(pg_cpu_is_bootstrapped(cp));
516fb2f18f8Sesaxe 
5170e751525SEric Saxe 	if (cmt_sched_disabled)
5180e751525SEric Saxe 		return;
5190e751525SEric Saxe 
520fb2f18f8Sesaxe 	/*
521fb2f18f8Sesaxe 	 * A new CPU is coming into the system.
522fb2f18f8Sesaxe 	 * Interrogate the platform to see if the CPU
5230e751525SEric Saxe 	 * has any performance or efficiency relevant
5240e751525SEric Saxe 	 * sharing relationships
525fb2f18f8Sesaxe 	 */
5261a77c24bSEric Saxe 	cmt_pgs = &pgdata->cmt_pgs;
5271a77c24bSEric Saxe 	pgdata->cmt_lineage = NULL;
528fb2f18f8Sesaxe 
529fb2f18f8Sesaxe 	bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier));
5300e751525SEric Saxe 	levels = 0;
531fb2f18f8Sesaxe 	for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) {
532fb2f18f8Sesaxe 
5330e751525SEric Saxe 		pg_cmt_policy_t	policy;
5340e751525SEric Saxe 
535fb2f18f8Sesaxe 		/*
5360e751525SEric Saxe 		 * We're only interested in the hw sharing relationships
5370e751525SEric Saxe 		 * for which we know how to optimize.
538fb2f18f8Sesaxe 		 */
5390e751525SEric Saxe 		policy = pg_cmt_policy(hw);
5400e751525SEric Saxe 		if (policy == CMT_NO_POLICY ||
5410e751525SEric Saxe 		    pg_plat_hw_shared(cp, hw) == 0)
542fb2f18f8Sesaxe 			continue;
543fb2f18f8Sesaxe 
544fb2f18f8Sesaxe 		/*
545d0e93b69SEric Saxe 		 * We will still create the PGs for hardware sharing
546d0e93b69SEric Saxe 		 * relationships that have been blacklisted, but won't
547d0e93b69SEric Saxe 		 * implement CMT thread placement optimizations against them.
5480e751525SEric Saxe 		 */
549d0e93b69SEric Saxe 		if (cmt_hw_blacklisted[hw] == 1)
550d0e93b69SEric Saxe 			policy = CMT_NO_POLICY;
5510e751525SEric Saxe 
5520e751525SEric Saxe 		/*
553fb2f18f8Sesaxe 		 * Find (or create) the PG associated with
554fb2f18f8Sesaxe 		 * the hw sharing relationship in which cp
555fb2f18f8Sesaxe 		 * belongs.
556fb2f18f8Sesaxe 		 *
557fb2f18f8Sesaxe 		 * Determine if a suitable PG already
558fb2f18f8Sesaxe 		 * exists, or if one needs to be created.
559fb2f18f8Sesaxe 		 */
560fb2f18f8Sesaxe 		pg = (pg_cmt_t *)pghw_place_cpu(cp, hw);
561fb2f18f8Sesaxe 		if (pg == NULL) {
562fb2f18f8Sesaxe 			/*
563fb2f18f8Sesaxe 			 * Create a new one.
564fb2f18f8Sesaxe 			 * Initialize the common...
565fb2f18f8Sesaxe 			 */
566fb2f18f8Sesaxe 			pg = (pg_cmt_t *)pg_create(pg_cmt_class_id);
567fb2f18f8Sesaxe 
568fb2f18f8Sesaxe 			/* ... physical ... */
569fb2f18f8Sesaxe 			pghw_init((pghw_t *)pg, cp, hw);
570fb2f18f8Sesaxe 
571fb2f18f8Sesaxe 			/*
572fb2f18f8Sesaxe 			 * ... and CMT specific portions of the
573fb2f18f8Sesaxe 			 * structure.
574fb2f18f8Sesaxe 			 */
5750e751525SEric Saxe 			pg->cmt_policy = policy;
5760e751525SEric Saxe 
5770e751525SEric Saxe 			/* CMT event callbacks */
5780e751525SEric Saxe 			cmt_callback_init((pg_t *)pg);
5790e751525SEric Saxe 
580fb2f18f8Sesaxe 			bitset_init(&pg->cmt_cpus_actv_set);
581fb2f18f8Sesaxe 			group_create(&pg->cmt_cpus_actv);
582fb2f18f8Sesaxe 		} else {
583fb2f18f8Sesaxe 			ASSERT(IS_CMT_PG(pg));
584fb2f18f8Sesaxe 		}
585fb2f18f8Sesaxe 
586fb2f18f8Sesaxe 		/* Add the CPU to the PG */
5871a77c24bSEric Saxe 		pg_cpu_add((pg_t *)pg, cp, pgdata);
588fb2f18f8Sesaxe 
589fb2f18f8Sesaxe 		/*
5906890d023SEric Saxe 		 * Ensure capacity of the active CPU group/bitset
591fb2f18f8Sesaxe 		 */
592fb2f18f8Sesaxe 		group_expand(&pg->cmt_cpus_actv,
593fb2f18f8Sesaxe 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
594fb2f18f8Sesaxe 
595fb2f18f8Sesaxe 		if (cp->cpu_seqid >=
596fb2f18f8Sesaxe 		    bitset_capacity(&pg->cmt_cpus_actv_set)) {
597fb2f18f8Sesaxe 			bitset_resize(&pg->cmt_cpus_actv_set,
598fb2f18f8Sesaxe 			    cp->cpu_seqid + 1);
599fb2f18f8Sesaxe 		}
600fb2f18f8Sesaxe 
601fb2f18f8Sesaxe 		/*
6020e751525SEric Saxe 		 * Build a lineage of CMT PGs for load balancing / coalescence
603fb2f18f8Sesaxe 		 */
6040e751525SEric Saxe 		if (policy & (CMT_BALANCE | CMT_COALESCE)) {
6050e751525SEric Saxe 			cpu_cmt_hier[levels++] = pg;
606fb2f18f8Sesaxe 		}
607fb2f18f8Sesaxe 
608fb2f18f8Sesaxe 		/* Cache this for later */
609fb2f18f8Sesaxe 		if (hw == PGHW_CACHE)
610fb2f18f8Sesaxe 			pg_cache = (pg_t *)pg;
611fb2f18f8Sesaxe 	}
612fb2f18f8Sesaxe 
6130e751525SEric Saxe 	group_expand(cmt_pgs, levels);
6146890d023SEric Saxe 
6156890d023SEric Saxe 	if (cmt_root == NULL)
6166890d023SEric Saxe 		cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand());
617fb2f18f8Sesaxe 
618fb2f18f8Sesaxe 	/*
6190e751525SEric Saxe 	 * Find the lgrp that encapsulates this CPU's CMT hierarchy
6206890d023SEric Saxe 	 */
6216890d023SEric Saxe 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
6226890d023SEric Saxe 	if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL)
6236890d023SEric Saxe 		lgrp = pg_cmt_lgrp_create(lgrp_handle);
6246890d023SEric Saxe 
6256890d023SEric Saxe 	/*
6260e751525SEric Saxe 	 * Ascendingly sort the PGs in the lineage by number of CPUs
6270e751525SEric Saxe 	 */
6280e751525SEric Saxe 	pg_cmt_hier_sort(cpu_cmt_hier, levels);
6290e751525SEric Saxe 
6300e751525SEric Saxe 	/*
6310e751525SEric Saxe 	 * Examine the lineage and validate it.
6320e751525SEric Saxe 	 * This routine will also try to fix the lineage along with the
6330e751525SEric Saxe 	 * rest of the PG hierarchy should it detect an issue.
6340e751525SEric Saxe 	 *
635ef4f35d8SEric Saxe 	 * If it returns anything other than VALID or REPAIRED, an
636ef4f35d8SEric Saxe 	 * unrecoverable error has occurred, and we cannot proceed.
6370e751525SEric Saxe 	 */
6381a77c24bSEric Saxe 	lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata);
639ef4f35d8SEric Saxe 	if ((lineage_status != CMT_LINEAGE_VALID) &&
6401a77c24bSEric Saxe 	    (lineage_status != CMT_LINEAGE_REPAIRED)) {
6411a77c24bSEric Saxe 		/*
6421a77c24bSEric Saxe 		 * In the case of an unrecoverable error where CMT scheduling
6431a77c24bSEric Saxe 		 * has been disabled, assert that the under construction CPU's
6441a77c24bSEric Saxe 		 * PG data has an empty CMT load balancing lineage.
6451a77c24bSEric Saxe 		 */
6461a77c24bSEric Saxe 		ASSERT((cmt_sched_disabled == 0) ||
6471a77c24bSEric Saxe 		    (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0));
6480e751525SEric Saxe 		return;
6491a77c24bSEric Saxe 	}
6500e751525SEric Saxe 
6510e751525SEric Saxe 	/*
6520e751525SEric Saxe 	 * For existing PGs in the lineage, verify that the parent is
6530e751525SEric Saxe 	 * correct, as the generation in the lineage may have changed
6540e751525SEric Saxe 	 * as a result of the sorting. Start the traversal at the top
6550e751525SEric Saxe 	 * of the lineage, moving down.
6560e751525SEric Saxe 	 */
6570e751525SEric Saxe 	for (level = levels - 1; level >= 0; ) {
6580e751525SEric Saxe 		int reorg;
6590e751525SEric Saxe 
6600e751525SEric Saxe 		reorg = 0;
6610e751525SEric Saxe 		pg = cpu_cmt_hier[level];
6620e751525SEric Saxe 
6630e751525SEric Saxe 		/*
6640e751525SEric Saxe 		 * Promote PGs at an incorrect generation into place.
6650e751525SEric Saxe 		 */
6660e751525SEric Saxe 		while (pg->cmt_parent &&
6670e751525SEric Saxe 		    pg->cmt_parent != cpu_cmt_hier[level + 1]) {
6681a77c24bSEric Saxe 			cmt_hier_promote(pg, pgdata);
6690e751525SEric Saxe 			reorg++;
6700e751525SEric Saxe 		}
6710e751525SEric Saxe 		if (reorg > 0)
6720e751525SEric Saxe 			level = levels - 1;
6730e751525SEric Saxe 		else
6740e751525SEric Saxe 			level--;
6750e751525SEric Saxe 	}
6760e751525SEric Saxe 
6770e751525SEric Saxe 	/*
6786890d023SEric Saxe 	 * For each of the PGs in the CPU's lineage:
6790e751525SEric Saxe 	 *	- Add an entry in the CPU sorted CMT PG group
6800e751525SEric Saxe 	 *	  which is used for top down CMT load balancing
681fb2f18f8Sesaxe 	 *	- Tie the PG into the CMT hierarchy by connecting
682fb2f18f8Sesaxe 	 *	  it to it's parent and siblings.
683fb2f18f8Sesaxe 	 */
6840e751525SEric Saxe 	for (level = 0; level < levels; level++) {
685fb2f18f8Sesaxe 		uint_t		children;
686fb2f18f8Sesaxe 		int		err;
687fb2f18f8Sesaxe 
688fb2f18f8Sesaxe 		pg = cpu_cmt_hier[level];
6890e751525SEric Saxe 		err = group_add_at(cmt_pgs, pg, levels - level - 1);
690fb2f18f8Sesaxe 		ASSERT(err == 0);
691fb2f18f8Sesaxe 
692fb2f18f8Sesaxe 		if (level == 0)
6931a77c24bSEric Saxe 			pgdata->cmt_lineage = (pg_t *)pg;
694fb2f18f8Sesaxe 
695fb2f18f8Sesaxe 		if (pg->cmt_siblings != NULL) {
696fb2f18f8Sesaxe 			/* Already initialized */
697fb2f18f8Sesaxe 			ASSERT(pg->cmt_parent == NULL ||
698fb2f18f8Sesaxe 			    pg->cmt_parent == cpu_cmt_hier[level + 1]);
699fb2f18f8Sesaxe 			ASSERT(pg->cmt_siblings == &lgrp->cl_pgs ||
700c416da2dSjb145095 			    ((pg->cmt_parent != NULL) &&
701c416da2dSjb145095 			    pg->cmt_siblings == pg->cmt_parent->cmt_children));
702fb2f18f8Sesaxe 			continue;
703fb2f18f8Sesaxe 		}
704fb2f18f8Sesaxe 
7050e751525SEric Saxe 		if ((level + 1) == levels) {
706fb2f18f8Sesaxe 			pg->cmt_parent = NULL;
7076890d023SEric Saxe 
708fb2f18f8Sesaxe 			pg->cmt_siblings = &lgrp->cl_pgs;
709fb2f18f8Sesaxe 			children = ++lgrp->cl_npgs;
7100e751525SEric Saxe 			if (cmt_root != lgrp)
7116890d023SEric Saxe 				cmt_root->cl_npgs++;
712fb2f18f8Sesaxe 		} else {
713fb2f18f8Sesaxe 			pg->cmt_parent = cpu_cmt_hier[level + 1];
714fb2f18f8Sesaxe 
715fb2f18f8Sesaxe 			/*
716fb2f18f8Sesaxe 			 * A good parent keeps track of their children.
717fb2f18f8Sesaxe 			 * The parent's children group is also the PG's
718fb2f18f8Sesaxe 			 * siblings.
719fb2f18f8Sesaxe 			 */
720fb2f18f8Sesaxe 			if (pg->cmt_parent->cmt_children == NULL) {
721fb2f18f8Sesaxe 				pg->cmt_parent->cmt_children =
722fb2f18f8Sesaxe 				    kmem_zalloc(sizeof (group_t), KM_SLEEP);
723fb2f18f8Sesaxe 				group_create(pg->cmt_parent->cmt_children);
724fb2f18f8Sesaxe 			}
725fb2f18f8Sesaxe 			pg->cmt_siblings = pg->cmt_parent->cmt_children;
726fb2f18f8Sesaxe 			children = ++pg->cmt_parent->cmt_nchildren;
727fb2f18f8Sesaxe 		}
7286890d023SEric Saxe 
729fb2f18f8Sesaxe 		group_expand(pg->cmt_siblings, children);
7306890d023SEric Saxe 		group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs);
731fb2f18f8Sesaxe 	}
732fb2f18f8Sesaxe 
733fb2f18f8Sesaxe 	/*
734fb2f18f8Sesaxe 	 * Cache the chip and core IDs in the cpu_t->cpu_physid structure
735fb2f18f8Sesaxe 	 * for fast lookups later.
736fb2f18f8Sesaxe 	 */
737fb2f18f8Sesaxe 	if (cp->cpu_physid) {
738fb2f18f8Sesaxe 		cp->cpu_physid->cpu_chipid =
739fb2f18f8Sesaxe 		    pg_plat_hw_instance_id(cp, PGHW_CHIP);
740fb2f18f8Sesaxe 		cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp);
741fb2f18f8Sesaxe 
742fb2f18f8Sesaxe 		/*
743fb2f18f8Sesaxe 		 * If this cpu has a PG representing shared cache, then set
744fb2f18f8Sesaxe 		 * cpu_cacheid to that PG's logical id
745fb2f18f8Sesaxe 		 */
746fb2f18f8Sesaxe 		if (pg_cache)
747fb2f18f8Sesaxe 			cp->cpu_physid->cpu_cacheid = pg_cache->pg_id;
748fb2f18f8Sesaxe 	}
749fb2f18f8Sesaxe 
750fb2f18f8Sesaxe 	/* CPU0 only initialization */
751fb2f18f8Sesaxe 	if (is_cpu0) {
752fb2f18f8Sesaxe 		is_cpu0 = 0;
753a6604450Sesaxe 		cpu0_lgrp = lgrp;
754fb2f18f8Sesaxe 	}
755fb2f18f8Sesaxe 
756fb2f18f8Sesaxe }
757fb2f18f8Sesaxe 
758fb2f18f8Sesaxe /*
759fb2f18f8Sesaxe  * Class callback when a CPU is leaving the system (deletion)
7601a77c24bSEric Saxe  *
7611a77c24bSEric Saxe  * "pgdata" is a reference to the CPU's PG data to be deconstructed.
7621a77c24bSEric Saxe  *
7631a77c24bSEric Saxe  * cp->cpu_pg is used by the dispatcher to access the CPU's PG data
7641a77c24bSEric Saxe  * references a "bootstrap" structure across this function's invocation.
7651a77c24bSEric Saxe  * pg_cmt_cpu_init() and the routines it calls must be careful to operate only
7661a77c24bSEric Saxe  * on the "pgdata" argument, and not cp->cpu_pg.
767fb2f18f8Sesaxe  */
768fb2f18f8Sesaxe static void
7691a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata)
770fb2f18f8Sesaxe {
771fb2f18f8Sesaxe 	group_iter_t	i;
772fb2f18f8Sesaxe 	pg_cmt_t	*pg;
773fb2f18f8Sesaxe 	group_t		*pgs, *cmt_pgs;
774fb2f18f8Sesaxe 	lgrp_handle_t	lgrp_handle;
775fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
776fb2f18f8Sesaxe 
7770e751525SEric Saxe 	if (cmt_sched_disabled)
7780e751525SEric Saxe 		return;
7790e751525SEric Saxe 
7801a77c24bSEric Saxe 	ASSERT(pg_cpu_is_bootstrapped(cp));
7811a77c24bSEric Saxe 
7821a77c24bSEric Saxe 	pgs = &pgdata->pgs;
7831a77c24bSEric Saxe 	cmt_pgs = &pgdata->cmt_pgs;
784fb2f18f8Sesaxe 
785fb2f18f8Sesaxe 	/*
786fb2f18f8Sesaxe 	 * Find the lgroup that encapsulates this CPU's CMT hierarchy
787fb2f18f8Sesaxe 	 */
788fb2f18f8Sesaxe 	lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id);
789a6604450Sesaxe 
790fb2f18f8Sesaxe 	lgrp = pg_cmt_find_lgrp(lgrp_handle);
7913e81cacfSEric Saxe 	if (ncpus == 1 && lgrp != cpu0_lgrp) {
792a6604450Sesaxe 		/*
7933e81cacfSEric Saxe 		 * One might wonder how we could be deconfiguring the
7943e81cacfSEric Saxe 		 * only CPU in the system.
795a6604450Sesaxe 		 *
7963e81cacfSEric Saxe 		 * On Starcat systems when null_proc_lpa is detected,
7973e81cacfSEric Saxe 		 * the boot CPU (which is already configured into a leaf
7983e81cacfSEric Saxe 		 * lgroup), is moved into the root lgroup. This is done by
7993e81cacfSEric Saxe 		 * deconfiguring it from both lgroups and processor
8003e81cacfSEric Saxe 		 * groups), and then later reconfiguring it back in.  This
8013e81cacfSEric Saxe 		 * call to pg_cmt_cpu_fini() is part of that deconfiguration.
8023e81cacfSEric Saxe 		 *
8033e81cacfSEric Saxe 		 * This special case is detected by noting that the platform
8043e81cacfSEric Saxe 		 * has changed the CPU's lgrp affiliation (since it now
8053e81cacfSEric Saxe 		 * belongs in the root). In this case, use the cmt_lgrp_t
8063e81cacfSEric Saxe 		 * cached for the boot CPU, since this is what needs to be
8073e81cacfSEric Saxe 		 * torn down.
808a6604450Sesaxe 		 */
809a6604450Sesaxe 		lgrp = cpu0_lgrp;
810a6604450Sesaxe 	}
811fb2f18f8Sesaxe 
8123e81cacfSEric Saxe 	ASSERT(lgrp != NULL);
8133e81cacfSEric Saxe 
814fb2f18f8Sesaxe 	/*
815fb2f18f8Sesaxe 	 * First, clean up anything load balancing specific for each of
816fb2f18f8Sesaxe 	 * the CPU's PGs that participated in CMT load balancing
817fb2f18f8Sesaxe 	 */
8181a77c24bSEric Saxe 	pg = (pg_cmt_t *)pgdata->cmt_lineage;
819fb2f18f8Sesaxe 	while (pg != NULL) {
820fb2f18f8Sesaxe 
821fb2f18f8Sesaxe 		/*
822fb2f18f8Sesaxe 		 * Remove the PG from the CPU's load balancing lineage
823fb2f18f8Sesaxe 		 */
824fb2f18f8Sesaxe 		(void) group_remove(cmt_pgs, pg, GRP_RESIZE);
825fb2f18f8Sesaxe 
826fb2f18f8Sesaxe 		/*
827fb2f18f8Sesaxe 		 * If it's about to become empty, destroy it's children
828fb2f18f8Sesaxe 		 * group, and remove it's reference from it's siblings.
829fb2f18f8Sesaxe 		 * This is done here (rather than below) to avoid removing
830fb2f18f8Sesaxe 		 * our reference from a PG that we just eliminated.
831fb2f18f8Sesaxe 		 */
832fb2f18f8Sesaxe 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) {
833fb2f18f8Sesaxe 			if (pg->cmt_children != NULL)
834fb2f18f8Sesaxe 				group_destroy(pg->cmt_children);
835fb2f18f8Sesaxe 			if (pg->cmt_siblings != NULL) {
836fb2f18f8Sesaxe 				if (pg->cmt_siblings == &lgrp->cl_pgs)
837fb2f18f8Sesaxe 					lgrp->cl_npgs--;
838fb2f18f8Sesaxe 				else
839fb2f18f8Sesaxe 					pg->cmt_parent->cmt_nchildren--;
840fb2f18f8Sesaxe 			}
841fb2f18f8Sesaxe 		}
842fb2f18f8Sesaxe 		pg = pg->cmt_parent;
843fb2f18f8Sesaxe 	}
844fb2f18f8Sesaxe 	ASSERT(GROUP_SIZE(cmt_pgs) == 0);
845fb2f18f8Sesaxe 
846fb2f18f8Sesaxe 	/*
847fb2f18f8Sesaxe 	 * Now that the load balancing lineage updates have happened,
848fb2f18f8Sesaxe 	 * remove the CPU from all it's PGs (destroying any that become
849fb2f18f8Sesaxe 	 * empty).
850fb2f18f8Sesaxe 	 */
851fb2f18f8Sesaxe 	group_iter_init(&i);
852fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
853fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
854fb2f18f8Sesaxe 			continue;
855fb2f18f8Sesaxe 
8561a77c24bSEric Saxe 		pg_cpu_delete((pg_t *)pg, cp, pgdata);
857fb2f18f8Sesaxe 		/*
858fb2f18f8Sesaxe 		 * Deleting the CPU from the PG changes the CPU's
859fb2f18f8Sesaxe 		 * PG group over which we are actively iterating
860fb2f18f8Sesaxe 		 * Re-initialize the iteration
861fb2f18f8Sesaxe 		 */
862fb2f18f8Sesaxe 		group_iter_init(&i);
863fb2f18f8Sesaxe 
864fb2f18f8Sesaxe 		if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) {
865fb2f18f8Sesaxe 
866fb2f18f8Sesaxe 			/*
867fb2f18f8Sesaxe 			 * The PG has become zero sized, so destroy it.
868fb2f18f8Sesaxe 			 */
869fb2f18f8Sesaxe 			group_destroy(&pg->cmt_cpus_actv);
870fb2f18f8Sesaxe 			bitset_fini(&pg->cmt_cpus_actv_set);
871fb2f18f8Sesaxe 			pghw_fini((pghw_t *)pg);
872fb2f18f8Sesaxe 
873fb2f18f8Sesaxe 			pg_destroy((pg_t *)pg);
874fb2f18f8Sesaxe 		}
875fb2f18f8Sesaxe 	}
876fb2f18f8Sesaxe }
877fb2f18f8Sesaxe 
878fb2f18f8Sesaxe /*
879fb2f18f8Sesaxe  * Class callback when a CPU is entering a cpu partition
880fb2f18f8Sesaxe  */
881fb2f18f8Sesaxe static void
882fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp)
883fb2f18f8Sesaxe {
884fb2f18f8Sesaxe 	group_t		*pgs;
885fb2f18f8Sesaxe 	pg_t		*pg;
886fb2f18f8Sesaxe 	group_iter_t	i;
887fb2f18f8Sesaxe 
888fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
889fb2f18f8Sesaxe 
8900e751525SEric Saxe 	if (cmt_sched_disabled)
8910e751525SEric Saxe 		return;
8920e751525SEric Saxe 
893fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
894fb2f18f8Sesaxe 
895fb2f18f8Sesaxe 	/*
896fb2f18f8Sesaxe 	 * Ensure that the new partition's PG bitset
897fb2f18f8Sesaxe 	 * is large enough for all CMT PG's to which cp
898fb2f18f8Sesaxe 	 * belongs
899fb2f18f8Sesaxe 	 */
900fb2f18f8Sesaxe 	group_iter_init(&i);
901fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
902fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
903fb2f18f8Sesaxe 			continue;
904fb2f18f8Sesaxe 
905fb2f18f8Sesaxe 		if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id)
906fb2f18f8Sesaxe 			bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1);
907fb2f18f8Sesaxe 	}
908fb2f18f8Sesaxe }
909fb2f18f8Sesaxe 
910fb2f18f8Sesaxe /*
911fb2f18f8Sesaxe  * Class callback when a CPU is actually moving partitions
912fb2f18f8Sesaxe  */
913fb2f18f8Sesaxe static void
914fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
915fb2f18f8Sesaxe {
916fb2f18f8Sesaxe 	cpu_t		*cpp;
917fb2f18f8Sesaxe 	group_t		*pgs;
918fb2f18f8Sesaxe 	pg_t		*pg;
919fb2f18f8Sesaxe 	group_iter_t	pg_iter;
920fb2f18f8Sesaxe 	pg_cpu_itr_t	cpu_iter;
921fb2f18f8Sesaxe 	boolean_t	found;
922fb2f18f8Sesaxe 
923fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
924fb2f18f8Sesaxe 
9250e751525SEric Saxe 	if (cmt_sched_disabled)
9260e751525SEric Saxe 		return;
9270e751525SEric Saxe 
928fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
929fb2f18f8Sesaxe 	group_iter_init(&pg_iter);
930fb2f18f8Sesaxe 
931fb2f18f8Sesaxe 	/*
932fb2f18f8Sesaxe 	 * Iterate over the CPUs CMT PGs
933fb2f18f8Sesaxe 	 */
934fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &pg_iter)) != NULL) {
935fb2f18f8Sesaxe 
936fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
937fb2f18f8Sesaxe 			continue;
938fb2f18f8Sesaxe 
939fb2f18f8Sesaxe 		/*
940fb2f18f8Sesaxe 		 * Add the PG to the bitset in the new partition.
941fb2f18f8Sesaxe 		 */
942fb2f18f8Sesaxe 		bitset_add(&newpp->cp_cmt_pgs, pg->pg_id);
943fb2f18f8Sesaxe 
944fb2f18f8Sesaxe 		/*
945fb2f18f8Sesaxe 		 * Remove the PG from the bitset in the old partition
946fb2f18f8Sesaxe 		 * if the last of the PG's CPUs have left.
947fb2f18f8Sesaxe 		 */
948fb2f18f8Sesaxe 		found = B_FALSE;
949fb2f18f8Sesaxe 		PG_CPU_ITR_INIT(pg, cpu_iter);
950fb2f18f8Sesaxe 		while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) {
951fb2f18f8Sesaxe 			if (cpp == cp)
952fb2f18f8Sesaxe 				continue;
953a6604450Sesaxe 			if (CPU_ACTIVE(cpp) &&
954a6604450Sesaxe 			    cpp->cpu_part->cp_id == oldpp->cp_id) {
955fb2f18f8Sesaxe 				found = B_TRUE;
956fb2f18f8Sesaxe 				break;
957fb2f18f8Sesaxe 			}
958fb2f18f8Sesaxe 		}
959fb2f18f8Sesaxe 		if (!found)
960fb2f18f8Sesaxe 			bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id);
961fb2f18f8Sesaxe 	}
962fb2f18f8Sesaxe }
963fb2f18f8Sesaxe 
964fb2f18f8Sesaxe /*
965fb2f18f8Sesaxe  * Class callback when a CPU becomes active (online)
966fb2f18f8Sesaxe  *
967fb2f18f8Sesaxe  * This is called in a context where CPUs are paused
968fb2f18f8Sesaxe  */
969fb2f18f8Sesaxe static void
970fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp)
971fb2f18f8Sesaxe {
972fb2f18f8Sesaxe 	int		err;
973fb2f18f8Sesaxe 	group_iter_t	i;
974fb2f18f8Sesaxe 	pg_cmt_t	*pg;
975fb2f18f8Sesaxe 	group_t		*pgs;
976fb2f18f8Sesaxe 
977fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
978fb2f18f8Sesaxe 
9790e751525SEric Saxe 	if (cmt_sched_disabled)
9800e751525SEric Saxe 		return;
9810e751525SEric Saxe 
982fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
983fb2f18f8Sesaxe 	group_iter_init(&i);
984fb2f18f8Sesaxe 
985fb2f18f8Sesaxe 	/*
986fb2f18f8Sesaxe 	 * Iterate over the CPU's PGs
987fb2f18f8Sesaxe 	 */
988fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
989fb2f18f8Sesaxe 
990fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
991fb2f18f8Sesaxe 			continue;
992fb2f18f8Sesaxe 
993fb2f18f8Sesaxe 		err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
994fb2f18f8Sesaxe 		ASSERT(err == 0);
995fb2f18f8Sesaxe 
996fb2f18f8Sesaxe 		/*
997fb2f18f8Sesaxe 		 * If this is the first active CPU in the PG, and it
998fb2f18f8Sesaxe 		 * represents a hardware sharing relationship over which
999fb2f18f8Sesaxe 		 * CMT load balancing is performed, add it as a candidate
1000fb2f18f8Sesaxe 		 * for balancing with it's siblings.
1001fb2f18f8Sesaxe 		 */
1002fb2f18f8Sesaxe 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 &&
10030e751525SEric Saxe 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
1004fb2f18f8Sesaxe 			err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE);
1005fb2f18f8Sesaxe 			ASSERT(err == 0);
10066890d023SEric Saxe 
10076890d023SEric Saxe 			/*
10086890d023SEric Saxe 			 * If this is a top level PG, add it as a balancing
10090e751525SEric Saxe 			 * candidate when balancing within the root lgroup.
10106890d023SEric Saxe 			 */
10110e751525SEric Saxe 			if (pg->cmt_parent == NULL &&
10120e751525SEric Saxe 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
10136890d023SEric Saxe 				err = group_add(&cmt_root->cl_pgs, pg,
10146890d023SEric Saxe 				    GRP_NORESIZE);
10156890d023SEric Saxe 				ASSERT(err == 0);
10166890d023SEric Saxe 			}
1017fb2f18f8Sesaxe 		}
1018fb2f18f8Sesaxe 
1019fb2f18f8Sesaxe 		/*
1020fb2f18f8Sesaxe 		 * Notate the CPU in the PGs active CPU bitset.
1021fb2f18f8Sesaxe 		 * Also notate the PG as being active in it's associated
1022fb2f18f8Sesaxe 		 * partition
1023fb2f18f8Sesaxe 		 */
1024fb2f18f8Sesaxe 		bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1025fb2f18f8Sesaxe 		bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id);
1026fb2f18f8Sesaxe 	}
1027fb2f18f8Sesaxe }
1028fb2f18f8Sesaxe 
1029fb2f18f8Sesaxe /*
1030fb2f18f8Sesaxe  * Class callback when a CPU goes inactive (offline)
1031fb2f18f8Sesaxe  *
1032fb2f18f8Sesaxe  * This is called in a context where CPUs are paused
1033fb2f18f8Sesaxe  */
1034fb2f18f8Sesaxe static void
1035fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp)
1036fb2f18f8Sesaxe {
1037fb2f18f8Sesaxe 	int		err;
1038fb2f18f8Sesaxe 	group_t		*pgs;
1039fb2f18f8Sesaxe 	pg_cmt_t	*pg;
1040fb2f18f8Sesaxe 	cpu_t		*cpp;
1041fb2f18f8Sesaxe 	group_iter_t	i;
1042fb2f18f8Sesaxe 	pg_cpu_itr_t	cpu_itr;
1043fb2f18f8Sesaxe 	boolean_t	found;
1044fb2f18f8Sesaxe 
1045fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
1046fb2f18f8Sesaxe 
10470e751525SEric Saxe 	if (cmt_sched_disabled)
10480e751525SEric Saxe 		return;
10490e751525SEric Saxe 
1050fb2f18f8Sesaxe 	pgs = &cp->cpu_pg->pgs;
1051fb2f18f8Sesaxe 	group_iter_init(&i);
1052fb2f18f8Sesaxe 
1053fb2f18f8Sesaxe 	while ((pg = group_iterate(pgs, &i)) != NULL) {
1054fb2f18f8Sesaxe 
1055fb2f18f8Sesaxe 		if (IS_CMT_PG(pg) == 0)
1056fb2f18f8Sesaxe 			continue;
1057fb2f18f8Sesaxe 
1058fb2f18f8Sesaxe 		/*
1059fb2f18f8Sesaxe 		 * Remove the CPU from the CMT PGs active CPU group
1060fb2f18f8Sesaxe 		 * bitmap
1061fb2f18f8Sesaxe 		 */
1062fb2f18f8Sesaxe 		err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE);
1063fb2f18f8Sesaxe 		ASSERT(err == 0);
1064fb2f18f8Sesaxe 
1065fb2f18f8Sesaxe 		bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid);
1066fb2f18f8Sesaxe 
1067fb2f18f8Sesaxe 		/*
1068fb2f18f8Sesaxe 		 * If there are no more active CPUs in this PG over which
1069fb2f18f8Sesaxe 		 * load was balanced, remove it as a balancing candidate.
1070fb2f18f8Sesaxe 		 */
1071fb2f18f8Sesaxe 		if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 &&
10720e751525SEric Saxe 		    (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) {
1073fb2f18f8Sesaxe 			err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
1074fb2f18f8Sesaxe 			ASSERT(err == 0);
10756890d023SEric Saxe 
10760e751525SEric Saxe 			if (pg->cmt_parent == NULL &&
10770e751525SEric Saxe 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
10786890d023SEric Saxe 				err = group_remove(&cmt_root->cl_pgs, pg,
10796890d023SEric Saxe 				    GRP_NORESIZE);
10806890d023SEric Saxe 				ASSERT(err == 0);
10816890d023SEric Saxe 			}
1082fb2f18f8Sesaxe 		}
1083fb2f18f8Sesaxe 
1084fb2f18f8Sesaxe 		/*
1085fb2f18f8Sesaxe 		 * Assert the number of active CPUs does not exceed
1086fb2f18f8Sesaxe 		 * the total number of CPUs in the PG
1087fb2f18f8Sesaxe 		 */
1088fb2f18f8Sesaxe 		ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <=
1089fb2f18f8Sesaxe 		    GROUP_SIZE(&((pg_t *)pg)->pg_cpus));
1090fb2f18f8Sesaxe 
1091fb2f18f8Sesaxe 		/*
1092fb2f18f8Sesaxe 		 * Update the PG bitset in the CPU's old partition
1093fb2f18f8Sesaxe 		 */
1094fb2f18f8Sesaxe 		found = B_FALSE;
1095fb2f18f8Sesaxe 		PG_CPU_ITR_INIT(pg, cpu_itr);
1096fb2f18f8Sesaxe 		while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) {
1097fb2f18f8Sesaxe 			if (cpp == cp)
1098fb2f18f8Sesaxe 				continue;
1099a6604450Sesaxe 			if (CPU_ACTIVE(cpp) &&
1100a6604450Sesaxe 			    cpp->cpu_part->cp_id == cp->cpu_part->cp_id) {
1101fb2f18f8Sesaxe 				found = B_TRUE;
1102fb2f18f8Sesaxe 				break;
1103fb2f18f8Sesaxe 			}
1104fb2f18f8Sesaxe 		}
1105fb2f18f8Sesaxe 		if (!found) {
1106fb2f18f8Sesaxe 			bitset_del(&cp->cpu_part->cp_cmt_pgs,
1107fb2f18f8Sesaxe 			    ((pg_t *)pg)->pg_id);
1108fb2f18f8Sesaxe 		}
1109fb2f18f8Sesaxe 	}
1110fb2f18f8Sesaxe }
1111fb2f18f8Sesaxe 
1112fb2f18f8Sesaxe /*
1113fb2f18f8Sesaxe  * Return non-zero if the CPU belongs in the given PG
1114fb2f18f8Sesaxe  */
1115fb2f18f8Sesaxe static int
1116fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp)
1117fb2f18f8Sesaxe {
1118fb2f18f8Sesaxe 	cpu_t	*pg_cpu;
1119fb2f18f8Sesaxe 
1120fb2f18f8Sesaxe 	pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0);
1121fb2f18f8Sesaxe 
1122fb2f18f8Sesaxe 	ASSERT(pg_cpu != NULL);
1123fb2f18f8Sesaxe 
1124fb2f18f8Sesaxe 	/*
1125fb2f18f8Sesaxe 	 * The CPU belongs if, given the nature of the hardware sharing
1126fb2f18f8Sesaxe 	 * relationship represented by the PG, the CPU has that
1127fb2f18f8Sesaxe 	 * relationship with some other CPU already in the PG
1128fb2f18f8Sesaxe 	 */
1129fb2f18f8Sesaxe 	if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw))
1130fb2f18f8Sesaxe 		return (1);
1131fb2f18f8Sesaxe 
1132fb2f18f8Sesaxe 	return (0);
1133fb2f18f8Sesaxe }
1134fb2f18f8Sesaxe 
1135fb2f18f8Sesaxe /*
11360e751525SEric Saxe  * Sort the CPUs CMT hierarchy, where "size" is the number of levels.
1137fb2f18f8Sesaxe  */
1138fb2f18f8Sesaxe static void
11390e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size)
1140fb2f18f8Sesaxe {
11418031591dSSrihari Venkatesan 	int		i, j, inc, sz;
11428031591dSSrihari Venkatesan 	int		start, end;
11430e751525SEric Saxe 	pg_t		*tmp;
11440e751525SEric Saxe 	pg_t		**h = (pg_t **)hier;
1145fb2f18f8Sesaxe 
11460e751525SEric Saxe 	/*
11470e751525SEric Saxe 	 * First sort by number of CPUs
11480e751525SEric Saxe 	 */
11490e751525SEric Saxe 	inc = size / 2;
11500e751525SEric Saxe 	while (inc > 0) {
11510e751525SEric Saxe 		for (i = inc; i < size; i++) {
11520e751525SEric Saxe 			j = i;
11530e751525SEric Saxe 			tmp = h[i];
11540e751525SEric Saxe 			while ((j >= inc) &&
11550e751525SEric Saxe 			    (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) {
11560e751525SEric Saxe 				h[j] = h[j - inc];
11570e751525SEric Saxe 				j = j - inc;
11580e751525SEric Saxe 			}
11590e751525SEric Saxe 			h[j] = tmp;
11600e751525SEric Saxe 		}
11610e751525SEric Saxe 		if (inc == 2)
11620e751525SEric Saxe 			inc = 1;
11630e751525SEric Saxe 		else
11640e751525SEric Saxe 			inc = (inc * 5) / 11;
11650e751525SEric Saxe 	}
1166fb2f18f8Sesaxe 
11670e751525SEric Saxe 	/*
11680e751525SEric Saxe 	 * Break ties by asking the platform.
11690e751525SEric Saxe 	 * Determine if h[i] outranks h[i + 1] and if so, swap them.
11700e751525SEric Saxe 	 */
11718031591dSSrihari Venkatesan 	for (start = 0; start < size; start++) {
11728031591dSSrihari Venkatesan 
11738031591dSSrihari Venkatesan 		/*
11748031591dSSrihari Venkatesan 		 * Find various contiguous sets of elements,
11758031591dSSrihari Venkatesan 		 * in the array, with the same number of cpus
11768031591dSSrihari Venkatesan 		 */
11778031591dSSrihari Venkatesan 		end = start;
11788031591dSSrihari Venkatesan 		sz = PG_NUM_CPUS(h[start]);
11798031591dSSrihari Venkatesan 		while ((end < size) && (sz == PG_NUM_CPUS(h[end])))
11808031591dSSrihari Venkatesan 			end++;
11818031591dSSrihari Venkatesan 		/*
11828031591dSSrihari Venkatesan 		 * Sort each such set of the array by rank
11838031591dSSrihari Venkatesan 		 */
11848031591dSSrihari Venkatesan 		for (i = start + 1; i < end; i++) {
11858031591dSSrihari Venkatesan 			j = i - 1;
11860e751525SEric Saxe 			tmp = h[i];
11878031591dSSrihari Venkatesan 			while (j >= start &&
11888031591dSSrihari Venkatesan 			    pg_cmt_hier_rank(hier[j],
11898031591dSSrihari Venkatesan 			    (pg_cmt_t *)tmp) == hier[j]) {
11908031591dSSrihari Venkatesan 				h[j + 1] = h[j];
11918031591dSSrihari Venkatesan 				j--;
11928031591dSSrihari Venkatesan 			}
11938031591dSSrihari Venkatesan 			h[j + 1] = tmp;
1194fb2f18f8Sesaxe 		}
1195fb2f18f8Sesaxe 	}
1196fb2f18f8Sesaxe }
1197fb2f18f8Sesaxe 
1198fb2f18f8Sesaxe /*
1199fb2f18f8Sesaxe  * Return a cmt_lgrp_t * given an lgroup handle.
1200fb2f18f8Sesaxe  */
1201fb2f18f8Sesaxe static cmt_lgrp_t *
1202fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand)
1203fb2f18f8Sesaxe {
1204fb2f18f8Sesaxe 	cmt_lgrp_t	*lgrp;
1205fb2f18f8Sesaxe 
1206fb2f18f8Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
1207fb2f18f8Sesaxe 
1208fb2f18f8Sesaxe 	lgrp = cmt_lgrps;
1209fb2f18f8Sesaxe 	while (lgrp != NULL) {
1210fb2f18f8Sesaxe 		if (lgrp->cl_hand == hand)
1211a6604450Sesaxe 			break;
1212fb2f18f8Sesaxe 		lgrp = lgrp->cl_next;
1213fb2f18f8Sesaxe 	}
1214a6604450Sesaxe 	return (lgrp);
1215a6604450Sesaxe }
1216fb2f18f8Sesaxe 
1217fb2f18f8Sesaxe /*
1218a6604450Sesaxe  * Create a cmt_lgrp_t with the specified handle.
1219fb2f18f8Sesaxe  */
1220a6604450Sesaxe static cmt_lgrp_t *
1221a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand)
1222a6604450Sesaxe {
1223a6604450Sesaxe 	cmt_lgrp_t	*lgrp;
1224a6604450Sesaxe 
1225a6604450Sesaxe 	ASSERT(MUTEX_HELD(&cpu_lock));
1226a6604450Sesaxe 
1227fb2f18f8Sesaxe 	lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP);
1228fb2f18f8Sesaxe 
1229fb2f18f8Sesaxe 	lgrp->cl_hand = hand;
1230fb2f18f8Sesaxe 	lgrp->cl_npgs = 0;
1231fb2f18f8Sesaxe 	lgrp->cl_next = cmt_lgrps;
1232fb2f18f8Sesaxe 	cmt_lgrps = lgrp;
1233fb2f18f8Sesaxe 	group_create(&lgrp->cl_pgs);
1234fb2f18f8Sesaxe 
1235fb2f18f8Sesaxe 	return (lgrp);
1236fb2f18f8Sesaxe }
12376890d023SEric Saxe 
12386890d023SEric Saxe /*
12390e751525SEric Saxe  * Interfaces to enable and disable power aware dispatching
12400e751525SEric Saxe  * The caller must be holding cpu_lock.
12416890d023SEric Saxe  *
12420e751525SEric Saxe  * Return 0 on success and -1 on failure.
12436890d023SEric Saxe  */
12440e751525SEric Saxe int
12450e751525SEric Saxe cmt_pad_enable(pghw_type_t type)
12466890d023SEric Saxe {
12470e751525SEric Saxe 	group_t		*hwset;
12480e751525SEric Saxe 	group_iter_t	iter;
12490e751525SEric Saxe 	pg_cmt_t	*pg;
12506890d023SEric Saxe 
12510e751525SEric Saxe 	ASSERT(PGHW_IS_PM_DOMAIN(type));
12520e751525SEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
12536890d023SEric Saxe 
12540e751525SEric Saxe 	if ((hwset = pghw_set_lookup(type)) == NULL ||
12550e751525SEric Saxe 	    cmt_hw_blacklisted[type]) {
12560e751525SEric Saxe 		/*
12570e751525SEric Saxe 		 * Unable to find any instances of the specified type
12580e751525SEric Saxe 		 * of power domain, or the power domains have been blacklisted.
12590e751525SEric Saxe 		 */
12600e751525SEric Saxe 		return (-1);
12610e751525SEric Saxe 	}
12626890d023SEric Saxe 
12636890d023SEric Saxe 	/*
12640e751525SEric Saxe 	 * Iterate over the power domains, setting the default dispatcher
12650e751525SEric Saxe 	 * policy for power/performance optimization.
12660e751525SEric Saxe 	 *
12670e751525SEric Saxe 	 * Simply setting the policy isn't enough in the case where the power
12680e751525SEric Saxe 	 * domain is an only child of another PG. Because the dispatcher walks
12690e751525SEric Saxe 	 * the PG hierarchy in a top down fashion, the higher up PG's policy
12700e751525SEric Saxe 	 * will dominate. So promote the power domain above it's parent if both
12710e751525SEric Saxe 	 * PG and it's parent have the same CPUs to ensure it's policy
12720e751525SEric Saxe 	 * dominates.
12736890d023SEric Saxe 	 */
12740e751525SEric Saxe 	group_iter_init(&iter);
12750e751525SEric Saxe 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
12760e751525SEric Saxe 		/*
12770e751525SEric Saxe 		 * If the power domain is an only child to a parent
12780e751525SEric Saxe 		 * not implementing the same policy, promote the child
12790e751525SEric Saxe 		 * above the parent to activate the policy.
12800e751525SEric Saxe 		 */
12810e751525SEric Saxe 		pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw);
12820e751525SEric Saxe 		while ((pg->cmt_parent != NULL) &&
12830e751525SEric Saxe 		    (pg->cmt_parent->cmt_policy != pg->cmt_policy) &&
12840e751525SEric Saxe 		    (PG_NUM_CPUS((pg_t *)pg) ==
12850e751525SEric Saxe 		    PG_NUM_CPUS((pg_t *)pg->cmt_parent))) {
12861a77c24bSEric Saxe 			cmt_hier_promote(pg, NULL);
12870e751525SEric Saxe 		}
12880e751525SEric Saxe 	}
12890e751525SEric Saxe 
12900e751525SEric Saxe 	return (0);
12910e751525SEric Saxe }
12920e751525SEric Saxe 
12930e751525SEric Saxe int
12940e751525SEric Saxe cmt_pad_disable(pghw_type_t type)
12950e751525SEric Saxe {
12960e751525SEric Saxe 	group_t		*hwset;
12970e751525SEric Saxe 	group_iter_t	iter;
12980e751525SEric Saxe 	pg_cmt_t	*pg;
12990e751525SEric Saxe 	pg_cmt_t	*child;
13000e751525SEric Saxe 
13010e751525SEric Saxe 	ASSERT(PGHW_IS_PM_DOMAIN(type));
13020e751525SEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
13030e751525SEric Saxe 
13040e751525SEric Saxe 	if ((hwset = pghw_set_lookup(type)) == NULL) {
13050e751525SEric Saxe 		/*
13060e751525SEric Saxe 		 * Unable to find any instances of the specified type of
13070e751525SEric Saxe 		 * power domain.
13080e751525SEric Saxe 		 */
13090e751525SEric Saxe 		return (-1);
13100e751525SEric Saxe 	}
13110e751525SEric Saxe 	/*
13120e751525SEric Saxe 	 * Iterate over the power domains, setting the default dispatcher
13130e751525SEric Saxe 	 * policy for performance optimization (load balancing).
13140e751525SEric Saxe 	 */
13150e751525SEric Saxe 	group_iter_init(&iter);
13160e751525SEric Saxe 	while ((pg = group_iterate(hwset, &iter)) != NULL) {
13170e751525SEric Saxe 
13180e751525SEric Saxe 		/*
13190e751525SEric Saxe 		 * If the power domain has an only child that implements
13200e751525SEric Saxe 		 * policy other than load balancing, promote the child
13210e751525SEric Saxe 		 * above the power domain to ensure it's policy dominates.
13220e751525SEric Saxe 		 */
1323f03808b6SEric Saxe 		if (pg->cmt_children != NULL &&
1324f03808b6SEric Saxe 		    GROUP_SIZE(pg->cmt_children) == 1) {
13250e751525SEric Saxe 			child = GROUP_ACCESS(pg->cmt_children, 0);
13260e751525SEric Saxe 			if ((child->cmt_policy & CMT_BALANCE) == 0) {
13271a77c24bSEric Saxe 				cmt_hier_promote(child, NULL);
13280e751525SEric Saxe 			}
13290e751525SEric Saxe 		}
13300e751525SEric Saxe 		pg->cmt_policy = CMT_BALANCE;
13310e751525SEric Saxe 	}
13320e751525SEric Saxe 	return (0);
13330e751525SEric Saxe }
13340e751525SEric Saxe 
13350e751525SEric Saxe /* ARGSUSED */
13360e751525SEric Saxe static void
13370e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
13380e751525SEric Saxe 		    kthread_t *new)
13390e751525SEric Saxe {
13400e751525SEric Saxe 	pg_cmt_t	*cmt_pg = (pg_cmt_t *)pg;
13410e751525SEric Saxe 
13420e751525SEric Saxe 	if (old == cp->cpu_idle_thread) {
13430e751525SEric Saxe 		atomic_add_32(&cmt_pg->cmt_utilization, 1);
13440e751525SEric Saxe 	} else if (new == cp->cpu_idle_thread) {
13450e751525SEric Saxe 		atomic_add_32(&cmt_pg->cmt_utilization, -1);
13460e751525SEric Saxe 	}
13470e751525SEric Saxe }
13480e751525SEric Saxe 
13490e751525SEric Saxe /*
13500e751525SEric Saxe  * Macro to test whether a thread is currently runnable on a CPU in a PG.
13510e751525SEric Saxe  */
13520e751525SEric Saxe #define	THREAD_RUNNABLE_IN_PG(t, pg)					\
13530e751525SEric Saxe 	((t)->t_state == TS_RUN &&					\
13540e751525SEric Saxe 	    (t)->t_disp_queue->disp_cpu &&				\
13550e751525SEric Saxe 	    bitset_in_set(&(pg)->cmt_cpus_actv_set,			\
13560e751525SEric Saxe 	    (t)->t_disp_queue->disp_cpu->cpu_seqid))
13570e751525SEric Saxe 
13580e751525SEric Saxe static void
13590e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old,
13600e751525SEric Saxe     kthread_t *new)
13610e751525SEric Saxe {
13620e751525SEric Saxe 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
13630e751525SEric Saxe 	cpupm_domain_t	*dom;
13640e751525SEric Saxe 	uint32_t	u;
13650e751525SEric Saxe 
13660e751525SEric Saxe 	if (old == cp->cpu_idle_thread) {
13670e751525SEric Saxe 		ASSERT(new != cp->cpu_idle_thread);
13680e751525SEric Saxe 		u = atomic_add_32_nv(&cmt->cmt_utilization, 1);
13690e751525SEric Saxe 		if (u == 1) {
13700e751525SEric Saxe 			/*
13710e751525SEric Saxe 			 * Notify the CPU power manager that the domain
13720e751525SEric Saxe 			 * is non-idle.
13730e751525SEric Saxe 			 */
13740e751525SEric Saxe 			dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
13750e751525SEric Saxe 			cpupm_utilization_event(cp, now, dom,
13760e751525SEric Saxe 			    CPUPM_DOM_BUSY_FROM_IDLE);
13770e751525SEric Saxe 		}
13780e751525SEric Saxe 	} else if (new == cp->cpu_idle_thread) {
13790e751525SEric Saxe 		ASSERT(old != cp->cpu_idle_thread);
13800e751525SEric Saxe 		u = atomic_add_32_nv(&cmt->cmt_utilization, -1);
13810e751525SEric Saxe 		if (u == 0) {
13820e751525SEric Saxe 			/*
13830e751525SEric Saxe 			 * The domain is idle, notify the CPU power
13840e751525SEric Saxe 			 * manager.
13850e751525SEric Saxe 			 *
13860e751525SEric Saxe 			 * Avoid notifying if the thread is simply migrating
13870e751525SEric Saxe 			 * between CPUs in the domain.
13880e751525SEric Saxe 			 */
13890e751525SEric Saxe 			if (!THREAD_RUNNABLE_IN_PG(old, cmt)) {
13900e751525SEric Saxe 				dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
13910e751525SEric Saxe 				cpupm_utilization_event(cp, now, dom,
13920e751525SEric Saxe 				    CPUPM_DOM_IDLE_FROM_BUSY);
13930e751525SEric Saxe 			}
13940e751525SEric Saxe 		}
13950e751525SEric Saxe 	}
13960e751525SEric Saxe }
13970e751525SEric Saxe 
13980e751525SEric Saxe /* ARGSUSED */
13990e751525SEric Saxe static void
14000e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t)
14010e751525SEric Saxe {
14020e751525SEric Saxe 	pg_cmt_t	*cmt = (pg_cmt_t *)pg;
14030e751525SEric Saxe 	cpupm_domain_t	*dom;
14040e751525SEric Saxe 
14050e751525SEric Saxe 	dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle;
14060e751525SEric Saxe 	cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY);
14070e751525SEric Saxe }
14080e751525SEric Saxe 
14090e751525SEric Saxe /*
14100e751525SEric Saxe  * Return the name of the CMT scheduling policy
14110e751525SEric Saxe  * being implemented across this PG
14120e751525SEric Saxe  */
14130e751525SEric Saxe static char *
14140e751525SEric Saxe pg_cmt_policy_name(pg_t *pg)
14150e751525SEric Saxe {
14160e751525SEric Saxe 	pg_cmt_policy_t policy;
14170e751525SEric Saxe 
14180e751525SEric Saxe 	policy = ((pg_cmt_t *)pg)->cmt_policy;
14190e751525SEric Saxe 
14200e751525SEric Saxe 	if (policy & CMT_AFFINITY) {
14210e751525SEric Saxe 		if (policy & CMT_BALANCE)
14220e751525SEric Saxe 			return ("Load Balancing & Affinity");
14230e751525SEric Saxe 		else if (policy & CMT_COALESCE)
14240e751525SEric Saxe 			return ("Load Coalescence & Affinity");
14256890d023SEric Saxe 		else
14260e751525SEric Saxe 			return ("Affinity");
14270e751525SEric Saxe 	} else {
14280e751525SEric Saxe 		if (policy & CMT_BALANCE)
14290e751525SEric Saxe 			return ("Load Balancing");
14300e751525SEric Saxe 		else if (policy & CMT_COALESCE)
14310e751525SEric Saxe 			return ("Load Coalescence");
14320e751525SEric Saxe 		else
14330e751525SEric Saxe 			return ("None");
14340e751525SEric Saxe 	}
14350e751525SEric Saxe }
14366890d023SEric Saxe 
14376890d023SEric Saxe /*
14380e751525SEric Saxe  * Prune PG, and all other instances of PG's hardware sharing relationship
1439d0e93b69SEric Saxe  * from the CMT PG hierarchy.
14401a77c24bSEric Saxe  *
14411a77c24bSEric Saxe  * This routine operates on the CPU specific processor group data (for the CPUs
14421a77c24bSEric Saxe  * in the PG being pruned), and may be invoked from a context where one CPU's
14431a77c24bSEric Saxe  * PG data is under construction. In this case the argument "pgdata", if not
14441a77c24bSEric Saxe  * NULL, is a reference to the CPU's under-construction PG data.
14456890d023SEric Saxe  */
14460e751525SEric Saxe static int
14471a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
14480e751525SEric Saxe {
14490e751525SEric Saxe 	group_t		*hwset, *children;
14500e751525SEric Saxe 	int		i, j, r, size = *sz;
14510e751525SEric Saxe 	group_iter_t	hw_iter, child_iter;
14520e751525SEric Saxe 	pg_cpu_itr_t	cpu_iter;
14530e751525SEric Saxe 	pg_cmt_t	*pg, *child;
14540e751525SEric Saxe 	cpu_t		*cpu;
14550e751525SEric Saxe 	int		cap_needed;
14560e751525SEric Saxe 	pghw_type_t	hw;
14576890d023SEric Saxe 
14580e751525SEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
14596890d023SEric Saxe 
14600e751525SEric Saxe 	hw = ((pghw_t *)pg_bad)->pghw_hw;
14610e751525SEric Saxe 
14620e751525SEric Saxe 	if (hw == PGHW_POW_ACTIVE) {
14630e751525SEric Saxe 		cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. "
14640e751525SEric Saxe 		    "Event Based CPUPM Unavailable");
14650e751525SEric Saxe 	} else if (hw == PGHW_POW_IDLE) {
14660e751525SEric Saxe 		cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. "
14670e751525SEric Saxe 		    "Dispatcher assisted CPUPM disabled.");
14680e751525SEric Saxe 	}
14696890d023SEric Saxe 
14706890d023SEric Saxe 	/*
14710e751525SEric Saxe 	 * Find and eliminate the PG from the lineage.
14726890d023SEric Saxe 	 */
14730e751525SEric Saxe 	for (i = 0; i < size; i++) {
14740e751525SEric Saxe 		if (lineage[i] == pg_bad) {
14750e751525SEric Saxe 			for (j = i; j < size - 1; j++)
14760e751525SEric Saxe 				lineage[j] = lineage[j + 1];
14770e751525SEric Saxe 			*sz = size - 1;
14780e751525SEric Saxe 			break;
14790e751525SEric Saxe 		}
14800e751525SEric Saxe 	}
14810e751525SEric Saxe 
14820e751525SEric Saxe 	/*
14830e751525SEric Saxe 	 * We'll prune all instances of the hardware sharing relationship
14840e751525SEric Saxe 	 * represented by pg. But before we do that (and pause CPUs) we need
14850e751525SEric Saxe 	 * to ensure the hierarchy's groups are properly sized.
14860e751525SEric Saxe 	 */
14870e751525SEric Saxe 	hwset = pghw_set_lookup(hw);
14880e751525SEric Saxe 
14890e751525SEric Saxe 	/*
1490d0e93b69SEric Saxe 	 * Blacklist the hardware so future processor groups of this type won't
1491d0e93b69SEric Saxe 	 * participate in CMT thread placement.
1492d0e93b69SEric Saxe 	 *
1493d0e93b69SEric Saxe 	 * XXX
1494d0e93b69SEric Saxe 	 * For heterogeneous system configurations, this might be overkill.
1495d0e93b69SEric Saxe 	 * We may only need to blacklist the illegal PGs, and other instances
1496d0e93b69SEric Saxe 	 * of this hardware sharing relationship may be ok.
14970e751525SEric Saxe 	 */
14980e751525SEric Saxe 	cmt_hw_blacklisted[hw] = 1;
14990e751525SEric Saxe 
15000e751525SEric Saxe 	/*
15010e751525SEric Saxe 	 * For each of the PGs being pruned, ensure sufficient capacity in
15020e751525SEric Saxe 	 * the siblings set for the PG's children
15030e751525SEric Saxe 	 */
15040e751525SEric Saxe 	group_iter_init(&hw_iter);
15050e751525SEric Saxe 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
15060e751525SEric Saxe 		/*
15070e751525SEric Saxe 		 * PG is being pruned, but if it is bringing up more than
15080e751525SEric Saxe 		 * one child, ask for more capacity in the siblings group.
15090e751525SEric Saxe 		 */
15100e751525SEric Saxe 		cap_needed = 0;
15110e751525SEric Saxe 		if (pg->cmt_children &&
15120e751525SEric Saxe 		    GROUP_SIZE(pg->cmt_children) > 1) {
15130e751525SEric Saxe 			cap_needed = GROUP_SIZE(pg->cmt_children) - 1;
15140e751525SEric Saxe 
15150e751525SEric Saxe 			group_expand(pg->cmt_siblings,
15160e751525SEric Saxe 			    GROUP_SIZE(pg->cmt_siblings) + cap_needed);
15170e751525SEric Saxe 
15180e751525SEric Saxe 			/*
15190e751525SEric Saxe 			 * If this is a top level group, also ensure the
15200e751525SEric Saxe 			 * capacity in the root lgrp level CMT grouping.
15210e751525SEric Saxe 			 */
15220e751525SEric Saxe 			if (pg->cmt_parent == NULL &&
15230e751525SEric Saxe 			    pg->cmt_siblings != &cmt_root->cl_pgs) {
15240e751525SEric Saxe 				group_expand(&cmt_root->cl_pgs,
15250e751525SEric Saxe 				    GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed);
1526d0e93b69SEric Saxe 				cmt_root->cl_npgs += cap_needed;
15270e751525SEric Saxe 			}
15280e751525SEric Saxe 		}
15290e751525SEric Saxe 	}
15300e751525SEric Saxe 
15310e751525SEric Saxe 	/*
15320e751525SEric Saxe 	 * We're operating on the PG hierarchy. Pause CPUs to ensure
15330e751525SEric Saxe 	 * exclusivity with respect to the dispatcher.
15340e751525SEric Saxe 	 */
15350e751525SEric Saxe 	pause_cpus(NULL);
15360e751525SEric Saxe 
15370e751525SEric Saxe 	/*
15380e751525SEric Saxe 	 * Prune all PG instances of the hardware sharing relationship
15390e751525SEric Saxe 	 * represented by pg.
15400e751525SEric Saxe 	 */
15410e751525SEric Saxe 	group_iter_init(&hw_iter);
15420e751525SEric Saxe 	while ((pg = group_iterate(hwset, &hw_iter)) != NULL) {
15430e751525SEric Saxe 
15440e751525SEric Saxe 		/*
15450e751525SEric Saxe 		 * Remove PG from it's group of siblings, if it's there.
15460e751525SEric Saxe 		 */
15470e751525SEric Saxe 		if (pg->cmt_siblings) {
15480e751525SEric Saxe 			(void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE);
15490e751525SEric Saxe 		}
15500e751525SEric Saxe 		if (pg->cmt_parent == NULL &&
15510e751525SEric Saxe 		    pg->cmt_siblings != &cmt_root->cl_pgs) {
15520e751525SEric Saxe 			(void) group_remove(&cmt_root->cl_pgs, pg,
15530e751525SEric Saxe 			    GRP_NORESIZE);
15540e751525SEric Saxe 		}
1555d0e93b69SEric Saxe 
1556d0e93b69SEric Saxe 		/*
1557d0e93b69SEric Saxe 		 * Indicate that no CMT policy will be implemented across
1558d0e93b69SEric Saxe 		 * this PG.
1559d0e93b69SEric Saxe 		 */
1560d0e93b69SEric Saxe 		pg->cmt_policy = CMT_NO_POLICY;
1561d0e93b69SEric Saxe 
15620e751525SEric Saxe 		/*
1563ef4f35d8SEric Saxe 		 * Move PG's children from it's children set to it's parent's
1564ef4f35d8SEric Saxe 		 * children set. Note that the parent's children set, and PG's
1565ef4f35d8SEric Saxe 		 * siblings set are the same thing.
1566ef4f35d8SEric Saxe 		 *
1567ef4f35d8SEric Saxe 		 * Because we are iterating over the same group that we are
1568ef4f35d8SEric Saxe 		 * operating on (removing the children), first add all of PG's
1569ef4f35d8SEric Saxe 		 * children to the parent's children set, and once we are done
1570ef4f35d8SEric Saxe 		 * iterating, empty PG's children set.
15710e751525SEric Saxe 		 */
15720e751525SEric Saxe 		if (pg->cmt_children != NULL) {
15730e751525SEric Saxe 			children = pg->cmt_children;
15740e751525SEric Saxe 
15750e751525SEric Saxe 			group_iter_init(&child_iter);
15760e751525SEric Saxe 			while ((child = group_iterate(children, &child_iter))
15770e751525SEric Saxe 			    != NULL) {
1578ef4f35d8SEric Saxe 				if (pg->cmt_siblings != NULL) {
15790e751525SEric Saxe 					r = group_add(pg->cmt_siblings, child,
15800e751525SEric Saxe 					    GRP_NORESIZE);
15810e751525SEric Saxe 					ASSERT(r == 0);
1582d0e93b69SEric Saxe 
1583d0e93b69SEric Saxe 					if (pg->cmt_parent == NULL &&
1584d0e93b69SEric Saxe 					    pg->cmt_siblings !=
1585d0e93b69SEric Saxe 					    &cmt_root->cl_pgs) {
1586d0e93b69SEric Saxe 						r = group_add(&cmt_root->cl_pgs,
1587d0e93b69SEric Saxe 						    child, GRP_NORESIZE);
1588d0e93b69SEric Saxe 						ASSERT(r == 0);
1589d0e93b69SEric Saxe 					}
15900e751525SEric Saxe 				}
15910e751525SEric Saxe 			}
1592ef4f35d8SEric Saxe 			group_empty(pg->cmt_children);
15930e751525SEric Saxe 		}
15940e751525SEric Saxe 
15950e751525SEric Saxe 		/*
15960e751525SEric Saxe 		 * Reset the callbacks to the defaults
15970e751525SEric Saxe 		 */
15980e751525SEric Saxe 		pg_callback_set_defaults((pg_t *)pg);
15990e751525SEric Saxe 
16000e751525SEric Saxe 		/*
16010e751525SEric Saxe 		 * Update all the CPU lineages in each of PG's CPUs
16020e751525SEric Saxe 		 */
16030e751525SEric Saxe 		PG_CPU_ITR_INIT(pg, cpu_iter);
16040e751525SEric Saxe 		while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) {
16050e751525SEric Saxe 			pg_cmt_t	*cpu_pg;
16060e751525SEric Saxe 			group_iter_t	liter;	/* Iterator for the lineage */
16071a77c24bSEric Saxe 			cpu_pg_t	*cpd;	/* CPU's PG data */
16081a77c24bSEric Saxe 
16091a77c24bSEric Saxe 			/*
16101a77c24bSEric Saxe 			 * The CPU's lineage is under construction still
16111a77c24bSEric Saxe 			 * references the bootstrap CPU PG data structure.
16121a77c24bSEric Saxe 			 */
16131a77c24bSEric Saxe 			if (pg_cpu_is_bootstrapped(cpu))
16141a77c24bSEric Saxe 				cpd = pgdata;
16151a77c24bSEric Saxe 			else
16161a77c24bSEric Saxe 				cpd = cpu->cpu_pg;
16170e751525SEric Saxe 
16180e751525SEric Saxe 			/*
16190e751525SEric Saxe 			 * Iterate over the CPU's PGs updating the children
16200e751525SEric Saxe 			 * of the PG being promoted, since they have a new
16210e751525SEric Saxe 			 * parent and siblings set.
16220e751525SEric Saxe 			 */
16230e751525SEric Saxe 			group_iter_init(&liter);
16241a77c24bSEric Saxe 			while ((cpu_pg = group_iterate(&cpd->pgs,
16251a77c24bSEric Saxe 			    &liter)) != NULL) {
16260e751525SEric Saxe 				if (cpu_pg->cmt_parent == pg) {
16270e751525SEric Saxe 					cpu_pg->cmt_parent = pg->cmt_parent;
16280e751525SEric Saxe 					cpu_pg->cmt_siblings = pg->cmt_siblings;
16290e751525SEric Saxe 				}
16300e751525SEric Saxe 			}
16310e751525SEric Saxe 
16320e751525SEric Saxe 			/*
16330e751525SEric Saxe 			 * Update the CPU's lineages
1634d0e93b69SEric Saxe 			 *
1635d0e93b69SEric Saxe 			 * Remove the PG from the CPU's group used for CMT
1636d0e93b69SEric Saxe 			 * scheduling.
16370e751525SEric Saxe 			 */
16381a77c24bSEric Saxe 			(void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE);
16390e751525SEric Saxe 		}
16400e751525SEric Saxe 	}
16410e751525SEric Saxe 	start_cpus();
16420e751525SEric Saxe 	return (0);
16430e751525SEric Saxe }
16440e751525SEric Saxe 
16450e751525SEric Saxe /*
16460e751525SEric Saxe  * Disable CMT scheduling
16470e751525SEric Saxe  */
16480e751525SEric Saxe static void
16490e751525SEric Saxe pg_cmt_disable(void)
16500e751525SEric Saxe {
16510e751525SEric Saxe 	cpu_t		*cpu;
16520e751525SEric Saxe 
16531a77c24bSEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
16541a77c24bSEric Saxe 
16550e751525SEric Saxe 	pause_cpus(NULL);
16560e751525SEric Saxe 	cpu = cpu_list;
16570e751525SEric Saxe 
16586890d023SEric Saxe 	do {
16590e751525SEric Saxe 		if (cpu->cpu_pg)
16600e751525SEric Saxe 			group_empty(&cpu->cpu_pg->cmt_pgs);
16610e751525SEric Saxe 	} while ((cpu = cpu->cpu_next) != cpu_list);
16620e751525SEric Saxe 
16630e751525SEric Saxe 	cmt_sched_disabled = 1;
16640e751525SEric Saxe 	start_cpus();
16650e751525SEric Saxe 	cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable");
16660e751525SEric Saxe }
16670e751525SEric Saxe 
1668ef4f35d8SEric Saxe /*
1669ef4f35d8SEric Saxe  * CMT lineage validation
1670ef4f35d8SEric Saxe  *
1671ef4f35d8SEric Saxe  * This routine is invoked by pg_cmt_cpu_init() to validate the integrity
1672ef4f35d8SEric Saxe  * of the PGs in a CPU's lineage. This is necessary because it's possible that
1673ef4f35d8SEric Saxe  * some groupings (power domain groupings in particular) may be defined by
1674ef4f35d8SEric Saxe  * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be
1675ef4f35d8SEric Saxe  * possible to integrate those groupings into the CMT PG hierarchy, if doing
1676ef4f35d8SEric Saxe  * so would violate the subset invariant of the hierarchy, which says that
1677ef4f35d8SEric Saxe  * a PG must be subset of its parent (if it has one).
1678ef4f35d8SEric Saxe  *
1679ef4f35d8SEric Saxe  * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that
1680ef4f35d8SEric Saxe  * would result in a violation of this invariant. If a violation is found,
1681ef4f35d8SEric Saxe  * and the PG is of a grouping type who's definition is known to originate from
1682ef4f35d8SEric Saxe  * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the
1683*b025faeeSEric Saxe  * PG (and all other instances PG's sharing relationship type) from the CMT
1684ef4f35d8SEric Saxe  * hierarchy. Further, future instances of that sharing relationship type won't
1685*b025faeeSEric Saxe  * be added. If the grouping definition doesn't originate from suspect
1686ef4f35d8SEric Saxe  * sources, then pg_cmt_disable() will be invoked to log an error, and disable
1687ef4f35d8SEric Saxe  * CMT scheduling altogether.
1688ef4f35d8SEric Saxe  *
1689ef4f35d8SEric Saxe  * This routine is invoked after the CPU has been added to the PGs in which
1690ef4f35d8SEric Saxe  * it belongs, but before those PGs have been added to (or had their place
1691ef4f35d8SEric Saxe  * adjusted in) the CMT PG hierarchy.
1692ef4f35d8SEric Saxe  *
1693ef4f35d8SEric Saxe  * The first argument is the CPUs PG lineage (essentially an array of PGs in
1694ef4f35d8SEric Saxe  * which the CPU belongs) that has already been sorted in ascending order
1695ef4f35d8SEric Saxe  * by CPU count. Some of the PGs in the CPUs lineage may already have other
1696ef4f35d8SEric Saxe  * CPUs in them, and have already been integrated into the CMT hierarchy.
1697ef4f35d8SEric Saxe  *
1698ef4f35d8SEric Saxe  * The addition of this new CPU to these pre-existing PGs means that those
1699ef4f35d8SEric Saxe  * PGs may need to be promoted up in the hierarchy to satisfy the subset
1700ef4f35d8SEric Saxe  * invariant. In additon to testing the subset invariant for the lineage,
1701ef4f35d8SEric Saxe  * this routine also verifies that the addition of the new CPU to the
1702ef4f35d8SEric Saxe  * existing PGs wouldn't cause the subset invariant to be violated in
1703ef4f35d8SEric Saxe  * the exiting lineages.
1704ef4f35d8SEric Saxe  *
1705ef4f35d8SEric Saxe  * This routine will normally return one of the following:
1706ef4f35d8SEric Saxe  * CMT_LINEAGE_VALID - There were no problems detected with the lineage.
1707ef4f35d8SEric Saxe  * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning.
1708ef4f35d8SEric Saxe  *
1709ef4f35d8SEric Saxe  * Otherwise, this routine will return a value indicating which error it
1710ef4f35d8SEric Saxe  * was unable to recover from (and set cmt_lineage_status along the way).
17111a77c24bSEric Saxe  *
17121a77c24bSEric Saxe  * This routine operates on the CPU specific processor group data (for the CPU
17131a77c24bSEric Saxe  * whose lineage is being validated), which is under-construction.
17141a77c24bSEric Saxe  * "pgdata" is a reference to the CPU's under-construction PG data.
17151a77c24bSEric Saxe  * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg.
1716ef4f35d8SEric Saxe  */
1717ef4f35d8SEric Saxe static cmt_lineage_validation_t
17181a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata)
17190e751525SEric Saxe {
1720ef4f35d8SEric Saxe 	int		i, j, size;
1721*b025faeeSEric Saxe 	pg_cmt_t	*pg, *pg_next, *pg_bad, *pg_tmp, *parent;
17220e751525SEric Saxe 	cpu_t		*cp;
17230e751525SEric Saxe 	pg_cpu_itr_t	cpu_iter;
1724ef4f35d8SEric Saxe 	lgrp_handle_t	lgrp;
17250e751525SEric Saxe 
17260e751525SEric Saxe 	ASSERT(MUTEX_HELD(&cpu_lock));
17270e751525SEric Saxe 
17280e751525SEric Saxe revalidate:
17290e751525SEric Saxe 	size = *sz;
17300e751525SEric Saxe 	pg_bad = NULL;
1731ef4f35d8SEric Saxe 	lgrp = LGRP_NULL_HANDLE;
1732ef4f35d8SEric Saxe 	for (i = 0; i < size; i++) {
17330e751525SEric Saxe 
17340e751525SEric Saxe 		pg = lineage[i];
1735ef4f35d8SEric Saxe 		if (i < size - 1)
1736ef4f35d8SEric Saxe 			pg_next = lineage[i + 1];
1737ef4f35d8SEric Saxe 		else
1738ef4f35d8SEric Saxe 			pg_next = NULL;
17396890d023SEric Saxe 
17406890d023SEric Saxe 		/*
17410e751525SEric Saxe 		 * We assume that the lineage has already been sorted
17420e751525SEric Saxe 		 * by the number of CPUs. In fact, we depend on it.
17436890d023SEric Saxe 		 */
1744ef4f35d8SEric Saxe 		ASSERT(pg_next == NULL ||
1745ef4f35d8SEric Saxe 		    (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next)));
17466890d023SEric Saxe 
17476890d023SEric Saxe 		/*
1748*b025faeeSEric Saxe 		 * The CPUs PG lineage was passed as the first argument to
1749*b025faeeSEric Saxe 		 * this routine and contains the sorted list of the CPU's
1750*b025faeeSEric Saxe 		 * PGs. Ultimately, the ordering of the PGs in that list, and
1751*b025faeeSEric Saxe 		 * the ordering as traversed by the cmt_parent list must be
1752*b025faeeSEric Saxe 		 * the same. PG promotion will be used as the mechanism to
1753*b025faeeSEric Saxe 		 * achieve this, but first we need to look for cases where
1754*b025faeeSEric Saxe 		 * promotion will be necessary, and validate that will be
1755*b025faeeSEric Saxe 		 * possible without violating the subset invarient described
1756*b025faeeSEric Saxe 		 * above.
1757ef4f35d8SEric Saxe 		 *
1758ef4f35d8SEric Saxe 		 * Since the PG topology is in the middle of being changed, we
1759ef4f35d8SEric Saxe 		 * need to check whether the PG's existing parent (if any) is
1760*b025faeeSEric Saxe 		 * part of this CPU's lineage (and therefore should contain
1761*b025faeeSEric Saxe 		 * the new CPU). If not, it means that the addition of the
1762*b025faeeSEric Saxe 		 * new CPU should have made this PG have more CPUs than its
1763*b025faeeSEric Saxe 		 * parent (and other ancestors not in the same lineage) and
1764*b025faeeSEric Saxe 		 * will need to be promoted into place.
1765*b025faeeSEric Saxe 		 *
1766*b025faeeSEric Saxe 		 * We need to verify all of this to defend against a buggy
1767ef4f35d8SEric Saxe 		 * BIOS giving bad power domain CPU groupings. Sigh.
1768ef4f35d8SEric Saxe 		 */
1769*b025faeeSEric Saxe 		parent = pg->cmt_parent;
1770*b025faeeSEric Saxe 		while (parent != NULL) {
1771ef4f35d8SEric Saxe 			/*
1772*b025faeeSEric Saxe 			 * Determine if the parent/ancestor is in this lineage
1773ef4f35d8SEric Saxe 			 */
1774*b025faeeSEric Saxe 			pg_tmp = NULL;
1775*b025faeeSEric Saxe 			for (j = 0; (j < size) && (pg_tmp != parent); j++) {
1776ef4f35d8SEric Saxe 				pg_tmp = lineage[j];
1777*b025faeeSEric Saxe 			}
1778*b025faeeSEric Saxe 			if (pg_tmp == parent) {
1779*b025faeeSEric Saxe 				/*
1780*b025faeeSEric Saxe 				 * It's in the lineage. The concentricity
1781*b025faeeSEric Saxe 				 * checks will handle the rest.
1782*b025faeeSEric Saxe 				 */
1783ef4f35d8SEric Saxe 				break;
1784ef4f35d8SEric Saxe 			}
1785ef4f35d8SEric Saxe 			/*
1786*b025faeeSEric Saxe 			 * If it is not in the lineage, PG will eventually
1787*b025faeeSEric Saxe 			 * need to be promoted above it. Verify the ancestor
1788*b025faeeSEric Saxe 			 * is a proper subset. There is still an error if
1789*b025faeeSEric Saxe 			 * the ancestor has the same number of CPUs as PG,
1790*b025faeeSEric Saxe 			 * since that would imply it should be in the lineage,
1791*b025faeeSEric Saxe 			 * and we already know it isn't.
1792ef4f35d8SEric Saxe 			 */
1793*b025faeeSEric Saxe 			if (PG_NUM_CPUS((pg_t *)parent) >=
1794ef4f35d8SEric Saxe 			    PG_NUM_CPUS((pg_t *)pg)) {
1795ef4f35d8SEric Saxe 				/*
1796*b025faeeSEric Saxe 				 * Not a proper subset if the parent/ancestor
1797*b025faeeSEric Saxe 				 * has the same or more CPUs than PG.
1798ef4f35d8SEric Saxe 				 */
1799*b025faeeSEric Saxe 				cmt_lineage_status = CMT_LINEAGE_NON_PROMOTABLE;
1800ef4f35d8SEric Saxe 				goto handle_error;
1801ef4f35d8SEric Saxe 			}
1802*b025faeeSEric Saxe 			parent = parent->cmt_parent;
1803ef4f35d8SEric Saxe 		}
1804ef4f35d8SEric Saxe 
1805ef4f35d8SEric Saxe 		/*
1806ef4f35d8SEric Saxe 		 * Walk each of the CPUs in the PGs group and perform
1807ef4f35d8SEric Saxe 		 * consistency checks along the way.
18086890d023SEric Saxe 		 */
18090e751525SEric Saxe 		PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter);
18100e751525SEric Saxe 		while ((cp = pg_cpu_next(&cpu_iter)) != NULL) {
1811ef4f35d8SEric Saxe 			/*
1812ef4f35d8SEric Saxe 			 * Verify that there aren't any CPUs contained in PG
1813ef4f35d8SEric Saxe 			 * that the next PG in the lineage (which is larger
1814ef4f35d8SEric Saxe 			 * or same size) doesn't also contain.
1815ef4f35d8SEric Saxe 			 */
1816ef4f35d8SEric Saxe 			if (pg_next != NULL &&
1817ef4f35d8SEric Saxe 			    pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) {
18180e751525SEric Saxe 				cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC;
18190e751525SEric Saxe 				goto handle_error;
18206890d023SEric Saxe 			}
1821ef4f35d8SEric Saxe 
1822ef4f35d8SEric Saxe 			/*
1823ef4f35d8SEric Saxe 			 * Verify that all the CPUs in the PG are in the same
1824ef4f35d8SEric Saxe 			 * lgroup.
1825ef4f35d8SEric Saxe 			 */
1826ef4f35d8SEric Saxe 			if (lgrp == LGRP_NULL_HANDLE) {
1827ef4f35d8SEric Saxe 				lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id);
1828ef4f35d8SEric Saxe 			} else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) {
1829ef4f35d8SEric Saxe 				cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS;
1830ef4f35d8SEric Saxe 				goto handle_error;
1831ef4f35d8SEric Saxe 			}
18320e751525SEric Saxe 		}
18336890d023SEric Saxe 	}
18346890d023SEric Saxe 
18350e751525SEric Saxe handle_error:
1836ef4f35d8SEric Saxe 	/*
1837ef4f35d8SEric Saxe 	 * Some of these validation errors can result when the CPU grouping
1838ef4f35d8SEric Saxe 	 * information is derived from buggy sources (for example, incorrect
1839ef4f35d8SEric Saxe 	 * ACPI tables on x86 systems).
1840ef4f35d8SEric Saxe 	 *
1841ef4f35d8SEric Saxe 	 * We'll try to recover in such cases by pruning out the illegal
1842ef4f35d8SEric Saxe 	 * groupings from the PG hierarchy, which means that we won't optimize
1843ef4f35d8SEric Saxe 	 * for those levels, but we will for the remaining ones.
1844ef4f35d8SEric Saxe 	 */
18450e751525SEric Saxe 	switch (cmt_lineage_status) {
18460e751525SEric Saxe 	case CMT_LINEAGE_VALID:
18470e751525SEric Saxe 	case CMT_LINEAGE_REPAIRED:
18480e751525SEric Saxe 		break;
1849ef4f35d8SEric Saxe 	case CMT_LINEAGE_PG_SPANS_LGRPS:
1850ef4f35d8SEric Saxe 		/*
1851ef4f35d8SEric Saxe 		 * We've detected a PG whose CPUs span lgroups.
1852ef4f35d8SEric Saxe 		 *
1853ef4f35d8SEric Saxe 		 * This isn't supported, as the dispatcher isn't allowed to
1854ef4f35d8SEric Saxe 		 * to do CMT thread placement across lgroups, as this would
1855ef4f35d8SEric Saxe 		 * conflict with policies implementing MPO thread affinity.
1856ef4f35d8SEric Saxe 		 *
1857d0e93b69SEric Saxe 		 * If the PG is of a sharing relationship type known to
1858d0e93b69SEric Saxe 		 * legitimately span lgroups, specify that no CMT thread
1859d0e93b69SEric Saxe 		 * placement policy should be implemented, and prune the PG
1860d0e93b69SEric Saxe 		 * from the existing CMT PG hierarchy.
1861d0e93b69SEric Saxe 		 *
1862d0e93b69SEric Saxe 		 * Otherwise, fall though to the case below for handling.
1863ef4f35d8SEric Saxe 		 */
1864d0e93b69SEric Saxe 		if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) {
1865d0e93b69SEric Saxe 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1866d0e93b69SEric Saxe 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1867d0e93b69SEric Saxe 				goto revalidate;
1868d0e93b69SEric Saxe 			}
1869d0e93b69SEric Saxe 		}
1870d0e93b69SEric Saxe 		/*LINTED*/
1871ef4f35d8SEric Saxe 	case CMT_LINEAGE_NON_PROMOTABLE:
1872ef4f35d8SEric Saxe 		/*
1873ef4f35d8SEric Saxe 		 * We've detected a PG that already exists in another CPU's
1874ef4f35d8SEric Saxe 		 * lineage that cannot cannot legally be promoted into place
1875ef4f35d8SEric Saxe 		 * without breaking the invariants of the hierarchy.
1876ef4f35d8SEric Saxe 		 */
1877ef4f35d8SEric Saxe 		if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
18781a77c24bSEric Saxe 			if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) {
1879ef4f35d8SEric Saxe 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
1880ef4f35d8SEric Saxe 				goto revalidate;
1881ef4f35d8SEric Saxe 			}
1882ef4f35d8SEric Saxe 		}
1883ef4f35d8SEric Saxe 		/*
1884ef4f35d8SEric Saxe 		 * Something went wrong trying to prune out the bad level.
1885ef4f35d8SEric Saxe 		 * Disable CMT scheduling altogether.
1886ef4f35d8SEric Saxe 		 */
1887ef4f35d8SEric Saxe 		pg_cmt_disable();
1888ef4f35d8SEric Saxe 		break;
18890e751525SEric Saxe 	case CMT_LINEAGE_NON_CONCENTRIC:
18906890d023SEric Saxe 		/*
1891ef4f35d8SEric Saxe 		 * We've detected a non-concentric PG lineage, which means that
1892ef4f35d8SEric Saxe 		 * there's a PG in the lineage that has CPUs that the next PG
1893ef4f35d8SEric Saxe 		 * over in the lineage (which is the same size or larger)
1894ef4f35d8SEric Saxe 		 * doesn't have.
18950e751525SEric Saxe 		 *
1896ef4f35d8SEric Saxe 		 * In this case, we examine the two PGs to see if either
1897ef4f35d8SEric Saxe 		 * grouping is defined by potentially buggy sources.
18980e751525SEric Saxe 		 *
18990e751525SEric Saxe 		 * If one has less CPUs than the other, and contains CPUs
19000e751525SEric Saxe 		 * not found in the parent, and it is an untrusted enumeration,
19010e751525SEric Saxe 		 * then prune it. If both have the same number of CPUs, then
19020e751525SEric Saxe 		 * prune the one that is untrusted.
19030e751525SEric Saxe 		 *
19040e751525SEric Saxe 		 * This process repeats until we have a concentric lineage,
19050e751525SEric Saxe 		 * or we would have to prune out level derived from what we
19060e751525SEric Saxe 		 * thought was a reliable source, in which case CMT scheduling
1907ef4f35d8SEric Saxe 		 * is disabled altogether.
19086890d023SEric Saxe 		 */
1909ef4f35d8SEric Saxe 		if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) &&
19100e751525SEric Saxe 		    (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) {
19110e751525SEric Saxe 			pg_bad = pg;
19120e751525SEric Saxe 		} else if (PG_NUM_CPUS((pg_t *)pg) ==
1913ef4f35d8SEric Saxe 		    PG_NUM_CPUS((pg_t *)pg_next)) {
1914ef4f35d8SEric Saxe 			if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) {
1915ef4f35d8SEric Saxe 				pg_bad = pg_next;
19160e751525SEric Saxe 			} else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) {
19170e751525SEric Saxe 				pg_bad = pg;
19186890d023SEric Saxe 			}
19196890d023SEric Saxe 		}
19200e751525SEric Saxe 		if (pg_bad) {
19211a77c24bSEric Saxe 			if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) {
19220e751525SEric Saxe 				cmt_lineage_status = CMT_LINEAGE_REPAIRED;
19230e751525SEric Saxe 				goto revalidate;
19240e751525SEric Saxe 			}
19250e751525SEric Saxe 		}
19260e751525SEric Saxe 		/*
1927ef4f35d8SEric Saxe 		 * Something went wrong trying to identify and/or prune out
1928ef4f35d8SEric Saxe 		 * the bad level. Disable CMT scheduling altogether.
19290e751525SEric Saxe 		 */
19300e751525SEric Saxe 		pg_cmt_disable();
1931ef4f35d8SEric Saxe 		break;
1932ef4f35d8SEric Saxe 	default:
1933ef4f35d8SEric Saxe 		/*
1934ef4f35d8SEric Saxe 		 * If we're here, we've encountered a validation error for
1935ef4f35d8SEric Saxe 		 * which we don't know how to recover. In this case, disable
1936ef4f35d8SEric Saxe 		 * CMT scheduling altogether.
1937ef4f35d8SEric Saxe 		 */
19380e751525SEric Saxe 		cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE;
1939ef4f35d8SEric Saxe 		pg_cmt_disable();
19400e751525SEric Saxe 	}
1941ef4f35d8SEric Saxe 	return (cmt_lineage_status);
19426890d023SEric Saxe }
1943