1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77d0e93b69SEric Saxe * On UMA based systems, the CMT load balancing algorithm begins by balancing 78d0e93b69SEric Saxe * load across the group of top level PGs in the system hierarchy. 79d0e93b69SEric Saxe * On NUMA systems, the CMT load balancing algorithm balances load across the 80d0e93b69SEric Saxe * group of top level PGs in each leaf lgroup...but for root homed threads, 81d0e93b69SEric Saxe * is willing to balance against all the top level PGs in the system. 82d0e93b69SEric Saxe * 83d0e93b69SEric Saxe * Groups of top level PGs are maintained to implement the above, one for each 84d0e93b69SEric Saxe * leaf lgroup (containing the top level PGs in that lgroup), and one (for the 85d0e93b69SEric Saxe * root lgroup) that contains all the top level PGs in the system. 86fb2f18f8Sesaxe */ 87a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 88a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 89a6604450Sesaxe /* used for null_proc_lpa */ 900e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 91fb2f18f8Sesaxe 92a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 93a6604450Sesaxe 94a6604450Sesaxe /* 950e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 96d0e93b69SEric Saxe * CMT scheduling optimizations won't be performed for blacklisted sharing 97d0e93b69SEric Saxe * relationships. 980e751525SEric Saxe */ 990e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 1000e751525SEric Saxe 1010e751525SEric Saxe /* 102a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 103a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 104a6604450Sesaxe */ 1050e751525SEric Saxe int cmt_sched_disabled = 0; 106fb2f18f8Sesaxe 107ef4f35d8SEric Saxe /* 108ef4f35d8SEric Saxe * Status codes for CMT lineage validation 109ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 110ef4f35d8SEric Saxe */ 111ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 112ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 113ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 114ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 115ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 116ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 117ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 118ef4f35d8SEric Saxe } cmt_lineage_validation_t; 119ef4f35d8SEric Saxe 120ef4f35d8SEric Saxe /* 121ef4f35d8SEric Saxe * Status of the current lineage under construction. 122ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 123ef4f35d8SEric Saxe */ 124ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 125ef4f35d8SEric Saxe 126ef4f35d8SEric Saxe /* 127ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 128ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 129ef4f35d8SEric Saxe */ 130ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 131ef4f35d8SEric Saxe 132ef4f35d8SEric Saxe /* 133ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 134ef4f35d8SEric Saxe */ 135ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 136ef4f35d8SEric Saxe 137fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 138fb2f18f8Sesaxe 139fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 140fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 14147ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 14247ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 143fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 144fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 145fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 146fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1470e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1480e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1490e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 150fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 151fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 152fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 153a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1540e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1550e751525SEric Saxe kthread_t *, kthread_t *); 1560e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1570e751525SEric Saxe kthread_t *, kthread_t *); 1580e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 1591a77c24bSEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *, 1601a77c24bSEric Saxe cpu_pg_t *); 161fb2f18f8Sesaxe 1620e751525SEric Saxe 1630e751525SEric Saxe /* 164fb2f18f8Sesaxe * CMT PG ops 165fb2f18f8Sesaxe */ 166fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 167fb2f18f8Sesaxe pg_cmt_alloc, 168fb2f18f8Sesaxe pg_cmt_free, 169fb2f18f8Sesaxe pg_cmt_cpu_init, 170fb2f18f8Sesaxe pg_cmt_cpu_fini, 171fb2f18f8Sesaxe pg_cmt_cpu_active, 172fb2f18f8Sesaxe pg_cmt_cpu_inactive, 173fb2f18f8Sesaxe pg_cmt_cpupart_in, 174fb2f18f8Sesaxe NULL, /* cpupart_out */ 175fb2f18f8Sesaxe pg_cmt_cpupart_move, 176fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1770e751525SEric Saxe pg_cmt_policy_name, 178fb2f18f8Sesaxe }; 179fb2f18f8Sesaxe 180fb2f18f8Sesaxe /* 181fb2f18f8Sesaxe * Initialize the CMT PG class 182fb2f18f8Sesaxe */ 183fb2f18f8Sesaxe void 184fb2f18f8Sesaxe pg_cmt_class_init(void) 185fb2f18f8Sesaxe { 186fb2f18f8Sesaxe if (cmt_sched_disabled) 187fb2f18f8Sesaxe return; 188fb2f18f8Sesaxe 189fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 190fb2f18f8Sesaxe } 191fb2f18f8Sesaxe 192fb2f18f8Sesaxe /* 193fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 194fb2f18f8Sesaxe * that either t0 or the slave startup thread can 195fb2f18f8Sesaxe * be accounted for. 196fb2f18f8Sesaxe */ 197fb2f18f8Sesaxe void 198fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 199fb2f18f8Sesaxe { 2000e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 2010e751525SEric Saxe cp->cpu_thread); 202fb2f18f8Sesaxe } 203fb2f18f8Sesaxe 204fb2f18f8Sesaxe /* 205fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 206fb2f18f8Sesaxe * without a performance penalty 207fb2f18f8Sesaxe */ 208fb2f18f8Sesaxe int 209fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 210fb2f18f8Sesaxe { 211fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 212fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 213fb2f18f8Sesaxe return (1); 214fb2f18f8Sesaxe return (0); 215fb2f18f8Sesaxe } 216fb2f18f8Sesaxe 217fb2f18f8Sesaxe /* 218fb2f18f8Sesaxe * CMT class specific PG allocation 219fb2f18f8Sesaxe */ 220fb2f18f8Sesaxe static pg_t * 221fb2f18f8Sesaxe pg_cmt_alloc(void) 222fb2f18f8Sesaxe { 223fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 224fb2f18f8Sesaxe } 225fb2f18f8Sesaxe 226fb2f18f8Sesaxe /* 227fb2f18f8Sesaxe * Class specific PG de-allocation 228fb2f18f8Sesaxe */ 229fb2f18f8Sesaxe static void 230fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 231fb2f18f8Sesaxe { 232fb2f18f8Sesaxe ASSERT(pg != NULL); 233fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 234fb2f18f8Sesaxe 235fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 236fb2f18f8Sesaxe } 237fb2f18f8Sesaxe 238fb2f18f8Sesaxe /* 2390e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2400e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 241fb2f18f8Sesaxe */ 2420e751525SEric Saxe static pg_cmt_policy_t 2430e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 244fb2f18f8Sesaxe { 2450e751525SEric Saxe pg_cmt_policy_t p; 2460e751525SEric Saxe 2470e751525SEric Saxe /* 2480e751525SEric Saxe * Give the platform a chance to override the default 2490e751525SEric Saxe */ 2500e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2510e751525SEric Saxe return (p); 2520e751525SEric Saxe 2530e751525SEric Saxe switch (hw) { 2540e751525SEric Saxe case PGHW_IPIPE: 2550e751525SEric Saxe case PGHW_FPU: 2568031591dSSrihari Venkatesan case PGHW_PROCNODE: 2570e751525SEric Saxe case PGHW_CHIP: 2580e751525SEric Saxe return (CMT_BALANCE); 2590e751525SEric Saxe case PGHW_CACHE: 2600e751525SEric Saxe return (CMT_AFFINITY); 2610e751525SEric Saxe case PGHW_POW_ACTIVE: 2620e751525SEric Saxe case PGHW_POW_IDLE: 2630e751525SEric Saxe return (CMT_BALANCE); 2640e751525SEric Saxe default: 2650e751525SEric Saxe return (CMT_NO_POLICY); 2660e751525SEric Saxe } 2670e751525SEric Saxe } 2680e751525SEric Saxe 2690e751525SEric Saxe /* 2700e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2710e751525SEric Saxe * the pg2 relationship. 2720e751525SEric Saxe */ 2730e751525SEric Saxe static pg_cmt_t * 2740e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2750e751525SEric Saxe { 2760e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2770e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2780e751525SEric Saxe 2790e751525SEric Saxe /* 2800e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2810e751525SEric Saxe */ 2820e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2830e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2840e751525SEric Saxe return (pg2); 2850e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2860e751525SEric Saxe return (pg1); 2870e751525SEric Saxe } 2880e751525SEric Saxe 2890e751525SEric Saxe /* 2900e751525SEric Saxe * Otherwise, ask the platform 2910e751525SEric Saxe */ 2920e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2930e751525SEric Saxe return (pg1); 2940e751525SEric Saxe else 2950e751525SEric Saxe return (pg2); 2960e751525SEric Saxe } 2970e751525SEric Saxe 2980e751525SEric Saxe /* 2990e751525SEric Saxe * Initialize CMT callbacks for the given PG 3000e751525SEric Saxe */ 3010e751525SEric Saxe static void 3020e751525SEric Saxe cmt_callback_init(pg_t *pg) 3030e751525SEric Saxe { 304d0e93b69SEric Saxe /* 305d0e93b69SEric Saxe * Stick with the default callbacks if there isn't going to be 306d0e93b69SEric Saxe * any CMT thread placement optimizations implemented. 307d0e93b69SEric Saxe */ 308d0e93b69SEric Saxe if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY) 309d0e93b69SEric Saxe return; 310d0e93b69SEric Saxe 3110e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 3120e751525SEric Saxe case PGHW_POW_ACTIVE: 3130e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3140e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3150e751525SEric Saxe break; 3160e751525SEric Saxe default: 3170e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3180e751525SEric Saxe 3190e751525SEric Saxe } 3200e751525SEric Saxe } 3210e751525SEric Saxe 3220e751525SEric Saxe /* 3230e751525SEric Saxe * Promote PG above it's current parent. 3241a77c24bSEric Saxe * This is only legal if PG has an equal or greater number of CPUs than its 3251a77c24bSEric Saxe * parent. 3261a77c24bSEric Saxe * 3271a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 3281a77c24bSEric Saxe * in the PG being promoted), and may be invoked from a context where one CPU's 3291a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 3301a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 3310e751525SEric Saxe */ 3320e751525SEric Saxe static void 3331a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata) 3340e751525SEric Saxe { 3350e751525SEric Saxe pg_cmt_t *parent; 3360e751525SEric Saxe group_t *children; 3370e751525SEric Saxe cpu_t *cpu; 3380e751525SEric Saxe group_iter_t iter; 3390e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3400e751525SEric Saxe int r; 3410e751525SEric Saxe int err; 342*b025faeeSEric Saxe int nchildren; 3430e751525SEric Saxe 3440e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3450e751525SEric Saxe 3460e751525SEric Saxe parent = pg->cmt_parent; 3470e751525SEric Saxe if (parent == NULL) { 3480e751525SEric Saxe /* 3490e751525SEric Saxe * Nothing to do 3500e751525SEric Saxe */ 3510e751525SEric Saxe return; 3520e751525SEric Saxe } 3530e751525SEric Saxe 3540e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3550e751525SEric Saxe 3560e751525SEric Saxe /* 3570e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3580e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3590e751525SEric Saxe */ 3600e751525SEric Saxe pause_cpus(NULL); 3610e751525SEric Saxe 3620e751525SEric Saxe /* 3630e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3640e751525SEric Saxe * with PG. 3650e751525SEric Saxe */ 3660e751525SEric Saxe if (parent->cmt_siblings) { 3670e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3680e751525SEric Saxe != -1) { 3690e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3700e751525SEric Saxe ASSERT(r != -1); 3710e751525SEric Saxe } 3720e751525SEric Saxe } 3730e751525SEric Saxe 3740e751525SEric Saxe /* 3750e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3760e751525SEric Saxe * in the root lgroup's group of top level PGs. 3770e751525SEric Saxe */ 3780e751525SEric Saxe if (parent->cmt_parent == NULL && 3790e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3800e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3810e751525SEric Saxe != -1) { 3820e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3830e751525SEric Saxe ASSERT(r != -1); 3840e751525SEric Saxe } 3850e751525SEric Saxe } 3860e751525SEric Saxe 3870e751525SEric Saxe /* 3880e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3890e751525SEric Saxe * only child of it's parent. Update the parent's children set 3900e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 391*b025faeeSEric Saxe * the child). Then have PG and the parent swap children sets and 392*b025faeeSEric Saxe * children counts. 3930e751525SEric Saxe */ 3940e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3950e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3960e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3970e751525SEric Saxe ASSERT(r != -1); 3980e751525SEric Saxe } 3990e751525SEric Saxe 4000e751525SEric Saxe children = pg->cmt_children; 4010e751525SEric Saxe pg->cmt_children = parent->cmt_children; 4020e751525SEric Saxe parent->cmt_children = children; 4030e751525SEric Saxe 404*b025faeeSEric Saxe nchildren = pg->cmt_nchildren; 405*b025faeeSEric Saxe pg->cmt_nchildren = parent->cmt_nchildren; 406*b025faeeSEric Saxe parent->cmt_nchildren = nchildren; 407*b025faeeSEric Saxe 4080e751525SEric Saxe /* 4090e751525SEric Saxe * Update the sibling references for PG and it's parent 4100e751525SEric Saxe */ 4110e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 4120e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 4130e751525SEric Saxe 4140e751525SEric Saxe /* 4150e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 4160e751525SEric Saxe */ 4170e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 4180e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 4190e751525SEric Saxe int idx; 420*b025faeeSEric Saxe int sz; 4210e751525SEric Saxe pg_cmt_t *cpu_pg; 4221a77c24bSEric Saxe cpu_pg_t *pgd; /* CPU's PG data */ 4231a77c24bSEric Saxe 4241a77c24bSEric Saxe /* 4251a77c24bSEric Saxe * The CPU's whose lineage is under construction still 4261a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 4271a77c24bSEric Saxe */ 4281a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 4291a77c24bSEric Saxe pgd = pgdata; 4301a77c24bSEric Saxe else 4311a77c24bSEric Saxe pgd = cpu->cpu_pg; 4320e751525SEric Saxe 4330e751525SEric Saxe /* 4340e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4350e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4360e751525SEric Saxe */ 4370e751525SEric Saxe group_iter_init(&iter); 4381a77c24bSEric Saxe while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) { 4390e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4400e751525SEric Saxe cpu_pg->cmt_parent = parent; 4410e751525SEric Saxe } 4420e751525SEric Saxe } 4430e751525SEric Saxe 4440e751525SEric Saxe /* 4450e751525SEric Saxe * Update the CMT load balancing lineage 4460e751525SEric Saxe */ 4471a77c24bSEric Saxe if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) { 4480e751525SEric Saxe /* 4490e751525SEric Saxe * Unless this is the CPU who's lineage is being 4500e751525SEric Saxe * constructed, the PG being promoted should be 4510e751525SEric Saxe * in the lineage. 4520e751525SEric Saxe */ 4531a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cpu)); 4540e751525SEric Saxe continue; 4550e751525SEric Saxe } 4560e751525SEric Saxe 4570e751525SEric Saxe ASSERT(idx > 0); 458*b025faeeSEric Saxe ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent); 4590e751525SEric Saxe 4600e751525SEric Saxe /* 4610e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4620e751525SEric Saxe * lineage 4630e751525SEric Saxe */ 4641a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx); 4651a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx - 1); 4661a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, parent, idx); 4670e751525SEric Saxe ASSERT(err == 0); 4681a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, pg, idx - 1); 4690e751525SEric Saxe ASSERT(err == 0); 470*b025faeeSEric Saxe 471*b025faeeSEric Saxe /* 472*b025faeeSEric Saxe * Ensure cmt_lineage references CPU's leaf PG. 473*b025faeeSEric Saxe * Since cmt_pgs is top-down ordered, the bottom is the last 474*b025faeeSEric Saxe * element. 475*b025faeeSEric Saxe */ 476*b025faeeSEric Saxe if ((sz = GROUP_SIZE(&pgd->cmt_pgs)) > 0) 477*b025faeeSEric Saxe pgd->cmt_lineage = GROUP_ACCESS(&pgd->cmt_pgs, sz - 1); 4780e751525SEric Saxe } 4790e751525SEric Saxe 4800e751525SEric Saxe /* 4810e751525SEric Saxe * Update the parent references for PG and it's parent 4820e751525SEric Saxe */ 4830e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4840e751525SEric Saxe parent->cmt_parent = pg; 4850e751525SEric Saxe 4860e751525SEric Saxe start_cpus(); 487fb2f18f8Sesaxe } 488fb2f18f8Sesaxe 489fb2f18f8Sesaxe /* 490fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 4911a77c24bSEric Saxe * 4921a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 4931a77c24bSEric Saxe * being initialized). The argument "pgdata" is a reference to the CPU's PG 4941a77c24bSEric Saxe * data to be constructed. 4951a77c24bSEric Saxe * 4961a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 4971a77c24bSEric Saxe * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it 4981a77c24bSEric Saxe * calls must be careful to operate only on the "pgdata" argument, and not 4991a77c24bSEric Saxe * cp->cpu_pg. 500fb2f18f8Sesaxe */ 501fb2f18f8Sesaxe static void 5021a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata) 503fb2f18f8Sesaxe { 504fb2f18f8Sesaxe pg_cmt_t *pg; 505fb2f18f8Sesaxe group_t *cmt_pgs; 5060e751525SEric Saxe int levels, level; 507fb2f18f8Sesaxe pghw_type_t hw; 508fb2f18f8Sesaxe pg_t *pg_cache = NULL; 509fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 510fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 511fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 512ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 513fb2f18f8Sesaxe 514fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 5151a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 516fb2f18f8Sesaxe 5170e751525SEric Saxe if (cmt_sched_disabled) 5180e751525SEric Saxe return; 5190e751525SEric Saxe 520fb2f18f8Sesaxe /* 521fb2f18f8Sesaxe * A new CPU is coming into the system. 522fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 5230e751525SEric Saxe * has any performance or efficiency relevant 5240e751525SEric Saxe * sharing relationships 525fb2f18f8Sesaxe */ 5261a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 5271a77c24bSEric Saxe pgdata->cmt_lineage = NULL; 528fb2f18f8Sesaxe 529fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 5300e751525SEric Saxe levels = 0; 531fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 532fb2f18f8Sesaxe 5330e751525SEric Saxe pg_cmt_policy_t policy; 5340e751525SEric Saxe 535fb2f18f8Sesaxe /* 5360e751525SEric Saxe * We're only interested in the hw sharing relationships 5370e751525SEric Saxe * for which we know how to optimize. 538fb2f18f8Sesaxe */ 5390e751525SEric Saxe policy = pg_cmt_policy(hw); 5400e751525SEric Saxe if (policy == CMT_NO_POLICY || 5410e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 542fb2f18f8Sesaxe continue; 543fb2f18f8Sesaxe 544fb2f18f8Sesaxe /* 545d0e93b69SEric Saxe * We will still create the PGs for hardware sharing 546d0e93b69SEric Saxe * relationships that have been blacklisted, but won't 547d0e93b69SEric Saxe * implement CMT thread placement optimizations against them. 5480e751525SEric Saxe */ 549d0e93b69SEric Saxe if (cmt_hw_blacklisted[hw] == 1) 550d0e93b69SEric Saxe policy = CMT_NO_POLICY; 5510e751525SEric Saxe 5520e751525SEric Saxe /* 553fb2f18f8Sesaxe * Find (or create) the PG associated with 554fb2f18f8Sesaxe * the hw sharing relationship in which cp 555fb2f18f8Sesaxe * belongs. 556fb2f18f8Sesaxe * 557fb2f18f8Sesaxe * Determine if a suitable PG already 558fb2f18f8Sesaxe * exists, or if one needs to be created. 559fb2f18f8Sesaxe */ 560fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 561fb2f18f8Sesaxe if (pg == NULL) { 562fb2f18f8Sesaxe /* 563fb2f18f8Sesaxe * Create a new one. 564fb2f18f8Sesaxe * Initialize the common... 565fb2f18f8Sesaxe */ 566fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 567fb2f18f8Sesaxe 568fb2f18f8Sesaxe /* ... physical ... */ 569fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 570fb2f18f8Sesaxe 571fb2f18f8Sesaxe /* 572fb2f18f8Sesaxe * ... and CMT specific portions of the 573fb2f18f8Sesaxe * structure. 574fb2f18f8Sesaxe */ 5750e751525SEric Saxe pg->cmt_policy = policy; 5760e751525SEric Saxe 5770e751525SEric Saxe /* CMT event callbacks */ 5780e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5790e751525SEric Saxe 580fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 581fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 582fb2f18f8Sesaxe } else { 583fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 584fb2f18f8Sesaxe } 585fb2f18f8Sesaxe 586fb2f18f8Sesaxe /* Add the CPU to the PG */ 5871a77c24bSEric Saxe pg_cpu_add((pg_t *)pg, cp, pgdata); 588fb2f18f8Sesaxe 589fb2f18f8Sesaxe /* 5906890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 591fb2f18f8Sesaxe */ 592fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 593fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 594fb2f18f8Sesaxe 595fb2f18f8Sesaxe if (cp->cpu_seqid >= 596fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 597fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 598fb2f18f8Sesaxe cp->cpu_seqid + 1); 599fb2f18f8Sesaxe } 600fb2f18f8Sesaxe 601fb2f18f8Sesaxe /* 6020e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 603fb2f18f8Sesaxe */ 6040e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 6050e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 606fb2f18f8Sesaxe } 607fb2f18f8Sesaxe 608fb2f18f8Sesaxe /* Cache this for later */ 609fb2f18f8Sesaxe if (hw == PGHW_CACHE) 610fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 611fb2f18f8Sesaxe } 612fb2f18f8Sesaxe 6130e751525SEric Saxe group_expand(cmt_pgs, levels); 6146890d023SEric Saxe 6156890d023SEric Saxe if (cmt_root == NULL) 6166890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 617fb2f18f8Sesaxe 618fb2f18f8Sesaxe /* 6190e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 6206890d023SEric Saxe */ 6216890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 6226890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 6236890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 6246890d023SEric Saxe 6256890d023SEric Saxe /* 6260e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 6270e751525SEric Saxe */ 6280e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 6290e751525SEric Saxe 6300e751525SEric Saxe /* 6310e751525SEric Saxe * Examine the lineage and validate it. 6320e751525SEric Saxe * This routine will also try to fix the lineage along with the 6330e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 6340e751525SEric Saxe * 635ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 636ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 6370e751525SEric Saxe */ 6381a77c24bSEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata); 639ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 6401a77c24bSEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) { 6411a77c24bSEric Saxe /* 6421a77c24bSEric Saxe * In the case of an unrecoverable error where CMT scheduling 6431a77c24bSEric Saxe * has been disabled, assert that the under construction CPU's 6441a77c24bSEric Saxe * PG data has an empty CMT load balancing lineage. 6451a77c24bSEric Saxe */ 6461a77c24bSEric Saxe ASSERT((cmt_sched_disabled == 0) || 6471a77c24bSEric Saxe (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0)); 6480e751525SEric Saxe return; 6491a77c24bSEric Saxe } 6500e751525SEric Saxe 6510e751525SEric Saxe /* 6520e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 6530e751525SEric Saxe * correct, as the generation in the lineage may have changed 6540e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 6550e751525SEric Saxe * of the lineage, moving down. 6560e751525SEric Saxe */ 6570e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6580e751525SEric Saxe int reorg; 6590e751525SEric Saxe 6600e751525SEric Saxe reorg = 0; 6610e751525SEric Saxe pg = cpu_cmt_hier[level]; 6620e751525SEric Saxe 6630e751525SEric Saxe /* 6640e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6650e751525SEric Saxe */ 6660e751525SEric Saxe while (pg->cmt_parent && 6670e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 6681a77c24bSEric Saxe cmt_hier_promote(pg, pgdata); 6690e751525SEric Saxe reorg++; 6700e751525SEric Saxe } 6710e751525SEric Saxe if (reorg > 0) 6720e751525SEric Saxe level = levels - 1; 6730e751525SEric Saxe else 6740e751525SEric Saxe level--; 6750e751525SEric Saxe } 6760e751525SEric Saxe 6770e751525SEric Saxe /* 6786890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6790e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6800e751525SEric Saxe * which is used for top down CMT load balancing 681fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 682fb2f18f8Sesaxe * it to it's parent and siblings. 683fb2f18f8Sesaxe */ 6840e751525SEric Saxe for (level = 0; level < levels; level++) { 685fb2f18f8Sesaxe uint_t children; 686fb2f18f8Sesaxe int err; 687fb2f18f8Sesaxe 688fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6890e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 690fb2f18f8Sesaxe ASSERT(err == 0); 691fb2f18f8Sesaxe 692fb2f18f8Sesaxe if (level == 0) 6931a77c24bSEric Saxe pgdata->cmt_lineage = (pg_t *)pg; 694fb2f18f8Sesaxe 695fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 696fb2f18f8Sesaxe /* Already initialized */ 697fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 698fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 699fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 700c416da2dSjb145095 ((pg->cmt_parent != NULL) && 701c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 702fb2f18f8Sesaxe continue; 703fb2f18f8Sesaxe } 704fb2f18f8Sesaxe 7050e751525SEric Saxe if ((level + 1) == levels) { 706fb2f18f8Sesaxe pg->cmt_parent = NULL; 7076890d023SEric Saxe 708fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 709fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 7100e751525SEric Saxe if (cmt_root != lgrp) 7116890d023SEric Saxe cmt_root->cl_npgs++; 712fb2f18f8Sesaxe } else { 713fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 714fb2f18f8Sesaxe 715fb2f18f8Sesaxe /* 716fb2f18f8Sesaxe * A good parent keeps track of their children. 717fb2f18f8Sesaxe * The parent's children group is also the PG's 718fb2f18f8Sesaxe * siblings. 719fb2f18f8Sesaxe */ 720fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 721fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 722fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 723fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 724fb2f18f8Sesaxe } 725fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 726fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 727fb2f18f8Sesaxe } 7286890d023SEric Saxe 729fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 7306890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 731fb2f18f8Sesaxe } 732fb2f18f8Sesaxe 733fb2f18f8Sesaxe /* 734fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 735fb2f18f8Sesaxe * for fast lookups later. 736fb2f18f8Sesaxe */ 737fb2f18f8Sesaxe if (cp->cpu_physid) { 738fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 739fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 740fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 741fb2f18f8Sesaxe 742fb2f18f8Sesaxe /* 743fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 744fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 745fb2f18f8Sesaxe */ 746fb2f18f8Sesaxe if (pg_cache) 747fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 748fb2f18f8Sesaxe } 749fb2f18f8Sesaxe 750fb2f18f8Sesaxe /* CPU0 only initialization */ 751fb2f18f8Sesaxe if (is_cpu0) { 752fb2f18f8Sesaxe is_cpu0 = 0; 753a6604450Sesaxe cpu0_lgrp = lgrp; 754fb2f18f8Sesaxe } 755fb2f18f8Sesaxe 756fb2f18f8Sesaxe } 757fb2f18f8Sesaxe 758fb2f18f8Sesaxe /* 759fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 7601a77c24bSEric Saxe * 7611a77c24bSEric Saxe * "pgdata" is a reference to the CPU's PG data to be deconstructed. 7621a77c24bSEric Saxe * 7631a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 7641a77c24bSEric Saxe * references a "bootstrap" structure across this function's invocation. 7651a77c24bSEric Saxe * pg_cmt_cpu_init() and the routines it calls must be careful to operate only 7661a77c24bSEric Saxe * on the "pgdata" argument, and not cp->cpu_pg. 767fb2f18f8Sesaxe */ 768fb2f18f8Sesaxe static void 7691a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata) 770fb2f18f8Sesaxe { 771fb2f18f8Sesaxe group_iter_t i; 772fb2f18f8Sesaxe pg_cmt_t *pg; 773fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 774fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 775fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 776fb2f18f8Sesaxe 7770e751525SEric Saxe if (cmt_sched_disabled) 7780e751525SEric Saxe return; 7790e751525SEric Saxe 7801a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 7811a77c24bSEric Saxe 7821a77c24bSEric Saxe pgs = &pgdata->pgs; 7831a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 784fb2f18f8Sesaxe 785fb2f18f8Sesaxe /* 786fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 787fb2f18f8Sesaxe */ 788fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 789a6604450Sesaxe 790fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7913e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 792a6604450Sesaxe /* 7933e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7943e81cacfSEric Saxe * only CPU in the system. 795a6604450Sesaxe * 7963e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7973e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7983e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 7993e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 8003e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 8013e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 8023e81cacfSEric Saxe * 8033e81cacfSEric Saxe * This special case is detected by noting that the platform 8043e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 8053e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 8063e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 8073e81cacfSEric Saxe * torn down. 808a6604450Sesaxe */ 809a6604450Sesaxe lgrp = cpu0_lgrp; 810a6604450Sesaxe } 811fb2f18f8Sesaxe 8123e81cacfSEric Saxe ASSERT(lgrp != NULL); 8133e81cacfSEric Saxe 814fb2f18f8Sesaxe /* 815fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 816fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 817fb2f18f8Sesaxe */ 8181a77c24bSEric Saxe pg = (pg_cmt_t *)pgdata->cmt_lineage; 819fb2f18f8Sesaxe while (pg != NULL) { 820fb2f18f8Sesaxe 821fb2f18f8Sesaxe /* 822fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 823fb2f18f8Sesaxe */ 824fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 825fb2f18f8Sesaxe 826fb2f18f8Sesaxe /* 827fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 828fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 829fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 830fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 831fb2f18f8Sesaxe */ 832fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 833fb2f18f8Sesaxe if (pg->cmt_children != NULL) 834fb2f18f8Sesaxe group_destroy(pg->cmt_children); 835fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 836fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 837fb2f18f8Sesaxe lgrp->cl_npgs--; 838fb2f18f8Sesaxe else 839fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 840fb2f18f8Sesaxe } 841fb2f18f8Sesaxe } 842fb2f18f8Sesaxe pg = pg->cmt_parent; 843fb2f18f8Sesaxe } 844fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 845fb2f18f8Sesaxe 846fb2f18f8Sesaxe /* 847fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 848fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 849fb2f18f8Sesaxe * empty). 850fb2f18f8Sesaxe */ 851fb2f18f8Sesaxe group_iter_init(&i); 852fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 853fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 854fb2f18f8Sesaxe continue; 855fb2f18f8Sesaxe 8561a77c24bSEric Saxe pg_cpu_delete((pg_t *)pg, cp, pgdata); 857fb2f18f8Sesaxe /* 858fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 859fb2f18f8Sesaxe * PG group over which we are actively iterating 860fb2f18f8Sesaxe * Re-initialize the iteration 861fb2f18f8Sesaxe */ 862fb2f18f8Sesaxe group_iter_init(&i); 863fb2f18f8Sesaxe 864fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 865fb2f18f8Sesaxe 866fb2f18f8Sesaxe /* 867fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 868fb2f18f8Sesaxe */ 869fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 870fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 871fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 872fb2f18f8Sesaxe 873fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 874fb2f18f8Sesaxe } 875fb2f18f8Sesaxe } 876fb2f18f8Sesaxe } 877fb2f18f8Sesaxe 878fb2f18f8Sesaxe /* 879fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 880fb2f18f8Sesaxe */ 881fb2f18f8Sesaxe static void 882fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 883fb2f18f8Sesaxe { 884fb2f18f8Sesaxe group_t *pgs; 885fb2f18f8Sesaxe pg_t *pg; 886fb2f18f8Sesaxe group_iter_t i; 887fb2f18f8Sesaxe 888fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 889fb2f18f8Sesaxe 8900e751525SEric Saxe if (cmt_sched_disabled) 8910e751525SEric Saxe return; 8920e751525SEric Saxe 893fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 894fb2f18f8Sesaxe 895fb2f18f8Sesaxe /* 896fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 897fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 898fb2f18f8Sesaxe * belongs 899fb2f18f8Sesaxe */ 900fb2f18f8Sesaxe group_iter_init(&i); 901fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 902fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 903fb2f18f8Sesaxe continue; 904fb2f18f8Sesaxe 905fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 906fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 907fb2f18f8Sesaxe } 908fb2f18f8Sesaxe } 909fb2f18f8Sesaxe 910fb2f18f8Sesaxe /* 911fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 912fb2f18f8Sesaxe */ 913fb2f18f8Sesaxe static void 914fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 915fb2f18f8Sesaxe { 916fb2f18f8Sesaxe cpu_t *cpp; 917fb2f18f8Sesaxe group_t *pgs; 918fb2f18f8Sesaxe pg_t *pg; 919fb2f18f8Sesaxe group_iter_t pg_iter; 920fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 921fb2f18f8Sesaxe boolean_t found; 922fb2f18f8Sesaxe 923fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 924fb2f18f8Sesaxe 9250e751525SEric Saxe if (cmt_sched_disabled) 9260e751525SEric Saxe return; 9270e751525SEric Saxe 928fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 929fb2f18f8Sesaxe group_iter_init(&pg_iter); 930fb2f18f8Sesaxe 931fb2f18f8Sesaxe /* 932fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 933fb2f18f8Sesaxe */ 934fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 935fb2f18f8Sesaxe 936fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 937fb2f18f8Sesaxe continue; 938fb2f18f8Sesaxe 939fb2f18f8Sesaxe /* 940fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 941fb2f18f8Sesaxe */ 942fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 943fb2f18f8Sesaxe 944fb2f18f8Sesaxe /* 945fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 946fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 947fb2f18f8Sesaxe */ 948fb2f18f8Sesaxe found = B_FALSE; 949fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 950fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 951fb2f18f8Sesaxe if (cpp == cp) 952fb2f18f8Sesaxe continue; 953a6604450Sesaxe if (CPU_ACTIVE(cpp) && 954a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 955fb2f18f8Sesaxe found = B_TRUE; 956fb2f18f8Sesaxe break; 957fb2f18f8Sesaxe } 958fb2f18f8Sesaxe } 959fb2f18f8Sesaxe if (!found) 960fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 961fb2f18f8Sesaxe } 962fb2f18f8Sesaxe } 963fb2f18f8Sesaxe 964fb2f18f8Sesaxe /* 965fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 966fb2f18f8Sesaxe * 967fb2f18f8Sesaxe * This is called in a context where CPUs are paused 968fb2f18f8Sesaxe */ 969fb2f18f8Sesaxe static void 970fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 971fb2f18f8Sesaxe { 972fb2f18f8Sesaxe int err; 973fb2f18f8Sesaxe group_iter_t i; 974fb2f18f8Sesaxe pg_cmt_t *pg; 975fb2f18f8Sesaxe group_t *pgs; 976fb2f18f8Sesaxe 977fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 978fb2f18f8Sesaxe 9790e751525SEric Saxe if (cmt_sched_disabled) 9800e751525SEric Saxe return; 9810e751525SEric Saxe 982fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 983fb2f18f8Sesaxe group_iter_init(&i); 984fb2f18f8Sesaxe 985fb2f18f8Sesaxe /* 986fb2f18f8Sesaxe * Iterate over the CPU's PGs 987fb2f18f8Sesaxe */ 988fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 989fb2f18f8Sesaxe 990fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 991fb2f18f8Sesaxe continue; 992fb2f18f8Sesaxe 993fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 994fb2f18f8Sesaxe ASSERT(err == 0); 995fb2f18f8Sesaxe 996fb2f18f8Sesaxe /* 997fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 998fb2f18f8Sesaxe * represents a hardware sharing relationship over which 999fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 1000fb2f18f8Sesaxe * for balancing with it's siblings. 1001fb2f18f8Sesaxe */ 1002fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 10030e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1004fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 1005fb2f18f8Sesaxe ASSERT(err == 0); 10066890d023SEric Saxe 10076890d023SEric Saxe /* 10086890d023SEric Saxe * If this is a top level PG, add it as a balancing 10090e751525SEric Saxe * candidate when balancing within the root lgroup. 10106890d023SEric Saxe */ 10110e751525SEric Saxe if (pg->cmt_parent == NULL && 10120e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10136890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 10146890d023SEric Saxe GRP_NORESIZE); 10156890d023SEric Saxe ASSERT(err == 0); 10166890d023SEric Saxe } 1017fb2f18f8Sesaxe } 1018fb2f18f8Sesaxe 1019fb2f18f8Sesaxe /* 1020fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 1021fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 1022fb2f18f8Sesaxe * partition 1023fb2f18f8Sesaxe */ 1024fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1025fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 1026fb2f18f8Sesaxe } 1027fb2f18f8Sesaxe } 1028fb2f18f8Sesaxe 1029fb2f18f8Sesaxe /* 1030fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 1031fb2f18f8Sesaxe * 1032fb2f18f8Sesaxe * This is called in a context where CPUs are paused 1033fb2f18f8Sesaxe */ 1034fb2f18f8Sesaxe static void 1035fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 1036fb2f18f8Sesaxe { 1037fb2f18f8Sesaxe int err; 1038fb2f18f8Sesaxe group_t *pgs; 1039fb2f18f8Sesaxe pg_cmt_t *pg; 1040fb2f18f8Sesaxe cpu_t *cpp; 1041fb2f18f8Sesaxe group_iter_t i; 1042fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 1043fb2f18f8Sesaxe boolean_t found; 1044fb2f18f8Sesaxe 1045fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1046fb2f18f8Sesaxe 10470e751525SEric Saxe if (cmt_sched_disabled) 10480e751525SEric Saxe return; 10490e751525SEric Saxe 1050fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 1051fb2f18f8Sesaxe group_iter_init(&i); 1052fb2f18f8Sesaxe 1053fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 1054fb2f18f8Sesaxe 1055fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 1056fb2f18f8Sesaxe continue; 1057fb2f18f8Sesaxe 1058fb2f18f8Sesaxe /* 1059fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 1060fb2f18f8Sesaxe * bitmap 1061fb2f18f8Sesaxe */ 1062fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1063fb2f18f8Sesaxe ASSERT(err == 0); 1064fb2f18f8Sesaxe 1065fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1066fb2f18f8Sesaxe 1067fb2f18f8Sesaxe /* 1068fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1069fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1070fb2f18f8Sesaxe */ 1071fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10720e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1073fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1074fb2f18f8Sesaxe ASSERT(err == 0); 10756890d023SEric Saxe 10760e751525SEric Saxe if (pg->cmt_parent == NULL && 10770e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10786890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10796890d023SEric Saxe GRP_NORESIZE); 10806890d023SEric Saxe ASSERT(err == 0); 10816890d023SEric Saxe } 1082fb2f18f8Sesaxe } 1083fb2f18f8Sesaxe 1084fb2f18f8Sesaxe /* 1085fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1086fb2f18f8Sesaxe * the total number of CPUs in the PG 1087fb2f18f8Sesaxe */ 1088fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1089fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1090fb2f18f8Sesaxe 1091fb2f18f8Sesaxe /* 1092fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1093fb2f18f8Sesaxe */ 1094fb2f18f8Sesaxe found = B_FALSE; 1095fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1096fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1097fb2f18f8Sesaxe if (cpp == cp) 1098fb2f18f8Sesaxe continue; 1099a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1100a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1101fb2f18f8Sesaxe found = B_TRUE; 1102fb2f18f8Sesaxe break; 1103fb2f18f8Sesaxe } 1104fb2f18f8Sesaxe } 1105fb2f18f8Sesaxe if (!found) { 1106fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1107fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1108fb2f18f8Sesaxe } 1109fb2f18f8Sesaxe } 1110fb2f18f8Sesaxe } 1111fb2f18f8Sesaxe 1112fb2f18f8Sesaxe /* 1113fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1114fb2f18f8Sesaxe */ 1115fb2f18f8Sesaxe static int 1116fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1117fb2f18f8Sesaxe { 1118fb2f18f8Sesaxe cpu_t *pg_cpu; 1119fb2f18f8Sesaxe 1120fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1121fb2f18f8Sesaxe 1122fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1123fb2f18f8Sesaxe 1124fb2f18f8Sesaxe /* 1125fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1126fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1127fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1128fb2f18f8Sesaxe */ 1129fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1130fb2f18f8Sesaxe return (1); 1131fb2f18f8Sesaxe 1132fb2f18f8Sesaxe return (0); 1133fb2f18f8Sesaxe } 1134fb2f18f8Sesaxe 1135fb2f18f8Sesaxe /* 11360e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1137fb2f18f8Sesaxe */ 1138fb2f18f8Sesaxe static void 11390e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1140fb2f18f8Sesaxe { 11418031591dSSrihari Venkatesan int i, j, inc, sz; 11428031591dSSrihari Venkatesan int start, end; 11430e751525SEric Saxe pg_t *tmp; 11440e751525SEric Saxe pg_t **h = (pg_t **)hier; 1145fb2f18f8Sesaxe 11460e751525SEric Saxe /* 11470e751525SEric Saxe * First sort by number of CPUs 11480e751525SEric Saxe */ 11490e751525SEric Saxe inc = size / 2; 11500e751525SEric Saxe while (inc > 0) { 11510e751525SEric Saxe for (i = inc; i < size; i++) { 11520e751525SEric Saxe j = i; 11530e751525SEric Saxe tmp = h[i]; 11540e751525SEric Saxe while ((j >= inc) && 11550e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 11560e751525SEric Saxe h[j] = h[j - inc]; 11570e751525SEric Saxe j = j - inc; 11580e751525SEric Saxe } 11590e751525SEric Saxe h[j] = tmp; 11600e751525SEric Saxe } 11610e751525SEric Saxe if (inc == 2) 11620e751525SEric Saxe inc = 1; 11630e751525SEric Saxe else 11640e751525SEric Saxe inc = (inc * 5) / 11; 11650e751525SEric Saxe } 1166fb2f18f8Sesaxe 11670e751525SEric Saxe /* 11680e751525SEric Saxe * Break ties by asking the platform. 11690e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11700e751525SEric Saxe */ 11718031591dSSrihari Venkatesan for (start = 0; start < size; start++) { 11728031591dSSrihari Venkatesan 11738031591dSSrihari Venkatesan /* 11748031591dSSrihari Venkatesan * Find various contiguous sets of elements, 11758031591dSSrihari Venkatesan * in the array, with the same number of cpus 11768031591dSSrihari Venkatesan */ 11778031591dSSrihari Venkatesan end = start; 11788031591dSSrihari Venkatesan sz = PG_NUM_CPUS(h[start]); 11798031591dSSrihari Venkatesan while ((end < size) && (sz == PG_NUM_CPUS(h[end]))) 11808031591dSSrihari Venkatesan end++; 11818031591dSSrihari Venkatesan /* 11828031591dSSrihari Venkatesan * Sort each such set of the array by rank 11838031591dSSrihari Venkatesan */ 11848031591dSSrihari Venkatesan for (i = start + 1; i < end; i++) { 11858031591dSSrihari Venkatesan j = i - 1; 11860e751525SEric Saxe tmp = h[i]; 11878031591dSSrihari Venkatesan while (j >= start && 11888031591dSSrihari Venkatesan pg_cmt_hier_rank(hier[j], 11898031591dSSrihari Venkatesan (pg_cmt_t *)tmp) == hier[j]) { 11908031591dSSrihari Venkatesan h[j + 1] = h[j]; 11918031591dSSrihari Venkatesan j--; 11928031591dSSrihari Venkatesan } 11938031591dSSrihari Venkatesan h[j + 1] = tmp; 1194fb2f18f8Sesaxe } 1195fb2f18f8Sesaxe } 1196fb2f18f8Sesaxe } 1197fb2f18f8Sesaxe 1198fb2f18f8Sesaxe /* 1199fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1200fb2f18f8Sesaxe */ 1201fb2f18f8Sesaxe static cmt_lgrp_t * 1202fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1203fb2f18f8Sesaxe { 1204fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1205fb2f18f8Sesaxe 1206fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1207fb2f18f8Sesaxe 1208fb2f18f8Sesaxe lgrp = cmt_lgrps; 1209fb2f18f8Sesaxe while (lgrp != NULL) { 1210fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1211a6604450Sesaxe break; 1212fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1213fb2f18f8Sesaxe } 1214a6604450Sesaxe return (lgrp); 1215a6604450Sesaxe } 1216fb2f18f8Sesaxe 1217fb2f18f8Sesaxe /* 1218a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1219fb2f18f8Sesaxe */ 1220a6604450Sesaxe static cmt_lgrp_t * 1221a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1222a6604450Sesaxe { 1223a6604450Sesaxe cmt_lgrp_t *lgrp; 1224a6604450Sesaxe 1225a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1226a6604450Sesaxe 1227fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1228fb2f18f8Sesaxe 1229fb2f18f8Sesaxe lgrp->cl_hand = hand; 1230fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1231fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1232fb2f18f8Sesaxe cmt_lgrps = lgrp; 1233fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1234fb2f18f8Sesaxe 1235fb2f18f8Sesaxe return (lgrp); 1236fb2f18f8Sesaxe } 12376890d023SEric Saxe 12386890d023SEric Saxe /* 12390e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 12400e751525SEric Saxe * The caller must be holding cpu_lock. 12416890d023SEric Saxe * 12420e751525SEric Saxe * Return 0 on success and -1 on failure. 12436890d023SEric Saxe */ 12440e751525SEric Saxe int 12450e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 12466890d023SEric Saxe { 12470e751525SEric Saxe group_t *hwset; 12480e751525SEric Saxe group_iter_t iter; 12490e751525SEric Saxe pg_cmt_t *pg; 12506890d023SEric Saxe 12510e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12520e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12536890d023SEric Saxe 12540e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 12550e751525SEric Saxe cmt_hw_blacklisted[type]) { 12560e751525SEric Saxe /* 12570e751525SEric Saxe * Unable to find any instances of the specified type 12580e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 12590e751525SEric Saxe */ 12600e751525SEric Saxe return (-1); 12610e751525SEric Saxe } 12626890d023SEric Saxe 12636890d023SEric Saxe /* 12640e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12650e751525SEric Saxe * policy for power/performance optimization. 12660e751525SEric Saxe * 12670e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 12680e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 12690e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 12700e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 12710e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 12720e751525SEric Saxe * dominates. 12736890d023SEric Saxe */ 12740e751525SEric Saxe group_iter_init(&iter); 12750e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12760e751525SEric Saxe /* 12770e751525SEric Saxe * If the power domain is an only child to a parent 12780e751525SEric Saxe * not implementing the same policy, promote the child 12790e751525SEric Saxe * above the parent to activate the policy. 12800e751525SEric Saxe */ 12810e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 12820e751525SEric Saxe while ((pg->cmt_parent != NULL) && 12830e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12840e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12850e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 12861a77c24bSEric Saxe cmt_hier_promote(pg, NULL); 12870e751525SEric Saxe } 12880e751525SEric Saxe } 12890e751525SEric Saxe 12900e751525SEric Saxe return (0); 12910e751525SEric Saxe } 12920e751525SEric Saxe 12930e751525SEric Saxe int 12940e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 12950e751525SEric Saxe { 12960e751525SEric Saxe group_t *hwset; 12970e751525SEric Saxe group_iter_t iter; 12980e751525SEric Saxe pg_cmt_t *pg; 12990e751525SEric Saxe pg_cmt_t *child; 13000e751525SEric Saxe 13010e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 13020e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 13030e751525SEric Saxe 13040e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 13050e751525SEric Saxe /* 13060e751525SEric Saxe * Unable to find any instances of the specified type of 13070e751525SEric Saxe * power domain. 13080e751525SEric Saxe */ 13090e751525SEric Saxe return (-1); 13100e751525SEric Saxe } 13110e751525SEric Saxe /* 13120e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 13130e751525SEric Saxe * policy for performance optimization (load balancing). 13140e751525SEric Saxe */ 13150e751525SEric Saxe group_iter_init(&iter); 13160e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 13170e751525SEric Saxe 13180e751525SEric Saxe /* 13190e751525SEric Saxe * If the power domain has an only child that implements 13200e751525SEric Saxe * policy other than load balancing, promote the child 13210e751525SEric Saxe * above the power domain to ensure it's policy dominates. 13220e751525SEric Saxe */ 1323f03808b6SEric Saxe if (pg->cmt_children != NULL && 1324f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 13250e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 13260e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 13271a77c24bSEric Saxe cmt_hier_promote(child, NULL); 13280e751525SEric Saxe } 13290e751525SEric Saxe } 13300e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 13310e751525SEric Saxe } 13320e751525SEric Saxe return (0); 13330e751525SEric Saxe } 13340e751525SEric Saxe 13350e751525SEric Saxe /* ARGSUSED */ 13360e751525SEric Saxe static void 13370e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13380e751525SEric Saxe kthread_t *new) 13390e751525SEric Saxe { 13400e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 13410e751525SEric Saxe 13420e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13430e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 13440e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13450e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 13460e751525SEric Saxe } 13470e751525SEric Saxe } 13480e751525SEric Saxe 13490e751525SEric Saxe /* 13500e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 13510e751525SEric Saxe */ 13520e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 13530e751525SEric Saxe ((t)->t_state == TS_RUN && \ 13540e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 13550e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 13560e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 13570e751525SEric Saxe 13580e751525SEric Saxe static void 13590e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13600e751525SEric Saxe kthread_t *new) 13610e751525SEric Saxe { 13620e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13630e751525SEric Saxe cpupm_domain_t *dom; 13640e751525SEric Saxe uint32_t u; 13650e751525SEric Saxe 13660e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13670e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 13680e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 13690e751525SEric Saxe if (u == 1) { 13700e751525SEric Saxe /* 13710e751525SEric Saxe * Notify the CPU power manager that the domain 13720e751525SEric Saxe * is non-idle. 13730e751525SEric Saxe */ 13740e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13750e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13760e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 13770e751525SEric Saxe } 13780e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13790e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 13800e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 13810e751525SEric Saxe if (u == 0) { 13820e751525SEric Saxe /* 13830e751525SEric Saxe * The domain is idle, notify the CPU power 13840e751525SEric Saxe * manager. 13850e751525SEric Saxe * 13860e751525SEric Saxe * Avoid notifying if the thread is simply migrating 13870e751525SEric Saxe * between CPUs in the domain. 13880e751525SEric Saxe */ 13890e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 13900e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13910e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13920e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 13930e751525SEric Saxe } 13940e751525SEric Saxe } 13950e751525SEric Saxe } 13960e751525SEric Saxe } 13970e751525SEric Saxe 13980e751525SEric Saxe /* ARGSUSED */ 13990e751525SEric Saxe static void 14000e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 14010e751525SEric Saxe { 14020e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 14030e751525SEric Saxe cpupm_domain_t *dom; 14040e751525SEric Saxe 14050e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 14060e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 14070e751525SEric Saxe } 14080e751525SEric Saxe 14090e751525SEric Saxe /* 14100e751525SEric Saxe * Return the name of the CMT scheduling policy 14110e751525SEric Saxe * being implemented across this PG 14120e751525SEric Saxe */ 14130e751525SEric Saxe static char * 14140e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 14150e751525SEric Saxe { 14160e751525SEric Saxe pg_cmt_policy_t policy; 14170e751525SEric Saxe 14180e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 14190e751525SEric Saxe 14200e751525SEric Saxe if (policy & CMT_AFFINITY) { 14210e751525SEric Saxe if (policy & CMT_BALANCE) 14220e751525SEric Saxe return ("Load Balancing & Affinity"); 14230e751525SEric Saxe else if (policy & CMT_COALESCE) 14240e751525SEric Saxe return ("Load Coalescence & Affinity"); 14256890d023SEric Saxe else 14260e751525SEric Saxe return ("Affinity"); 14270e751525SEric Saxe } else { 14280e751525SEric Saxe if (policy & CMT_BALANCE) 14290e751525SEric Saxe return ("Load Balancing"); 14300e751525SEric Saxe else if (policy & CMT_COALESCE) 14310e751525SEric Saxe return ("Load Coalescence"); 14320e751525SEric Saxe else 14330e751525SEric Saxe return ("None"); 14340e751525SEric Saxe } 14350e751525SEric Saxe } 14366890d023SEric Saxe 14376890d023SEric Saxe /* 14380e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 1439d0e93b69SEric Saxe * from the CMT PG hierarchy. 14401a77c24bSEric Saxe * 14411a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 14421a77c24bSEric Saxe * in the PG being pruned), and may be invoked from a context where one CPU's 14431a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 14441a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 14456890d023SEric Saxe */ 14460e751525SEric Saxe static int 14471a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 14480e751525SEric Saxe { 14490e751525SEric Saxe group_t *hwset, *children; 14500e751525SEric Saxe int i, j, r, size = *sz; 14510e751525SEric Saxe group_iter_t hw_iter, child_iter; 14520e751525SEric Saxe pg_cpu_itr_t cpu_iter; 14530e751525SEric Saxe pg_cmt_t *pg, *child; 14540e751525SEric Saxe cpu_t *cpu; 14550e751525SEric Saxe int cap_needed; 14560e751525SEric Saxe pghw_type_t hw; 14576890d023SEric Saxe 14580e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 14596890d023SEric Saxe 14600e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 14610e751525SEric Saxe 14620e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 14630e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 14640e751525SEric Saxe "Event Based CPUPM Unavailable"); 14650e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 14660e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 14670e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 14680e751525SEric Saxe } 14696890d023SEric Saxe 14706890d023SEric Saxe /* 14710e751525SEric Saxe * Find and eliminate the PG from the lineage. 14726890d023SEric Saxe */ 14730e751525SEric Saxe for (i = 0; i < size; i++) { 14740e751525SEric Saxe if (lineage[i] == pg_bad) { 14750e751525SEric Saxe for (j = i; j < size - 1; j++) 14760e751525SEric Saxe lineage[j] = lineage[j + 1]; 14770e751525SEric Saxe *sz = size - 1; 14780e751525SEric Saxe break; 14790e751525SEric Saxe } 14800e751525SEric Saxe } 14810e751525SEric Saxe 14820e751525SEric Saxe /* 14830e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 14840e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 14850e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 14860e751525SEric Saxe */ 14870e751525SEric Saxe hwset = pghw_set_lookup(hw); 14880e751525SEric Saxe 14890e751525SEric Saxe /* 1490d0e93b69SEric Saxe * Blacklist the hardware so future processor groups of this type won't 1491d0e93b69SEric Saxe * participate in CMT thread placement. 1492d0e93b69SEric Saxe * 1493d0e93b69SEric Saxe * XXX 1494d0e93b69SEric Saxe * For heterogeneous system configurations, this might be overkill. 1495d0e93b69SEric Saxe * We may only need to blacklist the illegal PGs, and other instances 1496d0e93b69SEric Saxe * of this hardware sharing relationship may be ok. 14970e751525SEric Saxe */ 14980e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 14990e751525SEric Saxe 15000e751525SEric Saxe /* 15010e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 15020e751525SEric Saxe * the siblings set for the PG's children 15030e751525SEric Saxe */ 15040e751525SEric Saxe group_iter_init(&hw_iter); 15050e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15060e751525SEric Saxe /* 15070e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 15080e751525SEric Saxe * one child, ask for more capacity in the siblings group. 15090e751525SEric Saxe */ 15100e751525SEric Saxe cap_needed = 0; 15110e751525SEric Saxe if (pg->cmt_children && 15120e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 15130e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 15140e751525SEric Saxe 15150e751525SEric Saxe group_expand(pg->cmt_siblings, 15160e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 15170e751525SEric Saxe 15180e751525SEric Saxe /* 15190e751525SEric Saxe * If this is a top level group, also ensure the 15200e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 15210e751525SEric Saxe */ 15220e751525SEric Saxe if (pg->cmt_parent == NULL && 15230e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15240e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 15250e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 1526d0e93b69SEric Saxe cmt_root->cl_npgs += cap_needed; 15270e751525SEric Saxe } 15280e751525SEric Saxe } 15290e751525SEric Saxe } 15300e751525SEric Saxe 15310e751525SEric Saxe /* 15320e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 15330e751525SEric Saxe * exclusivity with respect to the dispatcher. 15340e751525SEric Saxe */ 15350e751525SEric Saxe pause_cpus(NULL); 15360e751525SEric Saxe 15370e751525SEric Saxe /* 15380e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 15390e751525SEric Saxe * represented by pg. 15400e751525SEric Saxe */ 15410e751525SEric Saxe group_iter_init(&hw_iter); 15420e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15430e751525SEric Saxe 15440e751525SEric Saxe /* 15450e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 15460e751525SEric Saxe */ 15470e751525SEric Saxe if (pg->cmt_siblings) { 15480e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 15490e751525SEric Saxe } 15500e751525SEric Saxe if (pg->cmt_parent == NULL && 15510e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15520e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 15530e751525SEric Saxe GRP_NORESIZE); 15540e751525SEric Saxe } 1555d0e93b69SEric Saxe 1556d0e93b69SEric Saxe /* 1557d0e93b69SEric Saxe * Indicate that no CMT policy will be implemented across 1558d0e93b69SEric Saxe * this PG. 1559d0e93b69SEric Saxe */ 1560d0e93b69SEric Saxe pg->cmt_policy = CMT_NO_POLICY; 1561d0e93b69SEric Saxe 15620e751525SEric Saxe /* 1563ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1564ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1565ef4f35d8SEric Saxe * siblings set are the same thing. 1566ef4f35d8SEric Saxe * 1567ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1568ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1569ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1570ef4f35d8SEric Saxe * iterating, empty PG's children set. 15710e751525SEric Saxe */ 15720e751525SEric Saxe if (pg->cmt_children != NULL) { 15730e751525SEric Saxe children = pg->cmt_children; 15740e751525SEric Saxe 15750e751525SEric Saxe group_iter_init(&child_iter); 15760e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 15770e751525SEric Saxe != NULL) { 1578ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 15790e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 15800e751525SEric Saxe GRP_NORESIZE); 15810e751525SEric Saxe ASSERT(r == 0); 1582d0e93b69SEric Saxe 1583d0e93b69SEric Saxe if (pg->cmt_parent == NULL && 1584d0e93b69SEric Saxe pg->cmt_siblings != 1585d0e93b69SEric Saxe &cmt_root->cl_pgs) { 1586d0e93b69SEric Saxe r = group_add(&cmt_root->cl_pgs, 1587d0e93b69SEric Saxe child, GRP_NORESIZE); 1588d0e93b69SEric Saxe ASSERT(r == 0); 1589d0e93b69SEric Saxe } 15900e751525SEric Saxe } 15910e751525SEric Saxe } 1592ef4f35d8SEric Saxe group_empty(pg->cmt_children); 15930e751525SEric Saxe } 15940e751525SEric Saxe 15950e751525SEric Saxe /* 15960e751525SEric Saxe * Reset the callbacks to the defaults 15970e751525SEric Saxe */ 15980e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 15990e751525SEric Saxe 16000e751525SEric Saxe /* 16010e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 16020e751525SEric Saxe */ 16030e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 16040e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 16050e751525SEric Saxe pg_cmt_t *cpu_pg; 16060e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 16071a77c24bSEric Saxe cpu_pg_t *cpd; /* CPU's PG data */ 16081a77c24bSEric Saxe 16091a77c24bSEric Saxe /* 16101a77c24bSEric Saxe * The CPU's lineage is under construction still 16111a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 16121a77c24bSEric Saxe */ 16131a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 16141a77c24bSEric Saxe cpd = pgdata; 16151a77c24bSEric Saxe else 16161a77c24bSEric Saxe cpd = cpu->cpu_pg; 16170e751525SEric Saxe 16180e751525SEric Saxe /* 16190e751525SEric Saxe * Iterate over the CPU's PGs updating the children 16200e751525SEric Saxe * of the PG being promoted, since they have a new 16210e751525SEric Saxe * parent and siblings set. 16220e751525SEric Saxe */ 16230e751525SEric Saxe group_iter_init(&liter); 16241a77c24bSEric Saxe while ((cpu_pg = group_iterate(&cpd->pgs, 16251a77c24bSEric Saxe &liter)) != NULL) { 16260e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 16270e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 16280e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 16290e751525SEric Saxe } 16300e751525SEric Saxe } 16310e751525SEric Saxe 16320e751525SEric Saxe /* 16330e751525SEric Saxe * Update the CPU's lineages 1634d0e93b69SEric Saxe * 1635d0e93b69SEric Saxe * Remove the PG from the CPU's group used for CMT 1636d0e93b69SEric Saxe * scheduling. 16370e751525SEric Saxe */ 16381a77c24bSEric Saxe (void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE); 16390e751525SEric Saxe } 16400e751525SEric Saxe } 16410e751525SEric Saxe start_cpus(); 16420e751525SEric Saxe return (0); 16430e751525SEric Saxe } 16440e751525SEric Saxe 16450e751525SEric Saxe /* 16460e751525SEric Saxe * Disable CMT scheduling 16470e751525SEric Saxe */ 16480e751525SEric Saxe static void 16490e751525SEric Saxe pg_cmt_disable(void) 16500e751525SEric Saxe { 16510e751525SEric Saxe cpu_t *cpu; 16520e751525SEric Saxe 16531a77c24bSEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16541a77c24bSEric Saxe 16550e751525SEric Saxe pause_cpus(NULL); 16560e751525SEric Saxe cpu = cpu_list; 16570e751525SEric Saxe 16586890d023SEric Saxe do { 16590e751525SEric Saxe if (cpu->cpu_pg) 16600e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 16610e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 16620e751525SEric Saxe 16630e751525SEric Saxe cmt_sched_disabled = 1; 16640e751525SEric Saxe start_cpus(); 16650e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 16660e751525SEric Saxe } 16670e751525SEric Saxe 1668ef4f35d8SEric Saxe /* 1669ef4f35d8SEric Saxe * CMT lineage validation 1670ef4f35d8SEric Saxe * 1671ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1672ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1673ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1674ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1675ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1676ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1677ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1678ef4f35d8SEric Saxe * 1679ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1680ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1681ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1682ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1683*b025faeeSEric Saxe * PG (and all other instances PG's sharing relationship type) from the CMT 1684ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1685*b025faeeSEric Saxe * be added. If the grouping definition doesn't originate from suspect 1686ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1687ef4f35d8SEric Saxe * CMT scheduling altogether. 1688ef4f35d8SEric Saxe * 1689ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1690ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1691ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1692ef4f35d8SEric Saxe * 1693ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1694ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1695ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1696ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1697ef4f35d8SEric Saxe * 1698ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1699ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1700ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1701ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1702ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1703ef4f35d8SEric Saxe * the exiting lineages. 1704ef4f35d8SEric Saxe * 1705ef4f35d8SEric Saxe * This routine will normally return one of the following: 1706ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1707ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1708ef4f35d8SEric Saxe * 1709ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1710ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 17111a77c24bSEric Saxe * 17121a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 17131a77c24bSEric Saxe * whose lineage is being validated), which is under-construction. 17141a77c24bSEric Saxe * "pgdata" is a reference to the CPU's under-construction PG data. 17151a77c24bSEric Saxe * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg. 1716ef4f35d8SEric Saxe */ 1717ef4f35d8SEric Saxe static cmt_lineage_validation_t 17181a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 17190e751525SEric Saxe { 1720ef4f35d8SEric Saxe int i, j, size; 1721*b025faeeSEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp, *parent; 17220e751525SEric Saxe cpu_t *cp; 17230e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1724ef4f35d8SEric Saxe lgrp_handle_t lgrp; 17250e751525SEric Saxe 17260e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 17270e751525SEric Saxe 17280e751525SEric Saxe revalidate: 17290e751525SEric Saxe size = *sz; 17300e751525SEric Saxe pg_bad = NULL; 1731ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1732ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 17330e751525SEric Saxe 17340e751525SEric Saxe pg = lineage[i]; 1735ef4f35d8SEric Saxe if (i < size - 1) 1736ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1737ef4f35d8SEric Saxe else 1738ef4f35d8SEric Saxe pg_next = NULL; 17396890d023SEric Saxe 17406890d023SEric Saxe /* 17410e751525SEric Saxe * We assume that the lineage has already been sorted 17420e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 17436890d023SEric Saxe */ 1744ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1745ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 17466890d023SEric Saxe 17476890d023SEric Saxe /* 1748*b025faeeSEric Saxe * The CPUs PG lineage was passed as the first argument to 1749*b025faeeSEric Saxe * this routine and contains the sorted list of the CPU's 1750*b025faeeSEric Saxe * PGs. Ultimately, the ordering of the PGs in that list, and 1751*b025faeeSEric Saxe * the ordering as traversed by the cmt_parent list must be 1752*b025faeeSEric Saxe * the same. PG promotion will be used as the mechanism to 1753*b025faeeSEric Saxe * achieve this, but first we need to look for cases where 1754*b025faeeSEric Saxe * promotion will be necessary, and validate that will be 1755*b025faeeSEric Saxe * possible without violating the subset invarient described 1756*b025faeeSEric Saxe * above. 1757ef4f35d8SEric Saxe * 1758ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1759ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1760*b025faeeSEric Saxe * part of this CPU's lineage (and therefore should contain 1761*b025faeeSEric Saxe * the new CPU). If not, it means that the addition of the 1762*b025faeeSEric Saxe * new CPU should have made this PG have more CPUs than its 1763*b025faeeSEric Saxe * parent (and other ancestors not in the same lineage) and 1764*b025faeeSEric Saxe * will need to be promoted into place. 1765*b025faeeSEric Saxe * 1766*b025faeeSEric Saxe * We need to verify all of this to defend against a buggy 1767ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1768ef4f35d8SEric Saxe */ 1769*b025faeeSEric Saxe parent = pg->cmt_parent; 1770*b025faeeSEric Saxe while (parent != NULL) { 1771ef4f35d8SEric Saxe /* 1772*b025faeeSEric Saxe * Determine if the parent/ancestor is in this lineage 1773ef4f35d8SEric Saxe */ 1774*b025faeeSEric Saxe pg_tmp = NULL; 1775*b025faeeSEric Saxe for (j = 0; (j < size) && (pg_tmp != parent); j++) { 1776ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1777*b025faeeSEric Saxe } 1778*b025faeeSEric Saxe if (pg_tmp == parent) { 1779*b025faeeSEric Saxe /* 1780*b025faeeSEric Saxe * It's in the lineage. The concentricity 1781*b025faeeSEric Saxe * checks will handle the rest. 1782*b025faeeSEric Saxe */ 1783ef4f35d8SEric Saxe break; 1784ef4f35d8SEric Saxe } 1785ef4f35d8SEric Saxe /* 1786*b025faeeSEric Saxe * If it is not in the lineage, PG will eventually 1787*b025faeeSEric Saxe * need to be promoted above it. Verify the ancestor 1788*b025faeeSEric Saxe * is a proper subset. There is still an error if 1789*b025faeeSEric Saxe * the ancestor has the same number of CPUs as PG, 1790*b025faeeSEric Saxe * since that would imply it should be in the lineage, 1791*b025faeeSEric Saxe * and we already know it isn't. 1792ef4f35d8SEric Saxe */ 1793*b025faeeSEric Saxe if (PG_NUM_CPUS((pg_t *)parent) >= 1794ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1795ef4f35d8SEric Saxe /* 1796*b025faeeSEric Saxe * Not a proper subset if the parent/ancestor 1797*b025faeeSEric Saxe * has the same or more CPUs than PG. 1798ef4f35d8SEric Saxe */ 1799*b025faeeSEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_PROMOTABLE; 1800ef4f35d8SEric Saxe goto handle_error; 1801ef4f35d8SEric Saxe } 1802*b025faeeSEric Saxe parent = parent->cmt_parent; 1803ef4f35d8SEric Saxe } 1804ef4f35d8SEric Saxe 1805ef4f35d8SEric Saxe /* 1806ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1807ef4f35d8SEric Saxe * consistency checks along the way. 18086890d023SEric Saxe */ 18090e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 18100e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1811ef4f35d8SEric Saxe /* 1812ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1813ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1814ef4f35d8SEric Saxe * or same size) doesn't also contain. 1815ef4f35d8SEric Saxe */ 1816ef4f35d8SEric Saxe if (pg_next != NULL && 1817ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 18180e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 18190e751525SEric Saxe goto handle_error; 18206890d023SEric Saxe } 1821ef4f35d8SEric Saxe 1822ef4f35d8SEric Saxe /* 1823ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1824ef4f35d8SEric Saxe * lgroup. 1825ef4f35d8SEric Saxe */ 1826ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1827ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1828ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1829ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1830ef4f35d8SEric Saxe goto handle_error; 1831ef4f35d8SEric Saxe } 18320e751525SEric Saxe } 18336890d023SEric Saxe } 18346890d023SEric Saxe 18350e751525SEric Saxe handle_error: 1836ef4f35d8SEric Saxe /* 1837ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1838ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1839ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1840ef4f35d8SEric Saxe * 1841ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1842ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1843ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1844ef4f35d8SEric Saxe */ 18450e751525SEric Saxe switch (cmt_lineage_status) { 18460e751525SEric Saxe case CMT_LINEAGE_VALID: 18470e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 18480e751525SEric Saxe break; 1849ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1850ef4f35d8SEric Saxe /* 1851ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1852ef4f35d8SEric Saxe * 1853ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1854ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1855ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1856ef4f35d8SEric Saxe * 1857d0e93b69SEric Saxe * If the PG is of a sharing relationship type known to 1858d0e93b69SEric Saxe * legitimately span lgroups, specify that no CMT thread 1859d0e93b69SEric Saxe * placement policy should be implemented, and prune the PG 1860d0e93b69SEric Saxe * from the existing CMT PG hierarchy. 1861d0e93b69SEric Saxe * 1862d0e93b69SEric Saxe * Otherwise, fall though to the case below for handling. 1863ef4f35d8SEric Saxe */ 1864d0e93b69SEric Saxe if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) { 1865d0e93b69SEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1866d0e93b69SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1867d0e93b69SEric Saxe goto revalidate; 1868d0e93b69SEric Saxe } 1869d0e93b69SEric Saxe } 1870d0e93b69SEric Saxe /*LINTED*/ 1871ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1872ef4f35d8SEric Saxe /* 1873ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1874ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1875ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1876ef4f35d8SEric Saxe */ 1877ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18781a77c24bSEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1879ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1880ef4f35d8SEric Saxe goto revalidate; 1881ef4f35d8SEric Saxe } 1882ef4f35d8SEric Saxe } 1883ef4f35d8SEric Saxe /* 1884ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1885ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1886ef4f35d8SEric Saxe */ 1887ef4f35d8SEric Saxe pg_cmt_disable(); 1888ef4f35d8SEric Saxe break; 18890e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 18906890d023SEric Saxe /* 1891ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1892ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1893ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1894ef4f35d8SEric Saxe * doesn't have. 18950e751525SEric Saxe * 1896ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1897ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 18980e751525SEric Saxe * 18990e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 19000e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 19010e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 19020e751525SEric Saxe * prune the one that is untrusted. 19030e751525SEric Saxe * 19040e751525SEric Saxe * This process repeats until we have a concentric lineage, 19050e751525SEric Saxe * or we would have to prune out level derived from what we 19060e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1907ef4f35d8SEric Saxe * is disabled altogether. 19086890d023SEric Saxe */ 1909ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 19100e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 19110e751525SEric Saxe pg_bad = pg; 19120e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1913ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1914ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1915ef4f35d8SEric Saxe pg_bad = pg_next; 19160e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 19170e751525SEric Saxe pg_bad = pg; 19186890d023SEric Saxe } 19196890d023SEric Saxe } 19200e751525SEric Saxe if (pg_bad) { 19211a77c24bSEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) { 19220e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 19230e751525SEric Saxe goto revalidate; 19240e751525SEric Saxe } 19250e751525SEric Saxe } 19260e751525SEric Saxe /* 1927ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1928ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 19290e751525SEric Saxe */ 19300e751525SEric Saxe pg_cmt_disable(); 1931ef4f35d8SEric Saxe break; 1932ef4f35d8SEric Saxe default: 1933ef4f35d8SEric Saxe /* 1934ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1935ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1936ef4f35d8SEric Saxe * CMT scheduling altogether. 1937ef4f35d8SEric Saxe */ 19380e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1939ef4f35d8SEric Saxe pg_cmt_disable(); 19400e751525SEric Saxe } 1941ef4f35d8SEric Saxe return (cmt_lineage_status); 19426890d023SEric Saxe } 1943