1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77fb2f18f8Sesaxe * On NUMA systems, the CMT load balancing algorithm balances across the 78fb2f18f8Sesaxe * CMT PGs within their respective lgroups. On UMA based system, there 79fb2f18f8Sesaxe * exists a top level group of PGs to balance across. On NUMA systems multiple 80fb2f18f8Sesaxe * top level groups are instantiated, where the top level balancing begins by 81fb2f18f8Sesaxe * balancng across the CMT PGs within their respective (per lgroup) top level 82fb2f18f8Sesaxe * groups. 83fb2f18f8Sesaxe */ 84a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 85a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 86a6604450Sesaxe /* used for null_proc_lpa */ 870e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 88fb2f18f8Sesaxe 89a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 90a6604450Sesaxe 91a6604450Sesaxe /* 920e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 930e751525SEric Saxe * PGs won't be instantiated for blacklisted hardware sharing relationships. 940e751525SEric Saxe */ 950e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 960e751525SEric Saxe 970e751525SEric Saxe /* 98a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 99a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 100a6604450Sesaxe */ 1010e751525SEric Saxe int cmt_sched_disabled = 0; 102fb2f18f8Sesaxe 103ef4f35d8SEric Saxe /* 104ef4f35d8SEric Saxe * Status codes for CMT lineage validation 105ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 106ef4f35d8SEric Saxe */ 107ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 108ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 109ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 110ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 111ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 112ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 113ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 114ef4f35d8SEric Saxe } cmt_lineage_validation_t; 115ef4f35d8SEric Saxe 116ef4f35d8SEric Saxe /* 117ef4f35d8SEric Saxe * Status of the current lineage under construction. 118ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 119ef4f35d8SEric Saxe */ 120ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 121ef4f35d8SEric Saxe 122ef4f35d8SEric Saxe /* 123ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 124ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 125ef4f35d8SEric Saxe */ 126ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 127ef4f35d8SEric Saxe 128ef4f35d8SEric Saxe /* 129ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 130ef4f35d8SEric Saxe */ 131ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 132ef4f35d8SEric Saxe 133fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 134fb2f18f8Sesaxe 135fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 136fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 137*47ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 138*47ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 139fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 140fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 141fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 142fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1430e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1440e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1450e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 146fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 147fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 148fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 149a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1500e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1510e751525SEric Saxe kthread_t *, kthread_t *); 1520e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1530e751525SEric Saxe kthread_t *, kthread_t *); 1540e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 155ef4f35d8SEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *); 156fb2f18f8Sesaxe 1570e751525SEric Saxe 1580e751525SEric Saxe /* 159fb2f18f8Sesaxe * CMT PG ops 160fb2f18f8Sesaxe */ 161fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 162fb2f18f8Sesaxe pg_cmt_alloc, 163fb2f18f8Sesaxe pg_cmt_free, 164fb2f18f8Sesaxe pg_cmt_cpu_init, 165fb2f18f8Sesaxe pg_cmt_cpu_fini, 166fb2f18f8Sesaxe pg_cmt_cpu_active, 167fb2f18f8Sesaxe pg_cmt_cpu_inactive, 168fb2f18f8Sesaxe pg_cmt_cpupart_in, 169fb2f18f8Sesaxe NULL, /* cpupart_out */ 170fb2f18f8Sesaxe pg_cmt_cpupart_move, 171fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1720e751525SEric Saxe pg_cmt_policy_name, 173fb2f18f8Sesaxe }; 174fb2f18f8Sesaxe 175fb2f18f8Sesaxe /* 176fb2f18f8Sesaxe * Initialize the CMT PG class 177fb2f18f8Sesaxe */ 178fb2f18f8Sesaxe void 179fb2f18f8Sesaxe pg_cmt_class_init(void) 180fb2f18f8Sesaxe { 181fb2f18f8Sesaxe if (cmt_sched_disabled) 182fb2f18f8Sesaxe return; 183fb2f18f8Sesaxe 184fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 185fb2f18f8Sesaxe } 186fb2f18f8Sesaxe 187fb2f18f8Sesaxe /* 188fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 189fb2f18f8Sesaxe * that either t0 or the slave startup thread can 190fb2f18f8Sesaxe * be accounted for. 191fb2f18f8Sesaxe */ 192fb2f18f8Sesaxe void 193fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 194fb2f18f8Sesaxe { 1950e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 1960e751525SEric Saxe cp->cpu_thread); 197fb2f18f8Sesaxe } 198fb2f18f8Sesaxe 199fb2f18f8Sesaxe /* 200fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 201fb2f18f8Sesaxe * without a performance penalty 202fb2f18f8Sesaxe */ 203fb2f18f8Sesaxe int 204fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 205fb2f18f8Sesaxe { 206fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 207fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 208fb2f18f8Sesaxe return (1); 209fb2f18f8Sesaxe return (0); 210fb2f18f8Sesaxe } 211fb2f18f8Sesaxe 212fb2f18f8Sesaxe /* 213fb2f18f8Sesaxe * CMT class specific PG allocation 214fb2f18f8Sesaxe */ 215fb2f18f8Sesaxe static pg_t * 216fb2f18f8Sesaxe pg_cmt_alloc(void) 217fb2f18f8Sesaxe { 218fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 219fb2f18f8Sesaxe } 220fb2f18f8Sesaxe 221fb2f18f8Sesaxe /* 222fb2f18f8Sesaxe * Class specific PG de-allocation 223fb2f18f8Sesaxe */ 224fb2f18f8Sesaxe static void 225fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 226fb2f18f8Sesaxe { 227fb2f18f8Sesaxe ASSERT(pg != NULL); 228fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 229fb2f18f8Sesaxe 230fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 231fb2f18f8Sesaxe } 232fb2f18f8Sesaxe 233fb2f18f8Sesaxe /* 2340e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2350e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 236fb2f18f8Sesaxe */ 2370e751525SEric Saxe static pg_cmt_policy_t 2380e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 239fb2f18f8Sesaxe { 2400e751525SEric Saxe pg_cmt_policy_t p; 2410e751525SEric Saxe 2420e751525SEric Saxe /* 2430e751525SEric Saxe * Give the platform a chance to override the default 2440e751525SEric Saxe */ 2450e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2460e751525SEric Saxe return (p); 2470e751525SEric Saxe 2480e751525SEric Saxe switch (hw) { 2490e751525SEric Saxe case PGHW_IPIPE: 2500e751525SEric Saxe case PGHW_FPU: 2510e751525SEric Saxe case PGHW_CHIP: 2520e751525SEric Saxe return (CMT_BALANCE); 2530e751525SEric Saxe case PGHW_CACHE: 2540e751525SEric Saxe return (CMT_AFFINITY); 2550e751525SEric Saxe case PGHW_POW_ACTIVE: 2560e751525SEric Saxe case PGHW_POW_IDLE: 2570e751525SEric Saxe return (CMT_BALANCE); 2580e751525SEric Saxe default: 2590e751525SEric Saxe return (CMT_NO_POLICY); 2600e751525SEric Saxe } 2610e751525SEric Saxe } 2620e751525SEric Saxe 2630e751525SEric Saxe /* 2640e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2650e751525SEric Saxe * the pg2 relationship. 2660e751525SEric Saxe */ 2670e751525SEric Saxe static pg_cmt_t * 2680e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2690e751525SEric Saxe { 2700e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2710e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2720e751525SEric Saxe 2730e751525SEric Saxe /* 2740e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2750e751525SEric Saxe */ 2760e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2770e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2780e751525SEric Saxe return (pg2); 2790e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2800e751525SEric Saxe return (pg1); 2810e751525SEric Saxe } 2820e751525SEric Saxe 2830e751525SEric Saxe /* 2840e751525SEric Saxe * Otherwise, ask the platform 2850e751525SEric Saxe */ 2860e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2870e751525SEric Saxe return (pg1); 2880e751525SEric Saxe else 2890e751525SEric Saxe return (pg2); 2900e751525SEric Saxe } 2910e751525SEric Saxe 2920e751525SEric Saxe /* 2930e751525SEric Saxe * Initialize CMT callbacks for the given PG 2940e751525SEric Saxe */ 2950e751525SEric Saxe static void 2960e751525SEric Saxe cmt_callback_init(pg_t *pg) 2970e751525SEric Saxe { 2980e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 2990e751525SEric Saxe case PGHW_POW_ACTIVE: 3000e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3010e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3020e751525SEric Saxe break; 3030e751525SEric Saxe default: 3040e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3050e751525SEric Saxe 3060e751525SEric Saxe } 3070e751525SEric Saxe } 3080e751525SEric Saxe 3090e751525SEric Saxe /* 3100e751525SEric Saxe * Promote PG above it's current parent. 3110e751525SEric Saxe * This is only legal if PG has an equal or greater number of CPUs 3120e751525SEric Saxe * than it's parent. 3130e751525SEric Saxe */ 3140e751525SEric Saxe static void 3150e751525SEric Saxe cmt_hier_promote(pg_cmt_t *pg) 3160e751525SEric Saxe { 3170e751525SEric Saxe pg_cmt_t *parent; 3180e751525SEric Saxe group_t *children; 3190e751525SEric Saxe cpu_t *cpu; 3200e751525SEric Saxe group_iter_t iter; 3210e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3220e751525SEric Saxe int r; 3230e751525SEric Saxe int err; 3240e751525SEric Saxe 3250e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3260e751525SEric Saxe 3270e751525SEric Saxe parent = pg->cmt_parent; 3280e751525SEric Saxe if (parent == NULL) { 3290e751525SEric Saxe /* 3300e751525SEric Saxe * Nothing to do 3310e751525SEric Saxe */ 3320e751525SEric Saxe return; 3330e751525SEric Saxe } 3340e751525SEric Saxe 3350e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3360e751525SEric Saxe 3370e751525SEric Saxe /* 3380e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3390e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3400e751525SEric Saxe */ 3410e751525SEric Saxe pause_cpus(NULL); 3420e751525SEric Saxe 3430e751525SEric Saxe /* 3440e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3450e751525SEric Saxe * with PG. 3460e751525SEric Saxe */ 3470e751525SEric Saxe if (parent->cmt_siblings) { 3480e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3490e751525SEric Saxe != -1) { 3500e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3510e751525SEric Saxe ASSERT(r != -1); 3520e751525SEric Saxe } 3530e751525SEric Saxe } 3540e751525SEric Saxe 3550e751525SEric Saxe /* 3560e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3570e751525SEric Saxe * in the root lgroup's group of top level PGs. 3580e751525SEric Saxe */ 3590e751525SEric Saxe if (parent->cmt_parent == NULL && 3600e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3610e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3620e751525SEric Saxe != -1) { 3630e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3640e751525SEric Saxe ASSERT(r != -1); 3650e751525SEric Saxe } 3660e751525SEric Saxe } 3670e751525SEric Saxe 3680e751525SEric Saxe /* 3690e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3700e751525SEric Saxe * only child of it's parent. Update the parent's children set 3710e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 3720e751525SEric Saxe * the child). Then have PG and the parent swap children sets. 3730e751525SEric Saxe */ 3740e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3750e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3760e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3770e751525SEric Saxe ASSERT(r != -1); 3780e751525SEric Saxe } 3790e751525SEric Saxe 3800e751525SEric Saxe children = pg->cmt_children; 3810e751525SEric Saxe pg->cmt_children = parent->cmt_children; 3820e751525SEric Saxe parent->cmt_children = children; 3830e751525SEric Saxe 3840e751525SEric Saxe /* 3850e751525SEric Saxe * Update the sibling references for PG and it's parent 3860e751525SEric Saxe */ 3870e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 3880e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 3890e751525SEric Saxe 3900e751525SEric Saxe /* 3910e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 3920e751525SEric Saxe */ 3930e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 3940e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 3950e751525SEric Saxe int idx; 3960e751525SEric Saxe group_t *pgs; 3970e751525SEric Saxe pg_cmt_t *cpu_pg; 3980e751525SEric Saxe 3990e751525SEric Saxe /* 4000e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4010e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4020e751525SEric Saxe */ 4030e751525SEric Saxe pgs = &cpu->cpu_pg->pgs; 4040e751525SEric Saxe group_iter_init(&iter); 4050e751525SEric Saxe while ((cpu_pg = group_iterate(pgs, &iter)) != NULL) { 4060e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4070e751525SEric Saxe cpu_pg->cmt_parent = parent; 4080e751525SEric Saxe } 4090e751525SEric Saxe } 4100e751525SEric Saxe 4110e751525SEric Saxe /* 4120e751525SEric Saxe * Update the CMT load balancing lineage 4130e751525SEric Saxe */ 4140e751525SEric Saxe pgs = &cpu->cpu_pg->cmt_pgs; 4150e751525SEric Saxe if ((idx = group_find(pgs, (void *)pg)) == -1) { 4160e751525SEric Saxe /* 4170e751525SEric Saxe * Unless this is the CPU who's lineage is being 4180e751525SEric Saxe * constructed, the PG being promoted should be 4190e751525SEric Saxe * in the lineage. 4200e751525SEric Saxe */ 4210e751525SEric Saxe ASSERT(GROUP_SIZE(pgs) == 0); 4220e751525SEric Saxe continue; 4230e751525SEric Saxe } 4240e751525SEric Saxe 4250e751525SEric Saxe ASSERT(GROUP_ACCESS(pgs, idx - 1) == parent); 4260e751525SEric Saxe ASSERT(idx > 0); 4270e751525SEric Saxe 4280e751525SEric Saxe /* 4290e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4300e751525SEric Saxe * lineage 4310e751525SEric Saxe */ 4320e751525SEric Saxe group_remove_at(pgs, idx); 4330e751525SEric Saxe group_remove_at(pgs, idx - 1); 4340e751525SEric Saxe err = group_add_at(pgs, parent, idx); 4350e751525SEric Saxe ASSERT(err == 0); 4360e751525SEric Saxe err = group_add_at(pgs, pg, idx - 1); 4370e751525SEric Saxe ASSERT(err == 0); 4380e751525SEric Saxe } 4390e751525SEric Saxe 4400e751525SEric Saxe /* 4410e751525SEric Saxe * Update the parent references for PG and it's parent 4420e751525SEric Saxe */ 4430e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4440e751525SEric Saxe parent->cmt_parent = pg; 4450e751525SEric Saxe 4460e751525SEric Saxe start_cpus(); 447fb2f18f8Sesaxe } 448fb2f18f8Sesaxe 449fb2f18f8Sesaxe /* 450fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 451fb2f18f8Sesaxe */ 452fb2f18f8Sesaxe static void 453*47ab0c7cSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *cpu_pg) 454fb2f18f8Sesaxe { 455fb2f18f8Sesaxe pg_cmt_t *pg; 456fb2f18f8Sesaxe group_t *cmt_pgs; 4570e751525SEric Saxe int levels, level; 458fb2f18f8Sesaxe pghw_type_t hw; 459fb2f18f8Sesaxe pg_t *pg_cache = NULL; 460fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 461fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 462fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 463ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 464fb2f18f8Sesaxe 465fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 466fb2f18f8Sesaxe 4670e751525SEric Saxe if (cmt_sched_disabled) 4680e751525SEric Saxe return; 4690e751525SEric Saxe 470fb2f18f8Sesaxe /* 471fb2f18f8Sesaxe * A new CPU is coming into the system. 472fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 4730e751525SEric Saxe * has any performance or efficiency relevant 4740e751525SEric Saxe * sharing relationships 475fb2f18f8Sesaxe */ 476*47ab0c7cSEric Saxe cmt_pgs = &cpu_pg->cmt_pgs; 477*47ab0c7cSEric Saxe cpu_pg->cmt_lineage = NULL; 478fb2f18f8Sesaxe 479fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 4800e751525SEric Saxe levels = 0; 481fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 482fb2f18f8Sesaxe 4830e751525SEric Saxe pg_cmt_policy_t policy; 4840e751525SEric Saxe 485fb2f18f8Sesaxe /* 4860e751525SEric Saxe * We're only interested in the hw sharing relationships 4870e751525SEric Saxe * for which we know how to optimize. 488fb2f18f8Sesaxe */ 4890e751525SEric Saxe policy = pg_cmt_policy(hw); 4900e751525SEric Saxe if (policy == CMT_NO_POLICY || 4910e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 492fb2f18f8Sesaxe continue; 493fb2f18f8Sesaxe 494fb2f18f8Sesaxe /* 4950e751525SEric Saxe * Continue if the hardware sharing relationship has been 4960e751525SEric Saxe * blacklisted. 4970e751525SEric Saxe */ 4980e751525SEric Saxe if (cmt_hw_blacklisted[hw]) { 4990e751525SEric Saxe continue; 5000e751525SEric Saxe } 5010e751525SEric Saxe 5020e751525SEric Saxe /* 503fb2f18f8Sesaxe * Find (or create) the PG associated with 504fb2f18f8Sesaxe * the hw sharing relationship in which cp 505fb2f18f8Sesaxe * belongs. 506fb2f18f8Sesaxe * 507fb2f18f8Sesaxe * Determine if a suitable PG already 508fb2f18f8Sesaxe * exists, or if one needs to be created. 509fb2f18f8Sesaxe */ 510fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 511fb2f18f8Sesaxe if (pg == NULL) { 512fb2f18f8Sesaxe /* 513fb2f18f8Sesaxe * Create a new one. 514fb2f18f8Sesaxe * Initialize the common... 515fb2f18f8Sesaxe */ 516fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 517fb2f18f8Sesaxe 518fb2f18f8Sesaxe /* ... physical ... */ 519fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 520fb2f18f8Sesaxe 521fb2f18f8Sesaxe /* 522fb2f18f8Sesaxe * ... and CMT specific portions of the 523fb2f18f8Sesaxe * structure. 524fb2f18f8Sesaxe */ 5250e751525SEric Saxe pg->cmt_policy = policy; 5260e751525SEric Saxe 5270e751525SEric Saxe /* CMT event callbacks */ 5280e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5290e751525SEric Saxe 530fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 531fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 532fb2f18f8Sesaxe } else { 533fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 534fb2f18f8Sesaxe } 535fb2f18f8Sesaxe 536fb2f18f8Sesaxe /* Add the CPU to the PG */ 537*47ab0c7cSEric Saxe pg_cpu_add((pg_t *)pg, cp, cpu_pg); 538fb2f18f8Sesaxe 539fb2f18f8Sesaxe /* 5406890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 541fb2f18f8Sesaxe */ 542fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 543fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 544fb2f18f8Sesaxe 545fb2f18f8Sesaxe if (cp->cpu_seqid >= 546fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 547fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 548fb2f18f8Sesaxe cp->cpu_seqid + 1); 549fb2f18f8Sesaxe } 550fb2f18f8Sesaxe 551fb2f18f8Sesaxe /* 5520e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 553fb2f18f8Sesaxe */ 5540e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 5550e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 556fb2f18f8Sesaxe } 557fb2f18f8Sesaxe 558fb2f18f8Sesaxe /* Cache this for later */ 559fb2f18f8Sesaxe if (hw == PGHW_CACHE) 560fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 561fb2f18f8Sesaxe } 562fb2f18f8Sesaxe 5630e751525SEric Saxe group_expand(cmt_pgs, levels); 5646890d023SEric Saxe 5656890d023SEric Saxe if (cmt_root == NULL) 5666890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 567fb2f18f8Sesaxe 568fb2f18f8Sesaxe /* 5690e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 5706890d023SEric Saxe */ 5716890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 5726890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 5736890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 5746890d023SEric Saxe 5756890d023SEric Saxe /* 5760e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 5770e751525SEric Saxe */ 5780e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 5790e751525SEric Saxe 5800e751525SEric Saxe /* 5810e751525SEric Saxe * Examine the lineage and validate it. 5820e751525SEric Saxe * This routine will also try to fix the lineage along with the 5830e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 5840e751525SEric Saxe * 585ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 586ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 5870e751525SEric Saxe */ 588ef4f35d8SEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels); 589ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 590ef4f35d8SEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) 5910e751525SEric Saxe return; 5920e751525SEric Saxe 5930e751525SEric Saxe /* 5940e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 5950e751525SEric Saxe * correct, as the generation in the lineage may have changed 5960e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 5970e751525SEric Saxe * of the lineage, moving down. 5980e751525SEric Saxe */ 5990e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6000e751525SEric Saxe int reorg; 6010e751525SEric Saxe 6020e751525SEric Saxe reorg = 0; 6030e751525SEric Saxe pg = cpu_cmt_hier[level]; 6040e751525SEric Saxe 6050e751525SEric Saxe /* 6060e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6070e751525SEric Saxe */ 6080e751525SEric Saxe while (pg->cmt_parent && 6090e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 6100e751525SEric Saxe cmt_hier_promote(pg); 6110e751525SEric Saxe reorg++; 6120e751525SEric Saxe } 6130e751525SEric Saxe if (reorg > 0) 6140e751525SEric Saxe level = levels - 1; 6150e751525SEric Saxe else 6160e751525SEric Saxe level--; 6170e751525SEric Saxe } 6180e751525SEric Saxe 6190e751525SEric Saxe /* 6206890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6210e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6220e751525SEric Saxe * which is used for top down CMT load balancing 623fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 624fb2f18f8Sesaxe * it to it's parent and siblings. 625fb2f18f8Sesaxe */ 6260e751525SEric Saxe for (level = 0; level < levels; level++) { 627fb2f18f8Sesaxe uint_t children; 628fb2f18f8Sesaxe int err; 629fb2f18f8Sesaxe 630fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6310e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 632fb2f18f8Sesaxe ASSERT(err == 0); 633fb2f18f8Sesaxe 634fb2f18f8Sesaxe if (level == 0) 635*47ab0c7cSEric Saxe cpu_pg->cmt_lineage = (pg_t *)pg; 636fb2f18f8Sesaxe 637fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 638fb2f18f8Sesaxe /* Already initialized */ 639fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 640fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 641fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 642c416da2dSjb145095 ((pg->cmt_parent != NULL) && 643c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 644fb2f18f8Sesaxe continue; 645fb2f18f8Sesaxe } 646fb2f18f8Sesaxe 6470e751525SEric Saxe if ((level + 1) == levels) { 648fb2f18f8Sesaxe pg->cmt_parent = NULL; 6496890d023SEric Saxe 650fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 651fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 6520e751525SEric Saxe if (cmt_root != lgrp) 6536890d023SEric Saxe cmt_root->cl_npgs++; 654fb2f18f8Sesaxe } else { 655fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 656fb2f18f8Sesaxe 657fb2f18f8Sesaxe /* 658fb2f18f8Sesaxe * A good parent keeps track of their children. 659fb2f18f8Sesaxe * The parent's children group is also the PG's 660fb2f18f8Sesaxe * siblings. 661fb2f18f8Sesaxe */ 662fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 663fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 664fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 665fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 666fb2f18f8Sesaxe } 667fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 668fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 669fb2f18f8Sesaxe } 6706890d023SEric Saxe 671fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 6726890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 673fb2f18f8Sesaxe } 674fb2f18f8Sesaxe 675fb2f18f8Sesaxe /* 676fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 677fb2f18f8Sesaxe * for fast lookups later. 678fb2f18f8Sesaxe */ 679fb2f18f8Sesaxe if (cp->cpu_physid) { 680fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 681fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 682fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 683fb2f18f8Sesaxe 684fb2f18f8Sesaxe /* 685fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 686fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 687fb2f18f8Sesaxe */ 688fb2f18f8Sesaxe if (pg_cache) 689fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 690fb2f18f8Sesaxe } 691fb2f18f8Sesaxe 692fb2f18f8Sesaxe /* CPU0 only initialization */ 693fb2f18f8Sesaxe if (is_cpu0) { 694fb2f18f8Sesaxe pg_cmt_cpu_startup(cp); 695fb2f18f8Sesaxe is_cpu0 = 0; 696a6604450Sesaxe cpu0_lgrp = lgrp; 697fb2f18f8Sesaxe } 698fb2f18f8Sesaxe 699fb2f18f8Sesaxe } 700fb2f18f8Sesaxe 701fb2f18f8Sesaxe /* 702fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 703fb2f18f8Sesaxe */ 704fb2f18f8Sesaxe static void 705*47ab0c7cSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *cpu_pg) 706fb2f18f8Sesaxe { 707fb2f18f8Sesaxe group_iter_t i; 708fb2f18f8Sesaxe pg_cmt_t *pg; 709fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 710fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 711fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 712fb2f18f8Sesaxe 7130e751525SEric Saxe if (cmt_sched_disabled) 7140e751525SEric Saxe return; 7150e751525SEric Saxe 716*47ab0c7cSEric Saxe pgs = &cpu_pg->pgs; 717*47ab0c7cSEric Saxe cmt_pgs = &cpu_pg->cmt_pgs; 718fb2f18f8Sesaxe 719fb2f18f8Sesaxe /* 720fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 721fb2f18f8Sesaxe */ 722fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 723a6604450Sesaxe 724fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7253e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 726a6604450Sesaxe /* 7273e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7283e81cacfSEric Saxe * only CPU in the system. 729a6604450Sesaxe * 7303e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7313e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7323e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 7333e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 7343e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 7353e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 7363e81cacfSEric Saxe * 7373e81cacfSEric Saxe * This special case is detected by noting that the platform 7383e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 7393e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 7403e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 7413e81cacfSEric Saxe * torn down. 742a6604450Sesaxe */ 743a6604450Sesaxe lgrp = cpu0_lgrp; 744a6604450Sesaxe } 745fb2f18f8Sesaxe 7463e81cacfSEric Saxe ASSERT(lgrp != NULL); 7473e81cacfSEric Saxe 748fb2f18f8Sesaxe /* 749fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 750fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 751fb2f18f8Sesaxe */ 752*47ab0c7cSEric Saxe pg = (pg_cmt_t *)cpu_pg->cmt_lineage; 753fb2f18f8Sesaxe while (pg != NULL) { 754fb2f18f8Sesaxe 755fb2f18f8Sesaxe /* 756fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 757fb2f18f8Sesaxe */ 758fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 759fb2f18f8Sesaxe 760fb2f18f8Sesaxe /* 761fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 762fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 763fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 764fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 765fb2f18f8Sesaxe */ 766fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 767fb2f18f8Sesaxe if (pg->cmt_children != NULL) 768fb2f18f8Sesaxe group_destroy(pg->cmt_children); 769fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 770fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 771fb2f18f8Sesaxe lgrp->cl_npgs--; 772fb2f18f8Sesaxe else 773fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 774fb2f18f8Sesaxe } 775fb2f18f8Sesaxe } 776fb2f18f8Sesaxe pg = pg->cmt_parent; 777fb2f18f8Sesaxe } 778fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 779fb2f18f8Sesaxe 780fb2f18f8Sesaxe /* 781fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 782fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 783fb2f18f8Sesaxe * empty). 784fb2f18f8Sesaxe */ 785fb2f18f8Sesaxe group_iter_init(&i); 786fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 787fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 788fb2f18f8Sesaxe continue; 789fb2f18f8Sesaxe 790*47ab0c7cSEric Saxe pg_cpu_delete((pg_t *)pg, cp, cpu_pg); 791fb2f18f8Sesaxe /* 792fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 793fb2f18f8Sesaxe * PG group over which we are actively iterating 794fb2f18f8Sesaxe * Re-initialize the iteration 795fb2f18f8Sesaxe */ 796fb2f18f8Sesaxe group_iter_init(&i); 797fb2f18f8Sesaxe 798fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 799fb2f18f8Sesaxe 800fb2f18f8Sesaxe /* 801fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 802fb2f18f8Sesaxe */ 803fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 804fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 805fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 806fb2f18f8Sesaxe 807fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 808fb2f18f8Sesaxe } 809fb2f18f8Sesaxe } 810fb2f18f8Sesaxe } 811fb2f18f8Sesaxe 812fb2f18f8Sesaxe /* 813fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 814fb2f18f8Sesaxe */ 815fb2f18f8Sesaxe static void 816fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 817fb2f18f8Sesaxe { 818fb2f18f8Sesaxe group_t *pgs; 819fb2f18f8Sesaxe pg_t *pg; 820fb2f18f8Sesaxe group_iter_t i; 821fb2f18f8Sesaxe 822fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 823fb2f18f8Sesaxe 8240e751525SEric Saxe if (cmt_sched_disabled) 8250e751525SEric Saxe return; 8260e751525SEric Saxe 827fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 828fb2f18f8Sesaxe 829fb2f18f8Sesaxe /* 830fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 831fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 832fb2f18f8Sesaxe * belongs 833fb2f18f8Sesaxe */ 834fb2f18f8Sesaxe group_iter_init(&i); 835fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 836fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 837fb2f18f8Sesaxe continue; 838fb2f18f8Sesaxe 839fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 840fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 841fb2f18f8Sesaxe } 842fb2f18f8Sesaxe } 843fb2f18f8Sesaxe 844fb2f18f8Sesaxe /* 845fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 846fb2f18f8Sesaxe */ 847fb2f18f8Sesaxe static void 848fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 849fb2f18f8Sesaxe { 850fb2f18f8Sesaxe cpu_t *cpp; 851fb2f18f8Sesaxe group_t *pgs; 852fb2f18f8Sesaxe pg_t *pg; 853fb2f18f8Sesaxe group_iter_t pg_iter; 854fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 855fb2f18f8Sesaxe boolean_t found; 856fb2f18f8Sesaxe 857fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 858fb2f18f8Sesaxe 8590e751525SEric Saxe if (cmt_sched_disabled) 8600e751525SEric Saxe return; 8610e751525SEric Saxe 862fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 863fb2f18f8Sesaxe group_iter_init(&pg_iter); 864fb2f18f8Sesaxe 865fb2f18f8Sesaxe /* 866fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 867fb2f18f8Sesaxe */ 868fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 869fb2f18f8Sesaxe 870fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 871fb2f18f8Sesaxe continue; 872fb2f18f8Sesaxe 873fb2f18f8Sesaxe /* 874fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 875fb2f18f8Sesaxe */ 876fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 877fb2f18f8Sesaxe 878fb2f18f8Sesaxe /* 879fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 880fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 881fb2f18f8Sesaxe */ 882fb2f18f8Sesaxe found = B_FALSE; 883fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 884fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 885fb2f18f8Sesaxe if (cpp == cp) 886fb2f18f8Sesaxe continue; 887a6604450Sesaxe if (CPU_ACTIVE(cpp) && 888a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 889fb2f18f8Sesaxe found = B_TRUE; 890fb2f18f8Sesaxe break; 891fb2f18f8Sesaxe } 892fb2f18f8Sesaxe } 893fb2f18f8Sesaxe if (!found) 894fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 895fb2f18f8Sesaxe } 896fb2f18f8Sesaxe } 897fb2f18f8Sesaxe 898fb2f18f8Sesaxe /* 899fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 900fb2f18f8Sesaxe * 901fb2f18f8Sesaxe * This is called in a context where CPUs are paused 902fb2f18f8Sesaxe */ 903fb2f18f8Sesaxe static void 904fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 905fb2f18f8Sesaxe { 906fb2f18f8Sesaxe int err; 907fb2f18f8Sesaxe group_iter_t i; 908fb2f18f8Sesaxe pg_cmt_t *pg; 909fb2f18f8Sesaxe group_t *pgs; 910fb2f18f8Sesaxe 911fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 912fb2f18f8Sesaxe 9130e751525SEric Saxe if (cmt_sched_disabled) 9140e751525SEric Saxe return; 9150e751525SEric Saxe 916fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 917fb2f18f8Sesaxe group_iter_init(&i); 918fb2f18f8Sesaxe 919fb2f18f8Sesaxe /* 920fb2f18f8Sesaxe * Iterate over the CPU's PGs 921fb2f18f8Sesaxe */ 922fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 923fb2f18f8Sesaxe 924fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 925fb2f18f8Sesaxe continue; 926fb2f18f8Sesaxe 927fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 928fb2f18f8Sesaxe ASSERT(err == 0); 929fb2f18f8Sesaxe 930fb2f18f8Sesaxe /* 931fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 932fb2f18f8Sesaxe * represents a hardware sharing relationship over which 933fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 934fb2f18f8Sesaxe * for balancing with it's siblings. 935fb2f18f8Sesaxe */ 936fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 9370e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 938fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 939fb2f18f8Sesaxe ASSERT(err == 0); 9406890d023SEric Saxe 9416890d023SEric Saxe /* 9426890d023SEric Saxe * If this is a top level PG, add it as a balancing 9430e751525SEric Saxe * candidate when balancing within the root lgroup. 9446890d023SEric Saxe */ 9450e751525SEric Saxe if (pg->cmt_parent == NULL && 9460e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 9476890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 9486890d023SEric Saxe GRP_NORESIZE); 9496890d023SEric Saxe ASSERT(err == 0); 9506890d023SEric Saxe } 951fb2f18f8Sesaxe } 952fb2f18f8Sesaxe 953fb2f18f8Sesaxe /* 954fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 955fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 956fb2f18f8Sesaxe * partition 957fb2f18f8Sesaxe */ 958fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 959fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 960fb2f18f8Sesaxe } 961fb2f18f8Sesaxe } 962fb2f18f8Sesaxe 963fb2f18f8Sesaxe /* 964fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 965fb2f18f8Sesaxe * 966fb2f18f8Sesaxe * This is called in a context where CPUs are paused 967fb2f18f8Sesaxe */ 968fb2f18f8Sesaxe static void 969fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 970fb2f18f8Sesaxe { 971fb2f18f8Sesaxe int err; 972fb2f18f8Sesaxe group_t *pgs; 973fb2f18f8Sesaxe pg_cmt_t *pg; 974fb2f18f8Sesaxe cpu_t *cpp; 975fb2f18f8Sesaxe group_iter_t i; 976fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 977fb2f18f8Sesaxe boolean_t found; 978fb2f18f8Sesaxe 979fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 980fb2f18f8Sesaxe 9810e751525SEric Saxe if (cmt_sched_disabled) 9820e751525SEric Saxe return; 9830e751525SEric Saxe 984fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 985fb2f18f8Sesaxe group_iter_init(&i); 986fb2f18f8Sesaxe 987fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 988fb2f18f8Sesaxe 989fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 990fb2f18f8Sesaxe continue; 991fb2f18f8Sesaxe 992fb2f18f8Sesaxe /* 993fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 994fb2f18f8Sesaxe * bitmap 995fb2f18f8Sesaxe */ 996fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 997fb2f18f8Sesaxe ASSERT(err == 0); 998fb2f18f8Sesaxe 999fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1000fb2f18f8Sesaxe 1001fb2f18f8Sesaxe /* 1002fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1003fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1004fb2f18f8Sesaxe */ 1005fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10060e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1007fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1008fb2f18f8Sesaxe ASSERT(err == 0); 10096890d023SEric Saxe 10100e751525SEric Saxe if (pg->cmt_parent == NULL && 10110e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10126890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10136890d023SEric Saxe GRP_NORESIZE); 10146890d023SEric Saxe ASSERT(err == 0); 10156890d023SEric Saxe } 1016fb2f18f8Sesaxe } 1017fb2f18f8Sesaxe 1018fb2f18f8Sesaxe /* 1019fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1020fb2f18f8Sesaxe * the total number of CPUs in the PG 1021fb2f18f8Sesaxe */ 1022fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1023fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1024fb2f18f8Sesaxe 1025fb2f18f8Sesaxe /* 1026fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1027fb2f18f8Sesaxe */ 1028fb2f18f8Sesaxe found = B_FALSE; 1029fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1030fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1031fb2f18f8Sesaxe if (cpp == cp) 1032fb2f18f8Sesaxe continue; 1033a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1034a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1035fb2f18f8Sesaxe found = B_TRUE; 1036fb2f18f8Sesaxe break; 1037fb2f18f8Sesaxe } 1038fb2f18f8Sesaxe } 1039fb2f18f8Sesaxe if (!found) { 1040fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1041fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1042fb2f18f8Sesaxe } 1043fb2f18f8Sesaxe } 1044fb2f18f8Sesaxe } 1045fb2f18f8Sesaxe 1046fb2f18f8Sesaxe /* 1047fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1048fb2f18f8Sesaxe */ 1049fb2f18f8Sesaxe static int 1050fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1051fb2f18f8Sesaxe { 1052fb2f18f8Sesaxe cpu_t *pg_cpu; 1053fb2f18f8Sesaxe 1054fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1055fb2f18f8Sesaxe 1056fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1057fb2f18f8Sesaxe 1058fb2f18f8Sesaxe /* 1059fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1060fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1061fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1062fb2f18f8Sesaxe */ 1063fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1064fb2f18f8Sesaxe return (1); 1065fb2f18f8Sesaxe 1066fb2f18f8Sesaxe return (0); 1067fb2f18f8Sesaxe } 1068fb2f18f8Sesaxe 1069fb2f18f8Sesaxe /* 10700e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1071fb2f18f8Sesaxe */ 1072fb2f18f8Sesaxe static void 10730e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1074fb2f18f8Sesaxe { 10750e751525SEric Saxe int i, j, inc; 10760e751525SEric Saxe pg_t *tmp; 10770e751525SEric Saxe pg_t **h = (pg_t **)hier; 1078fb2f18f8Sesaxe 10790e751525SEric Saxe /* 10800e751525SEric Saxe * First sort by number of CPUs 10810e751525SEric Saxe */ 10820e751525SEric Saxe inc = size / 2; 10830e751525SEric Saxe while (inc > 0) { 10840e751525SEric Saxe for (i = inc; i < size; i++) { 10850e751525SEric Saxe j = i; 10860e751525SEric Saxe tmp = h[i]; 10870e751525SEric Saxe while ((j >= inc) && 10880e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 10890e751525SEric Saxe h[j] = h[j - inc]; 10900e751525SEric Saxe j = j - inc; 10910e751525SEric Saxe } 10920e751525SEric Saxe h[j] = tmp; 10930e751525SEric Saxe } 10940e751525SEric Saxe if (inc == 2) 10950e751525SEric Saxe inc = 1; 10960e751525SEric Saxe else 10970e751525SEric Saxe inc = (inc * 5) / 11; 10980e751525SEric Saxe } 1099fb2f18f8Sesaxe 11000e751525SEric Saxe /* 11010e751525SEric Saxe * Break ties by asking the platform. 11020e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11030e751525SEric Saxe */ 11040e751525SEric Saxe for (i = 0; i < size - 1; i++) { 11050e751525SEric Saxe if ((PG_NUM_CPUS(h[i]) == PG_NUM_CPUS(h[i + 1])) && 11060e751525SEric Saxe pg_cmt_hier_rank(hier[i], hier[i + 1]) == hier[i]) { 11070e751525SEric Saxe tmp = h[i]; 11080e751525SEric Saxe h[i] = h[i + 1]; 11090e751525SEric Saxe h[i + 1] = tmp; 1110fb2f18f8Sesaxe } 1111fb2f18f8Sesaxe } 1112fb2f18f8Sesaxe } 1113fb2f18f8Sesaxe 1114fb2f18f8Sesaxe /* 1115fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1116fb2f18f8Sesaxe */ 1117fb2f18f8Sesaxe static cmt_lgrp_t * 1118fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1119fb2f18f8Sesaxe { 1120fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1121fb2f18f8Sesaxe 1122fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1123fb2f18f8Sesaxe 1124fb2f18f8Sesaxe lgrp = cmt_lgrps; 1125fb2f18f8Sesaxe while (lgrp != NULL) { 1126fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1127a6604450Sesaxe break; 1128fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1129fb2f18f8Sesaxe } 1130a6604450Sesaxe return (lgrp); 1131a6604450Sesaxe } 1132fb2f18f8Sesaxe 1133fb2f18f8Sesaxe /* 1134a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1135fb2f18f8Sesaxe */ 1136a6604450Sesaxe static cmt_lgrp_t * 1137a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1138a6604450Sesaxe { 1139a6604450Sesaxe cmt_lgrp_t *lgrp; 1140a6604450Sesaxe 1141a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1142a6604450Sesaxe 1143fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1144fb2f18f8Sesaxe 1145fb2f18f8Sesaxe lgrp->cl_hand = hand; 1146fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1147fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1148fb2f18f8Sesaxe cmt_lgrps = lgrp; 1149fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1150fb2f18f8Sesaxe 1151fb2f18f8Sesaxe return (lgrp); 1152fb2f18f8Sesaxe } 11536890d023SEric Saxe 11546890d023SEric Saxe /* 11550e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 11560e751525SEric Saxe * The caller must be holding cpu_lock. 11576890d023SEric Saxe * 11580e751525SEric Saxe * Return 0 on success and -1 on failure. 11596890d023SEric Saxe */ 11600e751525SEric Saxe int 11610e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 11626890d023SEric Saxe { 11630e751525SEric Saxe group_t *hwset; 11640e751525SEric Saxe group_iter_t iter; 11650e751525SEric Saxe pg_cmt_t *pg; 11666890d023SEric Saxe 11670e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 11680e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 11696890d023SEric Saxe 11700e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 11710e751525SEric Saxe cmt_hw_blacklisted[type]) { 11720e751525SEric Saxe /* 11730e751525SEric Saxe * Unable to find any instances of the specified type 11740e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 11750e751525SEric Saxe */ 11760e751525SEric Saxe return (-1); 11770e751525SEric Saxe } 11786890d023SEric Saxe 11796890d023SEric Saxe /* 11800e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 11810e751525SEric Saxe * policy for power/performance optimization. 11820e751525SEric Saxe * 11830e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 11840e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 11850e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 11860e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 11870e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 11880e751525SEric Saxe * dominates. 11896890d023SEric Saxe */ 11900e751525SEric Saxe group_iter_init(&iter); 11910e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 11920e751525SEric Saxe /* 11930e751525SEric Saxe * If the power domain is an only child to a parent 11940e751525SEric Saxe * not implementing the same policy, promote the child 11950e751525SEric Saxe * above the parent to activate the policy. 11960e751525SEric Saxe */ 11970e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 11980e751525SEric Saxe while ((pg->cmt_parent != NULL) && 11990e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12000e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12010e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 12020e751525SEric Saxe cmt_hier_promote(pg); 12030e751525SEric Saxe } 12040e751525SEric Saxe } 12050e751525SEric Saxe 12060e751525SEric Saxe return (0); 12070e751525SEric Saxe } 12080e751525SEric Saxe 12090e751525SEric Saxe int 12100e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 12110e751525SEric Saxe { 12120e751525SEric Saxe group_t *hwset; 12130e751525SEric Saxe group_iter_t iter; 12140e751525SEric Saxe pg_cmt_t *pg; 12150e751525SEric Saxe pg_cmt_t *child; 12160e751525SEric Saxe 12170e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12180e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12190e751525SEric Saxe 12200e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 12210e751525SEric Saxe /* 12220e751525SEric Saxe * Unable to find any instances of the specified type of 12230e751525SEric Saxe * power domain. 12240e751525SEric Saxe */ 12250e751525SEric Saxe return (-1); 12260e751525SEric Saxe } 12270e751525SEric Saxe /* 12280e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12290e751525SEric Saxe * policy for performance optimization (load balancing). 12300e751525SEric Saxe */ 12310e751525SEric Saxe group_iter_init(&iter); 12320e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12330e751525SEric Saxe 12340e751525SEric Saxe /* 12350e751525SEric Saxe * If the power domain has an only child that implements 12360e751525SEric Saxe * policy other than load balancing, promote the child 12370e751525SEric Saxe * above the power domain to ensure it's policy dominates. 12380e751525SEric Saxe */ 1239f03808b6SEric Saxe if (pg->cmt_children != NULL && 1240f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 12410e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 12420e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 12430e751525SEric Saxe cmt_hier_promote(child); 12440e751525SEric Saxe } 12450e751525SEric Saxe } 12460e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 12470e751525SEric Saxe } 12480e751525SEric Saxe return (0); 12490e751525SEric Saxe } 12500e751525SEric Saxe 12510e751525SEric Saxe /* ARGSUSED */ 12520e751525SEric Saxe static void 12530e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 12540e751525SEric Saxe kthread_t *new) 12550e751525SEric Saxe { 12560e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 12570e751525SEric Saxe 12580e751525SEric Saxe if (old == cp->cpu_idle_thread) { 12590e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 12600e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 12610e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 12620e751525SEric Saxe } 12630e751525SEric Saxe } 12640e751525SEric Saxe 12650e751525SEric Saxe /* 12660e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 12670e751525SEric Saxe */ 12680e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 12690e751525SEric Saxe ((t)->t_state == TS_RUN && \ 12700e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 12710e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 12720e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 12730e751525SEric Saxe 12740e751525SEric Saxe static void 12750e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 12760e751525SEric Saxe kthread_t *new) 12770e751525SEric Saxe { 12780e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 12790e751525SEric Saxe cpupm_domain_t *dom; 12800e751525SEric Saxe uint32_t u; 12810e751525SEric Saxe 12820e751525SEric Saxe if (old == cp->cpu_idle_thread) { 12830e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 12840e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 12850e751525SEric Saxe if (u == 1) { 12860e751525SEric Saxe /* 12870e751525SEric Saxe * Notify the CPU power manager that the domain 12880e751525SEric Saxe * is non-idle. 12890e751525SEric Saxe */ 12900e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 12910e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 12920e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 12930e751525SEric Saxe } 12940e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 12950e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 12960e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 12970e751525SEric Saxe if (u == 0) { 12980e751525SEric Saxe /* 12990e751525SEric Saxe * The domain is idle, notify the CPU power 13000e751525SEric Saxe * manager. 13010e751525SEric Saxe * 13020e751525SEric Saxe * Avoid notifying if the thread is simply migrating 13030e751525SEric Saxe * between CPUs in the domain. 13040e751525SEric Saxe */ 13050e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 13060e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13070e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13080e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 13090e751525SEric Saxe } 13100e751525SEric Saxe } 13110e751525SEric Saxe } 13120e751525SEric Saxe } 13130e751525SEric Saxe 13140e751525SEric Saxe /* ARGSUSED */ 13150e751525SEric Saxe static void 13160e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 13170e751525SEric Saxe { 13180e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13190e751525SEric Saxe cpupm_domain_t *dom; 13200e751525SEric Saxe 13210e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13220e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 13230e751525SEric Saxe } 13240e751525SEric Saxe 13250e751525SEric Saxe /* 13260e751525SEric Saxe * Return the name of the CMT scheduling policy 13270e751525SEric Saxe * being implemented across this PG 13280e751525SEric Saxe */ 13290e751525SEric Saxe static char * 13300e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 13310e751525SEric Saxe { 13320e751525SEric Saxe pg_cmt_policy_t policy; 13330e751525SEric Saxe 13340e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 13350e751525SEric Saxe 13360e751525SEric Saxe if (policy & CMT_AFFINITY) { 13370e751525SEric Saxe if (policy & CMT_BALANCE) 13380e751525SEric Saxe return ("Load Balancing & Affinity"); 13390e751525SEric Saxe else if (policy & CMT_COALESCE) 13400e751525SEric Saxe return ("Load Coalescence & Affinity"); 13416890d023SEric Saxe else 13420e751525SEric Saxe return ("Affinity"); 13430e751525SEric Saxe } else { 13440e751525SEric Saxe if (policy & CMT_BALANCE) 13450e751525SEric Saxe return ("Load Balancing"); 13460e751525SEric Saxe else if (policy & CMT_COALESCE) 13470e751525SEric Saxe return ("Load Coalescence"); 13480e751525SEric Saxe else 13490e751525SEric Saxe return ("None"); 13500e751525SEric Saxe } 13510e751525SEric Saxe } 13526890d023SEric Saxe 13536890d023SEric Saxe /* 13540e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 13550e751525SEric Saxe * from the PG hierarchy. 13566890d023SEric Saxe */ 13570e751525SEric Saxe static int 13580e751525SEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz) 13590e751525SEric Saxe { 13600e751525SEric Saxe group_t *hwset, *children; 13610e751525SEric Saxe int i, j, r, size = *sz; 13620e751525SEric Saxe group_iter_t hw_iter, child_iter; 13630e751525SEric Saxe pg_cpu_itr_t cpu_iter; 13640e751525SEric Saxe pg_cmt_t *pg, *child; 13650e751525SEric Saxe cpu_t *cpu; 13660e751525SEric Saxe int cap_needed; 13670e751525SEric Saxe pghw_type_t hw; 13686890d023SEric Saxe 13690e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 13706890d023SEric Saxe 13710e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 13720e751525SEric Saxe 13730e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 13740e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 13750e751525SEric Saxe "Event Based CPUPM Unavailable"); 13760e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 13770e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 13780e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 13790e751525SEric Saxe } 13806890d023SEric Saxe 13816890d023SEric Saxe /* 13820e751525SEric Saxe * Find and eliminate the PG from the lineage. 13836890d023SEric Saxe */ 13840e751525SEric Saxe for (i = 0; i < size; i++) { 13850e751525SEric Saxe if (lineage[i] == pg_bad) { 13860e751525SEric Saxe for (j = i; j < size - 1; j++) 13870e751525SEric Saxe lineage[j] = lineage[j + 1]; 13880e751525SEric Saxe *sz = size - 1; 13890e751525SEric Saxe break; 13900e751525SEric Saxe } 13910e751525SEric Saxe } 13920e751525SEric Saxe 13930e751525SEric Saxe /* 13940e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 13950e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 13960e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 13970e751525SEric Saxe */ 13980e751525SEric Saxe hwset = pghw_set_lookup(hw); 13990e751525SEric Saxe 14000e751525SEric Saxe /* 14010e751525SEric Saxe * Blacklist the hardware so that future groups won't be created. 14020e751525SEric Saxe */ 14030e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 14040e751525SEric Saxe 14050e751525SEric Saxe /* 14060e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 14070e751525SEric Saxe * the siblings set for the PG's children 14080e751525SEric Saxe */ 14090e751525SEric Saxe group_iter_init(&hw_iter); 14100e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14110e751525SEric Saxe /* 14120e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 14130e751525SEric Saxe * one child, ask for more capacity in the siblings group. 14140e751525SEric Saxe */ 14150e751525SEric Saxe cap_needed = 0; 14160e751525SEric Saxe if (pg->cmt_children && 14170e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 14180e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 14190e751525SEric Saxe 14200e751525SEric Saxe group_expand(pg->cmt_siblings, 14210e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 14220e751525SEric Saxe 14230e751525SEric Saxe /* 14240e751525SEric Saxe * If this is a top level group, also ensure the 14250e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 14260e751525SEric Saxe */ 14270e751525SEric Saxe if (pg->cmt_parent == NULL && 14280e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 14290e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 14300e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 14310e751525SEric Saxe } 14320e751525SEric Saxe } 14330e751525SEric Saxe } 14340e751525SEric Saxe 14350e751525SEric Saxe /* 14360e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 14370e751525SEric Saxe * exclusivity with respect to the dispatcher. 14380e751525SEric Saxe */ 14390e751525SEric Saxe pause_cpus(NULL); 14400e751525SEric Saxe 14410e751525SEric Saxe /* 14420e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 14430e751525SEric Saxe * represented by pg. 14440e751525SEric Saxe */ 14450e751525SEric Saxe group_iter_init(&hw_iter); 14460e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14470e751525SEric Saxe 14480e751525SEric Saxe /* 14490e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 14500e751525SEric Saxe */ 14510e751525SEric Saxe if (pg->cmt_siblings) { 14520e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 14530e751525SEric Saxe } 14540e751525SEric Saxe if (pg->cmt_parent == NULL && 14550e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 14560e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 14570e751525SEric Saxe GRP_NORESIZE); 14580e751525SEric Saxe } 14590e751525SEric Saxe /* 1460ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1461ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1462ef4f35d8SEric Saxe * siblings set are the same thing. 1463ef4f35d8SEric Saxe * 1464ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1465ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1466ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1467ef4f35d8SEric Saxe * iterating, empty PG's children set. 14680e751525SEric Saxe */ 14690e751525SEric Saxe if (pg->cmt_children != NULL) { 14700e751525SEric Saxe children = pg->cmt_children; 14710e751525SEric Saxe 14720e751525SEric Saxe group_iter_init(&child_iter); 14730e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 14740e751525SEric Saxe != NULL) { 1475ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 14760e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 14770e751525SEric Saxe GRP_NORESIZE); 14780e751525SEric Saxe ASSERT(r == 0); 14790e751525SEric Saxe } 14800e751525SEric Saxe } 1481ef4f35d8SEric Saxe group_empty(pg->cmt_children); 14820e751525SEric Saxe } 14830e751525SEric Saxe 14840e751525SEric Saxe /* 14850e751525SEric Saxe * Reset the callbacks to the defaults 14860e751525SEric Saxe */ 14870e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 14880e751525SEric Saxe 14890e751525SEric Saxe /* 14900e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 14910e751525SEric Saxe */ 14920e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 14930e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 14940e751525SEric Saxe group_t *pgs; 14950e751525SEric Saxe pg_cmt_t *cpu_pg; 14960e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 14970e751525SEric Saxe 14980e751525SEric Saxe /* 14990e751525SEric Saxe * Iterate over the CPU's PGs updating the children 15000e751525SEric Saxe * of the PG being promoted, since they have a new 15010e751525SEric Saxe * parent and siblings set. 15020e751525SEric Saxe */ 15030e751525SEric Saxe pgs = &cpu->cpu_pg->pgs; 15040e751525SEric Saxe group_iter_init(&liter); 15050e751525SEric Saxe while ((cpu_pg = group_iterate(pgs, &liter)) != NULL) { 15060e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 15070e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 15080e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 15090e751525SEric Saxe } 15100e751525SEric Saxe } 15110e751525SEric Saxe 15120e751525SEric Saxe /* 15130e751525SEric Saxe * Update the CPU's lineages 15140e751525SEric Saxe */ 15150e751525SEric Saxe pgs = &cpu->cpu_pg->cmt_pgs; 15160e751525SEric Saxe (void) group_remove(pgs, pg, GRP_NORESIZE); 15170e751525SEric Saxe pgs = &cpu->cpu_pg->pgs; 15180e751525SEric Saxe (void) group_remove(pgs, pg, GRP_NORESIZE); 15190e751525SEric Saxe } 15200e751525SEric Saxe } 15210e751525SEric Saxe start_cpus(); 15220e751525SEric Saxe return (0); 15230e751525SEric Saxe } 15240e751525SEric Saxe 15250e751525SEric Saxe /* 15260e751525SEric Saxe * Disable CMT scheduling 15270e751525SEric Saxe */ 15280e751525SEric Saxe static void 15290e751525SEric Saxe pg_cmt_disable(void) 15300e751525SEric Saxe { 15310e751525SEric Saxe cpu_t *cpu; 15320e751525SEric Saxe 15330e751525SEric Saxe pause_cpus(NULL); 15340e751525SEric Saxe cpu = cpu_list; 15350e751525SEric Saxe 15366890d023SEric Saxe do { 15370e751525SEric Saxe if (cpu->cpu_pg) 15380e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 15390e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 15400e751525SEric Saxe 15410e751525SEric Saxe cmt_sched_disabled = 1; 15420e751525SEric Saxe start_cpus(); 15430e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 15440e751525SEric Saxe } 15450e751525SEric Saxe 1546ef4f35d8SEric Saxe /* 1547ef4f35d8SEric Saxe * CMT lineage validation 1548ef4f35d8SEric Saxe * 1549ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1550ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1551ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1552ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1553ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1554ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1555ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1556ef4f35d8SEric Saxe * 1557ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1558ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1559ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1560ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1561ef4f35d8SEric Saxe * PG (and all other instances PG's sharing relationship type) from the 1562ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1563ef4f35d8SEric Saxe * be instantiated. If the grouping definition doesn't originate from suspect 1564ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1565ef4f35d8SEric Saxe * CMT scheduling altogether. 1566ef4f35d8SEric Saxe * 1567ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1568ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1569ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1570ef4f35d8SEric Saxe * 1571ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1572ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1573ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1574ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1575ef4f35d8SEric Saxe * 1576ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1577ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1578ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1579ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1580ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1581ef4f35d8SEric Saxe * the exiting lineages. 1582ef4f35d8SEric Saxe * 1583ef4f35d8SEric Saxe * This routine will normally return one of the following: 1584ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1585ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1586ef4f35d8SEric Saxe * 1587ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1588ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 1589ef4f35d8SEric Saxe */ 1590ef4f35d8SEric Saxe static cmt_lineage_validation_t 15910e751525SEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz) 15920e751525SEric Saxe { 1593ef4f35d8SEric Saxe int i, j, size; 1594ef4f35d8SEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp; 15950e751525SEric Saxe cpu_t *cp; 15960e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1597ef4f35d8SEric Saxe lgrp_handle_t lgrp; 15980e751525SEric Saxe 15990e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16000e751525SEric Saxe 16010e751525SEric Saxe revalidate: 16020e751525SEric Saxe size = *sz; 16030e751525SEric Saxe pg_bad = NULL; 1604ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1605ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 16060e751525SEric Saxe 16070e751525SEric Saxe pg = lineage[i]; 1608ef4f35d8SEric Saxe if (i < size - 1) 1609ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1610ef4f35d8SEric Saxe else 1611ef4f35d8SEric Saxe pg_next = NULL; 16126890d023SEric Saxe 16136890d023SEric Saxe /* 16140e751525SEric Saxe * We assume that the lineage has already been sorted 16150e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 16166890d023SEric Saxe */ 1617ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1618ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 16196890d023SEric Saxe 16206890d023SEric Saxe /* 1621ef4f35d8SEric Saxe * Check to make sure that the existing parent of PG (if any) 1622ef4f35d8SEric Saxe * is either in the PG's lineage, or the PG has more CPUs than 1623ef4f35d8SEric Saxe * its existing parent and can and should be promoted above its 1624ef4f35d8SEric Saxe * parent. 1625ef4f35d8SEric Saxe * 1626ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1627ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1628ef4f35d8SEric Saxe * part of its lineage (and therefore should contain the new 1629ef4f35d8SEric Saxe * CPU). If not, it means that the addition of the new CPU 1630ef4f35d8SEric Saxe * should have made this PG have more CPUs than its parent, and 1631ef4f35d8SEric Saxe * this PG should be promoted to be above its existing parent 1632ef4f35d8SEric Saxe * now. We need to verify all of this to defend against a buggy 1633ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1634ef4f35d8SEric Saxe */ 1635ef4f35d8SEric Saxe if (pg->cmt_parent) { 1636ef4f35d8SEric Saxe /* 1637ef4f35d8SEric Saxe * Determine if cmt_parent is in this lineage 1638ef4f35d8SEric Saxe */ 1639ef4f35d8SEric Saxe for (j = 0; j < size; j++) { 1640ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1641ef4f35d8SEric Saxe if (pg_tmp == pg->cmt_parent) 1642ef4f35d8SEric Saxe break; 1643ef4f35d8SEric Saxe } 1644ef4f35d8SEric Saxe if (pg_tmp != pg->cmt_parent) { 1645ef4f35d8SEric Saxe /* 1646ef4f35d8SEric Saxe * cmt_parent is not in the lineage, verify 1647ef4f35d8SEric Saxe * it is a proper subset of PG. 1648ef4f35d8SEric Saxe */ 1649ef4f35d8SEric Saxe if (PG_NUM_CPUS((pg_t *)pg->cmt_parent) >= 1650ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1651ef4f35d8SEric Saxe /* 1652ef4f35d8SEric Saxe * Not a proper subset if pg has less 1653ef4f35d8SEric Saxe * CPUs than cmt_parent... 1654ef4f35d8SEric Saxe */ 1655ef4f35d8SEric Saxe cmt_lineage_status = 1656ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE; 1657ef4f35d8SEric Saxe goto handle_error; 1658ef4f35d8SEric Saxe } 1659ef4f35d8SEric Saxe } 1660ef4f35d8SEric Saxe } 1661ef4f35d8SEric Saxe 1662ef4f35d8SEric Saxe /* 1663ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1664ef4f35d8SEric Saxe * consistency checks along the way. 16656890d023SEric Saxe */ 16660e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 16670e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1668ef4f35d8SEric Saxe /* 1669ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1670ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1671ef4f35d8SEric Saxe * or same size) doesn't also contain. 1672ef4f35d8SEric Saxe */ 1673ef4f35d8SEric Saxe if (pg_next != NULL && 1674ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 16750e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 16760e751525SEric Saxe goto handle_error; 16776890d023SEric Saxe } 1678ef4f35d8SEric Saxe 1679ef4f35d8SEric Saxe /* 1680ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1681ef4f35d8SEric Saxe * lgroup. 1682ef4f35d8SEric Saxe */ 1683ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1684ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1685ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1686ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1687ef4f35d8SEric Saxe goto handle_error; 1688ef4f35d8SEric Saxe } 16890e751525SEric Saxe } 16906890d023SEric Saxe } 16916890d023SEric Saxe 16920e751525SEric Saxe handle_error: 1693ef4f35d8SEric Saxe /* 1694ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1695ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1696ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1697ef4f35d8SEric Saxe * 1698ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1699ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1700ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1701ef4f35d8SEric Saxe */ 17020e751525SEric Saxe switch (cmt_lineage_status) { 17030e751525SEric Saxe case CMT_LINEAGE_VALID: 17040e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 17050e751525SEric Saxe break; 1706ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1707ef4f35d8SEric Saxe /* 1708ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1709ef4f35d8SEric Saxe * 1710ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1711ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1712ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1713ef4f35d8SEric Saxe * 1714ef4f35d8SEric Saxe * The handling for this falls through to the next case. 1715ef4f35d8SEric Saxe */ 1716ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1717ef4f35d8SEric Saxe /* 1718ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1719ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1720ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1721ef4f35d8SEric Saxe */ 1722ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 1723ef4f35d8SEric Saxe if (pg_cmt_prune(pg, lineage, sz) == 0) { 1724ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1725ef4f35d8SEric Saxe goto revalidate; 1726ef4f35d8SEric Saxe } 1727ef4f35d8SEric Saxe } 1728ef4f35d8SEric Saxe /* 1729ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1730ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1731ef4f35d8SEric Saxe */ 1732ef4f35d8SEric Saxe pg_cmt_disable(); 1733ef4f35d8SEric Saxe break; 17340e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 17356890d023SEric Saxe /* 1736ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1737ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1738ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1739ef4f35d8SEric Saxe * doesn't have. 17400e751525SEric Saxe * 1741ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1742ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 17430e751525SEric Saxe * 17440e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 17450e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 17460e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 17470e751525SEric Saxe * prune the one that is untrusted. 17480e751525SEric Saxe * 17490e751525SEric Saxe * This process repeats until we have a concentric lineage, 17500e751525SEric Saxe * or we would have to prune out level derived from what we 17510e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1752ef4f35d8SEric Saxe * is disabled altogether. 17536890d023SEric Saxe */ 1754ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 17550e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 17560e751525SEric Saxe pg_bad = pg; 17570e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1758ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1759ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1760ef4f35d8SEric Saxe pg_bad = pg_next; 17610e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 17620e751525SEric Saxe pg_bad = pg; 17636890d023SEric Saxe } 17646890d023SEric Saxe } 17650e751525SEric Saxe if (pg_bad) { 17660e751525SEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz) == 0) { 17670e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 17680e751525SEric Saxe goto revalidate; 17690e751525SEric Saxe } 17700e751525SEric Saxe } 17710e751525SEric Saxe /* 1772ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1773ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 17740e751525SEric Saxe */ 17750e751525SEric Saxe pg_cmt_disable(); 1776ef4f35d8SEric Saxe break; 1777ef4f35d8SEric Saxe default: 1778ef4f35d8SEric Saxe /* 1779ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1780ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1781ef4f35d8SEric Saxe * CMT scheduling altogether. 1782ef4f35d8SEric Saxe */ 17830e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1784ef4f35d8SEric Saxe pg_cmt_disable(); 17850e751525SEric Saxe } 1786ef4f35d8SEric Saxe return (cmt_lineage_status); 17876890d023SEric Saxe } 1788