xref: /titanic_50/usr/src/uts/common/crypto/io/swrand.c (revision 554ff184129088135ad2643c1c9832174a17be88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Software based random number provider for the Kernel Cryptographic
31  * Framework (KCF). This provider periodically collects unpredictable input
32  * from external sources and processes it into a pool of entropy (randomness)
33  * in order to satisfy requests for random bits from kCF. It implements
34  * software-based mixing, extraction, and generation algorithms.
35  *
36  * A history note: The software-based algorithms in this file used to be
37  * part of the /dev/random driver.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/errno.h>
42 #include <sys/debug.h>
43 #include <vm/seg_kmem.h>
44 #include <vm/hat.h>
45 #include <sys/systm.h>
46 #include <sys/memlist.h>
47 #include <sys/cmn_err.h>
48 #include <sys/ksynch.h>
49 #include <sys/random.h>
50 #include <sys/ddi.h>
51 #include <sys/mman.h>
52 #include <sys/sysmacros.h>
53 #include <sys/mem_config.h>
54 #include <sys/time.h>
55 #include <sys/crypto/spi.h>
56 #include <sys/sha1.h>
57 #include <sys/sunddi.h>
58 #include <sys/modctl.h>
59 
60 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
61 #define	HASHBUFSIZE		64	/* Buffer size used for pool mixing */
62 #define	MAXMEMBLOCKS		16384	/* Number of memory blocks to scan */
63 #define	MEMBLOCKSIZE		4096	/* Size of memory block to read */
64 #define	MINEXTRACTBITS		160	/* Min entropy level for extraction */
65 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
66 
67 /* Hash-algo generic definitions. For now, they are SHA1's. */
68 #define	HASHSIZE		20
69 #define	HASH_CTX		SHA1_CTX
70 #define	HashInit(ctx)		SHA1Init((ctx))
71 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
72 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
73 
74 /* Physical memory entropy source */
75 typedef struct physmem_entsrc_s {
76 	uint8_t *parity;		/* parity bit vector */
77 	caddr_t pmbuf;			/* buffer for memory block */
78 	uint32_t nblocks;		/* number of  memory blocks */
79 	int entperblock;		/* entropy bits per block read */
80 	hrtime_t last_diff;		/* previous time to process a block */
81 	hrtime_t last_delta;		/* previous time delta */
82 	hrtime_t last_delta2;		/* previous 2nd order time delta */
83 } physmem_entsrc_t;
84 
85 static uint32_t srndpool[RNDPOOLSIZE/4];	/* Pool of random bits */
86 static uint32_t entropy_bits;		/* pool's current amount of entropy */
87 static kmutex_t srndpool_lock;		/* protects r/w accesses to the pool, */
88 					/* and the global variables */
89 static kcondvar_t srndpool_read_cv;	/* serializes poll/read syscalls */
90 static int pindex;			/* Global index for adding/extracting */
91 					/* from the pool */
92 static uint8_t leftover[HASHSIZE];	/* leftover output */
93 static int leftover_bytes;		/* leftover length */
94 
95 static physmem_entsrc_t entsrc;		/* Physical mem as an entropy source */
96 static timeout_id_t rnd_timeout_id;
97 static int snum_waiters;
98 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL;
99 swrand_stats_t swrand_stats;
100 
101 static int physmem_ent_init(physmem_entsrc_t *);
102 static void physmem_ent_fini(physmem_entsrc_t *);
103 static void physmem_ent_gen(physmem_entsrc_t *);
104 static int physmem_parity_update(uint8_t *, uint32_t, int);
105 static void physmem_count_blocks();
106 static void rnd_dr_callback_post_add(void *, pgcnt_t);
107 static int rnd_dr_callback_pre_del(void *, pgcnt_t);
108 static void rnd_dr_callback_post_del(void *, pgcnt_t, int);
109 static void rnd_handler(void *arg);
110 static void swrand_init();
111 static void swrand_schedule_timeout(void);
112 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t);
113 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est);
114 
115 /* Dynamic Reconfiguration related declarations */
116 kphysm_setup_vector_t rnd_dr_callback_vec = {
117 	KPHYSM_SETUP_VECTOR_VERSION,
118 	rnd_dr_callback_post_add,
119 	rnd_dr_callback_pre_del,
120 	rnd_dr_callback_post_del
121 };
122 
123 extern struct mod_ops mod_cryptoops;
124 
125 /*
126  * Module linkage information for the kernel.
127  */
128 static struct modlcrypto modlcrypto = {
129 	&mod_cryptoops,
130 	"Kernel Random number Provider %I%"
131 };
132 
133 static struct modlinkage modlinkage = {
134 	MODREV_1,
135 	(void *)&modlcrypto,
136 	NULL
137 };
138 
139 /*
140  * CSPI information (entry points, provider info, etc.)
141  */
142 static void swrand_provider_status(crypto_provider_handle_t, uint_t *);
143 
144 static crypto_control_ops_t swrand_control_ops = {
145 	swrand_provider_status
146 };
147 
148 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t,
149     uchar_t *, size_t, crypto_req_handle_t);
150 static int swrand_generate_random(crypto_provider_handle_t,
151     crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t);
152 
153 static crypto_random_number_ops_t swrand_random_number_ops = {
154 	swrand_seed_random,
155 	swrand_generate_random
156 };
157 
158 static crypto_ops_t swrand_crypto_ops = {
159 	&swrand_control_ops,
160 	NULL,
161 	NULL,
162 	NULL,
163 	NULL,
164 	NULL,
165 	NULL,
166 	NULL,
167 	&swrand_random_number_ops,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	NULL
173 };
174 
175 static crypto_provider_info_t swrand_prov_info = {
176 	CRYPTO_SPI_VERSION_1,
177 	"Kernel Random Number Provider",
178 	CRYPTO_SW_PROVIDER,
179 	{&modlinkage},
180 	NULL,
181 	&swrand_crypto_ops,
182 	0,
183 	NULL
184 };
185 
186 int
187 _init(void)
188 {
189 	int ret;
190 	hrtime_t ts;
191 	time_t now;
192 
193 	/*
194 	 * Register with KCF. If the registration fails, return error.
195 	 */
196 	if ((ret = crypto_register_provider(&swrand_prov_info,
197 	    &swrand_prov_handle)) != CRYPTO_SUCCESS) {
198 		cmn_err(CE_WARN, "swrand : Kernel Random Number Provider "
199 		    "disabled for /dev/random use");
200 		return (EACCES);
201 	}
202 
203 	mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL);
204 	cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL);
205 	entropy_bits = 0;
206 	pindex = 0;
207 	snum_waiters = 0;
208 	leftover_bytes = 0;
209 
210 	/*
211 	 * Initialize the pool using
212 	 * . 2 unpredictable times: high resolution time since the boot-time,
213 	 *   and the current time-of-the day.
214 	 * . The initial physical memory state.
215 	 */
216 	ts = gethrtime();
217 	swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0);
218 
219 	(void) drv_getparm(TIME, &now);
220 	swrand_add_entropy((uint8_t *)&now, sizeof (now), 0);
221 
222 	ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL);
223 	ASSERT(ret == 0);
224 
225 	if (physmem_ent_init(&entsrc) != 0) {
226 		mutex_destroy(&srndpool_lock);
227 		cv_destroy(&srndpool_read_cv);
228 		(void) crypto_unregister_provider(swrand_prov_handle);
229 		return (ENOMEM);
230 	}
231 
232 	if ((ret = mod_install(&modlinkage)) != 0) {
233 		mutex_destroy(&srndpool_lock);
234 		cv_destroy(&srndpool_read_cv);
235 		physmem_ent_fini(&entsrc);
236 		(void) crypto_unregister_provider(swrand_prov_handle);
237 		return (ret);
238 	}
239 
240 	/* Schedule periodic mixing of the pool. */
241 	mutex_enter(&srndpool_lock);
242 	swrand_schedule_timeout();
243 	mutex_exit(&srndpool_lock);
244 
245 	return (0);
246 }
247 
248 int
249 _info(struct modinfo *modinfop)
250 {
251 	return (mod_info(&modlinkage, modinfop));
252 }
253 
254 /*
255  * Control entry points.
256  */
257 /* ARGSUSED */
258 static void
259 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status)
260 {
261 	*status = CRYPTO_PROVIDER_READY;
262 }
263 
264 /*
265  * Random number entry points.
266  */
267 /* ARGSUSED */
268 static int
269 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid,
270     uchar_t *buf, size_t len, crypto_req_handle_t req)
271 {
272 	/* The entropy estimate is always 0 in this path */
273 	swrand_add_entropy(buf, len, 0);
274 	return (CRYPTO_SUCCESS);
275 }
276 
277 /* ARGSUSED */
278 static int
279 swrand_generate_random(crypto_provider_handle_t provider,
280     crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req)
281 {
282 	if (crypto_kmflag(req) == KM_NOSLEEP)
283 		(void) swrand_get_entropy(buf, len, B_TRUE);
284 	else
285 		(void) swrand_get_entropy(buf, len, B_FALSE);
286 
287 	return (CRYPTO_SUCCESS);
288 }
289 
290 
291 /*
292  * Extraction of entropy from the pool.
293  *
294  * Returns "len" random bytes in *ptr.
295  * Try to gather some more entropy by calling physmem_ent_gen() when less than
296  * MINEXTRACTBITS are present in the pool.
297  * Will block if not enough entropy was available and the call is blocking.
298  */
299 static int
300 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock)
301 {
302 	int i, bytes;
303 	HASH_CTX hashctx;
304 	uint8_t digest[HASHSIZE], *pool;
305 
306 	mutex_enter(&srndpool_lock);
307 	if (leftover_bytes > 0) {
308 		bytes = min(len, leftover_bytes);
309 		bcopy(leftover, ptr, bytes);
310 		len -= bytes;
311 		ptr += bytes;
312 		leftover_bytes -= bytes;
313 		if (leftover_bytes > 0)
314 			ovbcopy(leftover+bytes, leftover, leftover_bytes);
315 	}
316 
317 	while (len > 0) {
318 
319 		/* Check if there is enough entropy */
320 		while (entropy_bits < MINEXTRACTBITS) {
321 
322 			physmem_ent_gen(&entsrc);
323 
324 			if (entropy_bits < MINEXTRACTBITS &&
325 			    nonblock == B_TRUE) {
326 				mutex_exit(&srndpool_lock);
327 				return (EAGAIN);
328 			}
329 
330 			if (entropy_bits < MINEXTRACTBITS) {
331 				ASSERT(nonblock == B_FALSE);
332 				snum_waiters++;
333 				if (cv_wait_sig(&srndpool_read_cv,
334 				    &srndpool_lock) == 0) {
335 					snum_waiters--;
336 					mutex_exit(&srndpool_lock);
337 					return (EINTR);
338 				}
339 				snum_waiters--;
340 			}
341 		}
342 
343 		/* Figure out how many bytes to extract */
344 		bytes = min(HASHSIZE, len);
345 		bytes = min(bytes, entropy_bits/8);
346 		entropy_bits -= bytes * 8;
347 		BUMP_SWRAND_STATS(ss_entOut, bytes * 8);
348 		swrand_stats.ss_entEst = entropy_bits;
349 
350 		/* Extract entropy by hashing pool content */
351 		HashInit(&hashctx);
352 		HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE);
353 		HashFinal(digest, &hashctx);
354 
355 		/*
356 		 * Feed the digest back into the pool so next
357 		 * extraction produces different result
358 		 */
359 		pool = (uint8_t *)srndpool;
360 		for (i = 0; i < HASHSIZE; i++) {
361 			pool[pindex++] ^= digest[i];
362 			/* pindex modulo RNDPOOLSIZE */
363 			pindex &= (RNDPOOLSIZE - 1);
364 		}
365 
366 		/*
367 		 * Hash the digest again before output to obscure
368 		 * what was fed back to the pool.
369 		 */
370 		HashInit(&hashctx);
371 		HashUpdate(&hashctx, digest, HASHSIZE);
372 		if (len >= HASHSIZE)
373 			HashFinal(ptr, &hashctx);
374 		else {
375 			HashFinal(digest, &hashctx);
376 			bcopy(digest, ptr, bytes);
377 			leftover_bytes = HASHSIZE - bytes;
378 			bcopy(digest + bytes, leftover, leftover_bytes);
379 		}
380 
381 		len -= bytes;
382 		ptr += bytes;
383 		BUMP_SWRAND_STATS(ss_bytesOut, bytes);
384 	}
385 	mutex_exit(&srndpool_lock);
386 	return (0);
387 }
388 
389 /* Write some more user-provided entropy to the pool */
390 static void
391 swrand_add_bytes(uint8_t *ptr, size_t len)
392 {
393 	uint8_t *pool = (uint8_t *)srndpool;
394 
395 	ASSERT(MUTEX_HELD(&srndpool_lock));
396 	ASSERT(ptr != NULL && len > 0);
397 
398 	BUMP_SWRAND_STATS(ss_bytesIn, len);
399 	while (len--) {
400 		pool[pindex++] ^= *ptr;
401 		ptr++;
402 		pindex &= (RNDPOOLSIZE - 1);
403 	}
404 }
405 
406 /* Mix the pool */
407 static void
408 swrand_mix_pool(uint16_t entropy_est)
409 {
410 	int i, j, k, start;
411 	HASH_CTX hashctx;
412 	uint8_t digest[HASHSIZE];
413 	uint8_t *pool = (uint8_t *)srndpool;
414 
415 	ASSERT(MUTEX_HELD(&srndpool_lock));
416 
417 	start = 0;
418 	for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) {
419 		HashInit(&hashctx);
420 
421 		/* Hash a buffer centered on a block in the pool */
422 		if (start + HASHBUFSIZE <= RNDPOOLSIZE)
423 			HashUpdate(&hashctx, &pool[start], HASHBUFSIZE);
424 		else {
425 			HashUpdate(&hashctx, &pool[start],
426 			    RNDPOOLSIZE - start);
427 			HashUpdate(&hashctx, pool,
428 			    HASHBUFSIZE - RNDPOOLSIZE + start);
429 		}
430 		HashFinal(digest, &hashctx);
431 
432 		/* XOR the hash result back into the block */
433 		k = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
434 		for (j = 0; j < HASHSIZE; j++) {
435 			pool[k++] ^= digest[j];
436 			k &= (RNDPOOLSIZE - 1);
437 		}
438 
439 		/* Slide the hash buffer and repeat with next block */
440 		start = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
441 	}
442 
443 	entropy_bits += entropy_est;
444 	if (entropy_bits > RNDPOOLSIZE * 8)
445 		entropy_bits = RNDPOOLSIZE * 8;
446 
447 	swrand_stats.ss_entEst = entropy_bits;
448 	BUMP_SWRAND_STATS(ss_entIn, entropy_est);
449 }
450 
451 static void
452 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
453 {
454 	mutex_enter(&srndpool_lock);
455 	swrand_add_bytes(ptr, len);
456 	swrand_mix_pool(entropy_est);
457 	mutex_exit(&srndpool_lock);
458 }
459 
460 /*
461  * The physmem_* routines below generate entropy by reading blocks of
462  * physical memory.  Entropy is gathered in a couple of ways:
463  *
464  *  - By reading blocks of physical memory and detecting if changes
465  *    occurred in the blocks read.
466  *
467  *  - By measuring the time it takes to load and hash a block of memory
468  *    and computing the differences in the measured time.
469  *
470  * The first method was used in the CryptoRand implementation.  Physical
471  * memory is divided into blocks of fixed size.  A block of memory is
472  * chosen from the possible blocks and hashed to produce a digest.  This
473  * digest is then mixed into the pool.  A single bit from the digest is
474  * used as a parity bit or "checksum" and compared against the previous
475  * "checksum" computed for the block.  If the single-bit checksum has not
476  * changed, no entropy is credited to the pool.  If there is a change,
477  * then the assumption is that at least one bit in the block has changed.
478  * The possible locations within the memory block of where the bit change
479  * occurred is used as a measure of entropy.  For example, if a block
480  * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of
481  * entropy is available.  Because the single-bit checksum will miss half
482  * of the changes, the amount of entropy credited to the pool is doubled
483  * when a change is detected.  With a 4096 byte block size, a block
484  * change will add a total of 30 bits of entropy to the pool.
485  *
486  * The second method measures the amount of time it takes to read and
487  * hash a physical memory block (as described above).  The time measured
488  * can vary depending on system load, scheduling and other factors.
489  * Differences between consecutive measurements are computed to come up
490  * with an entropy estimate.  The first, second, and third order delta is
491  * calculated to determine the minimum delta value.  The number of bits
492  * present in this minimum delta value is the entropy estimate.  This
493  * entropy estimation technique using time deltas is similar to that used
494  * in /dev/random implementations from Linux/BSD.
495  */
496 
497 static int
498 physmem_ent_init(physmem_entsrc_t *entsrc)
499 {
500 	uint8_t *ptr;
501 	int i;
502 
503 	bzero(entsrc, sizeof (*entsrc));
504 
505 	/*
506 	 * The maximum entropy amount in bits per block of memory read is
507 	 * log_2(MEMBLOCKSIZE * 8);
508 	 */
509 	i = MEMBLOCKSIZE << 3;
510 	while (i >>= 1)
511 		entsrc->entperblock++;
512 
513 	/* Initialize entsrc->nblocks */
514 	physmem_count_blocks();
515 
516 	if (entsrc->nblocks == 0) {
517 		cmn_err(CE_WARN, "no memory blocks to scan!");
518 		return (-1);
519 	}
520 
521 	/* Allocate space for the parity vector and memory page */
522 	entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8),
523 	    KM_SLEEP);
524 	entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
525 
526 
527 	/* Initialize parity vector with bits from the pool */
528 	i = howmany(entsrc->nblocks, 8);
529 	ptr = entsrc->parity;
530 	while (i > 0) {
531 		if (i > RNDPOOLSIZE) {
532 			bcopy(srndpool, ptr, RNDPOOLSIZE);
533 			mutex_enter(&srndpool_lock);
534 			swrand_mix_pool(0);
535 			mutex_exit(&srndpool_lock);
536 			ptr += RNDPOOLSIZE;
537 			i -= RNDPOOLSIZE;
538 		} else {
539 			bcopy(srndpool, ptr, i);
540 			break;
541 		}
542 	}
543 
544 	/* Generate some entropy to further initialize the pool */
545 	mutex_enter(&srndpool_lock);
546 	physmem_ent_gen(entsrc);
547 	entropy_bits = 0;
548 	mutex_exit(&srndpool_lock);
549 
550 	return (0);
551 }
552 
553 static void
554 physmem_ent_fini(physmem_entsrc_t *entsrc)
555 {
556 	if (entsrc->pmbuf != NULL)
557 		vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE);
558 	if (entsrc->parity != NULL)
559 		kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8));
560 	bzero(entsrc, sizeof (*entsrc));
561 }
562 
563 static void
564 physmem_ent_gen(physmem_entsrc_t *entsrc)
565 {
566 	struct memlist *pmem;
567 	offset_t offset, poffset;
568 	pfn_t pfn;
569 	int i, nbytes, len, ent = 0;
570 	uint32_t block, oblock;
571 	hrtime_t ts1, ts2, diff, delta, delta2, delta3;
572 	uint8_t digest[HASHSIZE];
573 	HASH_CTX ctx;
574 
575 	/*
576 	 * Use each 32-bit quantity in the pool to pick a memory
577 	 * block to read.
578 	 */
579 	for (i = 0; i < RNDPOOLSIZE/4; i++) {
580 
581 		/* If the pool is "full", stop after one block */
582 		if (entropy_bits + ent >= RNDPOOLSIZE * 8) {
583 			if (i > 0)
584 				break;
585 		}
586 
587 		/*
588 		 * This lock protects reading of phys_install.
589 		 * Any changes to this list, by DR, are done while
590 		 * holding this lock. So, holding this lock is sufficient
591 		 * to handle DR also.
592 		 */
593 		memlist_read_lock();
594 
595 		/* We're left with less than 4K of memory after DR */
596 		ASSERT(entsrc->nblocks > 0);
597 
598 		/* Pick a memory block to read */
599 		block = oblock = srndpool[i] % entsrc->nblocks;
600 
601 		for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
602 			if (block < pmem->size / MEMBLOCKSIZE)
603 				break;
604 			block -= pmem->size / MEMBLOCKSIZE;
605 		}
606 
607 		ASSERT(pmem != NULL);
608 
609 		offset = pmem->address + block * MEMBLOCKSIZE;
610 
611 		if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) {
612 			memlist_read_unlock();
613 			continue;
614 		}
615 
616 		/*
617 		 * Figure out which page to load to read the
618 		 * memory block.  Load the page and compute the
619 		 * hash of the memory block.
620 		 */
621 		len = MEMBLOCKSIZE;
622 		ts1 = gethrtime();
623 		HashInit(&ctx);
624 		while (len) {
625 			pfn = offset >> PAGESHIFT;
626 			poffset = offset & PAGEOFFSET;
627 			nbytes = PAGESIZE - poffset < len ?
628 			    PAGESIZE - poffset : len;
629 
630 			hat_devload(kas.a_hat, entsrc->pmbuf,
631 			    PAGESIZE, pfn, PROT_READ,
632 			    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
633 
634 			HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset,
635 			    nbytes);
636 
637 			hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE,
638 			    HAT_UNLOAD_UNLOCK);
639 
640 			len -= nbytes;
641 			offset += nbytes;
642 		}
643 		/* We got our pages. Let the DR roll */
644 		memlist_read_unlock();
645 
646 		HashFinal(digest, &ctx);
647 		ts2 = gethrtime();
648 
649 		/*
650 		 * Compute the time it took to load and hash the
651 		 * block and compare it against the previous
652 		 * measurement. The delta of the time values
653 		 * provides a small amount of entropy.  The
654 		 * minimum of the first, second, and third order
655 		 * delta is used to estimate how much entropy
656 		 * is present.
657 		 */
658 		diff = ts2 - ts1;
659 		delta = diff - entsrc->last_diff;
660 		if (delta < 0)
661 			delta = -delta;
662 		delta2 = delta - entsrc->last_delta;
663 		if (delta2 < 0)
664 			delta2 = -delta2;
665 		delta3 = delta2 - entsrc->last_delta2;
666 		if (delta3 < 0)
667 			delta3 = -delta3;
668 		entsrc->last_diff = diff;
669 		entsrc->last_delta = delta;
670 		entsrc->last_delta2 = delta2;
671 
672 		if (delta > delta2)
673 			delta = delta2;
674 		if (delta > delta3)
675 			delta = delta3;
676 		delta2 = 0;
677 		while (delta >>= 1)
678 			delta2++;
679 		ent += delta2;
680 
681 		/*
682 		 * If the memory block has changed, credit the pool with
683 		 * the entropy estimate.  The entropy estimate is doubled
684 		 * because the single-bit checksum misses half the change
685 		 * on average.
686 		 */
687 		if (physmem_parity_update(entsrc->parity, oblock,
688 		    digest[0] & 1))
689 			ent += 2 * entsrc->entperblock;
690 
691 		/* Add the entropy bytes to the pool */
692 		swrand_add_bytes(digest, HASHSIZE);
693 		swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1));
694 		swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2));
695 	}
696 
697 	swrand_mix_pool(ent);
698 }
699 
700 static int
701 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity)
702 {
703 	/* Test and set the parity bit, return 1 if changed */
704 	if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1))
705 		return (0);
706 	parity_vec[block >> 3] ^= 1 << (block & 7);
707 	return (1);
708 }
709 
710 /* Compute number of memory blocks available to scan */
711 static void
712 physmem_count_blocks()
713 {
714 	struct memlist *pmem;
715 
716 	memlist_read_lock();
717 	entsrc.nblocks = 0;
718 	for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
719 		entsrc.nblocks += pmem->size / MEMBLOCKSIZE;
720 		if (entsrc.nblocks > MAXMEMBLOCKS) {
721 			entsrc.nblocks = MAXMEMBLOCKS;
722 			break;
723 		}
724 	}
725 	memlist_read_unlock();
726 }
727 
728 /*
729  * Dynamic Reconfiguration call-back functions
730  */
731 
732 /* ARGSUSED */
733 static void
734 rnd_dr_callback_post_add(void *arg, pgcnt_t delta)
735 {
736 	/* More memory is available now, so update entsrc->nblocks. */
737 	physmem_count_blocks();
738 }
739 
740 /* Call-back routine invoked before the DR starts a memory removal. */
741 /* ARGSUSED */
742 static int
743 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta)
744 {
745 	return (0);
746 }
747 
748 /* Call-back routine invoked after the DR starts a memory removal. */
749 /* ARGSUSED */
750 static void
751 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled)
752 {
753 	/* Memory has shrunk, so update entsrc->nblocks. */
754 	physmem_count_blocks();
755 }
756 
757 /* Timeout handling to gather entropy from physmem events */
758 static void
759 swrand_schedule_timeout(void)
760 {
761 	clock_t ut;	/* time in microseconds */
762 
763 	ASSERT(MUTEX_HELD(&srndpool_lock));
764 	/*
765 	 * The new timeout value is taken from the pool of random bits.
766 	 * We're merely reading the first 32 bits from the pool here, not
767 	 * consuming any entropy.
768 	 * This routine is usually called right after stirring the pool, so
769 	 * srndpool[0] will have a *fresh* random value each time.
770 	 * The timeout multiplier value is a random value between 0.7 sec and
771 	 * 1.748575 sec (0.7 sec + 0xFFFFF microseconds).
772 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
773 	 */
774 	ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF);
775 	rnd_timeout_id = timeout(rnd_handler, NULL,
776 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
777 }
778 
779 /*ARGSUSED*/
780 static void
781 rnd_handler(void *arg)
782 {
783 	mutex_enter(&srndpool_lock);
784 
785 	physmem_ent_gen(&entsrc);
786 	if (snum_waiters > 0)
787 		cv_broadcast(&srndpool_read_cv);
788 	swrand_schedule_timeout();
789 
790 	mutex_exit(&srndpool_lock);
791 }
792