xref: /titanic_50/usr/src/uts/common/crypto/api/kcf_random.c (revision df0345f7d6cc87cde9e532e8362f1aca053d98cc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file implements the interfaces that the /dev/random
28  * driver uses for read(2), write(2) and poll(2) on /dev/random or
29  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
30  * random_get_pseudo_bytes() and random_get_bytes().
31  *
32  * We periodically collect random bits from providers which are registered
33  * with the Kernel Cryptographic Framework (kCF) as capable of random
34  * number generation. The random bits are maintained in a cache and
35  * it is used for high quality random numbers (/dev/random) requests.
36  * We pick a provider and call its SPI routine, if the cache does not have
37  * enough bytes to satisfy a request.
38  *
39  * /dev/urandom requests use a software-based generator algorithm that uses the
40  * random bits in the cache as a seed. We create one pseudo-random generator
41  * (for /dev/urandom) per possible CPU on the system, and use it,
42  * kmem-magazine-style, to avoid cache line contention.
43  *
44  * LOCKING HIERARCHY:
45  *	1) rmp->rm_mag.rm_lock protects the per-cpu pseudo-random generators.
46  * 	2) rndpool_lock protects the high-quality randomness pool.
47  *		It may be locked while a rmp->rm_mag.rm_lock is held.
48  *
49  * A history note: The kernel API and the software-based algorithms in this
50  * file used to be part of the /dev/random driver.
51  */
52 
53 #include <sys/types.h>
54 #include <sys/conf.h>
55 #include <sys/sunddi.h>
56 #include <sys/disp.h>
57 #include <sys/modctl.h>
58 #include <sys/ddi.h>
59 #include <sys/crypto/common.h>
60 #include <sys/crypto/api.h>
61 #include <sys/crypto/impl.h>
62 #include <sys/crypto/sched_impl.h>
63 #include <sys/random.h>
64 #include <sys/sha1.h>
65 #include <sys/time.h>
66 #include <sys/sysmacros.h>
67 #include <sys/cpuvar.h>
68 #include <sys/taskq.h>
69 #include <rng/fips_random.h>
70 
71 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
72 #define	MINEXTRACTBYTES		20
73 #define	MAXEXTRACTBYTES		1024
74 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
75 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
76 
77 typedef enum    extract_type {
78 	NONBLOCK_EXTRACT,
79 	BLOCKING_EXTRACT,
80 	ALWAYS_EXTRACT
81 } extract_type_t;
82 
83 /*
84  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
85  * routines directly instead of using k-API because we can't return any
86  * error code in /dev/urandom case and we can get an error using k-API
87  * if a mechanism is disabled.
88  */
89 #define	HASHSIZE		20
90 #define	HASH_CTX		SHA1_CTX
91 #define	HashInit(ctx)		SHA1Init((ctx))
92 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
93 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
94 
95 /* HMAC-SHA1 */
96 #define	HMAC_KEYSIZE			20
97 
98 /*
99  * Cache of random bytes implemented as a circular buffer. findex and rindex
100  * track the front and back of the circular buffer.
101  */
102 uint8_t rndpool[RNDPOOLSIZE];
103 static int findex, rindex;
104 static int rnbyte_cnt;		/* Number of bytes in the cache */
105 
106 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
107 				/* and the global variables */
108 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
109 static int num_waiters;		/* #threads waiting to read from /dev/random */
110 
111 static struct pollhead rnd_pollhead;
112 static timeout_id_t kcf_rndtimeout_id;
113 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
114 rnd_stats_t rnd_stats;
115 static boolean_t rng_prov_found = B_TRUE;
116 static boolean_t rng_ok_to_log = B_TRUE;
117 
118 static void rndc_addbytes(uint8_t *, size_t);
119 static void rndc_getbytes(uint8_t *ptr, size_t len);
120 static void rnd_handler(void *);
121 static void rnd_alloc_magazines();
122 
123 void
124 kcf_rnd_init()
125 {
126 	hrtime_t ts;
127 	time_t now;
128 
129 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
130 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
131 
132 	/*
133 	 * Add bytes to the cache using
134 	 * . 2 unpredictable times: high resolution time since the boot-time,
135 	 *   and the current time-of-the day.
136 	 * This is used only to make the timeout value in the timer
137 	 * unpredictable.
138 	 */
139 	ts = gethrtime();
140 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
141 
142 	(void) drv_getparm(TIME, &now);
143 	rndc_addbytes((uint8_t *)&now, sizeof (now));
144 
145 	rnbyte_cnt = 0;
146 	findex = rindex = 0;
147 	num_waiters = 0;
148 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
149 
150 	rnd_alloc_magazines();
151 }
152 
153 /*
154  * Return TRUE if at least one provider exists that can
155  * supply random numbers.
156  */
157 boolean_t
158 kcf_rngprov_check(void)
159 {
160 	int rv;
161 	kcf_provider_desc_t *pd;
162 
163 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
164 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
165 		KCF_PROV_REFRELE(pd);
166 		/*
167 		 * We logged a warning once about no provider being available
168 		 * and now a provider became available. So, set the flag so
169 		 * that we can log again if the problem recurs.
170 		 */
171 		rng_ok_to_log = B_TRUE;
172 		rng_prov_found = B_TRUE;
173 		return (B_TRUE);
174 	} else {
175 		rng_prov_found = B_FALSE;
176 		return (B_FALSE);
177 	}
178 }
179 
180 /*
181  * Pick a software-based provider and submit a request to seed
182  * its random number generator.
183  */
184 static void
185 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
186 {
187 	kcf_provider_desc_t *pd = NULL;
188 
189 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
190 	    CRYPTO_SUCCESS) {
191 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
192 		    entropy_est, flags, NULL);
193 		KCF_PROV_REFRELE(pd);
194 	}
195 }
196 
197 /* Boot-time tunable for experimentation. */
198 int kcf_limit_hwrng = 1;
199 
200 
201 /*
202  * This routine is called for blocking reads.
203  *
204  * The argument from_user_api indicates whether the caller is
205  * from userland coming via the /dev/random driver.
206  *
207  * The argument is_taskq_thr indicates whether the caller is
208  * the taskq thread dispatched by the timeout handler routine.
209  * In this case, we cycle through all the providers
210  * submitting a request to each provider to generate random numbers.
211  *
212  * For other cases, we pick a provider and submit a request to generate
213  * random numbers. We retry using another provider if we get an error.
214  *
215  * Returns the number of bytes that are written to 'ptr'. Returns -1
216  * if no provider is found. ptr and need are unchanged.
217  */
218 static int
219 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t from_user_api,
220     boolean_t is_taskq_thr)
221 {
222 	int rv;
223 	int prov_cnt = 0;
224 	int total_bytes = 0;
225 	kcf_provider_desc_t *pd;
226 	kcf_req_params_t params;
227 	kcf_prov_tried_t *list = NULL;
228 
229 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
230 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
231 
232 		prov_cnt++;
233 		/*
234 		 * Typically a hardware RNG is a multi-purpose
235 		 * crypto card and hence we do not want to overload the card
236 		 * just for random numbers. The following check is to prevent
237 		 * a user process from hogging the hardware RNG. Note that we
238 		 * still use the hardware RNG from the periodically run
239 		 * taskq thread.
240 		 */
241 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER && from_user_api &&
242 		    kcf_limit_hwrng == 1) {
243 			ASSERT(is_taskq_thr == B_FALSE);
244 			goto try_next;
245 		}
246 
247 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
248 		    pd->pd_sid, ptr, need, 0, 0);
249 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
250 		ASSERT(rv != CRYPTO_QUEUED);
251 
252 		if (rv == CRYPTO_SUCCESS) {
253 			total_bytes += need;
254 			if (is_taskq_thr)
255 				rndc_addbytes(ptr, need);
256 			else {
257 				KCF_PROV_REFRELE(pd);
258 				break;
259 			}
260 		}
261 
262 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
263 try_next:
264 			/* Add pd to the linked list of providers tried. */
265 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
266 				KCF_PROV_REFRELE(pd);
267 				break;
268 			}
269 		}
270 
271 	}
272 
273 	if (list != NULL)
274 		kcf_free_triedlist(list);
275 
276 	if (prov_cnt == 0) { /* no provider could be found. */
277 		rng_prov_found = B_FALSE;
278 		return (-1);
279 	} else {
280 		rng_prov_found = B_TRUE;
281 		/* See comments in kcf_rngprov_check() */
282 		rng_ok_to_log = B_TRUE;
283 	}
284 
285 	return (total_bytes);
286 }
287 
288 static void
289 notify_done(void *arg, int rv)
290 {
291 	uchar_t *rndbuf = arg;
292 
293 	if (rv == CRYPTO_SUCCESS)
294 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
295 
296 	bzero(rndbuf, MINEXTRACTBYTES);
297 	kmem_free(rndbuf, MINEXTRACTBYTES);
298 }
299 
300 /*
301  * Cycle through all the providers submitting a request to each provider
302  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
303  * and ALWAYS_EXTRACT.
304  *
305  * Returns the number of bytes that are written to 'ptr'. Returns -1
306  * if no provider is found. ptr and len are unchanged.
307  */
308 static int
309 rngprov_getbytes_nblk(uint8_t *ptr, size_t len, boolean_t from_user_api)
310 {
311 	int rv, blen, total_bytes;
312 	uchar_t *rndbuf;
313 	kcf_provider_desc_t *pd;
314 	kcf_req_params_t params;
315 	crypto_call_req_t req;
316 	kcf_prov_tried_t *list = NULL;
317 	int prov_cnt = 0;
318 
319 	blen = 0;
320 	total_bytes = 0;
321 	req.cr_flag = CRYPTO_SKIP_REQID;
322 	req.cr_callback_func = notify_done;
323 
324 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
325 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
326 
327 		prov_cnt ++;
328 		switch (pd->pd_prov_type) {
329 		case CRYPTO_HW_PROVIDER:
330 			/* See comments in rngprov_getbytes() */
331 			if (from_user_api && kcf_limit_hwrng == 1)
332 				goto try_next;
333 
334 			/*
335 			 * We have to allocate a buffer here as we can not
336 			 * assume that the input buffer will remain valid
337 			 * when the callback comes. We use a fixed size buffer
338 			 * to simplify the book keeping.
339 			 */
340 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
341 			if (rndbuf == NULL) {
342 				KCF_PROV_REFRELE(pd);
343 				if (list != NULL)
344 					kcf_free_triedlist(list);
345 				return (total_bytes);
346 			}
347 			req.cr_callback_arg = rndbuf;
348 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
349 			    KCF_OP_RANDOM_GENERATE,
350 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
351 			break;
352 
353 		case CRYPTO_SW_PROVIDER:
354 			/*
355 			 * We do not need to allocate a buffer in the software
356 			 * provider case as there is no callback involved. We
357 			 * avoid any extra data copy by directly passing 'ptr'.
358 			 */
359 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
360 			    KCF_OP_RANDOM_GENERATE,
361 			    pd->pd_sid, ptr, len, 0, 0);
362 			break;
363 		}
364 
365 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
366 		if (rv == CRYPTO_SUCCESS) {
367 			switch (pd->pd_prov_type) {
368 			case CRYPTO_HW_PROVIDER:
369 				/*
370 				 * Since we have the input buffer handy,
371 				 * we directly copy to it rather than
372 				 * adding to the pool.
373 				 */
374 				blen = min(MINEXTRACTBYTES, len);
375 				bcopy(rndbuf, ptr, blen);
376 				if (len < MINEXTRACTBYTES)
377 					rndc_addbytes(rndbuf + len,
378 					    MINEXTRACTBYTES - len);
379 				ptr += blen;
380 				len -= blen;
381 				total_bytes += blen;
382 				break;
383 
384 			case CRYPTO_SW_PROVIDER:
385 				total_bytes += len;
386 				len = 0;
387 				break;
388 			}
389 		}
390 
391 		/*
392 		 * We free the buffer in the callback routine
393 		 * for the CRYPTO_QUEUED case.
394 		 */
395 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
396 		    rv != CRYPTO_QUEUED) {
397 			bzero(rndbuf, MINEXTRACTBYTES);
398 			kmem_free(rndbuf, MINEXTRACTBYTES);
399 		}
400 
401 		if (len == 0) {
402 			KCF_PROV_REFRELE(pd);
403 			break;
404 		}
405 
406 		if (rv != CRYPTO_SUCCESS) {
407 try_next:
408 			/* Add pd to the linked list of providers tried. */
409 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
410 			    NULL) {
411 				KCF_PROV_REFRELE(pd);
412 				break;
413 			}
414 		}
415 	}
416 
417 	if (list != NULL) {
418 		kcf_free_triedlist(list);
419 	}
420 
421 	if (prov_cnt == 0) { /* no provider could be found. */
422 		rng_prov_found = B_FALSE;
423 		return (-1);
424 	} else {
425 		rng_prov_found = B_TRUE;
426 		/* See comments in kcf_rngprov_check() */
427 		rng_ok_to_log = B_TRUE;
428 	}
429 
430 	return (total_bytes);
431 }
432 
433 static void
434 rngprov_task(void *arg)
435 {
436 	int len = (int)(uintptr_t)arg;
437 	uchar_t tbuf[MAXEXTRACTBYTES];
438 
439 	ASSERT(len <= MAXEXTRACTBYTES);
440 	(void) rngprov_getbytes(tbuf, len, B_FALSE, B_TRUE);
441 }
442 
443 /*
444  * Returns "len" random or pseudo-random bytes in *ptr.
445  * Will block if not enough random bytes are available and the
446  * call is blocking.
447  *
448  * Called with rndpool_lock held (allowing caller to do optimistic locking;
449  * releases the lock before return).
450  */
451 static int
452 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how,
453     boolean_t from_user_api)
454 {
455 	int bytes;
456 	size_t got;
457 
458 	ASSERT(mutex_owned(&rndpool_lock));
459 	/*
460 	 * Check if the request can be satisfied from the cache
461 	 * of random bytes.
462 	 */
463 	if (len <= rnbyte_cnt) {
464 		rndc_getbytes(ptr, len);
465 		mutex_exit(&rndpool_lock);
466 		return (0);
467 	}
468 	mutex_exit(&rndpool_lock);
469 
470 	switch (how) {
471 	case BLOCKING_EXTRACT:
472 		if ((got = rngprov_getbytes(ptr, len, from_user_api,
473 		    B_FALSE)) == -1)
474 			break;	/* No provider found */
475 
476 		if (got == len)
477 			return (0);
478 		len -= got;
479 		ptr += got;
480 		break;
481 
482 	case NONBLOCK_EXTRACT:
483 	case ALWAYS_EXTRACT:
484 		if ((got = rngprov_getbytes_nblk(ptr, len,
485 		    from_user_api)) == -1) {
486 			/* No provider found */
487 			if (how == NONBLOCK_EXTRACT) {
488 				return (EAGAIN);
489 			}
490 		} else {
491 			if (got == len)
492 				return (0);
493 			len -= got;
494 			ptr += got;
495 		}
496 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
497 			return (EAGAIN);
498 		break;
499 	}
500 
501 	mutex_enter(&rndpool_lock);
502 	while (len > 0) {
503 		if (how == BLOCKING_EXTRACT) {
504 			/* Check if there is enough */
505 			while (rnbyte_cnt < MINEXTRACTBYTES) {
506 				num_waiters++;
507 				if (cv_wait_sig(&rndpool_read_cv,
508 				    &rndpool_lock) == 0) {
509 					num_waiters--;
510 					mutex_exit(&rndpool_lock);
511 					return (EINTR);
512 				}
513 				num_waiters--;
514 			}
515 		}
516 
517 		/* Figure out how many bytes to extract */
518 		bytes = min(len, rnbyte_cnt);
519 		rndc_getbytes(ptr, bytes);
520 
521 		len -= bytes;
522 		ptr += bytes;
523 
524 		if (len > 0 && how == ALWAYS_EXTRACT) {
525 			/*
526 			 * There are not enough bytes, but we can not block.
527 			 * This only happens in the case of /dev/urandom which
528 			 * runs an additional generation algorithm. So, there
529 			 * is no problem.
530 			 */
531 			while (len > 0) {
532 				*ptr = rndpool[findex];
533 				ptr++; len--;
534 				rindex = findex = (findex + 1) &
535 				    (RNDPOOLSIZE - 1);
536 			}
537 			break;
538 		}
539 	}
540 
541 	mutex_exit(&rndpool_lock);
542 	return (0);
543 }
544 
545 int
546 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock,
547     boolean_t from_user_api)
548 {
549 	extract_type_t how;
550 	int error;
551 
552 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
553 	mutex_enter(&rndpool_lock);
554 	if ((error = rnd_get_bytes(ptr, len, how, from_user_api)) != 0)
555 		return (error);
556 
557 	BUMP_RND_STATS(rs_rndOut, len);
558 	return (0);
559 }
560 
561 /*
562  * Revisit this if the structs grow or we come up with a better way
563  * of cache-line-padding structures.
564  */
565 #define	RND_CPU_CACHE_SIZE	64
566 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*6
567 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
568 	sizeof (rndmag_t))
569 /*
570  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
571  * a per-CPU instance of the pseudo-random generator.  We have it much easier
572  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
573  *
574  * Note that this usage is preemption-safe; a thread
575  * entering a critical section remembers which generator it locked
576  * and unlocks the same one; should it be preempted and wind up running on
577  * a different CPU, there will be a brief period of increased contention
578  * before it exits the critical section but nothing will melt.
579  */
580 typedef struct rndmag_s
581 {
582 	kmutex_t	rm_lock;
583 	uint8_t 	*rm_buffer;	/* Start of buffer */
584 	uint8_t		*rm_eptr;	/* End of buffer */
585 	uint8_t		*rm_rptr;	/* Current read pointer */
586 	uint32_t	rm_oblocks;	/* time to rekey? */
587 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
588 	uint32_t	rm_olimit;	/* Hard rekey limit */
589 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
590 	uint32_t	rm_key[SHA1WORDS];	/* FIPS XKEY */
591 	uint32_t	rm_seed[SHA1WORDS];	/* seed for rekey */
592 	uint32_t	rm_previous[SHA1WORDS]; /* previous random bytes */
593 } rndmag_t;
594 
595 typedef struct rndmag_pad_s
596 {
597 	rndmag_t	rm_mag;
598 	uint8_t		rm_pad[RND_CPU_PAD];
599 } rndmag_pad_t;
600 
601 /*
602  * Generate random bytes for /dev/urandom by applying the
603  * FIPS 186-2 algorithm with a key created from bytes extracted
604  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
605  * is generated before a new key is obtained.
606  *
607  * Note that callers to this routine are likely to assume it can't fail.
608  *
609  * Called with rmp locked; releases lock.
610  */
611 static int
612 rnd_generate_pseudo_bytes(rndmag_pad_t *rmp, uint8_t *ptr, size_t len)
613 {
614 	size_t bytes = len;
615 	int nblock, size;
616 	uint32_t oblocks;
617 	uint32_t tempout[SHA1WORDS];
618 	uint32_t seed[SHA1WORDS];
619 	int i;
620 	hrtime_t timestamp;
621 	uint8_t *src, *dst;
622 
623 	ASSERT(mutex_owned(&rmp->rm_mag.rm_lock));
624 
625 	/* Nothing is being asked */
626 	if (len == 0) {
627 		mutex_exit(&rmp->rm_mag.rm_lock);
628 		return (0);
629 	}
630 
631 	nblock = howmany(len, HASHSIZE);
632 
633 	rmp->rm_mag.rm_oblocks += nblock;
634 	oblocks = rmp->rm_mag.rm_oblocks;
635 
636 	do {
637 		if (oblocks >= rmp->rm_mag.rm_olimit) {
638 
639 			/*
640 			 * Contention-avoiding rekey: see if
641 			 * the pool is locked, and if so, wait a bit.
642 			 * Do an 'exponential back-in' to ensure we don't
643 			 * run too long without rekey.
644 			 */
645 			if (rmp->rm_mag.rm_ofuzz) {
646 				/*
647 				 * Decaying exponential back-in for rekey.
648 				 */
649 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
650 				    (!mutex_tryenter(&rndpool_lock))) {
651 					rmp->rm_mag.rm_olimit +=
652 					    rmp->rm_mag.rm_ofuzz;
653 					rmp->rm_mag.rm_ofuzz >>= 1;
654 					goto punt;
655 				}
656 			} else {
657 				mutex_enter(&rndpool_lock);
658 			}
659 
660 			/* Get a new chunk of entropy */
661 			(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
662 			    HMAC_KEYSIZE, ALWAYS_EXTRACT, B_FALSE);
663 
664 			rmp->rm_mag.rm_olimit = PRNG_MAXOBLOCKS/2;
665 			rmp->rm_mag.rm_ofuzz = PRNG_MAXOBLOCKS/4;
666 			oblocks = 0;
667 			rmp->rm_mag.rm_oblocks = nblock;
668 		}
669 punt:
670 		timestamp = gethrtime();
671 
672 		src = (uint8_t *)&timestamp;
673 		dst = (uint8_t *)rmp->rm_mag.rm_seed;
674 
675 		for (i = 0; i < HASHSIZE; i++) {
676 			dst[i] ^= src[i % sizeof (timestamp)];
677 		}
678 
679 		bcopy(rmp->rm_mag.rm_seed, seed, HASHSIZE);
680 
681 		fips_random_inner(rmp->rm_mag.rm_key, tempout,
682 		    seed);
683 
684 		if (bytes >= HASHSIZE) {
685 			size = HASHSIZE;
686 		} else {
687 			size = min(bytes, HASHSIZE);
688 		}
689 
690 		/*
691 		 * FIPS 140-2: Continuous RNG test - each generation
692 		 * of an n-bit block shall be compared with the previously
693 		 * generated block. Test shall fail if any two compared
694 		 * n-bit blocks are equal.
695 		 */
696 		for (i = 0; i < size/BYTES_IN_WORD; i++) {
697 			if (tempout[i] != rmp->rm_mag.rm_previous[i])
698 				break;
699 		}
700 		if (i == size/BYTES_IN_WORD)
701 			cmn_err(CE_WARN, "kcf_random: The value of 160-bit "
702 			    "block random bytes are same as the previous "
703 			    "one.\n");
704 
705 		bcopy(tempout, rmp->rm_mag.rm_previous,
706 		    HASHSIZE);
707 
708 		bcopy(tempout, ptr, size);
709 		ptr += size;
710 		bytes -= size;
711 		oblocks++;
712 		nblock--;
713 	} while (bytes > 0);
714 
715 	/* Zero out sensitive information */
716 	bzero(seed, HASHSIZE);
717 	bzero(tempout, HASHSIZE);
718 	mutex_exit(&rmp->rm_mag.rm_lock);
719 	return (0);
720 }
721 
722 /*
723  * Per-CPU Random magazines.
724  */
725 static rndmag_pad_t *rndmag;
726 static uint8_t	*rndbuf;
727 static size_t 	rndmag_total;
728 /*
729  * common/os/cpu.c says that platform support code can shrinkwrap
730  * max_ncpus.  On the off chance that we get loaded very early, we
731  * read it exactly once, to copy it here.
732  */
733 static uint32_t	random_max_ncpus = 0;
734 
735 /*
736  * Boot-time tunables, for experimentation.
737  */
738 size_t	rndmag_threshold = 2560;
739 size_t	rndbuf_len = 5120;
740 size_t	rndmag_size = 1280;
741 
742 
743 int
744 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
745 {
746 	rndmag_pad_t *rmp;
747 	uint8_t *cptr, *eptr;
748 
749 	/*
750 	 * Anyone who asks for zero bytes of randomness should get slapped.
751 	 */
752 	ASSERT(len > 0);
753 
754 	/*
755 	 * Fast path.
756 	 */
757 	for (;;) {
758 		rmp = &rndmag[CPU->cpu_seqid];
759 		mutex_enter(&rmp->rm_mag.rm_lock);
760 
761 		/*
762 		 * Big requests bypass buffer and tail-call the
763 		 * generate routine directly.
764 		 */
765 		if (len > rndmag_threshold) {
766 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
767 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
768 		}
769 
770 		cptr = rmp->rm_mag.rm_rptr;
771 		eptr = cptr + len;
772 
773 		if (eptr <= rmp->rm_mag.rm_eptr) {
774 			rmp->rm_mag.rm_rptr = eptr;
775 			bcopy(cptr, ptr, len);
776 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
777 			mutex_exit(&rmp->rm_mag.rm_lock);
778 
779 			return (0);
780 		}
781 		/*
782 		 * End fast path.
783 		 */
784 		rmp->rm_mag.rm_rptr = rmp->rm_mag.rm_buffer;
785 		/*
786 		 * Note:  We assume the generate routine always succeeds
787 		 * in this case (because it does at present..)
788 		 * It also always releases rm_lock.
789 		 */
790 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_mag.rm_buffer,
791 		    rndbuf_len);
792 	}
793 }
794 
795 /*
796  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
797  * little memory on big systems that don't have the full set installed.
798  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
799  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
800  *
801  * TODO: make rndmag_size tunable at run time!
802  */
803 static void
804 rnd_alloc_magazines()
805 {
806 	rndmag_pad_t *rmp;
807 	int i;
808 	uint8_t discard_buf[HASHSIZE];
809 
810 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
811 	if (rndmag_size < rndbuf_len)
812 		rndmag_size = rndbuf_len;
813 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
814 
815 	random_max_ncpus = max_ncpus;
816 	rndmag_total = rndmag_size * random_max_ncpus;
817 
818 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
819 	rndmag = kmem_zalloc(sizeof (rndmag_pad_t) * random_max_ncpus,
820 	    KM_SLEEP);
821 
822 	for (i = 0; i < random_max_ncpus; i++) {
823 		uint8_t *buf;
824 
825 		rmp = &rndmag[i];
826 		mutex_init(&rmp->rm_mag.rm_lock, NULL, MUTEX_DRIVER, NULL);
827 
828 		buf = rndbuf + i * rndmag_size;
829 
830 		rmp->rm_mag.rm_buffer = buf;
831 		rmp->rm_mag.rm_eptr = buf + rndbuf_len;
832 		rmp->rm_mag.rm_rptr = buf + rndbuf_len;
833 		rmp->rm_mag.rm_oblocks = 1;
834 
835 		mutex_enter(&rndpool_lock);
836 		/*
837 		 * FIPS 140-2: the first n-bit (n > 15) block generated
838 		 * after power-up, initialization, or reset shall not
839 		 * be used, but shall be saved for comparison.
840 		 */
841 		(void) rnd_get_bytes(discard_buf,
842 		    HMAC_KEYSIZE, ALWAYS_EXTRACT, B_FALSE);
843 		bcopy(discard_buf, rmp->rm_mag.rm_previous,
844 		    HMAC_KEYSIZE);
845 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
846 		mutex_enter(&rndpool_lock);
847 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
848 		    HMAC_KEYSIZE, ALWAYS_EXTRACT, B_FALSE);
849 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
850 		mutex_enter(&rndpool_lock);
851 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_seed,
852 		    HMAC_KEYSIZE, ALWAYS_EXTRACT, B_FALSE);
853 	}
854 }
855 
856 void
857 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
858 {
859 	clock_t ut;	/* time in microseconds */
860 
861 	if (do_mech2id)
862 		rngmech_type = crypto_mech2id(SUN_RANDOM);
863 
864 	/*
865 	 * The new timeout value is taken from the buffer of random bytes.
866 	 * We're merely reading the first 32 bits from the buffer here, not
867 	 * consuming any random bytes.
868 	 * The timeout multiplier value is a random value between 0.5 sec and
869 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
870 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
871 	 */
872 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
873 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
874 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
875 }
876 
877 /*
878  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
879  * will block. When enough random bytes are available, later, the timeout
880  * handler routine will issue the pollwakeup() calls.
881  */
882 void
883 kcf_rnd_chpoll(int anyyet, short *reventsp, struct pollhead **phpp)
884 {
885 	/*
886 	 * Sampling of rnbyte_cnt is an atomic
887 	 * operation. Hence we do not need any locking.
888 	 */
889 	if (rnbyte_cnt >= MINEXTRACTBYTES) {
890 		*reventsp |= (POLLIN | POLLRDNORM);
891 	} else {
892 		*reventsp = 0;
893 		if (!anyyet)
894 			*phpp = &rnd_pollhead;
895 	}
896 }
897 
898 /*ARGSUSED*/
899 static void
900 rnd_handler(void *arg)
901 {
902 	int len = 0;
903 
904 	if (!rng_prov_found && rng_ok_to_log) {
905 		cmn_err(CE_WARN, "No randomness provider enabled for "
906 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
907 		rng_ok_to_log = B_FALSE;
908 	}
909 
910 	if (num_waiters > 0)
911 		len = MAXEXTRACTBYTES;
912 	else if (rnbyte_cnt < RNDPOOLSIZE)
913 		len = MINEXTRACTBYTES;
914 
915 	if (len > 0) {
916 		(void) taskq_dispatch(system_taskq, rngprov_task,
917 		    (void *)(uintptr_t)len, TQ_NOSLEEP);
918 	}
919 
920 	mutex_enter(&rndpool_lock);
921 	/*
922 	 * Wake up threads waiting in poll() or for enough accumulated
923 	 * random bytes to read from /dev/random. In case a poll() is
924 	 * concurrent with a read(), the polling process may be woken up
925 	 * indicating that enough randomness is now available for reading,
926 	 * and another process *steals* the bits from the pool, causing the
927 	 * subsequent read() from the first process to block. It is acceptable
928 	 * since the blocking will eventually end, after the timeout
929 	 * has expired enough times to honor the read.
930 	 *
931 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
932 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
933 	 */
934 	if (rnbyte_cnt >= MINEXTRACTBYTES)
935 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
936 
937 	if (num_waiters > 0)
938 		cv_broadcast(&rndpool_read_cv);
939 	mutex_exit(&rndpool_lock);
940 
941 	kcf_rnd_schedule_timeout(B_FALSE);
942 }
943 
944 static void
945 rndc_addbytes(uint8_t *ptr, size_t len)
946 {
947 	ASSERT(ptr != NULL && len > 0);
948 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
949 
950 	mutex_enter(&rndpool_lock);
951 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
952 		rndpool[rindex] ^= *ptr;
953 		ptr++; len--;
954 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
955 		rnbyte_cnt++;
956 	}
957 
958 	/* Handle buffer full case */
959 	while (len > 0) {
960 		rndpool[rindex] ^= *ptr;
961 		ptr++; len--;
962 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
963 	}
964 	mutex_exit(&rndpool_lock);
965 }
966 
967 /*
968  * Caller should check len <= rnbyte_cnt under the
969  * rndpool_lock before calling.
970  */
971 static void
972 rndc_getbytes(uint8_t *ptr, size_t len)
973 {
974 	ASSERT(MUTEX_HELD(&rndpool_lock));
975 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
976 
977 	BUMP_RND_STATS(rs_rndcOut, len);
978 
979 	while (len > 0) {
980 		*ptr = rndpool[findex];
981 		ptr++; len--;
982 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
983 		rnbyte_cnt--;
984 	}
985 }
986 
987 /* Random number exported entry points */
988 
989 /*
990  * Mix the supplied bytes into the entropy pool of a kCF
991  * RNG provider.
992  */
993 int
994 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
995 {
996 	if (len < 1)
997 		return (-1);
998 
999 	rngprov_seed(ptr, len, entropy_est, 0);
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Mix the supplied bytes into the entropy pool of a kCF
1006  * RNG provider. Mix immediately.
1007  */
1008 int
1009 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1010 {
1011 	if (len < 1)
1012 		return (-1);
1013 
1014 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1015 
1016 	return (0);
1017 }
1018 
1019 /*
1020  * Get bytes from the /dev/urandom generator. This function
1021  * always succeeds. Returns 0.
1022  */
1023 int
1024 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1025 {
1026 	ASSERT(!mutex_owned(&rndpool_lock));
1027 
1028 	if (len < 1)
1029 		return (0);
1030 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1031 }
1032 
1033 /*
1034  * Get bytes from the /dev/random generator. Returns 0
1035  * on success. Returns EAGAIN if there is insufficient entropy.
1036  */
1037 int
1038 random_get_bytes(uint8_t *ptr, size_t len)
1039 {
1040 	ASSERT(!mutex_owned(&rndpool_lock));
1041 
1042 	if (len < 1)
1043 		return (0);
1044 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE, B_FALSE));
1045 }
1046