xref: /titanic_50/usr/src/uts/common/crypto/api/kcf_random.c (revision 9113a79cf228b8f7bd509b1328adf88659dfe218)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file implements the interfaces that the /dev/random
30  * driver uses for read(2), write(2) and poll(2) on /dev/random or
31  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
32  * random_get_pseudo_bytes() and random_get_bytes().
33  *
34  * We periodically collect random bits from providers which are registered
35  * with the Kernel Cryptographic Framework (kCF) as capable of random
36  * number generation. The random bits are maintained in a cache and
37  * it is used for high quality random numbers (/dev/random) requests.
38  * We pick a provider and call its SPI routine, if the cache does not have
39  * enough bytes to satisfy a request.
40  *
41  * /dev/urandom requests use a software-based generator algorithm that uses the
42  * random bits in the cache as a seed. We create one pseudo-random generator
43  * (for /dev/urandom) per possible CPU on the system, and use it,
44  * kmem-magazine-style, to avoid cache line contention.
45  *
46  * LOCKING HIERARCHY:
47  *	1) rmp->rm_lock protects the per-cpu pseudo-random generators.
48  * 	2) rndpool_lock protects the high-quality randomness pool.
49  *		It may be locked while a rmp->rm_lock is held.
50  *
51  * A history note: The kernel API and the software-based algorithms in this
52  * file used to be part of the /dev/random driver.
53  */
54 
55 #include <sys/types.h>
56 #include <sys/conf.h>
57 #include <sys/sunddi.h>
58 #include <sys/disp.h>
59 #include <sys/modctl.h>
60 #include <sys/ddi.h>
61 #include <sys/crypto/common.h>
62 #include <sys/crypto/api.h>
63 #include <sys/crypto/impl.h>
64 #include <sys/crypto/sched_impl.h>
65 #include <sys/random.h>
66 #include <sys/sha1.h>
67 #include <sys/time.h>
68 #include <sys/sysmacros.h>
69 #include <sys/cpuvar.h>
70 #include <sys/taskq.h>
71 
72 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
73 #define	MINEXTRACTBYTES		20
74 #define	MAXEXTRACTBYTES		1024
75 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
76 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
77 
78 typedef enum    extract_type {
79 	NONBLOCK_EXTRACT,
80 	BLOCKING_EXTRACT,
81 	ALWAYS_EXTRACT
82 } extract_type_t;
83 
84 /*
85  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
86  * routines directly instead of using k-API because we can't return any
87  * error code in /dev/urandom case and we can get an error using k-API
88  * if a mechanism is disabled.
89  */
90 #define	HASHSIZE		20
91 #define	HASH_CTX		SHA1_CTX
92 #define	HashInit(ctx)		SHA1Init((ctx))
93 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
94 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
95 
96 /* HMAC-SHA1 */
97 #define	HMAC_KEYSIZE			20
98 #define	HMAC_BLOCK_SIZE			64
99 #define	HMAC_KEYSCHED			sha1keysched_t
100 #define	SET_ENCRYPT_KEY(k, s, ks)	hmac_key((k), (s), (ks))
101 #define	HMAC_ENCRYPT(ks, p, s, d)	hmac_encr((ks), (uint8_t *)(p), s, d)
102 
103 /* HMAC-SHA1 "keyschedule" */
104 typedef struct sha1keysched_s {
105 	SHA1_CTX ictx;
106 	SHA1_CTX octx;
107 } sha1keysched_t;
108 
109 /*
110  * Cache of random bytes implemented as a circular buffer. findex and rindex
111  * track the front and back of the circular buffer.
112  */
113 uint8_t rndpool[RNDPOOLSIZE];
114 static int findex, rindex;
115 static int rnbyte_cnt;		/* Number of bytes in the cache */
116 
117 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
118 				/* and the global variables */
119 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
120 static int num_waiters;		/* #threads waiting to read from /dev/random */
121 
122 static struct pollhead rnd_pollhead;
123 static timeout_id_t kcf_rndtimeout_id;
124 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
125 rnd_stats_t rnd_stats;
126 static boolean_t rng_prov_found = B_TRUE;
127 static boolean_t rng_ok_to_log = B_TRUE;
128 
129 static void rndc_addbytes(uint8_t *, size_t);
130 static void rndc_getbytes(uint8_t *ptr, size_t len);
131 static void rnd_handler(void *);
132 static void rnd_alloc_magazines();
133 static void hmac_key(uint8_t *, size_t, void *);
134 static void hmac_encr(void *, uint8_t *, size_t, uint8_t *);
135 
136 
137 void
138 kcf_rnd_init()
139 {
140 	hrtime_t ts;
141 	time_t now;
142 
143 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
144 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
145 
146 	/*
147 	 * Add bytes to the cache using
148 	 * . 2 unpredictable times: high resolution time since the boot-time,
149 	 *   and the current time-of-the day.
150 	 * This is used only to make the timeout value in the timer
151 	 * unpredictable.
152 	 */
153 	ts = gethrtime();
154 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
155 
156 	(void) drv_getparm(TIME, &now);
157 	rndc_addbytes((uint8_t *)&now, sizeof (now));
158 
159 	rnbyte_cnt = 0;
160 	findex = rindex = 0;
161 	num_waiters = 0;
162 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
163 
164 	rnd_alloc_magazines();
165 }
166 
167 /*
168  * Return TRUE if at least one provider exists that can
169  * supply random numbers.
170  */
171 boolean_t
172 kcf_rngprov_check(void)
173 {
174 	int rv;
175 	kcf_provider_desc_t *pd;
176 
177 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
178 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
179 		KCF_PROV_REFRELE(pd);
180 		/*
181 		 * We logged a warning once about no provider being available
182 		 * and now a provider became available. So, set the flag so
183 		 * that we can log again if the problem recurs.
184 		 */
185 		rng_ok_to_log = B_TRUE;
186 		rng_prov_found = B_TRUE;
187 		return (B_TRUE);
188 	} else {
189 		rng_prov_found = B_FALSE;
190 		return (B_FALSE);
191 	}
192 }
193 
194 /*
195  * Pick a software-based provider and submit a request to seed
196  * its random number generator.
197  */
198 static void
199 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
200 {
201 	kcf_provider_desc_t *pd = NULL;
202 
203 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
204 	    CRYPTO_SUCCESS) {
205 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
206 		    entropy_est, flags, NULL);
207 		KCF_PROV_REFRELE(pd);
208 	}
209 }
210 
211 /* Boot-time tunable for experimentation. */
212 int kcf_limit_hwrng = 1;
213 
214 
215 /*
216  * This routine is called for blocking reads.
217  *
218  * The argument from_user_api indicates whether the caller is
219  * from userland coming via the /dev/random driver.
220  *
221  * The argument is_taskq_thr indicates whether the caller is
222  * the taskq thread dispatched by the timeout handler routine.
223  * In this case, we cycle through all the providers
224  * submitting a request to each provider to generate random numbers.
225  *
226  * For other cases, we pick a provider and submit a request to generate
227  * random numbers. We retry using another provider if we get an error.
228  *
229  * Returns the number of bytes that are written to 'ptr'. Returns -1
230  * if no provider is found. ptr and need are unchanged.
231  */
232 static int
233 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t from_user_api,
234     boolean_t is_taskq_thr)
235 {
236 	int rv;
237 	int prov_cnt = 0;
238 	int total_bytes = 0;
239 	kcf_provider_desc_t *pd;
240 	kcf_req_params_t params;
241 	kcf_prov_tried_t *list = NULL;
242 
243 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
244 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
245 
246 		prov_cnt++;
247 		/*
248 		 * Typically a hardware RNG is a multi-purpose
249 		 * crypto card and hence we do not want to overload the card
250 		 * just for random numbers. The following check is to prevent
251 		 * a user process from hogging the hardware RNG. Note that we
252 		 * still use the hardware RNG from the periodically run
253 		 * taskq thread.
254 		 */
255 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER && from_user_api &&
256 		    kcf_limit_hwrng == 1) {
257 			ASSERT(is_taskq_thr == B_FALSE);
258 			goto try_next;
259 		}
260 
261 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
262 		    pd->pd_sid, ptr, need, 0, 0);
263 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
264 		ASSERT(rv != CRYPTO_QUEUED);
265 
266 		if (rv == CRYPTO_SUCCESS) {
267 			total_bytes += need;
268 			if (is_taskq_thr)
269 				rndc_addbytes(ptr, need);
270 			else {
271 				KCF_PROV_REFRELE(pd);
272 				break;
273 			}
274 		}
275 
276 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
277 try_next:
278 			/* Add pd to the linked list of providers tried. */
279 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
280 				KCF_PROV_REFRELE(pd);
281 				break;
282 			}
283 		}
284 
285 	}
286 
287 	if (list != NULL)
288 		kcf_free_triedlist(list);
289 
290 	if (prov_cnt == 0) { /* no provider could be found. */
291 		rng_prov_found = B_FALSE;
292 		return (-1);
293 	} else {
294 		rng_prov_found = B_TRUE;
295 		/* See comments in kcf_rngprov_check() */
296 		rng_ok_to_log = B_TRUE;
297 	}
298 
299 	return (total_bytes);
300 }
301 
302 static void
303 notify_done(void *arg, int rv)
304 {
305 	uchar_t *rndbuf = arg;
306 
307 	if (rv == CRYPTO_SUCCESS)
308 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
309 
310 	bzero(rndbuf, MINEXTRACTBYTES);
311 	kmem_free(rndbuf, MINEXTRACTBYTES);
312 }
313 
314 /*
315  * Cycle through all the providers submitting a request to each provider
316  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
317  * and ALWAYS_EXTRACT.
318  *
319  * Returns the number of bytes that are written to 'ptr'. Returns -1
320  * if no provider is found. ptr and len are unchanged.
321  */
322 static int
323 rngprov_getbytes_nblk(uint8_t *ptr, size_t len, boolean_t from_user_api)
324 {
325 	int rv, blen, total_bytes;
326 	uchar_t *rndbuf;
327 	kcf_provider_desc_t *pd;
328 	kcf_req_params_t params;
329 	crypto_call_req_t req;
330 	kcf_prov_tried_t *list = NULL;
331 	int prov_cnt = 0;
332 
333 	blen = 0;
334 	total_bytes = 0;
335 	req.cr_flag = CRYPTO_SKIP_REQID;
336 	req.cr_callback_func = notify_done;
337 
338 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
339 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
340 
341 		prov_cnt ++;
342 		switch (pd->pd_prov_type) {
343 		case CRYPTO_HW_PROVIDER:
344 			/* See comments in rngprov_getbytes() */
345 			if (from_user_api && kcf_limit_hwrng == 1)
346 				goto try_next;
347 
348 			/*
349 			 * We have to allocate a buffer here as we can not
350 			 * assume that the input buffer will remain valid
351 			 * when the callback comes. We use a fixed size buffer
352 			 * to simplify the book keeping.
353 			 */
354 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
355 			if (rndbuf == NULL) {
356 				KCF_PROV_REFRELE(pd);
357 				if (list != NULL)
358 					kcf_free_triedlist(list);
359 				return (total_bytes);
360 			}
361 			req.cr_callback_arg = rndbuf;
362 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
363 			    KCF_OP_RANDOM_GENERATE,
364 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
365 			break;
366 
367 		case CRYPTO_SW_PROVIDER:
368 			/*
369 			 * We do not need to allocate a buffer in the software
370 			 * provider case as there is no callback involved. We
371 			 * avoid any extra data copy by directly passing 'ptr'.
372 			 */
373 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
374 			    KCF_OP_RANDOM_GENERATE,
375 			    pd->pd_sid, ptr, len, 0, 0);
376 			break;
377 		}
378 
379 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
380 		if (rv == CRYPTO_SUCCESS) {
381 			switch (pd->pd_prov_type) {
382 			case CRYPTO_HW_PROVIDER:
383 				/*
384 				 * Since we have the input buffer handy,
385 				 * we directly copy to it rather than
386 				 * adding to the pool.
387 				 */
388 				blen = min(MINEXTRACTBYTES, len);
389 				bcopy(rndbuf, ptr, blen);
390 				if (len < MINEXTRACTBYTES)
391 					rndc_addbytes(rndbuf + len,
392 					    MINEXTRACTBYTES - len);
393 				ptr += blen;
394 				len -= blen;
395 				total_bytes += blen;
396 				break;
397 
398 			case CRYPTO_SW_PROVIDER:
399 				total_bytes += len;
400 				len = 0;
401 				break;
402 			}
403 		}
404 
405 		/*
406 		 * We free the buffer in the callback routine
407 		 * for the CRYPTO_QUEUED case.
408 		 */
409 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
410 		    rv != CRYPTO_QUEUED) {
411 			bzero(rndbuf, MINEXTRACTBYTES);
412 			kmem_free(rndbuf, MINEXTRACTBYTES);
413 		}
414 
415 		if (len == 0) {
416 			KCF_PROV_REFRELE(pd);
417 			break;
418 		}
419 
420 		if (rv != CRYPTO_SUCCESS) {
421 try_next:
422 			/* Add pd to the linked list of providers tried. */
423 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
424 			    NULL) {
425 				KCF_PROV_REFRELE(pd);
426 				break;
427 			}
428 		}
429 	}
430 
431 	if (list != NULL) {
432 		kcf_free_triedlist(list);
433 	}
434 
435 	if (prov_cnt == 0) { /* no provider could be found. */
436 		rng_prov_found = B_FALSE;
437 		return (-1);
438 	} else {
439 		rng_prov_found = B_TRUE;
440 		/* See comments in kcf_rngprov_check() */
441 		rng_ok_to_log = B_TRUE;
442 	}
443 
444 	return (total_bytes);
445 }
446 
447 static void
448 rngprov_task(void *arg)
449 {
450 	int len = (int)(uintptr_t)arg;
451 	uchar_t tbuf[MAXEXTRACTBYTES];
452 
453 	ASSERT(len <= MAXEXTRACTBYTES);
454 	(void) rngprov_getbytes(tbuf, len, B_FALSE, B_TRUE);
455 }
456 
457 /*
458  * Returns "len" random or pseudo-random bytes in *ptr.
459  * Will block if not enough random bytes are available and the
460  * call is blocking.
461  *
462  * Called with rndpool_lock held (allowing caller to do optimistic locking;
463  * releases the lock before return).
464  */
465 static int
466 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how,
467     boolean_t from_user_api)
468 {
469 	int bytes;
470 	size_t got;
471 
472 	ASSERT(mutex_owned(&rndpool_lock));
473 	/*
474 	 * Check if the request can be satisfied from the cache
475 	 * of random bytes.
476 	 */
477 	if (len <= rnbyte_cnt) {
478 		rndc_getbytes(ptr, len);
479 		mutex_exit(&rndpool_lock);
480 		return (0);
481 	}
482 	mutex_exit(&rndpool_lock);
483 
484 	switch (how) {
485 	case BLOCKING_EXTRACT:
486 		if ((got = rngprov_getbytes(ptr, len, from_user_api,
487 		    B_FALSE)) == -1)
488 			break;	/* No provider found */
489 
490 		if (got == len)
491 			return (0);
492 		len -= got;
493 		ptr += got;
494 		break;
495 
496 	case NONBLOCK_EXTRACT:
497 	case ALWAYS_EXTRACT:
498 		if ((got = rngprov_getbytes_nblk(ptr, len,
499 		    from_user_api)) == -1) {
500 			/* No provider found */
501 			if (how == NONBLOCK_EXTRACT) {
502 				return (EAGAIN);
503 			}
504 		} else {
505 			if (got == len)
506 				return (0);
507 			len -= got;
508 			ptr += got;
509 		}
510 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
511 			return (EAGAIN);
512 		break;
513 	}
514 
515 	mutex_enter(&rndpool_lock);
516 	while (len > 0) {
517 		if (how == BLOCKING_EXTRACT) {
518 			/* Check if there is enough */
519 			while (rnbyte_cnt < MINEXTRACTBYTES) {
520 				num_waiters++;
521 				if (cv_wait_sig(&rndpool_read_cv,
522 				    &rndpool_lock) == 0) {
523 					num_waiters--;
524 					mutex_exit(&rndpool_lock);
525 					return (EINTR);
526 				}
527 				num_waiters--;
528 			}
529 		}
530 
531 		/* Figure out how many bytes to extract */
532 		bytes = min(len, rnbyte_cnt);
533 		rndc_getbytes(ptr, bytes);
534 
535 		len -= bytes;
536 		ptr += bytes;
537 
538 		if (len > 0 && how == ALWAYS_EXTRACT) {
539 			/*
540 			 * There are not enough bytes, but we can not block.
541 			 * This only happens in the case of /dev/urandom which
542 			 * runs an additional generation algorithm. So, there
543 			 * is no problem.
544 			 */
545 			while (len > 0) {
546 				*ptr = rndpool[findex];
547 				ptr++; len--;
548 				rindex = findex = (findex + 1) &
549 				    (RNDPOOLSIZE - 1);
550 			}
551 			break;
552 		}
553 	}
554 
555 	mutex_exit(&rndpool_lock);
556 	return (0);
557 }
558 
559 int
560 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock,
561     boolean_t from_user_api)
562 {
563 	extract_type_t how;
564 	int error;
565 
566 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
567 	mutex_enter(&rndpool_lock);
568 	if ((error = rnd_get_bytes(ptr, len, how, from_user_api)) != 0)
569 		return (error);
570 
571 	BUMP_RND_STATS(rs_rndOut, len);
572 	return (0);
573 }
574 
575 /*
576  * Revisit this if the structs grow or we come up with a better way
577  * of cache-line-padding structures.
578  */
579 #define	RND_CPU_CACHE_SIZE	64
580 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*5
581 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
582 	(sizeof (kmutex_t) + 3*sizeof (uint8_t *) + sizeof (HMAC_KEYSCHED) + \
583 	sizeof (uint64_t) + 3*sizeof (uint32_t) + sizeof (rnd_stats_t)))
584 
585 /*
586  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
587  * a per-CPU instance of the pseudo-random generator.  We have it much easier
588  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
589  *
590  * Note that this usage is preemption-safe; a thread
591  * entering a critical section remembers which generator it locked
592  * and unlocks the same one; should it be preempted and wind up running on
593  * a different CPU, there will be a brief period of increased contention
594  * before it exits the critical section but nothing will melt.
595  */
596 typedef struct rndmag_s
597 {
598 	kmutex_t	rm_lock;
599 	uint8_t 	*rm_buffer;	/* Start of buffer */
600 	uint8_t		*rm_eptr;	/* End of buffer */
601 	uint8_t		*rm_rptr;	/* Current read pointer */
602 	HMAC_KEYSCHED 	rm_ks;		/* seed */
603 	uint64_t 	rm_counter;	/* rotating counter for extracting */
604 	uint32_t	rm_oblocks;	/* time to rekey? */
605 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
606 	uint32_t	rm_olimit;	/* Hard rekey limit */
607 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
608 	uint8_t		rm_pad[RND_CPU_PAD];
609 } rndmag_t;
610 
611 /*
612  * Generate random bytes for /dev/urandom by encrypting a
613  * rotating counter with a key created from bytes extracted
614  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
615  * is generated before a new key is obtained.
616  *
617  * Note that callers to this routine are likely to assume it can't fail.
618  *
619  * Called with rmp locked; releases lock.
620  */
621 static int
622 rnd_generate_pseudo_bytes(rndmag_t *rmp, uint8_t *ptr, size_t len)
623 {
624 	size_t bytes = len;
625 	int nblock, size;
626 	uint32_t oblocks;
627 	uint8_t digest[HASHSIZE];
628 
629 	ASSERT(mutex_owned(&rmp->rm_lock));
630 
631 	/* Nothing is being asked */
632 	if (len == 0) {
633 		mutex_exit(&rmp->rm_lock);
634 		return (0);
635 	}
636 
637 	nblock = howmany(len, HASHSIZE);
638 
639 	rmp->rm_oblocks += nblock;
640 	oblocks = rmp->rm_oblocks;
641 
642 	do {
643 		if (oblocks >= rmp->rm_olimit) {
644 			hrtime_t timestamp;
645 			uint8_t key[HMAC_KEYSIZE];
646 
647 			/*
648 			 * Contention-avoiding rekey: see if
649 			 * the pool is locked, and if so, wait a bit.
650 			 * Do an 'exponential back-in' to ensure we don't
651 			 * run too long without rekey.
652 			 */
653 			if (rmp->rm_ofuzz) {
654 				/*
655 				 * Decaying exponential back-in for rekey.
656 				 */
657 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
658 				    (!mutex_tryenter(&rndpool_lock))) {
659 					rmp->rm_olimit += rmp->rm_ofuzz;
660 					rmp->rm_ofuzz >>= 1;
661 					goto punt;
662 				}
663 			} else {
664 				mutex_enter(&rndpool_lock);
665 			}
666 
667 			/* Get a new chunk of entropy */
668 			(void) rnd_get_bytes(key, HMAC_KEYSIZE,
669 			    ALWAYS_EXTRACT, B_FALSE);
670 
671 			/* Set up key */
672 			SET_ENCRYPT_KEY(key, HMAC_KEYSIZE, &rmp->rm_ks);
673 
674 			/* Get new counter value by encrypting timestamp */
675 			timestamp = gethrtime();
676 			HMAC_ENCRYPT(&rmp->rm_ks, &timestamp,
677 			    sizeof (timestamp), digest);
678 			rmp->rm_olimit = PRNG_MAXOBLOCKS/2;
679 			rmp->rm_ofuzz = PRNG_MAXOBLOCKS/4;
680 			bcopy(digest, &rmp->rm_counter, sizeof (uint64_t));
681 			oblocks = 0;
682 			rmp->rm_oblocks = nblock;
683 		}
684 punt:
685 		/* Hash counter to produce prn stream */
686 		if (bytes >= HASHSIZE) {
687 			size = HASHSIZE;
688 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
689 			    sizeof (rmp->rm_counter), ptr);
690 		} else {
691 			size = min(bytes, HASHSIZE);
692 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
693 			    sizeof (rmp->rm_counter), digest);
694 			bcopy(digest, ptr, size);
695 		}
696 		ptr += size;
697 		bytes -= size;
698 		rmp->rm_counter++;
699 		oblocks++;
700 		nblock--;
701 	} while (bytes > 0);
702 
703 	mutex_exit(&rmp->rm_lock);
704 	return (0);
705 }
706 
707 /*
708  * Per-CPU Random magazines.
709  */
710 static rndmag_t *rndmag;
711 static uint8_t	*rndbuf;
712 static size_t 	rndmag_total;
713 /*
714  * common/os/cpu.c says that platform support code can shrinkwrap
715  * max_ncpus.  On the off chance that we get loaded very early, we
716  * read it exactly once, to copy it here.
717  */
718 static uint32_t	random_max_ncpus = 0;
719 
720 /*
721  * Boot-time tunables, for experimentation.
722  */
723 size_t	rndmag_threshold = 2560;
724 size_t	rndbuf_len = 5120;
725 size_t	rndmag_size = 1280;
726 
727 
728 int
729 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
730 {
731 	rndmag_t *rmp;
732 	uint8_t *cptr, *eptr;
733 
734 	/*
735 	 * Anyone who asks for zero bytes of randomness should get slapped.
736 	 */
737 	ASSERT(len > 0);
738 
739 	/*
740 	 * Fast path.
741 	 */
742 	for (;;) {
743 		rmp = &rndmag[CPU->cpu_seqid];
744 		mutex_enter(&rmp->rm_lock);
745 
746 		/*
747 		 * Big requests bypass buffer and tail-call the
748 		 * generate routine directly.
749 		 */
750 		if (len > rndmag_threshold) {
751 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
752 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
753 		}
754 
755 		cptr = rmp->rm_rptr;
756 		eptr = cptr + len;
757 
758 		if (eptr <= rmp->rm_eptr) {
759 			rmp->rm_rptr = eptr;
760 			bcopy(cptr, ptr, len);
761 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
762 			mutex_exit(&rmp->rm_lock);
763 
764 			return (0);
765 		}
766 		/*
767 		 * End fast path.
768 		 */
769 		rmp->rm_rptr = rmp->rm_buffer;
770 		/*
771 		 * Note:  We assume the generate routine always succeeds
772 		 * in this case (because it does at present..)
773 		 * It also always releases rm_lock.
774 		 */
775 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_buffer,
776 		    rndbuf_len);
777 	}
778 }
779 
780 /*
781  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
782  * little memory on big systems that don't have the full set installed.
783  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
784  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
785  *
786  * TODO: make rndmag_size tunable at run time!
787  */
788 static void
789 rnd_alloc_magazines()
790 {
791 	rndmag_t *rmp;
792 	int i;
793 
794 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
795 	if (rndmag_size < rndbuf_len)
796 		rndmag_size = rndbuf_len;
797 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
798 
799 	random_max_ncpus = max_ncpus;
800 	rndmag_total = rndmag_size * random_max_ncpus;
801 
802 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
803 	rndmag = kmem_zalloc(sizeof (rndmag_t) * random_max_ncpus, KM_SLEEP);
804 
805 	for (i = 0; i < random_max_ncpus; i++) {
806 		uint8_t *buf;
807 
808 		rmp = &rndmag[i];
809 		mutex_init(&rmp->rm_lock, NULL, MUTEX_DRIVER, NULL);
810 
811 		buf = rndbuf + i * rndmag_size;
812 
813 		rmp->rm_buffer = buf;
814 		rmp->rm_eptr = buf + rndbuf_len;
815 		rmp->rm_rptr = buf + rndbuf_len;
816 		rmp->rm_oblocks = 1;
817 	}
818 }
819 
820 void
821 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
822 {
823 	clock_t ut;	/* time in microseconds */
824 
825 	if (do_mech2id)
826 		rngmech_type = crypto_mech2id(SUN_RANDOM);
827 
828 	/*
829 	 * The new timeout value is taken from the buffer of random bytes.
830 	 * We're merely reading the first 32 bits from the buffer here, not
831 	 * consuming any random bytes.
832 	 * The timeout multiplier value is a random value between 0.5 sec and
833 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
834 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
835 	 */
836 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
837 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
838 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
839 }
840 
841 /*
842  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
843  * will block. When enough random bytes are available, later, the timeout
844  * handler routine will issue the pollwakeup() calls.
845  */
846 void
847 kcf_rnd_chpoll(int anyyet, short *reventsp, struct pollhead **phpp)
848 {
849 	/*
850 	 * Sampling of rnbyte_cnt is an atomic
851 	 * operation. Hence we do not need any locking.
852 	 */
853 	if (rnbyte_cnt >= MINEXTRACTBYTES) {
854 		*reventsp |= (POLLIN | POLLRDNORM);
855 	} else {
856 		*reventsp = 0;
857 		if (!anyyet)
858 			*phpp = &rnd_pollhead;
859 	}
860 }
861 
862 /*ARGSUSED*/
863 static void
864 rnd_handler(void *arg)
865 {
866 	int len = 0;
867 
868 	if (!rng_prov_found && rng_ok_to_log) {
869 		cmn_err(CE_WARN, "No randomness provider enabled for "
870 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
871 		rng_ok_to_log = B_FALSE;
872 	}
873 
874 	if (num_waiters > 0)
875 		len = MAXEXTRACTBYTES;
876 	else if (rnbyte_cnt < RNDPOOLSIZE)
877 		len = MINEXTRACTBYTES;
878 
879 	if (len > 0) {
880 		(void) taskq_dispatch(system_taskq, rngprov_task,
881 		    (void *)(uintptr_t)len, TQ_NOSLEEP);
882 	}
883 
884 	mutex_enter(&rndpool_lock);
885 	/*
886 	 * Wake up threads waiting in poll() or for enough accumulated
887 	 * random bytes to read from /dev/random. In case a poll() is
888 	 * concurrent with a read(), the polling process may be woken up
889 	 * indicating that enough randomness is now available for reading,
890 	 * and another process *steals* the bits from the pool, causing the
891 	 * subsequent read() from the first process to block. It is acceptable
892 	 * since the blocking will eventually end, after the timeout
893 	 * has expired enough times to honor the read.
894 	 *
895 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
896 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
897 	 */
898 	if (rnbyte_cnt >= MINEXTRACTBYTES)
899 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
900 
901 	if (num_waiters > 0)
902 		cv_broadcast(&rndpool_read_cv);
903 	mutex_exit(&rndpool_lock);
904 
905 	kcf_rnd_schedule_timeout(B_FALSE);
906 }
907 
908 /* Hashing functions */
909 
910 static void
911 hmac_key(uint8_t *key, size_t keylen, void *buf)
912 {
913 	uint32_t *ip, *op;
914 	uint32_t ipad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
915 	uint32_t opad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
916 	HASH_CTX *icontext, *ocontext;
917 	int i;
918 	int nints;
919 
920 	icontext = buf;
921 	ocontext = (SHA1_CTX *)((uint8_t *)buf + sizeof (HASH_CTX));
922 
923 	bzero((uchar_t *)ipad, HMAC_BLOCK_SIZE);
924 	bzero((uchar_t *)opad, HMAC_BLOCK_SIZE);
925 	bcopy(key, (uchar_t *)ipad, keylen);
926 	bcopy(key, (uchar_t *)opad, keylen);
927 
928 	/*
929 	 * XOR key with ipad (0x36) and opad (0x5c) as defined
930 	 * in RFC 2104.
931 	 */
932 	ip = ipad;
933 	op = opad;
934 	nints = HMAC_BLOCK_SIZE/sizeof (uint32_t);
935 
936 	for (i = 0; i < nints; i++) {
937 		ip[i] ^= 0x36363636;
938 		op[i] ^= 0x5c5c5c5c;
939 	}
940 
941 	/* Perform hash with ipad */
942 	HashInit(icontext);
943 	HashUpdate(icontext, (uchar_t *)ipad, HMAC_BLOCK_SIZE);
944 
945 	/* Perform hash with opad */
946 	HashInit(ocontext);
947 	HashUpdate(ocontext, (uchar_t *)opad, HMAC_BLOCK_SIZE);
948 }
949 
950 static void
951 hmac_encr(void *ctx, uint8_t *ptr, size_t len, uint8_t *digest)
952 {
953 	HASH_CTX *saved_contexts;
954 	HASH_CTX icontext;
955 	HASH_CTX ocontext;
956 
957 	saved_contexts = (HASH_CTX *)ctx;
958 	icontext = saved_contexts[0];
959 	ocontext = saved_contexts[1];
960 
961 	HashUpdate(&icontext, ptr, len);
962 	HashFinal(digest, &icontext);
963 
964 	/*
965 	 * Perform Hash(K XOR OPAD, DIGEST), where DIGEST is the
966 	 * Hash(K XOR IPAD, DATA).
967 	 */
968 	HashUpdate(&ocontext, digest, HASHSIZE);
969 	HashFinal(digest, &ocontext);
970 }
971 
972 
973 static void
974 rndc_addbytes(uint8_t *ptr, size_t len)
975 {
976 	ASSERT(ptr != NULL && len > 0);
977 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
978 
979 	mutex_enter(&rndpool_lock);
980 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
981 		rndpool[rindex] ^= *ptr;
982 		ptr++; len--;
983 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
984 		rnbyte_cnt++;
985 	}
986 
987 	/* Handle buffer full case */
988 	while (len > 0) {
989 		rndpool[rindex] ^= *ptr;
990 		ptr++; len--;
991 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
992 	}
993 	mutex_exit(&rndpool_lock);
994 }
995 
996 /*
997  * Caller should check len <= rnbyte_cnt under the
998  * rndpool_lock before calling.
999  */
1000 static void
1001 rndc_getbytes(uint8_t *ptr, size_t len)
1002 {
1003 	ASSERT(MUTEX_HELD(&rndpool_lock));
1004 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
1005 
1006 	BUMP_RND_STATS(rs_rndcOut, len);
1007 
1008 	while (len > 0) {
1009 		*ptr = rndpool[findex];
1010 		ptr++; len--;
1011 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
1012 		rnbyte_cnt--;
1013 	}
1014 }
1015 
1016 /* Random number exported entry points */
1017 
1018 /*
1019  * Mix the supplied bytes into the entropy pool of a kCF
1020  * RNG provider.
1021  */
1022 int
1023 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1024 {
1025 	if (len < 1)
1026 		return (-1);
1027 
1028 	rngprov_seed(ptr, len, entropy_est, 0);
1029 
1030 	return (0);
1031 }
1032 
1033 /*
1034  * Mix the supplied bytes into the entropy pool of a kCF
1035  * RNG provider. Mix immediately.
1036  */
1037 int
1038 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1039 {
1040 	if (len < 1)
1041 		return (-1);
1042 
1043 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Get bytes from the /dev/urandom generator. This function
1050  * always succeeds. Returns 0.
1051  */
1052 int
1053 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1054 {
1055 	ASSERT(!mutex_owned(&rndpool_lock));
1056 
1057 	if (len < 1)
1058 		return (0);
1059 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1060 }
1061 
1062 /*
1063  * Get bytes from the /dev/random generator. Returns 0
1064  * on success. Returns EAGAIN if there is insufficient entropy.
1065  */
1066 int
1067 random_get_bytes(uint8_t *ptr, size_t len)
1068 {
1069 	ASSERT(!mutex_owned(&rndpool_lock));
1070 
1071 	if (len < 1)
1072 		return (0);
1073 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE, B_FALSE));
1074 }
1075