xref: /titanic_50/usr/src/uts/common/crypto/api/kcf_random.c (revision 49f9b365248ee858ee91baa36eab27c5200f6dca)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2010 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * This file implements the interfaces that the /dev/random
30  * driver uses for read(2), write(2) and poll(2) on /dev/random or
31  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
32  * random_add_pseudo_entropy(), random_get_pseudo_bytes()
33  * and random_get_bytes().
34  *
35  * We periodically collect random bits from providers which are registered
36  * with the Kernel Cryptographic Framework (kCF) as capable of random
37  * number generation. The random bits are maintained in a cache and
38  * it is used for high quality random numbers (/dev/random) requests.
39  * We pick a provider and call its SPI routine, if the cache does not have
40  * enough bytes to satisfy a request.
41  *
42  * /dev/urandom requests use a software-based generator algorithm that uses the
43  * random bits in the cache as a seed. We create one pseudo-random generator
44  * (for /dev/urandom) per possible CPU on the system, and use it,
45  * kmem-magazine-style, to avoid cache line contention.
46  *
47  * LOCKING HIERARCHY:
48  *	1) rmp->rm_mag.rm_lock protects the per-cpu pseudo-random generators.
49  * 	2) rndpool_lock protects the high-quality randomness pool.
50  *		It may be locked while a rmp->rm_mag.rm_lock is held.
51  *
52  * A history note: The kernel API and the software-based algorithms in this
53  * file used to be part of the /dev/random driver.
54  */
55 
56 #include <sys/types.h>
57 #include <sys/conf.h>
58 #include <sys/sunddi.h>
59 #include <sys/disp.h>
60 #include <sys/modctl.h>
61 #include <sys/ddi.h>
62 #include <sys/crypto/common.h>
63 #include <sys/crypto/api.h>
64 #include <sys/crypto/impl.h>
65 #include <sys/crypto/sched_impl.h>
66 #include <sys/crypto/ioctladmin.h>
67 #include <sys/random.h>
68 #include <sys/sha1.h>
69 #include <sys/time.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/taskq.h>
73 #include <rng/fips_random.h>
74 
75 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
76 #define	MINEXTRACTBYTES		20
77 #define	MAXEXTRACTBYTES		1024
78 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
79 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
80 
81 typedef enum    extract_type {
82 	NONBLOCK_EXTRACT,
83 	BLOCKING_EXTRACT,
84 	ALWAYS_EXTRACT
85 } extract_type_t;
86 
87 /*
88  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
89  * routines directly instead of using k-API because we can't return any
90  * error code in /dev/urandom case and we can get an error using k-API
91  * if a mechanism is disabled.
92  */
93 #define	HASHSIZE		20
94 #define	HASH_CTX		SHA1_CTX
95 #define	HashInit(ctx)		SHA1Init((ctx))
96 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
97 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
98 
99 /* HMAC-SHA1 */
100 #define	HMAC_KEYSIZE			20
101 
102 /*
103  * Cache of random bytes implemented as a circular buffer. findex and rindex
104  * track the front and back of the circular buffer.
105  */
106 uint8_t rndpool[RNDPOOLSIZE];
107 static int findex, rindex;
108 static int rnbyte_cnt;		/* Number of bytes in the cache */
109 
110 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
111 				/* and the global variables */
112 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
113 static int num_waiters;		/* #threads waiting to read from /dev/random */
114 
115 static struct pollhead rnd_pollhead;
116 /* LINTED E_STATIC_UNUSED */
117 static timeout_id_t kcf_rndtimeout_id;
118 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
119 rnd_stats_t rnd_stats;
120 static boolean_t rng_prov_found = B_TRUE;
121 static boolean_t rng_ok_to_log = B_TRUE;
122 static boolean_t rngprov_task_idle = B_TRUE;
123 
124 static void rndc_addbytes(uint8_t *, size_t);
125 static void rndc_getbytes(uint8_t *ptr, size_t len);
126 static void rnd_handler(void *);
127 static void rnd_alloc_magazines();
128 
129 void
130 kcf_rnd_init()
131 {
132 	hrtime_t ts;
133 	time_t now;
134 
135 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
136 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
137 
138 	/*
139 	 * Add bytes to the cache using
140 	 * . 2 unpredictable times: high resolution time since the boot-time,
141 	 *   and the current time-of-the day.
142 	 * This is used only to make the timeout value in the timer
143 	 * unpredictable.
144 	 */
145 	ts = gethrtime();
146 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
147 
148 	(void) drv_getparm(TIME, &now);
149 	rndc_addbytes((uint8_t *)&now, sizeof (now));
150 
151 	rnbyte_cnt = 0;
152 	findex = rindex = 0;
153 	num_waiters = 0;
154 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
155 
156 	rnd_alloc_magazines();
157 }
158 
159 /*
160  * Return TRUE if at least one provider exists that can
161  * supply random numbers.
162  */
163 boolean_t
164 kcf_rngprov_check(void)
165 {
166 	int rv;
167 	kcf_provider_desc_t *pd;
168 
169 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
170 	    NULL, CRYPTO_FG_RANDOM, 0)) != NULL) {
171 		KCF_PROV_REFRELE(pd);
172 		/*
173 		 * We logged a warning once about no provider being available
174 		 * and now a provider became available. So, set the flag so
175 		 * that we can log again if the problem recurs.
176 		 */
177 		rng_ok_to_log = B_TRUE;
178 		rng_prov_found = B_TRUE;
179 		return (B_TRUE);
180 	} else {
181 		rng_prov_found = B_FALSE;
182 		return (B_FALSE);
183 	}
184 }
185 
186 /*
187  * Pick a software-based provider and submit a request to seed
188  * its random number generator.
189  */
190 static void
191 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
192 {
193 	kcf_provider_desc_t *pd = NULL;
194 
195 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
196 	    CRYPTO_SUCCESS) {
197 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
198 		    entropy_est, flags, NULL);
199 		KCF_PROV_REFRELE(pd);
200 	}
201 }
202 
203 /*
204  * This routine is called for blocking reads.
205  *
206  * The argument is_taskq_thr indicates whether the caller is
207  * the taskq thread dispatched by the timeout handler routine.
208  * In this case, we cycle through all the providers
209  * submitting a request to each provider to generate random numbers.
210  *
211  * For other cases, we pick a provider and submit a request to generate
212  * random numbers. We retry using another provider if we get an error.
213  *
214  * Returns the number of bytes that are written to 'ptr'. Returns -1
215  * if no provider is found. ptr and need are unchanged.
216  */
217 static int
218 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t is_taskq_thr)
219 {
220 	int rv;
221 	int prov_cnt = 0;
222 	int total_bytes = 0;
223 	kcf_provider_desc_t *pd;
224 	kcf_req_params_t params;
225 	kcf_prov_tried_t *list = NULL;
226 
227 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
228 	    list, CRYPTO_FG_RANDOM, 0)) != NULL) {
229 
230 		prov_cnt++;
231 
232 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
233 		    pd->pd_sid, ptr, need, 0, 0);
234 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
235 		ASSERT(rv != CRYPTO_QUEUED);
236 
237 		if (rv == CRYPTO_SUCCESS) {
238 			total_bytes += need;
239 			if (is_taskq_thr)
240 				rndc_addbytes(ptr, need);
241 			else {
242 				KCF_PROV_REFRELE(pd);
243 				break;
244 			}
245 		}
246 
247 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
248 			/* Add pd to the linked list of providers tried. */
249 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
250 				KCF_PROV_REFRELE(pd);
251 				break;
252 			}
253 		}
254 
255 	}
256 
257 	if (list != NULL)
258 		kcf_free_triedlist(list);
259 
260 	if (prov_cnt == 0) { /* no provider could be found. */
261 		rng_prov_found = B_FALSE;
262 		return (-1);
263 	} else {
264 		rng_prov_found = B_TRUE;
265 		/* See comments in kcf_rngprov_check() */
266 		rng_ok_to_log = B_TRUE;
267 	}
268 
269 	return (total_bytes);
270 }
271 
272 static void
273 notify_done(void *arg, int rv)
274 {
275 	uchar_t *rndbuf = arg;
276 
277 	if (rv == CRYPTO_SUCCESS)
278 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
279 
280 	bzero(rndbuf, MINEXTRACTBYTES);
281 	kmem_free(rndbuf, MINEXTRACTBYTES);
282 }
283 
284 /*
285  * Cycle through all the providers submitting a request to each provider
286  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
287  * and ALWAYS_EXTRACT.
288  *
289  * Returns the number of bytes that are written to 'ptr'. Returns -1
290  * if no provider is found. ptr and len are unchanged.
291  */
292 static int
293 rngprov_getbytes_nblk(uint8_t *ptr, size_t len)
294 {
295 	int rv, total_bytes;
296 	size_t blen;
297 	uchar_t *rndbuf;
298 	kcf_provider_desc_t *pd;
299 	kcf_req_params_t params;
300 	crypto_call_req_t req;
301 	kcf_prov_tried_t *list = NULL;
302 	int prov_cnt = 0;
303 
304 	blen = 0;
305 	total_bytes = 0;
306 	req.cr_flag = CRYPTO_SKIP_REQID;
307 	req.cr_callback_func = notify_done;
308 
309 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
310 	    list, CRYPTO_FG_RANDOM, 0)) != NULL) {
311 
312 		prov_cnt ++;
313 		switch (pd->pd_prov_type) {
314 		case CRYPTO_HW_PROVIDER:
315 			/*
316 			 * We have to allocate a buffer here as we can not
317 			 * assume that the input buffer will remain valid
318 			 * when the callback comes. We use a fixed size buffer
319 			 * to simplify the book keeping.
320 			 */
321 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
322 			if (rndbuf == NULL) {
323 				KCF_PROV_REFRELE(pd);
324 				if (list != NULL)
325 					kcf_free_triedlist(list);
326 				return (total_bytes);
327 			}
328 			req.cr_callback_arg = rndbuf;
329 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
330 			    KCF_OP_RANDOM_GENERATE,
331 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
332 			break;
333 
334 		case CRYPTO_SW_PROVIDER:
335 			/*
336 			 * We do not need to allocate a buffer in the software
337 			 * provider case as there is no callback involved. We
338 			 * avoid any extra data copy by directly passing 'ptr'.
339 			 */
340 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
341 			    KCF_OP_RANDOM_GENERATE,
342 			    pd->pd_sid, ptr, len, 0, 0);
343 			break;
344 		}
345 
346 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
347 		if (rv == CRYPTO_SUCCESS) {
348 			switch (pd->pd_prov_type) {
349 			case CRYPTO_HW_PROVIDER:
350 				/*
351 				 * Since we have the input buffer handy,
352 				 * we directly copy to it rather than
353 				 * adding to the pool.
354 				 */
355 				blen = min(MINEXTRACTBYTES, len);
356 				bcopy(rndbuf, ptr, blen);
357 				if (len < MINEXTRACTBYTES)
358 					rndc_addbytes(rndbuf + len,
359 					    MINEXTRACTBYTES - len);
360 				ptr += blen;
361 				len -= blen;
362 				total_bytes += blen;
363 				break;
364 
365 			case CRYPTO_SW_PROVIDER:
366 				total_bytes += len;
367 				len = 0;
368 				break;
369 			}
370 		}
371 
372 		/*
373 		 * We free the buffer in the callback routine
374 		 * for the CRYPTO_QUEUED case.
375 		 */
376 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
377 		    rv != CRYPTO_QUEUED) {
378 			bzero(rndbuf, MINEXTRACTBYTES);
379 			kmem_free(rndbuf, MINEXTRACTBYTES);
380 		}
381 
382 		if (len == 0) {
383 			KCF_PROV_REFRELE(pd);
384 			break;
385 		}
386 
387 		if (rv != CRYPTO_SUCCESS) {
388 			/* Add pd to the linked list of providers tried. */
389 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
390 			    NULL) {
391 				KCF_PROV_REFRELE(pd);
392 				break;
393 			}
394 		}
395 	}
396 
397 	if (list != NULL) {
398 		kcf_free_triedlist(list);
399 	}
400 
401 	if (prov_cnt == 0) { /* no provider could be found. */
402 		rng_prov_found = B_FALSE;
403 		return (-1);
404 	} else {
405 		rng_prov_found = B_TRUE;
406 		/* See comments in kcf_rngprov_check() */
407 		rng_ok_to_log = B_TRUE;
408 	}
409 
410 	return (total_bytes);
411 }
412 
413 static void
414 rngprov_task(void *arg)
415 {
416 	int len = (int)(uintptr_t)arg;
417 	uchar_t tbuf[MAXEXTRACTBYTES];
418 
419 	ASSERT(len <= MAXEXTRACTBYTES);
420 	(void) rngprov_getbytes(tbuf, len, B_TRUE);
421 	rngprov_task_idle = B_TRUE;
422 }
423 
424 /*
425  * Returns "len" random or pseudo-random bytes in *ptr.
426  * Will block if not enough random bytes are available and the
427  * call is blocking.
428  *
429  * Called with rndpool_lock held (allowing caller to do optimistic locking;
430  * releases the lock before return).
431  */
432 static int
433 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how)
434 {
435 	size_t	bytes;
436 	int	got;
437 
438 	ASSERT(mutex_owned(&rndpool_lock));
439 	/*
440 	 * Check if the request can be satisfied from the cache
441 	 * of random bytes.
442 	 */
443 	if (len <= rnbyte_cnt) {
444 		rndc_getbytes(ptr, len);
445 		mutex_exit(&rndpool_lock);
446 		return (0);
447 	}
448 	mutex_exit(&rndpool_lock);
449 
450 	switch (how) {
451 	case BLOCKING_EXTRACT:
452 		if ((got = rngprov_getbytes(ptr, len, B_FALSE)) == -1)
453 			break;	/* No provider found */
454 
455 		if (got == len)
456 			return (0);
457 		len -= got;
458 		ptr += got;
459 		break;
460 
461 	case NONBLOCK_EXTRACT:
462 	case ALWAYS_EXTRACT:
463 		if ((got = rngprov_getbytes_nblk(ptr, len)) == -1) {
464 			/* No provider found */
465 			if (how == NONBLOCK_EXTRACT) {
466 				return (EAGAIN);
467 			}
468 		} else {
469 			if (got == len)
470 				return (0);
471 			len -= got;
472 			ptr += got;
473 		}
474 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
475 			return (EAGAIN);
476 		break;
477 	}
478 
479 	mutex_enter(&rndpool_lock);
480 	while (len > 0) {
481 		if (how == BLOCKING_EXTRACT) {
482 			/* Check if there is enough */
483 			while (rnbyte_cnt < MINEXTRACTBYTES) {
484 				num_waiters++;
485 				if (cv_wait_sig(&rndpool_read_cv,
486 				    &rndpool_lock) == 0) {
487 					num_waiters--;
488 					mutex_exit(&rndpool_lock);
489 					return (EINTR);
490 				}
491 				num_waiters--;
492 			}
493 		}
494 
495 		/* Figure out how many bytes to extract */
496 		bytes = min(len, rnbyte_cnt);
497 		rndc_getbytes(ptr, bytes);
498 
499 		len -= bytes;
500 		ptr += bytes;
501 
502 		if (len > 0 && how == ALWAYS_EXTRACT) {
503 			/*
504 			 * There are not enough bytes, but we can not block.
505 			 * This only happens in the case of /dev/urandom which
506 			 * runs an additional generation algorithm. So, there
507 			 * is no problem.
508 			 */
509 			while (len > 0) {
510 				*ptr = rndpool[findex];
511 				ptr++; len--;
512 				rindex = findex = (findex + 1) &
513 				    (RNDPOOLSIZE - 1);
514 			}
515 			break;
516 		}
517 	}
518 
519 	mutex_exit(&rndpool_lock);
520 	return (0);
521 }
522 
523 int
524 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock)
525 {
526 	extract_type_t how;
527 	int error;
528 
529 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
530 	mutex_enter(&rndpool_lock);
531 	if ((error = rnd_get_bytes(ptr, len, how)) != 0)
532 		return (error);
533 
534 	BUMP_RND_STATS(rs_rndOut, len);
535 	return (0);
536 }
537 
538 /*
539  * Revisit this if the structs grow or we come up with a better way
540  * of cache-line-padding structures.
541  */
542 #define	RND_CPU_CACHE_SIZE	64
543 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*6
544 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
545 	sizeof (rndmag_t))
546 /*
547  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
548  * a per-CPU instance of the pseudo-random generator.  We have it much easier
549  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
550  *
551  * Note that this usage is preemption-safe; a thread
552  * entering a critical section remembers which generator it locked
553  * and unlocks the same one; should it be preempted and wind up running on
554  * a different CPU, there will be a brief period of increased contention
555  * before it exits the critical section but nothing will melt.
556  */
557 typedef struct rndmag_s
558 {
559 	kmutex_t	rm_lock;
560 	uint8_t		*rm_buffer;	/* Start of buffer */
561 	uint8_t		*rm_eptr;	/* End of buffer */
562 	uint8_t		*rm_rptr;	/* Current read pointer */
563 	uint32_t	rm_oblocks;	/* time to rekey? */
564 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
565 	uint32_t	rm_olimit;	/* Hard rekey limit */
566 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
567 	uint32_t	rm_key[HASHSIZE/BYTES_IN_WORD];	/* FIPS XKEY */
568 	uint32_t	rm_seed[HASHSIZE/BYTES_IN_WORD]; /* seed for rekey */
569 	uint32_t	rm_previous[HASHSIZE/BYTES_IN_WORD]; /* prev random */
570 } rndmag_t;
571 
572 typedef struct rndmag_pad_s
573 {
574 	rndmag_t	rm_mag;
575 	uint8_t		rm_pad[RND_CPU_PAD];
576 } rndmag_pad_t;
577 
578 /*
579  * Generate random bytes for /dev/urandom by applying the
580  * FIPS 186-2 algorithm with a key created from bytes extracted
581  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
582  * is generated before a new key is obtained.
583  *
584  * Note that callers to this routine are likely to assume it can't fail.
585  *
586  * Called with rmp locked; releases lock.
587  */
588 static int
589 rnd_generate_pseudo_bytes(rndmag_pad_t *rmp, uint8_t *ptr, size_t len)
590 {
591 	size_t bytes = len, size;
592 	int nblock;
593 	uint32_t oblocks;
594 	uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
595 	uint32_t seed[HASHSIZE/BYTES_IN_WORD];
596 	int i;
597 	hrtime_t timestamp;
598 	uint8_t *src, *dst;
599 
600 	ASSERT(mutex_owned(&rmp->rm_mag.rm_lock));
601 
602 	/* Nothing is being asked */
603 	if (len == 0) {
604 		mutex_exit(&rmp->rm_mag.rm_lock);
605 		return (0);
606 	}
607 
608 	nblock = howmany(len, HASHSIZE);
609 
610 	rmp->rm_mag.rm_oblocks += nblock;
611 	oblocks = rmp->rm_mag.rm_oblocks;
612 
613 	do {
614 		if (oblocks >= rmp->rm_mag.rm_olimit) {
615 
616 			/*
617 			 * Contention-avoiding rekey: see if
618 			 * the pool is locked, and if so, wait a bit.
619 			 * Do an 'exponential back-in' to ensure we don't
620 			 * run too long without rekey.
621 			 */
622 			if (rmp->rm_mag.rm_ofuzz) {
623 				/*
624 				 * Decaying exponential back-in for rekey.
625 				 */
626 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
627 				    (!mutex_tryenter(&rndpool_lock))) {
628 					rmp->rm_mag.rm_olimit +=
629 					    rmp->rm_mag.rm_ofuzz;
630 					rmp->rm_mag.rm_ofuzz >>= 1;
631 					goto punt;
632 				}
633 			} else {
634 				mutex_enter(&rndpool_lock);
635 			}
636 
637 			/* Get a new chunk of entropy */
638 			(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
639 			    HMAC_KEYSIZE, ALWAYS_EXTRACT);
640 
641 			rmp->rm_mag.rm_olimit = PRNG_MAXOBLOCKS/2;
642 			rmp->rm_mag.rm_ofuzz = PRNG_MAXOBLOCKS/4;
643 			oblocks = 0;
644 			rmp->rm_mag.rm_oblocks = nblock;
645 		}
646 punt:
647 		timestamp = gethrtime();
648 
649 		src = (uint8_t *)&timestamp;
650 		dst = (uint8_t *)rmp->rm_mag.rm_seed;
651 
652 		for (i = 0; i < HASHSIZE; i++) {
653 			dst[i] ^= src[i % sizeof (timestamp)];
654 		}
655 
656 		bcopy(rmp->rm_mag.rm_seed, seed, HASHSIZE);
657 
658 		fips_random_inner(rmp->rm_mag.rm_key, tempout,
659 		    seed);
660 
661 		if (bytes >= HASHSIZE) {
662 			size = HASHSIZE;
663 		} else {
664 			size = min(bytes, HASHSIZE);
665 		}
666 
667 		/*
668 		 * FIPS 140-2: Continuous RNG test - each generation
669 		 * of an n-bit block shall be compared with the previously
670 		 * generated block. Test shall fail if any two compared
671 		 * n-bit blocks are equal.
672 		 */
673 		for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
674 			if (tempout[i] != rmp->rm_mag.rm_previous[i])
675 				break;
676 		}
677 		if (i == HASHSIZE/BYTES_IN_WORD) {
678 			cmn_err(CE_WARN, "kcf_random: The value of 160-bit "
679 			    "block random bytes are same as the previous "
680 			    "one.\n");
681 			/* discard random bytes and return error */
682 			mutex_exit(&rmp->rm_mag.rm_lock);
683 			return (EIO);
684 		}
685 
686 		bcopy(tempout, rmp->rm_mag.rm_previous,
687 		    HASHSIZE);
688 
689 		bcopy(tempout, ptr, size);
690 		ptr += size;
691 		bytes -= size;
692 		oblocks++;
693 		nblock--;
694 	} while (bytes > 0);
695 
696 	/* Zero out sensitive information */
697 	bzero(seed, HASHSIZE);
698 	bzero(tempout, HASHSIZE);
699 	mutex_exit(&rmp->rm_mag.rm_lock);
700 	return (0);
701 }
702 
703 /*
704  * Per-CPU Random magazines.
705  */
706 static rndmag_pad_t *rndmag;
707 static uint8_t	*rndbuf;
708 static size_t 	rndmag_total;
709 /*
710  * common/os/cpu.c says that platform support code can shrinkwrap
711  * max_ncpus.  On the off chance that we get loaded very early, we
712  * read it exactly once, to copy it here.
713  */
714 static uint32_t	random_max_ncpus = 0;
715 
716 /*
717  * Boot-time tunables, for experimentation.
718  */
719 size_t	rndmag_threshold = 2560;
720 size_t	rndbuf_len = 5120;
721 size_t	rndmag_size = 1280;
722 
723 
724 int
725 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
726 {
727 	rndmag_pad_t *rmp;
728 	uint8_t *cptr, *eptr;
729 
730 	/*
731 	 * Anyone who asks for zero bytes of randomness should get slapped.
732 	 */
733 	ASSERT(len > 0);
734 
735 	/*
736 	 * Fast path.
737 	 */
738 	for (;;) {
739 		rmp = &rndmag[CPU->cpu_seqid];
740 		mutex_enter(&rmp->rm_mag.rm_lock);
741 
742 		/*
743 		 * Big requests bypass buffer and tail-call the
744 		 * generate routine directly.
745 		 */
746 		if (len > rndmag_threshold) {
747 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
748 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
749 		}
750 
751 		cptr = rmp->rm_mag.rm_rptr;
752 		eptr = cptr + len;
753 
754 		if (eptr <= rmp->rm_mag.rm_eptr) {
755 			rmp->rm_mag.rm_rptr = eptr;
756 			bcopy(cptr, ptr, len);
757 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
758 			mutex_exit(&rmp->rm_mag.rm_lock);
759 
760 			return (0);
761 		}
762 		/*
763 		 * End fast path.
764 		 */
765 		rmp->rm_mag.rm_rptr = rmp->rm_mag.rm_buffer;
766 		/*
767 		 * Note:  We assume the generate routine always succeeds
768 		 * in this case (because it does at present..)
769 		 * It also always releases rm_lock.
770 		 */
771 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_mag.rm_buffer,
772 		    rndbuf_len);
773 	}
774 }
775 
776 /*
777  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
778  * little memory on big systems that don't have the full set installed.
779  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
780  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
781  *
782  * TODO: make rndmag_size tunable at run time!
783  */
784 static void
785 rnd_alloc_magazines()
786 {
787 	rndmag_pad_t *rmp;
788 	int i;
789 	uint8_t discard_buf[HASHSIZE];
790 
791 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
792 	if (rndmag_size < rndbuf_len)
793 		rndmag_size = rndbuf_len;
794 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
795 
796 	random_max_ncpus = max_ncpus;
797 	rndmag_total = rndmag_size * random_max_ncpus;
798 
799 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
800 	rndmag = kmem_zalloc(sizeof (rndmag_pad_t) * random_max_ncpus,
801 	    KM_SLEEP);
802 
803 	for (i = 0; i < random_max_ncpus; i++) {
804 		uint8_t *buf;
805 
806 		rmp = &rndmag[i];
807 		mutex_init(&rmp->rm_mag.rm_lock, NULL, MUTEX_DRIVER, NULL);
808 
809 		buf = rndbuf + i * rndmag_size;
810 
811 		rmp->rm_mag.rm_buffer = buf;
812 		rmp->rm_mag.rm_eptr = buf + rndbuf_len;
813 		rmp->rm_mag.rm_rptr = buf + rndbuf_len;
814 		rmp->rm_mag.rm_oblocks = 1;
815 
816 		mutex_enter(&rndpool_lock);
817 		/*
818 		 * FIPS 140-2: the first n-bit (n > 15) block generated
819 		 * after power-up, initialization, or reset shall not
820 		 * be used, but shall be saved for comparison.
821 		 */
822 		(void) rnd_get_bytes(discard_buf,
823 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
824 		bcopy(discard_buf, rmp->rm_mag.rm_previous,
825 		    HMAC_KEYSIZE);
826 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
827 		mutex_enter(&rndpool_lock);
828 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
829 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
830 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
831 		mutex_enter(&rndpool_lock);
832 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_seed,
833 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
834 	}
835 }
836 
837 static void
838 rnd_mechid(void *notused)
839 {
840 	_NOTE(ARGUNUSED(notused));
841 	rngmech_type = crypto_mech2id(SUN_RANDOM);
842 }
843 
844 void
845 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
846 {
847 	clock_t ut;	/* time in microseconds */
848 
849 	if (do_mech2id) {
850 		/* This should never fail due to TQ_SLEEP. */
851 		(void) taskq_dispatch(system_taskq, rnd_mechid, NULL, TQ_SLEEP);
852 	}
853 
854 	/*
855 	 * The new timeout value is taken from the buffer of random bytes.
856 	 * We're merely reading the first 32 bits from the buffer here, not
857 	 * consuming any random bytes.
858 	 * The timeout multiplier value is a random value between 0.5 sec and
859 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
860 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
861 	 */
862 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
863 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
864 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
865 }
866 
867 /*
868  * Called from the driver for a poll on /dev/random
869  * . POLLOUT always succeeds.
870  * . POLLIN and POLLRDNORM will block until a
871  *   minimum amount of entropy is available.
872  *
873  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
874  * will block. When enough random bytes are available, later, the timeout
875  * handler routine will issue the pollwakeup() calls.
876  */
877 void
878 kcf_rnd_chpoll(short events, int anyyet, short *reventsp,
879     struct pollhead **phpp)
880 {
881 	*reventsp = events & POLLOUT;
882 
883 	if (events & (POLLIN | POLLRDNORM)) {
884 		/*
885 		 * Sampling of rnbyte_cnt is an atomic
886 		 * operation. Hence we do not need any locking.
887 		 */
888 		if (rnbyte_cnt >= MINEXTRACTBYTES)
889 			*reventsp |= (events & (POLLIN | POLLRDNORM));
890 	}
891 
892 	if (*reventsp == 0 && !anyyet)
893 		*phpp = &rnd_pollhead;
894 }
895 
896 /*ARGSUSED*/
897 static void
898 rnd_handler(void *arg)
899 {
900 	int len = 0;
901 
902 	if (!rng_prov_found && rng_ok_to_log) {
903 		cmn_err(CE_WARN, "No randomness provider enabled for "
904 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
905 		rng_ok_to_log = B_FALSE;
906 	}
907 
908 	if (num_waiters > 0)
909 		/*
910 		 * Note: len has no relationship with how many bytes
911 		 * a poll thread needs.
912 		 */
913 		len = MAXEXTRACTBYTES;
914 	else if (rnbyte_cnt < RNDPOOLSIZE)
915 		len = MINEXTRACTBYTES;
916 
917 	/*
918 	 * Only one thread gets to set rngprov_task_idle at a given point
919 	 * of time and the order of the writes is defined. Also, it is OK
920 	 * if we read an older value of it and skip the dispatch once
921 	 * since we will get the correct value during the next time here.
922 	 * So, no locking is needed here.
923 	 */
924 	if (len > 0 && rngprov_task_idle) {
925 		rngprov_task_idle = B_FALSE;
926 
927 		/*
928 		 * It is OK if taskq_dispatch fails here. We will retry
929 		 * the next time around. Meanwhile, a thread doing a
930 		 * read() will go to the provider directly, if the
931 		 * cache becomes empty.
932 		 */
933 		if (taskq_dispatch(system_taskq, rngprov_task,
934 		    (void *)(uintptr_t)len, TQ_NOSLEEP | TQ_NOQUEUE) == 0) {
935 			rngprov_task_idle = B_TRUE;
936 		}
937 	}
938 
939 	mutex_enter(&rndpool_lock);
940 	/*
941 	 * Wake up threads waiting in poll() or for enough accumulated
942 	 * random bytes to read from /dev/random. In case a poll() is
943 	 * concurrent with a read(), the polling process may be woken up
944 	 * indicating that enough randomness is now available for reading,
945 	 * and another process *steals* the bits from the pool, causing the
946 	 * subsequent read() from the first process to block. It is acceptable
947 	 * since the blocking will eventually end, after the timeout
948 	 * has expired enough times to honor the read.
949 	 *
950 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
951 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
952 	 */
953 	if (rnbyte_cnt >= MINEXTRACTBYTES)
954 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
955 
956 	if (num_waiters > 0)
957 		cv_broadcast(&rndpool_read_cv);
958 	mutex_exit(&rndpool_lock);
959 
960 	kcf_rnd_schedule_timeout(B_FALSE);
961 }
962 
963 static void
964 rndc_addbytes(uint8_t *ptr, size_t len)
965 {
966 	ASSERT(ptr != NULL && len > 0);
967 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
968 
969 	mutex_enter(&rndpool_lock);
970 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
971 		rndpool[rindex] ^= *ptr;
972 		ptr++; len--;
973 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
974 		rnbyte_cnt++;
975 	}
976 
977 	/* Handle buffer full case */
978 	while (len > 0) {
979 		rndpool[rindex] ^= *ptr;
980 		ptr++; len--;
981 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
982 	}
983 	mutex_exit(&rndpool_lock);
984 }
985 
986 /*
987  * Caller should check len <= rnbyte_cnt under the
988  * rndpool_lock before calling.
989  */
990 static void
991 rndc_getbytes(uint8_t *ptr, size_t len)
992 {
993 	ASSERT(MUTEX_HELD(&rndpool_lock));
994 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
995 
996 	BUMP_RND_STATS(rs_rndcOut, len);
997 
998 	while (len > 0) {
999 		*ptr = rndpool[findex];
1000 		ptr++; len--;
1001 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
1002 		rnbyte_cnt--;
1003 	}
1004 }
1005 
1006 /* Random number exported entry points */
1007 
1008 /*
1009  * Mix the supplied bytes into the entropy pool of a kCF
1010  * RNG provider.
1011  */
1012 int
1013 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1014 {
1015 	if (len < 1)
1016 		return (-1);
1017 
1018 	rngprov_seed(ptr, len, entropy_est, 0);
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Mix the supplied bytes into the entropy pool of a kCF
1025  * RNG provider. Mix immediately.
1026  */
1027 int
1028 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1029 {
1030 	if (len < 1)
1031 		return (-1);
1032 
1033 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1034 
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Get bytes from the /dev/urandom generator. This function
1040  * always succeeds. Returns 0.
1041  */
1042 int
1043 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1044 {
1045 	ASSERT(!mutex_owned(&rndpool_lock));
1046 
1047 	if (len < 1)
1048 		return (0);
1049 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1050 }
1051 
1052 /*
1053  * Get bytes from the /dev/random generator. Returns 0
1054  * on success. Returns EAGAIN if there is insufficient entropy.
1055  */
1056 int
1057 random_get_bytes(uint8_t *ptr, size_t len)
1058 {
1059 	ASSERT(!mutex_owned(&rndpool_lock));
1060 
1061 	if (len < 1)
1062 		return (0);
1063 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE));
1064 }
1065