xref: /titanic_50/usr/src/uts/common/crypto/api/kcf_random.c (revision 0fc2d9264767f09b82ca39f5ca9eaa84137a5f27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file implements the interfaces that the /dev/random
30  * driver uses for read(2), write(2) and poll(2) on /dev/random or
31  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
32  * random_get_pseudo_bytes() and random_get_bytes().
33  *
34  * We periodically collect random bits from providers which are registered
35  * with the Kernel Cryptographic Framework (kCF) as capable of random
36  * number generation. The random bits are maintained in a cache and
37  * it is used for high quality random numbers (/dev/random) requests.
38  * We pick a provider and call its SPI routine, if the cache does not have
39  * enough bytes to satisfy a request.
40  *
41  * /dev/urandom requests use a software-based generator algorithm that uses the
42  * random bits in the cache as a seed. We create one pseudo-random generator
43  * (for /dev/urandom) per possible CPU on the system, and use it,
44  * kmem-magazine-style, to avoid cache line contention.
45  *
46  * LOCKING HIERARCHY:
47  *	1) rmp->rm_lock protects the per-cpu pseudo-random generators.
48  * 	2) rndpool_lock protects the high-quality randomness pool.
49  *		It may be locked while a rmp->rm_lock is held.
50  *
51  * A history note: The kernel API and the software-based algorithms in this
52  * file used to be part of the /dev/random driver.
53  */
54 
55 #include <sys/types.h>
56 #include <sys/conf.h>
57 #include <sys/sunddi.h>
58 #include <sys/disp.h>
59 #include <sys/modctl.h>
60 #include <sys/ddi.h>
61 #include <sys/crypto/common.h>
62 #include <sys/crypto/api.h>
63 #include <sys/crypto/impl.h>
64 #include <sys/crypto/sched_impl.h>
65 #include <sys/random.h>
66 #include <sys/sha1.h>
67 #include <sys/time.h>
68 #include <sys/sysmacros.h>
69 #include <sys/cpuvar.h>
70 #include <sys/taskq.h>
71 
72 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
73 #define	MINEXTRACTBYTES		20
74 #define	MAXEXTRACTBYTES		1024
75 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
76 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
77 
78 typedef enum    extract_type {
79 	NONBLOCK_EXTRACT,
80 	BLOCKING_EXTRACT,
81 	ALWAYS_EXTRACT
82 } extract_type_t;
83 
84 /*
85  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
86  * routines directly instead of using k-API because we can't return any
87  * error code in /dev/urandom case and we can get an error using k-API
88  * if a mechanism is disabled.
89  */
90 #define	HASHSIZE		20
91 #define	HASH_CTX		SHA1_CTX
92 #define	HashInit(ctx)		SHA1Init((ctx))
93 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
94 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
95 
96 /* HMAC-SHA1 */
97 #define	HMAC_KEYSIZE			20
98 #define	HMAC_BLOCK_SIZE			64
99 #define	HMAC_KEYSCHED			sha1keysched_t
100 #define	SET_ENCRYPT_KEY(k, s, ks)	hmac_key((k), (s), (ks))
101 #define	HMAC_ENCRYPT(ks, p, s, d)	hmac_encr((ks), (uint8_t *)(p), s, d)
102 
103 /* HMAC-SHA1 "keyschedule" */
104 typedef struct sha1keysched_s {
105 	SHA1_CTX ictx;
106 	SHA1_CTX octx;
107 } sha1keysched_t;
108 
109 /*
110  * Cache of random bytes implemented as a circular buffer. findex and rindex
111  * track the front and back of the circular buffer.
112  */
113 uint8_t rndpool[RNDPOOLSIZE];
114 static int findex, rindex;
115 static int rnbyte_cnt;		/* Number of bytes in the cache */
116 
117 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
118 				/* and the global variables */
119 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
120 static int num_waiters;		/* #threads waiting to read from /dev/random */
121 
122 static struct pollhead rnd_pollhead;
123 static timeout_id_t kcf_rndtimeout_id;
124 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
125 rnd_stats_t rnd_stats;
126 
127 static void rndc_addbytes(uint8_t *, size_t);
128 static void rndc_getbytes(uint8_t *ptr, size_t len);
129 static void rnd_handler(void *);
130 static void rnd_alloc_magazines();
131 static void hmac_key(uint8_t *, size_t, void *);
132 static void hmac_encr(void *, uint8_t *, size_t, uint8_t *);
133 
134 
135 void
136 kcf_rnd_init()
137 {
138 	hrtime_t ts;
139 	time_t now;
140 
141 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
142 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
143 
144 	/*
145 	 * Add bytes to the cache using
146 	 * . 2 unpredictable times: high resolution time since the boot-time,
147 	 *   and the current time-of-the day.
148 	 * This is used only to make the timeout value in the timer
149 	 * unpredictable.
150 	 */
151 	ts = gethrtime();
152 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
153 
154 	(void) drv_getparm(TIME, &now);
155 	rndc_addbytes((uint8_t *)&now, sizeof (now));
156 
157 	rnbyte_cnt = 0;
158 	findex = rindex = 0;
159 	num_waiters = 0;
160 	rngmech_type = KCF_MECHID(KCF_MISC_CLASS, 0);
161 
162 	rnd_alloc_magazines();
163 }
164 
165 /*
166  * Return TRUE if at least one provider exists that can
167  * supply random numbers.
168  */
169 boolean_t
170 kcf_rngprov_check(void)
171 {
172 	int rv;
173 	kcf_provider_desc_t *pd;
174 
175 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
176 	    NULL, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
177 		KCF_PROV_REFRELE(pd);
178 		return (B_TRUE);
179 	} else
180 		return (B_FALSE);
181 }
182 
183 /*
184  * Pick a software-based provider and submit a request to seed
185  * its random number generator.
186  */
187 static void
188 rngprov_seed(uint8_t *buf, int len)
189 {
190 	kcf_provider_desc_t *pd = NULL;
191 	kcf_req_params_t params;
192 
193 	if (kcf_get_sw_prov(rngmech_type, &pd, B_FALSE) == CRYPTO_SUCCESS) {
194 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_SEED,
195 		    pd->pd_sid, buf, len);
196 		(void) kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
197 		KCF_PROV_REFRELE(pd);
198 	}
199 }
200 
201 /* Boot-time tunable for experimentation. */
202 int kcf_limit_hwrng = 1;
203 
204 
205 /*
206  * This routine is called for blocking reads.
207  *
208  * The argument from_user_api indicates whether the caller is
209  * from userland coming via the /dev/random driver.
210  *
211  * The argument is_taskq_thr indicates whether the caller is
212  * the taskq thread dispatched by the timeout handler routine.
213  * In this case, we cycle through all the providers
214  * submitting a request to each provider to generate random numbers.
215  *
216  * For other cases, we pick a provider and submit a request to generate
217  * random numbers. We retry using another provider if we get an error.
218  *
219  * Returns the number of bytes that are written to 'ptr'. Returns -1
220  * if no provider is found. ptr and need are unchanged.
221  */
222 static int
223 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t from_user_api,
224     boolean_t is_taskq_thr)
225 {
226 	int rv;
227 	int prov_cnt = 0;
228 	int total_bytes = 0;
229 	kcf_provider_desc_t *pd;
230 	kcf_req_params_t params;
231 	kcf_prov_tried_t *list = NULL;
232 
233 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
234 	    list, CRYPTO_FG_RANDOM, B_FALSE, 0)) != NULL) {
235 
236 		prov_cnt++;
237 		/*
238 		 * Typically a hardware RNG is a multi-purpose
239 		 * crypto card and hence we do not want to overload the card
240 		 * just for random numbers. The following check is to prevent
241 		 * a user process from hogging the hardware RNG. Note that we
242 		 * still use the hardware RNG from the periodically run
243 		 * taskq thread.
244 		 */
245 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER && from_user_api &&
246 		    kcf_limit_hwrng == 1) {
247 			ASSERT(is_taskq_thr == B_FALSE);
248 			goto try_next;
249 		}
250 
251 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
252 		    pd->pd_sid, ptr, need);
253 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
254 		ASSERT(rv != CRYPTO_QUEUED);
255 
256 		if (rv == CRYPTO_SUCCESS) {
257 			total_bytes += need;
258 			if (is_taskq_thr)
259 				rndc_addbytes(ptr, need);
260 			else {
261 				KCF_PROV_REFRELE(pd);
262 				break;
263 			}
264 		}
265 
266 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
267 try_next:
268 			/* Add pd to the linked list of providers tried. */
269 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
270 				KCF_PROV_REFRELE(pd);
271 				break;
272 			}
273 		}
274 
275 	}
276 
277 	if (list != NULL)
278 		kcf_free_triedlist(list);
279 
280 	if (prov_cnt == 0) { /* no provider could be found. */
281 		return (-1);
282 	}
283 
284 	return (total_bytes);
285 }
286 
287 static void
288 notify_done(void *arg, int rv)
289 {
290 	uchar_t *rndbuf = arg;
291 
292 	if (rv == CRYPTO_SUCCESS)
293 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
294 
295 	bzero(rndbuf, MINEXTRACTBYTES);
296 	kmem_free(rndbuf, MINEXTRACTBYTES);
297 }
298 
299 /*
300  * Cycle through all the providers submitting a request to each provider
301  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
302  * and ALWAYS_EXTRACT.
303  *
304  * Returns the number of bytes that are written to 'ptr'. Returns -1
305  * if no provider is found. ptr and len are unchanged.
306  */
307 static int
308 rngprov_getbytes_nblk(uint8_t *ptr, size_t len, boolean_t from_user_api)
309 {
310 	int rv, blen, total_bytes;
311 	uchar_t *rndbuf;
312 	kcf_provider_desc_t *pd;
313 	kcf_req_params_t params;
314 	crypto_call_req_t req;
315 	kcf_prov_tried_t *list = NULL;
316 	int prov_cnt = 0;
317 
318 	blen = 0;
319 	total_bytes = 0;
320 	req.cr_flag = CRYPTO_SKIP_REQID;
321 	req.cr_callback_func = notify_done;
322 
323 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, &rv,
324 	    list, CRYPTO_FG_RANDOM, CHECK_RESTRICT(&req), 0)) != NULL) {
325 
326 		prov_cnt ++;
327 		switch (pd->pd_prov_type) {
328 		case CRYPTO_HW_PROVIDER:
329 			/* See comments in rngprov_getbytes() */
330 			if (from_user_api && kcf_limit_hwrng == 1)
331 				goto try_next;
332 
333 			/*
334 			 * We have to allocate a buffer here as we can not
335 			 * assume that the input buffer will remain valid
336 			 * when the callback comes. We use a fixed size buffer
337 			 * to simplify the book keeping.
338 			 */
339 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
340 			if (rndbuf == NULL) {
341 				KCF_PROV_REFRELE(pd);
342 				if (list != NULL)
343 					kcf_free_triedlist(list);
344 				return (total_bytes);
345 			}
346 			req.cr_callback_arg = rndbuf;
347 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
348 			    KCF_OP_RANDOM_GENERATE,
349 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES);
350 			break;
351 
352 		case CRYPTO_SW_PROVIDER:
353 			/*
354 			 * We do not need to allocate a buffer in the software
355 			 * provider case as there is no callback involved. We
356 			 * avoid any extra data copy by directly passing 'ptr'.
357 			 */
358 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
359 			    KCF_OP_RANDOM_GENERATE,
360 			    pd->pd_sid, ptr, len);
361 			break;
362 		}
363 
364 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
365 		if (rv == CRYPTO_SUCCESS) {
366 			switch (pd->pd_prov_type) {
367 			case CRYPTO_HW_PROVIDER:
368 				/*
369 				 * Since we have the input buffer handy,
370 				 * we directly copy to it rather than
371 				 * adding to the pool.
372 				 */
373 				blen = min(MINEXTRACTBYTES, len);
374 				bcopy(rndbuf, ptr, blen);
375 				if (len < MINEXTRACTBYTES)
376 					rndc_addbytes(rndbuf + len,
377 					    MINEXTRACTBYTES - len);
378 				ptr += blen;
379 				len -= blen;
380 				total_bytes += blen;
381 				break;
382 
383 			case CRYPTO_SW_PROVIDER:
384 				total_bytes += len;
385 				len = 0;
386 				break;
387 			}
388 		}
389 
390 		/*
391 		 * We free the buffer in the callback routine
392 		 * for the CRYPTO_QUEUED case.
393 		 */
394 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
395 		    rv != CRYPTO_QUEUED) {
396 			bzero(rndbuf, MINEXTRACTBYTES);
397 			kmem_free(rndbuf, MINEXTRACTBYTES);
398 		}
399 
400 		if (len == 0) {
401 			KCF_PROV_REFRELE(pd);
402 			break;
403 		}
404 
405 		if (rv != CRYPTO_SUCCESS) {
406 try_next:
407 			/* Add pd to the linked list of providers tried. */
408 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
409 			    NULL) {
410 				KCF_PROV_REFRELE(pd);
411 				break;
412 			}
413 		}
414 	}
415 
416 	if (list != NULL) {
417 		kcf_free_triedlist(list);
418 	}
419 
420 	if (prov_cnt == 0) { /* no provider could be found. */
421 		return (-1);
422 	}
423 
424 	return (total_bytes);
425 }
426 
427 static void
428 rngprov_task(void *arg)
429 {
430 	int len = (int)(uintptr_t)arg;
431 	uchar_t tbuf[MAXEXTRACTBYTES];
432 
433 	ASSERT(len <= MAXEXTRACTBYTES);
434 	if (rngprov_getbytes(tbuf, len, B_FALSE, B_TRUE) == -1) {
435 		cmn_err(CE_WARN, "No randomness provider enabled for "
436 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
437 	}
438 }
439 
440 /*
441  * Returns "len" random or pseudo-random bytes in *ptr.
442  * Will block if not enough random bytes are available and the
443  * call is blocking.
444  *
445  * Called with rndpool_lock held (allowing caller to do optimistic locking;
446  * releases the lock before return).
447  */
448 static int
449 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how,
450     boolean_t from_user_api)
451 {
452 	int bytes;
453 	size_t got;
454 
455 	ASSERT(mutex_owned(&rndpool_lock));
456 	/*
457 	 * Check if the request can be satisfied from the cache
458 	 * of random bytes.
459 	 */
460 	if (len <= rnbyte_cnt) {
461 		rndc_getbytes(ptr, len);
462 		mutex_exit(&rndpool_lock);
463 		return (0);
464 	}
465 	mutex_exit(&rndpool_lock);
466 
467 	switch (how) {
468 	case BLOCKING_EXTRACT:
469 		if ((got = rngprov_getbytes(ptr, len, from_user_api,
470 		    B_FALSE)) == -1)
471 			break;	/* No provider found */
472 
473 		if (got == len)
474 			return (0);
475 		len -= got;
476 		ptr += got;
477 		break;
478 
479 	case NONBLOCK_EXTRACT:
480 	case ALWAYS_EXTRACT:
481 		if ((got = rngprov_getbytes_nblk(ptr, len,
482 		    from_user_api)) == -1) {
483 			/* No provider found */
484 			if (how == NONBLOCK_EXTRACT) {
485 				return (EAGAIN);
486 			}
487 		} else {
488 			if (got == len)
489 				return (0);
490 			len -= got;
491 			ptr += got;
492 		}
493 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
494 			return (EAGAIN);
495 		break;
496 	}
497 
498 	mutex_enter(&rndpool_lock);
499 	while (len > 0) {
500 		if (how == BLOCKING_EXTRACT) {
501 			/* Check if there is enough */
502 			while (rnbyte_cnt < MINEXTRACTBYTES) {
503 				num_waiters++;
504 				if (cv_wait_sig(&rndpool_read_cv,
505 				    &rndpool_lock) == 0) {
506 					num_waiters--;
507 					mutex_exit(&rndpool_lock);
508 					return (EINTR);
509 				}
510 				num_waiters--;
511 			}
512 		}
513 
514 		/* Figure out how many bytes to extract */
515 		bytes = min(len, rnbyte_cnt);
516 		rndc_getbytes(ptr, bytes);
517 
518 		len -= bytes;
519 		ptr += bytes;
520 
521 		if (len > 0 && how == ALWAYS_EXTRACT) {
522 			/*
523 			 * There are not enough bytes, but we can not block.
524 			 * This only happens in the case of /dev/urandom which
525 			 * runs an additional generation algorithm. So, there
526 			 * is no problem.
527 			 */
528 			while (len > 0) {
529 				*ptr = rndpool[findex];
530 				ptr++; len--;
531 				rindex = findex = (findex + 1) &
532 				    (RNDPOOLSIZE - 1);
533 			}
534 			break;
535 		}
536 	}
537 
538 	mutex_exit(&rndpool_lock);
539 	return (0);
540 }
541 
542 int
543 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock,
544     boolean_t from_user_api)
545 {
546 	extract_type_t how;
547 	int error;
548 
549 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
550 	mutex_enter(&rndpool_lock);
551 	if ((error = rnd_get_bytes(ptr, len, how, from_user_api)) != 0)
552 		return (error);
553 
554 	BUMP_RND_STATS(rs_rndOut, len);
555 	return (0);
556 }
557 
558 /*
559  * Revisit this if the structs grow or we come up with a better way
560  * of cache-line-padding structures.
561  */
562 #define	RND_CPU_CACHE_SIZE	64
563 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*5
564 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
565 	(sizeof (kmutex_t) + 3*sizeof (uint8_t *) + sizeof (HMAC_KEYSCHED) + \
566 	sizeof (uint64_t) + 3*sizeof (uint32_t) + sizeof (rnd_stats_t)))
567 
568 /*
569  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
570  * a per-CPU instance of the pseudo-random generator.  We have it much easier
571  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
572  *
573  * Note that this usage is preemption-safe; a thread
574  * entering a critical section remembers which generator it locked
575  * and unlocks the same one; should it be preempted and wind up running on
576  * a different CPU, there will be a brief period of increased contention
577  * before it exits the critical section but nothing will melt.
578  */
579 typedef struct rndmag_s
580 {
581 	kmutex_t	rm_lock;
582 	uint8_t 	*rm_buffer;	/* Start of buffer */
583 	uint8_t		*rm_eptr;	/* End of buffer */
584 	uint8_t		*rm_rptr;	/* Current read pointer */
585 	HMAC_KEYSCHED 	rm_ks;		/* seed */
586 	uint64_t 	rm_counter;	/* rotating counter for extracting */
587 	uint32_t	rm_oblocks;	/* time to rekey? */
588 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
589 	uint32_t	rm_olimit;	/* Hard rekey limit */
590 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
591 	uint8_t		rm_pad[RND_CPU_PAD];
592 } rndmag_t;
593 
594 /*
595  * Generate random bytes for /dev/urandom by encrypting a
596  * rotating counter with a key created from bytes extracted
597  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
598  * is generated before a new key is obtained.
599  *
600  * Note that callers to this routine are likely to assume it can't fail.
601  *
602  * Called with rmp locked; releases lock.
603  */
604 static int
605 rnd_generate_pseudo_bytes(rndmag_t *rmp, uint8_t *ptr, size_t len)
606 {
607 	size_t bytes = len;
608 	int nblock, size;
609 	uint32_t oblocks;
610 	uint8_t digest[HASHSIZE];
611 
612 	ASSERT(mutex_owned(&rmp->rm_lock));
613 
614 	/* Nothing is being asked */
615 	if (len == 0) {
616 		mutex_exit(&rmp->rm_lock);
617 		return (0);
618 	}
619 
620 	nblock = howmany(len, HASHSIZE);
621 
622 	rmp->rm_oblocks += nblock;
623 	oblocks = rmp->rm_oblocks;
624 
625 	do {
626 		if (oblocks >= rmp->rm_olimit) {
627 			hrtime_t timestamp;
628 			uint8_t key[HMAC_KEYSIZE];
629 
630 			/*
631 			 * Contention-avoiding rekey: see if
632 			 * the pool is locked, and if so, wait a bit.
633 			 * Do an 'exponential back-in' to ensure we don't
634 			 * run too long without rekey.
635 			 */
636 			if (rmp->rm_ofuzz) {
637 				/*
638 				 * Decaying exponential back-in for rekey.
639 				 */
640 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
641 				    (!mutex_tryenter(&rndpool_lock))) {
642 					rmp->rm_olimit += rmp->rm_ofuzz;
643 					rmp->rm_ofuzz >>= 1;
644 					goto punt;
645 				}
646 			} else {
647 				mutex_enter(&rndpool_lock);
648 			}
649 
650 			/* Get a new chunk of entropy */
651 			(void) rnd_get_bytes(key, HMAC_KEYSIZE,
652 			    ALWAYS_EXTRACT, B_FALSE);
653 
654 			/* Set up key */
655 			SET_ENCRYPT_KEY(key, HMAC_KEYSIZE, &rmp->rm_ks);
656 
657 			/* Get new counter value by encrypting timestamp */
658 			timestamp = gethrtime();
659 			HMAC_ENCRYPT(&rmp->rm_ks, &timestamp,
660 			    sizeof (timestamp), digest);
661 			rmp->rm_olimit = PRNG_MAXOBLOCKS/2;
662 			rmp->rm_ofuzz = PRNG_MAXOBLOCKS/4;
663 			bcopy(digest, &rmp->rm_counter, sizeof (uint64_t));
664 			oblocks = 0;
665 			rmp->rm_oblocks = nblock;
666 		}
667 punt:
668 		/* Hash counter to produce prn stream */
669 		if (bytes >= HASHSIZE) {
670 			size = HASHSIZE;
671 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
672 			    sizeof (rmp->rm_counter), ptr);
673 		} else {
674 			size = min(bytes, HASHSIZE);
675 			HMAC_ENCRYPT(&rmp->rm_ks, &rmp->rm_counter,
676 			    sizeof (rmp->rm_counter), digest);
677 			bcopy(digest, ptr, size);
678 		}
679 		ptr += size;
680 		bytes -= size;
681 		rmp->rm_counter++;
682 		oblocks++;
683 		nblock--;
684 	} while (bytes > 0);
685 
686 	mutex_exit(&rmp->rm_lock);
687 	return (0);
688 }
689 
690 /*
691  * Per-CPU Random magazines.
692  */
693 static rndmag_t *rndmag;
694 static uint8_t	*rndbuf;
695 static size_t 	rndmag_total;
696 /*
697  * common/os/cpu.c says that platform support code can shrinkwrap
698  * max_ncpus.  On the off chance that we get loaded very early, we
699  * read it exactly once, to copy it here.
700  */
701 static uint32_t	random_max_ncpus = 0;
702 
703 /*
704  * Boot-time tunables, for experimentation.
705  */
706 size_t	rndmag_threshold = 2560;
707 size_t	rndbuf_len = 5120;
708 size_t	rndmag_size = 1280;
709 
710 
711 int
712 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
713 {
714 	rndmag_t *rmp;
715 	uint8_t *cptr, *eptr;
716 
717 	/*
718 	 * Anyone who asks for zero bytes of randomness should get slapped.
719 	 */
720 	ASSERT(len > 0);
721 
722 	/*
723 	 * Fast path.
724 	 */
725 	for (;;) {
726 		rmp = &rndmag[CPU->cpu_seqid];
727 		mutex_enter(&rmp->rm_lock);
728 
729 		/*
730 		 * Big requests bypass buffer and tail-call the
731 		 * generate routine directly.
732 		 */
733 		if (len > rndmag_threshold) {
734 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
735 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
736 		}
737 
738 		cptr = rmp->rm_rptr;
739 		eptr = cptr + len;
740 
741 		if (eptr <= rmp->rm_eptr) {
742 			rmp->rm_rptr = eptr;
743 			bcopy(cptr, ptr, len);
744 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
745 			mutex_exit(&rmp->rm_lock);
746 
747 			return (0);
748 		}
749 		/*
750 		 * End fast path.
751 		 */
752 		rmp->rm_rptr = rmp->rm_buffer;
753 		/*
754 		 * Note:  We assume the generate routine always succeeds
755 		 * in this case (because it does at present..)
756 		 * It also always releases rm_lock.
757 		 */
758 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_buffer,
759 		    rndbuf_len);
760 	}
761 }
762 
763 /*
764  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
765  * little memory on big systems that don't have the full set installed.
766  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
767  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
768  *
769  * TODO: make rndmag_size tunable at run time!
770  */
771 static void
772 rnd_alloc_magazines()
773 {
774 	rndmag_t *rmp;
775 	int i;
776 
777 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
778 	if (rndmag_size < rndbuf_len)
779 		rndmag_size = rndbuf_len;
780 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
781 
782 	random_max_ncpus = max_ncpus;
783 	rndmag_total = rndmag_size * random_max_ncpus;
784 
785 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
786 	rndmag = kmem_zalloc(sizeof (rndmag_t) * random_max_ncpus, KM_SLEEP);
787 
788 	for (i = 0; i < random_max_ncpus; i++) {
789 		uint8_t *buf;
790 
791 		rmp = &rndmag[i];
792 		mutex_init(&rmp->rm_lock, NULL, MUTEX_DRIVER, NULL);
793 
794 		buf = rndbuf + i * rndmag_size;
795 
796 		rmp->rm_buffer = buf;
797 		rmp->rm_eptr = buf + rndbuf_len;
798 		rmp->rm_rptr = buf + rndbuf_len;
799 		rmp->rm_oblocks = 1;
800 	}
801 }
802 
803 void
804 kcf_rnd_schedule_timeout(boolean_t do_mech2id)
805 {
806 	clock_t ut;	/* time in microseconds */
807 
808 	if (do_mech2id)
809 		rngmech_type = crypto_mech2id(SUN_RANDOM);
810 
811 	/*
812 	 * The new timeout value is taken from the buffer of random bytes.
813 	 * We're merely reading the first 32 bits from the buffer here, not
814 	 * consuming any random bytes.
815 	 * The timeout multiplier value is a random value between 0.5 sec and
816 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
817 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
818 	 */
819 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
820 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
821 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
822 }
823 
824 /*
825  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
826  * will block. When enough random bytes are available, later, the timeout
827  * handler routine will issue the pollwakeup() calls.
828  */
829 void
830 kcf_rnd_chpoll(int anyyet, short *reventsp, struct pollhead **phpp)
831 {
832 	/*
833 	 * Sampling of rnbyte_cnt is an atomic
834 	 * operation. Hence we do not need any locking.
835 	 */
836 	if (rnbyte_cnt >= MINEXTRACTBYTES) {
837 		*reventsp |= (POLLIN | POLLRDNORM);
838 	} else {
839 		*reventsp = 0;
840 		if (!anyyet)
841 			*phpp = &rnd_pollhead;
842 	}
843 }
844 
845 /*ARGSUSED*/
846 static void
847 rnd_handler(void *arg)
848 {
849 	int len = 0;
850 
851 	if (num_waiters > 0)
852 		len = MAXEXTRACTBYTES;
853 	else if (rnbyte_cnt < RNDPOOLSIZE)
854 		len = MINEXTRACTBYTES;
855 
856 	if (len > 0) {
857 		(void) taskq_dispatch(system_taskq, rngprov_task,
858 		    (void *)(uintptr_t)len, TQ_NOSLEEP);
859 	} else if (!kcf_rngprov_check()) {
860 		cmn_err(CE_WARN, "No randomness provider enabled for "
861 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
862 	}
863 
864 	mutex_enter(&rndpool_lock);
865 	/*
866 	 * Wake up threads waiting in poll() or for enough accumulated
867 	 * random bytes to read from /dev/random. In case a poll() is
868 	 * concurrent with a read(), the polling process may be woken up
869 	 * indicating that enough randomness is now available for reading,
870 	 * and another process *steals* the bits from the pool, causing the
871 	 * subsequent read() from the first process to block. It is acceptable
872 	 * since the blocking will eventually end, after the timeout
873 	 * has expired enough times to honor the read.
874 	 *
875 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
876 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
877 	 */
878 	if (rnbyte_cnt >= MINEXTRACTBYTES)
879 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
880 
881 	if (num_waiters > 0)
882 		cv_broadcast(&rndpool_read_cv);
883 	mutex_exit(&rndpool_lock);
884 
885 	kcf_rnd_schedule_timeout(B_FALSE);
886 }
887 
888 /* Hashing functions */
889 
890 static void
891 hmac_key(uint8_t *key, size_t keylen, void *buf)
892 {
893 	uint32_t *ip, *op;
894 	uint32_t ipad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
895 	uint32_t opad[HMAC_BLOCK_SIZE/sizeof (uint32_t)];
896 	HASH_CTX *icontext, *ocontext;
897 	int i;
898 	int nints;
899 
900 	icontext = buf;
901 	ocontext = (SHA1_CTX *)((uint8_t *)buf + sizeof (HASH_CTX));
902 
903 	bzero((uchar_t *)ipad, HMAC_BLOCK_SIZE);
904 	bzero((uchar_t *)opad, HMAC_BLOCK_SIZE);
905 	bcopy(key, (uchar_t *)ipad, keylen);
906 	bcopy(key, (uchar_t *)opad, keylen);
907 
908 	/*
909 	 * XOR key with ipad (0x36) and opad (0x5c) as defined
910 	 * in RFC 2104.
911 	 */
912 	ip = ipad;
913 	op = opad;
914 	nints = HMAC_BLOCK_SIZE/sizeof (uint32_t);
915 
916 	for (i = 0; i < nints; i++) {
917 		ip[i] ^= 0x36363636;
918 		op[i] ^= 0x5c5c5c5c;
919 	}
920 
921 	/* Perform hash with ipad */
922 	HashInit(icontext);
923 	HashUpdate(icontext, (uchar_t *)ipad, HMAC_BLOCK_SIZE);
924 
925 	/* Perform hash with opad */
926 	HashInit(ocontext);
927 	HashUpdate(ocontext, (uchar_t *)opad, HMAC_BLOCK_SIZE);
928 }
929 
930 static void
931 hmac_encr(void *ctx, uint8_t *ptr, size_t len, uint8_t *digest)
932 {
933 	HASH_CTX *saved_contexts;
934 	HASH_CTX icontext;
935 	HASH_CTX ocontext;
936 
937 	saved_contexts = (HASH_CTX *)ctx;
938 	icontext = saved_contexts[0];
939 	ocontext = saved_contexts[1];
940 
941 	HashUpdate(&icontext, ptr, len);
942 	HashFinal(digest, &icontext);
943 
944 	/*
945 	 * Perform Hash(K XOR OPAD, DIGEST), where DIGEST is the
946 	 * Hash(K XOR IPAD, DATA).
947 	 */
948 	HashUpdate(&ocontext, digest, HASHSIZE);
949 	HashFinal(digest, &ocontext);
950 }
951 
952 
953 static void
954 rndc_addbytes(uint8_t *ptr, size_t len)
955 {
956 	ASSERT(ptr != NULL && len > 0);
957 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
958 
959 	mutex_enter(&rndpool_lock);
960 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
961 		rndpool[rindex] ^= *ptr;
962 		ptr++; len--;
963 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
964 		rnbyte_cnt++;
965 	}
966 
967 	/* Handle buffer full case */
968 	while (len > 0) {
969 		rndpool[rindex] ^= *ptr;
970 		ptr++; len--;
971 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
972 	}
973 	mutex_exit(&rndpool_lock);
974 }
975 
976 /*
977  * Caller should check len <= rnbyte_cnt under the
978  * rndpool_lock before calling.
979  */
980 static void
981 rndc_getbytes(uint8_t *ptr, size_t len)
982 {
983 	ASSERT(MUTEX_HELD(&rndpool_lock));
984 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
985 
986 	BUMP_RND_STATS(rs_rndcOut, len);
987 
988 	while (len > 0) {
989 		*ptr = rndpool[findex];
990 		ptr++; len--;
991 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
992 		rnbyte_cnt--;
993 	}
994 }
995 
996 /* Random number exported entry points */
997 
998 /*
999  * Mix the supplied bytes into the entropy pool of a kCF
1000  * RNG provider.
1001  */
1002 /* ARGSUSED */
1003 int
1004 random_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
1005 {
1006 	if (len < 1)
1007 		return (-1);
1008 
1009 	rngprov_seed(ptr, len);
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Get bytes from the /dev/urandom generator. This function
1016  * always succeeds. Returns 0.
1017  */
1018 int
1019 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1020 {
1021 	ASSERT(!mutex_owned(&rndpool_lock));
1022 
1023 	if (len < 1)
1024 		return (0);
1025 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1026 }
1027 
1028 /*
1029  * Get bytes from the /dev/random generator. Returns 0
1030  * on success. Returns EAGAIN if there is insufficient entropy.
1031  */
1032 int
1033 random_get_bytes(uint8_t *ptr, size_t len)
1034 {
1035 	ASSERT(!mutex_owned(&rndpool_lock));
1036 
1037 	if (len < 1)
1038 		return (0);
1039 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE, B_FALSE));
1040 }
1041