xref: /titanic_50/usr/src/uts/common/cpr/cpr_dump.c (revision 65d6e08afd923e8496fff598c19c151fd4d0ce64)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Fill in and write out the cpr state file
30  *	1. Allocate and write headers, ELF and cpr dump header
31  *	2. Allocate bitmaps according to phys_install
32  *	3. Tag kernel pages into corresponding bitmap
33  *	4. Write bitmaps to state file
34  *	5. Write actual physical page data to state file
35  */
36 
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/vm.h>
40 #include <sys/memlist.h>
41 #include <sys/kmem.h>
42 #include <sys/vnode.h>
43 #include <sys/fs/ufs_inode.h>
44 #include <sys/errno.h>
45 #include <sys/cmn_err.h>
46 #include <sys/debug.h>
47 #include <vm/page.h>
48 #include <vm/seg.h>
49 #include <vm/seg_kmem.h>
50 #include <vm/seg_kpm.h>
51 #include <vm/hat.h>
52 #include <sys/cpr.h>
53 #include <sys/conf.h>
54 #include <sys/ddi.h>
55 #include <sys/panic.h>
56 #include <sys/thread.h>
57 
58 /* Local defines and variables */
59 #define	BTOb(bytes)	((bytes) << 3)		/* Bytes to bits, log2(NBBY) */
60 #define	bTOB(bits)	((bits) >> 3)		/* bits to Bytes, log2(NBBY) */
61 
62 static uint_t cpr_pages_tobe_dumped;
63 static uint_t cpr_regular_pgs_dumped;
64 
65 static int cpr_dump_regular_pages(vnode_t *);
66 static int cpr_count_upages(int, bitfunc_t);
67 static int cpr_compress_and_write(vnode_t *, uint_t, pfn_t, pgcnt_t);
68 int cpr_flush_write(vnode_t *);
69 
70 int cpr_contig_pages(vnode_t *, int);
71 
72 void cpr_clear_bitmaps();
73 
74 extern size_t cpr_get_devsize(dev_t);
75 extern int i_cpr_dump_setup(vnode_t *);
76 extern int i_cpr_blockzero(char *, char **, int *, vnode_t *);
77 extern int cpr_test_mode;
78 
79 ctrm_t cpr_term;
80 
81 char *cpr_buf, *cpr_buf_end;
82 int cpr_buf_blocks;		/* size of cpr_buf in blocks */
83 size_t cpr_buf_size;		/* size of cpr_buf in bytes */
84 size_t cpr_bitmap_size;
85 int cpr_nbitmaps;
86 
87 char *cpr_pagedata;		/* page buffer for compression / tmp copy */
88 size_t cpr_pagedata_size;	/* page buffer size in bytes */
89 
90 static char *cpr_wptr;		/* keep track of where to write to next */
91 static int cpr_file_bn;		/* cpr state-file block offset */
92 static int cpr_disk_writes_ok;
93 static size_t cpr_dev_space = 0;
94 
95 char cpr_pagecopy[CPR_MAXCONTIG * MMU_PAGESIZE];
96 
97 /*
98  * On some platforms bcopy may modify the thread structure
99  * during bcopy (eg, to prevent cpu migration).  If the
100  * range we are currently writing out includes our own
101  * thread structure then it will be snapshotted by bcopy
102  * including those modified members - and the updates made
103  * on exit from bcopy will no longer be seen when we later
104  * restore the mid-bcopy kthread_t.  So if the range we
105  * need to copy overlaps with our thread structure we will
106  * use a simple byte copy.
107  */
108 void
109 cprbcopy(void *from, void *to, size_t bytes)
110 {
111 	extern int curthreadremapped;
112 	caddr_t kthrend;
113 
114 	kthrend = (caddr_t)curthread + sizeof (kthread_t) - 1;
115 	if (curthreadremapped || (kthrend >= (caddr_t)from &&
116 	    kthrend < (caddr_t)from + bytes + sizeof (kthread_t) - 1)) {
117 		caddr_t src = from, dst = to;
118 
119 		while (bytes-- > 0)
120 			*dst++ = *src++;
121 	} else {
122 		bcopy(from, to, bytes);
123 	}
124 }
125 
126 /*
127  * Allocate pages for buffers used in writing out the statefile
128  */
129 static int
130 cpr_alloc_bufs(void)
131 {
132 	char *allocerr = "Unable to allocate memory for cpr buffer";
133 	size_t size;
134 
135 	/*
136 	 * set the cpr write buffer size to at least the historic
137 	 * size (128k) or large enough to store the both the early
138 	 * set of statefile structures (well under 0x800) plus the
139 	 * bitmaps, and roundup to the next pagesize.
140 	 */
141 	size = PAGE_ROUNDUP(dbtob(4) + cpr_bitmap_size);
142 	cpr_buf_size = MAX(size, CPRBUFSZ);
143 	cpr_buf_blocks = btodb(cpr_buf_size);
144 	cpr_buf = kmem_alloc(cpr_buf_size, KM_NOSLEEP);
145 	if (cpr_buf == NULL) {
146 		cpr_err(CE_WARN, allocerr);
147 		return (ENOMEM);
148 	}
149 	cpr_buf_end = cpr_buf + cpr_buf_size;
150 
151 	cpr_pagedata_size = mmu_ptob(CPR_MAXCONTIG + 1);
152 	cpr_pagedata = kmem_alloc(cpr_pagedata_size, KM_NOSLEEP);
153 	if (cpr_pagedata == NULL) {
154 		kmem_free(cpr_buf, cpr_buf_size);
155 		cpr_buf = NULL;
156 		cpr_err(CE_WARN, allocerr);
157 		return (ENOMEM);
158 	}
159 
160 	return (0);
161 }
162 
163 
164 /*
165  * Set bitmap size in bytes based on phys_install.
166  */
167 void
168 cpr_set_bitmap_size(void)
169 {
170 	struct memlist *pmem;
171 	size_t size = 0;
172 
173 	memlist_read_lock();
174 	for (pmem = phys_install; pmem; pmem = pmem->next)
175 		size += pmem->size;
176 	memlist_read_unlock();
177 	cpr_bitmap_size = BITMAP_BYTES(size);
178 }
179 
180 
181 /*
182  * CPR dump header contains the following information:
183  *	1. header magic -- unique to cpr state file
184  *	2. kernel return pc & ppn for resume
185  *	3. current thread info
186  *	4. debug level and test mode
187  *	5. number of bitmaps allocated
188  *	6. number of page records
189  */
190 static int
191 cpr_write_header(vnode_t *vp)
192 {
193 	extern ushort_t cpr_mach_type;
194 	struct cpr_dump_desc cdump;
195 	pgcnt_t bitmap_pages;
196 	pgcnt_t kpages, vpages, upages;
197 
198 	cdump.cdd_magic = (uint_t)CPR_DUMP_MAGIC;
199 	cdump.cdd_version = CPR_VERSION;
200 	cdump.cdd_machine = cpr_mach_type;
201 	cdump.cdd_debug = cpr_debug;
202 	cdump.cdd_test_mode = cpr_test_mode;
203 	cdump.cdd_bitmaprec = cpr_nbitmaps;
204 
205 	cpr_clear_bitmaps();
206 
207 	/*
208 	 * Remember how many pages we plan to save to statefile.
209 	 * This information will be used for sanity checks.
210 	 * Untag those pages that will not be saved to statefile.
211 	 */
212 	kpages = cpr_count_kpages(REGULAR_BITMAP, cpr_setbit);
213 	vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit);
214 	upages = cpr_count_upages(REGULAR_BITMAP, cpr_setbit);
215 	cdump.cdd_dumppgsize = kpages - vpages + upages;
216 	cpr_pages_tobe_dumped = cdump.cdd_dumppgsize;
217 	DEBUG7(errp(
218 	    "\ncpr_write_header: kpages %ld - vpages %ld + upages %ld = %d\n",
219 	    kpages, vpages, upages, cdump.cdd_dumppgsize));
220 
221 	/*
222 	 * Some pages contain volatile data (cpr_buf and storage area for
223 	 * sensitive kpages), which are no longer needed after the statefile
224 	 * is dumped to disk.  We have already untagged them from regular
225 	 * bitmaps.  Now tag them into the volatile bitmaps.  The pages in
226 	 * volatile bitmaps will be claimed during resume, and the resumed
227 	 * kernel will free them.
228 	 */
229 	(void) cpr_count_volatile_pages(VOLATILE_BITMAP, cpr_setbit);
230 
231 	bitmap_pages = mmu_btopr(cpr_bitmap_size);
232 
233 	/*
234 	 * Export accurate statefile size for statefile allocation retry.
235 	 * statefile_size = all the headers + total pages +
236 	 * number of pages used by the bitmaps.
237 	 * Roundup will be done in the file allocation code.
238 	 */
239 	STAT->cs_nocomp_statefsz = sizeof (cdd_t) + sizeof (cmd_t) +
240 		(sizeof (cbd_t) * cdump.cdd_bitmaprec) +
241 		(sizeof (cpd_t) * cdump.cdd_dumppgsize) +
242 		mmu_ptob(cdump.cdd_dumppgsize + bitmap_pages);
243 
244 	/*
245 	 * If the estimated statefile is not big enough,
246 	 * go retry now to save un-necessary operations.
247 	 */
248 	if (!(CPR->c_flags & C_COMPRESSING) &&
249 		(STAT->cs_nocomp_statefsz > STAT->cs_est_statefsz)) {
250 		if (cpr_debug & (LEVEL1 | LEVEL7))
251 		    errp("cpr_write_header: STAT->cs_nocomp_statefsz > "
252 			"STAT->cs_est_statefsz\n");
253 		return (ENOSPC);
254 	}
255 
256 	/* now write cpr dump descriptor */
257 	return (cpr_write(vp, (caddr_t)&cdump, sizeof (cdd_t)));
258 }
259 
260 
261 /*
262  * CPR dump tail record contains the following information:
263  *	1. header magic -- unique to cpr state file
264  *	2. all misc info that needs to be passed to cprboot or resumed kernel
265  */
266 static int
267 cpr_write_terminator(vnode_t *vp)
268 {
269 	cpr_term.magic = (uint_t)CPR_TERM_MAGIC;
270 	cpr_term.va = (cpr_ptr)&cpr_term;
271 	cpr_term.pfn = (cpr_ext)va_to_pfn(&cpr_term);
272 
273 	/* count the last one (flush) */
274 	cpr_term.real_statef_size = STAT->cs_real_statefsz +
275 		btod(cpr_wptr - cpr_buf) * DEV_BSIZE;
276 
277 	DEBUG9(errp("cpr_dump: Real Statefile Size: %ld\n",
278 		STAT->cs_real_statefsz));
279 
280 	cpr_tod_get(&cpr_term.tm_shutdown);
281 
282 	return (cpr_write(vp, (caddr_t)&cpr_term, sizeof (cpr_term)));
283 }
284 
285 /*
286  * Write bitmap descriptor array, followed by merged bitmaps.
287  */
288 static int
289 cpr_write_bitmap(vnode_t *vp)
290 {
291 	char *rmap, *vmap, *dst, *tail;
292 	size_t size, bytes;
293 	cbd_t *dp;
294 	int err;
295 
296 	dp = CPR->c_bmda;
297 	if (err = cpr_write(vp, (caddr_t)dp, cpr_nbitmaps * sizeof (*dp)))
298 		return (err);
299 
300 	/*
301 	 * merge regular and volatile bitmaps into tmp space
302 	 * and write to disk
303 	 */
304 	for (; dp->cbd_size; dp++) {
305 		rmap = (char *)dp->cbd_reg_bitmap;
306 		vmap = (char *)dp->cbd_vlt_bitmap;
307 		for (size = dp->cbd_size; size; size -= bytes) {
308 			bytes = min(size, sizeof (cpr_pagecopy));
309 			tail = &cpr_pagecopy[bytes];
310 			for (dst = cpr_pagecopy; dst < tail; dst++)
311 				*dst = *rmap++ | *vmap++;
312 			if (err = cpr_write(vp, cpr_pagecopy, bytes))
313 				break;
314 		}
315 	}
316 
317 	return (err);
318 }
319 
320 
321 static int
322 cpr_write_statefile(vnode_t *vp)
323 {
324 	uint_t error = 0;
325 	extern	int	i_cpr_check_pgs_dumped();
326 	void flush_windows(void);
327 	pgcnt_t spages;
328 	char *str;
329 
330 	flush_windows();
331 
332 	/*
333 	 * to get an accurate view of kas, we need to untag sensitive
334 	 * pages *before* dumping them because the disk driver makes
335 	 * allocations and changes kas along the way.  The remaining
336 	 * pages referenced in the bitmaps are dumped out later as
337 	 * regular kpages.
338 	 */
339 	str = "cpr_write_statefile:";
340 	spages = i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_clrbit);
341 	DEBUG7(errp("%s untag %ld sens pages\n", str, spages));
342 
343 	/*
344 	 * now it's OK to call a driver that makes allocations
345 	 */
346 	cpr_disk_writes_ok = 1;
347 
348 	/*
349 	 * now write out the clean sensitive kpages
350 	 * according to the sensitive descriptors
351 	 */
352 	error = i_cpr_dump_sensitive_kpages(vp);
353 	if (error) {
354 		DEBUG7(errp("%s cpr_dump_sensitive_kpages() failed!\n", str));
355 		return (error);
356 	}
357 
358 	/*
359 	 * cpr_dump_regular_pages() counts cpr_regular_pgs_dumped
360 	 */
361 	error = cpr_dump_regular_pages(vp);
362 	if (error) {
363 		DEBUG7(errp("%s cpr_dump_regular_pages() failed!\n", str));
364 		return (error);
365 	}
366 
367 	/*
368 	 * sanity check to verify the right number of pages were dumped
369 	 */
370 	error = i_cpr_check_pgs_dumped(cpr_pages_tobe_dumped,
371 	    cpr_regular_pgs_dumped);
372 
373 	if (error) {
374 		errp("\n%s page count mismatch!\n", str);
375 #ifdef DEBUG
376 		if (cpr_test_mode)
377 			debug_enter(NULL);
378 #endif
379 	}
380 
381 	return (error);
382 }
383 
384 
385 /*
386  * creates the CPR state file, the following sections are
387  * written out in sequence:
388  *    - writes the cpr dump header
389  *    - writes the memory usage bitmaps
390  *    - writes the platform dependent info
391  *    - writes the remaining user pages
392  *    - writes the kernel pages
393  */
394 int
395 cpr_dump(vnode_t *vp)
396 {
397 	int error;
398 
399 	if (cpr_buf == NULL) {
400 		ASSERT(cpr_pagedata == NULL);
401 		if (error = cpr_alloc_bufs())
402 			return (error);
403 	}
404 	/* point to top of internal buffer */
405 	cpr_wptr = cpr_buf;
406 
407 	/* initialize global variables used by the write operation */
408 	cpr_file_bn = cpr_statefile_offset();
409 	cpr_dev_space = 0;
410 
411 	/* allocate bitmaps */
412 	if (CPR->c_bmda == NULL) {
413 		if (error = i_cpr_alloc_bitmaps()) {
414 			cpr_err(CE_WARN, "cannot allocate bitmaps");
415 			return (error);
416 		}
417 	}
418 
419 	if (error = i_cpr_prom_pages(CPR_PROM_SAVE))
420 		return (error);
421 
422 	if (error = i_cpr_dump_setup(vp))
423 		return (error);
424 
425 	/*
426 	 * set internal cross checking; we dont want to call
427 	 * a disk driver that makes allocations until after
428 	 * sensitive pages are saved
429 	 */
430 	cpr_disk_writes_ok = 0;
431 
432 	/*
433 	 * 1253112: heap corruption due to memory allocation when dumpping
434 	 *	    statefile.
435 	 * Theoretically on Sun4u only the kernel data nucleus, kvalloc and
436 	 * kvseg segments can be contaminated should memory allocations happen
437 	 * during sddump, which is not supposed to happen after the system
438 	 * is quiesced. Let's call the kernel pages that tend to be affected
439 	 * 'sensitive kpages' here. To avoid saving inconsistent pages, we
440 	 * will allocate some storage space to save the clean sensitive pages
441 	 * aside before statefile dumping takes place. Since there may not be
442 	 * much memory left at this stage, the sensitive pages will be
443 	 * compressed before they are saved into the storage area.
444 	 */
445 	if (error = i_cpr_save_sensitive_kpages()) {
446 		DEBUG7(errp("cpr_dump: save_sensitive_kpages failed!\n"));
447 		return (error);
448 	}
449 
450 	/*
451 	 * since all cpr allocations are done (space for sensitive kpages,
452 	 * bitmaps, cpr_buf), kas is stable, and now we can accurately
453 	 * count regular and sensitive kpages.
454 	 */
455 	if (error = cpr_write_header(vp)) {
456 		DEBUG7(errp("cpr_dump: cpr_write_header() failed!\n"));
457 		return (error);
458 	}
459 
460 	if (error = i_cpr_write_machdep(vp))
461 		return (error);
462 
463 	if (error = i_cpr_blockzero(cpr_buf, &cpr_wptr, NULL, NULL))
464 		return (error);
465 
466 	if (error = cpr_write_bitmap(vp))
467 		return (error);
468 
469 	if (error = cpr_write_statefile(vp)) {
470 		DEBUG7(errp("cpr_dump: cpr_write_statefile() failed!\n"));
471 		return (error);
472 	}
473 
474 	if (error = cpr_write_terminator(vp))
475 		return (error);
476 
477 	if (error = cpr_flush_write(vp))
478 		return (error);
479 
480 	if (error = i_cpr_blockzero(cpr_buf, &cpr_wptr, &cpr_file_bn, vp))
481 		return (error);
482 
483 	return (0);
484 }
485 
486 
487 /*
488  * cpr_xwalk() is called many 100x with a range within kvseg or kvseg_reloc;
489  * a page-count from each range is accumulated at arg->pages.
490  */
491 static void
492 cpr_xwalk(void *arg, void *base, size_t size)
493 {
494 	struct cpr_walkinfo *cwip = arg;
495 
496 	cwip->pages += cpr_count_pages(base, size,
497 	    cwip->mapflag, cwip->bitfunc, DBG_DONTSHOWRANGE);
498 	cwip->size += size;
499 	cwip->ranges++;
500 }
501 
502 /*
503  * cpr_walk() is called many 100x with a range within kvseg or kvseg_reloc;
504  * a page-count from each range is accumulated at arg->pages.
505  */
506 static void
507 cpr_walk(void *arg, void *base, size_t size)
508 {
509 	caddr_t addr = base;
510 	caddr_t addr_end = addr + size;
511 
512 	/*
513 	 * If we are about to start walking the range of addresses we
514 	 * carved out of the kernel heap for the large page heap walk
515 	 * heap_lp_arena to find what segments are actually populated
516 	 */
517 	if (SEGKMEM_USE_LARGEPAGES &&
518 	    addr == heap_lp_base && addr_end == heap_lp_end &&
519 	    vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
520 		vmem_walk(heap_lp_arena, VMEM_ALLOC, cpr_xwalk, arg);
521 	} else {
522 		cpr_xwalk(arg, base, size);
523 	}
524 }
525 
526 
527 /*
528  * faster scan of kvseg using vmem_walk() to visit
529  * allocated ranges.
530  */
531 pgcnt_t
532 cpr_scan_kvseg(int mapflag, bitfunc_t bitfunc, struct seg *seg)
533 {
534 	struct cpr_walkinfo cwinfo;
535 
536 	bzero(&cwinfo, sizeof (cwinfo));
537 	cwinfo.mapflag = mapflag;
538 	cwinfo.bitfunc = bitfunc;
539 
540 	vmem_walk(heap_arena, VMEM_ALLOC, cpr_walk, &cwinfo);
541 
542 	if (cpr_debug & LEVEL7) {
543 		errp("walked %d sub-ranges, total pages %ld\n",
544 		    cwinfo.ranges, mmu_btop(cwinfo.size));
545 		cpr_show_range(seg->s_base, seg->s_size,
546 		    mapflag, bitfunc, cwinfo.pages);
547 	}
548 
549 	return (cwinfo.pages);
550 }
551 
552 
553 /*
554  * cpr_walk_kpm() is called for every used area within the large
555  * segkpm virtual address window. A page-count is accumulated at
556  * arg->pages.
557  */
558 static void
559 cpr_walk_kpm(void *arg, void *base, size_t size)
560 {
561 	struct cpr_walkinfo *cwip = arg;
562 
563 	cwip->pages += cpr_count_pages(base, size,
564 	    cwip->mapflag, cwip->bitfunc, DBG_DONTSHOWRANGE);
565 	cwip->size += size;
566 	cwip->ranges++;
567 }
568 
569 
570 /*
571  * faster scan of segkpm using hat_kpm_walk() to visit only used ranges.
572  */
573 /*ARGSUSED*/
574 static pgcnt_t
575 cpr_scan_segkpm(int mapflag, bitfunc_t bitfunc, struct seg *seg)
576 {
577 	struct cpr_walkinfo cwinfo;
578 
579 	if (kpm_enable == 0)
580 		return (0);
581 
582 	bzero(&cwinfo, sizeof (cwinfo));
583 	cwinfo.mapflag = mapflag;
584 	cwinfo.bitfunc = bitfunc;
585 	hat_kpm_walk(cpr_walk_kpm, &cwinfo);
586 
587 	if (cpr_debug & LEVEL7) {
588 		errp("walked %d sub-ranges, total pages %ld\n",
589 		    cwinfo.ranges, mmu_btop(cwinfo.size));
590 		cpr_show_range(segkpm->s_base, segkpm->s_size,
591 		    mapflag, bitfunc, cwinfo.pages);
592 	}
593 
594 	return (cwinfo.pages);
595 }
596 
597 
598 /*
599  * Sparsely filled kernel segments are registered in kseg_table for
600  * easier lookup. See also block comment for cpr_count_seg_pages.
601  */
602 
603 #define	KSEG_SEG_ADDR	0	/* address of struct seg */
604 #define	KSEG_PTR_ADDR	1	/* address of pointer to struct seg */
605 
606 typedef struct {
607 	struct seg **st_seg;		/* segment pointer or segment address */
608 	pgcnt_t	(*st_fcn)(int, bitfunc_t, struct seg *); /* function to call */
609 	int	st_addrtype;		/* address type in st_seg */
610 } ksegtbl_entry_t;
611 
612 ksegtbl_entry_t kseg_table[] = {
613 	{(struct seg **)&kvseg,		cpr_scan_kvseg,		KSEG_SEG_ADDR},
614 	{&segkpm,			cpr_scan_segkpm,	KSEG_PTR_ADDR},
615 	{NULL,				0,			0}
616 };
617 
618 
619 /*
620  * Compare seg with each entry in kseg_table; when there is a match
621  * return the entry pointer, otherwise return NULL.
622  */
623 static ksegtbl_entry_t *
624 cpr_sparse_seg_check(struct seg *seg)
625 {
626 	ksegtbl_entry_t *ste = &kseg_table[0];
627 	struct seg *tseg;
628 
629 	for (; ste->st_seg; ste++) {
630 		tseg = (ste->st_addrtype == KSEG_PTR_ADDR) ?
631 				*ste->st_seg : (struct seg *)ste->st_seg;
632 		if (seg == tseg)
633 			return (ste);
634 	}
635 
636 	return ((ksegtbl_entry_t *)NULL);
637 }
638 
639 
640 /*
641  * Count pages within each kernel segment; call cpr_sparse_seg_check()
642  * to find out whether a sparsely filled segment needs special
643  * treatment (e.g. kvseg).
644  * Todo: A "SEGOP_CPR" like SEGOP_DUMP should be introduced, the cpr
645  *       module shouldn't need to know segment details like if it is
646  *       sparsely filled or not (makes kseg_table obsolete).
647  */
648 pgcnt_t
649 cpr_count_seg_pages(int mapflag, bitfunc_t bitfunc)
650 {
651 	struct seg *segp;
652 	pgcnt_t pages;
653 	ksegtbl_entry_t *ste;
654 
655 	pages = 0;
656 	for (segp = AS_SEGFIRST(&kas); segp; segp = AS_SEGNEXT(&kas, segp)) {
657 		if (ste = cpr_sparse_seg_check(segp)) {
658 			pages += (ste->st_fcn)(mapflag, bitfunc, segp);
659 		} else {
660 			pages += cpr_count_pages(segp->s_base,
661 			    segp->s_size, mapflag, bitfunc, DBG_SHOWRANGE);
662 		}
663 	}
664 
665 	return (pages);
666 }
667 
668 
669 /*
670  * count kernel pages within kas and any special ranges
671  */
672 pgcnt_t
673 cpr_count_kpages(int mapflag, bitfunc_t bitfunc)
674 {
675 	pgcnt_t kas_cnt;
676 
677 	/*
678 	 * Some pages need to be taken care of differently.
679 	 * eg: panicbuf pages of sun4m are not in kas but they need
680 	 * to be saved.  On sun4u, the physical pages of panicbuf are
681 	 * allocated via prom_retain().
682 	 */
683 	kas_cnt = i_cpr_count_special_kpages(mapflag, bitfunc);
684 	kas_cnt += cpr_count_seg_pages(mapflag, bitfunc);
685 
686 	DEBUG9(errp("cpr_count_kpages: kas_cnt=%ld\n", kas_cnt));
687 	DEBUG7(errp("\ncpr_count_kpages: %ld pages, 0x%lx bytes\n",
688 		kas_cnt, mmu_ptob(kas_cnt)));
689 	return (kas_cnt);
690 }
691 
692 
693 /*
694  * Set a bit corresponding to the arg phys page number;
695  * returns 0 when the ppn is valid and the corresponding
696  * map bit was clear, otherwise returns 1.
697  */
698 int
699 cpr_setbit(pfn_t ppn, int mapflag)
700 {
701 	char *bitmap;
702 	cbd_t *dp;
703 	pfn_t rel;
704 	int clr;
705 
706 	for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
707 		if (PPN_IN_RANGE(ppn, dp)) {
708 			bitmap = DESC_TO_MAP(dp, mapflag);
709 			rel = ppn - dp->cbd_spfn;
710 			if ((clr = isclr(bitmap, rel)) != 0)
711 				setbit(bitmap, rel);
712 			return (clr == 0);
713 		}
714 	}
715 
716 	return (1);
717 }
718 
719 
720 /*
721  * Clear a bit corresponding to the arg phys page number.
722  */
723 int
724 cpr_clrbit(pfn_t ppn, int mapflag)
725 {
726 	char *bitmap;
727 	cbd_t *dp;
728 	pfn_t rel;
729 	int set;
730 
731 	for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
732 		if (PPN_IN_RANGE(ppn, dp)) {
733 			bitmap = DESC_TO_MAP(dp, mapflag);
734 			rel = ppn - dp->cbd_spfn;
735 			if ((set = isset(bitmap, rel)) != 0)
736 				clrbit(bitmap, rel);
737 			return (set == 0);
738 		}
739 	}
740 
741 	return (1);
742 }
743 
744 
745 /* ARGSUSED */
746 int
747 cpr_nobit(pfn_t ppn, int mapflag)
748 {
749 	return (0);
750 }
751 
752 
753 /*
754  * Lookup a bit corresponding to the arg phys page number.
755  */
756 int
757 cpr_isset(pfn_t ppn, int mapflag)
758 {
759 	char *bitmap;
760 	cbd_t *dp;
761 	pfn_t rel;
762 
763 	for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
764 		if (PPN_IN_RANGE(ppn, dp)) {
765 			bitmap = DESC_TO_MAP(dp, mapflag);
766 			rel = ppn - dp->cbd_spfn;
767 			return (isset(bitmap, rel));
768 		}
769 	}
770 
771 	return (0);
772 }
773 
774 
775 /*
776  * Go thru all pages and pick up any page not caught during the invalidation
777  * stage. This is also used to save pages with cow lock or phys page lock held
778  * (none zero p_lckcnt or p_cowcnt)
779  */
780 static	int
781 cpr_count_upages(int mapflag, bitfunc_t bitfunc)
782 {
783 	page_t *pp, *page0;
784 	pgcnt_t dcnt = 0, tcnt = 0;
785 	pfn_t pfn;
786 
787 	page0 = pp = page_first();
788 
789 	do {
790 #if defined(__sparc)
791 		extern struct vnode prom_ppages;
792 		if (pp->p_vnode == NULL || PP_ISKAS(pp) ||
793 		    pp->p_vnode == &prom_ppages ||
794 			PP_ISFREE(pp) && PP_ISAGED(pp))
795 #else
796 		if (pp->p_vnode == NULL || PP_ISKAS(pp) ||
797 		    PP_ISFREE(pp) && PP_ISAGED(pp))
798 #endif /* __sparc */
799 			continue;
800 
801 		pfn = page_pptonum(pp);
802 		if (pf_is_memory(pfn)) {
803 			tcnt++;
804 			if ((*bitfunc)(pfn, mapflag) == 0)
805 				dcnt++; /* dirty count */
806 		}
807 	} while ((pp = page_next(pp)) != page0);
808 
809 	STAT->cs_upage2statef = dcnt;
810 	DEBUG9(errp("cpr_count_upages: dirty=%ld total=%ld\n",
811 		dcnt, tcnt));
812 	DEBUG7(errp("cpr_count_upages: %ld pages, 0x%lx bytes\n",
813 		dcnt, mmu_ptob(dcnt)));
814 	return (dcnt);
815 }
816 
817 
818 /*
819  * try compressing pages based on cflag,
820  * and for DEBUG kernels, verify uncompressed data checksum;
821  *
822  * this routine replaces common code from
823  * i_cpr_compress_and_save() and cpr_compress_and_write()
824  */
825 char *
826 cpr_compress_pages(cpd_t *dp, pgcnt_t pages, int cflag)
827 {
828 	size_t nbytes, clen, len;
829 	uint32_t test_sum;
830 	char *datap;
831 
832 	nbytes = mmu_ptob(pages);
833 
834 	/*
835 	 * set length to the original uncompressed data size;
836 	 * always init cpd_flag to zero
837 	 */
838 	dp->cpd_length = nbytes;
839 	dp->cpd_flag = 0;
840 
841 #ifdef	DEBUG
842 	/*
843 	 * Make a copy of the uncompressed data so we can checksum it.
844 	 * Compress that copy so the checksum works at the other end
845 	 */
846 	cprbcopy(CPR->c_mapping_area, cpr_pagecopy, nbytes);
847 	dp->cpd_usum = checksum32(cpr_pagecopy, nbytes);
848 	dp->cpd_flag |= CPD_USUM;
849 	datap = cpr_pagecopy;
850 #else
851 	datap = CPR->c_mapping_area;
852 	dp->cpd_usum = 0;
853 #endif
854 
855 	/*
856 	 * try compressing the raw data to cpr_pagedata;
857 	 * if there was a size reduction: record the new length,
858 	 * flag the compression, and point to the compressed data.
859 	 */
860 	dp->cpd_csum = 0;
861 	if (cflag) {
862 		clen = compress(datap, cpr_pagedata, nbytes);
863 		if (clen < nbytes) {
864 			dp->cpd_flag |= CPD_COMPRESS;
865 			dp->cpd_length = clen;
866 			datap = cpr_pagedata;
867 #ifdef	DEBUG
868 			dp->cpd_csum = checksum32(datap, clen);
869 			dp->cpd_flag |= CPD_CSUM;
870 
871 			/*
872 			 * decompress the data back to a scratch area
873 			 * and compare the new checksum with the original
874 			 * checksum to verify the compression.
875 			 */
876 			bzero(cpr_pagecopy, sizeof (cpr_pagecopy));
877 			len = decompress(datap, cpr_pagecopy,
878 			    clen, sizeof (cpr_pagecopy));
879 			test_sum = checksum32(cpr_pagecopy, len);
880 			ASSERT(test_sum == dp->cpd_usum);
881 #endif
882 		}
883 	}
884 
885 	return (datap);
886 }
887 
888 
889 /*
890  * 1. Prepare cpr page descriptor and write it to file
891  * 2. Compress page data and write it out
892  */
893 static int
894 cpr_compress_and_write(vnode_t *vp, uint_t va, pfn_t pfn, pgcnt_t npg)
895 {
896 	int error = 0;
897 	char *datap;
898 	cpd_t cpd;	/* cpr page descriptor */
899 	extern void i_cpr_mapin(caddr_t, uint_t, pfn_t);
900 	extern void i_cpr_mapout(caddr_t, uint_t);
901 
902 	i_cpr_mapin(CPR->c_mapping_area, npg, pfn);
903 
904 	DEBUG3(errp("mapped-in %ld pages, vaddr 0x%p, pfn 0x%lx\n",
905 		npg, CPR->c_mapping_area, pfn));
906 
907 	/*
908 	 * Fill cpr page descriptor.
909 	 */
910 	cpd.cpd_magic = (uint_t)CPR_PAGE_MAGIC;
911 	cpd.cpd_pfn = pfn;
912 	cpd.cpd_pages = npg;
913 
914 	STAT->cs_dumped_statefsz += mmu_ptob(npg);
915 
916 	datap = cpr_compress_pages(&cpd, npg, CPR->c_flags & C_COMPRESSING);
917 
918 	/* Write cpr page descriptor */
919 	error = cpr_write(vp, (caddr_t)&cpd, sizeof (cpd_t));
920 
921 	/* Write compressed page data */
922 	error = cpr_write(vp, (caddr_t)datap, cpd.cpd_length);
923 
924 	/*
925 	 * Unmap the pages for tlb and vac flushing
926 	 */
927 	i_cpr_mapout(CPR->c_mapping_area, npg);
928 
929 	if (error) {
930 		DEBUG1(errp("cpr_compress_and_write: vp 0x%p va 0x%x ",
931 		    vp, va));
932 		DEBUG1(errp("pfn 0x%lx blk %d err %d\n",
933 		    pfn, cpr_file_bn, error));
934 	} else {
935 		cpr_regular_pgs_dumped += npg;
936 	}
937 
938 	return (error);
939 }
940 
941 
942 int
943 cpr_write(vnode_t *vp, caddr_t buffer, size_t size)
944 {
945 	caddr_t	fromp = buffer;
946 	size_t bytes, wbytes;
947 	int error;
948 
949 	if (cpr_dev_space == 0) {
950 		if (vp->v_type == VBLK) {
951 			cpr_dev_space = cpr_get_devsize(vp->v_rdev);
952 			ASSERT(cpr_dev_space);
953 		} else
954 			cpr_dev_space = 1;	/* not used in this case */
955 	}
956 
957 	/*
958 	 * break the write into multiple part if request is large,
959 	 * calculate count up to buf page boundary, then write it out.
960 	 * repeat until done.
961 	 */
962 	while (size) {
963 		bytes = MIN(size, cpr_buf_end - cpr_wptr);
964 		cprbcopy(fromp, cpr_wptr, bytes);
965 		cpr_wptr += bytes;
966 		fromp += bytes;
967 		size -= bytes;
968 		if (cpr_wptr < cpr_buf_end)
969 			return (0);	/* buffer not full yet */
970 		ASSERT(cpr_wptr == cpr_buf_end);
971 
972 		wbytes = dbtob(cpr_file_bn + cpr_buf_blocks);
973 		if (vp->v_type == VBLK) {
974 			if (wbytes > cpr_dev_space)
975 				return (ENOSPC);
976 		} else {
977 			if (wbytes > VTOI(vp)->i_size)
978 				return (ENOSPC);
979 		}
980 
981 		DEBUG3(errp("cpr_write: frmp=%p wptr=%p cnt=%lx...",
982 			fromp, cpr_wptr, bytes));
983 		/*
984 		 * cross check, this should not happen!
985 		 */
986 		if (cpr_disk_writes_ok == 0) {
987 			errp("cpr_write: disk write too early!\n");
988 			return (EINVAL);
989 		}
990 
991 		do_polled_io = 1;
992 		error = VOP_DUMP(vp, cpr_buf, cpr_file_bn, cpr_buf_blocks);
993 		do_polled_io = 0;
994 		DEBUG3(errp("done\n"));
995 
996 		STAT->cs_real_statefsz += cpr_buf_size;
997 
998 		if (error) {
999 			cpr_err(CE_WARN, "cpr_write error %d", error);
1000 			return (error);
1001 		}
1002 		cpr_file_bn += cpr_buf_blocks;	/* Increment block count */
1003 		cpr_wptr = cpr_buf;		/* back to top of buffer */
1004 	}
1005 	return (0);
1006 }
1007 
1008 
1009 int
1010 cpr_flush_write(vnode_t *vp)
1011 {
1012 	int	nblk;
1013 	int	error;
1014 
1015 	/*
1016 	 * Calculate remaining blocks in buffer, rounded up to nearest
1017 	 * disk block
1018 	 */
1019 	nblk = btod(cpr_wptr - cpr_buf);
1020 
1021 	do_polled_io = 1;
1022 	error = VOP_DUMP(vp, (caddr_t)cpr_buf, cpr_file_bn, nblk);
1023 	do_polled_io = 0;
1024 
1025 	cpr_file_bn += nblk;
1026 	if (error)
1027 		DEBUG2(errp("cpr_flush_write: error (%d)\n", error));
1028 	return (error);
1029 }
1030 
1031 void
1032 cpr_clear_bitmaps(void)
1033 {
1034 	cbd_t *dp;
1035 
1036 	for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
1037 		bzero((void *)dp->cbd_reg_bitmap,
1038 		    (size_t)dp->cbd_size * 2);
1039 	}
1040 	DEBUG7(errp("\ncleared reg and vlt bitmaps\n"));
1041 }
1042 
1043 int
1044 cpr_contig_pages(vnode_t *vp, int flag)
1045 {
1046 	int chunks = 0, error = 0;
1047 	pgcnt_t i, j, totbit;
1048 	pfn_t spfn;
1049 	cbd_t *dp;
1050 	uint_t	spin_cnt = 0;
1051 	extern	int i_cpr_compress_and_save();
1052 
1053 	for (dp = CPR->c_bmda; dp->cbd_size; dp++) {
1054 		spfn = dp->cbd_spfn;
1055 		totbit = BTOb(dp->cbd_size);
1056 		i = 0; /* Beginning of bitmap */
1057 		j = 0;
1058 		while (i < totbit) {
1059 			while ((j < CPR_MAXCONTIG) && ((j + i) < totbit)) {
1060 				if (isset((char *)dp->cbd_reg_bitmap, j+i))
1061 					j++;
1062 				else /* not contiguous anymore */
1063 					break;
1064 			}
1065 
1066 			if (j) {
1067 				chunks++;
1068 				if (flag == SAVE_TO_STORAGE) {
1069 					error = i_cpr_compress_and_save(
1070 					    chunks, spfn + i, j);
1071 					if (error)
1072 						return (error);
1073 				} else if (flag == WRITE_TO_STATEFILE) {
1074 					error = cpr_compress_and_write(vp, 0,
1075 					    spfn + i, j);
1076 					if (error)
1077 						return (error);
1078 					else {
1079 						spin_cnt++;
1080 						if ((spin_cnt & 0x5F) == 1)
1081 							cpr_spinning_bar();
1082 					}
1083 				}
1084 			}
1085 
1086 			i += j;
1087 			if (j != CPR_MAXCONTIG) {
1088 				/* Stopped on a non-tagged page */
1089 				i++;
1090 			}
1091 
1092 			j = 0;
1093 		}
1094 	}
1095 
1096 	if (flag == STORAGE_DESC_ALLOC)
1097 		return (chunks);
1098 	else
1099 		return (0);
1100 }
1101 
1102 
1103 void
1104 cpr_show_range(caddr_t vaddr, size_t size,
1105     int mapflag, bitfunc_t bitfunc, pgcnt_t count)
1106 {
1107 	char *action, *bname;
1108 
1109 	bname = (mapflag == REGULAR_BITMAP) ? "regular" : "volatile";
1110 	if (bitfunc == cpr_setbit)
1111 		action = "tag";
1112 	else if (bitfunc == cpr_clrbit)
1113 		action = "untag";
1114 	else
1115 		action = "none";
1116 	errp("range (0x%p, 0x%p), %s bitmap, %s %ld\n",
1117 	    vaddr, vaddr + size, bname, action, count);
1118 }
1119 
1120 
1121 pgcnt_t
1122 cpr_count_pages(caddr_t sva, size_t size,
1123     int mapflag, bitfunc_t bitfunc, int showrange)
1124 {
1125 	caddr_t	va, eva;
1126 	pfn_t pfn;
1127 	pgcnt_t count = 0;
1128 
1129 	eva = sva + PAGE_ROUNDUP(size);
1130 	for (va = sva; va < eva; va += MMU_PAGESIZE) {
1131 		pfn = va_to_pfn(va);
1132 		if (pfn != PFN_INVALID && pf_is_memory(pfn)) {
1133 			if ((*bitfunc)(pfn, mapflag) == 0)
1134 				count++;
1135 		}
1136 	}
1137 
1138 	if ((cpr_debug & LEVEL7) && showrange == DBG_SHOWRANGE)
1139 		cpr_show_range(sva, size, mapflag, bitfunc, count);
1140 
1141 	return (count);
1142 }
1143 
1144 
1145 pgcnt_t
1146 cpr_count_volatile_pages(int mapflag, bitfunc_t bitfunc)
1147 {
1148 	pgcnt_t count = 0;
1149 
1150 	if (cpr_buf) {
1151 		count += cpr_count_pages(cpr_buf, cpr_buf_size,
1152 		    mapflag, bitfunc, DBG_SHOWRANGE);
1153 	}
1154 	if (cpr_pagedata) {
1155 		count += cpr_count_pages(cpr_pagedata, cpr_pagedata_size,
1156 		    mapflag, bitfunc, DBG_SHOWRANGE);
1157 	}
1158 	count += i_cpr_count_storage_pages(mapflag, bitfunc);
1159 
1160 	DEBUG7(errp("cpr_count_vpages: %ld pages, 0x%lx bytes\n",
1161 	    count, mmu_ptob(count)));
1162 	return (count);
1163 }
1164 
1165 
1166 static int
1167 cpr_dump_regular_pages(vnode_t *vp)
1168 {
1169 	int error;
1170 
1171 	cpr_regular_pgs_dumped = 0;
1172 	error = cpr_contig_pages(vp, WRITE_TO_STATEFILE);
1173 	if (!error)
1174 		DEBUG7(errp("cpr_dump_regular_pages() done.\n"));
1175 	return (error);
1176 }
1177