xref: /titanic_50/usr/src/uts/common/c2/audit_io.c (revision 5c0b7edee9bd9fad49038456b16972ff28fa4187)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Routines for writing audit records.
23  *
24  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/door.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/types.h>
34 #include <sys/statvfs.h>	/* for statfs */
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/vfs.h>
38 #include <sys/user.h>
39 #include <sys/uio.h>
40 #include <sys/reboot.h>
41 #include <sys/kmem.h>		/* for KM_SLEEP */
42 #include <sys/resource.h>	/* for RLIM_INFINITY */
43 #include <sys/cmn_err.h>	/* panic */
44 #include <sys/systm.h>
45 #include <sys/debug.h>
46 #include <sys/sysmacros.h>
47 #include <sys/syscall.h>
48 #include <sys/zone.h>
49 
50 #include <c2/audit.h>
51 #include <c2/audit_kernel.h>
52 #include <c2/audit_record.h>
53 #include <c2/audit_kevents.h>
54 #include <c2/audit_door_infc.h>
55 
56 static void	au_dequeue(au_kcontext_t *, au_buff_t *);
57 static void	audit_async_finish_backend(void *);
58 static int	audit_sync_block(au_kcontext_t *);
59 /*
60  * each of these two tables are indexed by the values AU_DBUF_COMPLETE
61  * through AU_DBUF_LAST; the content is the next state value.  The
62  * first table determines the next state for a buffer which is not the
63  * end of a record and the second table determines the state for a
64  * buffer which is the end of a record.  The initial state is
65  * AU_DBUF_COMPLETE.
66  */
67 static int state_if_part[] = {
68     AU_DBUF_FIRST, AU_DBUF_MIDDLE, AU_DBUF_MIDDLE, AU_DBUF_FIRST};
69 static int state_if_not_part[] = {
70     AU_DBUF_COMPLETE, AU_DBUF_LAST, AU_DBUF_LAST, AU_DBUF_COMPLETE};
71 /*
72  * Write to an audit descriptor.
73  * Add the au_membuf to the descriptor chain and free the chain passed in.
74  */
75 void
76 au_uwrite(m)
77 	token_t *m;
78 {
79 	au_write(&(u_ad), m);
80 }
81 
82 void
83 au_write(caddr_t *d, token_t *m)
84 {
85 	if (d == NULL) {
86 		au_toss_token(m);
87 		return;
88 	}
89 	if (m == (token_t *)0) {
90 		printf("au_write: null token\n");
91 		return;
92 	}
93 
94 	if (*d == NULL)
95 		*d = (caddr_t)m;
96 	else
97 		(void) au_append_rec((au_buff_t *)*d, m, AU_PACK);
98 }
99 #define	AU_INTERVAL 120
100 
101 /*
102  * Write audit information to the disk.
103  * Called from auditsvc(); EOL'd as of Sol 10.
104  * Local zones are not allowed; the caller (auditsvc()) enforces the
105  * restriction.
106  */
107 int
108 au_doio(vp, limit)
109 
110 	struct vnode *vp;
111 	int limit;
112 
113 {	/* AU_DOIO */
114 
115 	off_t		off;	/* space used in buffer */
116 	size_t		used;	/* space used in au_membuf */
117 	token_t		*cAR;	/* current AR being processed */
118 	token_t		*cMB;	/* current au_membuf being processed */
119 	token_t		*sp;	/* last AR processed */
120 	char		*bp;	/* start of free space in staging buffer */
121 	unsigned char	*cp;	/* ptr to data to be moved */
122 	au_kcontext_t	*kctx;
123 	/*
124 	 * size (data left in au_membuf - space in buffer)
125 	 */
126 	ssize_t		sz;
127 	ssize_t		len;	/* len of data to move, size of AR */
128 	int		error;	/* error return */
129 	ssize_t		left;	/* data not xfered by write to disk */
130 	statvfs64_t	sb;	/* buffer for statfs */
131 	size_t		curr_sz = 0;	/* amount of data written during now */
132 	int		part    = 0;	/* partial audit record written */
133 	int		partial = 0;	/* flag to force partial AR to file */
134 					/* 0 - idle, ignore */
135 					/* 1 - force write of audit record */
136 					/* 2 - finished writing AR, commit */
137 
138 	kctx = GET_KCTX_GZ;
139 
140 	/*
141 	 * Check to ensure enough free space on audit device.
142 	 */
143 	bzero(&sb, sizeof (statvfs64_t));
144 	(void) VFS_STATVFS(vp->v_vfsp, &sb);
145 	/*
146 	 * Large Files: We do not convert any of this part of kernel
147 	 * to be large file aware. Original behaviour should be
148 	 * maintained. This function is called from audit_svc and
149 	 * it already checks for negative values of limit.
150 	 */
151 
152 	if (sb.f_blocks && (fsblkcnt64_t)limit > sb.f_bavail)
153 		return (ENOSPC);
154 
155 	if (kctx->auk_file_stat.af_filesz &&
156 		(kctx->auk_file_stat.af_currsz >=
157 		kctx->auk_file_stat.af_filesz))
158 		return (EFBIG);
159 
160 	/*
161 	 * has the write buffer changed length due to a auditctl(2)?
162 	 * (remember that auk_buffer is an element of auk_dbuffer)
163 	 */
164 	if (kctx->auk_queue.bufsz != kctx->auk_queue.buflen) {
165 
166 		kmem_free(kctx->auk_buffer, kctx->auk_queue.buflen);
167 
168 		/* bad, should not sleep here. Testing only */
169 		kctx->auk_buffer = kmem_alloc(kctx->auk_queue.bufsz, KM_SLEEP);
170 
171 		kctx->auk_queue.buflen = kctx->auk_queue.bufsz;
172 	}
173 
174 	if (!kctx->auk_queue.head) {
175 		goto nodata;
176 	}
177 	sp   = (token_t *)0; /* no AR copied */
178 	off  = 0;	/* no space used in buffer */
179 	used = 0;	/* no data processed in au_membuf */
180 	cAR  = kctx->auk_queue.head;	/* start at head of queue */
181 	cMB  = cAR;	/* start with first au_membuf of record */
182 	bp = &(kctx->auk_buffer[0]);	/* start at beginning of buffer */
183 
184 	while (cMB) {
185 		ASSERT(kctx->auk_queue.head != NULL);
186 
187 		/* indicate audit record being processed */
188 		part = 1;
189 
190 		/* pointer to buffer data */
191 		cp  = memtod(cMB, unsigned char *);
192 		/* data left in au_membuf */
193 		sz  = (ssize_t)cMB->len - used;
194 		/* len to move */
195 		len = (ssize_t)MIN(sz, kctx->auk_queue.buflen - off);
196 
197 		/* move the data */
198 		bcopy(cp + used, bp + off, len);
199 		used += len; /* update used au_membuf */
200 		off  += len; /* update offset into buffer */
201 
202 		if (used >= (ssize_t)cMB->len) {
203 			/* advance to next au_membuf */
204 			used = 0;
205 			cMB  = cMB->next_buf;
206 		}
207 		if (cMB == (au_buff_t *)0) {
208 			/* advance to next AR */
209 			sp   = cAR;
210 			cAR  = cAR->next_rec;
211 			cMB  = cAR;
212 			/* reached end of an audit record */
213 			part = 0;
214 			/* force abort at end of audit record? */
215 			if (partial == 1)
216 				partial = 2;
217 		}
218 		/*
219 		 * If we've reached end of buffer, or have run out of
220 		 * audit records on the queue or we've processed a
221 		 * partial audit record to complete the audit file,
222 		 * then its time to flush the holding buffer to the
223 		 * audit trail.
224 		 */
225 		if ((kctx->auk_queue.buflen == off) ||
226 		    (cAR == (au_buff_t *)0) ||
227 		    (partial == 2)) {
228 
229 			left = 0;
230 			/*
231 			 * Largefiles: We purposely pass a value of
232 			 * MAXOFF_T as we do not want any of the
233 			 * auditing files to exceed 2GB. May be we will
234 			 * support this in future.
235 			 */
236 			error = vn_rdwr(UIO_WRITE, vp, kctx->auk_buffer,
237 				off, 0LL, UIO_SYSSPACE, FAPPEND,
238 				(rlim64_t)MAXOFF_T, CRED(), &left);
239 
240 			/* error on write */
241 			if (error != 0) {
242 				if (error == EDQUOT)
243 					error = ENOSPC;
244 				return (error);
245 			}
246 
247 			/* end of file system? */
248 			if (left) {
249 				au_buff_t *b = NULL;
250 
251 				sz = off - left; /* how much written */
252 
253 				/* update space counters */
254 				kctx->auk_file_stat.af_currsz += sz;
255 
256 				/* which AR are done */
257 				cAR = kctx->auk_queue.head;
258 				while (sz) {
259 					cp  = memtod(cAR, unsigned char *);
260 					len = (ssize_t)((cp[1]<<24 | cp[2]<<16 |
261 						cp[3]<<8 | cp[4]) &
262 						0xffffffffU);
263 
264 					if (len > sz)
265 						break;
266 					b = cAR;
267 					cAR = cAR->next_rec;
268 					sz -= len;
269 				}
270 				if (b != NULL)
271 					au_dequeue(kctx, b);
272 
273 				return (ENOSPC);
274 
275 			} else {	/* still space in file system */
276 				/* if we've written an AR */
277 				if (sp) {
278 					/*
279 					 * free records up to last one copied.
280 					 */
281 					au_dequeue(kctx, sp);
282 				}
283 				/* Update sizes */
284 				curr_sz += off;
285 				kctx->auk_file_stat.af_currsz += (uint_t)off;
286 
287 				/* reset auk_buffer pointers */
288 				sp = (token_t *)0;
289 				off  = 0;
290 				bp   = &(kctx->auk_buffer[0]);
291 
292 				/* check exit conditions */
293 				if (sb.f_blocks) {
294 					ulong_t blks_used;
295 					blks_used = (curr_sz / sb.f_bsize);
296 					if ((fsblkcnt64_t)limit >
297 				(sb.f_bavail - (fsblkcnt64_t)blks_used)) {
298 						/*
299 						 * if we haven't put out a
300 						 * complete audit record,
301 						 * continue to process the
302 						 * audit queue until we reach
303 						 * the end of the record.
304 						 */
305 						if (part && (partial == 0)) {
306 							partial = 1;
307 							continue;
308 						}
309 						/*
310 						 * exit if complete record
311 						 */
312 						if (partial != 1)
313 							return (ENOSPC);
314 					}
315 				}
316 				if (kctx->auk_file_stat.af_filesz &&
317 					(kctx->auk_file_stat.af_currsz
318 					>= kctx->auk_file_stat.af_filesz)) {
319 						/*
320 						 * force a complete audit
321 						 * record to the trail.
322 						 */
323 						if (partial == 0)
324 							partial = 1;
325 						/*
326 						 * Written data to AR boundry.
327 						 */
328 						if (partial != 1)
329 							return (EFBIG);
330 				}
331 			}
332 		}
333 	}	/* while(cMB) */
334 
335 nodata:
336 	return (0);
337 }
338 
339 /*
340  * Close an audit descriptor.
341  * Use the second parameter to indicate if it should be written or not.
342  */
343 void
344 au_close(au_kcontext_t *kctx, caddr_t *d, int flag, short e_type, short e_mod)
345 {
346 	token_t *dchain;	/* au_membuf chain which is the tokens */
347 	t_audit_data_t *tad = U2A(u);
348 
349 	ASSERT(tad != NULL);
350 	ASSERT(d != NULL);
351 	ASSERT(kctx != NULL);
352 
353 	if ((dchain = (token_t *)*d) == (token_t *)NULL)
354 		return;
355 
356 	*d = NULL;
357 
358 	/*
359 	 * If async then defer; or if requested, defer the closing/queueing to
360 	 * syscall end, unless no syscall is active or the syscall is _exit.
361 	 */
362 	if ((flag & AU_DONTBLOCK) || ((flag & AU_DEFER) &&
363 	    (tad->tad_scid != 0) && (tad->tad_scid != SYS_exit))) {
364 		au_close_defer(dchain, flag, e_type, e_mod);
365 		return;
366 	}
367 	au_close_time(kctx, dchain, flag, e_type, e_mod, NULL);
368 }
369 
370 /*
371  * Defer closing/queueing of an audit descriptor. For async events, queue
372  * via softcall. Otherwise, defer by queueing the record onto the tad; at
373  * syscall end time it will be pulled off.
374  */
375 void
376 au_close_defer(token_t *dchain, int flag, short e_type, short e_mod)
377 {
378 	au_defer_info_t	*attr;
379 	t_audit_data_t *tad = U2A(u);
380 
381 	ASSERT(tad != NULL);
382 
383 	/* If not to be written, toss the record. */
384 	if ((flag & AU_OK) == 0) {
385 		au_toss_token(dchain);
386 		return;
387 	}
388 
389 	attr = kmem_alloc(sizeof (au_defer_info_t), KM_NOSLEEP);
390 	/* If no mem available, failing silently is the best recourse */
391 	if (attr == NULL) {
392 		au_toss_token(dchain);
393 		return;
394 	}
395 
396 	attr->audi_next = NULL;
397 	attr->audi_ad = dchain;
398 	attr->audi_e_type = e_type;
399 	attr->audi_e_mod = e_mod;
400 	attr->audi_flag = flag;
401 	gethrestime(&attr->audi_atime);
402 
403 	/*
404 	 * All async events must be queued via softcall to avoid possible
405 	 * sleeping in high interrupt context. softcall will ensure it's
406 	 * done on a dedicated software-level interrupt thread.
407 	 */
408 	if (flag & AU_DONTBLOCK) {
409 		softcall(audit_async_finish_backend, attr);
410 		audit_async_done(NULL, 0);
411 		return;
412 	}
413 
414 	/*
415 	 * If not an async event, defer by queuing onto the tad until
416 	 * syscall end. No locking is needed because the tad is per-thread.
417 	 */
418 	if (tad->tad_defer_head)
419 		tad->tad_defer_tail->audi_next = attr;
420 	else
421 		tad->tad_defer_head = attr;
422 	tad->tad_defer_tail = attr;
423 }
424 
425 
426 /*
427  * Save the time in the event header. If time is not specified (i.e., pointer
428  * is NULL), use the current time.  This code is fairly ugly since it needs
429  * to support both 32- and 64-bit environments and can be called indirectly
430  * from both au_close() (for kernel audit) and from audit() (userland audit).
431  */
432 /*ARGSUSED*/
433 static void
434 au_save_time(adr_t *hadrp, timestruc_t *time, int size)
435 {
436 	struct {
437 		uint32_t sec;
438 		uint32_t usec;
439 	} tv;
440 	timestruc_t	now;
441 
442 	if (time == NULL) {
443 		gethrestime(&now);
444 		time = &now;
445 	}
446 
447 #ifdef _LP64
448 	if (size)
449 		adr_int64(hadrp, (int64_t *)time, 2);
450 	else
451 #endif
452 	{
453 		tv.sec = (uint32_t)time->tv_sec;
454 		tv.usec = (uint32_t)time->tv_nsec;
455 		adr_int32(hadrp, (int32_t *)&tv, 2);
456 	}
457 }
458 
459 
460 /*
461  * Close an audit descriptor.
462  * If time of event is specified, use it in the record, otherwise use the
463  * current time.
464  */
465 void
466 au_close_time(au_kcontext_t *kctx, token_t *dchain, int flag, short e_type,
467     short e_mod, timestruc_t *etime)
468 {
469 	token_t 	*record;	/* au_membuf chain == the record */
470 	int		byte_count;
471 	token_t 	*m;		/* for potential sequence token */
472 	adr_t		hadr;		/* handle for header token */
473 	adr_t		sadr;		/* handle for sequence token */
474 	size_t		zone_length;	/* length of zonename token */
475 
476 	ASSERT(dchain != NULL);
477 
478 	/* If not to be written, toss the record */
479 	if ((flag & AU_OK) == 0) {
480 		au_toss_token(dchain);
481 		return;
482 	}
483 	/* if auditing not enabled, then don't generate an audit record */
484 	ASSERT(kctx != NULL);
485 
486 	if ((kctx->auk_auditstate != AUC_AUDITING) &&
487 	    (kctx->auk_auditstate != AUC_INIT_AUDIT)) {
488 		/*
489 		 * at system boot, neither is set yet we want to generate
490 		 * an audit record.
491 		 */
492 		if (e_type != AUE_SYSTEMBOOT) {
493 			au_toss_token(dchain);
494 			return;
495 		}
496 	}
497 
498 	/* Count up the bytes used in the record. */
499 	byte_count = au_token_size(dchain);
500 
501 	/*
502 	 * add in size of header token (always present).
503 	 */
504 	byte_count += sizeof (char) + sizeof (int32_t) +
505 	    sizeof (char) + 2 * sizeof (short) + sizeof (timestruc_t);
506 
507 	if (kctx->auk_hostaddr_valid)
508 	    byte_count += sizeof (int32_t) + kctx->auk_info.ai_termid.at_type;
509 
510 	/*
511 	 * add in size of zonename token (zero if !AUDIT_ZONENAME)
512 	 */
513 	if (kctx->auk_policy & AUDIT_ZONENAME) {
514 		zone_length = au_zonename_length(NULL);
515 		byte_count += zone_length;
516 	} else {
517 		zone_length = 0;
518 	}
519 	/* add in size of (optional) trailer token */
520 	if (kctx->auk_policy & AUDIT_TRAIL)
521 		byte_count += 7;
522 
523 	/* add in size of (optional) sequence token */
524 	if (kctx->auk_policy & AUDIT_SEQ)
525 		byte_count += 5;
526 
527 	/* build the header */
528 	if (kctx->auk_hostaddr_valid)
529 		record = au_to_header_ex(byte_count, e_type, e_mod);
530 	else
531 		record = au_to_header(byte_count, e_type, e_mod);
532 
533 	/*
534 	 * If timestamp was specified, save it in header now. Otherwise,
535 	 * save reference to header so we can update time/data later
536 	 * and artificially adjust pointer to the time/date field of header.
537 	 */
538 	adr_start(&hadr, memtod(record, char *));
539 	hadr.adr_now += sizeof (char) + sizeof (int32_t) +
540 	    sizeof (char) + 2 * sizeof (short);
541 	if (kctx->auk_hostaddr_valid)
542 		hadr.adr_now += sizeof (int32_t) +
543 		    kctx->auk_info.ai_termid.at_type;
544 	if (etime != NULL) {
545 		au_save_time(&hadr, etime, 1);
546 		hadr.adr_now = (char *)NULL;
547 	}
548 
549 	/* append body of audit record */
550 	(void) au_append_rec(record, dchain, AU_PACK);
551 
552 	/* add (optional) zonename token */
553 	if (zone_length > 0) {
554 		m = au_to_zonename(zone_length, NULL);
555 		(void) au_append_rec(record, m, AU_PACK);
556 	}
557 
558 	/* Add an (optional) sequence token. NULL offset if none */
559 	if (kctx->auk_policy & AUDIT_SEQ) {
560 		/* get the sequence token */
561 		m = au_to_seq();
562 
563 		/* link to audit record (i.e. don't pack the data) */
564 		(void) au_append_rec(record, m, AU_LINK);
565 
566 		/*
567 		 * advance to count field of sequence token by skipping
568 		 * the token type byte.
569 		 */
570 		adr_start(&sadr, memtod(m, char *));
571 		sadr.adr_now += 1;
572 	} else {
573 		sadr.adr_now = NULL;
574 	}
575 	/* add (optional) trailer token */
576 	if (kctx->auk_policy & AUDIT_TRAIL) {
577 		(void) au_append_rec(record, au_to_trailer(byte_count),
578 		    AU_PACK);
579 	}
580 
581 	/*
582 	 * 1 - use 64 bit version of audit tokens for 64 bit kernels.
583 	 * 0 - use 32 bit version of audit tokens for 32 bit kernels.
584 	 */
585 #ifdef _LP64
586 	au_enqueue(kctx, record, &hadr, &sadr, 1, flag & AU_DONTBLOCK);
587 #else
588 	au_enqueue(kctx, record, &hadr, &sadr, 0, flag & AU_DONTBLOCK);
589 #endif
590 	AS_INC(as_totalsize, byte_count, kctx);
591 }
592 
593 /*ARGSUSED*/
594 void
595 au_enqueue(au_kcontext_t *kctx, au_buff_t *m, adr_t *hadrp, adr_t *sadrp,
596     int size, int dontblock)
597 {
598 	if (kctx == NULL)
599 		return;
600 
601 	mutex_enter(&(kctx->auk_queue.lock));
602 
603 	if (!dontblock && (kctx->auk_queue.cnt >= kctx->auk_queue.hiwater) &&
604 	    audit_sync_block(kctx)) {
605 		mutex_exit(&(kctx->auk_queue.lock));
606 		au_free_rec(m);
607 		return;
608 	}
609 
610 	/* Fill in date and time if needed */
611 	if (hadrp->adr_now) {
612 		au_save_time(hadrp, NULL, size);
613 	}
614 
615 	/* address will be non-zero only if AUDIT_SEQ set */
616 	if (sadrp->adr_now) {
617 		kctx->auk_sequence++;
618 		adr_int32(sadrp, (int32_t *)&(kctx->auk_sequence), 1);
619 	}
620 
621 	if (kctx->auk_queue.head)
622 		kctx->auk_queue.tail->next_rec = m;
623 	else
624 		kctx->auk_queue.head = m;
625 
626 	kctx->auk_queue.tail = m;
627 
628 	if (++(kctx->auk_queue.cnt) >
629 	    kctx->auk_queue.lowater && kctx->auk_queue.rd_block)
630 		cv_broadcast(&(kctx->auk_queue.read_cv));
631 
632 	mutex_exit(&(kctx->auk_queue.lock));
633 
634 	/* count # audit records put onto kernel audit queue */
635 	AS_INC(as_enqueue, 1, kctx);
636 }
637 
638 /*
639  * Dequeue and free buffers upto and including "freeto"
640  * Keeps the queue lock long but acquires it only once when doing
641  * bulk dequeueing.
642  */
643 static void
644 au_dequeue(au_kcontext_t *kctx, au_buff_t *freeto)
645 {
646 	au_buff_t *m, *l, *lastl;
647 	int n = 0;
648 
649 	ASSERT(kctx != NULL);
650 
651 	mutex_enter(&(kctx->auk_queue.lock));
652 
653 	ASSERT(kctx->auk_queue.head != NULL);
654 	ASSERT(freeto != NULL);
655 
656 	l = m = kctx->auk_queue.head;
657 
658 	do {
659 		n++;
660 		lastl = l;
661 		l = l->next_rec;
662 	} while (l != NULL && freeto != lastl);
663 
664 	kctx->auk_queue.cnt -= n;
665 	lastl->next_rec = NULL;
666 	kctx->auk_queue.head = l;
667 
668 	/* Freeto must exist in the list */
669 	ASSERT(freeto == lastl);
670 
671 	if (kctx->auk_queue.cnt <= kctx->auk_queue.lowater &&
672 	    kctx->auk_queue.wt_block)
673 		cv_broadcast(&(kctx->auk_queue.write_cv));
674 
675 	mutex_exit(&(kctx->auk_queue.lock));
676 
677 	while (m) {
678 		l = m->next_rec;
679 		au_free_rec(m);
680 		m = l;
681 	}
682 	AS_INC(as_written, n, kctx);
683 }
684 
685 /*
686  * audit_sync_block()
687  * If we've reached the high water mark, we look at the policy to see
688  * if we sleep or we should drop the audit record.
689  * This function is called with the auk_queue.lock held and the check
690  * performed one time already as an optimization.  Caller should unlock.
691  * Returns 1 if the caller needs to free the record.
692  */
693 static int
694 audit_sync_block(au_kcontext_t *kctx)
695 {
696 	ASSERT(MUTEX_HELD(&(kctx->auk_queue.lock)));
697 	/*
698 	 * Loop while we are at the high watermark.
699 	 */
700 	do {
701 		if ((kctx->auk_auditstate != AUC_AUDITING) ||
702 		    (kctx->auk_policy & AUDIT_CNT)) {
703 
704 			/* just count # of dropped audit records */
705 			AS_INC(as_dropped, 1, kctx);
706 
707 			return (1);
708 		}
709 
710 		/* kick reader awake if its asleep */
711 		if (kctx->auk_queue.rd_block &&
712 		    kctx->auk_queue.cnt > kctx->auk_queue.lowater)
713 			cv_broadcast(&(kctx->auk_queue.read_cv));
714 
715 		/* keep count of # times blocked */
716 		AS_INC(as_wblocked, 1, kctx);
717 
718 		/* sleep now, until woken by reader */
719 		kctx->auk_queue.wt_block++;
720 		cv_wait(&(kctx->auk_queue.write_cv), &(kctx->auk_queue.lock));
721 		kctx->auk_queue.wt_block--;
722 	} while (kctx->auk_queue.cnt >= kctx->auk_queue.hiwater);
723 
724 	return (0);
725 }
726 
727 /*
728  * audit_async_block()
729  * if we've reached the high water mark, we look at the ahlt policy to see
730  * if we reboot we should drop the audit record.
731  * Returns 1 if blocked.
732  */
733 static int
734 audit_async_block(au_kcontext_t *kctx, caddr_t *rpp)
735 {
736 	ASSERT(kctx != NULL);
737 
738 	mutex_enter(&(kctx->auk_queue.lock));
739 	/* see if we've reached high water mark */
740 	if (kctx->auk_queue.cnt >= kctx->auk_queue.hiwater) {
741 		mutex_exit(&(kctx->auk_queue.lock));
742 
743 		audit_async_drop(rpp, AU_BACKEND);
744 		return (1);
745 	}
746 	mutex_exit(&(kctx->auk_queue.lock));
747 	return (0);
748 }
749 
750 /*
751  * au_door_upcall.  auditdoor() may change vp without notice, so
752  * some locking seems in order.
753  *
754  */
755 #define	AGAIN_TICKS	10
756 
757 static int
758 au_door_upcall(au_kcontext_t *kctx, au_dbuf_t *aubuf)
759 {
760 	int		rc;
761 	door_arg_t	darg;
762 	int		retry = 1;
763 	int		ticks_to_wait;
764 
765 	darg.data_ptr = (char *)aubuf;
766 	darg.data_size = AU_DBUF_HEADER + aubuf->aub_size;
767 
768 	darg.desc_ptr = NULL;
769 	darg.desc_num = 0;
770 
771 	while (retry == 1) {
772 		/* non-zero means return results expected */
773 		darg.rbuf = (char *)aubuf;
774 		darg.rsize = darg.data_size;
775 
776 		retry = 0;
777 		mutex_enter(&(kctx->auk_svc_lock));
778 		if ((rc = door_upcall(kctx->auk_current_vp, &darg)) != 0) {
779 			mutex_exit(&(kctx->auk_svc_lock));
780 			if (rc == EAGAIN)
781 				ticks_to_wait = AGAIN_TICKS;
782 			else
783 				return (rc);
784 
785 			mutex_enter(&(kctx->auk_eagain_mutex));
786 			(void) cv_timedwait(&(kctx->auk_eagain_cv),
787 			    &(kctx->auk_eagain_mutex),
788 			    lbolt + ticks_to_wait);
789 			mutex_exit(&(kctx->auk_eagain_mutex));
790 
791 			retry = 1;
792 		} else
793 			mutex_exit(&(kctx->auk_svc_lock));	/* no retry */
794 	}	/* end while (retry == 1) */
795 	if (darg.rbuf == NULL)
796 		return (-1);
797 
798 	/* return code from door server */
799 	return (*(int *)darg.rbuf);
800 }
801 
802 /*
803  * Write an audit control message to the door handle.  The message
804  * structure depends on message_code and at present the only control
805  * message defined is for a policy change.  These are infrequent,
806  * so no memory is held for control messages.
807  */
808 int
809 au_doormsg(au_kcontext_t *kctx, uint32_t message_code, void *message)
810 {
811 	int		rc;
812 	au_dbuf_t	*buf;
813 	size_t		alloc_size;
814 
815 	switch (message_code) {
816 	case AU_DBUF_POLICY:
817 		alloc_size = AU_DBUF_HEADER + sizeof (uint32_t);
818 		buf = kmem_alloc(alloc_size, KM_SLEEP);
819 		buf->aub_size = sizeof (uint32_t);
820 		*(uint32_t *)buf->aub_buf = *(uint32_t *)message;
821 		break;
822 	case AU_DBUF_SHUTDOWN:
823 		alloc_size = AU_DBUF_HEADER;
824 		buf = kmem_alloc(alloc_size, KM_SLEEP);
825 		buf->aub_size = 0;
826 		break;
827 	default:
828 		return (1);
829 	}
830 
831 	buf->aub_type = AU_DBUF_NOTIFY | message_code;
832 	rc = au_door_upcall(kctx, buf);
833 	kmem_free(buf, alloc_size);
834 
835 	return (rc);
836 }
837 
838 /*
839  * Write audit information to the door handle.  au_doorio is called with
840  * one or more complete audit records on the queue and outputs those
841  * records in buffers of up to auk_queue.buflen in size.
842  */
843 int
844 au_doorio(au_kcontext_t *kctx) {
845 	off_t		off;	/* space used in buffer */
846 	ssize_t		used;	/* space used in au_membuf */
847 	token_t		*cAR;	/* current AR being processed */
848 	token_t		*cMB;	/* current au_membuf being processed */
849 	token_t		*sp;	/* last AR processed */
850 	char		*bp;	/* start of free space in staging buffer */
851 	unsigned char	*cp;	/* ptr to data to be moved */
852 	int		error;  /* return from door upcall */
853 
854 	/*
855 	 * size (data left in au_membuf - space in buffer)
856 	 */
857 	ssize_t		sz;
858 	ssize_t		len;	/* len of data to move, size of AR */
859 	ssize_t		curr_sz = 0;	/* amount of data written during now */
860 	/*
861 	 * partial_state is AU_DBUF_COMPLETE...LAST; see audit_door_infc.h
862 	 */
863 	int		part    = 0;	/* partial audit record written */
864 	int		partial_state = AU_DBUF_COMPLETE;
865 	/*
866 	 * Has the write buffer changed length due to a auditctl(2)?
867 	 * Initial allocation is from audit_start.c/audit_init()
868 	 */
869 	if (kctx->auk_queue.bufsz != kctx->auk_queue.buflen) {
870 		kmem_free(kctx->auk_dbuffer, AU_DBUF_HEADER +
871 		    kctx->auk_queue.buflen);
872 
873 		kctx->auk_dbuffer = kmem_alloc(AU_DBUF_HEADER +
874 		    kctx->auk_queue.bufsz, KM_SLEEP);
875 
876 		/* omit the 64 bit header */
877 		kctx->auk_queue.buflen = kctx->auk_queue.bufsz;
878 	}
879 	if (!kctx->auk_queue.head)
880 		goto nodata;
881 
882 	sp   = NULL;	/* no record copied */
883 	off  = 0;	/* no space used in buffer */
884 	used = 0;	/* no data processed in au_membuf */
885 	cAR  = kctx->auk_queue.head;	/* start at head of queue */
886 	cMB  = cAR;	/* start with first au_membuf of record */
887 
888 	/* start at beginning of buffer */
889 	bp   = &(kctx->auk_dbuffer->aub_buf[0]);
890 
891 	while (cMB) {
892 		part = 1;	/* indicate audit record being processed */
893 
894 		cp  = memtod(cMB, unsigned char *); /* buffer ptr */
895 
896 		sz  = (ssize_t)cMB->len - used;	/* data left in au_membuf */
897 		/* len to move */
898 		len = (ssize_t)MIN(sz, kctx->auk_queue.buflen - off);
899 
900 		/* move the data */
901 		bcopy(cp + used, bp + off, len);
902 		used += len; /* update used au_membuf */
903 		off  += len; /* update offset into buffer */
904 
905 		if (used >= (ssize_t)cMB->len) {
906 			/* advance to next au_membuf */
907 			used = 0;
908 			cMB  = cMB->next_buf;
909 		}
910 		if (cMB == NULL) {
911 			/* advance to next audit record */
912 			sp   = cAR;
913 			cAR  = cAR->next_rec;
914 			cMB  = cAR;
915 			part = 0;	/* have a complete record */
916 		}
917 		error = 0;
918 		if ((kctx->auk_queue.buflen == off) || (part == 0)) {
919 			if (part)
920 				partial_state = state_if_part[partial_state];
921 			else
922 				partial_state =
923 				    state_if_not_part[partial_state];
924 
925 			kctx->auk_dbuffer->aub_type = partial_state;
926 			kctx->auk_dbuffer->aub_size = off;
927 			error = au_door_upcall(kctx, kctx->auk_dbuffer);
928 			if (error != 0)
929 				goto nodata;
930 			/*
931 			 * if we've successfully written an audit record,
932 			 * free records up to last full record copied
933 			 */
934 			if (sp)
935 				au_dequeue(kctx, sp);
936 
937 				/* Update size */
938 			curr_sz += off;
939 
940 				/* reset auk_dbuffer pointers */
941 			sp = NULL;
942 			off  = 0;
943 		}
944 	}	/* while(cMB) */
945 nodata:
946 	return (error);
947 }
948 
949 /*
950  * Clean up thread audit state to clear out asynchronous audit record
951  * generation error recovery processing. Note that this is done on a
952  * per-thread basis and thus does not need any locking.
953  */
954 void
955 audit_async_done(caddr_t *rpp, int flags)
956 {
957 	t_audit_data_t *tad = U2A(u);
958 
959 	/* clean up the tad unless called from softcall backend */
960 	if (!(flags & AU_BACKEND)) {
961 		ASSERT(tad != NULL);
962 		ASSERT(tad->tad_ctrl & PAD_ERRJMP);
963 
964 		tad->tad_ctrl &= ~PAD_ERRJMP;
965 		tad->tad_errjmp = NULL;
966 	}
967 
968 	/* clean out partial audit record */
969 	if ((rpp != NULL) && (*rpp != NULL)) {
970 		au_toss_token((au_buff_t *)*rpp);
971 		*rpp = NULL;
972 	}
973 }
974 
975 /*
976  * implement the audit policy for asynchronous events generated within
977  * the kernel.
978  * XXX might need locks around audit_policy check.
979  */
980 void
981 audit_async_drop(caddr_t *rpp, int flags)
982 {
983 	au_kcontext_t	*kctx;
984 
985 	/* could not generate audit record, clean up */
986 	audit_async_done((caddr_t *)rpp, flags);
987 
988 	kctx = GET_KCTX_GZ;
989 
990 	/* just drop the record and return */
991 	if (((audit_policy & AUDIT_AHLT) == 0) ||
992 	    (kctx->auk_auditstate == AUC_INIT_AUDIT)) {
993 		/* just count # of dropped audit records */
994 		AS_INC(as_dropped, 1, kctx);
995 		return;
996 	}
997 
998 	/*
999 	 * There can be a lot of data in the audit queue. We
1000 	 * will first sync the file systems then attempt to
1001 	 * shutdown the kernel so that a memory dump is
1002 	 * performed.
1003 	 */
1004 	sync();
1005 	sync();
1006 
1007 	/*
1008 	 * now shut down. What a cruel world it has been
1009 	 */
1010 	panic("non-attributable halt. should dump core");
1011 	/* No return */
1012 }
1013 
1014 int
1015 audit_async_start(label_t *jb, int event, int sorf)
1016 {
1017 	t_audit_data_t *tad = U2A(u);
1018 	au_state_t estate;
1019 	int success = 0, failure = 0;
1020 	au_kcontext_t	*kctx = GET_KCTX_GZ;
1021 
1022 	/* if audit state off, then no audit record generation */
1023 	if ((kctx->auk_auditstate != AUC_AUDITING) &&
1024 	    (kctx->auk_auditstate != AUC_INIT_AUDIT))
1025 		return (1);
1026 
1027 	/*
1028 	 * preselect asynchronous event
1029 	 * XXX should we check for out-of-range???
1030 	 */
1031 	estate = kctx->auk_ets[event];
1032 
1033 	if (sorf & AUM_SUCC)
1034 		success = kctx->auk_info.ai_mask.as_success & estate;
1035 	if (sorf & AUM_FAIL)
1036 		failure = kctx->auk_info.ai_mask.as_failure & estate;
1037 
1038 	if ((success | failure) == NULL)
1039 		return (1);
1040 
1041 	ASSERT(tad->tad_errjmp == NULL);
1042 	tad->tad_errjmp = (void *)jb;
1043 	tad->tad_ctrl |= PAD_ERRJMP;
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Complete auditing of an async event. The AU_DONTBLOCK flag to au_close will
1050  * result in the backend routine being invoked from softcall, so all the real
1051  * work can be done in a safe context.
1052  */
1053 void
1054 audit_async_finish(caddr_t *ad, int aid, int amod)
1055 {
1056 	au_kcontext_t	*kctx;
1057 
1058 	kctx  = GET_KCTX_GZ;
1059 
1060 	au_close(kctx, ad, AU_DONTBLOCK | AU_OK, aid, PAD_NONATTR|amod);
1061 }
1062 
1063 /*
1064  * Backend routine to complete an async audit. Invoked from softcall.
1065  * (Note: the blocking and the queuing below both involve locking which can't
1066  * be done safely in high interrupt context due to the chance of sleeping on
1067  * the corresponding adaptive mutex. Hence the softcall.)
1068  */
1069 static void
1070 audit_async_finish_backend(void *addr)
1071 {
1072 	au_kcontext_t	*kctx;
1073 	au_defer_info_t	*attr = (au_defer_info_t *)addr;
1074 
1075 	if (attr == NULL)
1076 		return;		/* won't happen unless softcall is broken */
1077 
1078 	kctx  = GET_KCTX_GZ;
1079 
1080 	if (audit_async_block(kctx, (caddr_t *)&attr->audi_ad)) {
1081 		kmem_free(attr, sizeof (au_defer_info_t));
1082 		return;
1083 	}
1084 
1085 	/*
1086 	 * Call au_close_time to complete the audit with the saved values.
1087 	 *
1088 	 * For the exit-prom event, use the current time instead of the
1089 	 * saved time as a better approximation. (Because the time saved via
1090 	 * gethrestime during prom-exit handling would not yet be caught up
1091 	 * after the system was idled in the debugger for a period of time.)
1092 	 */
1093 	if (attr->audi_e_type == AUE_EXITPROM) {
1094 		au_close_time(kctx, (token_t *)attr->audi_ad, attr->audi_flag,
1095 		    attr->audi_e_type, attr->audi_e_mod, NULL);
1096 	} else {
1097 		au_close_time(kctx, (token_t *)attr->audi_ad, attr->audi_flag,
1098 		    attr->audi_e_type, attr->audi_e_mod, &attr->audi_atime);
1099 	}
1100 
1101 	AS_INC(as_generated, 1, kctx);
1102 	AS_INC(as_nonattrib, 1, kctx);
1103 
1104 	kmem_free(attr, sizeof (au_defer_info_t));
1105 }
1106