xref: /titanic_50/usr/src/tools/ctf/cvt/merge.c (revision 507c32411f3f101e90ca2120f042b5ee698ba1d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains routines that merge one tdata_t tree, called the child,
31  * into another, called the parent.  Note that these names are used mainly for
32  * convenience and to represent the direction of the merge.  They are not meant
33  * to imply any relationship between the tdata_t graphs prior to the merge.
34  *
35  * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
36  * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
37  * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
38  * clean up loose ends.
39  *
40  * The algorithm is as follows:
41  *
42  * 1. Mapping iidesc_t nodes
43  *
44  * For each child iidesc_t node, we first try to map its tdesc_t subgraph
45  * against the tdesc_t graph in the parent.  For each node in the child subgraph
46  * that exists in the parent, a mapping between the two (between their type IDs)
47  * is established.  For the child nodes that cannot be mapped onto existing
48  * parent nodes, a mapping is established between the child node ID and a
49  * newly-allocated ID that the node will use when it is re-created in the
50  * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
51  * Added) hash, which tracks nodes that need to be created in the parent.
52  *
53  * If all of the nodes in the subgraph for an iidesc_t in the child can be
54  * mapped to existing nodes in the parent, then we can try to map the child
55  * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
56  * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
57  * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
58  * list tracks iidesc_t nodes that are to be created in the parent.
59  *
60  * While visiting the tdesc_t nodes, we may discover a forward declaration (a
61  * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
62  * may be a structure or union definition in the child with the same name as the
63  * forward declaration in the parent.  If we find such a node, we record an
64  * association in the md_fdida (Forward => Definition ID Association) list
65  * between the parent ID of the forward declaration and the ID that the
66  * definition will use when re-created in the parent.
67  *
68  * 2. Creating new tdesc_t nodes (the md_tdtba hash)
69  *
70  * We have now attempted to map all tdesc_t nodes from the child into the
71  * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
72  * created (or, as we so wittily call it, conjured) in the parent.  We iterate
73  * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
74  * node, conjuring requires two steps - the copying of the common tdesc_t data
75  * (name, type, etc) from the child node, and the creation of links from the
76  * newly-created node to the parent equivalents of other tdesc_t nodes pointed
77  * to by node being conjured.  Note that in some cases, the targets of these
78  * links will be on the md_tdtba hash themselves, and may not have been created
79  * yet.  As such, we can't establish the links from these new nodes into the
80  * parent graph.  We therefore conjure them with links to nodes in the *child*
81  * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
82  * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
83  * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
84  *
85  * 3. Creating new iidesc_t nodes (the md_iitba list)
86  *
87  * When we have completed step 2, all tdesc_t nodes have been created (or
88  * already existed) in the parent.  Some of them may have incorrect links (the
89  * members of the md_tdtbr list), but they've all been created.  As such, we can
90  * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
91  * pointers correctly.  We create each node, and attach the pointers to the
92  * appropriate parts of the parent tdesc_t graph.
93  *
94  * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
95  *
96  * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
97  * created.  Each entry in the md_tdtbr list is a pointer to where a link into
98  * the parent will be established.  As saved in the md_tdtbr list, these
99  * pointers point into the child tdesc_t subgraph.  We can thus get the target
100  * type ID from the child, look at the ID mapping to determine the desired link
101  * target, and redirect the link accordingly.
102  *
103  * 5. Parent => child forward declaration resolution
104  *
105  * If entries were made in the md_fdida list in step 1, we have forward
106  * declarations in the parent that need to be resolved to their definitions
107  * re-created in step 2 from the child.  Using the md_fdida list, we can locate
108  * the definition for the forward declaration, and we can redirect all inbound
109  * edges to the forward declaration node to the actual definition.
110  *
111  * A pox on the house of anyone who changes the algorithm without updating
112  * this comment.
113  */
114 
115 #include <stdio.h>
116 #include <strings.h>
117 #include <assert.h>
118 #include <pthread.h>
119 
120 #include "ctf_headers.h"
121 #include "ctftools.h"
122 #include "list.h"
123 #include "alist.h"
124 #include "memory.h"
125 #include "traverse.h"
126 
127 typedef struct equiv_data equiv_data_t;
128 typedef struct merge_cb_data merge_cb_data_t;
129 
130 /*
131  * There are two traversals in this file, for equivalency and for tdesc_t
132  * re-creation, that do not fit into the tdtraverse() framework.  We have our
133  * own traversal mechanism and ops vector here for those two cases.
134  */
135 typedef struct tdesc_ops {
136 	char *name;
137 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
138 	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
139 } tdesc_ops_t;
140 extern tdesc_ops_t tdesc_ops[];
141 
142 /*
143  * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
144  * processed during various phases of the merge algorithm.
145  */
146 struct merge_cb_data {
147 	tdata_t *md_parent;
148 	tdata_t *md_tgt;
149 	alist_t *md_ta;		/* Type Association */
150 	alist_t *md_fdida;	/* Forward -> Definition ID Association */
151 	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
152 	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
153 	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
154 	int md_flags;
155 }; /* merge_cb_data_t */
156 
157 /*
158  * When we first create a tdata_t from stabs data, we will have duplicate nodes.
159  * Normal merges, however, assume that the child tdata_t is already self-unique,
160  * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
161  * the merge algorithm will self-uniquify by avoiding the insertion of
162  * duplicates in the md_tdtdba list.
163  */
164 #define	MCD_F_SELFUNIQUIFY	0x1
165 
166 /*
167  * When we merge the CTF data for the modules, we don't want it to contain any
168  * data that can be found in the reference module (usually genunix).  If this
169  * flag is set, we're doing a merge between the fully merged tdata_t for this
170  * module and the tdata_t for the reference module, with the data unique to this
171  * module ending up in a third tdata_t.  It is this third tdata_t that will end
172  * up in the .SUNW_ctf section for the module.
173  */
174 #define	MCD_F_REFMERGE	0x2
175 
176 /*
177  * Mapping of child type IDs to parent type IDs
178  */
179 
180 static void
181 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
182 {
183 	debug(3, "Adding mapping %u => %u\n", srcid, tgtid);
184 
185 	assert(!alist_find(ta, (void *)srcid, NULL));
186 	assert(srcid != 0 && tgtid != 0);
187 
188 	alist_add(ta, (void *)srcid, (void *)tgtid);
189 }
190 
191 static tid_t
192 get_mapping(alist_t *ta, int srcid)
193 {
194 	long ltgtid;
195 
196 	if (alist_find(ta, (void *)srcid, (void **)&ltgtid))
197 		return ((int)ltgtid);
198 	else
199 		return (0);
200 }
201 
202 /*
203  * Determining equivalence of tdesc_t subgraphs
204  */
205 
206 struct equiv_data {
207 	alist_t *ed_ta;
208 	tdesc_t *ed_node;
209 	tdesc_t *ed_tgt;
210 
211 	int ed_clear_mark;
212 	int ed_cur_mark;
213 	int ed_selfuniquify;
214 }; /* equiv_data_t */
215 
216 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
217 
218 /*ARGSUSED2*/
219 static int
220 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
221 {
222 	intr_t *si = stdp->t_intr;
223 	intr_t *ti = ttdp->t_intr;
224 
225 	if (si->intr_type != ti->intr_type ||
226 	    si->intr_signed != ti->intr_signed ||
227 	    si->intr_offset != ti->intr_offset ||
228 	    si->intr_nbits != ti->intr_nbits)
229 		return (0);
230 
231 	if (si->intr_type == INTR_INT &&
232 	    si->intr_iformat != ti->intr_iformat)
233 		return (0);
234 	else if (si->intr_type == INTR_REAL &&
235 	    si->intr_fformat != ti->intr_fformat)
236 		return (0);
237 
238 	return (1);
239 }
240 
241 static int
242 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
243 {
244 	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
245 }
246 
247 static int
248 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
249 {
250 	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
251 	int i;
252 
253 	if (fn1->fn_nargs != fn2->fn_nargs ||
254 	    fn1->fn_vargs != fn2->fn_vargs)
255 		return (0);
256 
257 	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
258 		return (0);
259 
260 	for (i = 0; i < fn1->fn_nargs; i++) {
261 		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
262 			return (0);
263 	}
264 
265 	return (1);
266 }
267 
268 static int
269 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
270 {
271 	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
272 
273 	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
274 	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
275 		return (0);
276 
277 	if (ar1->ad_nelems != ar2->ad_nelems)
278 		return (0);
279 
280 	return (1);
281 }
282 
283 static int
284 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
285 {
286 	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
287 	mlist_t *olm1 = NULL;
288 
289 	while (ml1 && ml2) {
290 		if (ml1->ml_offset != ml2->ml_offset ||
291 		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
292 			return (0);
293 
294 		/*
295 		 * Don't do the recursive equivalency checking more than
296 		 * we have to.
297 		 */
298 		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
299 			if (ml1->ml_size != ml2->ml_size ||
300 			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
301 				return (0);
302 		}
303 
304 		olm1 = ml1;
305 		ml1 = ml1->ml_next;
306 		ml2 = ml2->ml_next;
307 	}
308 
309 	if (ml1 || ml2)
310 		return (0);
311 
312 	return (1);
313 }
314 
315 /*ARGSUSED2*/
316 static int
317 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
318 {
319 	elist_t *el1 = stdp->t_emem;
320 	elist_t *el2 = ttdp->t_emem;
321 
322 	while (el1 && el2) {
323 		if (el1->el_number != el2->el_number ||
324 		    strcmp(el1->el_name, el2->el_name) != 0)
325 			return (0);
326 
327 		el1 = el1->el_next;
328 		el2 = el2->el_next;
329 	}
330 
331 	if (el1 || el2)
332 		return (0);
333 
334 	return (1);
335 }
336 
337 /*ARGSUSED*/
338 static int
339 equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
340 {
341 	/* foul, evil, and very bad - this is a "shouldn't happen" */
342 	assert(1 == 0);
343 
344 	return (0);
345 }
346 
347 static int
348 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
349 {
350 	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
351 
352 	return (defn->t_type == STRUCT || defn->t_type == UNION);
353 }
354 
355 static int
356 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
357 {
358 	int (*equiv)();
359 	int mapping;
360 
361 	if (ctdp->t_emark > ed->ed_clear_mark ||
362 	    mtdp->t_emark > ed->ed_clear_mark)
363 		return (ctdp->t_emark == mtdp->t_emark);
364 
365 	/*
366 	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
367 	 * checking on a subgraph that has already been checked.  If a mapping
368 	 * has already been established for a given child node, we can simply
369 	 * compare the mapping for the child node with the ID of the parent
370 	 * node.  If we are in self-uniquify mode, then we're comparing two
371 	 * subgraphs within the child graph, and thus need to ignore any
372 	 * type mappings that have been created, as they are only valid into the
373 	 * parent.
374 	 */
375 	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
376 	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
377 		return (1);
378 
379 	if (!streq(ctdp->t_name, mtdp->t_name))
380 		return (0);
381 
382 	if (ctdp->t_type != mtdp->t_type) {
383 		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
384 			return (fwd_equiv(ctdp, mtdp));
385 		else
386 			return (0);
387 	}
388 
389 	ctdp->t_emark = ed->ed_cur_mark;
390 	mtdp->t_emark = ed->ed_cur_mark;
391 	ed->ed_cur_mark++;
392 
393 	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
394 		return (equiv(ctdp, mtdp, ed));
395 
396 	return (1);
397 }
398 
399 /*
400  * We perform an equivalency check on two subgraphs by traversing through them
401  * in lockstep.  If a given node is equivalent in both the parent and the child,
402  * we mark it in both subgraphs, using the t_emark field, with a monotonically
403  * increasing number.  If, in the course of the traversal, we reach a node that
404  * we have visited and numbered during this equivalency check, we have a cycle.
405  * If the previously-visited nodes don't have the same emark, then the edges
406  * that brought us to these nodes are not equivalent, and so the check ends.
407  * If the emarks are the same, the edges are equivalent.  We then backtrack and
408  * continue the traversal.  If we have exhausted all edges in the subgraph, and
409  * have not found any inequivalent nodes, then the subgraphs are equivalent.
410  */
411 static int
412 equiv_cb(void *bucket, void *arg)
413 {
414 	equiv_data_t *ed = arg;
415 	tdesc_t *mtdp = bucket;
416 	tdesc_t *ctdp = ed->ed_node;
417 
418 	ed->ed_clear_mark = ed->ed_cur_mark + 1;
419 	ed->ed_cur_mark = ed->ed_clear_mark + 1;
420 
421 	if (equiv_node(ctdp, mtdp, ed)) {
422 		debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id);
423 		ed->ed_tgt = mtdp;
424 		/* matched.  stop looking */
425 		return (-1);
426 	}
427 
428 	return (0);
429 }
430 
431 /*ARGSUSED1*/
432 static int
433 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
434 {
435 	merge_cb_data_t *mcd = private;
436 
437 	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
438 		return (0);
439 
440 	return (1);
441 }
442 
443 /*ARGSUSED1*/
444 static int
445 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
446 {
447 	merge_cb_data_t *mcd = private;
448 	equiv_data_t ed;
449 
450 	ed.ed_ta = mcd->md_ta;
451 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
452 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
453 	ed.ed_node = ctdp;
454 	ed.ed_selfuniquify = 0;
455 
456 	debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id,
457 	    ctdp->t_name == NULL ? "(anon)" : ctdp->t_name);
458 
459 	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
460 	    equiv_cb, &ed) < 0) {
461 		/* We found an equivalent node */
462 		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
463 			int id = mcd->md_tgt->td_nextid++;
464 
465 			debug(3, "Creating new defn type %d\n", id);
466 			add_mapping(mcd->md_ta, ctdp->t_id, id);
467 			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
468 			    (void *)(ulong_t)id);
469 			hash_add(mcd->md_tdtba, ctdp);
470 		} else
471 			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
472 
473 	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
474 	    equiv_cb, &ed) < 0) {
475 		/*
476 		 * We didn't find an equivalent node by looking through the
477 		 * layout hash, but we somehow found it by performing an
478 		 * exhaustive search through the entire graph.  This usually
479 		 * means that the "name" hash function is broken.
480 		 */
481 		terminate("Second pass for %d (%s) == %d\n", ctdp->t_id,
482 		    (ctdp->t_name ? ctdp->t_name : "(anon)"), ed.ed_tgt->t_id);
483 	} else {
484 		int id = mcd->md_tgt->td_nextid++;
485 
486 		debug(3, "Creating new type %d\n", id);
487 		add_mapping(mcd->md_ta, ctdp->t_id, id);
488 		hash_add(mcd->md_tdtba, ctdp);
489 	}
490 
491 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
492 
493 	return (1);
494 }
495 
496 /*ARGSUSED1*/
497 static int
498 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
499 {
500 	merge_cb_data_t *mcd = private;
501 	equiv_data_t ed;
502 
503 	ed.ed_ta = mcd->md_ta;
504 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
505 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
506 	ed.ed_node = ctdp;
507 	ed.ed_selfuniquify = 1;
508 	ed.ed_tgt = NULL;
509 
510 	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
511 		debug(3, "Self check found %d in %d\n", ctdp->t_id,
512 		    ed.ed_tgt->t_id);
513 		add_mapping(mcd->md_ta, ctdp->t_id,
514 		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
515 	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
516 	    equiv_cb, &ed) < 0) {
517 		/*
518 		 * We didn't find an equivalent node using the quick way (going
519 		 * through the hash normally), but we did find it by iterating
520 		 * through the entire hash.  This usually means that the hash
521 		 * function is broken.
522 		 */
523 		terminate("Self-unique second pass for %d (%s) == %d\n",
524 		    ctdp->t_id, (ctdp->t_name ? ctdp->t_name : "(anon)"),
525 		    ed.ed_tgt->t_id);
526 	} else {
527 		int id = mcd->md_tgt->td_nextid++;
528 
529 		debug(3, "Creating new type %d\n", id);
530 		add_mapping(mcd->md_ta, ctdp->t_id, id);
531 		hash_add(mcd->md_tdtba, ctdp);
532 	}
533 
534 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
535 
536 	return (1);
537 }
538 
539 static tdtrav_cb_f map_pre[] = {
540 	NULL,
541 	map_td_tree_pre,	/* intrinsic */
542 	map_td_tree_pre,	/* pointer */
543 	map_td_tree_pre,	/* array */
544 	map_td_tree_pre,	/* function */
545 	map_td_tree_pre,	/* struct */
546 	map_td_tree_pre,	/* union */
547 	map_td_tree_pre,	/* enum */
548 	map_td_tree_pre,	/* forward */
549 	map_td_tree_pre,	/* typedef */
550 	tdtrav_assert,		/* typedef_unres */
551 	map_td_tree_pre,	/* volatile */
552 	map_td_tree_pre,	/* const */
553 	map_td_tree_pre		/* restrict */
554 };
555 
556 static tdtrav_cb_f map_post[] = {
557 	NULL,
558 	map_td_tree_post,	/* intrinsic */
559 	map_td_tree_post,	/* pointer */
560 	map_td_tree_post,	/* array */
561 	map_td_tree_post,	/* function */
562 	map_td_tree_post,	/* struct */
563 	map_td_tree_post,	/* union */
564 	map_td_tree_post,	/* enum */
565 	map_td_tree_post,	/* forward */
566 	map_td_tree_post,	/* typedef */
567 	tdtrav_assert,		/* typedef_unres */
568 	map_td_tree_post,	/* volatile */
569 	map_td_tree_post,	/* const */
570 	map_td_tree_post	/* restrict */
571 };
572 
573 static tdtrav_cb_f map_self_post[] = {
574 	NULL,
575 	map_td_tree_self_post,	/* intrinsic */
576 	map_td_tree_self_post,	/* pointer */
577 	map_td_tree_self_post,	/* array */
578 	map_td_tree_self_post,	/* function */
579 	map_td_tree_self_post,	/* struct */
580 	map_td_tree_self_post,	/* union */
581 	map_td_tree_self_post,	/* enum */
582 	map_td_tree_self_post,	/* forward */
583 	map_td_tree_self_post,	/* typedef */
584 	tdtrav_assert,		/* typedef_unres */
585 	map_td_tree_self_post,	/* volatile */
586 	map_td_tree_self_post,	/* const */
587 	map_td_tree_self_post	/* restrict */
588 };
589 
590 /*
591  * Determining equivalence of iidesc_t nodes
592  */
593 
594 typedef struct iifind_data {
595 	iidesc_t *iif_template;
596 	alist_t *iif_ta;
597 	int iif_newidx;
598 	int iif_refmerge;
599 } iifind_data_t;
600 
601 /*
602  * Check to see if this iidesc_t (node) - the current one on the list we're
603  * iterating through - matches the target one (iif->iif_template).  Return -1
604  * if it matches, to stop the iteration.
605  */
606 static int
607 iidesc_match(void *data, void *arg)
608 {
609 	iidesc_t *node = data;
610 	iifind_data_t *iif = arg;
611 	int i;
612 
613 	if (node->ii_type != iif->iif_template->ii_type ||
614 	    !streq(node->ii_name, iif->iif_template->ii_name) ||
615 	    node->ii_dtype->t_id != iif->iif_newidx)
616 		return (0);
617 
618 	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
619 	    !streq(node->ii_owner, iif->iif_template->ii_owner))
620 		return (0);
621 
622 	if (node->ii_nargs != iif->iif_template->ii_nargs)
623 		return (0);
624 
625 	for (i = 0; i < node->ii_nargs; i++) {
626 		if (get_mapping(iif->iif_ta,
627 		    iif->iif_template->ii_args[i]->t_id) !=
628 		    node->ii_args[i]->t_id)
629 			return (0);
630 	}
631 
632 	if (iif->iif_refmerge) {
633 		switch (iif->iif_template->ii_type) {
634 		case II_GFUN:
635 		case II_SFUN:
636 		case II_GVAR:
637 		case II_SVAR:
638 			debug(3, "suppressing duping of %d %s from %s\n",
639 			    iif->iif_template->ii_type,
640 			    iif->iif_template->ii_name,
641 			    (iif->iif_template->ii_owner ?
642 			    iif->iif_template->ii_owner : "NULL"));
643 			return (0);
644 		case II_NOT:
645 		case II_PSYM:
646 		case II_SOU:
647 		case II_TYPE:
648 			break;
649 		}
650 	}
651 
652 	return (-1);
653 }
654 
655 static int
656 merge_type_cb(void *data, void *arg)
657 {
658 	iidesc_t *sii = data;
659 	merge_cb_data_t *mcd = arg;
660 	iifind_data_t iif;
661 	tdtrav_cb_f *post;
662 
663 	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
664 
665 	/* Map the tdesc nodes */
666 	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
667 	    mcd);
668 
669 	/* Map the iidesc nodes */
670 	iif.iif_template = sii;
671 	iif.iif_ta = mcd->md_ta;
672 	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
673 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
674 
675 	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
676 	    &iif) == 1)
677 		/* successfully mapped */
678 		return (1);
679 
680 	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
681 	    sii->ii_type);
682 
683 	list_add(mcd->md_iitba, sii);
684 
685 	return (0);
686 }
687 
688 static int
689 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
690     merge_cb_data_t *mcd)
691 {
692 	tdesc_t *tgt = NULL;
693 	tdesc_t template;
694 	int oldid = oldtgt->t_id;
695 
696 	if (oldid == selftid) {
697 		*tgtp = newself;
698 		return (1);
699 	}
700 
701 	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
702 		terminate("failed to get mapping for tid %d\n", oldid);
703 
704 	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
705 	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
706 	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
707 	    (void *)&tgt))) {
708 		debug(3, "Remap couldn't find %d (from %d)\n", template.t_id,
709 		    oldid);
710 		*tgtp = oldtgt;
711 		list_add(mcd->md_tdtbr, tgtp);
712 		return (0);
713 	}
714 
715 	*tgtp = tgt;
716 	return (1);
717 }
718 
719 static tdesc_t *
720 conjure_template(tdesc_t *old, int newselfid)
721 {
722 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
723 
724 	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
725 	new->t_type = old->t_type;
726 	new->t_size = old->t_size;
727 	new->t_id = newselfid;
728 	new->t_flags = old->t_flags;
729 
730 	return (new);
731 }
732 
733 /*ARGSUSED2*/
734 static tdesc_t *
735 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
736 {
737 	tdesc_t *new = conjure_template(old, newselfid);
738 
739 	new->t_intr = xmalloc(sizeof (intr_t));
740 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
741 
742 	return (new);
743 }
744 
745 static tdesc_t *
746 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
747 {
748 	tdesc_t *new = conjure_template(old, newselfid);
749 
750 	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
751 
752 	return (new);
753 }
754 
755 static tdesc_t *
756 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
757 {
758 	tdesc_t *new = conjure_template(old, newselfid);
759 	fndef_t *nfn = xmalloc(sizeof (fndef_t));
760 	fndef_t *ofn = old->t_fndef;
761 	int i;
762 
763 	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
764 
765 	nfn->fn_nargs = ofn->fn_nargs;
766 	nfn->fn_vargs = ofn->fn_vargs;
767 
768 	if (nfn->fn_nargs > 0)
769 		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
770 
771 	for (i = 0; i < ofn->fn_nargs; i++) {
772 		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
773 		    new, mcd);
774 	}
775 
776 	new->t_fndef = nfn;
777 
778 	return (new);
779 }
780 
781 static tdesc_t *
782 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
783 {
784 	tdesc_t *new = conjure_template(old, newselfid);
785 	ardef_t *nar = xmalloc(sizeof (ardef_t));
786 	ardef_t *oar = old->t_ardef;
787 
788 	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
789 	    mcd);
790 	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
791 	    mcd);
792 
793 	nar->ad_nelems = oar->ad_nelems;
794 
795 	new->t_ardef = nar;
796 
797 	return (new);
798 }
799 
800 static tdesc_t *
801 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
802 {
803 	tdesc_t *new = conjure_template(old, newselfid);
804 	mlist_t *omem, **nmemp;
805 
806 	for (omem = old->t_members, nmemp = &new->t_members;
807 	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
808 		*nmemp = xmalloc(sizeof (mlist_t));
809 		(*nmemp)->ml_offset = omem->ml_offset;
810 		(*nmemp)->ml_size = omem->ml_size;
811 		(*nmemp)->ml_name = xstrdup(omem->ml_name);
812 		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
813 		    old->t_id, new, mcd);
814 	}
815 	*nmemp = NULL;
816 
817 	return (new);
818 }
819 
820 /*ARGSUSED2*/
821 static tdesc_t *
822 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
823 {
824 	tdesc_t *new = conjure_template(old, newselfid);
825 	elist_t *oel, **nelp;
826 
827 	for (oel = old->t_emem, nelp = &new->t_emem;
828 	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
829 		*nelp = xmalloc(sizeof (elist_t));
830 		(*nelp)->el_name = xstrdup(oel->el_name);
831 		(*nelp)->el_number = oel->el_number;
832 	}
833 	*nelp = NULL;
834 
835 	return (new);
836 }
837 
838 /*ARGSUSED2*/
839 static tdesc_t *
840 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
841 {
842 	tdesc_t *new = conjure_template(old, newselfid);
843 
844 	list_add(&mcd->md_tgt->td_fwdlist, new);
845 
846 	return (new);
847 }
848 
849 /*ARGSUSED*/
850 static tdesc_t *
851 conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
852 {
853 	assert(1 == 0);
854 	return (NULL);
855 }
856 
857 static iidesc_t *
858 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
859 {
860 	iidesc_t *new = iidesc_dup(old);
861 	int i;
862 
863 	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
864 	for (i = 0; i < new->ii_nargs; i++) {
865 		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
866 		    mcd);
867 	}
868 
869 	return (new);
870 }
871 
872 static int
873 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
874 {
875 	alist_t *map = private;
876 	tdesc_t *defn;
877 
878 	if (!alist_find(map, (void *)fwd, (void **)&defn))
879 		return (0);
880 
881 	debug(3, "Redirecting an edge to %s\n",
882 	    (defn->t_name ? defn->t_name : "(anon)"));
883 
884 	*fwdp = defn;
885 
886 	return (1);
887 }
888 
889 static tdtrav_cb_f fwd_redir_cbs[] = {
890 	NULL,
891 	NULL,			/* intrinsic */
892 	NULL,			/* pointer */
893 	NULL,			/* array */
894 	NULL,			/* function */
895 	NULL,			/* struct */
896 	NULL,			/* union */
897 	NULL,			/* enum */
898 	fwd_redir,		/* forward */
899 	NULL,			/* typedef */
900 	tdtrav_assert,		/* typedef_unres */
901 	NULL,			/* volatile */
902 	NULL,			/* const */
903 	NULL			/* restrict */
904 };
905 
906 typedef struct redir_mstr_data {
907 	tdata_t *rmd_tgt;
908 	alist_t *rmd_map;
909 } redir_mstr_data_t;
910 
911 static int
912 redir_mstr_fwd_cb(void *name, void *value, void *arg)
913 {
914 	tdesc_t *fwd = name;
915 	int defnid = (int)value;
916 	redir_mstr_data_t *rmd = arg;
917 	tdesc_t template;
918 	tdesc_t *defn;
919 
920 	template.t_id = defnid;
921 
922 	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
923 	    (void *)&defn)) {
924 		terminate("Couldn't unforward %d (%s)\n", defnid,
925 		    (defn->t_name ? defn->t_name : "(anon)"));
926 	}
927 
928 	debug(3, "Forward map: resolved %d to %s\n",
929 	    defnid, (defn->t_name ? defn->t_name : "(anon)"));
930 
931 	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
932 
933 	return (1);
934 }
935 
936 static void
937 redir_mstr_fwds(merge_cb_data_t *mcd)
938 {
939 	redir_mstr_data_t rmd;
940 	alist_t *map = alist_new(NULL, NULL);
941 
942 	rmd.rmd_tgt = mcd->md_tgt;
943 	rmd.rmd_map = map;
944 
945 	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
946 		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
947 		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
948 	}
949 
950 	alist_free(map);
951 }
952 
953 static int
954 add_iitba_cb(void *data, void *private)
955 {
956 	merge_cb_data_t *mcd = private;
957 	iidesc_t *tba = data;
958 	iidesc_t *new;
959 	iifind_data_t iif;
960 	int newidx;
961 
962 	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
963 	assert(newidx != -1);
964 
965 	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
966 
967 	iif.iif_template = tba;
968 	iif.iif_ta = mcd->md_ta;
969 	iif.iif_newidx = newidx;
970 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
971 
972 	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
973 	    &iif) == 1) {
974 		debug(3, "iidesc_t %s already exists\n",
975 		    (tba->ii_name ? tba->ii_name : "(anon)"));
976 		return (1);
977 	}
978 
979 	new = conjure_iidesc(tba, mcd);
980 	hash_add(mcd->md_tgt->td_iihash, new);
981 
982 	return (1);
983 }
984 
985 static int
986 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
987 {
988 	tdesc_t *newtdp;
989 	tdesc_t template;
990 
991 	template.t_id = newid;
992 	assert(hash_find(mcd->md_parent->td_idhash,
993 	    (void *)&template, NULL) == 0);
994 
995 	debug(3, "trying to conjure %d %s (%d) as %d\n",
996 	    oldtdp->t_type, (oldtdp->t_name ? oldtdp->t_name : "(anon)"),
997 	    oldtdp->t_id, newid);
998 
999 	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
1000 	    mcd)) == NULL)
1001 		/* couldn't map everything */
1002 		return (0);
1003 
1004 	debug(3, "succeeded\n");
1005 
1006 	hash_add(mcd->md_tgt->td_idhash, newtdp);
1007 	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1008 
1009 	return (1);
1010 }
1011 
1012 static int
1013 add_tdtba_cb(void *data, void *arg)
1014 {
1015 	tdesc_t *tdp = data;
1016 	merge_cb_data_t *mcd = arg;
1017 	int newid;
1018 	int rc;
1019 
1020 	newid = get_mapping(mcd->md_ta, tdp->t_id);
1021 	assert(newid != -1);
1022 
1023 	if ((rc = add_tdesc(tdp, newid, mcd)))
1024 		hash_remove(mcd->md_tdtba, (void *)tdp);
1025 
1026 	return (rc);
1027 }
1028 
1029 static int
1030 add_tdtbr_cb(void *data, void *arg)
1031 {
1032 	tdesc_t **tdpp = data;
1033 	merge_cb_data_t *mcd = arg;
1034 
1035 	debug(3, "Remapping %s (%d)\n",
1036 	    ((*tdpp)->t_name ? (*tdpp)->t_name : "(anon)"), (*tdpp)->t_id);
1037 
1038 	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1039 		return (0);
1040 
1041 	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1042 	return (1);
1043 }
1044 
1045 static void
1046 merge_types(hash_t *src, merge_cb_data_t *mcd)
1047 {
1048 	list_t *iitba = NULL;
1049 	list_t *tdtbr = NULL;
1050 	int iirc, tdrc;
1051 
1052 	mcd->md_iitba = &iitba;
1053 	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1054 	    tdesc_layoutcmp);
1055 	mcd->md_tdtbr = &tdtbr;
1056 
1057 	(void) hash_iter(src, merge_type_cb, mcd);
1058 
1059 	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd);
1060 	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1061 
1062 	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd);
1063 	debug(3, "add_iitba_cb added %d items\n", iirc);
1064 
1065 	assert(list_count(*mcd->md_iitba) == 0 &&
1066 	    hash_count(mcd->md_tdtba) == 0);
1067 
1068 	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd);
1069 	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1070 
1071 	if (list_count(*mcd->md_tdtbr) != 0)
1072 		terminate("Couldn't remap all nodes\n");
1073 
1074 	/*
1075 	 * We now have an alist of master forwards and the ids of the new master
1076 	 * definitions for those forwards in mcd->md_fdida.  By this point,
1077 	 * we're guaranteed that all of the master definitions referenced in
1078 	 * fdida have been added to the master tree.  We now traverse through
1079 	 * the master tree, redirecting all edges inbound to forwards that have
1080 	 * definitions to those definitions.
1081 	 */
1082 	if (mcd->md_parent == mcd->md_tgt) {
1083 		redir_mstr_fwds(mcd);
1084 	}
1085 }
1086 
1087 void
1088 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1089 {
1090 	merge_cb_data_t mcd;
1091 
1092 	cur->td_ref++;
1093 	mstr->td_ref++;
1094 	if (tgt)
1095 		tgt->td_ref++;
1096 
1097 	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1098 	    (tgt == NULL || tgt->td_ref == 1));
1099 
1100 	mcd.md_parent = mstr;
1101 	mcd.md_tgt = (tgt ? tgt : mstr);
1102 	mcd.md_ta = alist_new(NULL, NULL);
1103 	mcd.md_fdida = alist_new(NULL, NULL);
1104 	mcd.md_flags = 0;
1105 
1106 	if (selfuniquify)
1107 		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1108 	if (tgt)
1109 		mcd.md_flags |= MCD_F_REFMERGE;
1110 
1111 	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1112 	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1113 
1114 	merge_types(cur->td_iihash, &mcd);
1115 
1116 	if (debug_level >= 3) {
1117 		debug(3, "Type association stats\n");
1118 		alist_stats(mcd.md_ta, 0);
1119 		debug(3, "Layout hash stats\n");
1120 		hash_stats(mcd.md_tgt->td_layouthash, 1);
1121 	}
1122 
1123 	alist_free(mcd.md_fdida);
1124 	alist_free(mcd.md_ta);
1125 
1126 	cur->td_ref--;
1127 	mstr->td_ref--;
1128 	if (tgt)
1129 		tgt->td_ref--;
1130 }
1131 
1132 tdesc_ops_t tdesc_ops[] = {
1133 	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1134 	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1135 	{ "pointer", 		equiv_plain,		conjure_plain },
1136 	{ "array", 		equiv_array,		conjure_array },
1137 	{ "function", 		equiv_function,		conjure_function },
1138 	{ "struct",		equiv_su,		conjure_su },
1139 	{ "union",		equiv_su,		conjure_su },
1140 	{ "enum",		equiv_enum,		conjure_enum },
1141 	{ "forward",		NULL,			conjure_forward },
1142 	{ "typedef",		equiv_plain,		conjure_plain },
1143 	{ "typedef_unres",	equiv_assert,		conjure_assert },
1144 	{ "volatile",		equiv_plain,		conjure_plain },
1145 	{ "const", 		equiv_plain,		conjure_plain },
1146 	{ "restrict",		equiv_plain,		conjure_plain }
1147 };
1148