xref: /titanic_50/usr/src/stand/lib/tcp/tcp.c (revision 360e6f5e7a29d5950aa1985f56811731715da7e5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * tcp.c, Code implementing the TCP protocol.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/types.h>
32 #include <socket_impl.h>
33 #include <socket_inet.h>
34 #include <sys/sysmacros.h>
35 #include <sys/promif.h>
36 #include <sys/socket.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/in.h>
39 #include <netinet/ip.h>
40 #include <netinet/tcp.h>
41 #include <net/if_types.h>
42 #include <sys/salib.h>
43 
44 #include "ipv4.h"
45 #include "ipv4_impl.h"
46 #include "mac.h"
47 #include "mac_impl.h"
48 #include "v4_sum_impl.h"
49 #include <sys/bootdebug.h>
50 #include "tcp_inet.h"
51 #include "tcp_sack.h"
52 #include <inet/common.h>
53 #include <inet/mib2.h>
54 
55 /*
56  * We need to redefine BUMP_MIB/UPDATE_MIB to not have DTrace probes.
57  */
58 #undef BUMP_MIB
59 #define	BUMP_MIB(x) (x)++
60 
61 #undef UPDATE_MIB
62 #define	UPDATE_MIB(x, y) x += y
63 
64 /*
65  * MIB-2 stuff for SNMP
66  */
67 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
68 
69 /* The TCP mib does not include the following errors. */
70 static uint_t tcp_cksum_errors;
71 static uint_t tcp_drops;
72 
73 /* Macros for timestamp comparisons */
74 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
75 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
76 
77 /*
78  * Parameters for TCP Initial Send Sequence number (ISS) generation.
79  * The ISS is calculated by adding three components: a time component
80  * which grows by 1 every 4096 nanoseconds (versus every 4 microseconds
81  * suggested by RFC 793, page 27);
82  * a per-connection component which grows by 125000 for every new connection;
83  * and an "extra" component that grows by a random amount centered
84  * approximately on 64000.  This causes the the ISS generator to cycle every
85  * 4.89 hours if no TCP connections are made, and faster if connections are
86  * made.
87  */
88 #define	ISS_INCR	250000
89 #define	ISS_NSEC_SHT	0
90 
91 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
92 
93 #define	TCP_XMIT_LOWATER	4096
94 #define	TCP_XMIT_HIWATER	49152
95 #define	TCP_RECV_LOWATER	2048
96 #define	TCP_RECV_HIWATER	49152
97 
98 /*
99  *  PAWS needs a timer for 24 days.  This is the number of ms in 24 days
100  */
101 #define	PAWS_TIMEOUT	((uint32_t)(24*24*60*60*1000))
102 
103 /*
104  * TCP options struct returned from tcp_parse_options.
105  */
106 typedef struct tcp_opt_s {
107 	uint32_t	tcp_opt_mss;
108 	uint32_t	tcp_opt_wscale;
109 	uint32_t	tcp_opt_ts_val;
110 	uint32_t	tcp_opt_ts_ecr;
111 	tcp_t		*tcp;
112 } tcp_opt_t;
113 
114 /*
115  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
116  */
117 
118 #ifdef _BIG_ENDIAN
119 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
120 	(TCPOPT_TSTAMP << 8) | 10)
121 #else
122 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
123 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
124 #endif
125 
126 /*
127  * Flags returned from tcp_parse_options.
128  */
129 #define	TCP_OPT_MSS_PRESENT	1
130 #define	TCP_OPT_WSCALE_PRESENT	2
131 #define	TCP_OPT_TSTAMP_PRESENT	4
132 #define	TCP_OPT_SACK_OK_PRESENT	8
133 #define	TCP_OPT_SACK_PRESENT	16
134 
135 /* TCP option length */
136 #define	TCPOPT_NOP_LEN		1
137 #define	TCPOPT_MAXSEG_LEN	4
138 #define	TCPOPT_WS_LEN		3
139 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
140 #define	TCPOPT_TSTAMP_LEN	10
141 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
142 #define	TCPOPT_SACK_OK_LEN	2
143 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
144 #define	TCPOPT_REAL_SACK_LEN	4
145 #define	TCPOPT_MAX_SACK_LEN	36
146 #define	TCPOPT_HEADER_LEN	2
147 
148 /* TCP cwnd burst factor. */
149 #define	TCP_CWND_INFINITE	65535
150 #define	TCP_CWND_SS		3
151 #define	TCP_CWND_NORMAL		5
152 
153 /* Named Dispatch Parameter Management Structure */
154 typedef struct tcpparam_s {
155 	uint32_t	tcp_param_min;
156 	uint32_t	tcp_param_max;
157 	uint32_t	tcp_param_val;
158 	char		*tcp_param_name;
159 } tcpparam_t;
160 
161 /* Max size IP datagram is 64k - 1 */
162 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (struct ip) + \
163 	sizeof (tcph_t)))
164 
165 /* Max of the above */
166 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
167 
168 /* Largest TCP port number */
169 #define	TCP_MAX_PORT	(64 * 1024 - 1)
170 
171 /* Round up the value to the nearest mss. */
172 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
173 
174 #define	MS	1L
175 #define	SECONDS	(1000 * MS)
176 #define	MINUTES	(60 * SECONDS)
177 #define	HOURS	(60 * MINUTES)
178 #define	DAYS	(24 * HOURS)
179 
180 /* All NDD params in the core TCP became static variables. */
181 static int	tcp_time_wait_interval = 1 * MINUTES;
182 static int	tcp_conn_req_max_q = 128;
183 static int	tcp_conn_req_max_q0 = 1024;
184 static int	tcp_conn_req_min = 1;
185 static int	tcp_conn_grace_period = 0 * SECONDS;
186 static int	tcp_cwnd_max_ = 1024 * 1024;
187 static int	tcp_smallest_nonpriv_port = 1024;
188 static int	tcp_ip_abort_cinterval = 3 * MINUTES;
189 static int	tcp_ip_abort_linterval = 3 * MINUTES;
190 static int	tcp_ip_abort_interval = 8 * MINUTES;
191 static int	tcp_ip_notify_cinterval = 10 * SECONDS;
192 static int	tcp_ip_notify_interval = 10 * SECONDS;
193 static int	tcp_ipv4_ttl = 64;
194 static int	tcp_mss_def_ipv4 = 536;
195 static int	tcp_mss_max_ipv4 = TCP_MSS_MAX_IPV4;
196 static int	tcp_mss_min = 108;
197 static int	tcp_naglim_def = (4*1024)-1;
198 static int	tcp_rexmit_interval_initial = 3 * SECONDS;
199 static int	tcp_rexmit_interval_max = 60 * SECONDS;
200 static int	tcp_rexmit_interval_min = 400 * MS;
201 static int	tcp_dupack_fast_retransmit = 3;
202 static int	tcp_smallest_anon_port = 32 * 1024;
203 static int	tcp_largest_anon_port = TCP_MAX_PORT;
204 static int	tcp_xmit_lowat = TCP_XMIT_LOWATER;
205 static int	tcp_recv_hiwat_minmss = 4;
206 static int	tcp_fin_wait_2_flush_interval = 1 * MINUTES;
207 static int	tcp_max_buf = 1024 * 1024;
208 static int	tcp_wscale_always = 1;
209 static int	tcp_tstamp_always = 1;
210 static int	tcp_tstamp_if_wscale = 1;
211 static int	tcp_rexmit_interval_extra = 0;
212 static int	tcp_slow_start_after_idle = 2;
213 static int	tcp_slow_start_initial = 2;
214 static int	tcp_sack_permitted = 2;
215 static int	tcp_ecn_permitted = 2;
216 
217 /* Extra room to fit in headers. */
218 static uint_t	tcp_wroff_xtra;
219 
220 /* Hint for next port to try. */
221 static in_port_t	tcp_next_port_to_try = 32*1024;
222 
223 /*
224  * Figure out the value of window scale opton.  Note that the rwnd is
225  * ASSUMED to be rounded up to the nearest MSS before the calculation.
226  * We cannot find the scale value and then do a round up of tcp_rwnd
227  * because the scale value may not be correct after that.
228  */
229 #define	SET_WS_VALUE(tcp) \
230 { \
231 	int i; \
232 	uint32_t rwnd = (tcp)->tcp_rwnd; \
233 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; \
234 	    i++, rwnd >>= 1) \
235 		; \
236 	(tcp)->tcp_rcv_ws = i; \
237 }
238 
239 /*
240  * Set ECN capable transport (ECT) code point in IP header.
241  *
242  * Note that there are 2 ECT code points '01' and '10', which are called
243  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
244  * point ECT(0) for TCP as described in RFC 2481.
245  */
246 #define	SET_ECT(tcp, iph) \
247 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
248 		/* We need to clear the code point first. */ \
249 		((struct ip *)(iph))->ip_tos &= 0xFC; \
250 		((struct ip *)(iph))->ip_tos |= IPH_ECN_ECT0; \
251 	}
252 
253 /*
254  * The format argument to pass to tcp_display().
255  * DISP_PORT_ONLY means that the returned string has only port info.
256  * DISP_ADDR_AND_PORT means that the returned string also contains the
257  * remote and local IP address.
258  */
259 #define	DISP_PORT_ONLY		1
260 #define	DISP_ADDR_AND_PORT	2
261 
262 /*
263  * TCP reassembly macros.  We hide starting and ending sequence numbers in
264  * b_next and b_prev of messages on the reassembly queue.  The messages are
265  * chained using b_cont.  These macros are used in tcp_reass() so we don't
266  * have to see the ugly casts and assignments.
267  * Note. use uintptr_t to suppress the gcc warning.
268  */
269 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
270 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
271 					    (mblk_t *)((uintptr_t)(u)))
272 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
273 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
274 					    (mblk_t *)((uintptr_t)(u)))
275 
276 #define	TCP_TIMER_RESTART(tcp, intvl) \
277 	(tcp)->tcp_rto_timeout = prom_gettime() + intvl; \
278 	(tcp)->tcp_timer_running = B_TRUE;
279 
280 static int tcp_accept_comm(tcp_t *, tcp_t *, mblk_t *, uint_t);
281 static mblk_t *tcp_ack_mp(tcp_t *);
282 static in_port_t tcp_bindi(in_port_t, in_addr_t *, boolean_t, boolean_t);
283 static uint16_t tcp_cksum(uint16_t *, uint32_t);
284 static void tcp_clean_death(int, tcp_t *, int err);
285 static tcp_t *tcp_conn_request(tcp_t *, mblk_t *mp, uint_t, uint_t);
286 static char *tcp_display(tcp_t *, char *, char);
287 static int tcp_drain_input(tcp_t *, int, int);
288 static void tcp_drain_needed(int, tcp_t *);
289 static boolean_t tcp_drop_q0(tcp_t *);
290 static mblk_t *tcp_get_seg_mp(tcp_t *, uint32_t, int32_t *);
291 static int tcp_header_len(struct inetgram *);
292 static in_port_t tcp_report_ports(uint16_t *, enum Ports);
293 static int tcp_input(int);
294 static void tcp_iss_init(tcp_t *);
295 static tcp_t *tcp_lookup_ipv4(struct ip *, tcpha_t *, int, int *);
296 static tcp_t *tcp_lookup_listener_ipv4(in_addr_t, in_port_t, int *);
297 static int tcp_conn_check(tcp_t *);
298 static int tcp_close(int);
299 static void tcp_close_detached(tcp_t *);
300 static void tcp_eager_cleanup(tcp_t *, boolean_t, int);
301 static void tcp_eager_unlink(tcp_t *);
302 static void tcp_free(tcp_t *);
303 static int tcp_header_init_ipv4(tcp_t *);
304 static void tcp_mss_set(tcp_t *, uint32_t);
305 static int tcp_parse_options(tcph_t *, tcp_opt_t *);
306 static boolean_t tcp_paws_check(tcp_t *, tcph_t *, tcp_opt_t *);
307 static void tcp_process_options(tcp_t *, tcph_t *);
308 static int tcp_random(void);
309 static void tcp_random_init(void);
310 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t);
311 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *);
312 static void tcp_rcv_drain(int sock_id, tcp_t *);
313 static void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t);
314 static void tcp_rput_data(tcp_t *, mblk_t *, int);
315 static int tcp_rwnd_set(tcp_t *, uint32_t);
316 static int32_t tcp_sack_rxmit(tcp_t *, int);
317 static void tcp_set_cksum(mblk_t *);
318 static void tcp_set_rto(tcp_t *, int32_t);
319 static void tcp_ss_rexmit(tcp_t *, int);
320 static int tcp_state_wait(int, tcp_t *, int);
321 static void tcp_timer(tcp_t *, int);
322 static void tcp_time_wait_append(tcp_t *);
323 static void tcp_time_wait_collector(void);
324 static void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
325     uint32_t, int, tcph_t *, int sock_id);
326 static void tcp_time_wait_remove(tcp_t *);
327 static in_port_t tcp_update_next_port(in_port_t);
328 static int tcp_verify_cksum(mblk_t *);
329 static void tcp_wput_data(tcp_t *, mblk_t *, int);
330 static void tcp_xmit_ctl(char *, tcp_t *, mblk_t *, uint32_t, uint32_t,
331     int, uint_t, int);
332 static void tcp_xmit_early_reset(char *, int, mblk_t *, uint32_t, uint32_t,
333     int, uint_t);
334 static int tcp_xmit_end(tcp_t *, int);
335 static void tcp_xmit_listeners_reset(int, mblk_t *, uint_t);
336 static mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
337     mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);
338 static int tcp_init_values(tcp_t *, struct inetboot_socket *);
339 
340 #if DEBUG > 1
341 #define	TCP_DUMP_PACKET(str, mp) \
342 { \
343 	int len = (mp)->b_wptr - (mp)->b_rptr; \
344 \
345 	printf("%s: dump TCP(%d): \n", (str), len); \
346 	hexdump((char *)(mp)->b_rptr, len); \
347 }
348 #else
349 #define	TCP_DUMP_PACKET(str, mp)
350 #endif
351 
352 #ifdef DEBUG
353 #define	DEBUG_1(str, arg)		printf(str, (arg))
354 #define	DEBUG_2(str, arg1, arg2)	printf(str, (arg1), (arg2))
355 #define	DEBUG_3(str, arg1, arg2, arg3)	printf(str, (arg1), (arg2), (arg3))
356 #else
357 #define	DEBUG_1(str, arg)
358 #define	DEBUG_2(str, arg1, arg2)
359 #define	DEBUG_3(str, arg1, arg2, arg3)
360 #endif
361 
362 /* Whether it is the first time TCP is used. */
363 static boolean_t tcp_initialized = B_FALSE;
364 
365 /* TCP time wait list. */
366 static tcp_t *tcp_time_wait_head;
367 static tcp_t *tcp_time_wait_tail;
368 static uint32_t tcp_cum_timewait;
369 /* When the tcp_time_wait_collector is run. */
370 static uint32_t tcp_time_wait_runtime;
371 
372 #define	TCP_RUN_TIME_WAIT_COLLECTOR() \
373 	if (prom_gettime() > tcp_time_wait_runtime) \
374 		tcp_time_wait_collector();
375 
376 /*
377  * Accept will return with an error if there is no connection coming in
378  * after this (in ms).
379  */
380 static int tcp_accept_timeout = 60000;
381 
382 /*
383  * Initialize the TCP-specific parts of a socket.
384  */
385 void
386 tcp_socket_init(struct inetboot_socket *isp)
387 {
388 	/* Do some initializations. */
389 	if (!tcp_initialized) {
390 		tcp_random_init();
391 		/* Extra head room for the MAC layer address. */
392 		if ((tcp_wroff_xtra = mac_get_hdr_len()) & 0x3) {
393 			tcp_wroff_xtra = (tcp_wroff_xtra & ~0x3) + 0x4;
394 		}
395 		/* Schedule the first time wait cleanup time */
396 		tcp_time_wait_runtime = prom_gettime() + tcp_time_wait_interval;
397 		tcp_initialized = B_TRUE;
398 	}
399 	TCP_RUN_TIME_WAIT_COLLECTOR();
400 
401 	isp->proto = IPPROTO_TCP;
402 	isp->input[TRANSPORT_LVL] = tcp_input;
403 	/* Socket layer should call tcp_send() directly. */
404 	isp->output[TRANSPORT_LVL] = NULL;
405 	isp->close[TRANSPORT_LVL] = tcp_close;
406 	isp->headerlen[TRANSPORT_LVL] = tcp_header_len;
407 	isp->ports = tcp_report_ports;
408 	if ((isp->pcb = bkmem_alloc(sizeof (tcp_t))) == NULL) {
409 		errno = ENOBUFS;
410 		return;
411 	}
412 	if ((errno = tcp_init_values((tcp_t *)isp->pcb, isp)) != 0) {
413 		bkmem_free(isp->pcb, sizeof (tcp_t));
414 		return;
415 	}
416 	/*
417 	 * This is set last because this field is used to determine if
418 	 * a socket is in use or not.
419 	 */
420 	isp->type = INETBOOT_STREAM;
421 }
422 
423 /*
424  * Return the size of a TCP header including TCP option.
425  */
426 static int
427 tcp_header_len(struct inetgram *igm)
428 {
429 	mblk_t *pkt;
430 	int ipvers;
431 
432 	/* Just returns the standard TCP header without option */
433 	if (igm == NULL)
434 		return (sizeof (tcph_t));
435 
436 	if ((pkt = igm->igm_mp) == NULL)
437 		return (0);
438 
439 	ipvers = ((struct ip *)pkt->b_rptr)->ip_v;
440 	if (ipvers == IPV4_VERSION) {
441 		return (TCP_HDR_LENGTH((tcph_t *)(pkt + IPH_HDR_LENGTH(pkt))));
442 	} else {
443 		dprintf("tcp_header_len: non-IPv4 packet.\n");
444 		return (0);
445 	}
446 }
447 
448 /*
449  * Return the requested port number in network order.
450  */
451 static in_port_t
452 tcp_report_ports(uint16_t *tcphp, enum Ports request)
453 {
454 	if (request == SOURCE)
455 		return (*(uint16_t *)(((tcph_t *)tcphp)->th_lport));
456 	return (*(uint16_t *)(((tcph_t *)tcphp)->th_fport));
457 }
458 
459 /*
460  * Because inetboot is not interrupt driven, TCP can only poll.  This
461  * means that there can be packets stuck in the NIC buffer waiting to
462  * be processed.  Thus we need to drain them before, for example, sending
463  * anything because an ACK may actually be stuck there.
464  *
465  * The timeout arguments determine how long we should wait for draining.
466  */
467 static int
468 tcp_drain_input(tcp_t *tcp, int sock_id, int timeout)
469 {
470 	struct inetgram *in_gram;
471 	struct inetgram *old_in_gram;
472 	int old_timeout;
473 	mblk_t *mp;
474 	int i;
475 
476 	dprintf("tcp_drain_input(%d): %s\n", sock_id,
477 	    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
478 
479 	/*
480 	 * Since the driver uses the in_timeout value in the socket
481 	 * structure to determine the timeout value, we need to save
482 	 * the original one so that we can restore that after draining.
483 	 */
484 	old_timeout = sockets[sock_id].in_timeout;
485 	sockets[sock_id].in_timeout = timeout;
486 
487 	/*
488 	 * We do this because the input queue may have some user
489 	 * data already.
490 	 */
491 	old_in_gram = sockets[sock_id].inq;
492 	sockets[sock_id].inq = NULL;
493 
494 	/* Go out and check the wire */
495 	for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
496 		if (sockets[sock_id].input[i] != NULL) {
497 			if (sockets[sock_id].input[i](sock_id) < 0) {
498 				sockets[sock_id].in_timeout = old_timeout;
499 				if (sockets[sock_id].inq != NULL)
500 					nuke_grams(&sockets[sock_id].inq);
501 				sockets[sock_id].inq = old_in_gram;
502 				return (-1);
503 			}
504 		}
505 	}
506 #if DEBUG
507 	printf("tcp_drain_input: done with checking packets\n");
508 #endif
509 	while ((in_gram = sockets[sock_id].inq) != NULL) {
510 		/* Remove unknown inetgrams from the head of inq. */
511 		if (in_gram->igm_level != TRANSPORT_LVL) {
512 #if DEBUG
513 			printf("tcp_drain_input: unexpected packet "
514 			    "level %d frame found\n", in_gram->igm_level);
515 #endif
516 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
517 			continue;
518 		}
519 		mp = in_gram->igm_mp;
520 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
521 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
522 		tcp_rput_data(tcp, mp, sock_id);
523 		sockets[sock_id].in_timeout = old_timeout;
524 
525 		/*
526 		 * The other side may have closed this connection or
527 		 * RST us.  But we need to continue to process other
528 		 * packets in the socket's queue because they may be
529 		 * belong to another TCP connections.
530 		 */
531 		if (sockets[sock_id].pcb == NULL)
532 			tcp = NULL;
533 	}
534 
535 	if (tcp == NULL || sockets[sock_id].pcb == NULL) {
536 		if (sockets[sock_id].so_error != 0)
537 			return (-1);
538 		else
539 			return (0);
540 	}
541 #if DEBUG
542 	printf("tcp_drain_input: done with processing packets\n");
543 #endif
544 	sockets[sock_id].in_timeout = old_timeout;
545 	sockets[sock_id].inq = old_in_gram;
546 
547 	/*
548 	 * Data may have been received so indicate it is available
549 	 */
550 	tcp_drain_needed(sock_id, tcp);
551 	return (0);
552 }
553 
554 /*
555  * The receive entry point for upper layer to call to get data.  Note
556  * that this follows the current architecture that lower layer receive
557  * routines have been called already.  Thus if the inq of socket is
558  * not NULL, the packets must be for us.
559  */
560 static int
561 tcp_input(int sock_id)
562 {
563 	struct inetgram *in_gram;
564 	mblk_t *mp;
565 	tcp_t *tcp;
566 
567 	TCP_RUN_TIME_WAIT_COLLECTOR();
568 
569 	if ((tcp = sockets[sock_id].pcb) == NULL)
570 		return (-1);
571 
572 	while ((in_gram = sockets[sock_id].inq) != NULL) {
573 		/* Remove unknown inetgrams from the head of inq. */
574 		if (in_gram->igm_level != TRANSPORT_LVL) {
575 #ifdef DEBUG
576 			printf("tcp_input: unexpected packet "
577 			    "level %d frame found\n", in_gram->igm_level);
578 #endif
579 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
580 			continue;
581 		}
582 		mp = in_gram->igm_mp;
583 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
584 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
585 		tcp_rput_data(tcp, mp, sock_id);
586 		/* The TCP may be gone because it gets a RST. */
587 		if (sockets[sock_id].pcb == NULL)
588 			return (-1);
589 	}
590 
591 	/* Flush the receive list. */
592 	if (tcp->tcp_rcv_list != NULL) {
593 		tcp_rcv_drain(sock_id, tcp);
594 	} else {
595 		/* The other side has closed the connection, report this up. */
596 		if (tcp->tcp_state == TCPS_CLOSE_WAIT) {
597 			sockets[sock_id].so_state |= SS_CANTRCVMORE;
598 			return (0);
599 		}
600 	}
601 	return (0);
602 }
603 
604 /*
605  * The send entry point for upper layer to call to send data.  In order
606  * to minimize changes to the core TCP code, we need to put the
607  * data into mblks.
608  */
609 int
610 tcp_send(int sock_id, tcp_t *tcp, const void *msg, int len)
611 {
612 	mblk_t *mp;
613 	mblk_t *head = NULL;
614 	mblk_t *tail;
615 	int mss = tcp->tcp_mss;
616 	int cnt = 0;
617 	int win_size;
618 	char *buf = (char *)msg;
619 
620 	TCP_RUN_TIME_WAIT_COLLECTOR();
621 
622 	/* We don't want to append 0 size mblk. */
623 	if (len == 0)
624 		return (0);
625 	while (len > 0) {
626 		if (len < mss) {
627 			mss = len;
628 		}
629 		/*
630 		 * If we cannot allocate more buffer, stop here and
631 		 * the number of bytes buffered will be returned.
632 		 *
633 		 * Note that we follow the core TCP optimization that
634 		 * each mblk contains only MSS bytes data.
635 		 */
636 		if ((mp = allocb(mss + tcp->tcp_ip_hdr_len +
637 		    TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0)) == NULL) {
638 			break;
639 		}
640 		mp->b_rptr += tcp->tcp_hdr_len + tcp_wroff_xtra;
641 		bcopy(buf, mp->b_rptr, mss);
642 		mp->b_wptr = mp->b_rptr + mss;
643 		buf += mss;
644 		cnt += mss;
645 		len -= mss;
646 
647 		if (head == NULL) {
648 			head = mp;
649 			tail = mp;
650 		} else {
651 			tail->b_cont = mp;
652 			tail = mp;
653 		}
654 	}
655 
656 	/*
657 	 * Since inetboot is not interrupt driven, there may be
658 	 * some ACKs in the MAC's buffer.  Drain them first,
659 	 * otherwise, we may not be able to send.
660 	 *
661 	 * We expect an ACK in two cases:
662 	 *
663 	 * 1) We have un-ACK'ed data.
664 	 *
665 	 * 2) All ACK's have been received and the sender's window has been
666 	 * closed.  We need an ACK back to open the window so that we can
667 	 * send.  In this case, call tcp_drain_input() if the window size is
668 	 * less than 2 * MSS.
669 	 */
670 
671 	/* window size = MIN(swnd, cwnd) - unacked bytes */
672 	win_size = (tcp->tcp_swnd > tcp->tcp_cwnd) ? tcp->tcp_cwnd :
673 		tcp->tcp_swnd;
674 	win_size -= tcp->tcp_snxt;
675 	win_size += tcp->tcp_suna;
676 	if (win_size < (2 * tcp->tcp_mss))
677 		if (tcp_drain_input(tcp, sock_id, 5) < 0)
678 			return (-1);
679 
680 	tcp_wput_data(tcp, head, sock_id);
681 	return (cnt);
682 }
683 
684 /* Free up all TCP related stuff */
685 static void
686 tcp_free(tcp_t *tcp)
687 {
688 	if (tcp->tcp_iphc != NULL) {
689 		bkmem_free((caddr_t)tcp->tcp_iphc, tcp->tcp_iphc_len);
690 		tcp->tcp_iphc = NULL;
691 	}
692 	if (tcp->tcp_xmit_head != NULL) {
693 		freemsg(tcp->tcp_xmit_head);
694 		tcp->tcp_xmit_head = NULL;
695 	}
696 	if (tcp->tcp_rcv_list != NULL) {
697 		freemsg(tcp->tcp_rcv_list);
698 		tcp->tcp_rcv_list = NULL;
699 	}
700 	if (tcp->tcp_reass_head != NULL) {
701 		freemsg(tcp->tcp_reass_head);
702 		tcp->tcp_reass_head = NULL;
703 	}
704 	if (tcp->tcp_sack_info != NULL) {
705 		bkmem_free((caddr_t)tcp->tcp_sack_info,
706 		    sizeof (tcp_sack_info_t));
707 		tcp->tcp_sack_info = NULL;
708 	}
709 }
710 
711 static void
712 tcp_close_detached(tcp_t *tcp)
713 {
714 	if (tcp->tcp_listener != NULL)
715 		tcp_eager_unlink(tcp);
716 	tcp_free(tcp);
717 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
718 }
719 
720 /*
721  * If we are an eager connection hanging off a listener that hasn't
722  * formally accepted the connection yet, get off his list and blow off
723  * any data that we have accumulated.
724  */
725 static void
726 tcp_eager_unlink(tcp_t *tcp)
727 {
728 	tcp_t	*listener = tcp->tcp_listener;
729 
730 	assert(listener != NULL);
731 	if (tcp->tcp_eager_next_q0 != NULL) {
732 		assert(tcp->tcp_eager_prev_q0 != NULL);
733 
734 		/* Remove the eager tcp from q0 */
735 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
736 		    tcp->tcp_eager_prev_q0;
737 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
738 		    tcp->tcp_eager_next_q0;
739 		listener->tcp_conn_req_cnt_q0--;
740 	} else {
741 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
742 		tcp_t	*prev = NULL;
743 
744 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
745 			if (tcpp[0] == tcp) {
746 				if (listener->tcp_eager_last_q == tcp) {
747 					/*
748 					 * If we are unlinking the last
749 					 * element on the list, adjust
750 					 * tail pointer. Set tail pointer
751 					 * to nil when list is empty.
752 					 */
753 					assert(tcp->tcp_eager_next_q == NULL);
754 					if (listener->tcp_eager_last_q ==
755 					    listener->tcp_eager_next_q) {
756 						listener->tcp_eager_last_q =
757 						NULL;
758 					} else {
759 						/*
760 						 * We won't get here if there
761 						 * is only one eager in the
762 						 * list.
763 						 */
764 						assert(prev != NULL);
765 						listener->tcp_eager_last_q =
766 						    prev;
767 					}
768 				}
769 				tcpp[0] = tcp->tcp_eager_next_q;
770 				tcp->tcp_eager_next_q = NULL;
771 				tcp->tcp_eager_last_q = NULL;
772 				listener->tcp_conn_req_cnt_q--;
773 				break;
774 			}
775 			prev = tcpp[0];
776 		}
777 	}
778 	tcp->tcp_listener = NULL;
779 }
780 
781 /*
782  * Reset any eager connection hanging off this listener
783  * and then reclaim it's resources.
784  */
785 static void
786 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only, int sock_id)
787 {
788 	tcp_t	*eager;
789 
790 	if (!q0_only) {
791 		/* First cleanup q */
792 		while ((eager = listener->tcp_eager_next_q) != NULL) {
793 			assert(listener->tcp_eager_last_q != NULL);
794 			tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
795 			    eager, NULL, eager->tcp_snxt, 0, TH_RST, 0,
796 			    sock_id);
797 			tcp_close_detached(eager);
798 		}
799 		assert(listener->tcp_eager_last_q == NULL);
800 	}
801 	/* Then cleanup q0 */
802 	while ((eager = listener->tcp_eager_next_q0) != listener) {
803 		tcp_xmit_ctl("tcp_eager_cleanup, can't wait",
804 		    eager, NULL, eager->tcp_snxt, 0, TH_RST, 0, sock_id);
805 		tcp_close_detached(eager);
806 	}
807 }
808 
809 /*
810  * To handle the shutdown request. Called from shutdown()
811  */
812 int
813 tcp_shutdown(int sock_id)
814 {
815 	tcp_t	*tcp;
816 
817 	DEBUG_1("tcp_shutdown: sock_id %x\n", sock_id);
818 
819 	if ((tcp = sockets[sock_id].pcb) == NULL) {
820 		return (-1);
821 	}
822 
823 	/*
824 	 * Since inetboot is not interrupt driven, there may be
825 	 * some ACKs in the MAC's buffer.  Drain them first,
826 	 * otherwise, we may not be able to send.
827 	 */
828 	if (tcp_drain_input(tcp, sock_id, 5) < 0) {
829 		/*
830 		 * If we return now without freeing TCP, there will be
831 		 * a memory leak.
832 		 */
833 		if (sockets[sock_id].pcb != NULL)
834 			tcp_clean_death(sock_id, tcp, 0);
835 		return (-1);
836 	}
837 
838 	DEBUG_1("tcp_shutdown: tcp_state %x\n", tcp->tcp_state);
839 	switch (tcp->tcp_state) {
840 
841 	case TCPS_SYN_RCVD:
842 		/*
843 		 * Shutdown during the connect 3-way handshake
844 		 */
845 	case TCPS_ESTABLISHED:
846 		/*
847 		 * Transmit the FIN
848 		 * wait for the FIN to be ACKed,
849 		 * then remain in FIN_WAIT_2
850 		 */
851 		dprintf("tcp_shutdown: sending fin\n");
852 		if (tcp_xmit_end(tcp, sock_id) == 0 &&
853 			tcp_state_wait(sock_id, tcp, TCPS_FIN_WAIT_2) < 0) {
854 			/* During the wait, TCP may be gone... */
855 			if (sockets[sock_id].pcb == NULL)
856 				return (-1);
857 		}
858 		dprintf("tcp_shutdown: done\n");
859 		break;
860 
861 	default:
862 		break;
863 
864 	}
865 	return (0);
866 }
867 
868 /* To handle closing of the socket */
869 static int
870 tcp_close(int sock_id)
871 {
872 	char	*msg;
873 	tcp_t	*tcp;
874 	int	error = 0;
875 
876 	if ((tcp = sockets[sock_id].pcb) == NULL) {
877 		return (-1);
878 	}
879 
880 	TCP_RUN_TIME_WAIT_COLLECTOR();
881 
882 	/*
883 	 * Since inetboot is not interrupt driven, there may be
884 	 * some ACKs in the MAC's buffer.  Drain them first,
885 	 * otherwise, we may not be able to send.
886 	 */
887 	if (tcp_drain_input(tcp, sock_id, 5) < 0) {
888 		/*
889 		 * If we return now without freeing TCP, there will be
890 		 * a memory leak.
891 		 */
892 		if (sockets[sock_id].pcb != NULL)
893 			tcp_clean_death(sock_id, tcp, 0);
894 		return (-1);
895 	}
896 
897 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
898 		/* Cleanup for listener */
899 		tcp_eager_cleanup(tcp, 0, sock_id);
900 	}
901 
902 	msg = NULL;
903 	switch (tcp->tcp_state) {
904 	case TCPS_CLOSED:
905 	case TCPS_IDLE:
906 	case TCPS_BOUND:
907 	case TCPS_LISTEN:
908 		break;
909 	case TCPS_SYN_SENT:
910 		msg = "tcp_close, during connect";
911 		break;
912 	case TCPS_SYN_RCVD:
913 		/*
914 		 * Close during the connect 3-way handshake
915 		 * but here there may or may not be pending data
916 		 * already on queue. Process almost same as in
917 		 * the ESTABLISHED state.
918 		 */
919 		/* FALLTHRU */
920 	default:
921 		/*
922 		 * If SO_LINGER has set a zero linger time, abort the
923 		 * connection with a reset.
924 		 */
925 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
926 			msg = "tcp_close, zero lingertime";
927 			break;
928 		}
929 
930 		/*
931 		 * Abort connection if there is unread data queued.
932 		 */
933 		if (tcp->tcp_rcv_list != NULL ||
934 				tcp->tcp_reass_head != NULL) {
935 			msg = "tcp_close, unread data";
936 			break;
937 		}
938 		if (tcp->tcp_state <= TCPS_LISTEN)
939 			break;
940 
941 		/*
942 		 * Transmit the FIN before detaching the tcp_t.
943 		 * After tcp_detach returns this queue/perimeter
944 		 * no longer owns the tcp_t thus others can modify it.
945 		 * The TCP could be closed in tcp_state_wait called by
946 		 * tcp_wput_data called by tcp_xmit_end.
947 		 */
948 		(void) tcp_xmit_end(tcp, sock_id);
949 		if (sockets[sock_id].pcb == NULL)
950 			return (0);
951 
952 		/*
953 		 * If lingering on close then wait until the fin is acked,
954 		 * the SO_LINGER time passes, or a reset is sent/received.
955 		 */
956 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
957 		    !(tcp->tcp_fin_acked) &&
958 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
959 			uint32_t stoptime; /* in ms */
960 
961 			tcp->tcp_client_errno = 0;
962 			stoptime = prom_gettime() +
963 			    (tcp->tcp_lingertime * 1000);
964 			while (!(tcp->tcp_fin_acked) &&
965 			    tcp->tcp_state >= TCPS_ESTABLISHED &&
966 			    tcp->tcp_client_errno == 0 &&
967 			    ((int32_t)(stoptime - prom_gettime()) > 0)) {
968 				if (tcp_drain_input(tcp, sock_id, 5) < 0) {
969 					if (sockets[sock_id].pcb != NULL) {
970 						tcp_clean_death(sock_id,
971 						    tcp, 0);
972 					}
973 					return (-1);
974 				}
975 			}
976 			tcp->tcp_client_errno = 0;
977 		}
978 		if (tcp_state_wait(sock_id, tcp, TCPS_TIME_WAIT) < 0) {
979 			/* During the wait, TCP may be gone... */
980 			if (sockets[sock_id].pcb == NULL)
981 				return (0);
982 			msg = "tcp_close, couldn't detach";
983 		} else {
984 			return (0);
985 		}
986 		break;
987 	}
988 
989 	/* Something went wrong...  Send a RST and report the error */
990 	if (msg != NULL) {
991 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
992 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
993 			BUMP_MIB(tcp_mib.tcpEstabResets);
994 		if (tcp->tcp_state == TCPS_SYN_SENT ||
995 		    tcp->tcp_state == TCPS_SYN_RCVD)
996 			BUMP_MIB(tcp_mib.tcpAttemptFails);
997 		tcp_xmit_ctl(msg, tcp, NULL, tcp->tcp_snxt, 0, TH_RST, 0,
998 		    sock_id);
999 	}
1000 
1001 	tcp_free(tcp);
1002 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
1003 	sockets[sock_id].pcb = NULL;
1004 	return (error);
1005 }
1006 
1007 /* To make an endpoint a listener. */
1008 int
1009 tcp_listen(int sock_id, int backlog)
1010 {
1011 	tcp_t *tcp;
1012 
1013 	if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
1014 		errno = EINVAL;
1015 		return (-1);
1016 	}
1017 	/* We allow calling listen() multiple times to change the backlog. */
1018 	if (tcp->tcp_state > TCPS_LISTEN || tcp->tcp_state < TCPS_BOUND) {
1019 		errno = EOPNOTSUPP;
1020 		return (-1);
1021 	}
1022 	/* The following initialization should only be done once. */
1023 	if (tcp->tcp_state != TCPS_LISTEN) {
1024 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
1025 		tcp->tcp_eager_next_q = NULL;
1026 		tcp->tcp_state = TCPS_LISTEN;
1027 		tcp->tcp_second_ctimer_threshold = tcp_ip_abort_linterval;
1028 	}
1029 	if ((tcp->tcp_conn_req_max = backlog) > tcp_conn_req_max_q) {
1030 		tcp->tcp_conn_req_max = tcp_conn_req_max_q;
1031 	}
1032 	if (tcp->tcp_conn_req_max < tcp_conn_req_min) {
1033 		tcp->tcp_conn_req_max = tcp_conn_req_min;
1034 	}
1035 	return (0);
1036 }
1037 
1038 /* To accept connections. */
1039 int
1040 tcp_accept(int sock_id, struct sockaddr *addr, socklen_t *addr_len)
1041 {
1042 	tcp_t *listener;
1043 	tcp_t *eager;
1044 	int sd, new_sock_id;
1045 	struct sockaddr_in *new_addr = (struct sockaddr_in *)addr;
1046 	int timeout;
1047 
1048 	/* Sanity check. */
1049 	if ((listener = (tcp_t *)(sockets[sock_id].pcb)) == NULL ||
1050 	    new_addr == NULL || addr_len == NULL ||
1051 	    *addr_len < sizeof (struct sockaddr_in) ||
1052 	    listener->tcp_state != TCPS_LISTEN) {
1053 		errno = EINVAL;
1054 		return (-1);
1055 	}
1056 
1057 	if (sockets[sock_id].in_timeout > tcp_accept_timeout)
1058 		timeout = prom_gettime() + sockets[sock_id].in_timeout;
1059 	else
1060 		timeout = prom_gettime() + tcp_accept_timeout;
1061 	while (listener->tcp_eager_next_q == NULL &&
1062 	    timeout > prom_gettime()) {
1063 #if DEBUG
1064 		printf("tcp_accept: Waiting in tcp_accept()\n");
1065 #endif
1066 		if (tcp_drain_input(listener, sock_id, 5) < 0) {
1067 			return (-1);
1068 		}
1069 	}
1070 	/* If there is an eager, don't timeout... */
1071 	if (timeout <= prom_gettime() && listener->tcp_eager_next_q == NULL) {
1072 #if DEBUG
1073 		printf("tcp_accept: timeout\n");
1074 #endif
1075 		errno = ETIMEDOUT;
1076 		return (-1);
1077 	}
1078 #if DEBUG
1079 	printf("tcp_accept: got a connection\n");
1080 #endif
1081 
1082 	/* Now create the socket for this new TCP. */
1083 	if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
1084 		return (-1);
1085 	}
1086 	if ((new_sock_id = so_check_fd(sd, &errno)) == -1)
1087 		/* This should not happen! */
1088 		prom_panic("so_check_fd() fails in tcp_accept()");
1089 	/* Free the TCP PCB in the original socket. */
1090 	bkmem_free((caddr_t)(sockets[new_sock_id].pcb), sizeof (tcp_t));
1091 	/* Dequeue the eager and attach it to the socket. */
1092 	eager = listener->tcp_eager_next_q;
1093 	listener->tcp_eager_next_q = eager->tcp_eager_next_q;
1094 	if (listener->tcp_eager_last_q == eager)
1095 		listener->tcp_eager_last_q = NULL;
1096 	eager->tcp_eager_next_q = NULL;
1097 	sockets[new_sock_id].pcb = eager;
1098 	listener->tcp_conn_req_cnt_q--;
1099 
1100 	/* Copy in the address info. */
1101 	bcopy(&eager->tcp_remote, &new_addr->sin_addr.s_addr,
1102 	    sizeof (in_addr_t));
1103 	bcopy(&eager->tcp_fport, &new_addr->sin_port, sizeof (in_port_t));
1104 	new_addr->sin_family = AF_INET;
1105 
1106 #ifdef DEBUG
1107 	printf("tcp_accept(), new sock_id: %d\n", sd);
1108 #endif
1109 	return (sd);
1110 }
1111 
1112 /* Update the next anonymous port to use.  */
1113 static in_port_t
1114 tcp_update_next_port(in_port_t port)
1115 {
1116 	/* Don't allow the port to fall out of the anonymous port range. */
1117 	if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port)
1118 		port = (in_port_t)tcp_smallest_anon_port;
1119 
1120 	if (port < tcp_smallest_nonpriv_port)
1121 		port = (in_port_t)tcp_smallest_nonpriv_port;
1122 	return (port);
1123 }
1124 
1125 /* To check whether a bind to a port is allowed. */
1126 static in_port_t
1127 tcp_bindi(in_port_t port, in_addr_t *addr, boolean_t reuseaddr,
1128     boolean_t bind_to_req_port_only)
1129 {
1130 	int i, count;
1131 	tcp_t *tcp;
1132 
1133 	count = tcp_largest_anon_port - tcp_smallest_anon_port;
1134 try_again:
1135 	for (i = 0; i < MAXSOCKET; i++) {
1136 		if (sockets[i].type != INETBOOT_STREAM ||
1137 		    ((tcp = (tcp_t *)sockets[i].pcb) == NULL) ||
1138 		    ntohs(tcp->tcp_lport) != port) {
1139 			continue;
1140 		}
1141 		/*
1142 		 * Both TCPs have the same port.  If SO_REUSEDADDR is
1143 		 * set and the bound TCP has a state greater than
1144 		 * TCPS_LISTEN, it is fine.
1145 		 */
1146 		if (reuseaddr && tcp->tcp_state > TCPS_LISTEN) {
1147 			continue;
1148 		}
1149 		if (tcp->tcp_bound_source != INADDR_ANY &&
1150 		    *addr != INADDR_ANY &&
1151 		    tcp->tcp_bound_source != *addr) {
1152 			continue;
1153 		}
1154 		if (bind_to_req_port_only) {
1155 			return (0);
1156 		}
1157 		if (--count > 0) {
1158 			port = tcp_update_next_port(++port);
1159 			goto try_again;
1160 		} else {
1161 			return (0);
1162 		}
1163 	}
1164 	return (port);
1165 }
1166 
1167 /* To handle the bind request. */
1168 int
1169 tcp_bind(int sock_id)
1170 {
1171 	tcp_t *tcp;
1172 	in_port_t requested_port, allocated_port;
1173 	boolean_t bind_to_req_port_only;
1174 	boolean_t reuseaddr;
1175 
1176 	if ((tcp = (tcp_t *)sockets[sock_id].pcb) == NULL) {
1177 		errno = EINVAL;
1178 		return (-1);
1179 	}
1180 
1181 	if (tcp->tcp_state >= TCPS_BOUND) {
1182 		/* We don't allow multiple bind(). */
1183 		errno = EPROTO;
1184 		return (-1);
1185 	}
1186 
1187 	requested_port = ntohs(sockets[sock_id].bind.sin_port);
1188 
1189 	/* The bound source can be INADDR_ANY. */
1190 	tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
1191 
1192 	tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
1193 
1194 	/* Verify the port is available. */
1195 	if (requested_port == 0)
1196 		bind_to_req_port_only = B_FALSE;
1197 	else			/* T_BIND_REQ and requested_port != 0 */
1198 		bind_to_req_port_only = B_TRUE;
1199 
1200 	if (requested_port == 0) {
1201 		requested_port = tcp_update_next_port(++tcp_next_port_to_try);
1202 	}
1203 	reuseaddr = sockets[sock_id].so_opt & SO_REUSEADDR;
1204 	allocated_port = tcp_bindi(requested_port, &(tcp->tcp_bound_source),
1205 	    reuseaddr, bind_to_req_port_only);
1206 
1207 	if (allocated_port == 0) {
1208 		errno = EADDRINUSE;
1209 		return (-1);
1210 	}
1211 	tcp->tcp_lport = htons(allocated_port);
1212 	*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
1213 	sockets[sock_id].bind.sin_port = tcp->tcp_lport;
1214 	tcp->tcp_state = TCPS_BOUND;
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Check for duplicate TCP connections.
1220  */
1221 static int
1222 tcp_conn_check(tcp_t *tcp)
1223 {
1224 	int i;
1225 	tcp_t *tmp_tcp;
1226 
1227 	for (i = 0; i < MAXSOCKET; i++) {
1228 		if (sockets[i].type != INETBOOT_STREAM)
1229 			continue;
1230 		/* Socket may not be closed but the TCP can be gone. */
1231 		if ((tmp_tcp = (tcp_t *)sockets[i].pcb) == NULL)
1232 			continue;
1233 		/* We only care about TCP in states later than SYN_SENT. */
1234 		if (tmp_tcp->tcp_state < TCPS_SYN_SENT)
1235 			continue;
1236 		if (tmp_tcp->tcp_lport != tcp->tcp_lport ||
1237 		    tmp_tcp->tcp_fport != tcp->tcp_fport ||
1238 		    tmp_tcp->tcp_bound_source != tcp->tcp_bound_source ||
1239 		    tmp_tcp->tcp_remote != tcp->tcp_remote) {
1240 			continue;
1241 		} else {
1242 			return (-1);
1243 		}
1244 	}
1245 	return (0);
1246 }
1247 
1248 /* To handle a connect request. */
1249 int
1250 tcp_connect(int sock_id)
1251 {
1252 	tcp_t *tcp;
1253 	in_addr_t dstaddr;
1254 	in_port_t dstport;
1255 	tcph_t	*tcph;
1256 	int mss;
1257 	mblk_t *syn_mp;
1258 
1259 	if ((tcp = (tcp_t *)(sockets[sock_id].pcb)) == NULL) {
1260 		errno = EINVAL;
1261 		return (-1);
1262 	}
1263 
1264 	TCP_RUN_TIME_WAIT_COLLECTOR();
1265 
1266 	dstaddr = sockets[sock_id].remote.sin_addr.s_addr;
1267 	dstport = sockets[sock_id].remote.sin_port;
1268 
1269 	/*
1270 	 * Check for attempt to connect to INADDR_ANY or non-unicast addrress.
1271 	 * We don't have enough info to check for broadcast addr, except
1272 	 * for the all 1 broadcast.
1273 	 */
1274 	if (dstaddr == INADDR_ANY || IN_CLASSD(ntohl(dstaddr)) ||
1275 	    dstaddr == INADDR_BROADCAST)  {
1276 		/*
1277 		 * SunOS 4.x and 4.3 BSD allow an application
1278 		 * to connect a TCP socket to INADDR_ANY.
1279 		 * When they do this, the kernel picks the
1280 		 * address of one interface and uses it
1281 		 * instead.  The kernel usually ends up
1282 		 * picking the address of the loopback
1283 		 * interface.  This is an undocumented feature.
1284 		 * However, we provide the same thing here
1285 		 * in order to have source and binary
1286 		 * compatibility with SunOS 4.x.
1287 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1288 		 * generate the T_CONN_CON.
1289 		 *
1290 		 * Fail this for inetboot TCP.
1291 		 */
1292 		errno = EINVAL;
1293 		return (-1);
1294 	}
1295 
1296 	/* It is not bound to any address yet... */
1297 	if (tcp->tcp_bound_source == INADDR_ANY) {
1298 		ipv4_getipaddr(&(sockets[sock_id].bind.sin_addr));
1299 		/* We don't have an address! */
1300 		if (ntohl(sockets[sock_id].bind.sin_addr.s_addr) ==
1301 		    INADDR_ANY) {
1302 			errno = EPROTO;
1303 			return (-1);
1304 		}
1305 		tcp->tcp_bound_source = sockets[sock_id].bind.sin_addr.s_addr;
1306 		tcp->tcp_ipha->ip_src.s_addr = tcp->tcp_bound_source;
1307 	}
1308 
1309 	/*
1310 	 * Don't let an endpoint connect to itself.
1311 	 */
1312 	if (dstaddr == tcp->tcp_ipha->ip_src.s_addr &&
1313 	    dstport == tcp->tcp_lport) {
1314 		errno = EINVAL;
1315 		return (-1);
1316 	}
1317 
1318 	tcp->tcp_ipha->ip_dst.s_addr = dstaddr;
1319 	tcp->tcp_remote = dstaddr;
1320 	tcph = tcp->tcp_tcph;
1321 	*(uint16_t *)tcph->th_fport = dstport;
1322 	tcp->tcp_fport = dstport;
1323 
1324 	/*
1325 	 * Don't allow this connection to completely duplicate
1326 	 * an existing connection.
1327 	 */
1328 	if (tcp_conn_check(tcp) < 0) {
1329 		errno = EADDRINUSE;
1330 		return (-1);
1331 	}
1332 
1333 	/*
1334 	 * Just make sure our rwnd is at
1335 	 * least tcp_recv_hiwat_mss * MSS
1336 	 * large, and round up to the nearest
1337 	 * MSS.
1338 	 *
1339 	 * We do the round up here because
1340 	 * we need to get the interface
1341 	 * MTU first before we can do the
1342 	 * round up.
1343 	 */
1344 	mss = tcp->tcp_mss - tcp->tcp_hdr_len;
1345 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
1346 	    tcp_recv_hiwat_minmss * mss);
1347 	tcp->tcp_rwnd_max = tcp->tcp_rwnd;
1348 	SET_WS_VALUE(tcp);
1349 	U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
1350 	    tcp->tcp_tcph->th_win);
1351 	if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
1352 		tcp->tcp_snd_ws_ok = B_TRUE;
1353 
1354 	/*
1355 	 * Set tcp_snd_ts_ok to true
1356 	 * so that tcp_xmit_mp will
1357 	 * include the timestamp
1358 	 * option in the SYN segment.
1359 	 */
1360 	if (tcp_tstamp_always ||
1361 	    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
1362 		tcp->tcp_snd_ts_ok = B_TRUE;
1363 	}
1364 
1365 	if (tcp_sack_permitted == 2 ||
1366 	    tcp->tcp_snd_sack_ok) {
1367 		assert(tcp->tcp_sack_info == NULL);
1368 		if ((tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
1369 		    sizeof (tcp_sack_info_t))) == NULL) {
1370 			tcp->tcp_snd_sack_ok = B_FALSE;
1371 		} else {
1372 			tcp->tcp_snd_sack_ok = B_TRUE;
1373 		}
1374 	}
1375 	/*
1376 	 * Should we use ECN?  Note that the current
1377 	 * default value (SunOS 5.9) of tcp_ecn_permitted
1378 	 * is 2.  The reason for doing this is that there
1379 	 * are equipments out there that will drop ECN
1380 	 * enabled IP packets.  Setting it to 1 avoids
1381 	 * compatibility problems.
1382 	 */
1383 	if (tcp_ecn_permitted == 2)
1384 		tcp->tcp_ecn_ok = B_TRUE;
1385 
1386 	tcp_iss_init(tcp);
1387 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
1388 	tcp->tcp_active_open = B_TRUE;
1389 
1390 	tcp->tcp_state = TCPS_SYN_SENT;
1391 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_iss, B_FALSE,
1392 	    NULL, B_FALSE);
1393 	if (syn_mp != NULL) {
1394 		int ret;
1395 
1396 		/* Dump the packet when debugging. */
1397 		TCP_DUMP_PACKET("tcp_connect", syn_mp);
1398 		/* Send out the SYN packet. */
1399 		ret = ipv4_tcp_output(sock_id, syn_mp);
1400 		freeb(syn_mp);
1401 		if (ret < 0) {
1402 			return (-1);
1403 		}
1404 		/* tcp_state_wait() will finish the 3 way handshake. */
1405 		return (tcp_state_wait(sock_id, tcp, TCPS_ESTABLISHED));
1406 	} else {
1407 		errno = ENOBUFS;
1408 		return (-1);
1409 	}
1410 }
1411 
1412 /*
1413  * Common accept code.  Called by tcp_conn_request.
1414  * cr_pkt is the SYN packet.
1415  */
1416 static int
1417 tcp_accept_comm(tcp_t *listener, tcp_t *acceptor, mblk_t *cr_pkt,
1418     uint_t ip_hdr_len)
1419 {
1420 	tcph_t		*tcph;
1421 
1422 #ifdef DEBUG
1423 	printf("tcp_accept_comm #######################\n");
1424 #endif
1425 
1426 	/*
1427 	 * When we get here, we know that the acceptor header template
1428 	 * has already been initialized.
1429 	 * However, it may not match the listener if the listener
1430 	 * includes options...
1431 	 * It may also not match the listener if the listener is v6 and
1432 	 * and the acceptor is v4
1433 	 */
1434 	acceptor->tcp_lport = listener->tcp_lport;
1435 
1436 	if (listener->tcp_ipversion == acceptor->tcp_ipversion) {
1437 		if (acceptor->tcp_iphc_len != listener->tcp_iphc_len) {
1438 			/*
1439 			 * Listener had options of some sort; acceptor inherits.
1440 			 * Free up the acceptor template and allocate one
1441 			 * of the right size.
1442 			 */
1443 			bkmem_free(acceptor->tcp_iphc, acceptor->tcp_iphc_len);
1444 			acceptor->tcp_iphc = bkmem_zalloc(
1445 			    listener->tcp_iphc_len);
1446 			if (acceptor->tcp_iphc == NULL) {
1447 				acceptor->tcp_iphc_len = 0;
1448 				return (ENOMEM);
1449 			}
1450 			acceptor->tcp_iphc_len = listener->tcp_iphc_len;
1451 		}
1452 		acceptor->tcp_hdr_len = listener->tcp_hdr_len;
1453 		acceptor->tcp_ip_hdr_len = listener->tcp_ip_hdr_len;
1454 		acceptor->tcp_tcp_hdr_len = listener->tcp_tcp_hdr_len;
1455 
1456 		/*
1457 		 * Copy the IP+TCP header template from listener to acceptor
1458 		 */
1459 		bcopy(listener->tcp_iphc, acceptor->tcp_iphc,
1460 		    listener->tcp_hdr_len);
1461 		acceptor->tcp_ipha = (struct ip *)acceptor->tcp_iphc;
1462 		acceptor->tcp_tcph = (tcph_t *)(acceptor->tcp_iphc +
1463 		    acceptor->tcp_ip_hdr_len);
1464 	} else {
1465 		prom_panic("tcp_accept_comm: version not equal");
1466 	}
1467 
1468 	/* Copy our new dest and fport from the connection request packet */
1469 	if (acceptor->tcp_ipversion == IPV4_VERSION) {
1470 		struct ip *ipha;
1471 
1472 		ipha = (struct ip *)cr_pkt->b_rptr;
1473 		acceptor->tcp_ipha->ip_dst = ipha->ip_src;
1474 		acceptor->tcp_remote = ipha->ip_src.s_addr;
1475 		acceptor->tcp_ipha->ip_src = ipha->ip_dst;
1476 		acceptor->tcp_bound_source = ipha->ip_dst.s_addr;
1477 		tcph = (tcph_t *)&cr_pkt->b_rptr[ip_hdr_len];
1478 	} else {
1479 		prom_panic("tcp_accept_comm: not IPv4");
1480 	}
1481 	bcopy(tcph->th_lport, acceptor->tcp_tcph->th_fport, sizeof (in_port_t));
1482 	bcopy(acceptor->tcp_tcph->th_fport, &acceptor->tcp_fport,
1483 	    sizeof (in_port_t));
1484 	/*
1485 	 * For an all-port proxy listener, the local port is determined by
1486 	 * the port number field in the SYN packet.
1487 	 */
1488 	if (listener->tcp_lport == 0) {
1489 		acceptor->tcp_lport = *(in_port_t *)tcph->th_fport;
1490 		bcopy(tcph->th_fport, acceptor->tcp_tcph->th_lport,
1491 		    sizeof (in_port_t));
1492 	}
1493 	/* Inherit various TCP parameters from the listener */
1494 	acceptor->tcp_naglim = listener->tcp_naglim;
1495 	acceptor->tcp_first_timer_threshold =
1496 	    listener->tcp_first_timer_threshold;
1497 	acceptor->tcp_second_timer_threshold =
1498 	    listener->tcp_second_timer_threshold;
1499 
1500 	acceptor->tcp_first_ctimer_threshold =
1501 	    listener->tcp_first_ctimer_threshold;
1502 	acceptor->tcp_second_ctimer_threshold =
1503 	    listener->tcp_second_ctimer_threshold;
1504 
1505 	acceptor->tcp_xmit_hiwater = listener->tcp_xmit_hiwater;
1506 
1507 	acceptor->tcp_state = TCPS_LISTEN;
1508 	tcp_iss_init(acceptor);
1509 
1510 	/* Process all TCP options. */
1511 	tcp_process_options(acceptor, tcph);
1512 
1513 	/* Is the other end ECN capable? */
1514 	if (tcp_ecn_permitted >= 1 &&
1515 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1516 		acceptor->tcp_ecn_ok = B_TRUE;
1517 	}
1518 
1519 	/*
1520 	 * listener->tcp_rq->q_hiwat should be the default window size or a
1521 	 * window size changed via SO_RCVBUF option.  First round up the
1522 	 * acceptor's tcp_rwnd to the nearest MSS.  Then find out the window
1523 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
1524 	 * setting.
1525 	 *
1526 	 * Note if there is a rpipe metric associated with the remote host,
1527 	 * we should not inherit receive window size from listener.
1528 	 */
1529 	acceptor->tcp_rwnd = MSS_ROUNDUP(
1530 	    (acceptor->tcp_rwnd == 0 ? listener->tcp_rwnd_max :
1531 	    acceptor->tcp_rwnd), acceptor->tcp_mss);
1532 	if (acceptor->tcp_snd_ws_ok)
1533 		SET_WS_VALUE(acceptor);
1534 	/*
1535 	 * Note that this is the only place tcp_rwnd_set() is called for
1536 	 * accepting a connection.  We need to call it here instead of
1537 	 * after the 3-way handshake because we need to tell the other
1538 	 * side our rwnd in the SYN-ACK segment.
1539 	 */
1540 	(void) tcp_rwnd_set(acceptor, acceptor->tcp_rwnd);
1541 
1542 	return (0);
1543 }
1544 
1545 /*
1546  * Defense for the SYN attack -
1547  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
1548  *    one that doesn't have the dontdrop bit set.
1549  * 2. Don't drop a SYN request before its first timeout. This gives every
1550  *    request at least til the first timeout to complete its 3-way handshake.
1551  * 3. The current threshold is - # of timeout > q0len/4 => SYN alert on
1552  *    # of timeout drops back to <= q0len/32 => SYN alert off
1553  */
1554 static boolean_t
1555 tcp_drop_q0(tcp_t *tcp)
1556 {
1557 	tcp_t	*eager;
1558 
1559 	assert(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
1560 	/*
1561 	 * New one is added after next_q0 so prev_q0 points to the oldest
1562 	 * Also do not drop any established connections that are deferred on
1563 	 * q0 due to q being full
1564 	 */
1565 
1566 	eager = tcp->tcp_eager_prev_q0;
1567 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
1568 		/* XXX should move the eager to the head */
1569 		eager = eager->tcp_eager_prev_q0;
1570 		if (eager == tcp) {
1571 			eager = tcp->tcp_eager_prev_q0;
1572 			break;
1573 		}
1574 	}
1575 	dprintf("tcp_drop_q0: listen half-open queue (max=%d) overflow"
1576 	    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
1577 	    tcp->tcp_conn_req_cnt_q0,
1578 	    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1579 
1580 	BUMP_MIB(tcp_mib.tcpHalfOpenDrop);
1581 	bkmem_free((caddr_t)eager, sizeof (tcp_t));
1582 	return (B_TRUE);
1583 }
1584 
1585 /* ARGSUSED */
1586 static tcp_t *
1587 tcp_conn_request(tcp_t *tcp, mblk_t *mp, uint_t sock_id, uint_t ip_hdr_len)
1588 {
1589 	tcp_t	*eager;
1590 	struct ip *ipha;
1591 	int	err;
1592 
1593 #ifdef DEBUG
1594 	printf("tcp_conn_request ###################\n");
1595 #endif
1596 
1597 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
1598 		BUMP_MIB(tcp_mib.tcpListenDrop);
1599 		dprintf("tcp_conn_request: listen backlog (max=%d) "
1600 		    "overflow (%d pending) on %s",
1601 		    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
1602 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1603 		return (NULL);
1604 	}
1605 
1606 	assert(OK_32PTR(mp->b_rptr));
1607 
1608 	if (tcp->tcp_conn_req_cnt_q0 >=
1609 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
1610 		/*
1611 		 * Q0 is full. Drop a pending half-open req from the queue
1612 		 * to make room for the new SYN req. Also mark the time we
1613 		 * drop a SYN.
1614 		 */
1615 		tcp->tcp_last_rcv_lbolt = prom_gettime();
1616 		if (!tcp_drop_q0(tcp)) {
1617 			freemsg(mp);
1618 			BUMP_MIB(tcp_mib.tcpListenDropQ0);
1619 			dprintf("tcp_conn_request: listen half-open queue "
1620 			    "(max=%d) full (%d pending) on %s",
1621 			    tcp_conn_req_max_q0,
1622 			    tcp->tcp_conn_req_cnt_q0,
1623 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
1624 			return (NULL);
1625 		}
1626 	}
1627 
1628 	ipha = (struct ip *)mp->b_rptr;
1629 	if (IN_CLASSD(ntohl(ipha->ip_src.s_addr)) ||
1630 	    ipha->ip_src.s_addr == INADDR_BROADCAST ||
1631 	    ipha->ip_src.s_addr == INADDR_ANY ||
1632 	    ipha->ip_dst.s_addr == INADDR_BROADCAST) {
1633 		freemsg(mp);
1634 		return (NULL);
1635 	}
1636 	/*
1637 	 * We allow the connection to proceed
1638 	 * by generating a detached tcp state vector and put it in
1639 	 * the eager queue.  When an accept happens, it will be
1640 	 * dequeued sequentially.
1641 	 */
1642 	if ((eager = (tcp_t *)bkmem_alloc(sizeof (tcp_t))) == NULL) {
1643 		freemsg(mp);
1644 		errno = ENOBUFS;
1645 		return (NULL);
1646 	}
1647 	if ((errno = tcp_init_values(eager, NULL)) != 0) {
1648 		freemsg(mp);
1649 		bkmem_free((caddr_t)eager, sizeof (tcp_t));
1650 		return (NULL);
1651 	}
1652 
1653 	/*
1654 	 * Eager connection inherits address form from its listener,
1655 	 * but its packet form comes from the version of the received
1656 	 * SYN segment.
1657 	 */
1658 	eager->tcp_family = tcp->tcp_family;
1659 
1660 	err = tcp_accept_comm(tcp, eager, mp, ip_hdr_len);
1661 	if (err) {
1662 		bkmem_free((caddr_t)eager, sizeof (tcp_t));
1663 		return (NULL);
1664 	}
1665 
1666 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1667 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
1668 	tcp->tcp_eager_next_q0 = eager;
1669 	eager->tcp_eager_prev_q0 = tcp;
1670 
1671 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1672 	eager->tcp_listener = tcp;
1673 	tcp->tcp_conn_req_cnt_q0++;
1674 
1675 	return (eager);
1676 }
1677 
1678 /*
1679  * To get around the non-interrupt problem of inetboot.
1680  * Keep on processing packets until a certain state is reached or the
1681  * TCP is destroyed because of getting a RST packet.
1682  */
1683 static int
1684 tcp_state_wait(int sock_id, tcp_t *tcp, int state)
1685 {
1686 	int i;
1687 	struct inetgram *in_gram;
1688 	mblk_t *mp;
1689 	int timeout;
1690 	boolean_t changed = B_FALSE;
1691 
1692 	/*
1693 	 * We need to make sure that the MAC does not wait longer
1694 	 * than RTO for any packet so that TCP can do retransmission.
1695 	 * But if the MAC timeout is less than tcp_rto, we are fine
1696 	 * and do not need to change it.
1697 	 */
1698 	timeout = sockets[sock_id].in_timeout;
1699 	if (timeout > tcp->tcp_rto) {
1700 		sockets[sock_id].in_timeout = tcp->tcp_rto;
1701 		changed = B_TRUE;
1702 	}
1703 retry:
1704 	if (sockets[sock_id].inq == NULL) {
1705 		/* Go out and check the wire */
1706 		for (i = MEDIA_LVL; i < TRANSPORT_LVL; i++) {
1707 			if (sockets[sock_id].input[i] != NULL) {
1708 				if (sockets[sock_id].input[i](sock_id) < 0) {
1709 					if (changed) {
1710 						sockets[sock_id].in_timeout =
1711 						    timeout;
1712 					}
1713 					return (-1);
1714 				}
1715 			}
1716 		}
1717 	}
1718 
1719 	while ((in_gram = sockets[sock_id].inq) != NULL) {
1720 		if (tcp != NULL && tcp->tcp_state == state)
1721 			break;
1722 
1723 		/* Remove unknown inetgrams from the head of inq. */
1724 		if (in_gram->igm_level != TRANSPORT_LVL) {
1725 #ifdef DEBUG
1726 			printf("tcp_state_wait for state %d: unexpected "
1727 			    "packet level %d frame found\n", state,
1728 			    in_gram->igm_level);
1729 #endif
1730 			del_gram(&sockets[sock_id].inq, in_gram, B_TRUE);
1731 			continue;
1732 		}
1733 		mp = in_gram->igm_mp;
1734 		del_gram(&sockets[sock_id].inq, in_gram, B_FALSE);
1735 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
1736 		tcp_rput_data(tcp, mp, sock_id);
1737 
1738 		/*
1739 		 * The other side may have closed this connection or
1740 		 * RST us.  But we need to continue to process other
1741 		 * packets in the socket's queue because they may be
1742 		 * belong to another TCP connections.
1743 		 */
1744 		if (sockets[sock_id].pcb == NULL) {
1745 			tcp = NULL;
1746 		}
1747 	}
1748 
1749 	/* If the other side has closed the connection, just return. */
1750 	if (tcp == NULL || sockets[sock_id].pcb == NULL) {
1751 #ifdef DEBUG
1752 		printf("tcp_state_wait other side dead: state %d "
1753 		    "error %d\n", state, sockets[sock_id].so_error);
1754 #endif
1755 		if (sockets[sock_id].so_error != 0)
1756 			return (-1);
1757 		else
1758 			return (0);
1759 	}
1760 	/*
1761 	 * TCPS_ALL_ACKED is not a valid TCP state, it is just used as an
1762 	 * indicator to tcp_state_wait to mean that it is being called
1763 	 * to wait till we have received acks for all the new segments sent.
1764 	 */
1765 	if ((state == TCPS_ALL_ACKED) && (tcp->tcp_suna == tcp->tcp_snxt)) {
1766 		goto done;
1767 	}
1768 	if (tcp->tcp_state != state) {
1769 		if (prom_gettime() > tcp->tcp_rto_timeout)
1770 			tcp_timer(tcp, sock_id);
1771 		goto retry;
1772 	}
1773 done:
1774 	if (changed)
1775 		sockets[sock_id].in_timeout = timeout;
1776 
1777 	tcp_drain_needed(sock_id, tcp);
1778 	return (0);
1779 }
1780 
1781 /* Verify the checksum of a segment. */
1782 static int
1783 tcp_verify_cksum(mblk_t *mp)
1784 {
1785 	struct ip *iph;
1786 	tcpha_t *tcph;
1787 	int len;
1788 	uint16_t old_sum;
1789 
1790 	iph = (struct ip *)mp->b_rptr;
1791 	tcph = (tcpha_t *)(iph + 1);
1792 	len = ntohs(iph->ip_len);
1793 
1794 	/*
1795 	 * Calculate the TCP checksum.  Need to include the psuedo header,
1796 	 * which is similar to the real IP header starting at the TTL field.
1797 	 */
1798 	iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
1799 	old_sum = tcph->tha_sum;
1800 	tcph->tha_sum = 0;
1801 	iph->ip_ttl = 0;
1802 	if (old_sum == tcp_cksum((uint16_t *)&(iph->ip_ttl),
1803 	    len - IP_SIMPLE_HDR_LENGTH + 12)) {
1804 		return (0);
1805 	} else {
1806 		tcp_cksum_errors++;
1807 		return (-1);
1808 	}
1809 }
1810 
1811 /* To find a TCP connection matching the incoming segment. */
1812 static tcp_t *
1813 tcp_lookup_ipv4(struct ip *iph, tcpha_t *tcph, int min_state, int *sock_id)
1814 {
1815 	int i;
1816 	tcp_t *tcp;
1817 
1818 	for (i = 0; i < MAXSOCKET; i++) {
1819 		if (sockets[i].type == INETBOOT_STREAM &&
1820 		    (tcp = (tcp_t *)sockets[i].pcb) != NULL) {
1821 			if (tcph->tha_lport == tcp->tcp_fport &&
1822 			    tcph->tha_fport == tcp->tcp_lport &&
1823 			    iph->ip_src.s_addr == tcp->tcp_remote &&
1824 			    iph->ip_dst.s_addr == tcp->tcp_bound_source &&
1825 			    tcp->tcp_state >= min_state) {
1826 				*sock_id = i;
1827 				return (tcp);
1828 			}
1829 		}
1830 	}
1831 	/* Find it in the time wait list. */
1832 	for (tcp = tcp_time_wait_head; tcp != NULL;
1833 	    tcp = tcp->tcp_time_wait_next) {
1834 		if (tcph->tha_lport == tcp->tcp_fport &&
1835 		    tcph->tha_fport == tcp->tcp_lport &&
1836 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1837 		    iph->ip_dst.s_addr == tcp->tcp_bound_source &&
1838 		    tcp->tcp_state >= min_state) {
1839 			*sock_id = -1;
1840 			return (tcp);
1841 		}
1842 	}
1843 	return (NULL);
1844 }
1845 
1846 /* To find a TCP listening connection matching the incoming segment. */
1847 static tcp_t *
1848 tcp_lookup_listener_ipv4(in_addr_t addr, in_port_t port, int *sock_id)
1849 {
1850 	int i;
1851 	tcp_t *tcp;
1852 
1853 	for (i = 0; i < MAXSOCKET; i++) {
1854 		if (sockets[i].type == INETBOOT_STREAM &&
1855 		    (tcp = (tcp_t *)sockets[i].pcb) != NULL) {
1856 			if (tcp->tcp_lport == port &&
1857 			    (tcp->tcp_bound_source == addr ||
1858 			    tcp->tcp_bound_source == INADDR_ANY)) {
1859 				*sock_id = i;
1860 				return (tcp);
1861 			}
1862 		}
1863 	}
1864 
1865 	return (NULL);
1866 }
1867 
1868 /* To find a TCP eager matching the incoming segment. */
1869 static tcp_t *
1870 tcp_lookup_eager_ipv4(tcp_t *listener, struct ip *iph, tcpha_t *tcph)
1871 {
1872 	tcp_t *tcp;
1873 
1874 #ifdef DEBUG
1875 	printf("tcp_lookup_eager_ipv4 ###############\n");
1876 #endif
1877 	for (tcp = listener->tcp_eager_next_q; tcp != NULL;
1878 	    tcp = tcp->tcp_eager_next_q) {
1879 		if (tcph->tha_lport == tcp->tcp_fport &&
1880 		    tcph->tha_fport == tcp->tcp_lport &&
1881 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1882 		    iph->ip_dst.s_addr == tcp->tcp_bound_source) {
1883 			return (tcp);
1884 		}
1885 	}
1886 
1887 	for (tcp = listener->tcp_eager_next_q0; tcp != listener;
1888 	    tcp = tcp->tcp_eager_next_q0) {
1889 		if (tcph->tha_lport == tcp->tcp_fport &&
1890 		    tcph->tha_fport == tcp->tcp_lport &&
1891 		    iph->ip_src.s_addr == tcp->tcp_remote &&
1892 		    iph->ip_dst.s_addr == tcp->tcp_bound_source) {
1893 			return (tcp);
1894 		}
1895 	}
1896 #ifdef DEBUG
1897 	printf("No eager found\n");
1898 #endif
1899 	return (NULL);
1900 }
1901 
1902 /* To destroy a TCP control block. */
1903 static void
1904 tcp_clean_death(int sock_id, tcp_t *tcp, int err)
1905 {
1906 	tcp_free(tcp);
1907 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1908 		tcp_time_wait_remove(tcp);
1909 
1910 	if (sock_id >= 0) {
1911 		sockets[sock_id].pcb = NULL;
1912 		if (err != 0)
1913 			sockets[sock_id].so_error = err;
1914 	}
1915 	bkmem_free((caddr_t)tcp, sizeof (tcp_t));
1916 }
1917 
1918 /*
1919  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
1920  * We do not allow the receive window to shrink.  After setting rwnd,
1921  * set the flow control hiwat of the stream.
1922  *
1923  * This function is called in 2 cases:
1924  *
1925  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
1926  *    connection (passive open) and in tcp_rput_data() for active connect.
1927  *    This is called after tcp_mss_set() when the desired MSS value is known.
1928  *    This makes sure that our window size is a mutiple of the other side's
1929  *    MSS.
1930  * 2) Handling SO_RCVBUF option.
1931  *
1932  * It is ASSUMED that the requested size is a multiple of the current MSS.
1933  *
1934  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
1935  * user requests so.
1936  */
1937 static int
1938 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
1939 {
1940 	uint32_t	mss = tcp->tcp_mss;
1941 	uint32_t	old_max_rwnd;
1942 	uint32_t	max_transmittable_rwnd;
1943 
1944 	if (tcp->tcp_rwnd_max != 0)
1945 		old_max_rwnd = tcp->tcp_rwnd_max;
1946 	else
1947 		old_max_rwnd = tcp->tcp_rwnd;
1948 
1949 	/*
1950 	 * Insist on a receive window that is at least
1951 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
1952 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
1953 	 * and delayed acknowledgement.
1954 	 */
1955 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
1956 
1957 	/*
1958 	 * If window size info has already been exchanged, TCP should not
1959 	 * shrink the window.  Shrinking window is doable if done carefully.
1960 	 * We may add that support later.  But so far there is not a real
1961 	 * need to do that.
1962 	 */
1963 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
1964 		/* MSS may have changed, do a round up again. */
1965 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
1966 	}
1967 
1968 	/*
1969 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
1970 	 * can be applied even before the window scale option is decided.
1971 	 */
1972 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
1973 	if (rwnd > max_transmittable_rwnd) {
1974 		rwnd = max_transmittable_rwnd -
1975 		    (max_transmittable_rwnd % mss);
1976 		if (rwnd < mss)
1977 			rwnd = max_transmittable_rwnd;
1978 		/*
1979 		 * If we're over the limit we may have to back down tcp_rwnd.
1980 		 * The increment below won't work for us. So we set all three
1981 		 * here and the increment below will have no effect.
1982 		 */
1983 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
1984 	}
1985 
1986 	/*
1987 	 * Increment the current rwnd by the amount the maximum grew (we
1988 	 * can not overwrite it since we might be in the middle of a
1989 	 * connection.)
1990 	 */
1991 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
1992 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
1993 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
1994 		tcp->tcp_cwnd_max = rwnd;
1995 	tcp->tcp_rwnd_max = rwnd;
1996 
1997 	return (rwnd);
1998 }
1999 
2000 /*
2001  * Extract option values from a tcp header.  We put any found values into the
2002  * tcpopt struct and return a bitmask saying which options were found.
2003  */
2004 static int
2005 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
2006 {
2007 	uchar_t		*endp;
2008 	int		len;
2009 	uint32_t	mss;
2010 	uchar_t		*up = (uchar_t *)tcph;
2011 	int		found = 0;
2012 	int32_t		sack_len;
2013 	tcp_seq		sack_begin, sack_end;
2014 	tcp_t		*tcp;
2015 
2016 	endp = up + TCP_HDR_LENGTH(tcph);
2017 	up += TCP_MIN_HEADER_LENGTH;
2018 	while (up < endp) {
2019 		len = endp - up;
2020 		switch (*up) {
2021 		case TCPOPT_EOL:
2022 			break;
2023 
2024 		case TCPOPT_NOP:
2025 			up++;
2026 			continue;
2027 
2028 		case TCPOPT_MAXSEG:
2029 			if (len < TCPOPT_MAXSEG_LEN ||
2030 			    up[1] != TCPOPT_MAXSEG_LEN)
2031 				break;
2032 
2033 			mss = BE16_TO_U16(up+2);
2034 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
2035 			tcpopt->tcp_opt_mss = mss;
2036 			found |= TCP_OPT_MSS_PRESENT;
2037 
2038 			up += TCPOPT_MAXSEG_LEN;
2039 			continue;
2040 
2041 		case TCPOPT_WSCALE:
2042 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
2043 				break;
2044 
2045 			if (up[2] > TCP_MAX_WINSHIFT)
2046 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
2047 			else
2048 				tcpopt->tcp_opt_wscale = up[2];
2049 			found |= TCP_OPT_WSCALE_PRESENT;
2050 
2051 			up += TCPOPT_WS_LEN;
2052 			continue;
2053 
2054 		case TCPOPT_SACK_PERMITTED:
2055 			if (len < TCPOPT_SACK_OK_LEN ||
2056 			    up[1] != TCPOPT_SACK_OK_LEN)
2057 				break;
2058 			found |= TCP_OPT_SACK_OK_PRESENT;
2059 			up += TCPOPT_SACK_OK_LEN;
2060 			continue;
2061 
2062 		case TCPOPT_SACK:
2063 			if (len <= 2 || up[1] <= 2 || len < up[1])
2064 				break;
2065 
2066 			/* If TCP is not interested in SACK blks... */
2067 			if ((tcp = tcpopt->tcp) == NULL) {
2068 				up += up[1];
2069 				continue;
2070 			}
2071 			sack_len = up[1] - TCPOPT_HEADER_LEN;
2072 			up += TCPOPT_HEADER_LEN;
2073 
2074 			/*
2075 			 * If the list is empty, allocate one and assume
2076 			 * nothing is sack'ed.
2077 			 */
2078 			assert(tcp->tcp_sack_info != NULL);
2079 			if (tcp->tcp_notsack_list == NULL) {
2080 				tcp_notsack_update(&(tcp->tcp_notsack_list),
2081 				    tcp->tcp_suna, tcp->tcp_snxt,
2082 				    &(tcp->tcp_num_notsack_blk),
2083 				    &(tcp->tcp_cnt_notsack_list));
2084 
2085 				/*
2086 				 * Make sure tcp_notsack_list is not NULL.
2087 				 * This happens when kmem_alloc(KM_NOSLEEP)
2088 				 * returns NULL.
2089 				 */
2090 				if (tcp->tcp_notsack_list == NULL) {
2091 					up += sack_len;
2092 					continue;
2093 				}
2094 				tcp->tcp_fack = tcp->tcp_suna;
2095 			}
2096 
2097 			while (sack_len > 0) {
2098 				if (up + 8 > endp) {
2099 					up = endp;
2100 					break;
2101 				}
2102 				sack_begin = BE32_TO_U32(up);
2103 				up += 4;
2104 				sack_end = BE32_TO_U32(up);
2105 				up += 4;
2106 				sack_len -= 8;
2107 				/*
2108 				 * Bounds checking.  Make sure the SACK
2109 				 * info is within tcp_suna and tcp_snxt.
2110 				 * If this SACK blk is out of bound, ignore
2111 				 * it but continue to parse the following
2112 				 * blks.
2113 				 */
2114 				if (SEQ_LEQ(sack_end, sack_begin) ||
2115 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
2116 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
2117 					continue;
2118 				}
2119 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
2120 				    sack_begin, sack_end,
2121 				    &(tcp->tcp_num_notsack_blk),
2122 				    &(tcp->tcp_cnt_notsack_list));
2123 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
2124 					tcp->tcp_fack = sack_end;
2125 				}
2126 			}
2127 			found |= TCP_OPT_SACK_PRESENT;
2128 			continue;
2129 
2130 		case TCPOPT_TSTAMP:
2131 			if (len < TCPOPT_TSTAMP_LEN ||
2132 			    up[1] != TCPOPT_TSTAMP_LEN)
2133 				break;
2134 
2135 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
2136 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
2137 
2138 			found |= TCP_OPT_TSTAMP_PRESENT;
2139 
2140 			up += TCPOPT_TSTAMP_LEN;
2141 			continue;
2142 
2143 		default:
2144 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
2145 				break;
2146 			up += up[1];
2147 			continue;
2148 		}
2149 		break;
2150 	}
2151 	return (found);
2152 }
2153 
2154 /*
2155  * Set the mss associated with a particular tcp based on its current value,
2156  * and a new one passed in. Observe minimums and maximums, and reset
2157  * other state variables that we want to view as multiples of mss.
2158  *
2159  * This function is called in various places mainly because
2160  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
2161  *    other side's SYN/SYN-ACK packet arrives.
2162  * 2) PMTUd may get us a new MSS.
2163  * 3) If the other side stops sending us timestamp option, we need to
2164  *    increase the MSS size to use the extra bytes available.
2165  */
2166 static void
2167 tcp_mss_set(tcp_t *tcp, uint32_t mss)
2168 {
2169 	uint32_t	mss_max;
2170 
2171 	mss_max = tcp_mss_max_ipv4;
2172 
2173 	if (mss < tcp_mss_min)
2174 		mss = tcp_mss_min;
2175 	if (mss > mss_max)
2176 		mss = mss_max;
2177 	/*
2178 	 * Unless naglim has been set by our client to
2179 	 * a non-mss value, force naglim to track mss.
2180 	 * This can help to aggregate small writes.
2181 	 */
2182 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
2183 		tcp->tcp_naglim = mss;
2184 	/*
2185 	 * TCP should be able to buffer at least 4 MSS data for obvious
2186 	 * performance reason.
2187 	 */
2188 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
2189 		tcp->tcp_xmit_hiwater = mss << 2;
2190 	tcp->tcp_mss = mss;
2191 	/*
2192 	 * Initialize cwnd according to draft-floyd-incr-init-win-01.txt.
2193 	 * Previously, we use tcp_slow_start_initial to control the size
2194 	 * of the initial cwnd.  Now, when tcp_slow_start_initial * mss
2195 	 * is smaller than the cwnd calculated from the formula suggested in
2196 	 * the draft, we use tcp_slow_start_initial * mss as the cwnd.
2197 	 * Otherwise, use the cwnd from the draft's formula.  The default
2198 	 * of tcp_slow_start_initial is 2.
2199 	 */
2200 	tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
2201 	    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
2202 	tcp->tcp_cwnd_cnt = 0;
2203 }
2204 
2205 /*
2206  * Process all TCP option in SYN segment.
2207  *
2208  * This function sets up the correct tcp_mss value according to the
2209  * MSS option value and our header size.  It also sets up the window scale
2210  * and timestamp values, and initialize SACK info blocks.  But it does not
2211  * change receive window size after setting the tcp_mss value.  The caller
2212  * should do the appropriate change.
2213  */
2214 void
2215 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
2216 {
2217 	int options;
2218 	tcp_opt_t tcpopt;
2219 	uint32_t mss_max;
2220 	char *tmp_tcph;
2221 
2222 	tcpopt.tcp = NULL;
2223 	options = tcp_parse_options(tcph, &tcpopt);
2224 
2225 	/*
2226 	 * Process MSS option.  Note that MSS option value does not account
2227 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
2228 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
2229 	 * IPv6.
2230 	 */
2231 	if (!(options & TCP_OPT_MSS_PRESENT)) {
2232 		tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
2233 	} else {
2234 		if (tcp->tcp_ipversion == IPV4_VERSION)
2235 			mss_max = tcp_mss_max_ipv4;
2236 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
2237 			tcpopt.tcp_opt_mss = tcp_mss_min;
2238 		else if (tcpopt.tcp_opt_mss > mss_max)
2239 			tcpopt.tcp_opt_mss = mss_max;
2240 	}
2241 
2242 	/* Process Window Scale option. */
2243 	if (options & TCP_OPT_WSCALE_PRESENT) {
2244 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
2245 		tcp->tcp_snd_ws_ok = B_TRUE;
2246 	} else {
2247 		tcp->tcp_snd_ws = B_FALSE;
2248 		tcp->tcp_snd_ws_ok = B_FALSE;
2249 		tcp->tcp_rcv_ws = B_FALSE;
2250 	}
2251 
2252 	/* Process Timestamp option. */
2253 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
2254 	    (tcp->tcp_snd_ts_ok || !tcp->tcp_active_open)) {
2255 		tmp_tcph = (char *)tcp->tcp_tcph;
2256 
2257 		tcp->tcp_snd_ts_ok = B_TRUE;
2258 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
2259 		tcp->tcp_last_rcv_lbolt = prom_gettime();
2260 		assert(OK_32PTR(tmp_tcph));
2261 		assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
2262 
2263 		/* Fill in our template header with basic timestamp option. */
2264 		tmp_tcph += tcp->tcp_tcp_hdr_len;
2265 		tmp_tcph[0] = TCPOPT_NOP;
2266 		tmp_tcph[1] = TCPOPT_NOP;
2267 		tmp_tcph[2] = TCPOPT_TSTAMP;
2268 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
2269 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
2270 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
2271 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
2272 	} else {
2273 		tcp->tcp_snd_ts_ok = B_FALSE;
2274 	}
2275 
2276 	/*
2277 	 * Process SACK options.  If SACK is enabled for this connection,
2278 	 * then allocate the SACK info structure.
2279 	 */
2280 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
2281 	    (tcp->tcp_snd_sack_ok ||
2282 	    (tcp_sack_permitted != 0 && !tcp->tcp_active_open))) {
2283 		/* This should be true only in the passive case. */
2284 		if (tcp->tcp_sack_info == NULL) {
2285 			tcp->tcp_sack_info = (tcp_sack_info_t *)bkmem_zalloc(
2286 			    sizeof (tcp_sack_info_t));
2287 		}
2288 		if (tcp->tcp_sack_info == NULL) {
2289 			tcp->tcp_snd_sack_ok = B_FALSE;
2290 		} else {
2291 			tcp->tcp_snd_sack_ok = B_TRUE;
2292 			if (tcp->tcp_snd_ts_ok) {
2293 				tcp->tcp_max_sack_blk = 3;
2294 			} else {
2295 				tcp->tcp_max_sack_blk = 4;
2296 			}
2297 		}
2298 	} else {
2299 		/*
2300 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
2301 		 * no SACK info will be used for this
2302 		 * connection.  This assumes that SACK usage
2303 		 * permission is negotiated.  This may need
2304 		 * to be changed once this is clarified.
2305 		 */
2306 		if (tcp->tcp_sack_info != NULL) {
2307 			bkmem_free((caddr_t)tcp->tcp_sack_info,
2308 			    sizeof (tcp_sack_info_t));
2309 			tcp->tcp_sack_info = NULL;
2310 		}
2311 		tcp->tcp_snd_sack_ok = B_FALSE;
2312 	}
2313 
2314 	/*
2315 	 * Now we know the exact TCP/IP header length, subtract
2316 	 * that from tcp_mss to get our side's MSS.
2317 	 */
2318 	tcp->tcp_mss -= tcp->tcp_hdr_len;
2319 	/*
2320 	 * Here we assume that the other side's header size will be equal to
2321 	 * our header size.  We calculate the real MSS accordingly.  Need to
2322 	 * take into additional stuffs IPsec puts in.
2323 	 *
2324 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
2325 	 */
2326 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len -
2327 	    (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH);
2328 
2329 	/*
2330 	 * Set MSS to the smaller one of both ends of the connection.
2331 	 * We should not have called tcp_mss_set() before, but our
2332 	 * side of the MSS should have been set to a proper value
2333 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
2334 	 * STREAM head parameters properly.
2335 	 *
2336 	 * If we have a larger-than-16-bit window but the other side
2337 	 * didn't want to do window scale, tcp_rwnd_set() will take
2338 	 * care of that.
2339 	 */
2340 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
2341 }
2342 
2343 /*
2344  * This function does PAWS protection check.  Returns B_TRUE if the
2345  * segment passes the PAWS test, else returns B_FALSE.
2346  */
2347 boolean_t
2348 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
2349 {
2350 	uint8_t	flags;
2351 	int	options;
2352 	uint8_t *up;
2353 
2354 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
2355 	/*
2356 	 * If timestamp option is aligned nicely, get values inline,
2357 	 * otherwise call general routine to parse.  Only do that
2358 	 * if timestamp is the only option.
2359 	 */
2360 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
2361 	    TCPOPT_REAL_TS_LEN &&
2362 	    OK_32PTR((up = ((uint8_t *)tcph) +
2363 	    TCP_MIN_HEADER_LENGTH)) &&
2364 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
2365 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
2366 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
2367 
2368 		options = TCP_OPT_TSTAMP_PRESENT;
2369 	} else {
2370 		if (tcp->tcp_snd_sack_ok) {
2371 			tcpoptp->tcp = tcp;
2372 		} else {
2373 			tcpoptp->tcp = NULL;
2374 		}
2375 		options = tcp_parse_options(tcph, tcpoptp);
2376 	}
2377 
2378 	if (options & TCP_OPT_TSTAMP_PRESENT) {
2379 		/*
2380 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
2381 		 * regardless of the timestamp, page 18 RFC 1323.bis.
2382 		 */
2383 		if ((flags & TH_RST) == 0 &&
2384 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
2385 		    tcp->tcp_ts_recent)) {
2386 			if (TSTMP_LT(prom_gettime(),
2387 			    tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
2388 				/* This segment is not acceptable. */
2389 				return (B_FALSE);
2390 			} else {
2391 				/*
2392 				 * Connection has been idle for
2393 				 * too long.  Reset the timestamp
2394 				 * and assume the segment is valid.
2395 				 */
2396 				tcp->tcp_ts_recent =
2397 				    tcpoptp->tcp_opt_ts_val;
2398 			}
2399 		}
2400 	} else {
2401 		/*
2402 		 * If we don't get a timestamp on every packet, we
2403 		 * figure we can't really trust 'em, so we stop sending
2404 		 * and parsing them.
2405 		 */
2406 		tcp->tcp_snd_ts_ok = B_FALSE;
2407 
2408 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
2409 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
2410 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
2411 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
2412 		if (tcp->tcp_snd_sack_ok) {
2413 			assert(tcp->tcp_sack_info != NULL);
2414 			tcp->tcp_max_sack_blk = 4;
2415 		}
2416 	}
2417 	return (B_TRUE);
2418 }
2419 
2420 /*
2421  * tcp_get_seg_mp() is called to get the pointer to a segment in the
2422  * send queue which starts at the given seq. no.
2423  *
2424  * Parameters:
2425  *	tcp_t *tcp: the tcp instance pointer.
2426  *	uint32_t seq: the starting seq. no of the requested segment.
2427  *	int32_t *off: after the execution, *off will be the offset to
2428  *		the returned mblk which points to the requested seq no.
2429  *
2430  * Return:
2431  *	A mblk_t pointer pointing to the requested segment in send queue.
2432  */
2433 static mblk_t *
2434 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
2435 {
2436 	int32_t	cnt;
2437 	mblk_t	*mp;
2438 
2439 	/* Defensive coding.  Make sure we don't send incorrect data. */
2440 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt) ||
2441 	    off == NULL) {
2442 		return (NULL);
2443 	}
2444 	cnt = seq - tcp->tcp_suna;
2445 	mp = tcp->tcp_xmit_head;
2446 	while (cnt > 0 && mp) {
2447 		cnt -= mp->b_wptr - mp->b_rptr;
2448 		if (cnt < 0) {
2449 			cnt += mp->b_wptr - mp->b_rptr;
2450 			break;
2451 		}
2452 		mp = mp->b_cont;
2453 	}
2454 	assert(mp != NULL);
2455 	*off = cnt;
2456 	return (mp);
2457 }
2458 
2459 /*
2460  * This function handles all retransmissions if SACK is enabled for this
2461  * connection.  First it calculates how many segments can be retransmitted
2462  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
2463  * segments.  A segment is eligible if sack_cnt for that segment is greater
2464  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
2465  * all eligible segments, it checks to see if TCP can send some new segments
2466  * (fast recovery).  If it can, it returns 1.  Otherwise it returns 0.
2467  *
2468  * Parameters:
2469  *	tcp_t *tcp: the tcp structure of the connection.
2470  *
2471  * Return:
2472  *	1 if the pipe is not full (new data can be sent), 0 otherwise
2473  */
2474 static int32_t
2475 tcp_sack_rxmit(tcp_t *tcp, int sock_id)
2476 {
2477 	notsack_blk_t	*notsack_blk;
2478 	int32_t		usable_swnd;
2479 	int32_t		mss;
2480 	uint32_t	seg_len;
2481 	mblk_t		*xmit_mp;
2482 
2483 	assert(tcp->tcp_sack_info != NULL);
2484 	assert(tcp->tcp_notsack_list != NULL);
2485 	assert(tcp->tcp_rexmit == B_FALSE);
2486 
2487 	/* Defensive coding in case there is a bug... */
2488 	if (tcp->tcp_notsack_list == NULL) {
2489 		return (0);
2490 	}
2491 	notsack_blk = tcp->tcp_notsack_list;
2492 	mss = tcp->tcp_mss;
2493 
2494 	/*
2495 	 * Limit the num of outstanding data in the network to be
2496 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
2497 	 */
2498 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
2499 
2500 	/* At least retransmit 1 MSS of data. */
2501 	if (usable_swnd <= 0) {
2502 		usable_swnd = mss;
2503 	}
2504 
2505 	/* Make sure no new RTT samples will be taken. */
2506 	tcp->tcp_csuna = tcp->tcp_snxt;
2507 
2508 	notsack_blk = tcp->tcp_notsack_list;
2509 	while (usable_swnd > 0) {
2510 		mblk_t		*snxt_mp, *tmp_mp;
2511 		tcp_seq		begin = tcp->tcp_sack_snxt;
2512 		tcp_seq		end;
2513 		int32_t		off;
2514 
2515 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
2516 			if (SEQ_GT(notsack_blk->end, begin) &&
2517 			    (notsack_blk->sack_cnt >=
2518 			    tcp_dupack_fast_retransmit)) {
2519 				end = notsack_blk->end;
2520 				if (SEQ_LT(begin, notsack_blk->begin)) {
2521 					begin = notsack_blk->begin;
2522 				}
2523 				break;
2524 			}
2525 		}
2526 		/*
2527 		 * All holes are filled.  Manipulate tcp_cwnd to send more
2528 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
2529 		 * set to tcp_cwnd_ssthresh.
2530 		 */
2531 		if (notsack_blk == NULL) {
2532 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
2533 			if (usable_swnd <= 0) {
2534 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
2535 				assert(tcp->tcp_cwnd > 0);
2536 				return (0);
2537 			} else {
2538 				usable_swnd = usable_swnd / mss;
2539 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
2540 				    MAX(usable_swnd * mss, mss);
2541 				return (1);
2542 			}
2543 		}
2544 
2545 		/*
2546 		 * Note that we may send more than usable_swnd allows here
2547 		 * because of round off, but no more than 1 MSS of data.
2548 		 */
2549 		seg_len = end - begin;
2550 		if (seg_len > mss)
2551 			seg_len = mss;
2552 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
2553 		assert(snxt_mp != NULL);
2554 		/* This should not happen.  Defensive coding again... */
2555 		if (snxt_mp == NULL) {
2556 			return (0);
2557 		}
2558 
2559 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
2560 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
2561 
2562 		if (xmit_mp == NULL)
2563 			return (0);
2564 
2565 		usable_swnd -= seg_len;
2566 		tcp->tcp_pipe += seg_len;
2567 		tcp->tcp_sack_snxt = begin + seg_len;
2568 		TCP_DUMP_PACKET("tcp_sack_rxmit", xmit_mp);
2569 		(void) ipv4_tcp_output(sock_id, xmit_mp);
2570 		freeb(xmit_mp);
2571 
2572 		/*
2573 		 * Update the send timestamp to avoid false retransmission.
2574 		 * Note. use uintptr_t to suppress the gcc warning.
2575 		 */
2576 		snxt_mp->b_prev = (mblk_t *)(uintptr_t)prom_gettime();
2577 
2578 		BUMP_MIB(tcp_mib.tcpRetransSegs);
2579 		UPDATE_MIB(tcp_mib.tcpRetransBytes, seg_len);
2580 		BUMP_MIB(tcp_mib.tcpOutSackRetransSegs);
2581 		/*
2582 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
2583 		 * This happens when new data sent during fast recovery is
2584 		 * also lost.  If TCP retransmits those new data, it needs
2585 		 * to extend SACK recover phase to avoid starting another
2586 		 * fast retransmit/recovery unnecessarily.
2587 		 */
2588 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
2589 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
2590 		}
2591 	}
2592 	return (0);
2593 }
2594 
2595 static void
2596 tcp_rput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
2597 {
2598 	uchar_t		*rptr;
2599 	struct ip	*iph;
2600 	tcp_t		*tcp1;
2601 	tcpha_t		*tcph;
2602 	uint32_t	seg_ack;
2603 	int		seg_len;
2604 	uint_t		ip_hdr_len;
2605 	uint32_t	seg_seq;
2606 	mblk_t		*mp1;
2607 	uint_t		flags;
2608 	uint32_t	new_swnd = 0;
2609 	int		mss;
2610 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2611 	int32_t		gap;
2612 	int32_t		rgap;
2613 	tcp_opt_t	tcpopt;
2614 	int32_t		bytes_acked;
2615 	int		npkt;
2616 	uint32_t	cwnd;
2617 	uint32_t	add;
2618 
2619 #ifdef DEBUG
2620 	printf("tcp_rput_data sock %d mp %x mp_datap %x #################\n",
2621 	    sock_id, mp, mp->b_datap);
2622 #endif
2623 
2624 	/* Dump the packet when debugging. */
2625 	TCP_DUMP_PACKET("tcp_rput_data", mp);
2626 
2627 	assert(OK_32PTR(mp->b_rptr));
2628 
2629 	rptr = mp->b_rptr;
2630 	iph = (struct ip *)rptr;
2631 	ip_hdr_len = IPH_HDR_LENGTH(rptr);
2632 	if (ip_hdr_len != IP_SIMPLE_HDR_LENGTH) {
2633 #ifdef DEBUG
2634 		printf("Not simple IP header\n");
2635 #endif
2636 		/* We cannot handle IP option yet... */
2637 		tcp_drops++;
2638 		freeb(mp);
2639 		return;
2640 	}
2641 	/* The TCP header must be aligned. */
2642 	tcph = (tcpha_t *)&rptr[ip_hdr_len];
2643 	seg_seq = ntohl(tcph->tha_seq);
2644 	seg_ack = ntohl(tcph->tha_ack);
2645 	assert((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2646 	seg_len = (int)(mp->b_wptr - rptr) -
2647 	    (ip_hdr_len + TCP_HDR_LENGTH(((tcph_t *)tcph)));
2648 	/* In inetboot, b_cont should always be NULL. */
2649 	assert(mp->b_cont == NULL);
2650 
2651 	/* Verify the checksum. */
2652 	if (tcp_verify_cksum(mp) < 0) {
2653 #ifdef DEBUG
2654 		printf("tcp_rput_data: wrong cksum\n");
2655 #endif
2656 		freemsg(mp);
2657 		return;
2658 	}
2659 
2660 	/*
2661 	 * This segment is not for us, try to find its
2662 	 * intended receiver.
2663 	 */
2664 	if (tcp == NULL ||
2665 	    tcph->tha_lport != tcp->tcp_fport ||
2666 	    tcph->tha_fport != tcp->tcp_lport ||
2667 	    iph->ip_src.s_addr != tcp->tcp_remote ||
2668 	    iph->ip_dst.s_addr != tcp->tcp_bound_source) {
2669 #ifdef DEBUG
2670 		printf("tcp_rput_data: not for us, state %d\n",
2671 		    tcp->tcp_state);
2672 #endif
2673 		/*
2674 		 * First try to find a established connection.  If none
2675 		 * is found, look for a listener.
2676 		 *
2677 		 * If a listener is found, we need to check to see if the
2678 		 * incoming segment is for one of its eagers.  If it is,
2679 		 * give it to the eager.  If not, listener should take care
2680 		 * of it.
2681 		 */
2682 		if ((tcp1 = tcp_lookup_ipv4(iph, tcph, TCPS_SYN_SENT,
2683 		    &sock_id)) != NULL ||
2684 		    (tcp1 = tcp_lookup_listener_ipv4(iph->ip_dst.s_addr,
2685 		    tcph->tha_fport, &sock_id)) != NULL) {
2686 			if (tcp1->tcp_state == TCPS_LISTEN) {
2687 				if ((tcp = tcp_lookup_eager_ipv4(tcp1,
2688 				    iph, tcph)) == NULL) {
2689 					/* No eager... sent to listener */
2690 #ifdef DEBUG
2691 					printf("found the listener: %s\n",
2692 					    tcp_display(tcp1, NULL,
2693 					    DISP_ADDR_AND_PORT));
2694 #endif
2695 					tcp = tcp1;
2696 				}
2697 #ifdef DEBUG
2698 				else {
2699 					printf("found the eager: %s\n",
2700 					    tcp_display(tcp, NULL,
2701 					    DISP_ADDR_AND_PORT));
2702 				}
2703 #endif
2704 			} else {
2705 				/* Non listener found... */
2706 #ifdef DEBUG
2707 				printf("found the connection: %s\n",
2708 				    tcp_display(tcp1, NULL,
2709 				    DISP_ADDR_AND_PORT));
2710 #endif
2711 				tcp = tcp1;
2712 			}
2713 		} else {
2714 			/*
2715 			 * No connection for this segment...
2716 			 * Send a RST to the other side.
2717 			 */
2718 			tcp_xmit_listeners_reset(sock_id, mp, ip_hdr_len);
2719 			return;
2720 		}
2721 	}
2722 
2723 	flags = tcph->tha_flags & 0xFF;
2724 	BUMP_MIB(tcp_mib.tcpInSegs);
2725 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2726 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2727 		    seg_len, (tcph_t *)tcph, sock_id);
2728 		return;
2729 	}
2730 	/*
2731 	 * From this point we can assume that the tcp is not compressed,
2732 	 * since we would have branched off to tcp_time_wait_processing()
2733 	 * in such a case.
2734 	 */
2735 	assert(tcp != NULL && tcp->tcp_state != TCPS_TIME_WAIT);
2736 
2737 	/*
2738 	 * After this point, we know we have the correct TCP, so update
2739 	 * the receive time.
2740 	 */
2741 	tcp->tcp_last_recv_time = prom_gettime();
2742 
2743 	/* In inetboot, we do not handle urgent pointer... */
2744 	if (flags & TH_URG) {
2745 		freemsg(mp);
2746 		DEBUG_1("tcp_rput_data(%d): received segment with urgent "
2747 		    "pointer\n", sock_id);
2748 		tcp_drops++;
2749 		return;
2750 	}
2751 
2752 	switch (tcp->tcp_state) {
2753 	case TCPS_LISTEN:
2754 		if ((flags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
2755 			if (flags & TH_RST) {
2756 				freemsg(mp);
2757 				return;
2758 			}
2759 			if (flags & TH_ACK) {
2760 				tcp_xmit_early_reset("TCPS_LISTEN-TH_ACK",
2761 				    sock_id, mp, seg_ack, 0, TH_RST,
2762 				    ip_hdr_len);
2763 				return;
2764 			}
2765 			if (!(flags & TH_SYN)) {
2766 				freemsg(mp);
2767 				return;
2768 			}
2769 			printf("tcp_rput_data: %d\n", __LINE__);
2770 			prom_panic("inetboot");
2771 		}
2772 		if (tcp->tcp_conn_req_max > 0) {
2773 			tcp = tcp_conn_request(tcp, mp, sock_id, ip_hdr_len);
2774 			if (tcp == NULL) {
2775 				freemsg(mp);
2776 				return;
2777 			}
2778 #ifdef DEBUG
2779 			printf("tcp_rput_data: new tcp created\n");
2780 #endif
2781 		}
2782 		tcp->tcp_irs = seg_seq;
2783 		tcp->tcp_rack = seg_seq;
2784 		tcp->tcp_rnxt = seg_seq + 1;
2785 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
2786 		BUMP_MIB(tcp_mib.tcpPassiveOpens);
2787 		goto syn_rcvd;
2788 	case TCPS_SYN_SENT:
2789 		if (flags & TH_ACK) {
2790 			/*
2791 			 * Note that our stack cannot send data before a
2792 			 * connection is established, therefore the
2793 			 * following check is valid.  Otherwise, it has
2794 			 * to be changed.
2795 			 */
2796 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2797 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2798 				if (flags & TH_RST) {
2799 					freemsg(mp);
2800 					return;
2801 				}
2802 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2803 				    tcp, mp, seg_ack, 0, TH_RST,
2804 				    ip_hdr_len, sock_id);
2805 				return;
2806 			}
2807 			assert(tcp->tcp_suna + 1 == seg_ack);
2808 		}
2809 		if (flags & TH_RST) {
2810 			freemsg(mp);
2811 			if (flags & TH_ACK) {
2812 				tcp_clean_death(sock_id, tcp, ECONNREFUSED);
2813 			}
2814 			return;
2815 		}
2816 		if (!(flags & TH_SYN)) {
2817 			freemsg(mp);
2818 			return;
2819 		}
2820 
2821 		/* Process all TCP options. */
2822 		tcp_process_options(tcp, (tcph_t *)tcph);
2823 		/*
2824 		 * The following changes our rwnd to be a multiple of the
2825 		 * MIN(peer MSS, our MSS) for performance reason.
2826 		 */
2827 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rwnd,
2828 		    tcp->tcp_mss));
2829 
2830 		/* Is the other end ECN capable? */
2831 		if (tcp->tcp_ecn_ok) {
2832 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2833 				tcp->tcp_ecn_ok = B_FALSE;
2834 			}
2835 		}
2836 		/*
2837 		 * Clear ECN flags because it may interfere with later
2838 		 * processing.
2839 		 */
2840 		flags &= ~(TH_ECE|TH_CWR);
2841 
2842 		tcp->tcp_irs = seg_seq;
2843 		tcp->tcp_rack = seg_seq;
2844 		tcp->tcp_rnxt = seg_seq + 1;
2845 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
2846 
2847 		if (flags & TH_ACK) {
2848 			/* One for the SYN */
2849 			tcp->tcp_suna = tcp->tcp_iss + 1;
2850 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2851 			tcp->tcp_state = TCPS_ESTABLISHED;
2852 
2853 			/*
2854 			 * If SYN was retransmitted, need to reset all
2855 			 * retransmission info.  This is because this
2856 			 * segment will be treated as a dup ACK.
2857 			 */
2858 			if (tcp->tcp_rexmit) {
2859 				tcp->tcp_rexmit = B_FALSE;
2860 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2861 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2862 				tcp->tcp_snd_burst = TCP_CWND_NORMAL;
2863 
2864 				/*
2865 				 * Set tcp_cwnd back to 1 MSS, per
2866 				 * recommendation from
2867 				 * draft-floyd-incr-init-win-01.txt,
2868 				 * Increasing TCP's Initial Window.
2869 				 */
2870 				tcp->tcp_cwnd = tcp->tcp_mss;
2871 			}
2872 
2873 			tcp->tcp_swl1 = seg_seq;
2874 			tcp->tcp_swl2 = seg_ack;
2875 
2876 			new_swnd = BE16_TO_U16(((tcph_t *)tcph)->th_win);
2877 			tcp->tcp_swnd = new_swnd;
2878 			if (new_swnd > tcp->tcp_max_swnd)
2879 				tcp->tcp_max_swnd = new_swnd;
2880 
2881 			/*
2882 			 * Always send the three-way handshake ack immediately
2883 			 * in order to make the connection complete as soon as
2884 			 * possible on the accepting host.
2885 			 */
2886 			flags |= TH_ACK_NEEDED;
2887 			/*
2888 			 * Check to see if there is data to be sent.  If
2889 			 * yes, set the transmit flag.  Then check to see
2890 			 * if received data processing needs to be done.
2891 			 * If not, go straight to xmit_check.  This short
2892 			 * cut is OK as we don't support T/TCP.
2893 			 */
2894 			if (tcp->tcp_unsent)
2895 				flags |= TH_XMIT_NEEDED;
2896 
2897 			if (seg_len == 0) {
2898 				freemsg(mp);
2899 				goto xmit_check;
2900 			}
2901 
2902 			flags &= ~TH_SYN;
2903 			seg_seq++;
2904 			break;
2905 		}
2906 		syn_rcvd:
2907 		tcp->tcp_state = TCPS_SYN_RCVD;
2908 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2909 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2910 		if (mp1 != NULL) {
2911 			TCP_DUMP_PACKET("tcp_rput_data replying SYN", mp1);
2912 			(void) ipv4_tcp_output(sock_id, mp1);
2913 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2914 			freeb(mp1);
2915 			/*
2916 			 * Let's wait till our SYN has been ACKED since we
2917 			 * don't have a timer.
2918 			 */
2919 			if (tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED) < 0) {
2920 				freemsg(mp);
2921 				return;
2922 			}
2923 		}
2924 		freemsg(mp);
2925 		return;
2926 	default:
2927 		break;
2928 	}
2929 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH((tcph_t *)tcph);
2930 	new_swnd = ntohs(tcph->tha_win) <<
2931 	    ((flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2932 	mss = tcp->tcp_mss;
2933 
2934 	if (tcp->tcp_snd_ts_ok) {
2935 		if (!tcp_paws_check(tcp, (tcph_t *)tcph, &tcpopt)) {
2936 			/*
2937 			 * This segment is not acceptable.
2938 			 * Drop it and send back an ACK.
2939 			 */
2940 			freemsg(mp);
2941 			flags |= TH_ACK_NEEDED;
2942 			goto ack_check;
2943 		}
2944 	} else if (tcp->tcp_snd_sack_ok) {
2945 		assert(tcp->tcp_sack_info != NULL);
2946 		tcpopt.tcp = tcp;
2947 		/*
2948 		 * SACK info in already updated in tcp_parse_options.  Ignore
2949 		 * all other TCP options...
2950 		 */
2951 		(void) tcp_parse_options((tcph_t *)tcph, &tcpopt);
2952 	}
2953 try_again:;
2954 	gap = seg_seq - tcp->tcp_rnxt;
2955 	rgap = tcp->tcp_rwnd - (gap + seg_len);
2956 	/*
2957 	 * gap is the amount of sequence space between what we expect to see
2958 	 * and what we got for seg_seq.  A positive value for gap means
2959 	 * something got lost.  A negative value means we got some old stuff.
2960 	 */
2961 	if (gap < 0) {
2962 		/* Old stuff present.  Is the SYN in there? */
2963 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2964 		    (seg_len != 0)) {
2965 			flags &= ~TH_SYN;
2966 			seg_seq++;
2967 			/* Recompute the gaps after noting the SYN. */
2968 			goto try_again;
2969 		}
2970 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
2971 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
2972 		    (seg_len > -gap ? -gap : seg_len));
2973 		/* Remove the old stuff from seg_len. */
2974 		seg_len += gap;
2975 		/*
2976 		 * Anything left?
2977 		 * Make sure to check for unack'd FIN when rest of data
2978 		 * has been previously ack'd.
2979 		 */
2980 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2981 			/*
2982 			 * Resets are only valid if they lie within our offered
2983 			 * window.  If the RST bit is set, we just ignore this
2984 			 * segment.
2985 			 */
2986 			if (flags & TH_RST) {
2987 				freemsg(mp);
2988 				return;
2989 			}
2990 
2991 			/*
2992 			 * This segment is "unacceptable".  None of its
2993 			 * sequence space lies within our advertized window.
2994 			 *
2995 			 * Adjust seg_len to the original value for tracing.
2996 			 */
2997 			seg_len -= gap;
2998 #ifdef DEBUG
2999 			printf("tcp_rput: unacceptable, gap %d, rgap "
3000 			    "%d, flags 0x%x, seg_seq %u, seg_ack %u, "
3001 			    "seg_len %d, rnxt %u, snxt %u, %s",
3002 			    gap, rgap, flags, seg_seq, seg_ack,
3003 			    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3004 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
3005 #endif
3006 
3007 			/*
3008 			 * Arrange to send an ACK in response to the
3009 			 * unacceptable segment per RFC 793 page 69. There
3010 			 * is only one small difference between ours and the
3011 			 * acceptability test in the RFC - we accept ACK-only
3012 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3013 			 * will be generated.
3014 			 *
3015 			 * Note that we have to ACK an ACK-only packet at least
3016 			 * for stacks that send 0-length keep-alives with
3017 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3018 			 * section 4.2.3.6. As long as we don't ever generate
3019 			 * an unacceptable packet in response to an incoming
3020 			 * packet that is unacceptable, it should not cause
3021 			 * "ACK wars".
3022 			 */
3023 			flags |=  TH_ACK_NEEDED;
3024 
3025 			/*
3026 			 * Continue processing this segment in order to use the
3027 			 * ACK information it contains, but skip all other
3028 			 * sequence-number processing.	Processing the ACK
3029 			 * information is necessary in order to
3030 			 * re-synchronize connections that may have lost
3031 			 * synchronization.
3032 			 *
3033 			 * We clear seg_len and flag fields related to
3034 			 * sequence number processing as they are not
3035 			 * to be trusted for an unacceptable segment.
3036 			 */
3037 			seg_len = 0;
3038 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3039 			goto process_ack;
3040 		}
3041 
3042 		/* Fix seg_seq, and chew the gap off the front. */
3043 		seg_seq = tcp->tcp_rnxt;
3044 		do {
3045 			mblk_t	*mp2;
3046 			assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3047 			    (uintptr_t)UINT_MAX);
3048 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3049 			if (gap > 0) {
3050 				mp->b_rptr = mp->b_wptr - gap;
3051 				break;
3052 			}
3053 			mp2 = mp;
3054 			mp = mp->b_cont;
3055 			freeb(mp2);
3056 		} while (gap < 0);
3057 	}
3058 	/*
3059 	 * rgap is the amount of stuff received out of window.  A negative
3060 	 * value is the amount out of window.
3061 	 */
3062 	if (rgap < 0) {
3063 		mblk_t	*mp2;
3064 
3065 		if (tcp->tcp_rwnd == 0)
3066 			BUMP_MIB(tcp_mib.tcpInWinProbe);
3067 		else {
3068 			BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
3069 			UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
3070 		}
3071 
3072 		/*
3073 		 * seg_len does not include the FIN, so if more than
3074 		 * just the FIN is out of window, we act like we don't
3075 		 * see it.  (If just the FIN is out of window, rgap
3076 		 * will be zero and we will go ahead and acknowledge
3077 		 * the FIN.)
3078 		 */
3079 		flags &= ~TH_FIN;
3080 
3081 		/* Fix seg_len and make sure there is something left. */
3082 		seg_len += rgap;
3083 		if (seg_len <= 0) {
3084 			/*
3085 			 * Resets are only valid if they lie within our offered
3086 			 * window.  If the RST bit is set, we just ignore this
3087 			 * segment.
3088 			 */
3089 			if (flags & TH_RST) {
3090 				freemsg(mp);
3091 				return;
3092 			}
3093 
3094 			/* Per RFC 793, we need to send back an ACK. */
3095 			flags |= TH_ACK_NEEDED;
3096 
3097 			/*
3098 			 * If this is a zero window probe, continue to
3099 			 * process the ACK part.  But we need to set seg_len
3100 			 * to 0 to avoid data processing.  Otherwise just
3101 			 * drop the segment and send back an ACK.
3102 			 */
3103 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3104 				flags &= ~(TH_SYN | TH_URG);
3105 				seg_len = 0;
3106 				/* Let's see if we can update our rwnd */
3107 				tcp_rcv_drain(sock_id, tcp);
3108 				goto process_ack;
3109 			} else {
3110 				freemsg(mp);
3111 				goto ack_check;
3112 			}
3113 		}
3114 		/* Pitch out of window stuff off the end. */
3115 		rgap = seg_len;
3116 		mp2 = mp;
3117 		do {
3118 			assert((uintptr_t)(mp2->b_wptr -
3119 			    mp2->b_rptr) <= (uintptr_t)INT_MAX);
3120 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3121 			if (rgap < 0) {
3122 				mp2->b_wptr += rgap;
3123 				if ((mp1 = mp2->b_cont) != NULL) {
3124 					mp2->b_cont = NULL;
3125 					freemsg(mp1);
3126 				}
3127 				break;
3128 			}
3129 		} while ((mp2 = mp2->b_cont) != NULL);
3130 	}
3131 ok:;
3132 	/*
3133 	 * TCP should check ECN info for segments inside the window only.
3134 	 * Therefore the check should be done here.
3135 	 */
3136 	if (tcp->tcp_ecn_ok) {
3137 		uchar_t tos = ((struct ip *)rptr)->ip_tos;
3138 
3139 		if (flags & TH_CWR) {
3140 			tcp->tcp_ecn_echo_on = B_FALSE;
3141 		}
3142 		/*
3143 		 * Note that both ECN_CE and CWR can be set in the
3144 		 * same segment.  In this case, we once again turn
3145 		 * on ECN_ECHO.
3146 		 */
3147 		if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3148 			tcp->tcp_ecn_echo_on = B_TRUE;
3149 		}
3150 	}
3151 
3152 	/*
3153 	 * Check whether we can update tcp_ts_recent.  This test is
3154 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
3155 	 * Extensions for High Performance: An Update", Internet Draft.
3156 	 */
3157 	if (tcp->tcp_snd_ts_ok &&
3158 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3159 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3160 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3161 		tcp->tcp_last_rcv_lbolt = prom_gettime();
3162 	}
3163 
3164 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3165 		/*
3166 		 * FIN in an out of order segment.  We record this in
3167 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3168 		 * Clear the FIN so that any check on FIN flag will fail.
3169 		 * Remember that FIN also counts in the sequence number
3170 		 * space.  So we need to ack out of order FIN only segments.
3171 		 */
3172 		if (flags & TH_FIN) {
3173 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3174 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3175 			flags &= ~TH_FIN;
3176 			flags |= TH_ACK_NEEDED;
3177 		}
3178 		if (seg_len > 0) {
3179 			/* Fill in the SACK blk list. */
3180 			if (tcp->tcp_snd_sack_ok) {
3181 				assert(tcp->tcp_sack_info != NULL);
3182 				tcp_sack_insert(tcp->tcp_sack_list,
3183 				    seg_seq, seg_seq + seg_len,
3184 				    &(tcp->tcp_num_sack_blk));
3185 			}
3186 
3187 			/*
3188 			 * Attempt reassembly and see if we have something
3189 			 * ready to go.
3190 			 */
3191 			mp = tcp_reass(tcp, mp, seg_seq);
3192 			/* Always ack out of order packets */
3193 			flags |= TH_ACK_NEEDED | TH_PUSH;
3194 			if (mp != NULL) {
3195 				assert((uintptr_t)(mp->b_wptr -
3196 				    mp->b_rptr) <= (uintptr_t)INT_MAX);
3197 				seg_len = mp->b_cont ? msgdsize(mp) :
3198 					(int)(mp->b_wptr - mp->b_rptr);
3199 				seg_seq = tcp->tcp_rnxt;
3200 				/*
3201 				 * A gap is filled and the seq num and len
3202 				 * of the gap match that of a previously
3203 				 * received FIN, put the FIN flag back in.
3204 				 */
3205 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3206 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3207 					flags |= TH_FIN;
3208 					tcp->tcp_valid_bits &=
3209 					    ~TCP_OFO_FIN_VALID;
3210 				}
3211 			} else {
3212 				/*
3213 				 * Keep going even with NULL mp.
3214 				 * There may be a useful ACK or something else
3215 				 * we don't want to miss.
3216 				 *
3217 				 * But TCP should not perform fast retransmit
3218 				 * because of the ack number.  TCP uses
3219 				 * seg_len == 0 to determine if it is a pure
3220 				 * ACK.  And this is not a pure ACK.
3221 				 */
3222 				seg_len = 0;
3223 				ofo_seg = B_TRUE;
3224 			}
3225 		}
3226 	} else if (seg_len > 0) {
3227 		BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
3228 		UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
3229 		/*
3230 		 * If an out of order FIN was received before, and the seq
3231 		 * num and len of the new segment match that of the FIN,
3232 		 * put the FIN flag back in.
3233 		 */
3234 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3235 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3236 			flags |= TH_FIN;
3237 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3238 		}
3239 	}
3240 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3241 	if (flags & TH_RST) {
3242 		freemsg(mp);
3243 		switch (tcp->tcp_state) {
3244 		case TCPS_SYN_RCVD:
3245 			(void) tcp_clean_death(sock_id, tcp, ECONNREFUSED);
3246 			break;
3247 		case TCPS_ESTABLISHED:
3248 		case TCPS_FIN_WAIT_1:
3249 		case TCPS_FIN_WAIT_2:
3250 		case TCPS_CLOSE_WAIT:
3251 			(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
3252 			break;
3253 		case TCPS_CLOSING:
3254 		case TCPS_LAST_ACK:
3255 			(void) tcp_clean_death(sock_id, tcp, 0);
3256 			break;
3257 		default:
3258 			assert(tcp->tcp_state != TCPS_TIME_WAIT);
3259 			(void) tcp_clean_death(sock_id, tcp, ENXIO);
3260 			break;
3261 		}
3262 		return;
3263 	}
3264 	if (flags & TH_SYN) {
3265 		/*
3266 		 * See RFC 793, Page 71
3267 		 *
3268 		 * The seq number must be in the window as it should
3269 		 * be "fixed" above.  If it is outside window, it should
3270 		 * be already rejected.  Note that we allow seg_seq to be
3271 		 * rnxt + rwnd because we want to accept 0 window probe.
3272 		 */
3273 		assert(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3274 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3275 		freemsg(mp);
3276 		/*
3277 		 * If the ACK flag is not set, just use our snxt as the
3278 		 * seq number of the RST segment.
3279 		 */
3280 		if (!(flags & TH_ACK)) {
3281 			seg_ack = tcp->tcp_snxt;
3282 		}
3283 		tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack,
3284 		    seg_seq + 1, TH_RST|TH_ACK, 0, sock_id);
3285 		assert(tcp->tcp_state != TCPS_TIME_WAIT);
3286 		(void) tcp_clean_death(sock_id, tcp, ECONNRESET);
3287 		return;
3288 	}
3289 
3290 process_ack:
3291 	if (!(flags & TH_ACK)) {
3292 #ifdef DEBUG
3293 		printf("No ack in segment, dropped it, seq:%x\n", seg_seq);
3294 #endif
3295 		freemsg(mp);
3296 		goto xmit_check;
3297 	}
3298 	}
3299 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3300 
3301 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3302 		tcp_t	*listener = tcp->tcp_listener;
3303 #ifdef DEBUG
3304 		printf("Done with eager 3-way handshake\n");
3305 #endif
3306 		/*
3307 		 * NOTE: RFC 793 pg. 72 says this should be 'bytes_acked < 0'
3308 		 * but that would mean we have an ack that ignored our SYN.
3309 		 */
3310 		if (bytes_acked < 1 || SEQ_GT(seg_ack, tcp->tcp_snxt)) {
3311 			freemsg(mp);
3312 			tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
3313 			    tcp, NULL, seg_ack, 0, TH_RST, 0, sock_id);
3314 			return;
3315 		}
3316 
3317 		/*
3318 		 * if the conn_req_q is full defer processing
3319 		 * until space is availabe after accept()
3320 		 * processing
3321 		 */
3322 		if (listener->tcp_conn_req_cnt_q <
3323 		    listener->tcp_conn_req_max) {
3324 			tcp_t *tail;
3325 
3326 			listener->tcp_conn_req_cnt_q0--;
3327 			listener->tcp_conn_req_cnt_q++;
3328 
3329 			/* Move from SYN_RCVD to ESTABLISHED list  */
3330 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3331 				tcp->tcp_eager_prev_q0;
3332 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3333 				tcp->tcp_eager_next_q0;
3334 			tcp->tcp_eager_prev_q0 = NULL;
3335 			tcp->tcp_eager_next_q0 = NULL;
3336 
3337 			/*
3338 			 * Insert at end of the queue because sockfs
3339 			 * sends down T_CONN_RES in chronological
3340 			 * order. Leaving the older conn indications
3341 			 * at front of the queue helps reducing search
3342 			 * time.
3343 			 */
3344 			tail = listener->tcp_eager_last_q;
3345 			if (tail != NULL) {
3346 				tail->tcp_eager_next_q = tcp;
3347 			} else {
3348 				listener->tcp_eager_next_q = tcp;
3349 			}
3350 			listener->tcp_eager_last_q = tcp;
3351 			tcp->tcp_eager_next_q = NULL;
3352 		} else {
3353 			/*
3354 			 * Defer connection on q0 and set deferred
3355 			 * connection bit true
3356 			 */
3357 			tcp->tcp_conn_def_q0 = B_TRUE;
3358 
3359 			/* take tcp out of q0 ... */
3360 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3361 			    tcp->tcp_eager_next_q0;
3362 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3363 			    tcp->tcp_eager_prev_q0;
3364 
3365 			/* ... and place it at the end of q0 */
3366 			tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
3367 			tcp->tcp_eager_next_q0 = listener;
3368 			listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
3369 			listener->tcp_eager_prev_q0 = tcp;
3370 		}
3371 
3372 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3373 		bytes_acked--;
3374 
3375 		/*
3376 		 * If SYN was retransmitted, need to reset all
3377 		 * retransmission info as this segment will be
3378 		 * treated as a dup ACK.
3379 		 */
3380 		if (tcp->tcp_rexmit) {
3381 			tcp->tcp_rexmit = B_FALSE;
3382 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3383 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3384 			tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3385 			tcp->tcp_ms_we_have_waited = 0;
3386 			tcp->tcp_cwnd = mss;
3387 		}
3388 
3389 		/*
3390 		 * We set the send window to zero here.
3391 		 * This is needed if there is data to be
3392 		 * processed already on the queue.
3393 		 * Later (at swnd_update label), the
3394 		 * "new_swnd > tcp_swnd" condition is satisfied
3395 		 * the XMIT_NEEDED flag is set in the current
3396 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3397 		 * called if there is already data on queue in
3398 		 * this state.
3399 		 */
3400 		tcp->tcp_swnd = 0;
3401 
3402 		if (new_swnd > tcp->tcp_max_swnd)
3403 			tcp->tcp_max_swnd = new_swnd;
3404 		tcp->tcp_swl1 = seg_seq;
3405 		tcp->tcp_swl2 = seg_ack;
3406 		tcp->tcp_state = TCPS_ESTABLISHED;
3407 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3408 	}
3409 	/* This code follows 4.4BSD-Lite2 mostly. */
3410 	if (bytes_acked < 0)
3411 		goto est;
3412 
3413 	/*
3414 	 * If TCP is ECN capable and the congestion experience bit is
3415 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
3416 	 * done once per window (or more loosely, per RTT).
3417 	 */
3418 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3419 		tcp->tcp_cwr = B_FALSE;
3420 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3421 		if (!tcp->tcp_cwr) {
3422 			npkt = (MIN(tcp->tcp_cwnd, tcp->tcp_swnd) >> 1) / mss;
3423 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3424 			tcp->tcp_cwnd = npkt * mss;
3425 			/*
3426 			 * If the cwnd is 0, use the timer to clock out
3427 			 * new segments.  This is required by the ECN spec.
3428 			 */
3429 			if (npkt == 0) {
3430 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3431 				/*
3432 				 * This makes sure that when the ACK comes
3433 				 * back, we will increase tcp_cwnd by 1 MSS.
3434 				 */
3435 				tcp->tcp_cwnd_cnt = 0;
3436 			}
3437 			tcp->tcp_cwr = B_TRUE;
3438 			/*
3439 			 * This marks the end of the current window of in
3440 			 * flight data.  That is why we don't use
3441 			 * tcp_suna + tcp_swnd.  Only data in flight can
3442 			 * provide ECN info.
3443 			 */
3444 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3445 			tcp->tcp_ecn_cwr_sent = B_FALSE;
3446 		}
3447 	}
3448 
3449 	mp1 = tcp->tcp_xmit_head;
3450 	if (bytes_acked == 0) {
3451 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3452 			int dupack_cnt;
3453 
3454 			BUMP_MIB(tcp_mib.tcpInDupAck);
3455 			/*
3456 			 * Fast retransmit.  When we have seen exactly three
3457 			 * identical ACKs while we have unacked data
3458 			 * outstanding we take it as a hint that our peer
3459 			 * dropped something.
3460 			 *
3461 			 * If TCP is retransmitting, don't do fast retransmit.
3462 			 */
3463 			if (mp1 != NULL && tcp->tcp_suna != tcp->tcp_snxt &&
3464 			    ! tcp->tcp_rexmit) {
3465 				/* Do Limited Transmit */
3466 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3467 				    tcp_dupack_fast_retransmit) {
3468 					/*
3469 					 * RFC 3042
3470 					 *
3471 					 * What we need to do is temporarily
3472 					 * increase tcp_cwnd so that new
3473 					 * data can be sent if it is allowed
3474 					 * by the receive window (tcp_rwnd).
3475 					 * tcp_wput_data() will take care of
3476 					 * the rest.
3477 					 *
3478 					 * If the connection is SACK capable,
3479 					 * only do limited xmit when there
3480 					 * is SACK info.
3481 					 *
3482 					 * Note how tcp_cwnd is incremented.
3483 					 * The first dup ACK will increase
3484 					 * it by 1 MSS.  The second dup ACK
3485 					 * will increase it by 2 MSS.  This
3486 					 * means that only 1 new segment will
3487 					 * be sent for each dup ACK.
3488 					 */
3489 					if (tcp->tcp_unsent > 0 &&
3490 					    (!tcp->tcp_snd_sack_ok ||
3491 					    (tcp->tcp_snd_sack_ok &&
3492 					    tcp->tcp_notsack_list != NULL))) {
3493 						tcp->tcp_cwnd += mss <<
3494 						    (tcp->tcp_dupack_cnt - 1);
3495 						flags |= TH_LIMIT_XMIT;
3496 					}
3497 				} else if (dupack_cnt ==
3498 				    tcp_dupack_fast_retransmit) {
3499 
3500 				BUMP_MIB(tcp_mib.tcpOutFastRetrans);
3501 				/*
3502 				 * If we have reduced tcp_ssthresh
3503 				 * because of ECN, do not reduce it again
3504 				 * unless it is already one window of data
3505 				 * away.  After one window of data, tcp_cwr
3506 				 * should then be cleared.  Note that
3507 				 * for non ECN capable connection, tcp_cwr
3508 				 * should always be false.
3509 				 *
3510 				 * Adjust cwnd since the duplicate
3511 				 * ack indicates that a packet was
3512 				 * dropped (due to congestion.)
3513 				 */
3514 				if (!tcp->tcp_cwr) {
3515 					npkt = (MIN(tcp->tcp_cwnd,
3516 					    tcp->tcp_swnd) >> 1) / mss;
3517 					if (npkt < 2)
3518 						npkt = 2;
3519 					tcp->tcp_cwnd_ssthresh = npkt * mss;
3520 					tcp->tcp_cwnd = (npkt +
3521 					    tcp->tcp_dupack_cnt) * mss;
3522 				}
3523 				if (tcp->tcp_ecn_ok) {
3524 					tcp->tcp_cwr = B_TRUE;
3525 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3526 					tcp->tcp_ecn_cwr_sent = B_FALSE;
3527 				}
3528 
3529 				/*
3530 				 * We do Hoe's algorithm.  Refer to her
3531 				 * paper "Improving the Start-up Behavior
3532 				 * of a Congestion Control Scheme for TCP,"
3533 				 * appeared in SIGCOMM'96.
3534 				 *
3535 				 * Save highest seq no we have sent so far.
3536 				 * Be careful about the invisible FIN byte.
3537 				 */
3538 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
3539 				    (tcp->tcp_unsent == 0)) {
3540 					tcp->tcp_rexmit_max = tcp->tcp_fss;
3541 				} else {
3542 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
3543 				}
3544 
3545 				/*
3546 				 * Do not allow bursty traffic during.
3547 				 * fast recovery.  Refer to Fall and Floyd's
3548 				 * paper "Simulation-based Comparisons of
3549 				 * Tahoe, Reno and SACK TCP" (in CCR ??)
3550 				 * This is a best current practise.
3551 				 */
3552 				tcp->tcp_snd_burst = TCP_CWND_SS;
3553 
3554 				/*
3555 				 * For SACK:
3556 				 * Calculate tcp_pipe, which is the
3557 				 * estimated number of bytes in
3558 				 * network.
3559 				 *
3560 				 * tcp_fack is the highest sack'ed seq num
3561 				 * TCP has received.
3562 				 *
3563 				 * tcp_pipe is explained in the above quoted
3564 				 * Fall and Floyd's paper.  tcp_fack is
3565 				 * explained in Mathis and Mahdavi's
3566 				 * "Forward Acknowledgment: Refining TCP
3567 				 * Congestion Control" in SIGCOMM '96.
3568 				 */
3569 				if (tcp->tcp_snd_sack_ok) {
3570 					assert(tcp->tcp_sack_info != NULL);
3571 					if (tcp->tcp_notsack_list != NULL) {
3572 						tcp->tcp_pipe = tcp->tcp_snxt -
3573 						    tcp->tcp_fack;
3574 						tcp->tcp_sack_snxt = seg_ack;
3575 						flags |= TH_NEED_SACK_REXMIT;
3576 					} else {
3577 						/*
3578 						 * Always initialize tcp_pipe
3579 						 * even though we don't have
3580 						 * any SACK info.  If later
3581 						 * we get SACK info and
3582 						 * tcp_pipe is not initialized,
3583 						 * funny things will happen.
3584 						 */
3585 						tcp->tcp_pipe =
3586 						    tcp->tcp_cwnd_ssthresh;
3587 					}
3588 				} else {
3589 					flags |= TH_REXMIT_NEEDED;
3590 				} /* tcp_snd_sack_ok */
3591 
3592 				} else {
3593 					/*
3594 					 * Here we perform congestion
3595 					 * avoidance, but NOT slow start.
3596 					 * This is known as the Fast
3597 					 * Recovery Algorithm.
3598 					 */
3599 					if (tcp->tcp_snd_sack_ok &&
3600 					    tcp->tcp_notsack_list != NULL) {
3601 						flags |= TH_NEED_SACK_REXMIT;
3602 						tcp->tcp_pipe -= mss;
3603 						if (tcp->tcp_pipe < 0)
3604 							tcp->tcp_pipe = 0;
3605 					} else {
3606 					/*
3607 					 * We know that one more packet has
3608 					 * left the pipe thus we can update
3609 					 * cwnd.
3610 					 */
3611 					cwnd = tcp->tcp_cwnd + mss;
3612 					if (cwnd > tcp->tcp_cwnd_max)
3613 						cwnd = tcp->tcp_cwnd_max;
3614 					tcp->tcp_cwnd = cwnd;
3615 					flags |= TH_XMIT_NEEDED;
3616 					}
3617 				}
3618 			}
3619 		} else if (tcp->tcp_zero_win_probe) {
3620 			/*
3621 			 * If the window has opened, need to arrange
3622 			 * to send additional data.
3623 			 */
3624 			if (new_swnd != 0) {
3625 				/* tcp_suna != tcp_snxt */
3626 				/* Packet contains a window update */
3627 				BUMP_MIB(tcp_mib.tcpInWinUpdate);
3628 				tcp->tcp_zero_win_probe = 0;
3629 				tcp->tcp_timer_backoff = 0;
3630 				tcp->tcp_ms_we_have_waited = 0;
3631 
3632 				/*
3633 				 * Transmit starting with tcp_suna since
3634 				 * the one byte probe is not ack'ed.
3635 				 * If TCP has sent more than one identical
3636 				 * probe, tcp_rexmit will be set.  That means
3637 				 * tcp_ss_rexmit() will send out the one
3638 				 * byte along with new data.  Otherwise,
3639 				 * fake the retransmission.
3640 				 */
3641 				flags |= TH_XMIT_NEEDED;
3642 				if (!tcp->tcp_rexmit) {
3643 					tcp->tcp_rexmit = B_TRUE;
3644 					tcp->tcp_dupack_cnt = 0;
3645 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
3646 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
3647 				}
3648 			}
3649 		}
3650 		goto swnd_update;
3651 	}
3652 
3653 	/*
3654 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
3655 	 * If the ACK value acks something that we have not yet sent, it might
3656 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
3657 	 * other side.
3658 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
3659 	 * state is handled above, so we can always just drop the segment and
3660 	 * send an ACK here.
3661 	 *
3662 	 * Should we send ACKs in response to ACK only segments?
3663 	 */
3664 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
3665 		BUMP_MIB(tcp_mib.tcpInAckUnsent);
3666 		/* drop the received segment */
3667 		freemsg(mp);
3668 
3669 		/* Send back an ACK. */
3670 		mp = tcp_ack_mp(tcp);
3671 
3672 		if (mp == NULL) {
3673 			return;
3674 		}
3675 		BUMP_MIB(tcp_mib.tcpOutAck);
3676 		(void) ipv4_tcp_output(sock_id, mp);
3677 		freeb(mp);
3678 		return;
3679 	}
3680 
3681 	/*
3682 	 * TCP gets a new ACK, update the notsack'ed list to delete those
3683 	 * blocks that are covered by this ACK.
3684 	 */
3685 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
3686 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
3687 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
3688 	}
3689 
3690 	/*
3691 	 * If we got an ACK after fast retransmit, check to see
3692 	 * if it is a partial ACK.  If it is not and the congestion
3693 	 * window was inflated to account for the other side's
3694 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
3695 	 */
3696 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
3697 		assert(tcp->tcp_rexmit == B_FALSE);
3698 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
3699 			tcp->tcp_dupack_cnt = 0;
3700 			/*
3701 			 * Restore the orig tcp_cwnd_ssthresh after
3702 			 * fast retransmit phase.
3703 			 */
3704 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
3705 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
3706 			}
3707 			tcp->tcp_rexmit_max = seg_ack;
3708 			tcp->tcp_cwnd_cnt = 0;
3709 			tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3710 
3711 			/*
3712 			 * Remove all notsack info to avoid confusion with
3713 			 * the next fast retrasnmit/recovery phase.
3714 			 */
3715 			if (tcp->tcp_snd_sack_ok &&
3716 			    tcp->tcp_notsack_list != NULL) {
3717 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
3718 			}
3719 		} else {
3720 			if (tcp->tcp_snd_sack_ok &&
3721 			    tcp->tcp_notsack_list != NULL) {
3722 				flags |= TH_NEED_SACK_REXMIT;
3723 				tcp->tcp_pipe -= mss;
3724 				if (tcp->tcp_pipe < 0)
3725 					tcp->tcp_pipe = 0;
3726 			} else {
3727 				/*
3728 				 * Hoe's algorithm:
3729 				 *
3730 				 * Retransmit the unack'ed segment and
3731 				 * restart fast recovery.  Note that we
3732 				 * need to scale back tcp_cwnd to the
3733 				 * original value when we started fast
3734 				 * recovery.  This is to prevent overly
3735 				 * aggressive behaviour in sending new
3736 				 * segments.
3737 				 */
3738 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
3739 					tcp_dupack_fast_retransmit * mss;
3740 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
3741 				BUMP_MIB(tcp_mib.tcpOutFastRetrans);
3742 				flags |= TH_REXMIT_NEEDED;
3743 			}
3744 		}
3745 	} else {
3746 		tcp->tcp_dupack_cnt = 0;
3747 		if (tcp->tcp_rexmit) {
3748 			/*
3749 			 * TCP is retranmitting.  If the ACK ack's all
3750 			 * outstanding data, update tcp_rexmit_max and
3751 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
3752 			 * to the correct value.
3753 			 *
3754 			 * Note that SEQ_LEQ() is used.  This is to avoid
3755 			 * unnecessary fast retransmit caused by dup ACKs
3756 			 * received when TCP does slow start retransmission
3757 			 * after a time out.  During this phase, TCP may
3758 			 * send out segments which are already received.
3759 			 * This causes dup ACKs to be sent back.
3760 			 */
3761 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
3762 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
3763 					tcp->tcp_rexmit_nxt = seg_ack;
3764 				}
3765 				if (seg_ack != tcp->tcp_rexmit_max) {
3766 					flags |= TH_XMIT_NEEDED;
3767 				}
3768 			} else {
3769 				tcp->tcp_rexmit = B_FALSE;
3770 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3771 				tcp->tcp_snd_burst = TCP_CWND_NORMAL;
3772 			}
3773 			tcp->tcp_ms_we_have_waited = 0;
3774 		}
3775 	}
3776 
3777 	BUMP_MIB(tcp_mib.tcpInAckSegs);
3778 	UPDATE_MIB(tcp_mib.tcpInAckBytes, bytes_acked);
3779 	tcp->tcp_suna = seg_ack;
3780 	if (tcp->tcp_zero_win_probe != 0) {
3781 		tcp->tcp_zero_win_probe = 0;
3782 		tcp->tcp_timer_backoff = 0;
3783 	}
3784 
3785 	/*
3786 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
3787 	 * Note that it cannot be the SYN being ack'ed.  The code flow
3788 	 * will not reach here.
3789 	 */
3790 	if (mp1 == NULL) {
3791 		goto fin_acked;
3792 	}
3793 
3794 	/*
3795 	 * Update the congestion window.
3796 	 *
3797 	 * If TCP is not ECN capable or TCP is ECN capable but the
3798 	 * congestion experience bit is not set, increase the tcp_cwnd as
3799 	 * usual.
3800 	 */
3801 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
3802 		cwnd = tcp->tcp_cwnd;
3803 		add = mss;
3804 
3805 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
3806 			/*
3807 			 * This is to prevent an increase of less than 1 MSS of
3808 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
3809 			 * may send out tinygrams in order to preserve mblk
3810 			 * boundaries.
3811 			 *
3812 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
3813 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
3814 			 * increased by 1 MSS for every RTTs.
3815 			 */
3816 			if (tcp->tcp_cwnd_cnt <= 0) {
3817 				tcp->tcp_cwnd_cnt = cwnd + add;
3818 			} else {
3819 				tcp->tcp_cwnd_cnt -= add;
3820 				add = 0;
3821 			}
3822 		}
3823 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
3824 	}
3825 
3826 	/* Can we update the RTT estimates? */
3827 	if (tcp->tcp_snd_ts_ok) {
3828 		/* Ignore zero timestamp echo-reply. */
3829 		if (tcpopt.tcp_opt_ts_ecr != 0) {
3830 			tcp_set_rto(tcp, (int32_t)(prom_gettime() -
3831 			    tcpopt.tcp_opt_ts_ecr));
3832 		}
3833 
3834 		/* If needed, restart the timer. */
3835 		if (tcp->tcp_set_timer == 1) {
3836 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3837 			tcp->tcp_set_timer = 0;
3838 		}
3839 		/*
3840 		 * Update tcp_csuna in case the other side stops sending
3841 		 * us timestamps.
3842 		 */
3843 		tcp->tcp_csuna = tcp->tcp_snxt;
3844 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
3845 		/*
3846 		 * An ACK sequence we haven't seen before, so get the RTT
3847 		 * and update the RTO.
3848 		 * Note. use uintptr_t to suppress the gcc warning.
3849 		 */
3850 		tcp_set_rto(tcp, (int32_t)(prom_gettime() -
3851 		    (uint32_t)(uintptr_t)mp1->b_prev));
3852 
3853 		/* Remeber the last sequence to be ACKed */
3854 		tcp->tcp_csuna = seg_ack;
3855 		if (tcp->tcp_set_timer == 1) {
3856 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3857 			tcp->tcp_set_timer = 0;
3858 		}
3859 	} else {
3860 		BUMP_MIB(tcp_mib.tcpRttNoUpdate);
3861 	}
3862 
3863 	/* Eat acknowledged bytes off the xmit queue. */
3864 	for (;;) {
3865 		mblk_t	*mp2;
3866 		uchar_t	*wptr;
3867 
3868 		wptr = mp1->b_wptr;
3869 		assert((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
3870 		bytes_acked -= (int)(wptr - mp1->b_rptr);
3871 		if (bytes_acked < 0) {
3872 			mp1->b_rptr = wptr + bytes_acked;
3873 			break;
3874 		}
3875 		mp1->b_prev = NULL;
3876 		mp2 = mp1;
3877 		mp1 = mp1->b_cont;
3878 		freeb(mp2);
3879 		if (bytes_acked == 0) {
3880 			if (mp1 == NULL) {
3881 				/* Everything is ack'ed, clear the tail. */
3882 				tcp->tcp_xmit_tail = NULL;
3883 				goto pre_swnd_update;
3884 			}
3885 			if (mp2 != tcp->tcp_xmit_tail)
3886 				break;
3887 			tcp->tcp_xmit_tail = mp1;
3888 			assert((uintptr_t)(mp1->b_wptr -
3889 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
3890 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
3891 			    mp1->b_rptr);
3892 			break;
3893 		}
3894 		if (mp1 == NULL) {
3895 			/*
3896 			 * More was acked but there is nothing more
3897 			 * outstanding.  This means that the FIN was
3898 			 * just acked or that we're talking to a clown.
3899 			 */
3900 fin_acked:
3901 			assert(tcp->tcp_fin_sent);
3902 			tcp->tcp_xmit_tail = NULL;
3903 			if (tcp->tcp_fin_sent) {
3904 				tcp->tcp_fin_acked = B_TRUE;
3905 			} else {
3906 				/*
3907 				 * We should never got here because
3908 				 * we have already checked that the
3909 				 * number of bytes ack'ed should be
3910 				 * smaller than or equal to what we
3911 				 * have sent so far (it is the
3912 				 * acceptability check of the ACK).
3913 				 * We can only get here if the send
3914 				 * queue is corrupted.
3915 				 *
3916 				 * Terminate the connection and
3917 				 * panic the system.  It is better
3918 				 * for us to panic instead of
3919 				 * continuing to avoid other disaster.
3920 				 */
3921 				tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
3922 				    tcp->tcp_rnxt, TH_RST|TH_ACK, 0, sock_id);
3923 				printf("Memory corruption "
3924 				    "detected for connection %s.\n",
3925 				    tcp_display(tcp, NULL,
3926 					DISP_ADDR_AND_PORT));
3927 				/* We should never get here... */
3928 				prom_panic("tcp_rput_data");
3929 				return;
3930 			}
3931 			goto pre_swnd_update;
3932 		}
3933 		assert(mp2 != tcp->tcp_xmit_tail);
3934 	}
3935 	if (tcp->tcp_unsent) {
3936 		flags |= TH_XMIT_NEEDED;
3937 	}
3938 pre_swnd_update:
3939 	tcp->tcp_xmit_head = mp1;
3940 swnd_update:
3941 	/*
3942 	 * The following check is different from most other implementations.
3943 	 * For bi-directional transfer, when segments are dropped, the
3944 	 * "normal" check will not accept a window update in those
3945 	 * retransmitted segemnts.  Failing to do that, TCP may send out
3946 	 * segments which are outside receiver's window.  As TCP accepts
3947 	 * the ack in those retransmitted segments, if the window update in
3948 	 * the same segment is not accepted, TCP will incorrectly calculates
3949 	 * that it can send more segments.  This can create a deadlock
3950 	 * with the receiver if its window becomes zero.
3951 	 */
3952 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
3953 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
3954 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
3955 		/*
3956 		 * The criteria for update is:
3957 		 *
3958 		 * 1. the segment acknowledges some data.  Or
3959 		 * 2. the segment is new, i.e. it has a higher seq num. Or
3960 		 * 3. the segment is not old and the advertised window is
3961 		 * larger than the previous advertised window.
3962 		 */
3963 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
3964 			flags |= TH_XMIT_NEEDED;
3965 		tcp->tcp_swnd = new_swnd;
3966 		if (new_swnd > tcp->tcp_max_swnd)
3967 			tcp->tcp_max_swnd = new_swnd;
3968 		tcp->tcp_swl1 = seg_seq;
3969 		tcp->tcp_swl2 = seg_ack;
3970 	}
3971 est:
3972 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
3973 		switch (tcp->tcp_state) {
3974 		case TCPS_FIN_WAIT_1:
3975 			if (tcp->tcp_fin_acked) {
3976 				tcp->tcp_state = TCPS_FIN_WAIT_2;
3977 				/*
3978 				 * We implement the non-standard BSD/SunOS
3979 				 * FIN_WAIT_2 flushing algorithm.
3980 				 * If there is no user attached to this
3981 				 * TCP endpoint, then this TCP struct
3982 				 * could hang around forever in FIN_WAIT_2
3983 				 * state if the peer forgets to send us
3984 				 * a FIN.  To prevent this, we wait only
3985 				 * 2*MSL (a convenient time value) for
3986 				 * the FIN to arrive.  If it doesn't show up,
3987 				 * we flush the TCP endpoint.  This algorithm,
3988 				 * though a violation of RFC-793, has worked
3989 				 * for over 10 years in BSD systems.
3990 				 * Note: SunOS 4.x waits 675 seconds before
3991 				 * flushing the FIN_WAIT_2 connection.
3992 				 */
3993 				TCP_TIMER_RESTART(tcp,
3994 				    tcp_fin_wait_2_flush_interval);
3995 			}
3996 			break;
3997 		case TCPS_FIN_WAIT_2:
3998 			break;	/* Shutdown hook? */
3999 		case TCPS_LAST_ACK:
4000 			freemsg(mp);
4001 			if (tcp->tcp_fin_acked) {
4002 				(void) tcp_clean_death(sock_id, tcp, 0);
4003 				return;
4004 			}
4005 			goto xmit_check;
4006 		case TCPS_CLOSING:
4007 			if (tcp->tcp_fin_acked) {
4008 				tcp->tcp_state = TCPS_TIME_WAIT;
4009 				tcp_time_wait_append(tcp);
4010 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
4011 			}
4012 			/*FALLTHRU*/
4013 		case TCPS_CLOSE_WAIT:
4014 			freemsg(mp);
4015 			goto xmit_check;
4016 		default:
4017 			assert(tcp->tcp_state != TCPS_TIME_WAIT);
4018 			break;
4019 		}
4020 	}
4021 	if (flags & TH_FIN) {
4022 		/* Make sure we ack the fin */
4023 		flags |= TH_ACK_NEEDED;
4024 		if (!tcp->tcp_fin_rcvd) {
4025 			tcp->tcp_fin_rcvd = B_TRUE;
4026 			tcp->tcp_rnxt++;
4027 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
4028 
4029 			switch (tcp->tcp_state) {
4030 			case TCPS_SYN_RCVD:
4031 			case TCPS_ESTABLISHED:
4032 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4033 				/* Keepalive? */
4034 				break;
4035 			case TCPS_FIN_WAIT_1:
4036 				if (!tcp->tcp_fin_acked) {
4037 					tcp->tcp_state = TCPS_CLOSING;
4038 					break;
4039 				}
4040 				/* FALLTHRU */
4041 			case TCPS_FIN_WAIT_2:
4042 				tcp->tcp_state = TCPS_TIME_WAIT;
4043 				tcp_time_wait_append(tcp);
4044 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
4045 				if (seg_len) {
4046 					/*
4047 					 * implies data piggybacked on FIN.
4048 					 * break to handle data.
4049 					 */
4050 					break;
4051 				}
4052 				freemsg(mp);
4053 				goto ack_check;
4054 			}
4055 		}
4056 	}
4057 	if (mp == NULL)
4058 		goto xmit_check;
4059 	if (seg_len == 0) {
4060 		freemsg(mp);
4061 		goto xmit_check;
4062 	}
4063 	if (mp->b_rptr == mp->b_wptr) {
4064 		/*
4065 		 * The header has been consumed, so we remove the
4066 		 * zero-length mblk here.
4067 		 */
4068 		mp1 = mp;
4069 		mp = mp->b_cont;
4070 		freeb(mp1);
4071 	}
4072 	/*
4073 	 * ACK every other segments, unless the input queue is empty
4074 	 * as we don't have a timer available.
4075 	 */
4076 	if (++tcp->tcp_rack_cnt == 2 || sockets[sock_id].inq == NULL) {
4077 		flags |= TH_ACK_NEEDED;
4078 		tcp->tcp_rack_cnt = 0;
4079 	}
4080 	tcp->tcp_rnxt += seg_len;
4081 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
4082 
4083 	/* Update SACK list */
4084 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4085 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4086 		    &(tcp->tcp_num_sack_blk));
4087 	}
4088 
4089 	if (tcp->tcp_listener) {
4090 		/*
4091 		 * Side queue inbound data until the accept happens.
4092 		 * tcp_accept/tcp_rput drains this when the accept happens.
4093 		 */
4094 		tcp_rcv_enqueue(tcp, mp, seg_len);
4095 	} else {
4096 		/* Just queue the data until the app calls read. */
4097 		tcp_rcv_enqueue(tcp, mp, seg_len);
4098 		/*
4099 		 * Make sure the timer is running if we have data waiting
4100 		 * for a push bit. This provides resiliency against
4101 		 * implementations that do not correctly generate push bits.
4102 		 */
4103 		if (tcp->tcp_rcv_list != NULL)
4104 			flags |= TH_TIMER_NEEDED;
4105 	}
4106 
4107 xmit_check:
4108 	/* Is there anything left to do? */
4109 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4110 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_TIMER_NEEDED)) == 0)
4111 		return;
4112 
4113 	/* Any transmit work to do and a non-zero window? */
4114 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4115 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4116 		if (flags & TH_REXMIT_NEEDED) {
4117 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4118 
4119 			if (snd_size > mss)
4120 				snd_size = mss;
4121 			if (snd_size > tcp->tcp_swnd)
4122 				snd_size = tcp->tcp_swnd;
4123 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4124 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4125 			    B_TRUE);
4126 
4127 			if (mp1 != NULL) {
4128 				/* use uintptr_t to suppress the gcc warning */
4129 				tcp->tcp_xmit_head->b_prev =
4130 				    (mblk_t *)(uintptr_t)prom_gettime();
4131 				tcp->tcp_csuna = tcp->tcp_snxt;
4132 				BUMP_MIB(tcp_mib.tcpRetransSegs);
4133 				UPDATE_MIB(tcp_mib.tcpRetransBytes, snd_size);
4134 				(void) ipv4_tcp_output(sock_id, mp1);
4135 				freeb(mp1);
4136 			}
4137 		}
4138 		if (flags & TH_NEED_SACK_REXMIT) {
4139 			if (tcp_sack_rxmit(tcp, sock_id) != 0) {
4140 				flags |= TH_XMIT_NEEDED;
4141 			}
4142 		}
4143 		/*
4144 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4145 		 * out new segment.  Note that tcp_rexmit should not be
4146 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4147 		 */
4148 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4149 			if (!tcp->tcp_rexmit) {
4150 				tcp_wput_data(tcp, NULL, sock_id);
4151 			} else {
4152 				tcp_ss_rexmit(tcp, sock_id);
4153 			}
4154 			/*
4155 			 * The TCP could be closed in tcp_state_wait via
4156 			 * tcp_wput_data (tcp_ss_rexmit could call
4157 			 * tcp_wput_data as well).
4158 			 */
4159 			if (sockets[sock_id].pcb == NULL)
4160 				return;
4161 		}
4162 		/*
4163 		 * Adjust tcp_cwnd back to normal value after sending
4164 		 * new data segments.
4165 		 */
4166 		if (flags & TH_LIMIT_XMIT) {
4167 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4168 		}
4169 
4170 		/* Anything more to do? */
4171 		if ((flags & (TH_ACK_NEEDED|TH_TIMER_NEEDED)) == 0)
4172 			return;
4173 	}
4174 ack_check:
4175 	if (flags & TH_ACK_NEEDED) {
4176 		/*
4177 		 * Time to send an ack for some reason.
4178 		 */
4179 		if ((mp1 = tcp_ack_mp(tcp)) != NULL) {
4180 			TCP_DUMP_PACKET("tcp_rput_data: ack mp", mp1);
4181 			(void) ipv4_tcp_output(sock_id, mp1);
4182 			BUMP_MIB(tcp_mib.tcpOutAck);
4183 			freeb(mp1);
4184 		}
4185 	}
4186 }
4187 
4188 /*
4189  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
4190  * retransmission after a timeout.
4191  *
4192  * To limit the number of duplicate segments, we limit the number of segment
4193  * to be sent in one time to tcp_snd_burst, the burst variable.
4194  */
4195 static void
4196 tcp_ss_rexmit(tcp_t *tcp, int sock_id)
4197 {
4198 	uint32_t	snxt;
4199 	uint32_t	smax;
4200 	int32_t		win;
4201 	int32_t		mss;
4202 	int32_t		off;
4203 	int32_t		burst = tcp->tcp_snd_burst;
4204 	mblk_t		*snxt_mp;
4205 
4206 	/*
4207 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
4208 	 * all unack'ed segments.
4209 	 */
4210 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
4211 		smax = tcp->tcp_rexmit_max;
4212 		snxt = tcp->tcp_rexmit_nxt;
4213 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
4214 			snxt = tcp->tcp_suna;
4215 		}
4216 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
4217 		win -= snxt - tcp->tcp_suna;
4218 		mss = tcp->tcp_mss;
4219 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
4220 
4221 		while (SEQ_LT(snxt, smax) && (win > 0) &&
4222 		    (burst > 0) && (snxt_mp != NULL)) {
4223 			mblk_t	*xmit_mp;
4224 			mblk_t	*old_snxt_mp = snxt_mp;
4225 			uint32_t cnt = mss;
4226 
4227 			if (win < cnt) {
4228 				cnt = win;
4229 			}
4230 			if (SEQ_GT(snxt + cnt, smax)) {
4231 				cnt = smax - snxt;
4232 			}
4233 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
4234 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
4235 
4236 			if (xmit_mp == NULL)
4237 				return;
4238 
4239 			(void) ipv4_tcp_output(sock_id, xmit_mp);
4240 			freeb(xmit_mp);
4241 
4242 			snxt += cnt;
4243 			win -= cnt;
4244 			/*
4245 			 * Update the send timestamp to avoid false
4246 			 * retransmission.
4247 			 * Note. use uintptr_t to suppress the gcc warning.
4248 			 */
4249 			old_snxt_mp->b_prev =
4250 			    (mblk_t *)(uintptr_t)prom_gettime();
4251 			BUMP_MIB(tcp_mib.tcpRetransSegs);
4252 			UPDATE_MIB(tcp_mib.tcpRetransBytes, cnt);
4253 
4254 			tcp->tcp_rexmit_nxt = snxt;
4255 			burst--;
4256 		}
4257 		/*
4258 		 * If we have transmitted all we have at the time
4259 		 * we started the retranmission, we can leave
4260 		 * the rest of the job to tcp_wput_data().  But we
4261 		 * need to check the send window first.  If the
4262 		 * win is not 0, go on with tcp_wput_data().
4263 		 */
4264 		if (SEQ_LT(snxt, smax) || win == 0) {
4265 			return;
4266 		}
4267 	}
4268 	/* Only call tcp_wput_data() if there is data to be sent. */
4269 	if (tcp->tcp_unsent) {
4270 		tcp_wput_data(tcp, NULL, sock_id);
4271 	}
4272 }
4273 
4274 /*
4275  * tcp_timer is the timer service routine.  It handles all timer events for
4276  * a tcp instance except keepalives.  It figures out from the state of the
4277  * tcp instance what kind of action needs to be done at the time it is called.
4278  */
4279 static void
4280 tcp_timer(tcp_t	*tcp, int sock_id)
4281 {
4282 	mblk_t		*mp;
4283 	uint32_t	first_threshold;
4284 	uint32_t	second_threshold;
4285 	uint32_t	ms;
4286 	uint32_t	mss;
4287 
4288 	first_threshold =  tcp->tcp_first_timer_threshold;
4289 	second_threshold = tcp->tcp_second_timer_threshold;
4290 	switch (tcp->tcp_state) {
4291 	case TCPS_IDLE:
4292 	case TCPS_BOUND:
4293 	case TCPS_LISTEN:
4294 		return;
4295 	case TCPS_SYN_RCVD:
4296 	case TCPS_SYN_SENT:
4297 		first_threshold =  tcp->tcp_first_ctimer_threshold;
4298 		second_threshold = tcp->tcp_second_ctimer_threshold;
4299 		break;
4300 	case TCPS_ESTABLISHED:
4301 	case TCPS_FIN_WAIT_1:
4302 	case TCPS_CLOSING:
4303 	case TCPS_CLOSE_WAIT:
4304 	case TCPS_LAST_ACK:
4305 		/* If we have data to rexmit */
4306 		if (tcp->tcp_suna != tcp->tcp_snxt) {
4307 			int32_t time_to_wait;
4308 
4309 			BUMP_MIB(tcp_mib.tcpTimRetrans);
4310 			if (tcp->tcp_xmit_head == NULL)
4311 				break;
4312 			/* use uintptr_t to suppress the gcc warning */
4313 			time_to_wait = (int32_t)(prom_gettime() -
4314 			    (uint32_t)(uintptr_t)tcp->tcp_xmit_head->b_prev);
4315 			time_to_wait = tcp->tcp_rto - time_to_wait;
4316 			if (time_to_wait > 0) {
4317 				/*
4318 				 * Timer fired too early, so restart it.
4319 				 */
4320 				TCP_TIMER_RESTART(tcp, time_to_wait);
4321 				return;
4322 			}
4323 			/*
4324 			 * When we probe zero windows, we force the swnd open.
4325 			 * If our peer acks with a closed window swnd will be
4326 			 * set to zero by tcp_rput(). As long as we are
4327 			 * receiving acks tcp_rput will
4328 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
4329 			 * first and second interval actions.  NOTE: the timer
4330 			 * interval is allowed to continue its exponential
4331 			 * backoff.
4332 			 */
4333 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
4334 				DEBUG_1("tcp_timer (%d): zero win", sock_id);
4335 				break;
4336 			} else {
4337 				/*
4338 				 * After retransmission, we need to do
4339 				 * slow start.  Set the ssthresh to one
4340 				 * half of current effective window and
4341 				 * cwnd to one MSS.  Also reset
4342 				 * tcp_cwnd_cnt.
4343 				 *
4344 				 * Note that if tcp_ssthresh is reduced because
4345 				 * of ECN, do not reduce it again unless it is
4346 				 * already one window of data away (tcp_cwr
4347 				 * should then be cleared) or this is a
4348 				 * timeout for a retransmitted segment.
4349 				 */
4350 				uint32_t npkt;
4351 
4352 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
4353 					npkt = (MIN((tcp->tcp_timer_backoff ?
4354 					    tcp->tcp_cwnd_ssthresh :
4355 					    tcp->tcp_cwnd),
4356 					    tcp->tcp_swnd) >> 1) /
4357 					    tcp->tcp_mss;
4358 					if (npkt < 2)
4359 						npkt = 2;
4360 					tcp->tcp_cwnd_ssthresh = npkt *
4361 					    tcp->tcp_mss;
4362 				}
4363 				tcp->tcp_cwnd = tcp->tcp_mss;
4364 				tcp->tcp_cwnd_cnt = 0;
4365 				if (tcp->tcp_ecn_ok) {
4366 					tcp->tcp_cwr = B_TRUE;
4367 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4368 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4369 				}
4370 			}
4371 			break;
4372 		}
4373 		/*
4374 		 * We have something to send yet we cannot send.  The
4375 		 * reason can be:
4376 		 *
4377 		 * 1. Zero send window: we need to do zero window probe.
4378 		 * 2. Zero cwnd: because of ECN, we need to "clock out
4379 		 * segments.
4380 		 * 3. SWS avoidance: receiver may have shrunk window,
4381 		 * reset our knowledge.
4382 		 *
4383 		 * Note that condition 2 can happen with either 1 or
4384 		 * 3.  But 1 and 3 are exclusive.
4385 		 */
4386 		if (tcp->tcp_unsent != 0) {
4387 			if (tcp->tcp_cwnd == 0) {
4388 				/*
4389 				 * Set tcp_cwnd to 1 MSS so that a
4390 				 * new segment can be sent out.  We
4391 				 * are "clocking out" new data when
4392 				 * the network is really congested.
4393 				 */
4394 				assert(tcp->tcp_ecn_ok);
4395 				tcp->tcp_cwnd = tcp->tcp_mss;
4396 			}
4397 			if (tcp->tcp_swnd == 0) {
4398 				/* Extend window for zero window probe */
4399 				tcp->tcp_swnd++;
4400 				tcp->tcp_zero_win_probe = B_TRUE;
4401 				BUMP_MIB(tcp_mib.tcpOutWinProbe);
4402 			} else {
4403 				/*
4404 				 * Handle timeout from sender SWS avoidance.
4405 				 * Reset our knowledge of the max send window
4406 				 * since the receiver might have reduced its
4407 				 * receive buffer.  Avoid setting tcp_max_swnd
4408 				 * to one since that will essentially disable
4409 				 * the SWS checks.
4410 				 *
4411 				 * Note that since we don't have a SWS
4412 				 * state variable, if the timeout is set
4413 				 * for ECN but not for SWS, this
4414 				 * code will also be executed.  This is
4415 				 * fine as tcp_max_swnd is updated
4416 				 * constantly and it will not affect
4417 				 * anything.
4418 				 */
4419 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
4420 			}
4421 			tcp_wput_data(tcp, NULL, sock_id);
4422 			return;
4423 		}
4424 		/* Is there a FIN that needs to be to re retransmitted? */
4425 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4426 		    !tcp->tcp_fin_acked)
4427 			break;
4428 		/* Nothing to do, return without restarting timer. */
4429 		return;
4430 	case TCPS_FIN_WAIT_2:
4431 		/*
4432 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
4433 		 * We waited some time for for peer's FIN, but it hasn't
4434 		 * arrived.  We flush the connection now to avoid
4435 		 * case where the peer has rebooted.
4436 		 */
4437 		/* FALLTHRU */
4438 	case TCPS_TIME_WAIT:
4439 		(void) tcp_clean_death(sock_id, tcp, 0);
4440 		return;
4441 	default:
4442 		DEBUG_3("tcp_timer (%d): strange state (%d) %s", sock_id,
4443 		    tcp->tcp_state, tcp_display(tcp, NULL,
4444 		    DISP_PORT_ONLY));
4445 		return;
4446 	}
4447 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
4448 		/*
4449 		 * For zero window probe, we need to send indefinitely,
4450 		 * unless we have not heard from the other side for some
4451 		 * time...
4452 		 */
4453 		if ((tcp->tcp_zero_win_probe == 0) ||
4454 		    ((prom_gettime() - tcp->tcp_last_recv_time) >
4455 		    second_threshold)) {
4456 			BUMP_MIB(tcp_mib.tcpTimRetransDrop);
4457 			/*
4458 			 * If TCP is in SYN_RCVD state, send back a
4459 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
4460 			 * should be zero in TCPS_SYN_RCVD state.
4461 			 */
4462 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
4463 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
4464 				    "in SYN_RCVD",
4465 				    tcp, NULL, tcp->tcp_snxt,
4466 				    tcp->tcp_rnxt, TH_RST | TH_ACK, 0, sock_id);
4467 			}
4468 			(void) tcp_clean_death(sock_id, tcp,
4469 			    tcp->tcp_client_errno ?
4470 			    tcp->tcp_client_errno : ETIMEDOUT);
4471 			return;
4472 		} else {
4473 			/*
4474 			 * Set tcp_ms_we_have_waited to second_threshold
4475 			 * so that in next timeout, we will do the above
4476 			 * check (lbolt - tcp_last_recv_time).  This is
4477 			 * also to avoid overflow.
4478 			 *
4479 			 * We don't need to decrement tcp_timer_backoff
4480 			 * to avoid overflow because it will be decremented
4481 			 * later if new timeout value is greater than
4482 			 * tcp_rexmit_interval_max.  In the case when
4483 			 * tcp_rexmit_interval_max is greater than
4484 			 * second_threshold, it means that we will wait
4485 			 * longer than second_threshold to send the next
4486 			 * window probe.
4487 			 */
4488 			tcp->tcp_ms_we_have_waited = second_threshold;
4489 		}
4490 	} else if (ms > first_threshold && tcp->tcp_rtt_sa != 0) {
4491 		/*
4492 		 * We have been retransmitting for too long...  The RTT
4493 		 * we calculated is probably incorrect.  Reinitialize it.
4494 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
4495 		 * tcp_rtt_update so that we won't accidentally cache a
4496 		 * bad value.  But only do this if this is not a zero
4497 		 * window probe.
4498 		 */
4499 		if (tcp->tcp_zero_win_probe == 0) {
4500 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
4501 			    (tcp->tcp_rtt_sa >> 5);
4502 			tcp->tcp_rtt_sa = 0;
4503 			tcp->tcp_rtt_update = 0;
4504 		}
4505 	}
4506 	tcp->tcp_timer_backoff++;
4507 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
4508 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
4509 	    tcp_rexmit_interval_min) {
4510 		/*
4511 		 * This means the original RTO is tcp_rexmit_interval_min.
4512 		 * So we will use tcp_rexmit_interval_min as the RTO value
4513 		 * and do the backoff.
4514 		 */
4515 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
4516 	} else {
4517 		ms <<= tcp->tcp_timer_backoff;
4518 	}
4519 	if (ms > tcp_rexmit_interval_max) {
4520 		ms = tcp_rexmit_interval_max;
4521 		/*
4522 		 * ms is at max, decrement tcp_timer_backoff to avoid
4523 		 * overflow.
4524 		 */
4525 		tcp->tcp_timer_backoff--;
4526 	}
4527 	tcp->tcp_ms_we_have_waited += ms;
4528 	if (tcp->tcp_zero_win_probe == 0) {
4529 		tcp->tcp_rto = ms;
4530 	}
4531 	TCP_TIMER_RESTART(tcp, ms);
4532 	/*
4533 	 * This is after a timeout and tcp_rto is backed off.  Set
4534 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
4535 	 * restart the timer with a correct value.
4536 	 */
4537 	tcp->tcp_set_timer = 1;
4538 	mss = tcp->tcp_snxt - tcp->tcp_suna;
4539 	if (mss > tcp->tcp_mss)
4540 		mss = tcp->tcp_mss;
4541 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
4542 		mss = tcp->tcp_swnd;
4543 
4544 	if ((mp = tcp->tcp_xmit_head) != NULL) {
4545 		/* use uintptr_t to suppress the gcc warning */
4546 		mp->b_prev = (mblk_t *)(uintptr_t)prom_gettime();
4547 	}
4548 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
4549 	    B_TRUE);
4550 	if (mp == NULL)
4551 		return;
4552 	tcp->tcp_csuna = tcp->tcp_snxt;
4553 	BUMP_MIB(tcp_mib.tcpRetransSegs);
4554 	UPDATE_MIB(tcp_mib.tcpRetransBytes, mss);
4555 	/* Dump the packet when debugging. */
4556 	TCP_DUMP_PACKET("tcp_timer", mp);
4557 
4558 	(void) ipv4_tcp_output(sock_id, mp);
4559 	freeb(mp);
4560 
4561 	/*
4562 	 * When slow start after retransmission begins, start with
4563 	 * this seq no.  tcp_rexmit_max marks the end of special slow
4564 	 * start phase.  tcp_snd_burst controls how many segments
4565 	 * can be sent because of an ack.
4566 	 */
4567 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4568 	tcp->tcp_snd_burst = TCP_CWND_SS;
4569 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4570 	    (tcp->tcp_unsent == 0)) {
4571 		tcp->tcp_rexmit_max = tcp->tcp_fss;
4572 	} else {
4573 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
4574 	}
4575 	tcp->tcp_rexmit = B_TRUE;
4576 	tcp->tcp_dupack_cnt = 0;
4577 
4578 	/*
4579 	 * Remove all rexmit SACK blk to start from fresh.
4580 	 */
4581 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4582 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4583 		tcp->tcp_num_notsack_blk = 0;
4584 		tcp->tcp_cnt_notsack_list = 0;
4585 	}
4586 }
4587 
4588 /*
4589  * The TCP normal data output path.
4590  * NOTE: the logic of the fast path is duplicated from this function.
4591  */
4592 static void
4593 tcp_wput_data(tcp_t *tcp, mblk_t *mp, int sock_id)
4594 {
4595 	int		len;
4596 	mblk_t		*local_time;
4597 	mblk_t		*mp1;
4598 	uchar_t		*rptr;
4599 	uint32_t	snxt;
4600 	int		tail_unsent;
4601 	int		tcpstate;
4602 	int		usable = 0;
4603 	mblk_t		*xmit_tail;
4604 	int32_t		num_burst_seg;
4605 	int32_t		mss;
4606 	int32_t		num_sack_blk = 0;
4607 	int32_t		tcp_hdr_len;
4608 	ipaddr_t	*dst;
4609 	ipaddr_t	*src;
4610 
4611 #ifdef DEBUG
4612 	printf("tcp_wput_data(%d) ##############################\n", sock_id);
4613 #endif
4614 	tcpstate = tcp->tcp_state;
4615 	if (mp == NULL) {
4616 		/* Really tacky... but we need this for detached closes. */
4617 		len = tcp->tcp_unsent;
4618 		goto data_null;
4619 	}
4620 
4621 	/*
4622 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
4623 	 * or before a connection attempt has begun.
4624 	 *
4625 	 * The following should not happen in inetboot....
4626 	 */
4627 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
4628 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
4629 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
4630 			printf("tcp_wput_data: data after ordrel, %s\n",
4631 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
4632 		}
4633 		freemsg(mp);
4634 		return;
4635 	}
4636 
4637 	/* Strip empties */
4638 	for (;;) {
4639 		assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4640 		    (uintptr_t)INT_MAX);
4641 		len = (int)(mp->b_wptr - mp->b_rptr);
4642 		if (len > 0)
4643 			break;
4644 		mp1 = mp;
4645 		mp = mp->b_cont;
4646 		freeb(mp1);
4647 		if (mp == NULL) {
4648 			return;
4649 		}
4650 	}
4651 
4652 	/* If we are the first on the list ... */
4653 	if (tcp->tcp_xmit_head == NULL) {
4654 		tcp->tcp_xmit_head = mp;
4655 		tcp->tcp_xmit_tail = mp;
4656 		tcp->tcp_xmit_tail_unsent = len;
4657 	} else {
4658 		tcp->tcp_xmit_last->b_cont = mp;
4659 		len += tcp->tcp_unsent;
4660 	}
4661 
4662 	/* Tack on however many more positive length mblks we have */
4663 	if ((mp1 = mp->b_cont) != NULL) {
4664 		do {
4665 			int tlen;
4666 			assert((uintptr_t)(mp1->b_wptr -
4667 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
4668 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
4669 			if (tlen <= 0) {
4670 				mp->b_cont = mp1->b_cont;
4671 				freeb(mp1);
4672 			} else {
4673 				len += tlen;
4674 				mp = mp1;
4675 			}
4676 		} while ((mp1 = mp->b_cont) != NULL);
4677 	}
4678 	tcp->tcp_xmit_last = mp;
4679 	tcp->tcp_unsent = len;
4680 
4681 data_null:
4682 	snxt = tcp->tcp_snxt;
4683 	xmit_tail = tcp->tcp_xmit_tail;
4684 	tail_unsent = tcp->tcp_xmit_tail_unsent;
4685 
4686 	/*
4687 	 * Note that tcp_mss has been adjusted to take into account the
4688 	 * timestamp option if applicable.  Because SACK options do not
4689 	 * appear in every TCP segments and they are of variable lengths,
4690 	 * they cannot be included in tcp_mss.  Thus we need to calculate
4691 	 * the actual segment length when we need to send a segment which
4692 	 * includes SACK options.
4693 	 */
4694 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4695 		int32_t	opt_len;
4696 
4697 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
4698 		    tcp->tcp_num_sack_blk);
4699 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
4700 		    2 + TCPOPT_HEADER_LEN;
4701 		mss = tcp->tcp_mss - opt_len;
4702 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
4703 	} else {
4704 		mss = tcp->tcp_mss;
4705 		tcp_hdr_len = tcp->tcp_hdr_len;
4706 	}
4707 
4708 	if ((tcp->tcp_suna == snxt) &&
4709 	    (prom_gettime() - tcp->tcp_last_recv_time) >= tcp->tcp_rto) {
4710 		tcp->tcp_cwnd = MIN(tcp_slow_start_after_idle * mss,
4711 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
4712 	}
4713 	if (tcpstate == TCPS_SYN_RCVD) {
4714 		/*
4715 		 * The three-way connection establishment handshake is not
4716 		 * complete yet. We want to queue the data for transmission
4717 		 * after entering ESTABLISHED state (RFC793). Setting usable to
4718 		 * zero cause a jump to "done" label effectively leaving data
4719 		 * on the queue.
4720 		 */
4721 
4722 		usable = 0;
4723 	} else {
4724 		int usable_r = tcp->tcp_swnd;
4725 
4726 		/*
4727 		 * In the special case when cwnd is zero, which can only
4728 		 * happen if the connection is ECN capable, return now.
4729 		 * New segments is sent using tcp_timer().  The timer
4730 		 * is set in tcp_rput_data().
4731 		 */
4732 		if (tcp->tcp_cwnd == 0) {
4733 			/*
4734 			 * Note that tcp_cwnd is 0 before 3-way handshake is
4735 			 * finished.
4736 			 */
4737 			assert(tcp->tcp_ecn_ok ||
4738 			    tcp->tcp_state < TCPS_ESTABLISHED);
4739 			return;
4740 		}
4741 
4742 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
4743 		if (usable_r > tcp->tcp_cwnd)
4744 			usable_r = tcp->tcp_cwnd;
4745 
4746 		/* NOTE: trouble if xmitting while SYN not acked? */
4747 		usable_r -= snxt;
4748 		usable_r += tcp->tcp_suna;
4749 
4750 		/* usable = MIN(usable, unsent) */
4751 		if (usable_r > len)
4752 			usable_r = len;
4753 
4754 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
4755 		if (usable_r != 0)
4756 			usable = usable_r;
4757 	}
4758 
4759 	/* use uintptr_t to suppress the gcc warning */
4760 	local_time = (mblk_t *)(uintptr_t)prom_gettime();
4761 
4762 	/*
4763 	 * "Our" Nagle Algorithm.  This is not the same as in the old
4764 	 * BSD.  This is more in line with the true intent of Nagle.
4765 	 *
4766 	 * The conditions are:
4767 	 * 1. The amount of unsent data (or amount of data which can be
4768 	 *    sent, whichever is smaller) is less than Nagle limit.
4769 	 * 2. The last sent size is also less than Nagle limit.
4770 	 * 3. There is unack'ed data.
4771 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
4772 	 *    Nagle algorithm.  This reduces the probability that urgent
4773 	 *    bytes get "merged" together.
4774 	 * 5. The app has not closed the connection.  This eliminates the
4775 	 *    wait time of the receiving side waiting for the last piece of
4776 	 *    (small) data.
4777 	 *
4778 	 * If all are satisified, exit without sending anything.  Note
4779 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
4780 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
4781 	 * 4095).
4782 	 */
4783 	if (usable < (int)tcp->tcp_naglim &&
4784 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
4785 	    snxt != tcp->tcp_suna &&
4786 	    !(tcp->tcp_valid_bits & TCP_URG_VALID))
4787 		goto done;
4788 
4789 	num_burst_seg = tcp->tcp_snd_burst;
4790 	for (;;) {
4791 		tcph_t		*tcph;
4792 		mblk_t		*new_mp;
4793 
4794 		if (num_burst_seg-- == 0)
4795 			goto done;
4796 
4797 		len = mss;
4798 		if (len > usable) {
4799 			len = usable;
4800 			if (len <= 0) {
4801 				/* Terminate the loop */
4802 				goto done;
4803 			}
4804 			/*
4805 			 * Sender silly-window avoidance.
4806 			 * Ignore this if we are going to send a
4807 			 * zero window probe out.
4808 			 *
4809 			 * TODO: force data into microscopic window ??
4810 			 *	==> (!pushed || (unsent > usable))
4811 			 */
4812 			if (len < (tcp->tcp_max_swnd >> 1) &&
4813 			    (tcp->tcp_unsent - (snxt - tcp->tcp_snxt)) > len &&
4814 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4815 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
4816 				/*
4817 				 * If the retransmit timer is not running
4818 				 * we start it so that we will retransmit
4819 				 * in the case when the the receiver has
4820 				 * decremented the window.
4821 				 */
4822 				if (snxt == tcp->tcp_snxt &&
4823 				    snxt == tcp->tcp_suna) {
4824 					/*
4825 					 * We are not supposed to send
4826 					 * anything.  So let's wait a little
4827 					 * bit longer before breaking SWS
4828 					 * avoidance.
4829 					 *
4830 					 * What should the value be?
4831 					 * Suggestion: MAX(init rexmit time,
4832 					 * tcp->tcp_rto)
4833 					 */
4834 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4835 				}
4836 				goto done;
4837 			}
4838 		}
4839 
4840 		tcph = tcp->tcp_tcph;
4841 
4842 		usable -= len;	/* Approximate - can be adjusted later */
4843 		if (usable > 0)
4844 			tcph->th_flags[0] = TH_ACK;
4845 		else
4846 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
4847 
4848 		U32_TO_ABE32(snxt, tcph->th_seq);
4849 
4850 		if (tcp->tcp_valid_bits) {
4851 			uchar_t		*prev_rptr = xmit_tail->b_rptr;
4852 			uint32_t	prev_snxt = tcp->tcp_snxt;
4853 
4854 			if (tail_unsent == 0) {
4855 				assert(xmit_tail->b_cont != NULL);
4856 				xmit_tail = xmit_tail->b_cont;
4857 				prev_rptr = xmit_tail->b_rptr;
4858 				tail_unsent = (int)(xmit_tail->b_wptr -
4859 				    xmit_tail->b_rptr);
4860 			} else {
4861 				xmit_tail->b_rptr = xmit_tail->b_wptr -
4862 				    tail_unsent;
4863 			}
4864 			mp = tcp_xmit_mp(tcp, xmit_tail, len, NULL, NULL,
4865 			    snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
4866 			/* Restore tcp_snxt so we get amount sent right. */
4867 			tcp->tcp_snxt = prev_snxt;
4868 			if (prev_rptr == xmit_tail->b_rptr)
4869 				xmit_tail->b_prev = local_time;
4870 			else
4871 				xmit_tail->b_rptr = prev_rptr;
4872 
4873 			if (mp == NULL)
4874 				break;
4875 
4876 			mp1 = mp->b_cont;
4877 
4878 			snxt += len;
4879 			tcp->tcp_last_sent_len = (ushort_t)len;
4880 			while (mp1->b_cont) {
4881 				xmit_tail = xmit_tail->b_cont;
4882 				xmit_tail->b_prev = local_time;
4883 				mp1 = mp1->b_cont;
4884 			}
4885 			tail_unsent = xmit_tail->b_wptr - mp1->b_wptr;
4886 			BUMP_MIB(tcp_mib.tcpOutDataSegs);
4887 			UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
4888 			/* Dump the packet when debugging. */
4889 			TCP_DUMP_PACKET("tcp_wput_data (valid bits)", mp);
4890 			(void) ipv4_tcp_output(sock_id, mp);
4891 			freeb(mp);
4892 			continue;
4893 		}
4894 
4895 		snxt += len;	/* Adjust later if we don't send all of len */
4896 		BUMP_MIB(tcp_mib.tcpOutDataSegs);
4897 		UPDATE_MIB(tcp_mib.tcpOutDataBytes, len);
4898 
4899 		if (tail_unsent) {
4900 			/* Are the bytes above us in flight? */
4901 			rptr = xmit_tail->b_wptr - tail_unsent;
4902 			if (rptr != xmit_tail->b_rptr) {
4903 				tail_unsent -= len;
4904 				len += tcp_hdr_len;
4905 				tcp->tcp_ipha->ip_len = htons(len);
4906 				mp = dupb(xmit_tail);
4907 				if (!mp)
4908 					break;
4909 				mp->b_rptr = rptr;
4910 				goto must_alloc;
4911 			}
4912 		} else {
4913 			xmit_tail = xmit_tail->b_cont;
4914 			assert((uintptr_t)(xmit_tail->b_wptr -
4915 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
4916 			tail_unsent = (int)(xmit_tail->b_wptr -
4917 			    xmit_tail->b_rptr);
4918 		}
4919 
4920 		tail_unsent -= len;
4921 		tcp->tcp_last_sent_len = (ushort_t)len;
4922 
4923 		len += tcp_hdr_len;
4924 		if (tcp->tcp_ipversion == IPV4_VERSION)
4925 			tcp->tcp_ipha->ip_len = htons(len);
4926 
4927 		xmit_tail->b_prev = local_time;
4928 
4929 		mp = dupb(xmit_tail);
4930 		if (mp == NULL)
4931 			goto out_of_mem;
4932 
4933 		len = tcp_hdr_len;
4934 		/*
4935 		 * There are four reasons to allocate a new hdr mblk:
4936 		 *  1) The bytes above us are in use by another packet
4937 		 *  2) We don't have good alignment
4938 		 *  3) The mblk is being shared
4939 		 *  4) We don't have enough room for a header
4940 		 */
4941 		rptr = mp->b_rptr - len;
4942 		if (!OK_32PTR(rptr) ||
4943 		    rptr < mp->b_datap) {
4944 			/* NOTE: we assume allocb returns an OK_32PTR */
4945 
4946 		must_alloc:;
4947 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
4948 			    tcp_wroff_xtra, 0);
4949 			if (mp1 == NULL) {
4950 				freemsg(mp);
4951 				goto out_of_mem;
4952 			}
4953 			mp1->b_cont = mp;
4954 			mp = mp1;
4955 			/* Leave room for Link Level header */
4956 			len = tcp_hdr_len;
4957 			rptr = &mp->b_rptr[tcp_wroff_xtra];
4958 			mp->b_wptr = &rptr[len];
4959 		}
4960 
4961 		if (tcp->tcp_snd_ts_ok) {
4962 			/* use uintptr_t to suppress the gcc warning */
4963 			U32_TO_BE32((uint32_t)(uintptr_t)local_time,
4964 				(char *)tcph+TCP_MIN_HEADER_LENGTH+4);
4965 			U32_TO_BE32(tcp->tcp_ts_recent,
4966 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
4967 		} else {
4968 			assert(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
4969 		}
4970 
4971 		mp->b_rptr = rptr;
4972 
4973 		/* Copy the template header. */
4974 		dst = (ipaddr_t *)rptr;
4975 		src = (ipaddr_t *)tcp->tcp_iphc;
4976 		dst[0] = src[0];
4977 		dst[1] = src[1];
4978 		dst[2] = src[2];
4979 		dst[3] = src[3];
4980 		dst[4] = src[4];
4981 		dst[5] = src[5];
4982 		dst[6] = src[6];
4983 		dst[7] = src[7];
4984 		dst[8] = src[8];
4985 		dst[9] = src[9];
4986 		len = tcp->tcp_hdr_len;
4987 		if (len -= 40) {
4988 			len >>= 2;
4989 			dst += 10;
4990 			src += 10;
4991 			do {
4992 				*dst++ = *src++;
4993 			} while (--len);
4994 		}
4995 
4996 		/*
4997 		 * Set tcph to point to the header of the outgoing packet,
4998 		 * not to the template header.
4999 		 */
5000 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
5001 
5002 		/*
5003 		 * Set the ECN info in the TCP header if it is not a zero
5004 		 * window probe.  Zero window probe is only sent in
5005 		 * tcp_wput_data() and tcp_timer().
5006 		 */
5007 		if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
5008 			SET_ECT(tcp, rptr);
5009 
5010 			if (tcp->tcp_ecn_echo_on)
5011 				tcph->th_flags[0] |= TH_ECE;
5012 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
5013 				tcph->th_flags[0] |= TH_CWR;
5014 				tcp->tcp_ecn_cwr_sent = B_TRUE;
5015 			}
5016 		}
5017 
5018 		/* Fill in SACK options */
5019 		if (num_sack_blk > 0) {
5020 			uchar_t *wptr = rptr + tcp->tcp_hdr_len;
5021 			sack_blk_t *tmp;
5022 			int32_t	i;
5023 
5024 			wptr[0] = TCPOPT_NOP;
5025 			wptr[1] = TCPOPT_NOP;
5026 			wptr[2] = TCPOPT_SACK;
5027 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
5028 			    sizeof (sack_blk_t);
5029 			wptr += TCPOPT_REAL_SACK_LEN;
5030 
5031 			tmp = tcp->tcp_sack_list;
5032 			for (i = 0; i < num_sack_blk; i++) {
5033 				U32_TO_BE32(tmp[i].begin, wptr);
5034 				wptr += sizeof (tcp_seq);
5035 				U32_TO_BE32(tmp[i].end, wptr);
5036 				wptr += sizeof (tcp_seq);
5037 			}
5038 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
5039 			    << 4);
5040 		}
5041 
5042 		if (tail_unsent) {
5043 			mp1 = mp->b_cont;
5044 			if (mp1 == NULL)
5045 				mp1 = mp;
5046 			/*
5047 			 * If we're a little short, tack on more mblks
5048 			 * as long as we don't need to split an mblk.
5049 			 */
5050 			while (tail_unsent < 0 &&
5051 			    tail_unsent + (int)(xmit_tail->b_cont->b_wptr -
5052 			    xmit_tail->b_cont->b_rptr) <= 0) {
5053 				xmit_tail = xmit_tail->b_cont;
5054 				/* Stash for rtt use later */
5055 				xmit_tail->b_prev = local_time;
5056 				mp1->b_cont = dupb(xmit_tail);
5057 				mp1 = mp1->b_cont;
5058 				assert((uintptr_t)(xmit_tail->b_wptr -
5059 				    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
5060 				tail_unsent += (int)(xmit_tail->b_wptr -
5061 				    xmit_tail->b_rptr);
5062 				if (mp1 == NULL) {
5063 					freemsg(mp);
5064 					goto out_of_mem;
5065 				}
5066 			}
5067 			/* Trim back any surplus on the last mblk */
5068 			if (tail_unsent > 0)
5069 				mp1->b_wptr -= tail_unsent;
5070 			if (tail_unsent < 0) {
5071 				uint32_t ip_len;
5072 
5073 				/*
5074 				 * We did not send everything we could in
5075 				 * order to preserve mblk boundaries.
5076 				 */
5077 				usable -= tail_unsent;
5078 				snxt += tail_unsent;
5079 				tcp->tcp_last_sent_len += tail_unsent;
5080 				UPDATE_MIB(tcp_mib.tcpOutDataBytes,
5081 				    tail_unsent);
5082 				/* Adjust the IP length field. */
5083 				ip_len = ntohs(((struct ip *)rptr)->ip_len) +
5084 				    tail_unsent;
5085 				((struct ip *)rptr)->ip_len = htons(ip_len);
5086 				tail_unsent = 0;
5087 			}
5088 		}
5089 
5090 		if (mp == NULL)
5091 			goto out_of_mem;
5092 
5093 		/*
5094 		 * Performance hit!  We need to pullup the whole message
5095 		 * in order to do checksum and for the MAC output routine.
5096 		 */
5097 		if (mp->b_cont != NULL) {
5098 			int mp_size;
5099 #ifdef	DEBUG
5100 			printf("Multiple mblk %d\n", msgdsize(mp));
5101 #endif
5102 			new_mp = allocb(msgdsize(mp) + tcp_wroff_xtra, 0);
5103 			new_mp->b_rptr += tcp_wroff_xtra;
5104 			new_mp->b_wptr = new_mp->b_rptr;
5105 			while (mp != NULL) {
5106 				mp_size = mp->b_wptr - mp->b_rptr;
5107 				bcopy(mp->b_rptr, new_mp->b_wptr, mp_size);
5108 				new_mp->b_wptr += mp_size;
5109 				mp = mp->b_cont;
5110 			}
5111 			freemsg(mp);
5112 			mp = new_mp;
5113 		}
5114 		tcp_set_cksum(mp);
5115 		((struct ip *)mp->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5116 		TCP_DUMP_PACKET("tcp_wput_data", mp);
5117 		(void) ipv4_tcp_output(sock_id, mp);
5118 		freemsg(mp);
5119 	}
5120 out_of_mem:;
5121 	/* Pretend that all we were trying to send really got sent */
5122 	if (tail_unsent < 0) {
5123 		do {
5124 			xmit_tail = xmit_tail->b_cont;
5125 			xmit_tail->b_prev = local_time;
5126 			assert((uintptr_t)(xmit_tail->b_wptr -
5127 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
5128 			tail_unsent += (int)(xmit_tail->b_wptr -
5129 			    xmit_tail->b_rptr);
5130 		} while (tail_unsent < 0);
5131 	}
5132 done:;
5133 	tcp->tcp_xmit_tail = xmit_tail;
5134 	tcp->tcp_xmit_tail_unsent = tail_unsent;
5135 	len = tcp->tcp_snxt - snxt;
5136 	if (len) {
5137 		/*
5138 		 * If new data was sent, need to update the notsack
5139 		 * list, which is, afterall, data blocks that have
5140 		 * not been sack'ed by the receiver.  New data is
5141 		 * not sack'ed.
5142 		 */
5143 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
5144 			/* len is a negative value. */
5145 			tcp->tcp_pipe -= len;
5146 			tcp_notsack_update(&(tcp->tcp_notsack_list),
5147 			    tcp->tcp_snxt, snxt,
5148 			    &(tcp->tcp_num_notsack_blk),
5149 			    &(tcp->tcp_cnt_notsack_list));
5150 		}
5151 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
5152 		tcp->tcp_rack = tcp->tcp_rnxt;
5153 		tcp->tcp_rack_cnt = 0;
5154 		if ((snxt + len) == tcp->tcp_suna) {
5155 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5156 		}
5157 		/*
5158 		 * Note that len is the amount we just sent but with a negative
5159 		 * sign. We update tcp_unsent here since we may come back to
5160 		 * tcp_wput_data from tcp_state_wait.
5161 		 */
5162 		len += tcp->tcp_unsent;
5163 		tcp->tcp_unsent = len;
5164 
5165 		/*
5166 		 * Let's wait till all the segments have been acked, since we
5167 		 * don't have a timer.
5168 		 */
5169 		(void) tcp_state_wait(sock_id, tcp, TCPS_ALL_ACKED);
5170 		return;
5171 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
5172 		/*
5173 		 * Didn't send anything. Make sure the timer is running
5174 		 * so that we will probe a zero window.
5175 		 */
5176 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5177 	}
5178 
5179 	/* Note that len is the amount we just sent but with a negative sign */
5180 	len += tcp->tcp_unsent;
5181 	tcp->tcp_unsent = len;
5182 
5183 }
5184 
5185 static void
5186 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
5187     uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcph_t *tcph,
5188     int sock_id)
5189 {
5190 	int32_t		bytes_acked;
5191 	int32_t		gap;
5192 	int32_t		rgap;
5193 	tcp_opt_t	tcpopt;
5194 	uint_t		flags;
5195 	uint32_t	new_swnd = 0;
5196 
5197 #ifdef DEBUG
5198 	printf("Time wait processing called ###############3\n");
5199 #endif
5200 
5201 	/* Just make sure we send the right sock_id to tcp_clean_death */
5202 	if ((sockets[sock_id].pcb == NULL) || (sockets[sock_id].pcb != tcp))
5203 		sock_id = -1;
5204 
5205 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
5206 	new_swnd = BE16_TO_U16(tcph->th_win) <<
5207 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
5208 	if (tcp->tcp_snd_ts_ok) {
5209 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
5210 			freemsg(mp);
5211 			tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5212 			    tcp->tcp_rnxt, TH_ACK, 0, -1);
5213 			return;
5214 		}
5215 	}
5216 	gap = seg_seq - tcp->tcp_rnxt;
5217 	rgap = tcp->tcp_rwnd - (gap + seg_len);
5218 	if (gap < 0) {
5219 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
5220 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes,
5221 		    (seg_len > -gap ? -gap : seg_len));
5222 		seg_len += gap;
5223 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
5224 			if (flags & TH_RST) {
5225 				freemsg(mp);
5226 				return;
5227 			}
5228 			if ((flags & TH_FIN) && seg_len == -1) {
5229 				/*
5230 				 * When TCP receives a duplicate FIN in
5231 				 * TIME_WAIT state, restart the 2 MSL timer.
5232 				 * See page 73 in RFC 793. Make sure this TCP
5233 				 * is already on the TIME_WAIT list. If not,
5234 				 * just restart the timer.
5235 				 */
5236 				tcp_time_wait_remove(tcp);
5237 				tcp_time_wait_append(tcp);
5238 				TCP_TIMER_RESTART(tcp, tcp_time_wait_interval);
5239 				tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5240 				    tcp->tcp_rnxt, TH_ACK, 0, -1);
5241 				freemsg(mp);
5242 				return;
5243 			}
5244 			flags |=  TH_ACK_NEEDED;
5245 			seg_len = 0;
5246 			goto process_ack;
5247 		}
5248 
5249 		/* Fix seg_seq, and chew the gap off the front. */
5250 		seg_seq = tcp->tcp_rnxt;
5251 	}
5252 
5253 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
5254 		/*
5255 		 * Make sure that when we accept the connection, pick
5256 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
5257 		 * old connection.
5258 		 *
5259 		 * The next ISS generated is equal to tcp_iss_incr_extra
5260 		 * + ISS_INCR/2 + other components depending on the
5261 		 * value of tcp_strong_iss.  We pre-calculate the new
5262 		 * ISS here and compare with tcp_snxt to determine if
5263 		 * we need to make adjustment to tcp_iss_incr_extra.
5264 		 *
5265 		 * Note that since we are now in the global queue
5266 		 * perimeter and need to do a lateral_put() to the
5267 		 * listener queue, there can be other connection requests/
5268 		 * attempts while the lateral_put() is going on.  That
5269 		 * means what we calculate here may not be correct.  This
5270 		 * is extremely difficult to solve unless TCP and IP
5271 		 * modules are merged and there is no perimeter, but just
5272 		 * locks.  The above calculation is ugly and is a
5273 		 * waste of CPU cycles...
5274 		 */
5275 		uint32_t new_iss = tcp_iss_incr_extra;
5276 		int32_t adj;
5277 
5278 		/* Add time component and min random (i.e. 1). */
5279 		new_iss += (prom_gettime() >> ISS_NSEC_SHT) + 1;
5280 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
5281 			/*
5282 			 * New ISS not guaranteed to be ISS_INCR/2
5283 			 * ahead of the current tcp_snxt, so add the
5284 			 * difference to tcp_iss_incr_extra.
5285 			 */
5286 			tcp_iss_incr_extra += adj;
5287 		}
5288 		tcp_clean_death(sock_id, tcp, 0);
5289 
5290 		/*
5291 		 * This is a passive open.  Right now we do not
5292 		 * do anything...
5293 		 */
5294 		freemsg(mp);
5295 		return;
5296 	}
5297 
5298 	/*
5299 	 * rgap is the amount of stuff received out of window.  A negative
5300 	 * value is the amount out of window.
5301 	 */
5302 	if (rgap < 0) {
5303 		BUMP_MIB(tcp_mib.tcpInDataPastWinSegs);
5304 		UPDATE_MIB(tcp_mib.tcpInDataPastWinBytes, -rgap);
5305 		/* Fix seg_len and make sure there is something left. */
5306 		seg_len += rgap;
5307 		if (seg_len <= 0) {
5308 			if (flags & TH_RST) {
5309 				freemsg(mp);
5310 				return;
5311 			}
5312 			flags |=  TH_ACK_NEEDED;
5313 			seg_len = 0;
5314 			goto process_ack;
5315 		}
5316 	}
5317 	/*
5318 	 * Check whether we can update tcp_ts_recent.  This test is
5319 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
5320 	 * Extensions for High Performance: An Update", Internet Draft.
5321 	 */
5322 	if (tcp->tcp_snd_ts_ok &&
5323 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
5324 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
5325 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
5326 		tcp->tcp_last_rcv_lbolt = prom_gettime();
5327 	}
5328 
5329 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
5330 		/* Always ack out of order packets */
5331 		flags |= TH_ACK_NEEDED;
5332 		seg_len = 0;
5333 	} else if (seg_len > 0) {
5334 		BUMP_MIB(tcp_mib.tcpInDataInorderSegs);
5335 		UPDATE_MIB(tcp_mib.tcpInDataInorderBytes, seg_len);
5336 	}
5337 	if (flags & TH_RST) {
5338 		freemsg(mp);
5339 		(void) tcp_clean_death(sock_id, tcp, 0);
5340 		return;
5341 	}
5342 	if (flags & TH_SYN) {
5343 		freemsg(mp);
5344 		tcp_xmit_ctl("TH_SYN", tcp, NULL, seg_ack, seg_seq + 1,
5345 		    TH_RST|TH_ACK, 0, -1);
5346 		/*
5347 		 * Do not delete the TCP structure if it is in
5348 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
5349 		 */
5350 		return;
5351 	}
5352 process_ack:
5353 	if (flags & TH_ACK) {
5354 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
5355 		if (bytes_acked <= 0) {
5356 			if (bytes_acked == 0 && seg_len == 0 &&
5357 			    new_swnd == tcp->tcp_swnd)
5358 				BUMP_MIB(tcp_mib.tcpInDupAck);
5359 		} else {
5360 			/* Acks something not sent */
5361 			flags |= TH_ACK_NEEDED;
5362 		}
5363 	}
5364 	freemsg(mp);
5365 	if (flags & TH_ACK_NEEDED) {
5366 		/*
5367 		 * Time to send an ack for some reason.
5368 		 */
5369 		tcp_xmit_ctl(NULL, tcp, NULL, tcp->tcp_snxt,
5370 		    tcp->tcp_rnxt, TH_ACK, 0, -1);
5371 	}
5372 }
5373 
5374 static int
5375 tcp_init_values(tcp_t *tcp, struct inetboot_socket *isp)
5376 {
5377 	int	err;
5378 
5379 	tcp->tcp_family = AF_INET;
5380 	tcp->tcp_ipversion = IPV4_VERSION;
5381 
5382 	/*
5383 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
5384 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
5385 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
5386 	 * during first few transmissions of a connection as seen in slow
5387 	 * links.
5388 	 */
5389 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
5390 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
5391 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
5392 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
5393 	    tcp_conn_grace_period;
5394 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
5395 		tcp->tcp_rto = tcp_rexmit_interval_min;
5396 	tcp->tcp_timer_backoff = 0;
5397 	tcp->tcp_ms_we_have_waited = 0;
5398 	tcp->tcp_last_recv_time = prom_gettime();
5399 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
5400 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
5401 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
5402 	/* For Ethernet, the mtu returned is actually 1550... */
5403 	if (mac_get_type() == IFT_ETHER) {
5404 		tcp->tcp_if_mtu = mac_get_mtu() - 50;
5405 	} else {
5406 		tcp->tcp_if_mtu = mac_get_mtu();
5407 	}
5408 	tcp->tcp_mss = tcp->tcp_if_mtu;
5409 
5410 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
5411 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
5412 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
5413 	/*
5414 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
5415 	 * passive open.
5416 	 */
5417 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
5418 
5419 	tcp->tcp_naglim = tcp_naglim_def;
5420 
5421 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
5422 
5423 	/* Initialize the header template */
5424 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5425 		err = tcp_header_init_ipv4(tcp);
5426 	}
5427 	if (err)
5428 		return (err);
5429 
5430 	/*
5431 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
5432 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
5433 	 */
5434 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
5435 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
5436 	if (isp != NULL) {
5437 		tcp->tcp_xmit_hiwater = isp->so_sndbuf;
5438 		tcp->tcp_rwnd = isp->so_rcvbuf;
5439 		tcp->tcp_rwnd_max = isp->so_rcvbuf;
5440 	}
5441 	tcp->tcp_state = TCPS_IDLE;
5442 	return (0);
5443 }
5444 
5445 /*
5446  * Initialize the IPv4 header. Loses any record of any IP options.
5447  */
5448 static int
5449 tcp_header_init_ipv4(tcp_t *tcp)
5450 {
5451 	tcph_t		*tcph;
5452 
5453 	/*
5454 	 * This is a simple initialization. If there's
5455 	 * already a template, it should never be too small,
5456 	 * so reuse it.  Otherwise, allocate space for the new one.
5457 	 */
5458 	if (tcp->tcp_iphc != NULL) {
5459 		assert(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5460 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5461 	} else {
5462 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
5463 		tcp->tcp_iphc = bkmem_zalloc(tcp->tcp_iphc_len);
5464 		if (tcp->tcp_iphc == NULL) {
5465 			tcp->tcp_iphc_len = 0;
5466 			return (ENOMEM);
5467 		}
5468 	}
5469 	tcp->tcp_ipha = (struct ip *)tcp->tcp_iphc;
5470 	tcp->tcp_ipversion = IPV4_VERSION;
5471 
5472 	/*
5473 	 * Note that it does not include TCP options yet.  It will
5474 	 * after the connection is established.
5475 	 */
5476 	tcp->tcp_hdr_len = sizeof (struct ip) + sizeof (tcph_t);
5477 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
5478 	tcp->tcp_ip_hdr_len = sizeof (struct ip);
5479 	tcp->tcp_ipha->ip_v = IP_VERSION;
5480 	/* We don't support IP options... */
5481 	tcp->tcp_ipha->ip_hl = IP_SIMPLE_HDR_LENGTH_IN_WORDS;
5482 	tcp->tcp_ipha->ip_p = IPPROTO_TCP;
5483 	/* We are not supposed to do PMTU discovery... */
5484 	tcp->tcp_ipha->ip_sum = 0;
5485 
5486 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (struct ip));
5487 	tcp->tcp_tcph = tcph;
5488 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
5489 	return (0);
5490 }
5491 
5492 /*
5493  * Send out a control packet on the tcp connection specified.  This routine
5494  * is typically called where we need a simple ACK or RST generated.
5495  *
5496  * This function is called with or without a mp.
5497  */
5498 static void
5499 tcp_xmit_ctl(char *str, tcp_t *tcp, mblk_t *mp, uint32_t seq,
5500     uint32_t ack, int ctl, uint_t ip_hdr_len, int sock_id)
5501 {
5502 	uchar_t		*rptr;
5503 	tcph_t		*tcph;
5504 	struct ip	*iph = NULL;
5505 	int		tcp_hdr_len;
5506 	int		tcp_ip_hdr_len;
5507 
5508 	tcp_hdr_len = tcp->tcp_hdr_len;
5509 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
5510 
5511 	if (mp) {
5512 		assert(ip_hdr_len != 0);
5513 		rptr = mp->b_rptr;
5514 		tcph = (tcph_t *)(rptr + ip_hdr_len);
5515 		/* Don't reply to a RST segment. */
5516 		if (tcph->th_flags[0] & TH_RST) {
5517 			freeb(mp);
5518 			return;
5519 		}
5520 		freemsg(mp);
5521 		rptr = NULL;
5522 	} else {
5523 		assert(ip_hdr_len == 0);
5524 	}
5525 	/* If a text string is passed in with the request, print it out. */
5526 	if (str != NULL) {
5527 		dprintf("tcp_xmit_ctl(%d): '%s', seq 0x%x, ack 0x%x, "
5528 		    "ctl 0x%x\n", sock_id, str, seq, ack, ctl);
5529 	}
5530 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 0);
5531 	if (mp == NULL) {
5532 		dprintf("tcp_xmit_ctl(%d): Cannot allocate memory\n", sock_id);
5533 		return;
5534 	}
5535 	rptr = &mp->b_rptr[tcp_wroff_xtra];
5536 	mp->b_rptr = rptr;
5537 	mp->b_wptr = &rptr[tcp_hdr_len];
5538 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
5539 
5540 	iph = (struct ip *)rptr;
5541 	iph->ip_len = htons(tcp_hdr_len);
5542 
5543 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
5544 	tcph->th_flags[0] = (uint8_t)ctl;
5545 	if (ctl & TH_RST) {
5546 		BUMP_MIB(tcp_mib.tcpOutRsts);
5547 		BUMP_MIB(tcp_mib.tcpOutControl);
5548 		/*
5549 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
5550 		 */
5551 		if (tcp->tcp_snd_ts_ok && tcp->tcp_state > TCPS_SYN_SENT) {
5552 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
5553 			*(mp->b_wptr) = TCPOPT_EOL;
5554 			iph->ip_len = htons(tcp_hdr_len -
5555 			    TCPOPT_REAL_TS_LEN);
5556 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
5557 		}
5558 	}
5559 	if (ctl & TH_ACK) {
5560 		uint32_t now = prom_gettime();
5561 
5562 		if (tcp->tcp_snd_ts_ok) {
5563 			U32_TO_BE32(now,
5564 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
5565 			U32_TO_BE32(tcp->tcp_ts_recent,
5566 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
5567 		}
5568 		tcp->tcp_rack = ack;
5569 		tcp->tcp_rack_cnt = 0;
5570 		BUMP_MIB(tcp_mib.tcpOutAck);
5571 	}
5572 	BUMP_MIB(tcp_mib.tcpOutSegs);
5573 	U32_TO_BE32(seq, tcph->th_seq);
5574 	U32_TO_BE32(ack, tcph->th_ack);
5575 
5576 	tcp_set_cksum(mp);
5577 	iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5578 	TCP_DUMP_PACKET("tcp_xmit_ctl", mp);
5579 	(void) ipv4_tcp_output(sock_id, mp);
5580 	freeb(mp);
5581 }
5582 
5583 /* Generate an ACK-only (no data) segment for a TCP endpoint */
5584 static mblk_t *
5585 tcp_ack_mp(tcp_t *tcp)
5586 {
5587 	if (tcp->tcp_valid_bits) {
5588 		/*
5589 		 * For the complex case where we have to send some
5590 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
5591 		 * When sending an ACK-only segment (no data)
5592 		 * into a zero window, always set the seq number to
5593 		 * suna, since snxt will be extended past the window.
5594 		 * If we used snxt, the receiver might consider the ACK
5595 		 * unacceptable.
5596 		 */
5597 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
5598 		    (tcp->tcp_zero_win_probe) ?
5599 		    tcp->tcp_suna :
5600 		    tcp->tcp_snxt, B_FALSE, NULL, B_FALSE));
5601 	} else {
5602 		/* Generate a simple ACK */
5603 		uchar_t	*rptr;
5604 		tcph_t	*tcph;
5605 		mblk_t	*mp1;
5606 		int32_t	tcp_hdr_len;
5607 		int32_t	num_sack_blk = 0;
5608 		int32_t sack_opt_len;
5609 
5610 		/*
5611 		 * Allocate space for TCP + IP headers
5612 		 * and link-level header
5613 		 */
5614 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
5615 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
5616 			    tcp->tcp_num_sack_blk);
5617 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
5618 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
5619 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
5620 		} else {
5621 			tcp_hdr_len = tcp->tcp_hdr_len;
5622 		}
5623 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, 0);
5624 		if (mp1 == NULL)
5625 			return (NULL);
5626 
5627 		/* copy in prototype TCP + IP header */
5628 		rptr = mp1->b_rptr + tcp_wroff_xtra;
5629 		mp1->b_rptr = rptr;
5630 		mp1->b_wptr = rptr + tcp_hdr_len;
5631 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
5632 
5633 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
5634 
5635 		/*
5636 		 * Set the TCP sequence number.
5637 		 * When sending an ACK-only segment (no data)
5638 		 * into a zero window, always set the seq number to
5639 		 * suna, since snxt will be extended past the window.
5640 		 * If we used snxt, the receiver might consider the ACK
5641 		 * unacceptable.
5642 		 */
5643 		U32_TO_ABE32((tcp->tcp_zero_win_probe) ?
5644 		    tcp->tcp_suna : tcp->tcp_snxt, tcph->th_seq);
5645 
5646 		/* Set up the TCP flag field. */
5647 		tcph->th_flags[0] = (uchar_t)TH_ACK;
5648 		if (tcp->tcp_ecn_echo_on)
5649 			tcph->th_flags[0] |= TH_ECE;
5650 
5651 		tcp->tcp_rack = tcp->tcp_rnxt;
5652 		tcp->tcp_rack_cnt = 0;
5653 
5654 		/* fill in timestamp option if in use */
5655 		if (tcp->tcp_snd_ts_ok) {
5656 			uint32_t llbolt = (uint32_t)prom_gettime();
5657 
5658 			U32_TO_BE32(llbolt,
5659 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
5660 			U32_TO_BE32(tcp->tcp_ts_recent,
5661 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
5662 		}
5663 
5664 		/* Fill in SACK options */
5665 		if (num_sack_blk > 0) {
5666 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
5667 			sack_blk_t *tmp;
5668 			int32_t	i;
5669 
5670 			wptr[0] = TCPOPT_NOP;
5671 			wptr[1] = TCPOPT_NOP;
5672 			wptr[2] = TCPOPT_SACK;
5673 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
5674 			    sizeof (sack_blk_t);
5675 			wptr += TCPOPT_REAL_SACK_LEN;
5676 
5677 			tmp = tcp->tcp_sack_list;
5678 			for (i = 0; i < num_sack_blk; i++) {
5679 				U32_TO_BE32(tmp[i].begin, wptr);
5680 				wptr += sizeof (tcp_seq);
5681 				U32_TO_BE32(tmp[i].end, wptr);
5682 				wptr += sizeof (tcp_seq);
5683 			}
5684 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
5685 			    << 4);
5686 		}
5687 
5688 		((struct ip *)rptr)->ip_len = htons(tcp_hdr_len);
5689 		tcp_set_cksum(mp1);
5690 		((struct ip *)rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
5691 		return (mp1);
5692 	}
5693 }
5694 
5695 /*
5696  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
5697  * ip and tcp header ready to pass down to IP.  If the mp passed in is
5698  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
5699  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
5700  * otherwise it will dup partial mblks.)
5701  * Otherwise, an appropriate ACK packet will be generated.  This
5702  * routine is not usually called to send new data for the first time.  It
5703  * is mostly called out of the timer for retransmits, and to generate ACKs.
5704  *
5705  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
5706  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
5707  * of the original mblk chain will be returned in *offset and *end_mp.
5708  */
5709 static mblk_t *
5710 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
5711     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
5712     boolean_t rexmit)
5713 {
5714 	int	data_length;
5715 	int32_t	off = 0;
5716 	uint_t	flags;
5717 	mblk_t	*mp1;
5718 	mblk_t	*mp2;
5719 	mblk_t	*new_mp;
5720 	uchar_t	*rptr;
5721 	tcph_t	*tcph;
5722 	int32_t	num_sack_blk = 0;
5723 	int32_t	sack_opt_len = 0;
5724 
5725 	/* Allocate for our maximum TCP header + link-level */
5726 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
5727 	    tcp_wroff_xtra, 0);
5728 	if (mp1 == NULL)
5729 		return (NULL);
5730 	data_length = 0;
5731 
5732 	/*
5733 	 * Note that tcp_mss has been adjusted to take into account the
5734 	 * timestamp option if applicable.  Because SACK options do not
5735 	 * appear in every TCP segments and they are of variable lengths,
5736 	 * they cannot be included in tcp_mss.  Thus we need to calculate
5737 	 * the actual segment length when we need to send a segment which
5738 	 * includes SACK options.
5739 	 */
5740 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
5741 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
5742 		    tcp->tcp_num_sack_blk);
5743 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
5744 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
5745 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
5746 			max_to_send -= sack_opt_len;
5747 	}
5748 
5749 	if (offset != NULL) {
5750 		off = *offset;
5751 		/* We use offset as an indicator that end_mp is not NULL. */
5752 		*end_mp = NULL;
5753 	}
5754 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
5755 		/* This could be faster with cooperation from downstream */
5756 		if (mp2 != mp1 && !sendall &&
5757 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
5758 		    max_to_send)
5759 			/*
5760 			 * Don't send the next mblk since the whole mblk
5761 			 * does not fit.
5762 			 */
5763 			break;
5764 		mp2->b_cont = dupb(mp);
5765 		mp2 = mp2->b_cont;
5766 		if (mp2 == NULL) {
5767 			freemsg(mp1);
5768 			return (NULL);
5769 		}
5770 		mp2->b_rptr += off;
5771 		assert((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
5772 		    (uintptr_t)INT_MAX);
5773 
5774 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
5775 		if (data_length > max_to_send) {
5776 			mp2->b_wptr -= data_length - max_to_send;
5777 			data_length = max_to_send;
5778 			off = mp2->b_wptr - mp->b_rptr;
5779 			break;
5780 		} else {
5781 			off = 0;
5782 		}
5783 	}
5784 	if (offset != NULL) {
5785 		*offset = off;
5786 		*end_mp = mp;
5787 	}
5788 	if (seg_len != NULL) {
5789 		*seg_len = data_length;
5790 	}
5791 
5792 	rptr = mp1->b_rptr + tcp_wroff_xtra;
5793 	mp1->b_rptr = rptr;
5794 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
5795 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
5796 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
5797 	U32_TO_ABE32(seq, tcph->th_seq);
5798 
5799 	/*
5800 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
5801 	 * that this function was called from tcp_wput_data. Thus, when called
5802 	 * to retransmit data the setting of the PUSH bit may appear some
5803 	 * what random in that it might get set when it should not. This
5804 	 * should not pose any performance issues.
5805 	 */
5806 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
5807 	    tcp->tcp_unsent == data_length)) {
5808 		flags = TH_ACK | TH_PUSH;
5809 	} else {
5810 		flags = TH_ACK;
5811 	}
5812 
5813 	if (tcp->tcp_ecn_ok) {
5814 		if (tcp->tcp_ecn_echo_on)
5815 			flags |= TH_ECE;
5816 
5817 		/*
5818 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
5819 		 * There is no TCP flow control for non-data segments, and
5820 		 * only data segment is transmitted reliably.
5821 		 */
5822 		if (data_length > 0 && !rexmit) {
5823 			SET_ECT(tcp, rptr);
5824 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
5825 				flags |= TH_CWR;
5826 				tcp->tcp_ecn_cwr_sent = B_TRUE;
5827 			}
5828 		}
5829 	}
5830 
5831 	if (tcp->tcp_valid_bits) {
5832 		uint32_t u1;
5833 
5834 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
5835 		    seq == tcp->tcp_iss) {
5836 			uchar_t	*wptr;
5837 
5838 			/*
5839 			 * Tack on the MSS option.  It is always needed
5840 			 * for both active and passive open.
5841 			 */
5842 			wptr = mp1->b_wptr;
5843 			wptr[0] = TCPOPT_MAXSEG;
5844 			wptr[1] = TCPOPT_MAXSEG_LEN;
5845 			wptr += 2;
5846 			/*
5847 			 * MSS option value should be interface MTU - MIN
5848 			 * TCP/IP header.
5849 			 */
5850 			u1 = tcp->tcp_if_mtu - IP_SIMPLE_HDR_LENGTH -
5851 			    TCP_MIN_HEADER_LENGTH;
5852 			U16_TO_BE16(u1, wptr);
5853 			mp1->b_wptr = wptr + 2;
5854 			/* Update the offset to cover the additional word */
5855 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
5856 
5857 			/*
5858 			 * Note that the following way of filling in
5859 			 * TCP options are not optimal.  Some NOPs can
5860 			 * be saved.  But there is no need at this time
5861 			 * to optimize it.  When it is needed, we will
5862 			 * do it.
5863 			 */
5864 			switch (tcp->tcp_state) {
5865 			case TCPS_SYN_SENT:
5866 				flags = TH_SYN;
5867 
5868 				if (tcp->tcp_snd_ws_ok) {
5869 					wptr = mp1->b_wptr;
5870 					wptr[0] =  TCPOPT_NOP;
5871 					wptr[1] =  TCPOPT_WSCALE;
5872 					wptr[2] =  TCPOPT_WS_LEN;
5873 					wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
5874 					mp1->b_wptr += TCPOPT_REAL_WS_LEN;
5875 					tcph->th_offset_and_rsrvd[0] +=
5876 					    (1 << 4);
5877 				}
5878 
5879 				if (tcp->tcp_snd_ts_ok) {
5880 					uint32_t llbolt;
5881 
5882 					llbolt = prom_gettime();
5883 					wptr = mp1->b_wptr;
5884 					wptr[0] = TCPOPT_NOP;
5885 					wptr[1] = TCPOPT_NOP;
5886 					wptr[2] = TCPOPT_TSTAMP;
5887 					wptr[3] = TCPOPT_TSTAMP_LEN;
5888 					wptr += 4;
5889 					U32_TO_BE32(llbolt, wptr);
5890 					wptr += 4;
5891 					assert(tcp->tcp_ts_recent == 0);
5892 					U32_TO_BE32(0L, wptr);
5893 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
5894 					tcph->th_offset_and_rsrvd[0] +=
5895 					    (3 << 4);
5896 				}
5897 
5898 				if (tcp->tcp_snd_sack_ok) {
5899 					wptr = mp1->b_wptr;
5900 					wptr[0] = TCPOPT_NOP;
5901 					wptr[1] = TCPOPT_NOP;
5902 					wptr[2] = TCPOPT_SACK_PERMITTED;
5903 					wptr[3] = TCPOPT_SACK_OK_LEN;
5904 					mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
5905 					tcph->th_offset_and_rsrvd[0] +=
5906 					    (1 << 4);
5907 				}
5908 
5909 				/*
5910 				 * Set up all the bits to tell other side
5911 				 * we are ECN capable.
5912 				 */
5913 				if (tcp->tcp_ecn_ok) {
5914 					flags |= (TH_ECE | TH_CWR);
5915 				}
5916 				break;
5917 			case TCPS_SYN_RCVD:
5918 				flags |= TH_SYN;
5919 
5920 				if (tcp->tcp_snd_ws_ok) {
5921 				    wptr = mp1->b_wptr;
5922 				    wptr[0] =  TCPOPT_NOP;
5923 				    wptr[1] =  TCPOPT_WSCALE;
5924 				    wptr[2] =  TCPOPT_WS_LEN;
5925 				    wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
5926 				    mp1->b_wptr += TCPOPT_REAL_WS_LEN;
5927 				    tcph->th_offset_and_rsrvd[0] += (1 << 4);
5928 				}
5929 
5930 				if (tcp->tcp_snd_sack_ok) {
5931 					wptr = mp1->b_wptr;
5932 					wptr[0] = TCPOPT_NOP;
5933 					wptr[1] = TCPOPT_NOP;
5934 					wptr[2] = TCPOPT_SACK_PERMITTED;
5935 					wptr[3] = TCPOPT_SACK_OK_LEN;
5936 					mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
5937 					tcph->th_offset_and_rsrvd[0] +=
5938 					    (1 << 4);
5939 				}
5940 
5941 				/*
5942 				 * If the other side is ECN capable, reply
5943 				 * that we are also ECN capable.
5944 				 */
5945 				if (tcp->tcp_ecn_ok) {
5946 					flags |= TH_ECE;
5947 				}
5948 				break;
5949 			default:
5950 				break;
5951 			}
5952 			/* allocb() of adequate mblk assures space */
5953 			assert((uintptr_t)(mp1->b_wptr -
5954 			    mp1->b_rptr) <= (uintptr_t)INT_MAX);
5955 			if (flags & TH_SYN)
5956 				BUMP_MIB(tcp_mib.tcpOutControl);
5957 		}
5958 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
5959 		    (seq + data_length) == tcp->tcp_fss) {
5960 			if (!tcp->tcp_fin_acked) {
5961 				flags |= TH_FIN;
5962 				BUMP_MIB(tcp_mib.tcpOutControl);
5963 			}
5964 			if (!tcp->tcp_fin_sent) {
5965 				tcp->tcp_fin_sent = B_TRUE;
5966 				switch (tcp->tcp_state) {
5967 				case TCPS_SYN_RCVD:
5968 				case TCPS_ESTABLISHED:
5969 					tcp->tcp_state = TCPS_FIN_WAIT_1;
5970 					break;
5971 				case TCPS_CLOSE_WAIT:
5972 					tcp->tcp_state = TCPS_LAST_ACK;
5973 					break;
5974 				}
5975 				if (tcp->tcp_suna == tcp->tcp_snxt)
5976 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
5977 				tcp->tcp_snxt = tcp->tcp_fss + 1;
5978 			}
5979 		}
5980 	}
5981 	tcph->th_flags[0] = (uchar_t)flags;
5982 	tcp->tcp_rack = tcp->tcp_rnxt;
5983 	tcp->tcp_rack_cnt = 0;
5984 
5985 	if (tcp->tcp_snd_ts_ok) {
5986 		if (tcp->tcp_state != TCPS_SYN_SENT) {
5987 			uint32_t llbolt = prom_gettime();
5988 
5989 			U32_TO_BE32(llbolt,
5990 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
5991 			U32_TO_BE32(tcp->tcp_ts_recent,
5992 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
5993 		}
5994 	}
5995 
5996 	if (num_sack_blk > 0) {
5997 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
5998 		sack_blk_t *tmp;
5999 		int32_t	i;
6000 
6001 		wptr[0] = TCPOPT_NOP;
6002 		wptr[1] = TCPOPT_NOP;
6003 		wptr[2] = TCPOPT_SACK;
6004 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
6005 		    sizeof (sack_blk_t);
6006 		wptr += TCPOPT_REAL_SACK_LEN;
6007 
6008 		tmp = tcp->tcp_sack_list;
6009 		for (i = 0; i < num_sack_blk; i++) {
6010 			U32_TO_BE32(tmp[i].begin, wptr);
6011 			wptr += sizeof (tcp_seq);
6012 			U32_TO_BE32(tmp[i].end, wptr);
6013 			wptr += sizeof (tcp_seq);
6014 		}
6015 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
6016 	}
6017 	assert((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
6018 	data_length += (int)(mp1->b_wptr - rptr);
6019 	if (tcp->tcp_ipversion == IPV4_VERSION)
6020 		((struct ip *)rptr)->ip_len = htons(data_length);
6021 
6022 	/*
6023 	 * Performance hit!  We need to pullup the whole message
6024 	 * in order to do checksum and for the MAC output routine.
6025 	 */
6026 	if (mp1->b_cont != NULL) {
6027 		int mp_size;
6028 #ifdef DEBUG
6029 		printf("Multiple mblk %d\n", msgdsize(mp1));
6030 #endif
6031 		new_mp = allocb(msgdsize(mp1) + tcp_wroff_xtra, 0);
6032 		new_mp->b_rptr += tcp_wroff_xtra;
6033 		new_mp->b_wptr = new_mp->b_rptr;
6034 		while (mp1 != NULL) {
6035 			mp_size = mp1->b_wptr - mp1->b_rptr;
6036 			bcopy(mp1->b_rptr, new_mp->b_wptr, mp_size);
6037 			new_mp->b_wptr += mp_size;
6038 			mp1 = mp1->b_cont;
6039 		}
6040 		freemsg(mp1);
6041 		mp1 = new_mp;
6042 	}
6043 	tcp_set_cksum(mp1);
6044 	/* Fill in the TTL field as it is 0 in the header template. */
6045 	((struct ip *)mp1->b_rptr)->ip_ttl = (uint8_t)tcp_ipv4_ttl;
6046 
6047 	return (mp1);
6048 }
6049 
6050 /*
6051  * Generate a "no listener here" reset in response to the
6052  * connection request contained within 'mp'
6053  */
6054 static void
6055 tcp_xmit_listeners_reset(int sock_id, mblk_t *mp, uint_t ip_hdr_len)
6056 {
6057 	uchar_t		*rptr;
6058 	uint32_t	seg_len;
6059 	tcph_t		*tcph;
6060 	uint32_t	seg_seq;
6061 	uint32_t	seg_ack;
6062 	uint_t		flags;
6063 
6064 	rptr = mp->b_rptr;
6065 
6066 	tcph = (tcph_t *)&rptr[ip_hdr_len];
6067 	seg_seq = BE32_TO_U32(tcph->th_seq);
6068 	seg_ack = BE32_TO_U32(tcph->th_ack);
6069 	flags = tcph->th_flags[0];
6070 
6071 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
6072 	if (flags & TH_RST) {
6073 		freeb(mp);
6074 	} else if (flags & TH_ACK) {
6075 		tcp_xmit_early_reset("no tcp, reset",
6076 		    sock_id, mp, seg_ack, 0, TH_RST, ip_hdr_len);
6077 	} else {
6078 		if (flags & TH_SYN)
6079 			seg_len++;
6080 		tcp_xmit_early_reset("no tcp, reset/ack", sock_id,
6081 		    mp, 0, seg_seq + seg_len,
6082 		    TH_RST | TH_ACK, ip_hdr_len);
6083 	}
6084 }
6085 
6086 /* Non overlapping byte exchanger */
6087 static void
6088 tcp_xchg(uchar_t *a, uchar_t *b, int len)
6089 {
6090 	uchar_t	uch;
6091 
6092 	while (len-- > 0) {
6093 		uch = a[len];
6094 		a[len] = b[len];
6095 		b[len] = uch;
6096 	}
6097 }
6098 
6099 /*
6100  * Generate a reset based on an inbound packet for which there is no active
6101  * tcp state that we can find.
6102  */
6103 static void
6104 tcp_xmit_early_reset(char *str, int sock_id, mblk_t *mp, uint32_t seq,
6105     uint32_t ack, int ctl, uint_t ip_hdr_len)
6106 {
6107 	struct ip	*iph = NULL;
6108 	ushort_t	len;
6109 	tcph_t		*tcph;
6110 	int		i;
6111 	ipaddr_t	addr;
6112 	mblk_t		*new_mp;
6113 
6114 	if (str != NULL) {
6115 		dprintf("tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
6116 		    "flags 0x%x\n", str, seq, ack, ctl);
6117 	}
6118 
6119 	/*
6120 	 * We skip reversing source route here.
6121 	 * (for now we replace all IP options with EOL)
6122 	 */
6123 	iph = (struct ip *)mp->b_rptr;
6124 	for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
6125 		mp->b_rptr[i] = IPOPT_EOL;
6126 	/*
6127 	 * Make sure that src address is not a limited broadcast
6128 	 * address. Not all broadcast address checking for the
6129 	 * src address is possible, since we don't know the
6130 	 * netmask of the src addr.
6131 	 * No check for destination address is done, since
6132 	 * IP will not pass up a packet with a broadcast dest address
6133 	 * to TCP.
6134 	 */
6135 	if (iph->ip_src.s_addr == INADDR_ANY ||
6136 	    iph->ip_src.s_addr == INADDR_BROADCAST) {
6137 		freemsg(mp);
6138 		return;
6139 	}
6140 
6141 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6142 	if (tcph->th_flags[0] & TH_RST) {
6143 		freemsg(mp);
6144 		return;
6145 	}
6146 	/*
6147 	 * Now copy the original header to a new buffer.  The reason
6148 	 * for doing this is that we need to put extra room before
6149 	 * the header for the MAC layer address.  The original mblk
6150 	 * does not have this extra head room.
6151 	 */
6152 	len = ip_hdr_len + sizeof (tcph_t);
6153 	if ((new_mp = allocb(len + tcp_wroff_xtra, 0)) == NULL) {
6154 		freemsg(mp);
6155 		return;
6156 	}
6157 	new_mp->b_rptr += tcp_wroff_xtra;
6158 	bcopy(mp->b_rptr, new_mp->b_rptr, len);
6159 	new_mp->b_wptr = new_mp->b_rptr + len;
6160 	freemsg(mp);
6161 	mp = new_mp;
6162 	iph = (struct ip *)mp->b_rptr;
6163 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6164 
6165 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
6166 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
6167 	U32_TO_BE32(ack, tcph->th_ack);
6168 	U32_TO_BE32(seq, tcph->th_seq);
6169 	U16_TO_BE16(0, tcph->th_win);
6170 	bzero(tcph->th_sum, sizeof (int16_t));
6171 	tcph->th_flags[0] = (uint8_t)ctl;
6172 	if (ctl & TH_RST) {
6173 		BUMP_MIB(tcp_mib.tcpOutRsts);
6174 		BUMP_MIB(tcp_mib.tcpOutControl);
6175 	}
6176 
6177 	iph->ip_len = htons(len);
6178 	/* Swap addresses */
6179 	addr = iph->ip_src.s_addr;
6180 	iph->ip_src = iph->ip_dst;
6181 	iph->ip_dst.s_addr = addr;
6182 	iph->ip_id = 0;
6183 	iph->ip_ttl = 0;
6184 	tcp_set_cksum(mp);
6185 	iph->ip_ttl = (uint8_t)tcp_ipv4_ttl;
6186 
6187 	/* Dump the packet when debugging. */
6188 	TCP_DUMP_PACKET("tcp_xmit_early_reset", mp);
6189 	(void) ipv4_tcp_output(sock_id, mp);
6190 	freemsg(mp);
6191 }
6192 
6193 static void
6194 tcp_set_cksum(mblk_t *mp)
6195 {
6196 	struct ip *iph;
6197 	tcpha_t *tcph;
6198 	int len;
6199 
6200 	iph = (struct ip *)mp->b_rptr;
6201 	tcph = (tcpha_t *)(iph + 1);
6202 	len = ntohs(iph->ip_len);
6203 	/*
6204 	 * Calculate the TCP checksum.  Need to include the psuedo header,
6205 	 * which is similar to the real IP header starting at the TTL field.
6206 	 */
6207 	iph->ip_sum = htons(len - IP_SIMPLE_HDR_LENGTH);
6208 	tcph->tha_sum = 0;
6209 	tcph->tha_sum = tcp_cksum((uint16_t *)&(iph->ip_ttl),
6210 	    len - IP_SIMPLE_HDR_LENGTH + 12);
6211 	iph->ip_sum = 0;
6212 }
6213 
6214 static uint16_t
6215 tcp_cksum(uint16_t *buf, uint32_t len)
6216 {
6217 	/*
6218 	 * Compute Internet Checksum for "count" bytes
6219 	 * beginning at location "addr".
6220 	 */
6221 	int32_t sum = 0;
6222 
6223 	while (len > 1) {
6224 		/*  This is the inner loop */
6225 		sum += *buf++;
6226 		len -= 2;
6227 	}
6228 
6229 	/*  Add left-over byte, if any */
6230 	if (len > 0)
6231 		sum += *(unsigned char *)buf * 256;
6232 
6233 	/*  Fold 32-bit sum to 16 bits */
6234 	while (sum >> 16)
6235 		sum = (sum & 0xffff) + (sum >> 16);
6236 
6237 	return ((uint16_t)~sum);
6238 }
6239 
6240 /*
6241  * Type three generator adapted from the random() function in 4.4 BSD:
6242  */
6243 
6244 /*
6245  * Copyright (c) 1983, 1993
6246  *	The Regents of the University of California.  All rights reserved.
6247  *
6248  * Redistribution and use in source and binary forms, with or without
6249  * modification, are permitted provided that the following conditions
6250  * are met:
6251  * 1. Redistributions of source code must retain the above copyright
6252  *    notice, this list of conditions and the following disclaimer.
6253  * 2. Redistributions in binary form must reproduce the above copyright
6254  *    notice, this list of conditions and the following disclaimer in the
6255  *    documentation and/or other materials provided with the distribution.
6256  * 3. All advertising materials mentioning features or use of this software
6257  *    must display the following acknowledgement:
6258  *	This product includes software developed by the University of
6259  *	California, Berkeley and its contributors.
6260  * 4. Neither the name of the University nor the names of its contributors
6261  *    may be used to endorse or promote products derived from this software
6262  *    without specific prior written permission.
6263  *
6264  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
6265  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6266  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6267  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
6268  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
6269  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
6270  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
6271  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6272  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6273  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
6274  * SUCH DAMAGE.
6275  */
6276 
6277 /* Type 3 -- x**31 + x**3 + 1 */
6278 #define	DEG_3		31
6279 #define	SEP_3		3
6280 
6281 
6282 /* Protected by tcp_random_lock */
6283 static int tcp_randtbl[DEG_3 + 1];
6284 
6285 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
6286 static int *tcp_random_rptr = &tcp_randtbl[1];
6287 
6288 static int *tcp_random_state = &tcp_randtbl[1];
6289 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
6290 
6291 static void
6292 tcp_random_init(void)
6293 {
6294 	int i;
6295 	uint32_t hrt;
6296 	uint32_t wallclock;
6297 	uint32_t result;
6298 
6299 	/*
6300 	 *
6301 	 * XXX We don't have high resolution time in standalone...  The
6302 	 * following is just some approximation on the comment below.
6303 	 *
6304 	 * Use high-res timer and current time for seed.  Gethrtime() returns
6305 	 * a longlong, which may contain resolution down to nanoseconds.
6306 	 * The current time will either be a 32-bit or a 64-bit quantity.
6307 	 * XOR the two together in a 64-bit result variable.
6308 	 * Convert the result to a 32-bit value by multiplying the high-order
6309 	 * 32-bits by the low-order 32-bits.
6310 	 *
6311 	 * XXX We don't have gethrtime() in prom and the wallclock....
6312 	 */
6313 
6314 	hrt = prom_gettime();
6315 	wallclock = (uint32_t)time(NULL);
6316 	result = wallclock ^ hrt;
6317 	tcp_random_state[0] = result;
6318 
6319 	for (i = 1; i < DEG_3; i++)
6320 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
6321 			+ 12345;
6322 	tcp_random_fptr = &tcp_random_state[SEP_3];
6323 	tcp_random_rptr = &tcp_random_state[0];
6324 	for (i = 0; i < 10 * DEG_3; i++)
6325 		(void) tcp_random();
6326 }
6327 
6328 /*
6329  * tcp_random: Return a random number in the range [1 - (128K + 1)].
6330  * This range is selected to be approximately centered on TCP_ISS / 2,
6331  * and easy to compute. We get this value by generating a 32-bit random
6332  * number, selecting out the high-order 17 bits, and then adding one so
6333  * that we never return zero.
6334  */
6335 static int
6336 tcp_random(void)
6337 {
6338 	int i;
6339 
6340 	*tcp_random_fptr += *tcp_random_rptr;
6341 
6342 	/*
6343 	 * The high-order bits are more random than the low-order bits,
6344 	 * so we select out the high-order 17 bits and add one so that
6345 	 * we never return zero.
6346 	 */
6347 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
6348 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
6349 		tcp_random_fptr = tcp_random_state;
6350 		++tcp_random_rptr;
6351 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
6352 		tcp_random_rptr = tcp_random_state;
6353 
6354 	return (i);
6355 }
6356 
6357 /*
6358  * Generate ISS, taking into account NDD changes may happen halfway through.
6359  * (If the iss is not zero, set it.)
6360  */
6361 static void
6362 tcp_iss_init(tcp_t *tcp)
6363 {
6364 	tcp_iss_incr_extra += (ISS_INCR >> 1);
6365 	tcp->tcp_iss = tcp_iss_incr_extra;
6366 	tcp->tcp_iss += (prom_gettime() >> ISS_NSEC_SHT) + tcp_random();
6367 	tcp->tcp_valid_bits = TCP_ISS_VALID;
6368 	tcp->tcp_fss = tcp->tcp_iss - 1;
6369 	tcp->tcp_suna = tcp->tcp_iss;
6370 	tcp->tcp_snxt = tcp->tcp_iss + 1;
6371 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
6372 	tcp->tcp_csuna = tcp->tcp_snxt;
6373 }
6374 
6375 /*
6376  * Diagnostic routine used to return a string associated with the tcp state.
6377  * Note that if the caller does not supply a buffer, it will use an internal
6378  * static string.  This means that if multiple threads call this function at
6379  * the same time, output can be corrupted...  Note also that this function
6380  * does not check the size of the supplied buffer.  The caller has to make
6381  * sure that it is big enough.
6382  */
6383 static char *
6384 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6385 {
6386 	char		buf1[30];
6387 	static char	priv_buf[INET_ADDRSTRLEN * 2 + 80];
6388 	char		*buf;
6389 	char		*cp;
6390 	char		local_addrbuf[INET_ADDRSTRLEN];
6391 	char		remote_addrbuf[INET_ADDRSTRLEN];
6392 	struct in_addr	addr;
6393 
6394 	if (sup_buf != NULL)
6395 		buf = sup_buf;
6396 	else
6397 		buf = priv_buf;
6398 
6399 	if (tcp == NULL)
6400 		return ("NULL_TCP");
6401 	switch (tcp->tcp_state) {
6402 	case TCPS_CLOSED:
6403 		cp = "TCP_CLOSED";
6404 		break;
6405 	case TCPS_IDLE:
6406 		cp = "TCP_IDLE";
6407 		break;
6408 	case TCPS_BOUND:
6409 		cp = "TCP_BOUND";
6410 		break;
6411 	case TCPS_LISTEN:
6412 		cp = "TCP_LISTEN";
6413 		break;
6414 	case TCPS_SYN_SENT:
6415 		cp = "TCP_SYN_SENT";
6416 		break;
6417 	case TCPS_SYN_RCVD:
6418 		cp = "TCP_SYN_RCVD";
6419 		break;
6420 	case TCPS_ESTABLISHED:
6421 		cp = "TCP_ESTABLISHED";
6422 		break;
6423 	case TCPS_CLOSE_WAIT:
6424 		cp = "TCP_CLOSE_WAIT";
6425 		break;
6426 	case TCPS_FIN_WAIT_1:
6427 		cp = "TCP_FIN_WAIT_1";
6428 		break;
6429 	case TCPS_CLOSING:
6430 		cp = "TCP_CLOSING";
6431 		break;
6432 	case TCPS_LAST_ACK:
6433 		cp = "TCP_LAST_ACK";
6434 		break;
6435 	case TCPS_FIN_WAIT_2:
6436 		cp = "TCP_FIN_WAIT_2";
6437 		break;
6438 	case TCPS_TIME_WAIT:
6439 		cp = "TCP_TIME_WAIT";
6440 		break;
6441 	default:
6442 		(void) sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6443 		cp = buf1;
6444 		break;
6445 	}
6446 	switch (format) {
6447 	case DISP_ADDR_AND_PORT:
6448 		/*
6449 		 * Note that we use the remote address in the tcp_b
6450 		 * structure.  This means that it will print out
6451 		 * the real destination address, not the next hop's
6452 		 * address if source routing is used.
6453 		 */
6454 		addr.s_addr = tcp->tcp_bound_source;
6455 		bcopy(inet_ntoa(addr), local_addrbuf, sizeof (local_addrbuf));
6456 		addr.s_addr = tcp->tcp_remote;
6457 		bcopy(inet_ntoa(addr), remote_addrbuf, sizeof (remote_addrbuf));
6458 		(void) snprintf(buf, sizeof (priv_buf), "[%s.%u, %s.%u] %s",
6459 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6460 		    ntohs(tcp->tcp_fport), cp);
6461 		break;
6462 	case DISP_PORT_ONLY:
6463 	default:
6464 		(void) snprintf(buf, sizeof (priv_buf), "[%u, %u] %s",
6465 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6466 		break;
6467 	}
6468 
6469 	return (buf);
6470 }
6471 
6472 /*
6473  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
6474  * is filled, return as much as we can.  The message passed in may be
6475  * multi-part, chained using b_cont.  "start" is the starting sequence
6476  * number for this piece.
6477  */
6478 static mblk_t *
6479 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
6480 {
6481 	uint32_t	end;
6482 	mblk_t		*mp1;
6483 	mblk_t		*mp2;
6484 	mblk_t		*next_mp;
6485 	uint32_t	u1;
6486 
6487 	/* Walk through all the new pieces. */
6488 	do {
6489 		assert((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
6490 		    (uintptr_t)INT_MAX);
6491 		end = start + (int)(mp->b_wptr - mp->b_rptr);
6492 		next_mp = mp->b_cont;
6493 		if (start == end) {
6494 			/* Empty.  Blast it. */
6495 			freeb(mp);
6496 			continue;
6497 		}
6498 		mp->b_cont = NULL;
6499 		TCP_REASS_SET_SEQ(mp, start);
6500 		TCP_REASS_SET_END(mp, end);
6501 		mp1 = tcp->tcp_reass_tail;
6502 		if (!mp1) {
6503 			tcp->tcp_reass_tail = mp;
6504 			tcp->tcp_reass_head = mp;
6505 			BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
6506 			UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
6507 			continue;
6508 		}
6509 		/* New stuff completely beyond tail? */
6510 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
6511 			/* Link it on end. */
6512 			mp1->b_cont = mp;
6513 			tcp->tcp_reass_tail = mp;
6514 			BUMP_MIB(tcp_mib.tcpInDataUnorderSegs);
6515 			UPDATE_MIB(tcp_mib.tcpInDataUnorderBytes, end - start);
6516 			continue;
6517 		}
6518 		mp1 = tcp->tcp_reass_head;
6519 		u1 = TCP_REASS_SEQ(mp1);
6520 		/* New stuff at the front? */
6521 		if (SEQ_LT(start, u1)) {
6522 			/* Yes... Check for overlap. */
6523 			mp->b_cont = mp1;
6524 			tcp->tcp_reass_head = mp;
6525 			tcp_reass_elim_overlap(tcp, mp);
6526 			continue;
6527 		}
6528 		/*
6529 		 * The new piece fits somewhere between the head and tail.
6530 		 * We find our slot, where mp1 precedes us and mp2 trails.
6531 		 */
6532 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
6533 			u1 = TCP_REASS_SEQ(mp2);
6534 			if (SEQ_LEQ(start, u1))
6535 				break;
6536 		}
6537 		/* Link ourselves in */
6538 		mp->b_cont = mp2;
6539 		mp1->b_cont = mp;
6540 
6541 		/* Trim overlap with following mblk(s) first */
6542 		tcp_reass_elim_overlap(tcp, mp);
6543 
6544 		/* Trim overlap with preceding mblk */
6545 		tcp_reass_elim_overlap(tcp, mp1);
6546 
6547 	} while (start = end, mp = next_mp);
6548 	mp1 = tcp->tcp_reass_head;
6549 	/* Anything ready to go? */
6550 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
6551 		return (NULL);
6552 	/* Eat what we can off the queue */
6553 	for (;;) {
6554 		mp = mp1->b_cont;
6555 		end = TCP_REASS_END(mp1);
6556 		TCP_REASS_SET_SEQ(mp1, 0);
6557 		TCP_REASS_SET_END(mp1, 0);
6558 		if (!mp) {
6559 			tcp->tcp_reass_tail = NULL;
6560 			break;
6561 		}
6562 		if (end != TCP_REASS_SEQ(mp)) {
6563 			mp1->b_cont = NULL;
6564 			break;
6565 		}
6566 		mp1 = mp;
6567 	}
6568 	mp1 = tcp->tcp_reass_head;
6569 	tcp->tcp_reass_head = mp;
6570 	return (mp1);
6571 }
6572 
6573 /* Eliminate any overlap that mp may have over later mblks */
6574 static void
6575 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
6576 {
6577 	uint32_t	end;
6578 	mblk_t		*mp1;
6579 	uint32_t	u1;
6580 
6581 	end = TCP_REASS_END(mp);
6582 	while ((mp1 = mp->b_cont) != NULL) {
6583 		u1 = TCP_REASS_SEQ(mp1);
6584 		if (!SEQ_GT(end, u1))
6585 			break;
6586 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
6587 			mp->b_wptr -= end - u1;
6588 			TCP_REASS_SET_END(mp, u1);
6589 			BUMP_MIB(tcp_mib.tcpInDataPartDupSegs);
6590 			UPDATE_MIB(tcp_mib.tcpInDataPartDupBytes, end - u1);
6591 			break;
6592 		}
6593 		mp->b_cont = mp1->b_cont;
6594 		freeb(mp1);
6595 		BUMP_MIB(tcp_mib.tcpInDataDupSegs);
6596 		UPDATE_MIB(tcp_mib.tcpInDataDupBytes, end - u1);
6597 	}
6598 	if (!mp1)
6599 		tcp->tcp_reass_tail = mp;
6600 }
6601 
6602 /*
6603  * Remove a connection from the list of detached TIME_WAIT connections.
6604  */
6605 static void
6606 tcp_time_wait_remove(tcp_t *tcp)
6607 {
6608 	if (tcp->tcp_time_wait_expire == 0) {
6609 		assert(tcp->tcp_time_wait_next == NULL);
6610 		assert(tcp->tcp_time_wait_prev == NULL);
6611 		return;
6612 	}
6613 	assert(tcp->tcp_state == TCPS_TIME_WAIT);
6614 	if (tcp == tcp_time_wait_head) {
6615 		assert(tcp->tcp_time_wait_prev == NULL);
6616 		tcp_time_wait_head = tcp->tcp_time_wait_next;
6617 		if (tcp_time_wait_head != NULL) {
6618 			tcp_time_wait_head->tcp_time_wait_prev = NULL;
6619 		} else {
6620 			tcp_time_wait_tail = NULL;
6621 		}
6622 	} else if (tcp == tcp_time_wait_tail) {
6623 		assert(tcp != tcp_time_wait_head);
6624 		assert(tcp->tcp_time_wait_next == NULL);
6625 		tcp_time_wait_tail = tcp->tcp_time_wait_prev;
6626 		assert(tcp_time_wait_tail != NULL);
6627 		tcp_time_wait_tail->tcp_time_wait_next = NULL;
6628 	} else {
6629 		assert(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
6630 		assert(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
6631 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
6632 		    tcp->tcp_time_wait_next;
6633 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
6634 		    tcp->tcp_time_wait_prev;
6635 	}
6636 	tcp->tcp_time_wait_next = NULL;
6637 	tcp->tcp_time_wait_prev = NULL;
6638 	tcp->tcp_time_wait_expire = 0;
6639 }
6640 
6641 /*
6642  * Add a connection to the list of detached TIME_WAIT connections
6643  * and set its time to expire ...
6644  */
6645 static void
6646 tcp_time_wait_append(tcp_t *tcp)
6647 {
6648 	tcp->tcp_time_wait_expire = prom_gettime() + tcp_time_wait_interval;
6649 	if (tcp->tcp_time_wait_expire == 0)
6650 		tcp->tcp_time_wait_expire = 1;
6651 
6652 	if (tcp_time_wait_head == NULL) {
6653 		assert(tcp_time_wait_tail == NULL);
6654 		tcp_time_wait_head = tcp;
6655 	} else {
6656 		assert(tcp_time_wait_tail != NULL);
6657 		assert(tcp_time_wait_tail->tcp_state == TCPS_TIME_WAIT);
6658 		tcp_time_wait_tail->tcp_time_wait_next = tcp;
6659 		tcp->tcp_time_wait_prev = tcp_time_wait_tail;
6660 	}
6661 	tcp_time_wait_tail = tcp;
6662 
6663 	/* for ndd stats about compression */
6664 	tcp_cum_timewait++;
6665 }
6666 
6667 /*
6668  * Periodic qtimeout routine run on the default queue.
6669  * Performs 2 functions.
6670  * 	1.  Does TIME_WAIT compression on all recently added tcps. List
6671  *	    traversal is done backwards from the tail.
6672  *	2.  Blows away all tcps whose TIME_WAIT has expired. List traversal
6673  *	    is done forwards from the head.
6674  */
6675 void
6676 tcp_time_wait_collector(void)
6677 {
6678 	tcp_t *tcp;
6679 	uint32_t now;
6680 
6681 	/*
6682 	 * In order to reap time waits reliably, we should use a
6683 	 * source of time that is not adjustable by the user
6684 	 */
6685 	now = prom_gettime();
6686 	while ((tcp = tcp_time_wait_head) != NULL) {
6687 		/*
6688 		 * Compare times using modular arithmetic, since
6689 		 * lbolt can wrapover.
6690 		 */
6691 		if ((int32_t)(now - tcp->tcp_time_wait_expire) < 0) {
6692 			break;
6693 		}
6694 		/*
6695 		 * Note that the err must be 0 as there is no socket
6696 		 * associated with this TCP...
6697 		 */
6698 		(void) tcp_clean_death(-1, tcp, 0);
6699 	}
6700 	/* Schedule next run time. */
6701 	tcp_time_wait_runtime = prom_gettime() + 10000;
6702 }
6703 
6704 void
6705 tcp_time_wait_report(void)
6706 {
6707 	tcp_t *tcp;
6708 
6709 	printf("Current time %u\n", prom_gettime());
6710 	for (tcp = tcp_time_wait_head; tcp != NULL;
6711 	    tcp = tcp->tcp_time_wait_next) {
6712 		printf("%s expires at %u\n", tcp_display(tcp, NULL,
6713 		    DISP_ADDR_AND_PORT), tcp->tcp_time_wait_expire);
6714 	}
6715 }
6716 
6717 /*
6718  * Send up all messages queued on tcp_rcv_list.
6719  * Have to set tcp_co_norm since we use putnext.
6720  */
6721 static void
6722 tcp_rcv_drain(int sock_id, tcp_t *tcp)
6723 {
6724 	mblk_t *mp;
6725 	struct inetgram *in_gram;
6726 	mblk_t *in_mp;
6727 	int len;
6728 
6729 	/* Don't drain if the app has not finished reading all the data. */
6730 	if (sockets[sock_id].so_rcvbuf <= 0)
6731 		return;
6732 
6733 	/* We might have come here just to updated the rwnd */
6734 	if (tcp->tcp_rcv_list == NULL)
6735 		goto win_update;
6736 
6737 	if ((in_gram = (struct inetgram *)bkmem_zalloc(
6738 	    sizeof (struct inetgram))) == NULL) {
6739 		return;
6740 	}
6741 	if ((in_mp = allocb(tcp->tcp_rcv_cnt, 0)) == NULL) {
6742 		bkmem_free((caddr_t)in_gram, sizeof (struct inetgram));
6743 		return;
6744 	}
6745 	in_gram->igm_level = APP_LVL;
6746 	in_gram->igm_mp = in_mp;
6747 	in_gram->igm_id = 0;
6748 
6749 	while ((mp = tcp->tcp_rcv_list) != NULL) {
6750 		tcp->tcp_rcv_list = mp->b_cont;
6751 		len = mp->b_wptr - mp->b_rptr;
6752 		bcopy(mp->b_rptr, in_mp->b_wptr, len);
6753 		in_mp->b_wptr += len;
6754 		freeb(mp);
6755 	}
6756 
6757 	tcp->tcp_rcv_last_tail = NULL;
6758 	tcp->tcp_rcv_cnt = 0;
6759 	add_grams(&sockets[sock_id].inq, in_gram);
6760 
6761 	/* This means that so_rcvbuf can be less than 0. */
6762 	sockets[sock_id].so_rcvbuf -= in_mp->b_wptr - in_mp->b_rptr;
6763 win_update:
6764 	/*
6765 	 * Increase the receive window to max.  But we need to do receiver
6766 	 * SWS avoidance.  This means that we need to check the increase of
6767 	 * of receive window is at least 1 MSS.
6768 	 */
6769 	if (sockets[sock_id].so_rcvbuf > 0 &&
6770 	    (tcp->tcp_rwnd_max - tcp->tcp_rwnd >= tcp->tcp_mss)) {
6771 		tcp->tcp_rwnd = tcp->tcp_rwnd_max;
6772 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
6773 		    tcp->tcp_tcph->th_win);
6774 	}
6775 }
6776 
6777 /*
6778  * Wrapper for recvfrom to call
6779  */
6780 void
6781 tcp_rcv_drain_sock(int sock_id)
6782 {
6783 	tcp_t *tcp;
6784 	if ((tcp = sockets[sock_id].pcb) == NULL)
6785 		return;
6786 	tcp_rcv_drain(sock_id, tcp);
6787 }
6788 
6789 /*
6790  * If the inq == NULL and the tcp_rcv_list != NULL, we have data that
6791  * recvfrom could read. Place a magic message in the inq to let recvfrom
6792  * know that it needs to call tcp_rcv_drain_sock to pullup the data.
6793  */
6794 static void
6795 tcp_drain_needed(int sock_id, tcp_t *tcp)
6796 {
6797 	struct inetgram *in_gram;
6798 #ifdef DEBUG
6799 	printf("tcp_drain_needed: inq %x, tcp_rcv_list %x\n",
6800 		sockets[sock_id].inq, tcp->tcp_rcv_list);
6801 #endif
6802 	if ((sockets[sock_id].inq != NULL) ||
6803 		(tcp->tcp_rcv_list == NULL))
6804 		return;
6805 
6806 	if ((in_gram = (struct inetgram *)bkmem_zalloc(
6807 		sizeof (struct inetgram))) == NULL)
6808 		return;
6809 
6810 	in_gram->igm_level = APP_LVL;
6811 	in_gram->igm_mp = NULL;
6812 	in_gram->igm_id = TCP_CALLB_MAGIC_ID;
6813 
6814 	add_grams(&sockets[sock_id].inq, in_gram);
6815 }
6816 
6817 /*
6818  * Queue data on tcp_rcv_list which is a b_next chain.
6819  * Each element of the chain is a b_cont chain.
6820  *
6821  * M_DATA messages are added to the current element.
6822  * Other messages are added as new (b_next) elements.
6823  */
6824 static void
6825 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
6826 {
6827 	assert(seg_len == msgdsize(mp));
6828 	if (tcp->tcp_rcv_list == NULL) {
6829 		tcp->tcp_rcv_list = mp;
6830 	} else {
6831 		tcp->tcp_rcv_last_tail->b_cont = mp;
6832 	}
6833 	while (mp->b_cont)
6834 		mp = mp->b_cont;
6835 	tcp->tcp_rcv_last_tail = mp;
6836 	tcp->tcp_rcv_cnt += seg_len;
6837 	tcp->tcp_rwnd -= seg_len;
6838 #ifdef DEBUG
6839 	printf("tcp_rcv_enqueue rwnd %d\n", tcp->tcp_rwnd);
6840 #endif
6841 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
6842 }
6843 
6844 /* The minimum of smoothed mean deviation in RTO calculation. */
6845 #define	TCP_SD_MIN	400
6846 
6847 /*
6848  * Set RTO for this connection.  The formula is from Jacobson and Karels'
6849  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
6850  * are the same as those in Appendix A.2 of that paper.
6851  *
6852  * m = new measurement
6853  * sa = smoothed RTT average (8 * average estimates).
6854  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
6855  */
6856 static void
6857 tcp_set_rto(tcp_t *tcp, int32_t rtt)
6858 {
6859 	int32_t m = rtt;
6860 	uint32_t sa = tcp->tcp_rtt_sa;
6861 	uint32_t sv = tcp->tcp_rtt_sd;
6862 	uint32_t rto;
6863 
6864 	BUMP_MIB(tcp_mib.tcpRttUpdate);
6865 	tcp->tcp_rtt_update++;
6866 
6867 	/* tcp_rtt_sa is not 0 means this is a new sample. */
6868 	if (sa != 0) {
6869 		/*
6870 		 * Update average estimator:
6871 		 *	new rtt = 7/8 old rtt + 1/8 Error
6872 		 */
6873 
6874 		/* m is now Error in estimate. */
6875 		m -= sa >> 3;
6876 		if ((int32_t)(sa += m) <= 0) {
6877 			/*
6878 			 * Don't allow the smoothed average to be negative.
6879 			 * We use 0 to denote reinitialization of the
6880 			 * variables.
6881 			 */
6882 			sa = 1;
6883 		}
6884 
6885 		/*
6886 		 * Update deviation estimator:
6887 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
6888 		 */
6889 		if (m < 0)
6890 			m = -m;
6891 		m -= sv >> 2;
6892 		sv += m;
6893 	} else {
6894 		/*
6895 		 * This follows BSD's implementation.  So the reinitialized
6896 		 * RTO is 3 * m.  We cannot go less than 2 because if the
6897 		 * link is bandwidth dominated, doubling the window size
6898 		 * during slow start means doubling the RTT.  We want to be
6899 		 * more conservative when we reinitialize our estimates.  3
6900 		 * is just a convenient number.
6901 		 */
6902 		sa = m << 3;
6903 		sv = m << 1;
6904 	}
6905 	if (sv < TCP_SD_MIN) {
6906 		/*
6907 		 * We do not know that if sa captures the delay ACK
6908 		 * effect as in a long train of segments, a receiver
6909 		 * does not delay its ACKs.  So set the minimum of sv
6910 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
6911 		 * of BSD DATO.  That means the minimum of mean
6912 		 * deviation is 100 ms.
6913 		 *
6914 		 */
6915 		sv = TCP_SD_MIN;
6916 	}
6917 	tcp->tcp_rtt_sa = sa;
6918 	tcp->tcp_rtt_sd = sv;
6919 	/*
6920 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
6921 	 *
6922 	 * Add tcp_rexmit_interval extra in case of extreme environment
6923 	 * where the algorithm fails to work.  The default value of
6924 	 * tcp_rexmit_interval_extra should be 0.
6925 	 *
6926 	 * As we use a finer grained clock than BSD and update
6927 	 * RTO for every ACKs, add in another .25 of RTT to the
6928 	 * deviation of RTO to accomodate burstiness of 1/4 of
6929 	 * window size.
6930 	 */
6931 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
6932 
6933 	if (rto > tcp_rexmit_interval_max) {
6934 		tcp->tcp_rto = tcp_rexmit_interval_max;
6935 	} else if (rto < tcp_rexmit_interval_min) {
6936 		tcp->tcp_rto = tcp_rexmit_interval_min;
6937 	} else {
6938 		tcp->tcp_rto = rto;
6939 	}
6940 
6941 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
6942 	tcp->tcp_timer_backoff = 0;
6943 }
6944 
6945 /*
6946  * Initiate closedown sequence on an active connection.
6947  * Return value zero for OK return, non-zero for error return.
6948  */
6949 static int
6950 tcp_xmit_end(tcp_t *tcp, int sock_id)
6951 {
6952 	mblk_t	*mp;
6953 
6954 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
6955 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
6956 		/*
6957 		 * Invalid state, only states TCPS_SYN_RCVD,
6958 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
6959 		 */
6960 		return (-1);
6961 	}
6962 
6963 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
6964 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
6965 	/*
6966 	 * If there is nothing more unsent, send the FIN now.
6967 	 * Otherwise, it will go out with the last segment.
6968 	 */
6969 	if (tcp->tcp_unsent == 0) {
6970 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
6971 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
6972 
6973 		if (mp != NULL) {
6974 			/* Dump the packet when debugging. */
6975 			TCP_DUMP_PACKET("tcp_xmit_end", mp);
6976 			(void) ipv4_tcp_output(sock_id, mp);
6977 			freeb(mp);
6978 		} else {
6979 			/*
6980 			 * Couldn't allocate msg.  Pretend we got it out.
6981 			 * Wait for rexmit timeout.
6982 			 */
6983 			tcp->tcp_snxt = tcp->tcp_fss + 1;
6984 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
6985 		}
6986 
6987 		/*
6988 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
6989 		 * changed.
6990 		 */
6991 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
6992 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
6993 		}
6994 	} else {
6995 		tcp_wput_data(tcp, NULL, B_FALSE);
6996 	}
6997 
6998 	return (0);
6999 }
7000 
7001 int
7002 tcp_opt_set(tcp_t *tcp, int level, int option, const void *optval,
7003     socklen_t optlen)
7004 {
7005 	switch (level) {
7006 	case SOL_SOCKET: {
7007 		switch (option) {
7008 		case SO_RCVBUF:
7009 			if (optlen == sizeof (int)) {
7010 				int val = *(int *)optval;
7011 
7012 				if (val > tcp_max_buf) {
7013 					errno = ENOBUFS;
7014 					break;
7015 				}
7016 				/* Silently ignore zero */
7017 				if (val != 0) {
7018 					val = MSS_ROUNDUP(val, tcp->tcp_mss);
7019 					(void) tcp_rwnd_set(tcp, val);
7020 				}
7021 			} else {
7022 				errno = EINVAL;
7023 			}
7024 			break;
7025 		case SO_SNDBUF:
7026 			if (optlen == sizeof (int)) {
7027 				tcp->tcp_xmit_hiwater = *(int *)optval;
7028 				if (tcp->tcp_xmit_hiwater > tcp_max_buf)
7029 					tcp->tcp_xmit_hiwater = tcp_max_buf;
7030 			} else {
7031 				errno = EINVAL;
7032 			}
7033 			break;
7034 		case SO_LINGER:
7035 			if (optlen == sizeof (struct linger)) {
7036 				struct linger *lgr = (struct linger *)optval;
7037 
7038 				if (lgr->l_onoff) {
7039 					tcp->tcp_linger = 1;
7040 					tcp->tcp_lingertime = lgr->l_linger;
7041 				} else {
7042 					tcp->tcp_linger = 0;
7043 					tcp->tcp_lingertime = 0;
7044 				}
7045 			} else {
7046 				errno = EINVAL;
7047 			}
7048 			break;
7049 		default:
7050 			errno = ENOPROTOOPT;
7051 			break;
7052 		}
7053 		break;
7054 	} /* case SOL_SOCKET */
7055 	case IPPROTO_TCP: {
7056 		switch (option) {
7057 		default:
7058 			errno = ENOPROTOOPT;
7059 			break;
7060 		}
7061 		break;
7062 	} /* case IPPROTO_TCP */
7063 	case IPPROTO_IP: {
7064 		switch (option) {
7065 		default:
7066 			errno = ENOPROTOOPT;
7067 			break;
7068 		}
7069 		break;
7070 	} /* case IPPROTO_IP */
7071 	default:
7072 		errno = ENOPROTOOPT;
7073 		break;
7074 	} /* switch (level) */
7075 
7076 	if (errno != 0)
7077 		return (-1);
7078 	else
7079 		return (0);
7080 }
7081