xref: /titanic_50/usr/src/stand/lib/fs/hsfs/hsfsops.c (revision b86efd96f8acd85ddaa930a2f0c1d664237e4aaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 1994-2003 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/param.h>
30 #include <sys/vnode.h>
31 #include <sys/fs/ufs_fsdir.h>
32 #include <sys/fs/ufs_fs.h>
33 #include <sys/fs/ufs_inode.h>
34 #include <sys/sysmacros.h>
35 #include <sys/promif.h>
36 #include <sys/filep.h>
37 #include <sys/salib.h>
38 #include <sys/sacache.h>
39 
40 #include <sys/fs/hsfs_spec.h>
41 #include <sys/fs/hsfs_isospec.h>
42 #include <sys/fs/hsfs_node.h>
43 #include <sys/fs/hsfs_susp.h>
44 #include <sys/fs/hsfs_rrip.h>
45 
46 #include "hsfs_sig.h"
47 
48 #include <sys/stat.h>
49 #include <sys/bootvfs.h>
50 #include <sys/bootconf.h>
51 #include <sys/bootdebug.h>
52 
53 #define	hdbtodb(n)	((ISO_SECTOR_SIZE / DEV_BSIZE) * (n))
54 
55 #define	THE_EPOCH	1970
56 #define	END_OF_TIME	2099
57 
58 /* May not need this... */
59 static uint_t	sua_offset = 0;
60 
61 /* The root inode on an HSFS filesystem can be anywhere! */
62 static uint_t	root_ino = 0;		/* This is both a flag and a value */
63 
64 static fileid_t *head;
65 
66 /* Only got one of these...ergo, only 1 fs open at once */
67 static devid_t *devp;
68 
69 struct dirinfo {
70 	int 	loc;
71 	fileid_t *fi;
72 };
73 
74 struct hs_direct {
75     struct	direct	hs_ufs_dir;
76     struct	hs_direntry hs_dir;
77 };
78 
79 /*
80  *  Function prototypes
81  */
82 
83 static int	boot_hsfs_mountroot(char *str);
84 static int	boot_hsfs_unmountroot(void);
85 static int	boot_hsfs_open(char *filename, int flags);
86 static int	boot_hsfs_close(int fd);
87 static ssize_t	boot_hsfs_read(int fd, caddr_t buf, size_t size);
88 static off_t	boot_hsfs_lseek(int, off_t, int);
89 static int	boot_hsfs_fstat(int fd, struct bootstat *stp);
90 static void	boot_hsfs_closeall(int flag);
91 static int	boot_hsfs_getdents(int fd, struct dirent *dep, unsigned size);
92 
93 struct boot_fs_ops boot_hsfs_ops = {
94 	"hsfs",
95 	boot_hsfs_mountroot,
96 	boot_hsfs_unmountroot,
97 	boot_hsfs_open,
98 	boot_hsfs_close,
99 	boot_hsfs_read,
100 	boot_hsfs_lseek,
101 	boot_hsfs_fstat,
102 	boot_hsfs_closeall,
103 	boot_hsfs_getdents
104 };
105 
106 static 	ino_t	find(fileid_t *, char *);
107 static	ino_t	dlook(fileid_t *, char *);
108 static	int	opendir(fileid_t *, ino_t);
109 static	struct	hs_direct *readdir(struct dirinfo *);
110 static	uint_t	parse_dir(fileid_t *, int, struct hs_direct *);
111 static	uint_t	parse_susp(char *, uint_t *, struct hs_direct *);
112 static	void	hs_seti(fileid_t *,  struct hs_direct *, ino_t);
113 static void	hs_dodates(enum hs_vol_type, struct hs_direntry *, char *);
114 static time_t	hs_date_to_gmtime(int, int, int, int);
115 
116 /*
117  *	There is only 1 open (mounted) device at any given time.
118  *	So we can keep a single, global devp file descriptor to
119  *	use to index into the di[] array.  This is not true for the
120  *	fi[] array.  We can have more than one file open at once,
121  *	so there is no global fd for the fi[].
122  *	The user program must save the fd passed back from open()
123  *	and use it to do subsequent read()'s.
124  */
125 
126 static int
127 opendir(fileid_t *filep, ino_t inode)
128 {
129 	struct hs_direct hsdep;
130 	int retval;
131 
132 	/* Set up the saio request */
133 	filep->fi_offset = 0;
134 	filep->fi_blocknum = hdbtodb(inode);
135 	filep->fi_count = ISO_SECTOR_SIZE;
136 
137 	/* Maybe the block is in the disk block cache */
138 	if ((filep->fi_memp = get_bcache(filep)) == NULL) {
139 		/* Not in the block cache so read it from disk */
140 		if (retval = set_bcache(filep)) {
141 			return (retval);
142 		}
143 	}
144 
145 	filep->fi_offset = 0;
146 	filep->fi_blocknum = hdbtodb(inode);
147 
148 	if (inode != root_ino)
149 	    return (0);
150 
151 	if ((int)(parse_dir(filep, 0, &hsdep)) > 0) {
152 		hs_seti(filep, &hsdep, inode);
153 		return (0);
154 	}
155 	return (1);
156 }
157 
158 static ino_t
159 find(fileid_t *filep, char *path)
160 {
161 	register char *q;
162 	char c;
163 	ino_t inode;
164 
165 	if (path == NULL || *path == '\0') {
166 		printf("null path\n");
167 		return (0);
168 	}
169 
170 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
171 	    printf("find(): path=<%s>\n", path);
172 
173 	/* Read the ROOT directory */
174 	if (opendir(filep, inode = root_ino)) {
175 		printf("find(): root_ino opendir() failed!\n");
176 		return ((ino_t)-1);
177 	}
178 
179 	while (*path) {
180 		while (*path == '/')
181 			path++;
182 		if (*(q = path) == '\0')
183 			break;
184 		while (*q != '/' && *q != '\0')
185 			q++;
186 		c = *q;
187 		*q = '\0';
188 
189 		if ((inode = dlook(filep, path)) != 0) {
190 			if (c == '\0')
191 				break;
192 			if (opendir(filep, inode)) {
193 				printf("find(): opendir(%d) failed!\n", inode);
194 				*q = c;
195 				return ((ino_t)-1);
196 			}
197 			*q = c;
198 			path = q;
199 			continue;
200 		} else {
201 			*q = c;
202 			return (0);
203 		}
204 	}
205 	return (inode);
206 }
207 
208 static fileid_t *
209 find_fp(int fd)
210 {
211 	fileid_t *filep = head;
212 
213 	if (fd >= 0) {
214 		while ((filep = filep->fi_forw) != head)
215 			if (fd == filep->fi_filedes)
216 				return (filep->fi_taken ? filep : 0);
217 	}
218 
219 	return (0);
220 }
221 
222 static ino_t
223 dlook(fileid_t *filep, char *path)
224 {
225 	int dv = filep->fi_devp->di_dcookie;
226 	register struct hs_direct *hsdep;
227 	register struct direct *udp;
228 	register struct inode *ip;
229 	struct dirinfo dirp;
230 	register int len;
231 	ino_t in;
232 
233 	ip = filep->fi_inode;
234 	if (path == NULL || *path == '\0')
235 		return (0);
236 	if ((ip->i_smode & IFMT) != IFDIR) {
237 		return (0);
238 	}
239 	if (ip->i_size == 0) {
240 		return (0);
241 	}
242 	len = strlen(path);
243 	/* first look through the directory entry cache */
244 	if (in = get_dcache(dv, path, ip->i_number)) {
245 		if ((filep->fi_inode = get_icache(dv, in)) != NULL) {
246 			filep->fi_offset = 0;
247 			filep->fi_blocknum = hdbtodb(in);
248 			return (in);
249 		}
250 	}
251 	dirp.loc = 0;
252 	dirp.fi = filep;
253 	for (hsdep = readdir(&dirp); hsdep != NULL; hsdep = readdir(&dirp)) {
254 		udp = &hsdep->hs_ufs_dir;
255 		if (udp->d_namlen == 1 &&
256 		    udp->d_name[0] == '.' &&
257 		    udp->d_name[1] == '\0')
258 			continue;
259 		if (udp->d_namlen == 2 &&
260 		    udp->d_name[0] == '.' &&
261 		    udp->d_name[1] == '.' &&
262 		    udp->d_name[2] == '\0')
263 			continue;
264 		if (udp->d_namlen == len && (strcmp(path, udp->d_name) == 0)) {
265 			set_dcache(dv, path, ip->i_number, udp->d_ino);
266 			hs_seti(filep, hsdep, udp->d_ino);
267 			filep->fi_offset = 0;
268 			filep->fi_blocknum = hdbtodb(udp->d_ino);
269 			/* put this entry into the cache */
270 			return (udp->d_ino);
271 		}
272 		/* Allow "*" to print all names at that level, w/out match */
273 		if (strcmp(path, "*") == 0)
274 			printf("%s\n", udp->d_name);
275 	}
276 	return (0);
277 }
278 
279 /*
280  * get next entry in a directory.
281  */
282 static struct hs_direct *
283 readdir(struct dirinfo *dirp)
284 {
285 	static struct hs_direct hsdep;
286 	register struct direct *udp = &hsdep.hs_ufs_dir;
287 	register struct inode *ip;
288 	register fileid_t *filep;
289 	register daddr_t lbn;
290 	register int off;
291 
292 	filep = dirp->fi;
293 	ip = filep->fi_inode;
294 	for (;;) {
295 		if (dirp->loc >= ip->i_size) {
296 			return (NULL);
297 		}
298 		off = dirp->loc & ((1 << ISO_SECTOR_SHIFT) - 1);
299 		if (off == 0) {
300 			lbn = hdbtodb(dirp->loc >> ISO_SECTOR_SHIFT);
301 			filep->fi_blocknum = lbn + hdbtodb(ip->i_number);
302 			filep->fi_count = ISO_SECTOR_SIZE;
303 			/* check the block cache */
304 			if ((filep->fi_memp = get_bcache(filep)) == 0)
305 				if (set_bcache(filep))
306 					return ((struct hs_direct *)-1);
307 		}
308 		dirp->loc += parse_dir(filep, off, &hsdep);
309 		if (udp->d_reclen == 0 && dirp->loc <= ip->i_size) {
310 			dirp->loc = roundup(dirp->loc, ISO_SECTOR_SIZE);
311 			continue;
312 		}
313 		return (&hsdep);
314 	}
315 }
316 
317 /*
318  * Get the next block of data from the file.  If possible, dma right into
319  * user's buffer
320  */
321 static int
322 getblock(fileid_t *filep, caddr_t buf, int count, int *rcount)
323 {
324 	register struct inode *ip;
325 	register caddr_t p;
326 	register int off, size, diff;
327 	register daddr_t lbn;
328 	static int	pos;
329 	static char 	ind[] = "|/-\\";	/* that's entertainment? */
330 	static int	blks_read;
331 
332 	ip = filep->fi_inode;
333 	p = filep->fi_memp;
334 	if ((signed)filep->fi_count <= 0) {
335 
336 		/* find the amt left to be read in the file */
337 		diff = ip->i_size - filep->fi_offset;
338 		if (diff <= 0) {
339 			printf("Short read\n");
340 			return (-1);
341 		}
342 
343 		/* which block (or frag) in the file do we read? */
344 		lbn = hdbtodb(filep->fi_offset >> ISO_SECTOR_SHIFT);
345 
346 		/* which physical block on the device do we read? */
347 		filep->fi_blocknum = lbn + hdbtodb(ip->i_number);
348 
349 		off = filep->fi_offset & ((1 << ISO_SECTOR_SHIFT) - 1);
350 
351 		size = sizeof (filep->fi_buf);
352 		if (size > ISO_SECTOR_SIZE)
353 			size = ISO_SECTOR_SIZE;
354 
355 		filep->fi_count = size;
356 		filep->fi_memp = filep->fi_buf;
357 
358 		/*
359 		 * optimization if we are reading large blocks of data then
360 		 * we can go directly to user's buffer
361 		 */
362 		*rcount = 0;
363 		if (off == 0 && count >= size) {
364 			filep->fi_memp = buf;
365 			if (diskread(filep)) {
366 				return (-1);
367 			}
368 			*rcount = size;
369 			filep->fi_count = 0;
370 			read_opt++;
371 			if ((blks_read++ & 0x3) == 0)
372 				printf("%c\b", ind[pos++ & 3]);
373 			return (0);
374 		} else
375 			if (diskread(filep))
376 				return (-1);
377 
378 		/*
379 		 * round and round she goes (though not on every block..
380 		 * - OBP's take a fair bit of time to actually print stuff)
381 		 */
382 		if ((blks_read++ & 0x3) == 0)
383 			printf("%c\b", ind[pos++ & 3]);
384 
385 		if (filep->fi_offset - off + size >= ip->i_size)
386 			filep->fi_count = diff + off;
387 		filep->fi_count -= off;
388 		p = &filep->fi_memp[off];
389 	}
390 	filep->fi_memp = p;
391 	return (0);
392 }
393 
394 
395 /*
396  *  This is the high-level read function.  It works like this.
397  *  We assume that our IO device buffers up some amount of
398  *  data ant that we can get a ptr to it.  Thus we need
399  *  to actually call the device func about filesize/blocksize times
400  *  and this greatly increases our IO speed.  When we already
401  *  have data in the buffer, we just return that data (with bcopy() ).
402  */
403 
404 static ssize_t
405 boot_hsfs_read(int fd, caddr_t buf, size_t count)
406 {
407 	size_t i, j;
408 	struct inode *ip;
409 	caddr_t	n;
410 	fileid_t *filep;
411 	int rcount;
412 
413 	if (!(filep = find_fp(fd))) {
414 		return (-1);
415 	}
416 
417 	ip = filep->fi_inode;
418 
419 	if (filep->fi_offset + count > ip->i_size)
420 		count = ip->i_size - filep->fi_offset;
421 
422 	/* that was easy */
423 	if ((i = count) == 0)
424 		return (0);
425 
426 	n = buf;
427 	while (i > 0) {
428 		/* If we need to reload the buffer, do so */
429 		if ((j = filep->fi_count) == 0) {
430 			getblock(filep, buf, i, &rcount);
431 			i -= rcount;
432 			buf += rcount;
433 			filep->fi_offset += rcount;
434 		} else {
435 			/* else just bcopy from our buffer */
436 			j = MIN(i, j);
437 			bcopy(filep->fi_memp, buf, (unsigned)j);
438 			buf += j;
439 			filep->fi_memp += j;
440 			filep->fi_offset += j;
441 			filep->fi_count -= j;
442 			i -= j;
443 		}
444 	}
445 	return (buf - n);
446 }
447 
448 /*
449  *	This routine will open a device as it is known by the
450  *	V2 OBP.
451  *	Interface Defn:
452  *	err = mountroot(string);
453  *	err:	0 on success
454  *		-1 on failure
455  *	string:	char string describing the properties of the device.
456  *	We must not dork with any fi[]'s here.  Save that for later.
457  */
458 
459 static int
460 boot_hsfs_mountroot(char *str)
461 {
462 	ihandle_t	h;
463 	struct hs_volume *fsp;
464 	char 		*bufp;
465 
466 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
467 	    printf("mountroot()\n");
468 
469 	/*
470 	 * If already mounted, just return success.
471 	 */
472 	if (root_ino != 0) {
473 		return (0);
474 	}
475 
476 	h = prom_open(str);
477 
478 	if (h == 0) {
479 		printf("Cannot open %s\n", str);
480 		return (-1);
481 	}
482 
483 	devp = (devid_t *)bkmem_alloc(sizeof (devid_t));
484 	devp->di_taken = 1;
485 	devp->di_dcookie = h;
486 	devp->di_desc = (char *)bkmem_alloc(strlen(str) + 1);
487 	(void) strcpy(devp->di_desc, str);
488 	bzero(devp->un_fs.dummy, sizeof (devp->un_fs.dummy));
489 	head = (fileid_t *)bkmem_alloc(sizeof (fileid_t));
490 	head->fi_back = head->fi_forw = head;
491 	head->fi_filedes = 0;
492 	head->fi_taken = 0;
493 
494 	/* Setup read of the "superblock" */
495 	bzero(head->fi_buf, sizeof (head->fi_buf));
496 	head->fi_devp = devp;
497 	head->fi_blocknum = hdbtodb(ISO_VOLDESC_SEC);
498 	head->fi_count = ISO_SECTOR_SIZE;
499 	head->fi_memp = head->fi_buf;
500 	head->fi_offset = 0;
501 
502 	if (diskread(head)) {
503 		printf("mountroot(): read super block failed!\n");
504 		boot_hsfs_closeall(1);
505 		return (-1);
506 	}
507 
508 	bufp = head->fi_memp;
509 	fsp = (struct hs_volume *)devp->un_fs.dummy;
510 	/* Since RRIP is based on ISO9660, that's where we start */
511 
512 	if (ISO_DESC_TYPE(bufp) != ISO_VD_PVD ||
513 	    strncmp((char *)(ISO_std_id(bufp)), (char *)(ISO_ID_STRING),
514 	    ISO_ID_STRLEN) != 0 || ISO_STD_VER(bufp) != ISO_ID_VER) {
515 		boot_hsfs_closeall(1);
516 		return (-1);
517 	}
518 
519 	/* Now we fill in the volume descriptor */
520 	fsp->vol_size = ISO_VOL_SIZE(bufp);
521 	fsp->lbn_size = ISO_BLK_SIZE(bufp);
522 	fsp->lbn_shift = ISO_SECTOR_SHIFT;
523 	fsp->lbn_secshift = ISO_SECTOR_SHIFT;
524 	fsp->vol_set_size = (ushort_t)ISO_SET_SIZE(bufp);
525 	fsp->vol_set_seq = (ushort_t)ISO_SET_SEQ(bufp);
526 
527 	/* Make sure we have a valid logical block size */
528 	if (fsp->lbn_size & ~(1 << fsp->lbn_shift)) {
529 		printf("%d byte logical block size invalid.\n", fsp->lbn_size);
530 		boot_hsfs_closeall(1);
531 		return (-1);
532 	}
533 
534 	/* Since an HSFS root could be located anywhere on the media! */
535 	root_ino = IDE_EXT_LBN(ISO_root_dir(bufp));
536 
537 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE)) {
538 		int	i;
539 
540 		printf("root_ino=%d\n", root_ino);
541 		printf("ID=");
542 		for (i = 0; i < ISO_ID_STRLEN; i++)
543 			printf("%c", *(ISO_std_id(bufp)+i));
544 		printf(" VS=%d\n", fsp->vol_size);
545 	}
546 
547 	return (0);
548 }
549 
550 /*
551  * Unmount the currently mounted root fs.  In practice, this means
552  * closing all open files and releasing resources.  All of this
553  * is done by boot_hsfs_closeall().
554  */
555 
556 int
557 boot_hsfs_unmountroot(void)
558 {
559 	if (root_ino == 0)
560 		return (-1);
561 
562 	boot_hsfs_closeall(1);
563 
564 	return (0);
565 }
566 
567 /*
568  *	We allocate an fd here for use when talking
569  *	to the file itself.
570  */
571 
572 /*ARGSUSED*/
573 static int
574 boot_hsfs_open(char *filename, int flags)
575 {
576 	fileid_t	*filep;
577 	ino_t		inode;
578 	static int	filedes = 1;
579 
580 	/* build and link a new file descriptor */
581 	filep = (fileid_t *)bkmem_alloc(sizeof (fileid_t));
582 	filep->fi_back = head->fi_back;
583 	filep->fi_forw = head;
584 	head->fi_back->fi_forw = filep;
585 	head->fi_back = filep;
586 
587 	filep->fi_filedes = filedes++;
588 	filep->fi_taken = 1;
589 	filep->fi_path = (char *)bkmem_alloc(strlen(filename) + 1);
590 	(void) strcpy(filep->fi_path, filename);
591 	filep->fi_devp = devp; /* dev is already "mounted" */
592 
593 	filep->fi_inode = 0;
594 
595 	inode = find(filep, filename);
596 	if (inode == (ino_t)0) {
597 		if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
598 		    printf("open(%s) ENOENT\n", filename);
599 		(void) boot_hsfs_close(filep->fi_filedes);
600 		return (-1);
601 	}
602 
603 	filep->fi_blocknum = hdbtodb(inode);
604 	filep->fi_offset = filep->fi_count = 0;
605 
606 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
607 	    printf("open(%s) fd=%d\n", filename, filep->fi_filedes);
608 	return (filep->fi_filedes);
609 }
610 
611 /*
612  * hsfs_fstat() only supports size, mode and times at present time.
613  */
614 
615 static int
616 boot_hsfs_fstat(int fd, struct bootstat *stp)
617 {
618 	fileid_t	*filep;
619 	struct inode	*ip;
620 
621 	if (!(filep = find_fp(fd)))
622 		return (-1);
623 
624 	ip = filep->fi_inode;
625 
626 	stp->st_mode = 0;
627 	stp->st_size = 0;
628 
629 	if (ip == NULL)
630 		return (0);
631 
632 	switch (ip->i_smode & IFMT) {
633 	case IFDIR:
634 		stp->st_mode = S_IFDIR;
635 		break;
636 	case IFREG:
637 		stp->st_mode = S_IFREG;
638 		break;
639 	default:
640 		break;
641 	}
642 	stp->st_size = ip->i_size;
643 
644 	/* file times */
645 	stp->st_atim.tv_sec = ip->i_atime.tv_sec;
646 	stp->st_atim.tv_nsec = ip->i_atime.tv_usec * 1000;
647 	stp->st_mtim.tv_sec = ip->i_mtime.tv_sec;
648 	stp->st_mtim.tv_nsec = ip->i_mtime.tv_usec * 1000;
649 	stp->st_ctim.tv_sec = ip->i_ctime.tv_sec;
650 	stp->st_ctim.tv_nsec = ip->i_ctime.tv_usec * 1000;
651 
652 	return (0);
653 }
654 
655 /*
656  *  We don't do any IO here.
657  *  We just play games with the device pointers.
658  */
659 
660 /*ARGSUSED*/
661 static off_t
662 boot_hsfs_lseek(int fd, off_t addr, int whence)
663 {
664 	fileid_t *filep;
665 
666 	if (!(filep = find_fp(fd)))
667 		return (-1);
668 
669 	filep->fi_offset = addr;
670 	filep->fi_blocknum = addr / DEV_BSIZE;
671 	filep->fi_count = 0;
672 
673 	return (0);
674 }
675 
676 static int
677 boot_hsfs_close(int fd)
678 {
679 	fileid_t *filep;
680 
681 	if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
682 	    printf("close(%d)\n", fd);
683 
684 	if (filep = find_fp(fd)) {
685 		/* Clear the ranks */
686 		bkmem_free(filep->fi_path, strlen(filep->fi_path)+1);
687 		filep->fi_blocknum = filep->fi_count = filep->fi_offset = 0;
688 		filep->fi_memp = (caddr_t)0;
689 		filep->fi_devp = 0;
690 		filep->fi_taken = 0;
691 
692 		/* unlink and deallocate node */
693 		filep->fi_forw->fi_back = filep->fi_back;
694 		filep->fi_back->fi_forw = filep->fi_forw;
695 		bkmem_free((char *)filep, sizeof (fileid_t));
696 
697 		return (0);
698 	} else {
699 		/* Big problem */
700 		printf("\nFile descrip %d not allocated!", fd);
701 		return (-1);
702 	}
703 }
704 
705 /*ARGSUSED*/
706 static void
707 boot_hsfs_closeall(int flag)
708 {
709 	fileid_t	*filep = head;
710 	extern int verbosemode;
711 
712 	while ((filep = filep->fi_forw) != head)
713 		if (filep->fi_taken)
714 			if (boot_hsfs_close(filep->fi_filedes))
715 				prom_panic("Filesystem may be inconsistent.\n");
716 
717 	release_cache(devp->di_dcookie);
718 	(void) prom_close(devp->di_dcookie);
719 	devp->di_taken = 0;
720 	if (verbosemode)
721 		print_cache_data();
722 	bkmem_free((char *)devp, sizeof (devid_t));
723 	bkmem_free((char *)head, sizeof (fileid_t));
724 	root_ino = 0;
725 }
726 
727 static uint_t
728 parse_dir(fileid_t *filep, int offset, struct hs_direct *hsdep)
729 {
730 	char *bufp = (char *)(filep->fi_memp + offset);
731 	struct direct *udp = &hsdep->hs_ufs_dir;
732 	struct hs_direntry *hdp = &hsdep->hs_dir;
733 	uint_t ce_lbn;
734 	uint_t ce_len;
735 	uint_t nmlen;
736 	uint_t i;
737 	uchar_t c;
738 	int ret_code = 0;
739 
740 	if ((udp->d_reclen = IDE_DIR_LEN(bufp)) == 0)
741 		return (0);
742 
743 	hdp->ext_lbn  = IDE_EXT_LBN(bufp);
744 	hdp->ext_size = IDE_EXT_SIZE(bufp);
745 	hs_dodates(HS_VOL_TYPE_ISO, hdp, bufp);
746 	hdp->xar_len  = IDE_XAR_LEN(bufp);
747 	hdp->intlf_sz = IDE_INTRLV_SIZE(bufp);
748 	hdp->intlf_sk = IDE_INTRLV_SKIP(bufp);
749 	hdp->sym_link = NULL;
750 
751 	udp->d_ino = hdp->ext_lbn;
752 
753 	c = IDE_FLAGS(bufp);
754 	if (IDE_REGULAR_FILE(c)) {
755 		hdp->type = VREG;
756 		hdp->mode = IFREG;
757 		hdp->nlink = 1;
758 	} else if (IDE_REGULAR_DIR(c)) {
759 		hdp->type = VDIR;
760 		hdp->mode = IFDIR;
761 		hdp->nlink = 2;
762 	} else {
763 		printf("parse_dir(): file type=0x%x unknown.\n", c);
764 		return ((uint_t)-1);
765 	}
766 
767 	/* Some initial conditions */
768 	nmlen = IDE_NAME_LEN(bufp);
769 	c = *IDE_NAME(bufp);
770 	/* Special Case: Current Directory */
771 	if (nmlen == 1 && c == '\0') {
772 		udp->d_name[0] = '.';
773 		udp->d_name[1] = '\0';
774 		udp->d_namlen = 1;
775 	/* Special Case: Parent Directory */
776 	} else if (nmlen == 1 && c == '\001') {
777 		udp->d_name[0] = '.';
778 		udp->d_name[1] = '.';
779 		udp->d_name[2] = '\0';
780 		udp->d_namlen = 2;
781 	/* Other file name */
782 	} else {
783 		udp->d_namlen = 0;
784 		for (i = 0; i < nmlen; i++) {
785 			c = *(IDE_name(bufp)+i);
786 			if (c == ';')
787 				break;
788 			else if (c == ' ')
789 				continue;
790 			else
791 				udp->d_name[udp->d_namlen++] = c;
792 		}
793 		udp->d_name[udp->d_namlen] = '\0';
794 	}
795 	/* System Use Fields */
796 	ce_len = IDE_SUA_LEN(bufp);
797 	ce_lbn = 0;
798 	if ((int)(ce_len) > 0) {
799 	ce_lbn = parse_susp((char *)IDE_sys_use_area(bufp), &ce_len, hsdep);
800 	while (ce_lbn) {
801 	    daddr_t save_blocknum = filep->fi_blocknum;
802 	    daddr_t save_offset = filep->fi_offset;
803 	    caddr_t save_memp = filep->fi_memp;
804 	    uint_t save_count = filep->fi_count;
805 
806 #ifdef	noisy
807 	    print_io_req(filep, "parse_dir(): [I]");
808 #endif	/* noisy */
809 
810 	    filep->fi_blocknum = hdbtodb(ce_lbn);
811 	    filep->fi_offset = 0;
812 	    filep->fi_count = ISO_SECTOR_SIZE;
813 
814 #ifdef	noisy
815 	    print_io_req(filep, "parse_dir(): [0]");
816 #endif	/* noisy */
817 
818 	    if ((filep->fi_memp = get_bcache(filep)) == 0)
819 		    ret_code = set_bcache(filep);
820 
821 #ifdef	noisy
822 	    print_io_req(filep, "parse_dir(): [1]");
823 #endif	/* noisy */
824 
825 	    if (ret_code) {
826 		    filep->fi_blocknum = save_blocknum;
827 		    filep->fi_offset = save_offset;
828 		    filep->fi_memp = save_memp;
829 		    filep->fi_count = save_count;
830 		    printf("parse_dir(): set_bcache() failed (%d)\n",
831 			    ret_code);
832 		    break;
833 	    }
834 	    ce_lbn = parse_susp(filep->fi_memp, &ce_len, hsdep);
835 
836 	    filep->fi_blocknum = save_blocknum;
837 	    filep->fi_offset = save_offset;
838 	    filep->fi_memp = save_memp;
839 	    filep->fi_count = save_count;
840 
841 #ifdef	noisy
842 	    print_io_req(filep, "parse_dir(): [2]");
843 #endif	/* noisy */
844 	}
845 	}
846 
847 	return (udp->d_reclen);
848 }
849 
850 static uint_t
851 parse_susp(char *bufp, uint_t *ce_len, struct hs_direct *hsdep)
852 {
853 	struct direct *udp = &hsdep->hs_ufs_dir;
854 	uchar_t *susp;
855 	uint_t cur_off = 0;
856 	uint_t blk_len = *ce_len;
857 	uint_t susp_len = 0;
858 	uint_t ce_lbn = 0;
859 	uint_t i;
860 
861 	while (cur_off < blk_len) {
862 	    susp = (uchar_t *)(bufp + cur_off);
863 	    if (susp[0] == '\0' || susp[1] == '\0')
864 		break;
865 	    susp_len = SUF_LEN(susp);
866 	    if (susp_len == 0)
867 		break;
868 	    for (i = 0; i < hsfs_num_sig; i++) {
869 		if (strncmp(hsfs_sig_tab[i], (char *)susp, SUF_SIG_LEN) == 0) {
870 #ifdef	noisy
871 		    if ((boothowto & RB_DEBUG) && (boothowto & RB_VERBOSE))
872 			printf("  SUSP_%c%c %d\n", susp[0], susp[1], susp_len);
873 #endif	/* noisy */
874 		    switch (i) {
875 			case SUSP_SP_IX:
876 			    if (CHECK_BYTES_OK(susp)) {
877 				sua_offset = SP_SUA_OFFSET(susp);
878 #ifdef	lint
879 				/* Like the man said, this may not be needed */
880 				i = (int)sua_offset;
881 #endif	/* lint */
882 			    }
883 			    break;
884 
885 			case SUSP_CE_IX:
886 			    ce_lbn = CE_BLK_LOC(susp);
887 			    *ce_len = CE_CONT_LEN(susp);
888 #ifdef	noisy
889 			    if ((boothowto & RB_DEBUG) &&
890 				(boothowto & RB_VERBOSE))
891 				printf("parse_susp(): "
892 				    "CE: ce_lbn = %d ce_len=%d\n",
893 				    ce_lbn, *ce_len);
894 #endif	/* noisy */
895 			    break;
896 
897 			case SUSP_ST_IX:
898 			    printf("parse_susp(): ST: returning %d\n", ce_lbn);
899 			    return (ce_lbn);
900 
901 			case RRIP_SL_IX:
902 #ifdef	noisy
903 			    if ((boothowto & RB_DEBUG) &&
904 				(boothowto & RB_VERBOSE))
905 				printf("parse_susp(): ******* SL *******\n");
906 #endif	/* noisy */
907 			    break;
908 
909 			case RRIP_RR_IX:
910 			    break;
911 
912 			case RRIP_NM_IX:
913 			    if (!RRIP_NAME_FLAGS(susp)) {
914 				udp->d_namlen = RRIP_NAME_LEN(susp);
915 				bcopy((char *)RRIP_name(susp),
916 					(char *)udp->d_name,
917 					udp->d_namlen);
918 				udp->d_name[udp->d_namlen] = '\0';
919 			    }
920 			    break;
921 		    }
922 		    cur_off += susp_len;
923 		    break;
924 		}
925 	    }
926 	    if (i > hsfs_num_sig) {
927 		printf("parse_susp(): Bad SUSP\n");
928 		cur_off = blk_len;
929 		break;
930 	    }
931 	}
932 	return (ce_lbn);
933 }
934 
935 static void
936 hs_seti(fileid_t *filep, struct hs_direct *hsdep, ino_t inode)
937 {
938 	register struct inode *ip;
939 	int dv = filep->fi_devp->di_dcookie;
940 
941 	/* Try the inode cache first */
942 	if ((filep->fi_inode = get_icache(dv, inode)) != NULL)
943 		return;
944 
945 	filep->fi_inode = (struct inode *)bkmem_alloc(sizeof (struct inode));
946 	ip = filep->fi_inode;
947 	bzero((char *)ip, sizeof (struct inode));
948 	ip->i_size = hsdep->hs_dir.ext_size;
949 	ip->i_smode = hsdep->hs_dir.mode;
950 	ip->i_number = inode;
951 	ip->i_atime.tv_sec = hsdep->hs_dir.adate.tv_sec;
952 	ip->i_atime.tv_usec = hsdep->hs_dir.adate.tv_usec;
953 	ip->i_ctime.tv_sec = hsdep->hs_dir.cdate.tv_sec;
954 	ip->i_ctime.tv_usec = hsdep->hs_dir.cdate.tv_usec;
955 	ip->i_mtime.tv_sec = hsdep->hs_dir.mdate.tv_sec;
956 	ip->i_mtime.tv_usec = hsdep->hs_dir.mdate.tv_usec;
957 	set_icache(dv, inode, ip, sizeof (struct inode));
958 }
959 
960 #ifdef	noisy
961 static void
962 print_io_req(fileid_t *filep, char *str)
963 {
964 	printf("%s o=%d b=%d c=%d m=%x\n",
965 	str,
966 	filep->fi_offset,
967 	filep->fi_blocknum,
968 	filep->fi_count,
969 	(uint_t)filep->fi_memp);
970 }
971 #endif	/* noisy */
972 
973 static int
974 boot_hsfs_getdents(int fd, struct dirent *dep, unsigned size)
975 {
976 	/*
977 	 * Read directory entries from the file open on "fd" into the
978 	 * "size"-byte buffer at "dep" until the buffer is exhausted
979 	 * or we reach EOF on the directory.  Returns the number of
980 	 * entries read.
981 	 */
982 	int n;
983 	int cnt = 0;
984 	struct dirinfo dir;
985 	struct hs_direct *hdp;
986 	unsigned long oldoff, oldblok;
987 
988 #define	SLOP (sizeof (struct dirent) - (int)&((struct dirent *)0)->d_name[1])
989 
990 	if (!(dir.fi = find_fp(fd)) ||
991 	    ((dir.fi->fi_inode->i_smode & IFMT) != IFDIR)) {
992 		/*
993 		 *  Bogus file descriptor, bail out now!
994 		 */
995 		return (-1);
996 	}
997 
998 	oldoff = dir.loc = dir.fi->fi_offset;
999 	oldblok = dir.fi->fi_blocknum;
1000 
1001 	for (hdp = readdir(&dir); hdp; hdp = readdir(&dir)) {
1002 		/*
1003 		 * Compute name length and break loop if there's not
1004 		 * enough space in the output buffer for the next
1005 		 * entry.
1006 		 *
1007 		 *  NOTE: "SLOP" is the number of bytes inserted into the dirent
1008 		 *	  struct's "d_name" field by the compiler to preserve
1009 		 *	  alignment.
1010 		 */
1011 		n = strlen(hdp->hs_ufs_dir.d_name);
1012 		n = roundup((sizeof (struct dirent) + ((n > SLOP) ? n : 0)),
1013 		    sizeof (off_t));
1014 
1015 		if (n > size) {
1016 			dir.fi->fi_blocknum = oldblok;
1017 			dir.fi->fi_offset = oldoff;
1018 			break;
1019 		}
1020 
1021 		oldblok = dir.fi->fi_blocknum;
1022 		oldoff = dir.loc;
1023 		size -= n;
1024 		cnt += 1;
1025 
1026 		(void) strcpy(dep->d_name, hdp->hs_ufs_dir.d_name);
1027 		dep->d_ino = hdp->hs_ufs_dir.d_ino;
1028 		dep->d_off = dir.loc;
1029 		dep->d_reclen = (unsigned short)n;
1030 
1031 		dep = (struct dirent *)((char *)dep + n);
1032 	}
1033 
1034 #undef SLOP
1035 
1036 	return (cnt);
1037 }
1038 
1039 static void
1040 hs_dodates(enum hs_vol_type type, struct hs_direntry *hdp, char *bufp)
1041 {
1042 	if (type == HS_VOL_TYPE_HS) {
1043 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->cdate);
1044 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->adate);
1045 		hs_parse_dirdate(HDE_cdate(bufp), &hdp->mdate);
1046 	} else if (type == HS_VOL_TYPE_ISO) {
1047 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->cdate);
1048 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->adate);
1049 		hs_parse_dirdate(IDE_cdate(bufp), &hdp->mdate);
1050 	} else
1051 		prom_panic("hs_dodates:  bad volume type");
1052 }
1053 
1054 /*
1055  * hs_parse_dirdate
1056  *
1057  * Parse the short 'directory-format' date into a Unix timeval.
1058  * This is the date format used in Directory Entries.
1059  *
1060  * If the date is not representable, make something up.
1061  */
1062 void
1063 hs_parse_dirdate(uchar_t *dp, struct timeval *tvp)
1064 {
1065 	int year, month, day, hour, minute, sec, gmtoff;
1066 
1067 	year = HDE_DATE_YEAR(dp);
1068 	month = HDE_DATE_MONTH(dp);
1069 	day = HDE_DATE_DAY(dp);
1070 	hour = HDE_DATE_HOUR(dp);
1071 	minute = HDE_DATE_MIN(dp);
1072 	sec = HDE_DATE_SEC(dp);
1073 	gmtoff = HDE_DATE_GMTOFF(dp);
1074 
1075 	tvp->tv_usec = 0;
1076 	if (year < THE_EPOCH) {
1077 		tvp->tv_sec = 0;
1078 	} else {
1079 		tvp->tv_sec = hs_date_to_gmtime(year, month, day, gmtoff);
1080 		if (tvp->tv_sec != -1) {
1081 			tvp->tv_sec += ((hour * 60) + minute) * 60 + sec;
1082 		}
1083 	}
1084 
1085 	return;
1086 
1087 }
1088 
1089 /*
1090  * hs_parse_longdate
1091  *
1092  * Parse the long 'user-oriented' date into a Unix timeval.
1093  * This is the date format used in the Volume Descriptor.
1094  *
1095  * If the date is not representable, make something up.
1096  */
1097 void
1098 hs_parse_longdate(uchar_t *dp, struct timeval *tvp)
1099 {
1100 	int year, month, day, hour, minute, sec, gmtoff;
1101 
1102 	year = HSV_DATE_YEAR(dp);
1103 	month = HSV_DATE_MONTH(dp);
1104 	day = HSV_DATE_DAY(dp);
1105 	hour = HSV_DATE_HOUR(dp);
1106 	minute = HSV_DATE_MIN(dp);
1107 	sec = HSV_DATE_SEC(dp);
1108 	gmtoff = HSV_DATE_GMTOFF(dp);
1109 
1110 	tvp->tv_usec = 0;
1111 	if (year < THE_EPOCH) {
1112 		tvp->tv_sec = 0;
1113 	} else {
1114 		tvp->tv_sec = hs_date_to_gmtime(year, month, day, gmtoff);
1115 		if (tvp->tv_sec != -1) {
1116 			tvp->tv_sec += ((hour * 60) + minute) * 60 + sec;
1117 			tvp->tv_usec = HSV_DATE_HSEC(dp) * 10000;
1118 		}
1119 	}
1120 
1121 }
1122 
1123 /* cumulative number of seconds per month,  non-leap and leap-year versions */
1124 static time_t cum_sec[] = {
1125 	0x0, 0x28de80, 0x4dc880, 0x76a700, 0x9e3400, 0xc71280,
1126 	0xee9f80, 0x1177e00, 0x1405c80, 0x167e980, 0x190c800, 0x1b85500
1127 };
1128 static time_t cum_sec_leap[] = {
1129 	0x0, 0x28de80, 0x4f1a00, 0x77f880, 0x9f8580, 0xc86400,
1130 	0xeff100, 0x118cf80, 0x141ae00, 0x1693b00, 0x1921980, 0x1b9a680
1131 };
1132 #define	SEC_PER_DAY	0x15180
1133 #define	SEC_PER_YEAR	0x1e13380
1134 
1135 /*
1136  * hs_date_to_gmtime
1137  *
1138  * Convert year(1970-2099)/month(1-12)/day(1-31) to seconds-since-1970/1/1.
1139  *
1140  * Returns -1 if the date is out of range.
1141  */
1142 static time_t
1143 hs_date_to_gmtime(int year, int mon, int day, int gmtoff)
1144 {
1145 	time_t sum;
1146 	time_t *cp;
1147 	int y;
1148 
1149 	if ((year < THE_EPOCH) || (year > END_OF_TIME) ||
1150 	    (mon < 1) || (mon > 12) ||
1151 	    (day < 1) || (day > 31))
1152 		return (-1);
1153 
1154 	/*
1155 	 * Figure seconds until this year and correct for leap years.
1156 	 * Note: 2000 is a leap year but not 2100.
1157 	 */
1158 	y = year - THE_EPOCH;
1159 	sum = y * SEC_PER_YEAR;
1160 	sum += ((y + 1) / 4) * SEC_PER_DAY;
1161 	/*
1162 	 * Point to the correct table for this year and
1163 	 * add in seconds until this month.
1164 	 */
1165 	cp = ((y + 2) % 4) ? cum_sec : cum_sec_leap;
1166 	sum += cp[mon - 1];
1167 	/*
1168 	 * Add in seconds until 0:00 of this day.
1169 	 * (days-per-month validation is not done here)
1170 	 */
1171 	sum += (day - 1) * SEC_PER_DAY;
1172 	sum -= (gmtoff * 15 * 60);
1173 	return (sum);
1174 }
1175