xref: /titanic_50/usr/src/man/man9f/csx_RequestWindow.9f (revision a0563a48b6bba0177dc249048ea515ca080c73af)
te
Copyright (c) 1999, Sun Microsystems, Inc. All Rights Reserved
The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License.
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License.
When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
CSX_REQUESTWINDOW 9F "Jul 19, 1996"
NAME
csx_RequestWindow, csx_ReleaseWindow - request or release window resources
SYNOPSIS

#include <sys/pccard.h>



int32_t csx_RequestWindow(client_handle_t ch, window_handle_t *wh,
 win_req_t *wr);

int32_t csx_ReleaseWindow(window_handle_t wh);
INTERFACE LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS
ch

Client handle returned from csx_RegisterClient(9F).

wh

Pointer to a window_handle_t structure.

wr

Pointer to a win_req_t structure.

DESCRIPTION

The function csx_RequestWindow() requests a block of system address space be assigned to a PC Card in a socket.

The function csx_ReleaseWindow() releases window resources which were obtained by a call to csx_RequestWindow(). No adapter or socket hardware is modified by this function.

The csx_MapMemPage(9F) and csx_ModifyWindow(9F) functions use the window handle returned by csx_RequestWindow(). This window handle must be freed by calling csx_ReleaseWindow() when the client is done using this window.

The PC Card Attribute or Common Memory offset for this window is set by csx_MapMemPage(9F).

STRUCTURE MEMBERS

The structure members of win_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* window flags */
uint32_t Base.base; /* requested window */
 /* base address */
acc_handle_t Base.handle; /* returned handle for
 /* base of window */
uint32_t Size; /* window size requested */
 /* or granted */
uint32_t win_params.AccessSpeed; /* window access speed */
uint32_t win_params.IOAddrLines; /* IO address lines decoded */
uint32_t ReqOffset; /* required window offest */

The fields are defined as follows: Socket

Not used in Solaris, but for portability with other Card Services implementations, it should be set to the logical socket number.

Attributes

This field is bit-mapped and is defined as follows: WIN_MEMORY_TYPE_IO

Points to I/O space.

WIN_MEMORY_TYPE_CM

Points to common memory space.

WIN_MEMORY_TYPE_AM

These bits select which type of window is being requested. One of these bits must be set.

WIN_ENABLE

The client must set this bit to enable the window.

WIN_ACC_BIG_ENDIAN

Describes device as big-endian.

WIN_ACC_LITTLE_ENDIAN

These bits describe the endian characteristics of the device as big endian or little endian, respectively. Even though most of the devices will have the same endian characteristics as their busses, there are examples of devices with an I/O processor that has opposite endian characteristics of the busses. When either of these bits are set, byte swapping will automatically be performed by the system if the host machine and the device data formats have opposite endian characteristics. The implementation may take advantage of hardware platform byte swapping capabilities.

WIN_ACC_NEVER_SWAP

When this is specified, byte swapping will not be invoked in the data access functions.

The ability to specify the order in which the CPU will reference data is provided by the following Attributes bits, only one of which may be specified: WIN_ACC_STRICT_ORDER

The data references must be issued by a CPU in program order. Strict ordering is the default behavior.

WIN_ACC_UNORDERED_OK

The CPU may re-order the data references. This includes all kinds of re-ordering (that is, a load followed by a store may be replaced by a store followed by a load).

WIN_ACC_MERGING_OK

The CPU may merge individual stores to consecutive locations. For example, the CPU may turn two consecutive byte stores into one halfword store. It may also batch individual loads. For example, the CPU may turn two consecutive byte loads into one halfword load. This bit also implies re-ordering.

WIN_ACC_LOADCACHING_OK

The CPU may cache the data it fetches and reuse it until another store occurs. The default behavior is to fetch new data on every load. This bit also implies merging and re-ordering.

WIN_ACC_STORECACHING_OK

The CPU may keep the data in the cache and push it to the device (perhaps with other data) at a later time. The default behavior is to push the data right away. This bit also implies load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without being merged or cached, even though a driver requests unordered, merged and cached together. All other bits in the Attributes field must be set to 0. On successful return from csx_RequestWindow(), WIN_OFFSET_SIZE is set in the Attributes field when the client must specify card offsets to csx_MapMemPage(9F) that are a multiple of the window size.
Base.base

This field must be set to 0 on calling csx_RequestWindow().

Base.handle

On successful return from csx_RequestWindow(), the Base.handle field contains an access handle corresponding to the first byte of the allocated memory window which the client must use when accessing the PC Card's memory space via the common access functions. A client must not make any assumptions as to the format of the returned Base.handle field value.

Size

On calling csx_RequestWindow(), the Size field is the size in bytes of the memory window requested. Size may be zero to indicate that Card Services should provide the smallest sized window available. On successful return from csx_RequestWindow(), the Size field contains the actual size of the window allocated.

win_params.AccessSpeed

This field specifies the access speed of the window if the client is requesting a memory window. The AccessSpeed field bit definitions use the format of the extended speed byte of the Device ID tuple. If the mantissa is 0 (noted as reserved in the PC Card 95 Standard), the lower bits are a binary code representing a speed from the following table:

Code Speed
0 (Reserved - do not use).
1 250 nsec
2 200 nsec
3 150 nsec
4 100 nse
5-7 (Reserved\(emdo not use.)

To request a window that supports the WAIT signal, OR-in the WIN_USE_WAIT bit to the AccessSpeed value before calling this function.

It is recommended that clients use the csx_ConvertSpeed(9F) function to generate the appropriate AccessSpeed values rather than manually perturbing the AccessSpeed field. win_params.IOAddrLines

If the client is requesting an I/O window, the IOAddrLines field is the number of I/O address lines decoded by the PC Card in the specified socket. Access to the I/O window is not enabled until csx_RequestConfiguration(9F) has been invoked successfully.

ReqOffset

This field is a Solaris-specific extension that can be used by clients to generate optimum window offsets passed to csx_MapMemPage(9F).

RETURN VALUES
CS_SUCCESS

Successful operation.

CS_BAD_ATTRIBUTE

Attributes are invalid.

CS_BAD_SPEED

Speed is invalid.

CS_BAD_HANDLE

Client handle is invalid.

CS_BAD_SIZE

Window size is invalid.

CS_NO_CARD

No PC Card in socket.

CS_OUT_OF_RESOURCE

Unable to allocate window.

CS_UNSUPPORTED_FUNCTION

No PCMCIA hardware installed.

CONTEXT

These functions may be called from user or kernel context.

SEE ALSO

csx_ConvertSpeed(9F), csx_MapMemPage(9F), csx_ModifyWindow(9F), csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA