xref: /titanic_50/usr/src/lib/libzpool/common/taskq.c (revision 549ec3fff108310966327d1dc9004551b63210b7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 
31 int taskq_now;
32 
33 typedef struct task {
34 	struct task	*task_next;
35 	struct task	*task_prev;
36 	task_func_t	*task_func;
37 	void		*task_arg;
38 } task_t;
39 
40 #define	TASKQ_ACTIVE	0x00010000
41 
42 struct taskq {
43 	kmutex_t	tq_lock;
44 	krwlock_t	tq_threadlock;
45 	kcondvar_t	tq_dispatch_cv;
46 	kcondvar_t	tq_wait_cv;
47 	thread_t	*tq_threadlist;
48 	int		tq_flags;
49 	int		tq_active;
50 	int		tq_nthreads;
51 	int		tq_nalloc;
52 	int		tq_minalloc;
53 	int		tq_maxalloc;
54 	task_t		*tq_freelist;
55 	task_t		tq_task;
56 };
57 
58 static task_t *
59 task_alloc(taskq_t *tq, int tqflags)
60 {
61 	task_t *t;
62 
63 	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
64 		tq->tq_freelist = t->task_next;
65 	} else {
66 		mutex_exit(&tq->tq_lock);
67 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
68 			if (!(tqflags & KM_SLEEP)) {
69 				mutex_enter(&tq->tq_lock);
70 				return (NULL);
71 			}
72 			/*
73 			 * We don't want to exceed tq_maxalloc, but we can't
74 			 * wait for other tasks to complete (and thus free up
75 			 * task structures) without risking deadlock with
76 			 * the caller.  So, we just delay for one second
77 			 * to throttle the allocation rate.
78 			 */
79 			delay(hz);
80 		}
81 		t = kmem_alloc(sizeof (task_t), tqflags);
82 		mutex_enter(&tq->tq_lock);
83 		if (t != NULL)
84 			tq->tq_nalloc++;
85 	}
86 	return (t);
87 }
88 
89 static void
90 task_free(taskq_t *tq, task_t *t)
91 {
92 	if (tq->tq_nalloc <= tq->tq_minalloc) {
93 		t->task_next = tq->tq_freelist;
94 		tq->tq_freelist = t;
95 	} else {
96 		tq->tq_nalloc--;
97 		mutex_exit(&tq->tq_lock);
98 		kmem_free(t, sizeof (task_t));
99 		mutex_enter(&tq->tq_lock);
100 	}
101 }
102 
103 taskqid_t
104 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
105 {
106 	task_t *t;
107 
108 	if (taskq_now) {
109 		func(arg);
110 		return (1);
111 	}
112 
113 	mutex_enter(&tq->tq_lock);
114 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
115 	if ((t = task_alloc(tq, tqflags)) == NULL) {
116 		mutex_exit(&tq->tq_lock);
117 		return (0);
118 	}
119 	t->task_next = &tq->tq_task;
120 	t->task_prev = tq->tq_task.task_prev;
121 	t->task_next->task_prev = t;
122 	t->task_prev->task_next = t;
123 	t->task_func = func;
124 	t->task_arg = arg;
125 	cv_signal(&tq->tq_dispatch_cv);
126 	mutex_exit(&tq->tq_lock);
127 	return (1);
128 }
129 
130 void
131 taskq_wait(taskq_t *tq)
132 {
133 	mutex_enter(&tq->tq_lock);
134 	while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
135 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
136 	mutex_exit(&tq->tq_lock);
137 }
138 
139 static void *
140 taskq_thread(void *arg)
141 {
142 	taskq_t *tq = arg;
143 	task_t *t;
144 
145 	mutex_enter(&tq->tq_lock);
146 	while (tq->tq_flags & TASKQ_ACTIVE) {
147 		if ((t = tq->tq_task.task_next) == &tq->tq_task) {
148 			if (--tq->tq_active == 0)
149 				cv_broadcast(&tq->tq_wait_cv);
150 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
151 			tq->tq_active++;
152 			continue;
153 		}
154 		t->task_prev->task_next = t->task_next;
155 		t->task_next->task_prev = t->task_prev;
156 		mutex_exit(&tq->tq_lock);
157 
158 		rw_enter(&tq->tq_threadlock, RW_READER);
159 		t->task_func(t->task_arg);
160 		rw_exit(&tq->tq_threadlock);
161 
162 		mutex_enter(&tq->tq_lock);
163 		task_free(tq, t);
164 	}
165 	tq->tq_nthreads--;
166 	cv_broadcast(&tq->tq_wait_cv);
167 	mutex_exit(&tq->tq_lock);
168 	return (NULL);
169 }
170 
171 /*ARGSUSED*/
172 taskq_t *
173 taskq_create(const char *name, int nthreads, pri_t pri,
174 	int minalloc, int maxalloc, uint_t flags)
175 {
176 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
177 	int t;
178 
179 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
180 	tq->tq_flags = flags | TASKQ_ACTIVE;
181 	tq->tq_active = nthreads;
182 	tq->tq_nthreads = nthreads;
183 	tq->tq_minalloc = minalloc;
184 	tq->tq_maxalloc = maxalloc;
185 	tq->tq_task.task_next = &tq->tq_task;
186 	tq->tq_task.task_prev = &tq->tq_task;
187 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
188 
189 	if (flags & TASKQ_PREPOPULATE) {
190 		mutex_enter(&tq->tq_lock);
191 		while (minalloc-- > 0)
192 			task_free(tq, task_alloc(tq, KM_SLEEP));
193 		mutex_exit(&tq->tq_lock);
194 	}
195 
196 	for (t = 0; t < nthreads; t++)
197 		(void) thr_create(0, 0, taskq_thread,
198 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
199 
200 	return (tq);
201 }
202 
203 void
204 taskq_destroy(taskq_t *tq)
205 {
206 	int t;
207 	int nthreads = tq->tq_nthreads;
208 
209 	taskq_wait(tq);
210 
211 	mutex_enter(&tq->tq_lock);
212 
213 	tq->tq_flags &= ~TASKQ_ACTIVE;
214 	cv_broadcast(&tq->tq_dispatch_cv);
215 
216 	while (tq->tq_nthreads != 0)
217 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
218 
219 	tq->tq_minalloc = 0;
220 	while (tq->tq_nalloc != 0) {
221 		ASSERT(tq->tq_freelist != NULL);
222 		task_free(tq, task_alloc(tq, KM_SLEEP));
223 	}
224 
225 	mutex_exit(&tq->tq_lock);
226 
227 	for (t = 0; t < nthreads; t++)
228 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
229 
230 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
231 
232 	rw_destroy(&tq->tq_threadlock);
233 
234 	kmem_free(tq, sizeof (taskq_t));
235 }
236 
237 int
238 taskq_member(taskq_t *tq, void *t)
239 {
240 	int i;
241 
242 	if (taskq_now)
243 		return (1);
244 
245 	for (i = 0; i < tq->tq_nthreads; i++)
246 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
247 			return (1);
248 
249 	return (0);
250 }
251