xref: /titanic_50/usr/src/lib/libzpool/common/kernel.c (revision b533f56bf95137d3de6666bd923e15ec373ea611)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/zmod.h>
38 #include <sys/utsname.h>
39 #include <sys/systeminfo.h>
40 
41 /*
42  * Emulation of kernel services in userland.
43  */
44 
45 int aok;
46 uint64_t physmem;
47 vnode_t *rootdir = (vnode_t *)0xabcd1234;
48 char hw_serial[HW_HOSTID_LEN];
49 vmem_t *zio_arena = NULL;
50 
51 struct utsname utsname = {
52 	"userland", "libzpool", "1", "1", "na"
53 };
54 
55 /* this only exists to have its address taken */
56 struct proc p0;
57 
58 /*
59  * =========================================================================
60  * threads
61  * =========================================================================
62  */
63 /*ARGSUSED*/
64 kthread_t *
65 zk_thread_create(void (*func)(), void *arg)
66 {
67 	thread_t tid;
68 
69 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
70 	    &tid) == 0);
71 
72 	return ((void *)(uintptr_t)tid);
73 }
74 
75 /*
76  * =========================================================================
77  * kstats
78  * =========================================================================
79  */
80 /*ARGSUSED*/
81 kstat_t *
82 kstat_create(char *module, int instance, char *name, char *class,
83     uchar_t type, ulong_t ndata, uchar_t ks_flag)
84 {
85 	return (NULL);
86 }
87 
88 /*ARGSUSED*/
89 void
90 kstat_install(kstat_t *ksp)
91 {}
92 
93 /*ARGSUSED*/
94 void
95 kstat_delete(kstat_t *ksp)
96 {}
97 
98 /*
99  * =========================================================================
100  * mutexes
101  * =========================================================================
102  */
103 void
104 zmutex_init(kmutex_t *mp)
105 {
106 	mp->m_owner = NULL;
107 	mp->initialized = B_TRUE;
108 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
109 }
110 
111 void
112 zmutex_destroy(kmutex_t *mp)
113 {
114 	ASSERT(mp->initialized == B_TRUE);
115 	ASSERT(mp->m_owner == NULL);
116 	(void) _mutex_destroy(&(mp)->m_lock);
117 	mp->m_owner = (void *)-1UL;
118 	mp->initialized = B_FALSE;
119 }
120 
121 void
122 mutex_enter(kmutex_t *mp)
123 {
124 	ASSERT(mp->initialized == B_TRUE);
125 	ASSERT(mp->m_owner != (void *)-1UL);
126 	ASSERT(mp->m_owner != curthread);
127 	VERIFY(mutex_lock(&mp->m_lock) == 0);
128 	ASSERT(mp->m_owner == NULL);
129 	mp->m_owner = curthread;
130 }
131 
132 int
133 mutex_tryenter(kmutex_t *mp)
134 {
135 	ASSERT(mp->initialized == B_TRUE);
136 	ASSERT(mp->m_owner != (void *)-1UL);
137 	if (0 == mutex_trylock(&mp->m_lock)) {
138 		ASSERT(mp->m_owner == NULL);
139 		mp->m_owner = curthread;
140 		return (1);
141 	} else {
142 		return (0);
143 	}
144 }
145 
146 void
147 mutex_exit(kmutex_t *mp)
148 {
149 	ASSERT(mp->initialized == B_TRUE);
150 	ASSERT(mutex_owner(mp) == curthread);
151 	mp->m_owner = NULL;
152 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
153 }
154 
155 void *
156 mutex_owner(kmutex_t *mp)
157 {
158 	ASSERT(mp->initialized == B_TRUE);
159 	return (mp->m_owner);
160 }
161 
162 /*
163  * =========================================================================
164  * rwlocks
165  * =========================================================================
166  */
167 /*ARGSUSED*/
168 void
169 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
170 {
171 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
172 	rwlp->rw_owner = NULL;
173 	rwlp->initialized = B_TRUE;
174 }
175 
176 void
177 rw_destroy(krwlock_t *rwlp)
178 {
179 	rwlock_destroy(&rwlp->rw_lock);
180 	rwlp->rw_owner = (void *)-1UL;
181 	rwlp->initialized = B_FALSE;
182 }
183 
184 void
185 rw_enter(krwlock_t *rwlp, krw_t rw)
186 {
187 	ASSERT(!RW_LOCK_HELD(rwlp));
188 	ASSERT(rwlp->initialized == B_TRUE);
189 	ASSERT(rwlp->rw_owner != (void *)-1UL);
190 	ASSERT(rwlp->rw_owner != curthread);
191 
192 	if (rw == RW_READER)
193 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
194 	else
195 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
196 
197 	rwlp->rw_owner = curthread;
198 }
199 
200 void
201 rw_exit(krwlock_t *rwlp)
202 {
203 	ASSERT(rwlp->initialized == B_TRUE);
204 	ASSERT(rwlp->rw_owner != (void *)-1UL);
205 
206 	rwlp->rw_owner = NULL;
207 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
208 }
209 
210 int
211 rw_tryenter(krwlock_t *rwlp, krw_t rw)
212 {
213 	int rv;
214 
215 	ASSERT(rwlp->initialized == B_TRUE);
216 	ASSERT(rwlp->rw_owner != (void *)-1UL);
217 
218 	if (rw == RW_READER)
219 		rv = rw_tryrdlock(&rwlp->rw_lock);
220 	else
221 		rv = rw_trywrlock(&rwlp->rw_lock);
222 
223 	if (rv == 0) {
224 		rwlp->rw_owner = curthread;
225 		return (1);
226 	}
227 
228 	return (0);
229 }
230 
231 /*ARGSUSED*/
232 int
233 rw_tryupgrade(krwlock_t *rwlp)
234 {
235 	ASSERT(rwlp->initialized == B_TRUE);
236 	ASSERT(rwlp->rw_owner != (void *)-1UL);
237 
238 	return (0);
239 }
240 
241 /*
242  * =========================================================================
243  * condition variables
244  * =========================================================================
245  */
246 /*ARGSUSED*/
247 void
248 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
249 {
250 	VERIFY(cond_init(cv, type, NULL) == 0);
251 }
252 
253 void
254 cv_destroy(kcondvar_t *cv)
255 {
256 	VERIFY(cond_destroy(cv) == 0);
257 }
258 
259 void
260 cv_wait(kcondvar_t *cv, kmutex_t *mp)
261 {
262 	ASSERT(mutex_owner(mp) == curthread);
263 	mp->m_owner = NULL;
264 	int ret = cond_wait(cv, &mp->m_lock);
265 	VERIFY(ret == 0 || ret == EINTR);
266 	mp->m_owner = curthread;
267 }
268 
269 clock_t
270 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
271 {
272 	int error;
273 	timestruc_t ts;
274 	clock_t delta;
275 
276 top:
277 	delta = abstime - ddi_get_lbolt();
278 	if (delta <= 0)
279 		return (-1);
280 
281 	ts.tv_sec = delta / hz;
282 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
283 
284 	ASSERT(mutex_owner(mp) == curthread);
285 	mp->m_owner = NULL;
286 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
287 	mp->m_owner = curthread;
288 
289 	if (error == ETIME)
290 		return (-1);
291 
292 	if (error == EINTR)
293 		goto top;
294 
295 	ASSERT(error == 0);
296 
297 	return (1);
298 }
299 
300 void
301 cv_signal(kcondvar_t *cv)
302 {
303 	VERIFY(cond_signal(cv) == 0);
304 }
305 
306 void
307 cv_broadcast(kcondvar_t *cv)
308 {
309 	VERIFY(cond_broadcast(cv) == 0);
310 }
311 
312 /*
313  * =========================================================================
314  * vnode operations
315  * =========================================================================
316  */
317 /*
318  * Note: for the xxxat() versions of these functions, we assume that the
319  * starting vp is always rootdir (which is true for spa_directory.c, the only
320  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
321  * them by adding '/' in front of the path.
322  */
323 
324 /*ARGSUSED*/
325 int
326 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
327 {
328 	int fd;
329 	vnode_t *vp;
330 	int old_umask;
331 	char realpath[MAXPATHLEN];
332 	struct stat64 st;
333 
334 	/*
335 	 * If we're accessing a real disk from userland, we need to use
336 	 * the character interface to avoid caching.  This is particularly
337 	 * important if we're trying to look at a real in-kernel storage
338 	 * pool from userland, e.g. via zdb, because otherwise we won't
339 	 * see the changes occurring under the segmap cache.
340 	 * On the other hand, the stupid character device returns zero
341 	 * for its size.  So -- gag -- we open the block device to get
342 	 * its size, and remember it for subsequent VOP_GETATTR().
343 	 */
344 	if (strncmp(path, "/dev/", 5) == 0) {
345 		char *dsk;
346 		fd = open64(path, O_RDONLY);
347 		if (fd == -1)
348 			return (errno);
349 		if (fstat64(fd, &st) == -1) {
350 			close(fd);
351 			return (errno);
352 		}
353 		close(fd);
354 		(void) sprintf(realpath, "%s", path);
355 		dsk = strstr(path, "/dsk/");
356 		if (dsk != NULL)
357 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
358 			    dsk + 1);
359 	} else {
360 		(void) sprintf(realpath, "%s", path);
361 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
362 			return (errno);
363 	}
364 
365 	if (flags & FCREAT)
366 		old_umask = umask(0);
367 
368 	/*
369 	 * The construct 'flags - FREAD' conveniently maps combinations of
370 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
371 	 */
372 	fd = open64(realpath, flags - FREAD, mode);
373 
374 	if (flags & FCREAT)
375 		(void) umask(old_umask);
376 
377 	if (fd == -1)
378 		return (errno);
379 
380 	if (fstat64(fd, &st) == -1) {
381 		close(fd);
382 		return (errno);
383 	}
384 
385 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
386 
387 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
388 
389 	vp->v_fd = fd;
390 	vp->v_size = st.st_size;
391 	vp->v_path = spa_strdup(path);
392 
393 	return (0);
394 }
395 
396 /*ARGSUSED*/
397 int
398 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
399     int x3, vnode_t *startvp, int fd)
400 {
401 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
402 	int ret;
403 
404 	ASSERT(startvp == rootdir);
405 	(void) sprintf(realpath, "/%s", path);
406 
407 	/* fd ignored for now, need if want to simulate nbmand support */
408 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
409 
410 	umem_free(realpath, strlen(path) + 2);
411 
412 	return (ret);
413 }
414 
415 /*ARGSUSED*/
416 int
417 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
418 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
419 {
420 	ssize_t iolen, split;
421 
422 	if (uio == UIO_READ) {
423 		iolen = pread64(vp->v_fd, addr, len, offset);
424 	} else {
425 		/*
426 		 * To simulate partial disk writes, we split writes into two
427 		 * system calls so that the process can be killed in between.
428 		 */
429 		int sectors = len >> SPA_MINBLOCKSHIFT;
430 		split = (sectors > 0 ? rand() % sectors : 0) <<
431 		    SPA_MINBLOCKSHIFT;
432 		iolen = pwrite64(vp->v_fd, addr, split, offset);
433 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
434 		    len - split, offset + split);
435 	}
436 
437 	if (iolen == -1)
438 		return (errno);
439 	if (residp)
440 		*residp = len - iolen;
441 	else if (iolen != len)
442 		return (EIO);
443 	return (0);
444 }
445 
446 void
447 vn_close(vnode_t *vp)
448 {
449 	close(vp->v_fd);
450 	spa_strfree(vp->v_path);
451 	umem_free(vp, sizeof (vnode_t));
452 }
453 
454 /*
455  * At a minimum we need to update the size since vdev_reopen()
456  * will no longer call vn_openat().
457  */
458 int
459 fop_getattr(vnode_t *vp, vattr_t *vap)
460 {
461 	struct stat64 st;
462 
463 	if (fstat64(vp->v_fd, &st) == -1) {
464 		close(vp->v_fd);
465 		return (errno);
466 	}
467 
468 	vap->va_size = st.st_size;
469 	return (0);
470 }
471 
472 #ifdef ZFS_DEBUG
473 
474 /*
475  * =========================================================================
476  * Figure out which debugging statements to print
477  * =========================================================================
478  */
479 
480 static char *dprintf_string;
481 static int dprintf_print_all;
482 
483 int
484 dprintf_find_string(const char *string)
485 {
486 	char *tmp_str = dprintf_string;
487 	int len = strlen(string);
488 
489 	/*
490 	 * Find out if this is a string we want to print.
491 	 * String format: file1.c,function_name1,file2.c,file3.c
492 	 */
493 
494 	while (tmp_str != NULL) {
495 		if (strncmp(tmp_str, string, len) == 0 &&
496 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
497 			return (1);
498 		tmp_str = strchr(tmp_str, ',');
499 		if (tmp_str != NULL)
500 			tmp_str++; /* Get rid of , */
501 	}
502 	return (0);
503 }
504 
505 void
506 dprintf_setup(int *argc, char **argv)
507 {
508 	int i, j;
509 
510 	/*
511 	 * Debugging can be specified two ways: by setting the
512 	 * environment variable ZFS_DEBUG, or by including a
513 	 * "debug=..."  argument on the command line.  The command
514 	 * line setting overrides the environment variable.
515 	 */
516 
517 	for (i = 1; i < *argc; i++) {
518 		int len = strlen("debug=");
519 		/* First look for a command line argument */
520 		if (strncmp("debug=", argv[i], len) == 0) {
521 			dprintf_string = argv[i] + len;
522 			/* Remove from args */
523 			for (j = i; j < *argc; j++)
524 				argv[j] = argv[j+1];
525 			argv[j] = NULL;
526 			(*argc)--;
527 		}
528 	}
529 
530 	if (dprintf_string == NULL) {
531 		/* Look for ZFS_DEBUG environment variable */
532 		dprintf_string = getenv("ZFS_DEBUG");
533 	}
534 
535 	/*
536 	 * Are we just turning on all debugging?
537 	 */
538 	if (dprintf_find_string("on"))
539 		dprintf_print_all = 1;
540 }
541 
542 /*
543  * =========================================================================
544  * debug printfs
545  * =========================================================================
546  */
547 void
548 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
549 {
550 	const char *newfile;
551 	va_list adx;
552 
553 	/*
554 	 * Get rid of annoying "../common/" prefix to filename.
555 	 */
556 	newfile = strrchr(file, '/');
557 	if (newfile != NULL) {
558 		newfile = newfile + 1; /* Get rid of leading / */
559 	} else {
560 		newfile = file;
561 	}
562 
563 	if (dprintf_print_all ||
564 	    dprintf_find_string(newfile) ||
565 	    dprintf_find_string(func)) {
566 		/* Print out just the function name if requested */
567 		flockfile(stdout);
568 		if (dprintf_find_string("pid"))
569 			(void) printf("%d ", getpid());
570 		if (dprintf_find_string("tid"))
571 			(void) printf("%u ", thr_self());
572 		if (dprintf_find_string("cpu"))
573 			(void) printf("%u ", getcpuid());
574 		if (dprintf_find_string("time"))
575 			(void) printf("%llu ", gethrtime());
576 		if (dprintf_find_string("long"))
577 			(void) printf("%s, line %d: ", newfile, line);
578 		(void) printf("%s: ", func);
579 		va_start(adx, fmt);
580 		(void) vprintf(fmt, adx);
581 		va_end(adx);
582 		funlockfile(stdout);
583 	}
584 }
585 
586 #endif /* ZFS_DEBUG */
587 
588 /*
589  * =========================================================================
590  * cmn_err() and panic()
591  * =========================================================================
592  */
593 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
594 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
595 
596 void
597 vpanic(const char *fmt, va_list adx)
598 {
599 	(void) fprintf(stderr, "error: ");
600 	(void) vfprintf(stderr, fmt, adx);
601 	(void) fprintf(stderr, "\n");
602 
603 	abort();	/* think of it as a "user-level crash dump" */
604 }
605 
606 void
607 panic(const char *fmt, ...)
608 {
609 	va_list adx;
610 
611 	va_start(adx, fmt);
612 	vpanic(fmt, adx);
613 	va_end(adx);
614 }
615 
616 void
617 vcmn_err(int ce, const char *fmt, va_list adx)
618 {
619 	if (ce == CE_PANIC)
620 		vpanic(fmt, adx);
621 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
622 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
623 		(void) vfprintf(stderr, fmt, adx);
624 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
625 	}
626 }
627 
628 /*PRINTFLIKE2*/
629 void
630 cmn_err(int ce, const char *fmt, ...)
631 {
632 	va_list adx;
633 
634 	va_start(adx, fmt);
635 	vcmn_err(ce, fmt, adx);
636 	va_end(adx);
637 }
638 
639 /*
640  * =========================================================================
641  * kobj interfaces
642  * =========================================================================
643  */
644 struct _buf *
645 kobj_open_file(char *name)
646 {
647 	struct _buf *file;
648 	vnode_t *vp;
649 
650 	/* set vp as the _fd field of the file */
651 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
652 	    -1) != 0)
653 		return ((void *)-1UL);
654 
655 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
656 	file->_fd = (intptr_t)vp;
657 	return (file);
658 }
659 
660 int
661 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
662 {
663 	ssize_t resid;
664 
665 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
666 	    UIO_SYSSPACE, 0, 0, 0, &resid);
667 
668 	return (size - resid);
669 }
670 
671 void
672 kobj_close_file(struct _buf *file)
673 {
674 	vn_close((vnode_t *)file->_fd);
675 	umem_free(file, sizeof (struct _buf));
676 }
677 
678 int
679 kobj_get_filesize(struct _buf *file, uint64_t *size)
680 {
681 	struct stat64 st;
682 	vnode_t *vp = (vnode_t *)file->_fd;
683 
684 	if (fstat64(vp->v_fd, &st) == -1) {
685 		vn_close(vp);
686 		return (errno);
687 	}
688 	*size = st.st_size;
689 	return (0);
690 }
691 
692 /*
693  * =========================================================================
694  * misc routines
695  * =========================================================================
696  */
697 
698 void
699 delay(clock_t ticks)
700 {
701 	poll(0, 0, ticks * (1000 / hz));
702 }
703 
704 /*
705  * Find highest one bit set.
706  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
707  * High order bit is 31 (or 63 in _LP64 kernel).
708  */
709 int
710 highbit(ulong_t i)
711 {
712 	register int h = 1;
713 
714 	if (i == 0)
715 		return (0);
716 #ifdef _LP64
717 	if (i & 0xffffffff00000000ul) {
718 		h += 32; i >>= 32;
719 	}
720 #endif
721 	if (i & 0xffff0000) {
722 		h += 16; i >>= 16;
723 	}
724 	if (i & 0xff00) {
725 		h += 8; i >>= 8;
726 	}
727 	if (i & 0xf0) {
728 		h += 4; i >>= 4;
729 	}
730 	if (i & 0xc) {
731 		h += 2; i >>= 2;
732 	}
733 	if (i & 0x2) {
734 		h += 1;
735 	}
736 	return (h);
737 }
738 
739 static int random_fd = -1, urandom_fd = -1;
740 
741 static int
742 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
743 {
744 	size_t resid = len;
745 	ssize_t bytes;
746 
747 	ASSERT(fd != -1);
748 
749 	while (resid != 0) {
750 		bytes = read(fd, ptr, resid);
751 		ASSERT3S(bytes, >=, 0);
752 		ptr += bytes;
753 		resid -= bytes;
754 	}
755 
756 	return (0);
757 }
758 
759 int
760 random_get_bytes(uint8_t *ptr, size_t len)
761 {
762 	return (random_get_bytes_common(ptr, len, random_fd));
763 }
764 
765 int
766 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
767 {
768 	return (random_get_bytes_common(ptr, len, urandom_fd));
769 }
770 
771 int
772 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
773 {
774 	char *end;
775 
776 	*result = strtoul(hw_serial, &end, base);
777 	if (*result == 0)
778 		return (errno);
779 	return (0);
780 }
781 
782 int
783 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
784 {
785 	char *end;
786 
787 	*result = strtoull(str, &end, base);
788 	if (*result == 0)
789 		return (errno);
790 	return (0);
791 }
792 
793 /*
794  * =========================================================================
795  * kernel emulation setup & teardown
796  * =========================================================================
797  */
798 static int
799 umem_out_of_memory(void)
800 {
801 	char errmsg[] = "out of memory -- generating core dump\n";
802 
803 	write(fileno(stderr), errmsg, sizeof (errmsg));
804 	abort();
805 	return (0);
806 }
807 
808 void
809 kernel_init(int mode)
810 {
811 	umem_nofail_callback(umem_out_of_memory);
812 
813 	physmem = sysconf(_SC_PHYS_PAGES);
814 
815 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
816 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
817 
818 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
819 	    (mode & FWRITE) ? gethostid() : 0);
820 
821 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
822 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
823 
824 	system_taskq_init();
825 
826 	spa_init(mode);
827 }
828 
829 void
830 kernel_fini(void)
831 {
832 	spa_fini();
833 
834 	system_taskq_fini();
835 
836 	close(random_fd);
837 	close(urandom_fd);
838 
839 	random_fd = -1;
840 	urandom_fd = -1;
841 }
842 
843 int
844 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
845 {
846 	int ret;
847 	uLongf len = *dstlen;
848 
849 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
850 		*dstlen = (size_t)len;
851 
852 	return (ret);
853 }
854 
855 int
856 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
857     int level)
858 {
859 	int ret;
860 	uLongf len = *dstlen;
861 
862 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
863 		*dstlen = (size_t)len;
864 
865 	return (ret);
866 }
867 
868 uid_t
869 crgetuid(cred_t *cr)
870 {
871 	return (0);
872 }
873 
874 uid_t
875 crgetruid(cred_t *cr)
876 {
877 	return (0);
878 }
879 
880 gid_t
881 crgetgid(cred_t *cr)
882 {
883 	return (0);
884 }
885 
886 int
887 crgetngroups(cred_t *cr)
888 {
889 	return (0);
890 }
891 
892 gid_t *
893 crgetgroups(cred_t *cr)
894 {
895 	return (NULL);
896 }
897 
898 int
899 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
900 {
901 	return (0);
902 }
903 
904 int
905 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
906 {
907 	return (0);
908 }
909 
910 int
911 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
912 {
913 	return (0);
914 }
915 
916 ksiddomain_t *
917 ksid_lookupdomain(const char *dom)
918 {
919 	ksiddomain_t *kd;
920 
921 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
922 	kd->kd_name = spa_strdup(dom);
923 	return (kd);
924 }
925 
926 void
927 ksiddomain_rele(ksiddomain_t *ksid)
928 {
929 	spa_strfree(ksid->kd_name);
930 	umem_free(ksid, sizeof (ksiddomain_t));
931 }
932 
933 /*
934  * Do not change the length of the returned string; it must be freed
935  * with strfree().
936  */
937 char *
938 kmem_asprintf(const char *fmt, ...)
939 {
940 	int size;
941 	va_list adx;
942 	char *buf;
943 
944 	va_start(adx, fmt);
945 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
946 	va_end(adx);
947 
948 	buf = kmem_alloc(size, KM_SLEEP);
949 
950 	va_start(adx, fmt);
951 	size = vsnprintf(buf, size, fmt, adx);
952 	va_end(adx);
953 
954 	return (buf);
955 }
956 
957 /* ARGSUSED */
958 int
959 zfs_onexit_fd_hold(int fd, minor_t *minorp)
960 {
961 	*minorp = 0;
962 	return (0);
963 }
964 
965 /* ARGSUSED */
966 void
967 zfs_onexit_fd_rele(int fd)
968 {
969 }
970 
971 /* ARGSUSED */
972 int
973 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
974     uint64_t *action_handle)
975 {
976 	return (0);
977 }
978 
979 /* ARGSUSED */
980 int
981 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
982 {
983 	return (0);
984 }
985 
986 /* ARGSUSED */
987 int
988 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
989 {
990 	return (0);
991 }
992