xref: /titanic_50/usr/src/lib/libzpool/common/kernel.c (revision 8e7248e505faa19396d4e853604e3fa7cd2cb3b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/zmod.h>
38 #include <sys/utsname.h>
39 
40 /*
41  * Emulation of kernel services in userland.
42  */
43 
44 uint64_t physmem;
45 vnode_t *rootdir = (vnode_t *)0xabcd1234;
46 char hw_serial[11];
47 
48 struct utsname utsname = {
49 	"userland", "libzpool", "1", "1", "na"
50 };
51 
52 /*
53  * =========================================================================
54  * threads
55  * =========================================================================
56  */
57 /*ARGSUSED*/
58 kthread_t *
59 zk_thread_create(void (*func)(), void *arg)
60 {
61 	thread_t tid;
62 
63 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
64 	    &tid) == 0);
65 
66 	return ((void *)(uintptr_t)tid);
67 }
68 
69 /*
70  * =========================================================================
71  * kstats
72  * =========================================================================
73  */
74 /*ARGSUSED*/
75 kstat_t *
76 kstat_create(char *module, int instance, char *name, char *class,
77     uchar_t type, ulong_t ndata, uchar_t ks_flag)
78 {
79 	return (NULL);
80 }
81 
82 /*ARGSUSED*/
83 void
84 kstat_install(kstat_t *ksp)
85 {}
86 
87 /*ARGSUSED*/
88 void
89 kstat_delete(kstat_t *ksp)
90 {}
91 
92 /*
93  * =========================================================================
94  * mutexes
95  * =========================================================================
96  */
97 void
98 zmutex_init(kmutex_t *mp)
99 {
100 	mp->m_owner = NULL;
101 	mp->initialized = B_TRUE;
102 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
103 }
104 
105 void
106 zmutex_destroy(kmutex_t *mp)
107 {
108 	ASSERT(mp->initialized == B_TRUE);
109 	ASSERT(mp->m_owner == NULL);
110 	(void) _mutex_destroy(&(mp)->m_lock);
111 	mp->m_owner = (void *)-1UL;
112 	mp->initialized = B_FALSE;
113 }
114 
115 void
116 mutex_enter(kmutex_t *mp)
117 {
118 	ASSERT(mp->initialized == B_TRUE);
119 	ASSERT(mp->m_owner != (void *)-1UL);
120 	ASSERT(mp->m_owner != curthread);
121 	VERIFY(mutex_lock(&mp->m_lock) == 0);
122 	ASSERT(mp->m_owner == NULL);
123 	mp->m_owner = curthread;
124 }
125 
126 int
127 mutex_tryenter(kmutex_t *mp)
128 {
129 	ASSERT(mp->initialized == B_TRUE);
130 	ASSERT(mp->m_owner != (void *)-1UL);
131 	if (0 == mutex_trylock(&mp->m_lock)) {
132 		ASSERT(mp->m_owner == NULL);
133 		mp->m_owner = curthread;
134 		return (1);
135 	} else {
136 		return (0);
137 	}
138 }
139 
140 void
141 mutex_exit(kmutex_t *mp)
142 {
143 	ASSERT(mp->initialized == B_TRUE);
144 	ASSERT(mutex_owner(mp) == curthread);
145 	mp->m_owner = NULL;
146 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
147 }
148 
149 void *
150 mutex_owner(kmutex_t *mp)
151 {
152 	ASSERT(mp->initialized == B_TRUE);
153 	return (mp->m_owner);
154 }
155 
156 /*
157  * =========================================================================
158  * rwlocks
159  * =========================================================================
160  */
161 /*ARGSUSED*/
162 void
163 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
164 {
165 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
166 	rwlp->rw_owner = NULL;
167 	rwlp->initialized = B_TRUE;
168 }
169 
170 void
171 rw_destroy(krwlock_t *rwlp)
172 {
173 	rwlock_destroy(&rwlp->rw_lock);
174 	rwlp->rw_owner = (void *)-1UL;
175 	rwlp->initialized = B_FALSE;
176 }
177 
178 void
179 rw_enter(krwlock_t *rwlp, krw_t rw)
180 {
181 	ASSERT(!RW_LOCK_HELD(rwlp));
182 	ASSERT(rwlp->initialized == B_TRUE);
183 	ASSERT(rwlp->rw_owner != (void *)-1UL);
184 	ASSERT(rwlp->rw_owner != curthread);
185 
186 	if (rw == RW_READER)
187 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
188 	else
189 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
190 
191 	rwlp->rw_owner = curthread;
192 }
193 
194 void
195 rw_exit(krwlock_t *rwlp)
196 {
197 	ASSERT(rwlp->initialized == B_TRUE);
198 	ASSERT(rwlp->rw_owner != (void *)-1UL);
199 
200 	rwlp->rw_owner = NULL;
201 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
202 }
203 
204 int
205 rw_tryenter(krwlock_t *rwlp, krw_t rw)
206 {
207 	int rv;
208 
209 	ASSERT(rwlp->initialized == B_TRUE);
210 	ASSERT(rwlp->rw_owner != (void *)-1UL);
211 
212 	if (rw == RW_READER)
213 		rv = rw_tryrdlock(&rwlp->rw_lock);
214 	else
215 		rv = rw_trywrlock(&rwlp->rw_lock);
216 
217 	if (rv == 0) {
218 		rwlp->rw_owner = curthread;
219 		return (1);
220 	}
221 
222 	return (0);
223 }
224 
225 /*ARGSUSED*/
226 int
227 rw_tryupgrade(krwlock_t *rwlp)
228 {
229 	ASSERT(rwlp->initialized == B_TRUE);
230 	ASSERT(rwlp->rw_owner != (void *)-1UL);
231 
232 	return (0);
233 }
234 
235 /*
236  * =========================================================================
237  * condition variables
238  * =========================================================================
239  */
240 /*ARGSUSED*/
241 void
242 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
243 {
244 	VERIFY(cond_init(cv, type, NULL) == 0);
245 }
246 
247 void
248 cv_destroy(kcondvar_t *cv)
249 {
250 	VERIFY(cond_destroy(cv) == 0);
251 }
252 
253 void
254 cv_wait(kcondvar_t *cv, kmutex_t *mp)
255 {
256 	ASSERT(mutex_owner(mp) == curthread);
257 	mp->m_owner = NULL;
258 	int ret = cond_wait(cv, &mp->m_lock);
259 	VERIFY(ret == 0 || ret == EINTR);
260 	mp->m_owner = curthread;
261 }
262 
263 clock_t
264 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
265 {
266 	int error;
267 	timestruc_t ts;
268 	clock_t delta;
269 
270 top:
271 	delta = abstime - lbolt;
272 	if (delta <= 0)
273 		return (-1);
274 
275 	ts.tv_sec = delta / hz;
276 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
277 
278 	ASSERT(mutex_owner(mp) == curthread);
279 	mp->m_owner = NULL;
280 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
281 	mp->m_owner = curthread;
282 
283 	if (error == ETIME)
284 		return (-1);
285 
286 	if (error == EINTR)
287 		goto top;
288 
289 	ASSERT(error == 0);
290 
291 	return (1);
292 }
293 
294 void
295 cv_signal(kcondvar_t *cv)
296 {
297 	VERIFY(cond_signal(cv) == 0);
298 }
299 
300 void
301 cv_broadcast(kcondvar_t *cv)
302 {
303 	VERIFY(cond_broadcast(cv) == 0);
304 }
305 
306 /*
307  * =========================================================================
308  * vnode operations
309  * =========================================================================
310  */
311 /*
312  * Note: for the xxxat() versions of these functions, we assume that the
313  * starting vp is always rootdir (which is true for spa_directory.c, the only
314  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
315  * them by adding '/' in front of the path.
316  */
317 
318 /*ARGSUSED*/
319 int
320 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
321 {
322 	int fd;
323 	vnode_t *vp;
324 	int old_umask;
325 	char realpath[MAXPATHLEN];
326 	struct stat64 st;
327 
328 	/*
329 	 * If we're accessing a real disk from userland, we need to use
330 	 * the character interface to avoid caching.  This is particularly
331 	 * important if we're trying to look at a real in-kernel storage
332 	 * pool from userland, e.g. via zdb, because otherwise we won't
333 	 * see the changes occurring under the segmap cache.
334 	 * On the other hand, the stupid character device returns zero
335 	 * for its size.  So -- gag -- we open the block device to get
336 	 * its size, and remember it for subsequent VOP_GETATTR().
337 	 */
338 	if (strncmp(path, "/dev/", 5) == 0) {
339 		char *dsk;
340 		fd = open64(path, O_RDONLY);
341 		if (fd == -1)
342 			return (errno);
343 		if (fstat64(fd, &st) == -1) {
344 			close(fd);
345 			return (errno);
346 		}
347 		close(fd);
348 		(void) sprintf(realpath, "%s", path);
349 		dsk = strstr(path, "/dsk/");
350 		if (dsk != NULL)
351 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
352 			    dsk + 1);
353 	} else {
354 		(void) sprintf(realpath, "%s", path);
355 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
356 			return (errno);
357 	}
358 
359 	if (flags & FCREAT)
360 		old_umask = umask(0);
361 
362 	/*
363 	 * The construct 'flags - FREAD' conveniently maps combinations of
364 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
365 	 */
366 	fd = open64(realpath, flags - FREAD, mode);
367 
368 	if (flags & FCREAT)
369 		(void) umask(old_umask);
370 
371 	if (fd == -1)
372 		return (errno);
373 
374 	if (fstat64(fd, &st) == -1) {
375 		close(fd);
376 		return (errno);
377 	}
378 
379 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
380 
381 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
382 
383 	vp->v_fd = fd;
384 	vp->v_size = st.st_size;
385 	vp->v_path = spa_strdup(path);
386 
387 	return (0);
388 }
389 
390 /*ARGSUSED*/
391 int
392 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
393     int x3, vnode_t *startvp, int fd)
394 {
395 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
396 	int ret;
397 
398 	ASSERT(startvp == rootdir);
399 	(void) sprintf(realpath, "/%s", path);
400 
401 	/* fd ignored for now, need if want to simulate nbmand support */
402 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
403 
404 	umem_free(realpath, strlen(path) + 2);
405 
406 	return (ret);
407 }
408 
409 /*ARGSUSED*/
410 int
411 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
412 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
413 {
414 	ssize_t iolen, split;
415 
416 	if (uio == UIO_READ) {
417 		iolen = pread64(vp->v_fd, addr, len, offset);
418 	} else {
419 		/*
420 		 * To simulate partial disk writes, we split writes into two
421 		 * system calls so that the process can be killed in between.
422 		 */
423 		split = (len > 0 ? rand() % len : 0);
424 		iolen = pwrite64(vp->v_fd, addr, split, offset);
425 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
426 		    len - split, offset + split);
427 	}
428 
429 	if (iolen == -1)
430 		return (errno);
431 	if (residp)
432 		*residp = len - iolen;
433 	else if (iolen != len)
434 		return (EIO);
435 	return (0);
436 }
437 
438 void
439 vn_close(vnode_t *vp)
440 {
441 	close(vp->v_fd);
442 	spa_strfree(vp->v_path);
443 	umem_free(vp, sizeof (vnode_t));
444 }
445 
446 #ifdef ZFS_DEBUG
447 
448 /*
449  * =========================================================================
450  * Figure out which debugging statements to print
451  * =========================================================================
452  */
453 
454 static char *dprintf_string;
455 static int dprintf_print_all;
456 
457 int
458 dprintf_find_string(const char *string)
459 {
460 	char *tmp_str = dprintf_string;
461 	int len = strlen(string);
462 
463 	/*
464 	 * Find out if this is a string we want to print.
465 	 * String format: file1.c,function_name1,file2.c,file3.c
466 	 */
467 
468 	while (tmp_str != NULL) {
469 		if (strncmp(tmp_str, string, len) == 0 &&
470 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
471 			return (1);
472 		tmp_str = strchr(tmp_str, ',');
473 		if (tmp_str != NULL)
474 			tmp_str++; /* Get rid of , */
475 	}
476 	return (0);
477 }
478 
479 void
480 dprintf_setup(int *argc, char **argv)
481 {
482 	int i, j;
483 
484 	/*
485 	 * Debugging can be specified two ways: by setting the
486 	 * environment variable ZFS_DEBUG, or by including a
487 	 * "debug=..."  argument on the command line.  The command
488 	 * line setting overrides the environment variable.
489 	 */
490 
491 	for (i = 1; i < *argc; i++) {
492 		int len = strlen("debug=");
493 		/* First look for a command line argument */
494 		if (strncmp("debug=", argv[i], len) == 0) {
495 			dprintf_string = argv[i] + len;
496 			/* Remove from args */
497 			for (j = i; j < *argc; j++)
498 				argv[j] = argv[j+1];
499 			argv[j] = NULL;
500 			(*argc)--;
501 		}
502 	}
503 
504 	if (dprintf_string == NULL) {
505 		/* Look for ZFS_DEBUG environment variable */
506 		dprintf_string = getenv("ZFS_DEBUG");
507 	}
508 
509 	/*
510 	 * Are we just turning on all debugging?
511 	 */
512 	if (dprintf_find_string("on"))
513 		dprintf_print_all = 1;
514 }
515 
516 /*
517  * =========================================================================
518  * debug printfs
519  * =========================================================================
520  */
521 void
522 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
523 {
524 	const char *newfile;
525 	va_list adx;
526 
527 	/*
528 	 * Get rid of annoying "../common/" prefix to filename.
529 	 */
530 	newfile = strrchr(file, '/');
531 	if (newfile != NULL) {
532 		newfile = newfile + 1; /* Get rid of leading / */
533 	} else {
534 		newfile = file;
535 	}
536 
537 	if (dprintf_print_all ||
538 	    dprintf_find_string(newfile) ||
539 	    dprintf_find_string(func)) {
540 		/* Print out just the function name if requested */
541 		flockfile(stdout);
542 		if (dprintf_find_string("pid"))
543 			(void) printf("%d ", getpid());
544 		if (dprintf_find_string("tid"))
545 			(void) printf("%u ", thr_self());
546 		if (dprintf_find_string("cpu"))
547 			(void) printf("%u ", getcpuid());
548 		if (dprintf_find_string("time"))
549 			(void) printf("%llu ", gethrtime());
550 		if (dprintf_find_string("long"))
551 			(void) printf("%s, line %d: ", newfile, line);
552 		(void) printf("%s: ", func);
553 		va_start(adx, fmt);
554 		(void) vprintf(fmt, adx);
555 		va_end(adx);
556 		funlockfile(stdout);
557 	}
558 }
559 
560 #endif /* ZFS_DEBUG */
561 
562 /*
563  * =========================================================================
564  * cmn_err() and panic()
565  * =========================================================================
566  */
567 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
568 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
569 
570 void
571 vpanic(const char *fmt, va_list adx)
572 {
573 	(void) fprintf(stderr, "error: ");
574 	(void) vfprintf(stderr, fmt, adx);
575 	(void) fprintf(stderr, "\n");
576 
577 	abort();	/* think of it as a "user-level crash dump" */
578 }
579 
580 void
581 panic(const char *fmt, ...)
582 {
583 	va_list adx;
584 
585 	va_start(adx, fmt);
586 	vpanic(fmt, adx);
587 	va_end(adx);
588 }
589 
590 void
591 vcmn_err(int ce, const char *fmt, va_list adx)
592 {
593 	if (ce == CE_PANIC)
594 		vpanic(fmt, adx);
595 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
596 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
597 		(void) vfprintf(stderr, fmt, adx);
598 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
599 	}
600 }
601 
602 /*PRINTFLIKE2*/
603 void
604 cmn_err(int ce, const char *fmt, ...)
605 {
606 	va_list adx;
607 
608 	va_start(adx, fmt);
609 	vcmn_err(ce, fmt, adx);
610 	va_end(adx);
611 }
612 
613 /*
614  * =========================================================================
615  * kobj interfaces
616  * =========================================================================
617  */
618 struct _buf *
619 kobj_open_file(char *name)
620 {
621 	struct _buf *file;
622 	vnode_t *vp;
623 
624 	/* set vp as the _fd field of the file */
625 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
626 	    -1) != 0)
627 		return ((void *)-1UL);
628 
629 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
630 	file->_fd = (intptr_t)vp;
631 	return (file);
632 }
633 
634 int
635 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
636 {
637 	ssize_t resid;
638 
639 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
640 	    UIO_SYSSPACE, 0, 0, 0, &resid);
641 
642 	return (size - resid);
643 }
644 
645 void
646 kobj_close_file(struct _buf *file)
647 {
648 	vn_close((vnode_t *)file->_fd);
649 	umem_free(file, sizeof (struct _buf));
650 }
651 
652 int
653 kobj_get_filesize(struct _buf *file, uint64_t *size)
654 {
655 	struct stat64 st;
656 	vnode_t *vp = (vnode_t *)file->_fd;
657 
658 	if (fstat64(vp->v_fd, &st) == -1) {
659 		vn_close(vp);
660 		return (errno);
661 	}
662 	*size = st.st_size;
663 	return (0);
664 }
665 
666 /*
667  * =========================================================================
668  * misc routines
669  * =========================================================================
670  */
671 
672 void
673 delay(clock_t ticks)
674 {
675 	poll(0, 0, ticks * (1000 / hz));
676 }
677 
678 /*
679  * Find highest one bit set.
680  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
681  * High order bit is 31 (or 63 in _LP64 kernel).
682  */
683 int
684 highbit(ulong_t i)
685 {
686 	register int h = 1;
687 
688 	if (i == 0)
689 		return (0);
690 #ifdef _LP64
691 	if (i & 0xffffffff00000000ul) {
692 		h += 32; i >>= 32;
693 	}
694 #endif
695 	if (i & 0xffff0000) {
696 		h += 16; i >>= 16;
697 	}
698 	if (i & 0xff00) {
699 		h += 8; i >>= 8;
700 	}
701 	if (i & 0xf0) {
702 		h += 4; i >>= 4;
703 	}
704 	if (i & 0xc) {
705 		h += 2; i >>= 2;
706 	}
707 	if (i & 0x2) {
708 		h += 1;
709 	}
710 	return (h);
711 }
712 
713 static int random_fd = -1, urandom_fd = -1;
714 
715 static int
716 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
717 {
718 	size_t resid = len;
719 	ssize_t bytes;
720 
721 	ASSERT(fd != -1);
722 
723 	while (resid != 0) {
724 		bytes = read(fd, ptr, resid);
725 		ASSERT3S(bytes, >=, 0);
726 		ptr += bytes;
727 		resid -= bytes;
728 	}
729 
730 	return (0);
731 }
732 
733 int
734 random_get_bytes(uint8_t *ptr, size_t len)
735 {
736 	return (random_get_bytes_common(ptr, len, random_fd));
737 }
738 
739 int
740 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
741 {
742 	return (random_get_bytes_common(ptr, len, urandom_fd));
743 }
744 
745 int
746 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
747 {
748 	char *end;
749 
750 	*result = strtoul(hw_serial, &end, base);
751 	if (*result == 0)
752 		return (errno);
753 	return (0);
754 }
755 
756 /*
757  * =========================================================================
758  * kernel emulation setup & teardown
759  * =========================================================================
760  */
761 static int
762 umem_out_of_memory(void)
763 {
764 	char errmsg[] = "out of memory -- generating core dump\n";
765 
766 	write(fileno(stderr), errmsg, sizeof (errmsg));
767 	abort();
768 	return (0);
769 }
770 
771 void
772 kernel_init(int mode)
773 {
774 	umem_nofail_callback(umem_out_of_memory);
775 
776 	physmem = sysconf(_SC_PHYS_PAGES);
777 
778 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
779 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
780 
781 	snprintf(hw_serial, sizeof (hw_serial), "%ld", gethostid());
782 
783 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
784 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
785 
786 	system_taskq_init();
787 
788 	spa_init(mode);
789 }
790 
791 void
792 kernel_fini(void)
793 {
794 	spa_fini();
795 
796 	close(random_fd);
797 	close(urandom_fd);
798 
799 	random_fd = -1;
800 	urandom_fd = -1;
801 }
802 
803 int
804 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
805 {
806 	int ret;
807 	uLongf len = *dstlen;
808 
809 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
810 		*dstlen = (size_t)len;
811 
812 	return (ret);
813 }
814 
815 int
816 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
817     int level)
818 {
819 	int ret;
820 	uLongf len = *dstlen;
821 
822 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
823 		*dstlen = (size_t)len;
824 
825 	return (ret);
826 }
827 
828 uid_t
829 crgetuid(cred_t *cr)
830 {
831 	return (0);
832 }
833 
834 gid_t
835 crgetgid(cred_t *cr)
836 {
837 	return (0);
838 }
839 
840 int
841 crgetngroups(cred_t *cr)
842 {
843 	return (0);
844 }
845 
846 gid_t *
847 crgetgroups(cred_t *cr)
848 {
849 	return (NULL);
850 }
851 
852 int
853 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
854 {
855 	return (0);
856 }
857 
858 int
859 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
860 {
861 	return (0);
862 }
863 
864 int
865 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
866 {
867 	return (0);
868 }
869 
870 ksiddomain_t *
871 ksid_lookupdomain(const char *dom)
872 {
873 	ksiddomain_t *kd;
874 
875 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
876 	kd->kd_name = spa_strdup(dom);
877 	return (kd);
878 }
879 
880 void
881 ksiddomain_rele(ksiddomain_t *ksid)
882 {
883 	spa_strfree(ksid->kd_name);
884 	umem_free(ksid, sizeof (ksiddomain_t));
885 }
886