1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <assert.h> 27 #include <fcntl.h> 28 #include <poll.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <string.h> 32 #include <zlib.h> 33 #include <sys/spa.h> 34 #include <sys/stat.h> 35 #include <sys/processor.h> 36 #include <sys/zfs_context.h> 37 #include <sys/zmod.h> 38 #include <sys/utsname.h> 39 #include <sys/systeminfo.h> 40 41 /* 42 * Emulation of kernel services in userland. 43 */ 44 45 uint64_t physmem; 46 vnode_t *rootdir = (vnode_t *)0xabcd1234; 47 char hw_serial[HW_HOSTID_LEN]; 48 49 struct utsname utsname = { 50 "userland", "libzpool", "1", "1", "na" 51 }; 52 53 /* 54 * ========================================================================= 55 * threads 56 * ========================================================================= 57 */ 58 /*ARGSUSED*/ 59 kthread_t * 60 zk_thread_create(void (*func)(), void *arg) 61 { 62 thread_t tid; 63 64 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 65 &tid) == 0); 66 67 return ((void *)(uintptr_t)tid); 68 } 69 70 /* 71 * ========================================================================= 72 * kstats 73 * ========================================================================= 74 */ 75 /*ARGSUSED*/ 76 kstat_t * 77 kstat_create(char *module, int instance, char *name, char *class, 78 uchar_t type, ulong_t ndata, uchar_t ks_flag) 79 { 80 return (NULL); 81 } 82 83 /*ARGSUSED*/ 84 void 85 kstat_install(kstat_t *ksp) 86 {} 87 88 /*ARGSUSED*/ 89 void 90 kstat_delete(kstat_t *ksp) 91 {} 92 93 /* 94 * ========================================================================= 95 * mutexes 96 * ========================================================================= 97 */ 98 void 99 zmutex_init(kmutex_t *mp) 100 { 101 mp->m_owner = NULL; 102 mp->initialized = B_TRUE; 103 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 104 } 105 106 void 107 zmutex_destroy(kmutex_t *mp) 108 { 109 ASSERT(mp->initialized == B_TRUE); 110 ASSERT(mp->m_owner == NULL); 111 (void) _mutex_destroy(&(mp)->m_lock); 112 mp->m_owner = (void *)-1UL; 113 mp->initialized = B_FALSE; 114 } 115 116 void 117 mutex_enter(kmutex_t *mp) 118 { 119 ASSERT(mp->initialized == B_TRUE); 120 ASSERT(mp->m_owner != (void *)-1UL); 121 ASSERT(mp->m_owner != curthread); 122 VERIFY(mutex_lock(&mp->m_lock) == 0); 123 ASSERT(mp->m_owner == NULL); 124 mp->m_owner = curthread; 125 } 126 127 int 128 mutex_tryenter(kmutex_t *mp) 129 { 130 ASSERT(mp->initialized == B_TRUE); 131 ASSERT(mp->m_owner != (void *)-1UL); 132 if (0 == mutex_trylock(&mp->m_lock)) { 133 ASSERT(mp->m_owner == NULL); 134 mp->m_owner = curthread; 135 return (1); 136 } else { 137 return (0); 138 } 139 } 140 141 void 142 mutex_exit(kmutex_t *mp) 143 { 144 ASSERT(mp->initialized == B_TRUE); 145 ASSERT(mutex_owner(mp) == curthread); 146 mp->m_owner = NULL; 147 VERIFY(mutex_unlock(&mp->m_lock) == 0); 148 } 149 150 void * 151 mutex_owner(kmutex_t *mp) 152 { 153 ASSERT(mp->initialized == B_TRUE); 154 return (mp->m_owner); 155 } 156 157 /* 158 * ========================================================================= 159 * rwlocks 160 * ========================================================================= 161 */ 162 /*ARGSUSED*/ 163 void 164 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 165 { 166 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 167 rwlp->rw_owner = NULL; 168 rwlp->initialized = B_TRUE; 169 } 170 171 void 172 rw_destroy(krwlock_t *rwlp) 173 { 174 rwlock_destroy(&rwlp->rw_lock); 175 rwlp->rw_owner = (void *)-1UL; 176 rwlp->initialized = B_FALSE; 177 } 178 179 void 180 rw_enter(krwlock_t *rwlp, krw_t rw) 181 { 182 ASSERT(!RW_LOCK_HELD(rwlp)); 183 ASSERT(rwlp->initialized == B_TRUE); 184 ASSERT(rwlp->rw_owner != (void *)-1UL); 185 ASSERT(rwlp->rw_owner != curthread); 186 187 if (rw == RW_READER) 188 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 189 else 190 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 191 192 rwlp->rw_owner = curthread; 193 } 194 195 void 196 rw_exit(krwlock_t *rwlp) 197 { 198 ASSERT(rwlp->initialized == B_TRUE); 199 ASSERT(rwlp->rw_owner != (void *)-1UL); 200 201 rwlp->rw_owner = NULL; 202 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 203 } 204 205 int 206 rw_tryenter(krwlock_t *rwlp, krw_t rw) 207 { 208 int rv; 209 210 ASSERT(rwlp->initialized == B_TRUE); 211 ASSERT(rwlp->rw_owner != (void *)-1UL); 212 213 if (rw == RW_READER) 214 rv = rw_tryrdlock(&rwlp->rw_lock); 215 else 216 rv = rw_trywrlock(&rwlp->rw_lock); 217 218 if (rv == 0) { 219 rwlp->rw_owner = curthread; 220 return (1); 221 } 222 223 return (0); 224 } 225 226 /*ARGSUSED*/ 227 int 228 rw_tryupgrade(krwlock_t *rwlp) 229 { 230 ASSERT(rwlp->initialized == B_TRUE); 231 ASSERT(rwlp->rw_owner != (void *)-1UL); 232 233 return (0); 234 } 235 236 /* 237 * ========================================================================= 238 * condition variables 239 * ========================================================================= 240 */ 241 /*ARGSUSED*/ 242 void 243 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 244 { 245 VERIFY(cond_init(cv, type, NULL) == 0); 246 } 247 248 void 249 cv_destroy(kcondvar_t *cv) 250 { 251 VERIFY(cond_destroy(cv) == 0); 252 } 253 254 void 255 cv_wait(kcondvar_t *cv, kmutex_t *mp) 256 { 257 ASSERT(mutex_owner(mp) == curthread); 258 mp->m_owner = NULL; 259 int ret = cond_wait(cv, &mp->m_lock); 260 VERIFY(ret == 0 || ret == EINTR); 261 mp->m_owner = curthread; 262 } 263 264 clock_t 265 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 266 { 267 int error; 268 timestruc_t ts; 269 clock_t delta; 270 271 top: 272 delta = abstime - lbolt; 273 if (delta <= 0) 274 return (-1); 275 276 ts.tv_sec = delta / hz; 277 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 278 279 ASSERT(mutex_owner(mp) == curthread); 280 mp->m_owner = NULL; 281 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 282 mp->m_owner = curthread; 283 284 if (error == ETIME) 285 return (-1); 286 287 if (error == EINTR) 288 goto top; 289 290 ASSERT(error == 0); 291 292 return (1); 293 } 294 295 void 296 cv_signal(kcondvar_t *cv) 297 { 298 VERIFY(cond_signal(cv) == 0); 299 } 300 301 void 302 cv_broadcast(kcondvar_t *cv) 303 { 304 VERIFY(cond_broadcast(cv) == 0); 305 } 306 307 /* 308 * ========================================================================= 309 * vnode operations 310 * ========================================================================= 311 */ 312 /* 313 * Note: for the xxxat() versions of these functions, we assume that the 314 * starting vp is always rootdir (which is true for spa_directory.c, the only 315 * ZFS consumer of these interfaces). We assert this is true, and then emulate 316 * them by adding '/' in front of the path. 317 */ 318 319 /*ARGSUSED*/ 320 int 321 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 322 { 323 int fd; 324 vnode_t *vp; 325 int old_umask; 326 char realpath[MAXPATHLEN]; 327 struct stat64 st; 328 329 /* 330 * If we're accessing a real disk from userland, we need to use 331 * the character interface to avoid caching. This is particularly 332 * important if we're trying to look at a real in-kernel storage 333 * pool from userland, e.g. via zdb, because otherwise we won't 334 * see the changes occurring under the segmap cache. 335 * On the other hand, the stupid character device returns zero 336 * for its size. So -- gag -- we open the block device to get 337 * its size, and remember it for subsequent VOP_GETATTR(). 338 */ 339 if (strncmp(path, "/dev/", 5) == 0) { 340 char *dsk; 341 fd = open64(path, O_RDONLY); 342 if (fd == -1) 343 return (errno); 344 if (fstat64(fd, &st) == -1) { 345 close(fd); 346 return (errno); 347 } 348 close(fd); 349 (void) sprintf(realpath, "%s", path); 350 dsk = strstr(path, "/dsk/"); 351 if (dsk != NULL) 352 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 353 dsk + 1); 354 } else { 355 (void) sprintf(realpath, "%s", path); 356 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 357 return (errno); 358 } 359 360 if (flags & FCREAT) 361 old_umask = umask(0); 362 363 /* 364 * The construct 'flags - FREAD' conveniently maps combinations of 365 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 366 */ 367 fd = open64(realpath, flags - FREAD, mode); 368 369 if (flags & FCREAT) 370 (void) umask(old_umask); 371 372 if (fd == -1) 373 return (errno); 374 375 if (fstat64(fd, &st) == -1) { 376 close(fd); 377 return (errno); 378 } 379 380 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 381 382 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 383 384 vp->v_fd = fd; 385 vp->v_size = st.st_size; 386 vp->v_path = spa_strdup(path); 387 388 return (0); 389 } 390 391 /*ARGSUSED*/ 392 int 393 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 394 int x3, vnode_t *startvp, int fd) 395 { 396 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 397 int ret; 398 399 ASSERT(startvp == rootdir); 400 (void) sprintf(realpath, "/%s", path); 401 402 /* fd ignored for now, need if want to simulate nbmand support */ 403 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 404 405 umem_free(realpath, strlen(path) + 2); 406 407 return (ret); 408 } 409 410 /*ARGSUSED*/ 411 int 412 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 413 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 414 { 415 ssize_t iolen, split; 416 417 if (uio == UIO_READ) { 418 iolen = pread64(vp->v_fd, addr, len, offset); 419 } else { 420 /* 421 * To simulate partial disk writes, we split writes into two 422 * system calls so that the process can be killed in between. 423 */ 424 split = (len > 0 ? rand() % len : 0); 425 iolen = pwrite64(vp->v_fd, addr, split, offset); 426 iolen += pwrite64(vp->v_fd, (char *)addr + split, 427 len - split, offset + split); 428 } 429 430 if (iolen == -1) 431 return (errno); 432 if (residp) 433 *residp = len - iolen; 434 else if (iolen != len) 435 return (EIO); 436 return (0); 437 } 438 439 void 440 vn_close(vnode_t *vp) 441 { 442 close(vp->v_fd); 443 spa_strfree(vp->v_path); 444 umem_free(vp, sizeof (vnode_t)); 445 } 446 447 /* 448 * At a minimum we need to update the size since vdev_reopen() 449 * will no longer call vn_openat(). 450 */ 451 int 452 fop_getattr(vnode_t *vp, vattr_t *vap) 453 { 454 struct stat64 st; 455 456 if (fstat64(vp->v_fd, &st) == -1) { 457 close(vp->v_fd); 458 return (errno); 459 } 460 461 vap->va_size = st.st_size; 462 return (0); 463 } 464 465 #ifdef ZFS_DEBUG 466 467 /* 468 * ========================================================================= 469 * Figure out which debugging statements to print 470 * ========================================================================= 471 */ 472 473 static char *dprintf_string; 474 static int dprintf_print_all; 475 476 int 477 dprintf_find_string(const char *string) 478 { 479 char *tmp_str = dprintf_string; 480 int len = strlen(string); 481 482 /* 483 * Find out if this is a string we want to print. 484 * String format: file1.c,function_name1,file2.c,file3.c 485 */ 486 487 while (tmp_str != NULL) { 488 if (strncmp(tmp_str, string, len) == 0 && 489 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 490 return (1); 491 tmp_str = strchr(tmp_str, ','); 492 if (tmp_str != NULL) 493 tmp_str++; /* Get rid of , */ 494 } 495 return (0); 496 } 497 498 void 499 dprintf_setup(int *argc, char **argv) 500 { 501 int i, j; 502 503 /* 504 * Debugging can be specified two ways: by setting the 505 * environment variable ZFS_DEBUG, or by including a 506 * "debug=..." argument on the command line. The command 507 * line setting overrides the environment variable. 508 */ 509 510 for (i = 1; i < *argc; i++) { 511 int len = strlen("debug="); 512 /* First look for a command line argument */ 513 if (strncmp("debug=", argv[i], len) == 0) { 514 dprintf_string = argv[i] + len; 515 /* Remove from args */ 516 for (j = i; j < *argc; j++) 517 argv[j] = argv[j+1]; 518 argv[j] = NULL; 519 (*argc)--; 520 } 521 } 522 523 if (dprintf_string == NULL) { 524 /* Look for ZFS_DEBUG environment variable */ 525 dprintf_string = getenv("ZFS_DEBUG"); 526 } 527 528 /* 529 * Are we just turning on all debugging? 530 */ 531 if (dprintf_find_string("on")) 532 dprintf_print_all = 1; 533 } 534 535 /* 536 * ========================================================================= 537 * debug printfs 538 * ========================================================================= 539 */ 540 void 541 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 542 { 543 const char *newfile; 544 va_list adx; 545 546 /* 547 * Get rid of annoying "../common/" prefix to filename. 548 */ 549 newfile = strrchr(file, '/'); 550 if (newfile != NULL) { 551 newfile = newfile + 1; /* Get rid of leading / */ 552 } else { 553 newfile = file; 554 } 555 556 if (dprintf_print_all || 557 dprintf_find_string(newfile) || 558 dprintf_find_string(func)) { 559 /* Print out just the function name if requested */ 560 flockfile(stdout); 561 if (dprintf_find_string("pid")) 562 (void) printf("%d ", getpid()); 563 if (dprintf_find_string("tid")) 564 (void) printf("%u ", thr_self()); 565 if (dprintf_find_string("cpu")) 566 (void) printf("%u ", getcpuid()); 567 if (dprintf_find_string("time")) 568 (void) printf("%llu ", gethrtime()); 569 if (dprintf_find_string("long")) 570 (void) printf("%s, line %d: ", newfile, line); 571 (void) printf("%s: ", func); 572 va_start(adx, fmt); 573 (void) vprintf(fmt, adx); 574 va_end(adx); 575 funlockfile(stdout); 576 } 577 } 578 579 #endif /* ZFS_DEBUG */ 580 581 /* 582 * ========================================================================= 583 * cmn_err() and panic() 584 * ========================================================================= 585 */ 586 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 587 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 588 589 void 590 vpanic(const char *fmt, va_list adx) 591 { 592 (void) fprintf(stderr, "error: "); 593 (void) vfprintf(stderr, fmt, adx); 594 (void) fprintf(stderr, "\n"); 595 596 abort(); /* think of it as a "user-level crash dump" */ 597 } 598 599 void 600 panic(const char *fmt, ...) 601 { 602 va_list adx; 603 604 va_start(adx, fmt); 605 vpanic(fmt, adx); 606 va_end(adx); 607 } 608 609 void 610 vcmn_err(int ce, const char *fmt, va_list adx) 611 { 612 if (ce == CE_PANIC) 613 vpanic(fmt, adx); 614 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 615 (void) fprintf(stderr, "%s", ce_prefix[ce]); 616 (void) vfprintf(stderr, fmt, adx); 617 (void) fprintf(stderr, "%s", ce_suffix[ce]); 618 } 619 } 620 621 /*PRINTFLIKE2*/ 622 void 623 cmn_err(int ce, const char *fmt, ...) 624 { 625 va_list adx; 626 627 va_start(adx, fmt); 628 vcmn_err(ce, fmt, adx); 629 va_end(adx); 630 } 631 632 /* 633 * ========================================================================= 634 * kobj interfaces 635 * ========================================================================= 636 */ 637 struct _buf * 638 kobj_open_file(char *name) 639 { 640 struct _buf *file; 641 vnode_t *vp; 642 643 /* set vp as the _fd field of the file */ 644 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 645 -1) != 0) 646 return ((void *)-1UL); 647 648 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 649 file->_fd = (intptr_t)vp; 650 return (file); 651 } 652 653 int 654 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 655 { 656 ssize_t resid; 657 658 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 659 UIO_SYSSPACE, 0, 0, 0, &resid); 660 661 return (size - resid); 662 } 663 664 void 665 kobj_close_file(struct _buf *file) 666 { 667 vn_close((vnode_t *)file->_fd); 668 umem_free(file, sizeof (struct _buf)); 669 } 670 671 int 672 kobj_get_filesize(struct _buf *file, uint64_t *size) 673 { 674 struct stat64 st; 675 vnode_t *vp = (vnode_t *)file->_fd; 676 677 if (fstat64(vp->v_fd, &st) == -1) { 678 vn_close(vp); 679 return (errno); 680 } 681 *size = st.st_size; 682 return (0); 683 } 684 685 /* 686 * ========================================================================= 687 * misc routines 688 * ========================================================================= 689 */ 690 691 void 692 delay(clock_t ticks) 693 { 694 poll(0, 0, ticks * (1000 / hz)); 695 } 696 697 /* 698 * Find highest one bit set. 699 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 700 * High order bit is 31 (or 63 in _LP64 kernel). 701 */ 702 int 703 highbit(ulong_t i) 704 { 705 register int h = 1; 706 707 if (i == 0) 708 return (0); 709 #ifdef _LP64 710 if (i & 0xffffffff00000000ul) { 711 h += 32; i >>= 32; 712 } 713 #endif 714 if (i & 0xffff0000) { 715 h += 16; i >>= 16; 716 } 717 if (i & 0xff00) { 718 h += 8; i >>= 8; 719 } 720 if (i & 0xf0) { 721 h += 4; i >>= 4; 722 } 723 if (i & 0xc) { 724 h += 2; i >>= 2; 725 } 726 if (i & 0x2) { 727 h += 1; 728 } 729 return (h); 730 } 731 732 static int random_fd = -1, urandom_fd = -1; 733 734 static int 735 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 736 { 737 size_t resid = len; 738 ssize_t bytes; 739 740 ASSERT(fd != -1); 741 742 while (resid != 0) { 743 bytes = read(fd, ptr, resid); 744 ASSERT3S(bytes, >=, 0); 745 ptr += bytes; 746 resid -= bytes; 747 } 748 749 return (0); 750 } 751 752 int 753 random_get_bytes(uint8_t *ptr, size_t len) 754 { 755 return (random_get_bytes_common(ptr, len, random_fd)); 756 } 757 758 int 759 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 760 { 761 return (random_get_bytes_common(ptr, len, urandom_fd)); 762 } 763 764 int 765 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 766 { 767 char *end; 768 769 *result = strtoul(hw_serial, &end, base); 770 if (*result == 0) 771 return (errno); 772 return (0); 773 } 774 775 /* 776 * ========================================================================= 777 * kernel emulation setup & teardown 778 * ========================================================================= 779 */ 780 static int 781 umem_out_of_memory(void) 782 { 783 char errmsg[] = "out of memory -- generating core dump\n"; 784 785 write(fileno(stderr), errmsg, sizeof (errmsg)); 786 abort(); 787 return (0); 788 } 789 790 void 791 kernel_init(int mode) 792 { 793 umem_nofail_callback(umem_out_of_memory); 794 795 physmem = sysconf(_SC_PHYS_PAGES); 796 797 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 798 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 799 800 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", gethostid()); 801 802 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 803 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 804 805 system_taskq_init(); 806 807 spa_init(mode); 808 } 809 810 void 811 kernel_fini(void) 812 { 813 spa_fini(); 814 815 system_taskq_fini(); 816 817 close(random_fd); 818 close(urandom_fd); 819 820 random_fd = -1; 821 urandom_fd = -1; 822 } 823 824 int 825 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 826 { 827 int ret; 828 uLongf len = *dstlen; 829 830 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 831 *dstlen = (size_t)len; 832 833 return (ret); 834 } 835 836 int 837 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 838 int level) 839 { 840 int ret; 841 uLongf len = *dstlen; 842 843 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 844 *dstlen = (size_t)len; 845 846 return (ret); 847 } 848 849 uid_t 850 crgetuid(cred_t *cr) 851 { 852 return (0); 853 } 854 855 gid_t 856 crgetgid(cred_t *cr) 857 { 858 return (0); 859 } 860 861 int 862 crgetngroups(cred_t *cr) 863 { 864 return (0); 865 } 866 867 gid_t * 868 crgetgroups(cred_t *cr) 869 { 870 return (NULL); 871 } 872 873 int 874 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 875 { 876 return (0); 877 } 878 879 int 880 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 881 { 882 return (0); 883 } 884 885 int 886 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 887 { 888 return (0); 889 } 890 891 ksiddomain_t * 892 ksid_lookupdomain(const char *dom) 893 { 894 ksiddomain_t *kd; 895 896 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 897 kd->kd_name = spa_strdup(dom); 898 return (kd); 899 } 900 901 void 902 ksiddomain_rele(ksiddomain_t *ksid) 903 { 904 spa_strfree(ksid->kd_name); 905 umem_free(ksid, sizeof (ksiddomain_t)); 906 } 907 908 /* 909 * Do not change the length of the returned string; it must be freed 910 * with strfree(). 911 */ 912 char * 913 kmem_asprintf(const char *fmt, ...) 914 { 915 int size; 916 va_list adx; 917 char *buf; 918 919 va_start(adx, fmt); 920 size = vsnprintf(NULL, 0, fmt, adx) + 1; 921 va_end(adx); 922 923 buf = kmem_alloc(size, KM_SLEEP); 924 925 va_start(adx, fmt); 926 size = vsnprintf(buf, size, fmt, adx); 927 va_end(adx); 928 929 return (buf); 930 } 931