xref: /titanic_50/usr/src/lib/libzpool/common/kernel.c (revision 2d08521bd15501c8370ba2153b9cca4f094979d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <poll.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <zlib.h>
34 #include <libgen.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/zmod.h>
41 #include <sys/utsname.h>
42 #include <sys/systeminfo.h>
43 
44 /*
45  * Emulation of kernel services in userland.
46  */
47 
48 int aok;
49 uint64_t physmem;
50 vnode_t *rootdir = (vnode_t *)0xabcd1234;
51 char hw_serial[HW_HOSTID_LEN];
52 kmutex_t cpu_lock;
53 vmem_t *zio_arena = NULL;
54 
55 /* If set, all blocks read will be copied to the specified directory. */
56 char *vn_dumpdir = NULL;
57 
58 struct utsname utsname = {
59 	"userland", "libzpool", "1", "1", "na"
60 };
61 
62 /* this only exists to have its address taken */
63 struct proc p0;
64 
65 /*
66  * =========================================================================
67  * threads
68  * =========================================================================
69  */
70 /*ARGSUSED*/
71 kthread_t *
72 zk_thread_create(void (*func)(), void *arg)
73 {
74 	thread_t tid;
75 
76 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
77 	    &tid) == 0);
78 
79 	return ((void *)(uintptr_t)tid);
80 }
81 
82 /*
83  * =========================================================================
84  * kstats
85  * =========================================================================
86  */
87 /*ARGSUSED*/
88 kstat_t *
89 kstat_create(const char *module, int instance, const char *name,
90     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
91 {
92 	return (NULL);
93 }
94 
95 /*ARGSUSED*/
96 void
97 kstat_install(kstat_t *ksp)
98 {}
99 
100 /*ARGSUSED*/
101 void
102 kstat_delete(kstat_t *ksp)
103 {}
104 
105 /*ARGSUSED*/
106 void
107 kstat_waitq_enter(kstat_io_t *kiop)
108 {}
109 
110 /*ARGSUSED*/
111 void
112 kstat_waitq_exit(kstat_io_t *kiop)
113 {}
114 
115 /*ARGSUSED*/
116 void
117 kstat_runq_enter(kstat_io_t *kiop)
118 {}
119 
120 /*ARGSUSED*/
121 void
122 kstat_runq_exit(kstat_io_t *kiop)
123 {}
124 
125 /*ARGSUSED*/
126 void
127 kstat_waitq_to_runq(kstat_io_t *kiop)
128 {}
129 
130 /*ARGSUSED*/
131 void
132 kstat_runq_back_to_waitq(kstat_io_t *kiop)
133 {}
134 
135 /*
136  * =========================================================================
137  * mutexes
138  * =========================================================================
139  */
140 void
141 zmutex_init(kmutex_t *mp)
142 {
143 	mp->m_owner = NULL;
144 	mp->initialized = B_TRUE;
145 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
146 }
147 
148 void
149 zmutex_destroy(kmutex_t *mp)
150 {
151 	ASSERT(mp->initialized == B_TRUE);
152 	ASSERT(mp->m_owner == NULL);
153 	(void) _mutex_destroy(&(mp)->m_lock);
154 	mp->m_owner = (void *)-1UL;
155 	mp->initialized = B_FALSE;
156 }
157 
158 void
159 mutex_enter(kmutex_t *mp)
160 {
161 	ASSERT(mp->initialized == B_TRUE);
162 	ASSERT(mp->m_owner != (void *)-1UL);
163 	ASSERT(mp->m_owner != curthread);
164 	VERIFY(mutex_lock(&mp->m_lock) == 0);
165 	ASSERT(mp->m_owner == NULL);
166 	mp->m_owner = curthread;
167 }
168 
169 int
170 mutex_tryenter(kmutex_t *mp)
171 {
172 	ASSERT(mp->initialized == B_TRUE);
173 	ASSERT(mp->m_owner != (void *)-1UL);
174 	if (0 == mutex_trylock(&mp->m_lock)) {
175 		ASSERT(mp->m_owner == NULL);
176 		mp->m_owner = curthread;
177 		return (1);
178 	} else {
179 		return (0);
180 	}
181 }
182 
183 void
184 mutex_exit(kmutex_t *mp)
185 {
186 	ASSERT(mp->initialized == B_TRUE);
187 	ASSERT(mutex_owner(mp) == curthread);
188 	mp->m_owner = NULL;
189 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
190 }
191 
192 void *
193 mutex_owner(kmutex_t *mp)
194 {
195 	ASSERT(mp->initialized == B_TRUE);
196 	return (mp->m_owner);
197 }
198 
199 /*
200  * =========================================================================
201  * rwlocks
202  * =========================================================================
203  */
204 /*ARGSUSED*/
205 void
206 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
207 {
208 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
209 	rwlp->rw_owner = NULL;
210 	rwlp->initialized = B_TRUE;
211 }
212 
213 void
214 rw_destroy(krwlock_t *rwlp)
215 {
216 	rwlock_destroy(&rwlp->rw_lock);
217 	rwlp->rw_owner = (void *)-1UL;
218 	rwlp->initialized = B_FALSE;
219 }
220 
221 void
222 rw_enter(krwlock_t *rwlp, krw_t rw)
223 {
224 	ASSERT(!RW_LOCK_HELD(rwlp));
225 	ASSERT(rwlp->initialized == B_TRUE);
226 	ASSERT(rwlp->rw_owner != (void *)-1UL);
227 	ASSERT(rwlp->rw_owner != curthread);
228 
229 	if (rw == RW_WRITER)
230 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
231 	else
232 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
233 
234 	rwlp->rw_owner = curthread;
235 }
236 
237 void
238 rw_exit(krwlock_t *rwlp)
239 {
240 	ASSERT(rwlp->initialized == B_TRUE);
241 	ASSERT(rwlp->rw_owner != (void *)-1UL);
242 
243 	rwlp->rw_owner = NULL;
244 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
245 }
246 
247 int
248 rw_tryenter(krwlock_t *rwlp, krw_t rw)
249 {
250 	int rv;
251 
252 	ASSERT(rwlp->initialized == B_TRUE);
253 	ASSERT(rwlp->rw_owner != (void *)-1UL);
254 
255 	if (rw == RW_WRITER)
256 		rv = rw_trywrlock(&rwlp->rw_lock);
257 	else
258 		rv = rw_tryrdlock(&rwlp->rw_lock);
259 
260 	if (rv == 0) {
261 		rwlp->rw_owner = curthread;
262 		return (1);
263 	}
264 
265 	return (0);
266 }
267 
268 /*ARGSUSED*/
269 int
270 rw_tryupgrade(krwlock_t *rwlp)
271 {
272 	ASSERT(rwlp->initialized == B_TRUE);
273 	ASSERT(rwlp->rw_owner != (void *)-1UL);
274 
275 	return (0);
276 }
277 
278 /*
279  * =========================================================================
280  * condition variables
281  * =========================================================================
282  */
283 /*ARGSUSED*/
284 void
285 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
286 {
287 	VERIFY(cond_init(cv, type, NULL) == 0);
288 }
289 
290 void
291 cv_destroy(kcondvar_t *cv)
292 {
293 	VERIFY(cond_destroy(cv) == 0);
294 }
295 
296 void
297 cv_wait(kcondvar_t *cv, kmutex_t *mp)
298 {
299 	ASSERT(mutex_owner(mp) == curthread);
300 	mp->m_owner = NULL;
301 	int ret = cond_wait(cv, &mp->m_lock);
302 	VERIFY(ret == 0 || ret == EINTR);
303 	mp->m_owner = curthread;
304 }
305 
306 clock_t
307 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
308 {
309 	int error;
310 	timestruc_t ts;
311 	clock_t delta;
312 
313 top:
314 	delta = abstime - ddi_get_lbolt();
315 	if (delta <= 0)
316 		return (-1);
317 
318 	ts.tv_sec = delta / hz;
319 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
320 
321 	ASSERT(mutex_owner(mp) == curthread);
322 	mp->m_owner = NULL;
323 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
324 	mp->m_owner = curthread;
325 
326 	if (error == ETIME)
327 		return (-1);
328 
329 	if (error == EINTR)
330 		goto top;
331 
332 	ASSERT(error == 0);
333 
334 	return (1);
335 }
336 
337 /*ARGSUSED*/
338 clock_t
339 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
340     int flag)
341 {
342 	int error;
343 	timestruc_t ts;
344 	hrtime_t delta;
345 
346 	ASSERT(flag == 0);
347 
348 top:
349 	delta = tim - gethrtime();
350 	if (delta <= 0)
351 		return (-1);
352 
353 	ts.tv_sec = delta / NANOSEC;
354 	ts.tv_nsec = delta % NANOSEC;
355 
356 	ASSERT(mutex_owner(mp) == curthread);
357 	mp->m_owner = NULL;
358 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
359 	mp->m_owner = curthread;
360 
361 	if (error == ETIME)
362 		return (-1);
363 
364 	if (error == EINTR)
365 		goto top;
366 
367 	ASSERT(error == 0);
368 
369 	return (1);
370 }
371 
372 void
373 cv_signal(kcondvar_t *cv)
374 {
375 	VERIFY(cond_signal(cv) == 0);
376 }
377 
378 void
379 cv_broadcast(kcondvar_t *cv)
380 {
381 	VERIFY(cond_broadcast(cv) == 0);
382 }
383 
384 /*
385  * =========================================================================
386  * vnode operations
387  * =========================================================================
388  */
389 /*
390  * Note: for the xxxat() versions of these functions, we assume that the
391  * starting vp is always rootdir (which is true for spa_directory.c, the only
392  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
393  * them by adding '/' in front of the path.
394  */
395 
396 /*ARGSUSED*/
397 int
398 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
399 {
400 	int fd;
401 	int dump_fd;
402 	vnode_t *vp;
403 	int old_umask;
404 	char realpath[MAXPATHLEN];
405 	struct stat64 st;
406 
407 	/*
408 	 * If we're accessing a real disk from userland, we need to use
409 	 * the character interface to avoid caching.  This is particularly
410 	 * important if we're trying to look at a real in-kernel storage
411 	 * pool from userland, e.g. via zdb, because otherwise we won't
412 	 * see the changes occurring under the segmap cache.
413 	 * On the other hand, the stupid character device returns zero
414 	 * for its size.  So -- gag -- we open the block device to get
415 	 * its size, and remember it for subsequent VOP_GETATTR().
416 	 */
417 	if (strncmp(path, "/dev/", 5) == 0) {
418 		char *dsk;
419 		fd = open64(path, O_RDONLY);
420 		if (fd == -1)
421 			return (errno);
422 		if (fstat64(fd, &st) == -1) {
423 			close(fd);
424 			return (errno);
425 		}
426 		close(fd);
427 		(void) sprintf(realpath, "%s", path);
428 		dsk = strstr(path, "/dsk/");
429 		if (dsk != NULL)
430 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
431 			    dsk + 1);
432 	} else {
433 		(void) sprintf(realpath, "%s", path);
434 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
435 			return (errno);
436 	}
437 
438 	if (flags & FCREAT)
439 		old_umask = umask(0);
440 
441 	/*
442 	 * The construct 'flags - FREAD' conveniently maps combinations of
443 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
444 	 */
445 	fd = open64(realpath, flags - FREAD, mode);
446 
447 	if (flags & FCREAT)
448 		(void) umask(old_umask);
449 
450 	if (vn_dumpdir != NULL) {
451 		char dumppath[MAXPATHLEN];
452 		(void) snprintf(dumppath, sizeof (dumppath),
453 		    "%s/%s", vn_dumpdir, basename(realpath));
454 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
455 		if (dump_fd == -1)
456 			return (errno);
457 	} else {
458 		dump_fd = -1;
459 	}
460 
461 	if (fd == -1)
462 		return (errno);
463 
464 	if (fstat64(fd, &st) == -1) {
465 		close(fd);
466 		return (errno);
467 	}
468 
469 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
470 
471 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
472 
473 	vp->v_fd = fd;
474 	vp->v_size = st.st_size;
475 	vp->v_path = spa_strdup(path);
476 	vp->v_dump_fd = dump_fd;
477 
478 	return (0);
479 }
480 
481 /*ARGSUSED*/
482 int
483 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
484     int x3, vnode_t *startvp, int fd)
485 {
486 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
487 	int ret;
488 
489 	ASSERT(startvp == rootdir);
490 	(void) sprintf(realpath, "/%s", path);
491 
492 	/* fd ignored for now, need if want to simulate nbmand support */
493 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
494 
495 	umem_free(realpath, strlen(path) + 2);
496 
497 	return (ret);
498 }
499 
500 /*ARGSUSED*/
501 int
502 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
503 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
504 {
505 	ssize_t iolen, split;
506 
507 	if (uio == UIO_READ) {
508 		iolen = pread64(vp->v_fd, addr, len, offset);
509 		if (vp->v_dump_fd != -1) {
510 			int status =
511 			    pwrite64(vp->v_dump_fd, addr, iolen, offset);
512 			ASSERT(status != -1);
513 		}
514 	} else {
515 		/*
516 		 * To simulate partial disk writes, we split writes into two
517 		 * system calls so that the process can be killed in between.
518 		 */
519 		int sectors = len >> SPA_MINBLOCKSHIFT;
520 		split = (sectors > 0 ? rand() % sectors : 0) <<
521 		    SPA_MINBLOCKSHIFT;
522 		iolen = pwrite64(vp->v_fd, addr, split, offset);
523 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
524 		    len - split, offset + split);
525 	}
526 
527 	if (iolen == -1)
528 		return (errno);
529 	if (residp)
530 		*residp = len - iolen;
531 	else if (iolen != len)
532 		return (EIO);
533 	return (0);
534 }
535 
536 void
537 vn_close(vnode_t *vp)
538 {
539 	close(vp->v_fd);
540 	if (vp->v_dump_fd != -1)
541 		close(vp->v_dump_fd);
542 	spa_strfree(vp->v_path);
543 	umem_free(vp, sizeof (vnode_t));
544 }
545 
546 /*
547  * At a minimum we need to update the size since vdev_reopen()
548  * will no longer call vn_openat().
549  */
550 int
551 fop_getattr(vnode_t *vp, vattr_t *vap)
552 {
553 	struct stat64 st;
554 
555 	if (fstat64(vp->v_fd, &st) == -1) {
556 		close(vp->v_fd);
557 		return (errno);
558 	}
559 
560 	vap->va_size = st.st_size;
561 	return (0);
562 }
563 
564 #ifdef ZFS_DEBUG
565 
566 /*
567  * =========================================================================
568  * Figure out which debugging statements to print
569  * =========================================================================
570  */
571 
572 static char *dprintf_string;
573 static int dprintf_print_all;
574 
575 int
576 dprintf_find_string(const char *string)
577 {
578 	char *tmp_str = dprintf_string;
579 	int len = strlen(string);
580 
581 	/*
582 	 * Find out if this is a string we want to print.
583 	 * String format: file1.c,function_name1,file2.c,file3.c
584 	 */
585 
586 	while (tmp_str != NULL) {
587 		if (strncmp(tmp_str, string, len) == 0 &&
588 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
589 			return (1);
590 		tmp_str = strchr(tmp_str, ',');
591 		if (tmp_str != NULL)
592 			tmp_str++; /* Get rid of , */
593 	}
594 	return (0);
595 }
596 
597 void
598 dprintf_setup(int *argc, char **argv)
599 {
600 	int i, j;
601 
602 	/*
603 	 * Debugging can be specified two ways: by setting the
604 	 * environment variable ZFS_DEBUG, or by including a
605 	 * "debug=..."  argument on the command line.  The command
606 	 * line setting overrides the environment variable.
607 	 */
608 
609 	for (i = 1; i < *argc; i++) {
610 		int len = strlen("debug=");
611 		/* First look for a command line argument */
612 		if (strncmp("debug=", argv[i], len) == 0) {
613 			dprintf_string = argv[i] + len;
614 			/* Remove from args */
615 			for (j = i; j < *argc; j++)
616 				argv[j] = argv[j+1];
617 			argv[j] = NULL;
618 			(*argc)--;
619 		}
620 	}
621 
622 	if (dprintf_string == NULL) {
623 		/* Look for ZFS_DEBUG environment variable */
624 		dprintf_string = getenv("ZFS_DEBUG");
625 	}
626 
627 	/*
628 	 * Are we just turning on all debugging?
629 	 */
630 	if (dprintf_find_string("on"))
631 		dprintf_print_all = 1;
632 }
633 
634 /*
635  * =========================================================================
636  * debug printfs
637  * =========================================================================
638  */
639 void
640 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
641 {
642 	const char *newfile;
643 	va_list adx;
644 
645 	/*
646 	 * Get rid of annoying "../common/" prefix to filename.
647 	 */
648 	newfile = strrchr(file, '/');
649 	if (newfile != NULL) {
650 		newfile = newfile + 1; /* Get rid of leading / */
651 	} else {
652 		newfile = file;
653 	}
654 
655 	if (dprintf_print_all ||
656 	    dprintf_find_string(newfile) ||
657 	    dprintf_find_string(func)) {
658 		/* Print out just the function name if requested */
659 		flockfile(stdout);
660 		if (dprintf_find_string("pid"))
661 			(void) printf("%d ", getpid());
662 		if (dprintf_find_string("tid"))
663 			(void) printf("%u ", thr_self());
664 		if (dprintf_find_string("cpu"))
665 			(void) printf("%u ", getcpuid());
666 		if (dprintf_find_string("time"))
667 			(void) printf("%llu ", gethrtime());
668 		if (dprintf_find_string("long"))
669 			(void) printf("%s, line %d: ", newfile, line);
670 		(void) printf("%s: ", func);
671 		va_start(adx, fmt);
672 		(void) vprintf(fmt, adx);
673 		va_end(adx);
674 		funlockfile(stdout);
675 	}
676 }
677 
678 #endif /* ZFS_DEBUG */
679 
680 /*
681  * =========================================================================
682  * cmn_err() and panic()
683  * =========================================================================
684  */
685 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
686 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
687 
688 void
689 vpanic(const char *fmt, va_list adx)
690 {
691 	(void) fprintf(stderr, "error: ");
692 	(void) vfprintf(stderr, fmt, adx);
693 	(void) fprintf(stderr, "\n");
694 
695 	abort();	/* think of it as a "user-level crash dump" */
696 }
697 
698 void
699 panic(const char *fmt, ...)
700 {
701 	va_list adx;
702 
703 	va_start(adx, fmt);
704 	vpanic(fmt, adx);
705 	va_end(adx);
706 }
707 
708 void
709 vcmn_err(int ce, const char *fmt, va_list adx)
710 {
711 	if (ce == CE_PANIC)
712 		vpanic(fmt, adx);
713 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
714 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
715 		(void) vfprintf(stderr, fmt, adx);
716 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
717 	}
718 }
719 
720 /*PRINTFLIKE2*/
721 void
722 cmn_err(int ce, const char *fmt, ...)
723 {
724 	va_list adx;
725 
726 	va_start(adx, fmt);
727 	vcmn_err(ce, fmt, adx);
728 	va_end(adx);
729 }
730 
731 /*
732  * =========================================================================
733  * kobj interfaces
734  * =========================================================================
735  */
736 struct _buf *
737 kobj_open_file(char *name)
738 {
739 	struct _buf *file;
740 	vnode_t *vp;
741 
742 	/* set vp as the _fd field of the file */
743 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
744 	    -1) != 0)
745 		return ((void *)-1UL);
746 
747 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
748 	file->_fd = (intptr_t)vp;
749 	return (file);
750 }
751 
752 int
753 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
754 {
755 	ssize_t resid;
756 
757 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
758 	    UIO_SYSSPACE, 0, 0, 0, &resid);
759 
760 	return (size - resid);
761 }
762 
763 void
764 kobj_close_file(struct _buf *file)
765 {
766 	vn_close((vnode_t *)file->_fd);
767 	umem_free(file, sizeof (struct _buf));
768 }
769 
770 int
771 kobj_get_filesize(struct _buf *file, uint64_t *size)
772 {
773 	struct stat64 st;
774 	vnode_t *vp = (vnode_t *)file->_fd;
775 
776 	if (fstat64(vp->v_fd, &st) == -1) {
777 		vn_close(vp);
778 		return (errno);
779 	}
780 	*size = st.st_size;
781 	return (0);
782 }
783 
784 /*
785  * =========================================================================
786  * misc routines
787  * =========================================================================
788  */
789 
790 void
791 delay(clock_t ticks)
792 {
793 	poll(0, 0, ticks * (1000 / hz));
794 }
795 
796 /*
797  * Find highest one bit set.
798  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
799  */
800 int
801 highbit64(uint64_t i)
802 {
803 	int h = 1;
804 
805 	if (i == 0)
806 		return (0);
807 	if (i & 0xffffffff00000000ULL) {
808 		h += 32; i >>= 32;
809 	}
810 	if (i & 0xffff0000) {
811 		h += 16; i >>= 16;
812 	}
813 	if (i & 0xff00) {
814 		h += 8; i >>= 8;
815 	}
816 	if (i & 0xf0) {
817 		h += 4; i >>= 4;
818 	}
819 	if (i & 0xc) {
820 		h += 2; i >>= 2;
821 	}
822 	if (i & 0x2) {
823 		h += 1;
824 	}
825 	return (h);
826 }
827 
828 static int random_fd = -1, urandom_fd = -1;
829 
830 static int
831 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
832 {
833 	size_t resid = len;
834 	ssize_t bytes;
835 
836 	ASSERT(fd != -1);
837 
838 	while (resid != 0) {
839 		bytes = read(fd, ptr, resid);
840 		ASSERT3S(bytes, >=, 0);
841 		ptr += bytes;
842 		resid -= bytes;
843 	}
844 
845 	return (0);
846 }
847 
848 int
849 random_get_bytes(uint8_t *ptr, size_t len)
850 {
851 	return (random_get_bytes_common(ptr, len, random_fd));
852 }
853 
854 int
855 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
856 {
857 	return (random_get_bytes_common(ptr, len, urandom_fd));
858 }
859 
860 int
861 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
862 {
863 	char *end;
864 
865 	*result = strtoul(hw_serial, &end, base);
866 	if (*result == 0)
867 		return (errno);
868 	return (0);
869 }
870 
871 int
872 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
873 {
874 	char *end;
875 
876 	*result = strtoull(str, &end, base);
877 	if (*result == 0)
878 		return (errno);
879 	return (0);
880 }
881 
882 /* ARGSUSED */
883 cyclic_id_t
884 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
885 {
886 	return (1);
887 }
888 
889 /* ARGSUSED */
890 void
891 cyclic_remove(cyclic_id_t id)
892 {
893 }
894 
895 /* ARGSUSED */
896 int
897 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
898 {
899 	return (1);
900 }
901 
902 /*
903  * =========================================================================
904  * kernel emulation setup & teardown
905  * =========================================================================
906  */
907 static int
908 umem_out_of_memory(void)
909 {
910 	char errmsg[] = "out of memory -- generating core dump\n";
911 
912 	write(fileno(stderr), errmsg, sizeof (errmsg));
913 	abort();
914 	return (0);
915 }
916 
917 void
918 kernel_init(int mode)
919 {
920 	extern uint_t rrw_tsd_key;
921 
922 	umem_nofail_callback(umem_out_of_memory);
923 
924 	physmem = sysconf(_SC_PHYS_PAGES);
925 
926 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
927 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
928 
929 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
930 	    (mode & FWRITE) ? gethostid() : 0);
931 
932 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
933 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
934 
935 	system_taskq_init();
936 
937 	mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
938 
939 	spa_init(mode);
940 
941 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
942 }
943 
944 void
945 kernel_fini(void)
946 {
947 	spa_fini();
948 
949 	system_taskq_fini();
950 
951 	close(random_fd);
952 	close(urandom_fd);
953 
954 	random_fd = -1;
955 	urandom_fd = -1;
956 }
957 
958 int
959 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
960 {
961 	int ret;
962 	uLongf len = *dstlen;
963 
964 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
965 		*dstlen = (size_t)len;
966 
967 	return (ret);
968 }
969 
970 int
971 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
972     int level)
973 {
974 	int ret;
975 	uLongf len = *dstlen;
976 
977 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
978 		*dstlen = (size_t)len;
979 
980 	return (ret);
981 }
982 
983 uid_t
984 crgetuid(cred_t *cr)
985 {
986 	return (0);
987 }
988 
989 uid_t
990 crgetruid(cred_t *cr)
991 {
992 	return (0);
993 }
994 
995 gid_t
996 crgetgid(cred_t *cr)
997 {
998 	return (0);
999 }
1000 
1001 int
1002 crgetngroups(cred_t *cr)
1003 {
1004 	return (0);
1005 }
1006 
1007 gid_t *
1008 crgetgroups(cred_t *cr)
1009 {
1010 	return (NULL);
1011 }
1012 
1013 int
1014 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1015 {
1016 	return (0);
1017 }
1018 
1019 int
1020 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1021 {
1022 	return (0);
1023 }
1024 
1025 int
1026 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1027 {
1028 	return (0);
1029 }
1030 
1031 ksiddomain_t *
1032 ksid_lookupdomain(const char *dom)
1033 {
1034 	ksiddomain_t *kd;
1035 
1036 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1037 	kd->kd_name = spa_strdup(dom);
1038 	return (kd);
1039 }
1040 
1041 void
1042 ksiddomain_rele(ksiddomain_t *ksid)
1043 {
1044 	spa_strfree(ksid->kd_name);
1045 	umem_free(ksid, sizeof (ksiddomain_t));
1046 }
1047 
1048 /*
1049  * Do not change the length of the returned string; it must be freed
1050  * with strfree().
1051  */
1052 char *
1053 kmem_asprintf(const char *fmt, ...)
1054 {
1055 	int size;
1056 	va_list adx;
1057 	char *buf;
1058 
1059 	va_start(adx, fmt);
1060 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
1061 	va_end(adx);
1062 
1063 	buf = kmem_alloc(size, KM_SLEEP);
1064 
1065 	va_start(adx, fmt);
1066 	size = vsnprintf(buf, size, fmt, adx);
1067 	va_end(adx);
1068 
1069 	return (buf);
1070 }
1071 
1072 /* ARGSUSED */
1073 int
1074 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1075 {
1076 	*minorp = 0;
1077 	return (0);
1078 }
1079 
1080 /* ARGSUSED */
1081 void
1082 zfs_onexit_fd_rele(int fd)
1083 {
1084 }
1085 
1086 /* ARGSUSED */
1087 int
1088 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1089     uint64_t *action_handle)
1090 {
1091 	return (0);
1092 }
1093 
1094 /* ARGSUSED */
1095 int
1096 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1097 {
1098 	return (0);
1099 }
1100 
1101 /* ARGSUSED */
1102 int
1103 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1104 {
1105 	return (0);
1106 }
1107 
1108 void
1109 bioinit(buf_t *bp)
1110 {
1111 	bzero(bp, sizeof (buf_t));
1112 }
1113 
1114 void
1115 biodone(buf_t *bp)
1116 {
1117 	if (bp->b_iodone != NULL) {
1118 		(*(bp->b_iodone))(bp);
1119 		return;
1120 	}
1121 	ASSERT((bp->b_flags & B_DONE) == 0);
1122 	bp->b_flags |= B_DONE;
1123 }
1124 
1125 void
1126 bioerror(buf_t *bp, int error)
1127 {
1128 	ASSERT(bp != NULL);
1129 	ASSERT(error >= 0);
1130 
1131 	if (error != 0) {
1132 		bp->b_flags |= B_ERROR;
1133 	} else {
1134 		bp->b_flags &= ~B_ERROR;
1135 	}
1136 	bp->b_error = error;
1137 }
1138 
1139 
1140 int
1141 geterror(struct buf *bp)
1142 {
1143 	int error = 0;
1144 
1145 	if (bp->b_flags & B_ERROR) {
1146 		error = bp->b_error;
1147 		if (!error)
1148 			error = EIO;
1149 	}
1150 	return (error);
1151 }
1152