xref: /titanic_50/usr/src/lib/libzpool/common/kernel.c (revision 14ea4bb737263733ad80a36b4f73f681c30a6b45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <assert.h>
29 #include <sys/zfs_context.h>
30 #include <poll.h>
31 #include <string.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <fcntl.h>
35 #include <sys/stat.h>
36 #include <sys/spa.h>
37 #include <sys/processor.h>
38 
39 
40 /*
41  * Emulation of kernel services in userland.
42  */
43 
44 uint64_t physmem;
45 vnode_t *rootdir = (vnode_t *)0xabcd1234;
46 
47 /*
48  * =========================================================================
49  * threads
50  * =========================================================================
51  */
52 /*ARGSUSED*/
53 kthread_t *
54 zk_thread_create(void (*func)(), void *arg)
55 {
56 	thread_t tid;
57 
58 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
59 	    &tid) == 0);
60 
61 	return ((void *)(uintptr_t)tid);
62 }
63 
64 /*
65  * =========================================================================
66  * mutexes
67  * =========================================================================
68  */
69 void
70 zmutex_init(kmutex_t *mp)
71 {
72 	mp->m_owner = NULL;
73 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
74 }
75 
76 void
77 zmutex_destroy(kmutex_t *mp)
78 {
79 	ASSERT(mp->m_owner == NULL);
80 	(void) _mutex_destroy(&(mp)->m_lock);
81 	mp->m_owner = (void *)-1UL;
82 }
83 
84 void
85 mutex_enter(kmutex_t *mp)
86 {
87 	ASSERT(mp->m_owner != (void *)-1UL);
88 	ASSERT(mp->m_owner != curthread);
89 	VERIFY(mutex_lock(&mp->m_lock) == 0);
90 	ASSERT(mp->m_owner == NULL);
91 	mp->m_owner = curthread;
92 }
93 
94 int
95 mutex_tryenter(kmutex_t *mp)
96 {
97 	ASSERT(mp->m_owner != (void *)-1UL);
98 	if (0 == mutex_trylock(&mp->m_lock)) {
99 		ASSERT(mp->m_owner == NULL);
100 		mp->m_owner = curthread;
101 		return (1);
102 	} else {
103 		return (0);
104 	}
105 }
106 
107 void
108 mutex_exit(kmutex_t *mp)
109 {
110 	ASSERT(mutex_owner(mp) == curthread);
111 	mp->m_owner = NULL;
112 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
113 }
114 
115 void *
116 mutex_owner(kmutex_t *mp)
117 {
118 	return (mp->m_owner);
119 }
120 
121 /*
122  * =========================================================================
123  * rwlocks
124  * =========================================================================
125  */
126 /*ARGSUSED*/
127 void
128 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
129 {
130 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
131 	rwlp->rw_owner = NULL;
132 }
133 
134 void
135 rw_destroy(krwlock_t *rwlp)
136 {
137 	rwlock_destroy(&rwlp->rw_lock);
138 	rwlp->rw_owner = (void *)-1UL;
139 }
140 
141 void
142 rw_enter(krwlock_t *rwlp, krw_t rw)
143 {
144 	ASSERT(!RW_LOCK_HELD(rwlp));
145 	ASSERT(rwlp->rw_owner != (void *)-1UL);
146 	ASSERT(rwlp->rw_owner != curthread);
147 
148 	if (rw == RW_READER)
149 		(void) rw_rdlock(&rwlp->rw_lock);
150 	else
151 		(void) rw_wrlock(&rwlp->rw_lock);
152 
153 	rwlp->rw_owner = curthread;
154 }
155 
156 void
157 rw_exit(krwlock_t *rwlp)
158 {
159 	ASSERT(rwlp->rw_owner != (void *)-1UL);
160 
161 	rwlp->rw_owner = NULL;
162 	(void) rw_unlock(&rwlp->rw_lock);
163 }
164 
165 int
166 rw_tryenter(krwlock_t *rwlp, krw_t rw)
167 {
168 	int rv;
169 
170 	ASSERT(rwlp->rw_owner != (void *)-1UL);
171 
172 	if (rw == RW_READER)
173 		rv = rw_tryrdlock(&rwlp->rw_lock);
174 	else
175 		rv = rw_trywrlock(&rwlp->rw_lock);
176 
177 	if (rv == 0) {
178 		rwlp->rw_owner = curthread;
179 		return (1);
180 	}
181 
182 	return (0);
183 }
184 
185 /*ARGSUSED*/
186 int
187 rw_tryupgrade(krwlock_t *rwlp)
188 {
189 	ASSERT(rwlp->rw_owner != (void *)-1UL);
190 
191 	return (0);
192 }
193 
194 /*
195  * =========================================================================
196  * condition variables
197  * =========================================================================
198  */
199 /*ARGSUSED*/
200 void
201 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
202 {
203 	VERIFY(cond_init(cv, type, NULL) == 0);
204 }
205 
206 void
207 cv_destroy(kcondvar_t *cv)
208 {
209 	VERIFY(cond_destroy(cv) == 0);
210 }
211 
212 void
213 cv_wait(kcondvar_t *cv, kmutex_t *mp)
214 {
215 	ASSERT(mutex_owner(mp) == curthread);
216 	mp->m_owner = NULL;
217 	int ret = cond_wait(cv, &mp->m_lock);
218 	VERIFY(ret == 0 || ret == EINTR);
219 	mp->m_owner = curthread;
220 }
221 
222 clock_t
223 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
224 {
225 	int error;
226 	timestruc_t ts;
227 	clock_t delta;
228 
229 top:
230 	delta = abstime - lbolt;
231 	if (delta <= 0)
232 		return (-1);
233 
234 	ts.tv_sec = delta / hz;
235 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
236 
237 	ASSERT(mutex_owner(mp) == curthread);
238 	mp->m_owner = NULL;
239 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
240 	mp->m_owner = curthread;
241 
242 	if (error == ETIME)
243 		return (-1);
244 
245 	if (error == EINTR)
246 		goto top;
247 
248 	ASSERT(error == 0);
249 
250 	return (1);
251 }
252 
253 void
254 cv_signal(kcondvar_t *cv)
255 {
256 	VERIFY(cond_signal(cv) == 0);
257 }
258 
259 void
260 cv_broadcast(kcondvar_t *cv)
261 {
262 	VERIFY(cond_broadcast(cv) == 0);
263 }
264 
265 /*
266  * =========================================================================
267  * vnode operations
268  * =========================================================================
269  */
270 /*
271  * Note: for the xxxat() versions of these functions, we assume that the
272  * starting vp is always rootdir (which is true for spa_directory.c, the only
273  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
274  * them by adding '/' in front of the path.
275  */
276 
277 /*ARGSUSED*/
278 int
279 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
280 {
281 	int fd;
282 	vnode_t *vp;
283 	int old_umask;
284 	char realpath[MAXPATHLEN];
285 	struct stat64 st;
286 
287 	/*
288 	 * If we're accessing a real disk from userland, we need to use
289 	 * the character interface to avoid caching.  This is particularly
290 	 * important if we're trying to look at a real in-kernel storage
291 	 * pool from userland, e.g. via zdb, because otherwise we won't
292 	 * see the changes occurring under the segmap cache.
293 	 * On the other hand, the stupid character device returns zero
294 	 * for its size.  So -- gag -- we open the block device to get
295 	 * its size, and remember it for subsequent VOP_GETATTR().
296 	 */
297 	if (strncmp(path, "/dev/", 5) == 0) {
298 		char *dsk;
299 		fd = open64(path, O_RDONLY);
300 		if (fd == -1)
301 			return (errno);
302 		if (fstat64(fd, &st) == -1) {
303 			close(fd);
304 			return (errno);
305 		}
306 		close(fd);
307 		(void) sprintf(realpath, "%s", path);
308 		dsk = strstr(path, "/dsk/");
309 		if (dsk != NULL)
310 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
311 			    dsk + 1);
312 	} else {
313 		(void) sprintf(realpath, "%s", path);
314 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
315 			return (errno);
316 	}
317 
318 	if (flags & FCREAT)
319 		old_umask = umask(0);
320 
321 	/*
322 	 * The construct 'flags - FREAD' conveniently maps combinations of
323 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
324 	 */
325 	fd = open64(realpath, flags - FREAD, mode);
326 
327 	if (flags & FCREAT)
328 		(void) umask(old_umask);
329 
330 	if (fd == -1)
331 		return (errno);
332 
333 	if (fstat64(fd, &st) == -1) {
334 		close(fd);
335 		return (errno);
336 	}
337 
338 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
339 
340 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
341 
342 	vp->v_fd = fd;
343 	vp->v_size = st.st_size;
344 	vp->v_path = spa_strdup(path);
345 
346 	return (0);
347 }
348 
349 int
350 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
351     int x3, vnode_t *startvp)
352 {
353 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
354 	int ret;
355 
356 	ASSERT(startvp == rootdir);
357 	(void) sprintf(realpath, "/%s", path);
358 
359 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
360 
361 	umem_free(realpath, strlen(path) + 2);
362 
363 	return (ret);
364 }
365 
366 /*ARGSUSED*/
367 int
368 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
369 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
370 {
371 	ssize_t iolen, split;
372 
373 	if (uio == UIO_READ) {
374 		iolen = pread64(vp->v_fd, addr, len, offset);
375 	} else {
376 		/*
377 		 * To simulate partial disk writes, we split writes into two
378 		 * system calls so that the process can be killed in between.
379 		 */
380 		split = (len > 0 ? rand() % len : 0);
381 		iolen = pwrite64(vp->v_fd, addr, split, offset);
382 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
383 		    len - split, offset + split);
384 	}
385 
386 	if (iolen == -1)
387 		return (errno);
388 	if (residp)
389 		*residp = len - iolen;
390 	else if (iolen != len)
391 		return (EIO);
392 	return (0);
393 }
394 
395 void
396 vn_close(vnode_t *vp)
397 {
398 	close(vp->v_fd);
399 	spa_strfree(vp->v_path);
400 	umem_free(vp, sizeof (vnode_t));
401 }
402 
403 #ifdef ZFS_DEBUG
404 
405 /*
406  * =========================================================================
407  * Figure out which debugging statements to print
408  * =========================================================================
409  */
410 
411 static char *dprintf_string;
412 static int dprintf_print_all;
413 
414 int
415 dprintf_find_string(const char *string)
416 {
417 	char *tmp_str = dprintf_string;
418 	int len = strlen(string);
419 
420 	/*
421 	 * Find out if this is a string we want to print.
422 	 * String format: file1.c,function_name1,file2.c,file3.c
423 	 */
424 
425 	while (tmp_str != NULL) {
426 		if (strncmp(tmp_str, string, len) == 0 &&
427 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
428 			return (1);
429 		tmp_str = strchr(tmp_str, ',');
430 		if (tmp_str != NULL)
431 			tmp_str++; /* Get rid of , */
432 	}
433 	return (0);
434 }
435 
436 void
437 dprintf_setup(int *argc, char **argv)
438 {
439 	int i, j;
440 
441 	/*
442 	 * Debugging can be specified two ways: by setting the
443 	 * environment variable ZFS_DEBUG, or by including a
444 	 * "debug=..."  argument on the command line.  The command
445 	 * line setting overrides the environment variable.
446 	 */
447 
448 	for (i = 1; i < *argc; i++) {
449 		int len = strlen("debug=");
450 		/* First look for a command line argument */
451 		if (strncmp("debug=", argv[i], len) == 0) {
452 			dprintf_string = argv[i] + len;
453 			/* Remove from args */
454 			for (j = i; j < *argc; j++)
455 				argv[j] = argv[j+1];
456 			argv[j] = NULL;
457 			(*argc)--;
458 		}
459 	}
460 
461 	if (dprintf_string == NULL) {
462 		/* Look for ZFS_DEBUG environment variable */
463 		dprintf_string = getenv("ZFS_DEBUG");
464 	}
465 
466 	/*
467 	 * Are we just turning on all debugging?
468 	 */
469 	if (dprintf_find_string("on"))
470 		dprintf_print_all = 1;
471 }
472 
473 /*
474  * =========================================================================
475  * debug printfs
476  * =========================================================================
477  */
478 void
479 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
480 {
481 	const char *newfile;
482 	va_list adx;
483 
484 	/*
485 	 * Get rid of annoying "../common/" prefix to filename.
486 	 */
487 	newfile = strrchr(file, '/');
488 	if (newfile != NULL) {
489 		newfile = newfile + 1; /* Get rid of leading / */
490 	} else {
491 		newfile = file;
492 	}
493 
494 	if (dprintf_print_all ||
495 	    dprintf_find_string(newfile) ||
496 	    dprintf_find_string(func)) {
497 		/* Print out just the function name if requested */
498 		flockfile(stdout);
499 		if (dprintf_find_string("pid"))
500 			(void) printf("%d ", getpid());
501 		if (dprintf_find_string("tid"))
502 			(void) printf("%u ", thr_self());
503 		if (dprintf_find_string("cpu"))
504 			(void) printf("%u ", getcpuid());
505 		if (dprintf_find_string("time"))
506 			(void) printf("%llu ", gethrtime());
507 		if (dprintf_find_string("long"))
508 			(void) printf("%s, line %d: ", newfile, line);
509 		(void) printf("%s: ", func);
510 		va_start(adx, fmt);
511 		(void) vprintf(fmt, adx);
512 		va_end(adx);
513 		funlockfile(stdout);
514 	}
515 }
516 
517 #endif /* ZFS_DEBUG */
518 
519 /*
520  * =========================================================================
521  * cmn_err() and panic()
522  * =========================================================================
523  */
524 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
525 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
526 
527 void
528 vpanic(const char *fmt, va_list adx)
529 {
530 	(void) fprintf(stderr, "error: ");
531 	(void) vfprintf(stderr, fmt, adx);
532 	(void) fprintf(stderr, "\n");
533 
534 	abort();	/* think of it as a "user-level crash dump" */
535 }
536 
537 void
538 panic(const char *fmt, ...)
539 {
540 	va_list adx;
541 
542 	va_start(adx, fmt);
543 	vpanic(fmt, adx);
544 	va_end(adx);
545 }
546 
547 /*PRINTFLIKE2*/
548 void
549 cmn_err(int ce, const char *fmt, ...)
550 {
551 	va_list adx;
552 
553 	va_start(adx, fmt);
554 	if (ce == CE_PANIC)
555 		vpanic(fmt, adx);
556 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
557 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
558 		(void) vfprintf(stderr, fmt, adx);
559 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
560 	}
561 	va_end(adx);
562 }
563 
564 /*
565  * =========================================================================
566  * kobj interfaces
567  * =========================================================================
568  */
569 struct _buf *
570 kobj_open_file(char *name)
571 {
572 	struct _buf *file;
573 	vnode_t *vp;
574 
575 	/* set vp as the _fd field of the file */
576 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir) != 0)
577 		return ((void *)-1UL);
578 
579 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
580 	file->_fd = (intptr_t)vp;
581 	return (file);
582 }
583 
584 int
585 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
586 {
587 	ssize_t resid;
588 
589 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
590 	    UIO_SYSSPACE, 0, 0, 0, &resid);
591 
592 	return (0);
593 }
594 
595 void
596 kobj_close_file(struct _buf *file)
597 {
598 	vn_close((vnode_t *)file->_fd);
599 	umem_free(file, sizeof (struct _buf));
600 }
601 
602 int
603 kobj_fstat(intptr_t fd, struct bootstat *bst)
604 {
605 	struct stat64 st;
606 	vnode_t *vp = (vnode_t *)fd;
607 	if (fstat64(vp->v_fd, &st) == -1) {
608 		vn_close(vp);
609 		return (errno);
610 	}
611 	bst->st_size = (uint64_t)st.st_size;
612 	return (0);
613 }
614 
615 /*
616  * =========================================================================
617  * misc routines
618  * =========================================================================
619  */
620 
621 void
622 delay(clock_t ticks)
623 {
624 	poll(0, 0, ticks * (1000 / hz));
625 }
626 
627 /*
628  * Find highest one bit set.
629  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
630  * High order bit is 31 (or 63 in _LP64 kernel).
631  */
632 int
633 highbit(ulong_t i)
634 {
635 	register int h = 1;
636 
637 	if (i == 0)
638 		return (0);
639 #ifdef _LP64
640 	if (i & 0xffffffff00000000ul) {
641 		h += 32; i >>= 32;
642 	}
643 #endif
644 	if (i & 0xffff0000) {
645 		h += 16; i >>= 16;
646 	}
647 	if (i & 0xff00) {
648 		h += 8; i >>= 8;
649 	}
650 	if (i & 0xf0) {
651 		h += 4; i >>= 4;
652 	}
653 	if (i & 0xc) {
654 		h += 2; i >>= 2;
655 	}
656 	if (i & 0x2) {
657 		h += 1;
658 	}
659 	return (h);
660 }
661 
662 static int
663 random_get_bytes_common(uint8_t *ptr, size_t len, char *devname)
664 {
665 	int fd = open(devname, O_RDONLY);
666 	size_t resid = len;
667 	ssize_t bytes;
668 
669 	ASSERT(fd != -1);
670 
671 	while (resid != 0) {
672 		bytes = read(fd, ptr, resid);
673 		ASSERT(bytes >= 0);
674 		ptr += bytes;
675 		resid -= bytes;
676 	}
677 
678 	close(fd);
679 
680 	return (0);
681 }
682 
683 int
684 random_get_bytes(uint8_t *ptr, size_t len)
685 {
686 	return (random_get_bytes_common(ptr, len, "/dev/random"));
687 }
688 
689 int
690 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
691 {
692 	return (random_get_bytes_common(ptr, len, "/dev/urandom"));
693 }
694 
695 /*
696  * =========================================================================
697  * kernel emulation setup & teardown
698  * =========================================================================
699  */
700 static int
701 umem_out_of_memory(void)
702 {
703 	char errmsg[] = "out of memory -- generating core dump\n";
704 
705 	write(fileno(stderr), errmsg, sizeof (errmsg));
706 	abort();
707 	return (0);
708 }
709 
710 void
711 kernel_init(int mode)
712 {
713 	umem_nofail_callback(umem_out_of_memory);
714 
715 	physmem = sysconf(_SC_PHYS_PAGES);
716 
717 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
718 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
719 
720 	spa_init(mode);
721 }
722 
723 void
724 kernel_fini(void)
725 {
726 	spa_fini();
727 }
728