xref: /titanic_50/usr/src/lib/libzpool/common/kernel.c (revision 052519c2d30736afb1861979b73d5a889cf7fba8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <poll.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <zlib.h>
34 #include <sys/spa.h>
35 #include <sys/stat.h>
36 #include <sys/processor.h>
37 #include <sys/zfs_context.h>
38 #include <sys/rrwlock.h>
39 #include <sys/zmod.h>
40 #include <sys/utsname.h>
41 #include <sys/systeminfo.h>
42 
43 /*
44  * Emulation of kernel services in userland.
45  */
46 
47 int aok;
48 uint64_t physmem;
49 vnode_t *rootdir = (vnode_t *)0xabcd1234;
50 char hw_serial[HW_HOSTID_LEN];
51 kmutex_t cpu_lock;
52 vmem_t *zio_arena = NULL;
53 
54 struct utsname utsname = {
55 	"userland", "libzpool", "1", "1", "na"
56 };
57 
58 /* this only exists to have its address taken */
59 struct proc p0;
60 
61 /*
62  * =========================================================================
63  * threads
64  * =========================================================================
65  */
66 /*ARGSUSED*/
67 kthread_t *
68 zk_thread_create(void (*func)(), void *arg)
69 {
70 	thread_t tid;
71 
72 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
73 	    &tid) == 0);
74 
75 	return ((void *)(uintptr_t)tid);
76 }
77 
78 /*
79  * =========================================================================
80  * kstats
81  * =========================================================================
82  */
83 /*ARGSUSED*/
84 kstat_t *
85 kstat_create(const char *module, int instance, const char *name,
86     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
87 {
88 	return (NULL);
89 }
90 
91 /*ARGSUSED*/
92 void
93 kstat_install(kstat_t *ksp)
94 {}
95 
96 /*ARGSUSED*/
97 void
98 kstat_delete(kstat_t *ksp)
99 {}
100 
101 /*ARGSUSED*/
102 void
103 kstat_waitq_enter(kstat_io_t *kiop)
104 {}
105 
106 /*ARGSUSED*/
107 void
108 kstat_waitq_exit(kstat_io_t *kiop)
109 {}
110 
111 /*ARGSUSED*/
112 void
113 kstat_runq_enter(kstat_io_t *kiop)
114 {}
115 
116 /*ARGSUSED*/
117 void
118 kstat_runq_exit(kstat_io_t *kiop)
119 {}
120 
121 /*ARGSUSED*/
122 void
123 kstat_waitq_to_runq(kstat_io_t *kiop)
124 {}
125 
126 /*ARGSUSED*/
127 void
128 kstat_runq_back_to_waitq(kstat_io_t *kiop)
129 {}
130 
131 /*
132  * =========================================================================
133  * mutexes
134  * =========================================================================
135  */
136 void
137 zmutex_init(kmutex_t *mp)
138 {
139 	mp->m_owner = NULL;
140 	mp->initialized = B_TRUE;
141 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
142 }
143 
144 void
145 zmutex_destroy(kmutex_t *mp)
146 {
147 	ASSERT(mp->initialized == B_TRUE);
148 	ASSERT(mp->m_owner == NULL);
149 	(void) _mutex_destroy(&(mp)->m_lock);
150 	mp->m_owner = (void *)-1UL;
151 	mp->initialized = B_FALSE;
152 }
153 
154 void
155 mutex_enter(kmutex_t *mp)
156 {
157 	ASSERT(mp->initialized == B_TRUE);
158 	ASSERT(mp->m_owner != (void *)-1UL);
159 	ASSERT(mp->m_owner != curthread);
160 	VERIFY(mutex_lock(&mp->m_lock) == 0);
161 	ASSERT(mp->m_owner == NULL);
162 	mp->m_owner = curthread;
163 }
164 
165 int
166 mutex_tryenter(kmutex_t *mp)
167 {
168 	ASSERT(mp->initialized == B_TRUE);
169 	ASSERT(mp->m_owner != (void *)-1UL);
170 	if (0 == mutex_trylock(&mp->m_lock)) {
171 		ASSERT(mp->m_owner == NULL);
172 		mp->m_owner = curthread;
173 		return (1);
174 	} else {
175 		return (0);
176 	}
177 }
178 
179 void
180 mutex_exit(kmutex_t *mp)
181 {
182 	ASSERT(mp->initialized == B_TRUE);
183 	ASSERT(mutex_owner(mp) == curthread);
184 	mp->m_owner = NULL;
185 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
186 }
187 
188 void *
189 mutex_owner(kmutex_t *mp)
190 {
191 	ASSERT(mp->initialized == B_TRUE);
192 	return (mp->m_owner);
193 }
194 
195 /*
196  * =========================================================================
197  * rwlocks
198  * =========================================================================
199  */
200 /*ARGSUSED*/
201 void
202 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
203 {
204 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
205 	rwlp->rw_owner = NULL;
206 	rwlp->initialized = B_TRUE;
207 }
208 
209 void
210 rw_destroy(krwlock_t *rwlp)
211 {
212 	rwlock_destroy(&rwlp->rw_lock);
213 	rwlp->rw_owner = (void *)-1UL;
214 	rwlp->initialized = B_FALSE;
215 }
216 
217 void
218 rw_enter(krwlock_t *rwlp, krw_t rw)
219 {
220 	ASSERT(!RW_LOCK_HELD(rwlp));
221 	ASSERT(rwlp->initialized == B_TRUE);
222 	ASSERT(rwlp->rw_owner != (void *)-1UL);
223 	ASSERT(rwlp->rw_owner != curthread);
224 
225 	if (rw == RW_WRITER)
226 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
227 	else
228 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
229 
230 	rwlp->rw_owner = curthread;
231 }
232 
233 void
234 rw_exit(krwlock_t *rwlp)
235 {
236 	ASSERT(rwlp->initialized == B_TRUE);
237 	ASSERT(rwlp->rw_owner != (void *)-1UL);
238 
239 	rwlp->rw_owner = NULL;
240 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
241 }
242 
243 int
244 rw_tryenter(krwlock_t *rwlp, krw_t rw)
245 {
246 	int rv;
247 
248 	ASSERT(rwlp->initialized == B_TRUE);
249 	ASSERT(rwlp->rw_owner != (void *)-1UL);
250 
251 	if (rw == RW_WRITER)
252 		rv = rw_trywrlock(&rwlp->rw_lock);
253 	else
254 		rv = rw_tryrdlock(&rwlp->rw_lock);
255 
256 	if (rv == 0) {
257 		rwlp->rw_owner = curthread;
258 		return (1);
259 	}
260 
261 	return (0);
262 }
263 
264 /*ARGSUSED*/
265 int
266 rw_tryupgrade(krwlock_t *rwlp)
267 {
268 	ASSERT(rwlp->initialized == B_TRUE);
269 	ASSERT(rwlp->rw_owner != (void *)-1UL);
270 
271 	return (0);
272 }
273 
274 /*
275  * =========================================================================
276  * condition variables
277  * =========================================================================
278  */
279 /*ARGSUSED*/
280 void
281 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
282 {
283 	VERIFY(cond_init(cv, type, NULL) == 0);
284 }
285 
286 void
287 cv_destroy(kcondvar_t *cv)
288 {
289 	VERIFY(cond_destroy(cv) == 0);
290 }
291 
292 void
293 cv_wait(kcondvar_t *cv, kmutex_t *mp)
294 {
295 	ASSERT(mutex_owner(mp) == curthread);
296 	mp->m_owner = NULL;
297 	int ret = cond_wait(cv, &mp->m_lock);
298 	VERIFY(ret == 0 || ret == EINTR);
299 	mp->m_owner = curthread;
300 }
301 
302 clock_t
303 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
304 {
305 	int error;
306 	timestruc_t ts;
307 	clock_t delta;
308 
309 top:
310 	delta = abstime - ddi_get_lbolt();
311 	if (delta <= 0)
312 		return (-1);
313 
314 	ts.tv_sec = delta / hz;
315 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
316 
317 	ASSERT(mutex_owner(mp) == curthread);
318 	mp->m_owner = NULL;
319 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
320 	mp->m_owner = curthread;
321 
322 	if (error == ETIME)
323 		return (-1);
324 
325 	if (error == EINTR)
326 		goto top;
327 
328 	ASSERT(error == 0);
329 
330 	return (1);
331 }
332 
333 /*ARGSUSED*/
334 clock_t
335 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
336     int flag)
337 {
338 	int error;
339 	timestruc_t ts;
340 	hrtime_t delta;
341 
342 	ASSERT(flag == 0);
343 
344 top:
345 	delta = tim - gethrtime();
346 	if (delta <= 0)
347 		return (-1);
348 
349 	ts.tv_sec = delta / NANOSEC;
350 	ts.tv_nsec = delta % NANOSEC;
351 
352 	ASSERT(mutex_owner(mp) == curthread);
353 	mp->m_owner = NULL;
354 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
355 	mp->m_owner = curthread;
356 
357 	if (error == ETIME)
358 		return (-1);
359 
360 	if (error == EINTR)
361 		goto top;
362 
363 	ASSERT(error == 0);
364 
365 	return (1);
366 }
367 
368 void
369 cv_signal(kcondvar_t *cv)
370 {
371 	VERIFY(cond_signal(cv) == 0);
372 }
373 
374 void
375 cv_broadcast(kcondvar_t *cv)
376 {
377 	VERIFY(cond_broadcast(cv) == 0);
378 }
379 
380 /*
381  * =========================================================================
382  * vnode operations
383  * =========================================================================
384  */
385 /*
386  * Note: for the xxxat() versions of these functions, we assume that the
387  * starting vp is always rootdir (which is true for spa_directory.c, the only
388  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
389  * them by adding '/' in front of the path.
390  */
391 
392 /*ARGSUSED*/
393 int
394 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
395 {
396 	int fd;
397 	vnode_t *vp;
398 	int old_umask;
399 	char realpath[MAXPATHLEN];
400 	struct stat64 st;
401 
402 	/*
403 	 * If we're accessing a real disk from userland, we need to use
404 	 * the character interface to avoid caching.  This is particularly
405 	 * important if we're trying to look at a real in-kernel storage
406 	 * pool from userland, e.g. via zdb, because otherwise we won't
407 	 * see the changes occurring under the segmap cache.
408 	 * On the other hand, the stupid character device returns zero
409 	 * for its size.  So -- gag -- we open the block device to get
410 	 * its size, and remember it for subsequent VOP_GETATTR().
411 	 */
412 	if (strncmp(path, "/dev/", 5) == 0) {
413 		char *dsk;
414 		fd = open64(path, O_RDONLY);
415 		if (fd == -1)
416 			return (errno);
417 		if (fstat64(fd, &st) == -1) {
418 			close(fd);
419 			return (errno);
420 		}
421 		close(fd);
422 		(void) sprintf(realpath, "%s", path);
423 		dsk = strstr(path, "/dsk/");
424 		if (dsk != NULL)
425 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
426 			    dsk + 1);
427 	} else {
428 		(void) sprintf(realpath, "%s", path);
429 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
430 			return (errno);
431 	}
432 
433 	if (flags & FCREAT)
434 		old_umask = umask(0);
435 
436 	/*
437 	 * The construct 'flags - FREAD' conveniently maps combinations of
438 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
439 	 */
440 	fd = open64(realpath, flags - FREAD, mode);
441 
442 	if (flags & FCREAT)
443 		(void) umask(old_umask);
444 
445 	if (fd == -1)
446 		return (errno);
447 
448 	if (fstat64(fd, &st) == -1) {
449 		close(fd);
450 		return (errno);
451 	}
452 
453 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
454 
455 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
456 
457 	vp->v_fd = fd;
458 	vp->v_size = st.st_size;
459 	vp->v_path = spa_strdup(path);
460 
461 	return (0);
462 }
463 
464 /*ARGSUSED*/
465 int
466 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
467     int x3, vnode_t *startvp, int fd)
468 {
469 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
470 	int ret;
471 
472 	ASSERT(startvp == rootdir);
473 	(void) sprintf(realpath, "/%s", path);
474 
475 	/* fd ignored for now, need if want to simulate nbmand support */
476 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
477 
478 	umem_free(realpath, strlen(path) + 2);
479 
480 	return (ret);
481 }
482 
483 /*ARGSUSED*/
484 int
485 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
486 	int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
487 {
488 	ssize_t iolen, split;
489 
490 	if (uio == UIO_READ) {
491 		iolen = pread64(vp->v_fd, addr, len, offset);
492 	} else {
493 		/*
494 		 * To simulate partial disk writes, we split writes into two
495 		 * system calls so that the process can be killed in between.
496 		 */
497 		int sectors = len >> SPA_MINBLOCKSHIFT;
498 		split = (sectors > 0 ? rand() % sectors : 0) <<
499 		    SPA_MINBLOCKSHIFT;
500 		iolen = pwrite64(vp->v_fd, addr, split, offset);
501 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
502 		    len - split, offset + split);
503 	}
504 
505 	if (iolen == -1)
506 		return (errno);
507 	if (residp)
508 		*residp = len - iolen;
509 	else if (iolen != len)
510 		return (EIO);
511 	return (0);
512 }
513 
514 void
515 vn_close(vnode_t *vp)
516 {
517 	close(vp->v_fd);
518 	spa_strfree(vp->v_path);
519 	umem_free(vp, sizeof (vnode_t));
520 }
521 
522 /*
523  * At a minimum we need to update the size since vdev_reopen()
524  * will no longer call vn_openat().
525  */
526 int
527 fop_getattr(vnode_t *vp, vattr_t *vap)
528 {
529 	struct stat64 st;
530 
531 	if (fstat64(vp->v_fd, &st) == -1) {
532 		close(vp->v_fd);
533 		return (errno);
534 	}
535 
536 	vap->va_size = st.st_size;
537 	return (0);
538 }
539 
540 #ifdef ZFS_DEBUG
541 
542 /*
543  * =========================================================================
544  * Figure out which debugging statements to print
545  * =========================================================================
546  */
547 
548 static char *dprintf_string;
549 static int dprintf_print_all;
550 
551 int
552 dprintf_find_string(const char *string)
553 {
554 	char *tmp_str = dprintf_string;
555 	int len = strlen(string);
556 
557 	/*
558 	 * Find out if this is a string we want to print.
559 	 * String format: file1.c,function_name1,file2.c,file3.c
560 	 */
561 
562 	while (tmp_str != NULL) {
563 		if (strncmp(tmp_str, string, len) == 0 &&
564 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
565 			return (1);
566 		tmp_str = strchr(tmp_str, ',');
567 		if (tmp_str != NULL)
568 			tmp_str++; /* Get rid of , */
569 	}
570 	return (0);
571 }
572 
573 void
574 dprintf_setup(int *argc, char **argv)
575 {
576 	int i, j;
577 
578 	/*
579 	 * Debugging can be specified two ways: by setting the
580 	 * environment variable ZFS_DEBUG, or by including a
581 	 * "debug=..."  argument on the command line.  The command
582 	 * line setting overrides the environment variable.
583 	 */
584 
585 	for (i = 1; i < *argc; i++) {
586 		int len = strlen("debug=");
587 		/* First look for a command line argument */
588 		if (strncmp("debug=", argv[i], len) == 0) {
589 			dprintf_string = argv[i] + len;
590 			/* Remove from args */
591 			for (j = i; j < *argc; j++)
592 				argv[j] = argv[j+1];
593 			argv[j] = NULL;
594 			(*argc)--;
595 		}
596 	}
597 
598 	if (dprintf_string == NULL) {
599 		/* Look for ZFS_DEBUG environment variable */
600 		dprintf_string = getenv("ZFS_DEBUG");
601 	}
602 
603 	/*
604 	 * Are we just turning on all debugging?
605 	 */
606 	if (dprintf_find_string("on"))
607 		dprintf_print_all = 1;
608 }
609 
610 /*
611  * =========================================================================
612  * debug printfs
613  * =========================================================================
614  */
615 void
616 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
617 {
618 	const char *newfile;
619 	va_list adx;
620 
621 	/*
622 	 * Get rid of annoying "../common/" prefix to filename.
623 	 */
624 	newfile = strrchr(file, '/');
625 	if (newfile != NULL) {
626 		newfile = newfile + 1; /* Get rid of leading / */
627 	} else {
628 		newfile = file;
629 	}
630 
631 	if (dprintf_print_all ||
632 	    dprintf_find_string(newfile) ||
633 	    dprintf_find_string(func)) {
634 		/* Print out just the function name if requested */
635 		flockfile(stdout);
636 		if (dprintf_find_string("pid"))
637 			(void) printf("%d ", getpid());
638 		if (dprintf_find_string("tid"))
639 			(void) printf("%u ", thr_self());
640 		if (dprintf_find_string("cpu"))
641 			(void) printf("%u ", getcpuid());
642 		if (dprintf_find_string("time"))
643 			(void) printf("%llu ", gethrtime());
644 		if (dprintf_find_string("long"))
645 			(void) printf("%s, line %d: ", newfile, line);
646 		(void) printf("%s: ", func);
647 		va_start(adx, fmt);
648 		(void) vprintf(fmt, adx);
649 		va_end(adx);
650 		funlockfile(stdout);
651 	}
652 }
653 
654 #endif /* ZFS_DEBUG */
655 
656 /*
657  * =========================================================================
658  * cmn_err() and panic()
659  * =========================================================================
660  */
661 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
662 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
663 
664 void
665 vpanic(const char *fmt, va_list adx)
666 {
667 	(void) fprintf(stderr, "error: ");
668 	(void) vfprintf(stderr, fmt, adx);
669 	(void) fprintf(stderr, "\n");
670 
671 	abort();	/* think of it as a "user-level crash dump" */
672 }
673 
674 void
675 panic(const char *fmt, ...)
676 {
677 	va_list adx;
678 
679 	va_start(adx, fmt);
680 	vpanic(fmt, adx);
681 	va_end(adx);
682 }
683 
684 void
685 vcmn_err(int ce, const char *fmt, va_list adx)
686 {
687 	if (ce == CE_PANIC)
688 		vpanic(fmt, adx);
689 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
690 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
691 		(void) vfprintf(stderr, fmt, adx);
692 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
693 	}
694 }
695 
696 /*PRINTFLIKE2*/
697 void
698 cmn_err(int ce, const char *fmt, ...)
699 {
700 	va_list adx;
701 
702 	va_start(adx, fmt);
703 	vcmn_err(ce, fmt, adx);
704 	va_end(adx);
705 }
706 
707 /*
708  * =========================================================================
709  * kobj interfaces
710  * =========================================================================
711  */
712 struct _buf *
713 kobj_open_file(char *name)
714 {
715 	struct _buf *file;
716 	vnode_t *vp;
717 
718 	/* set vp as the _fd field of the file */
719 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
720 	    -1) != 0)
721 		return ((void *)-1UL);
722 
723 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
724 	file->_fd = (intptr_t)vp;
725 	return (file);
726 }
727 
728 int
729 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
730 {
731 	ssize_t resid;
732 
733 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
734 	    UIO_SYSSPACE, 0, 0, 0, &resid);
735 
736 	return (size - resid);
737 }
738 
739 void
740 kobj_close_file(struct _buf *file)
741 {
742 	vn_close((vnode_t *)file->_fd);
743 	umem_free(file, sizeof (struct _buf));
744 }
745 
746 int
747 kobj_get_filesize(struct _buf *file, uint64_t *size)
748 {
749 	struct stat64 st;
750 	vnode_t *vp = (vnode_t *)file->_fd;
751 
752 	if (fstat64(vp->v_fd, &st) == -1) {
753 		vn_close(vp);
754 		return (errno);
755 	}
756 	*size = st.st_size;
757 	return (0);
758 }
759 
760 /*
761  * =========================================================================
762  * misc routines
763  * =========================================================================
764  */
765 
766 void
767 delay(clock_t ticks)
768 {
769 	poll(0, 0, ticks * (1000 / hz));
770 }
771 
772 /*
773  * Find highest one bit set.
774  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
775  * High order bit is 31 (or 63 in _LP64 kernel).
776  */
777 int
778 highbit(ulong_t i)
779 {
780 	register int h = 1;
781 
782 	if (i == 0)
783 		return (0);
784 #ifdef _LP64
785 	if (i & 0xffffffff00000000ul) {
786 		h += 32; i >>= 32;
787 	}
788 #endif
789 	if (i & 0xffff0000) {
790 		h += 16; i >>= 16;
791 	}
792 	if (i & 0xff00) {
793 		h += 8; i >>= 8;
794 	}
795 	if (i & 0xf0) {
796 		h += 4; i >>= 4;
797 	}
798 	if (i & 0xc) {
799 		h += 2; i >>= 2;
800 	}
801 	if (i & 0x2) {
802 		h += 1;
803 	}
804 	return (h);
805 }
806 
807 static int random_fd = -1, urandom_fd = -1;
808 
809 static int
810 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
811 {
812 	size_t resid = len;
813 	ssize_t bytes;
814 
815 	ASSERT(fd != -1);
816 
817 	while (resid != 0) {
818 		bytes = read(fd, ptr, resid);
819 		ASSERT3S(bytes, >=, 0);
820 		ptr += bytes;
821 		resid -= bytes;
822 	}
823 
824 	return (0);
825 }
826 
827 int
828 random_get_bytes(uint8_t *ptr, size_t len)
829 {
830 	return (random_get_bytes_common(ptr, len, random_fd));
831 }
832 
833 int
834 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
835 {
836 	return (random_get_bytes_common(ptr, len, urandom_fd));
837 }
838 
839 int
840 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
841 {
842 	char *end;
843 
844 	*result = strtoul(hw_serial, &end, base);
845 	if (*result == 0)
846 		return (errno);
847 	return (0);
848 }
849 
850 int
851 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
852 {
853 	char *end;
854 
855 	*result = strtoull(str, &end, base);
856 	if (*result == 0)
857 		return (errno);
858 	return (0);
859 }
860 
861 /* ARGSUSED */
862 cyclic_id_t
863 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
864 {
865 	return (1);
866 }
867 
868 /* ARGSUSED */
869 void
870 cyclic_remove(cyclic_id_t id)
871 {
872 }
873 
874 /* ARGSUSED */
875 int
876 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
877 {
878 	return (1);
879 }
880 
881 /*
882  * =========================================================================
883  * kernel emulation setup & teardown
884  * =========================================================================
885  */
886 static int
887 umem_out_of_memory(void)
888 {
889 	char errmsg[] = "out of memory -- generating core dump\n";
890 
891 	write(fileno(stderr), errmsg, sizeof (errmsg));
892 	abort();
893 	return (0);
894 }
895 
896 void
897 kernel_init(int mode)
898 {
899 	extern uint_t rrw_tsd_key;
900 
901 	umem_nofail_callback(umem_out_of_memory);
902 
903 	physmem = sysconf(_SC_PHYS_PAGES);
904 
905 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
906 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
907 
908 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
909 	    (mode & FWRITE) ? gethostid() : 0);
910 
911 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
912 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
913 
914 	system_taskq_init();
915 
916 	mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
917 
918 	spa_init(mode);
919 
920 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
921 }
922 
923 void
924 kernel_fini(void)
925 {
926 	spa_fini();
927 
928 	system_taskq_fini();
929 
930 	close(random_fd);
931 	close(urandom_fd);
932 
933 	random_fd = -1;
934 	urandom_fd = -1;
935 }
936 
937 int
938 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
939 {
940 	int ret;
941 	uLongf len = *dstlen;
942 
943 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
944 		*dstlen = (size_t)len;
945 
946 	return (ret);
947 }
948 
949 int
950 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
951     int level)
952 {
953 	int ret;
954 	uLongf len = *dstlen;
955 
956 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
957 		*dstlen = (size_t)len;
958 
959 	return (ret);
960 }
961 
962 uid_t
963 crgetuid(cred_t *cr)
964 {
965 	return (0);
966 }
967 
968 uid_t
969 crgetruid(cred_t *cr)
970 {
971 	return (0);
972 }
973 
974 gid_t
975 crgetgid(cred_t *cr)
976 {
977 	return (0);
978 }
979 
980 int
981 crgetngroups(cred_t *cr)
982 {
983 	return (0);
984 }
985 
986 gid_t *
987 crgetgroups(cred_t *cr)
988 {
989 	return (NULL);
990 }
991 
992 int
993 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
994 {
995 	return (0);
996 }
997 
998 int
999 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1000 {
1001 	return (0);
1002 }
1003 
1004 int
1005 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1006 {
1007 	return (0);
1008 }
1009 
1010 ksiddomain_t *
1011 ksid_lookupdomain(const char *dom)
1012 {
1013 	ksiddomain_t *kd;
1014 
1015 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1016 	kd->kd_name = spa_strdup(dom);
1017 	return (kd);
1018 }
1019 
1020 void
1021 ksiddomain_rele(ksiddomain_t *ksid)
1022 {
1023 	spa_strfree(ksid->kd_name);
1024 	umem_free(ksid, sizeof (ksiddomain_t));
1025 }
1026 
1027 /*
1028  * Do not change the length of the returned string; it must be freed
1029  * with strfree().
1030  */
1031 char *
1032 kmem_asprintf(const char *fmt, ...)
1033 {
1034 	int size;
1035 	va_list adx;
1036 	char *buf;
1037 
1038 	va_start(adx, fmt);
1039 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
1040 	va_end(adx);
1041 
1042 	buf = kmem_alloc(size, KM_SLEEP);
1043 
1044 	va_start(adx, fmt);
1045 	size = vsnprintf(buf, size, fmt, adx);
1046 	va_end(adx);
1047 
1048 	return (buf);
1049 }
1050 
1051 /* ARGSUSED */
1052 int
1053 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1054 {
1055 	*minorp = 0;
1056 	return (0);
1057 }
1058 
1059 /* ARGSUSED */
1060 void
1061 zfs_onexit_fd_rele(int fd)
1062 {
1063 }
1064 
1065 /* ARGSUSED */
1066 int
1067 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1068     uint64_t *action_handle)
1069 {
1070 	return (0);
1071 }
1072 
1073 /* ARGSUSED */
1074 int
1075 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1076 {
1077 	return (0);
1078 }
1079 
1080 /* ARGSUSED */
1081 int
1082 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1083 {
1084 	return (0);
1085 }
1086 
1087 void
1088 bioinit(buf_t *bp)
1089 {
1090 	bzero(bp, sizeof (buf_t));
1091 }
1092 
1093 void
1094 biodone(buf_t *bp)
1095 {
1096 	if (bp->b_iodone != NULL) {
1097 		(*(bp->b_iodone))(bp);
1098 		return;
1099 	}
1100 	ASSERT((bp->b_flags & B_DONE) == 0);
1101 	bp->b_flags |= B_DONE;
1102 }
1103 
1104 void
1105 bioerror(buf_t *bp, int error)
1106 {
1107 	ASSERT(bp != NULL);
1108 	ASSERT(error >= 0);
1109 
1110 	if (error != 0) {
1111 		bp->b_flags |= B_ERROR;
1112 	} else {
1113 		bp->b_flags &= ~B_ERROR;
1114 	}
1115 	bp->b_error = error;
1116 }
1117 
1118 
1119 int
1120 geterror(struct buf *bp)
1121 {
1122 	int error = 0;
1123 
1124 	if (bp->b_flags & B_ERROR) {
1125 		error = bp->b_error;
1126 		if (!error)
1127 			error = EIO;
1128 	}
1129 	return (error);
1130 }
1131