xref: /titanic_50/usr/src/lib/libzfs/common/libzfs_import.c (revision e764d406651fd9ae1eb625acae7fb932af107587)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Pool import support functions.
30  *
31  * To import a pool, we rely on reading the configuration information from the
32  * ZFS label of each device.  If we successfully read the label, then we
33  * organize the configuration information in the following hierarchy:
34  *
35  * 	pool guid -> toplevel vdev guid -> label txg
36  *
37  * Duplicate entries matching this same tuple will be discarded.  Once we have
38  * examined every device, we pick the best label txg config for each toplevel
39  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
40  * update any paths that have changed.  Finally, we attempt to import the pool
41  * using our derived config, and record the results.
42  */
43 
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <fcntl.h>
53 
54 #include <sys/vdev_impl.h>
55 
56 #include "libzfs.h"
57 #include "libzfs_impl.h"
58 
59 /*
60  * Intermediate structures used to gather configuration information.
61  */
62 typedef struct config_entry {
63 	uint64_t		ce_txg;
64 	nvlist_t		*ce_config;
65 	struct config_entry	*ce_next;
66 } config_entry_t;
67 
68 typedef struct vdev_entry {
69 	uint64_t		ve_guid;
70 	config_entry_t		*ve_configs;
71 	struct vdev_entry	*ve_next;
72 } vdev_entry_t;
73 
74 typedef struct pool_entry {
75 	uint64_t		pe_guid;
76 	vdev_entry_t		*pe_vdevs;
77 	struct pool_entry	*pe_next;
78 } pool_entry_t;
79 
80 typedef struct name_entry {
81 	char			*ne_name;
82 	uint64_t		ne_guid;
83 	struct name_entry	*ne_next;
84 } name_entry_t;
85 
86 typedef struct pool_list {
87 	pool_entry_t		*pools;
88 	name_entry_t		*names;
89 } pool_list_t;
90 
91 static char *
92 get_devid(const char *path)
93 {
94 	int fd;
95 	ddi_devid_t devid;
96 	char *minor, *ret;
97 
98 	if ((fd = open(path, O_RDONLY)) < 0)
99 		return (NULL);
100 
101 	minor = NULL;
102 	ret = NULL;
103 	if (devid_get(fd, &devid) == 0) {
104 		if (devid_get_minor_name(fd, &minor) == 0)
105 			ret = devid_str_encode(devid, minor);
106 		if (minor != NULL)
107 			devid_str_free(minor);
108 		devid_free(devid);
109 	}
110 	(void) close(fd);
111 
112 	return (ret);
113 }
114 
115 
116 /*
117  * Go through and fix up any path and/or devid information for the given vdev
118  * configuration.
119  */
120 static int
121 fix_paths(nvlist_t *nv, name_entry_t *names)
122 {
123 	nvlist_t **child;
124 	uint_t c, children;
125 	uint64_t guid;
126 	name_entry_t *ne, *best;
127 	char *path, *devid;
128 	int matched;
129 
130 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
131 	    &child, &children) == 0) {
132 		for (c = 0; c < children; c++)
133 			if (fix_paths(child[c], names) != 0)
134 				return (-1);
135 		return (0);
136 	}
137 
138 	/*
139 	 * This is a leaf (file or disk) vdev.  In either case, go through
140 	 * the name list and see if we find a matching guid.  If so, replace
141 	 * the path and see if we can calculate a new devid.
142 	 *
143 	 * There may be multiple names associated with a particular guid, in
144 	 * which case we have overlapping slices or multiple paths to the same
145 	 * disk.  If this is the case, then we want to pick the path that is
146 	 * the most similar to the original, where "most similar" is the number
147 	 * of matching characters starting from the end of the path.  This will
148 	 * preserve slice numbers even if the disks have been reorganized, and
149 	 * will also catch preferred disk names if multiple paths exist.
150 	 */
151 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
152 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
153 		path = NULL;
154 
155 	matched = 0;
156 	best = NULL;
157 	for (ne = names; ne != NULL; ne = ne->ne_next) {
158 		if (ne->ne_guid == guid) {
159 			const char *src, *dst;
160 			int count;
161 
162 			if (path == NULL) {
163 				best = ne;
164 				break;
165 			}
166 
167 			src = ne->ne_name + strlen(ne->ne_name) - 1;
168 			dst = path + strlen(path) - 1;
169 			for (count = 0; src >= ne->ne_name && dst >= path;
170 			    src--, dst--, count++)
171 				if (*src != *dst)
172 					break;
173 
174 			/*
175 			 * At this point, 'count' is the number of characters
176 			 * matched from the end.
177 			 */
178 			if (count > matched || best == NULL) {
179 				best = ne;
180 				matched = count;
181 			}
182 		}
183 	}
184 
185 	if (best == NULL)
186 		return (0);
187 
188 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
189 		return (-1);
190 
191 	if ((devid = get_devid(best->ne_name)) == NULL) {
192 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
193 	} else {
194 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
195 			return (-1);
196 		devid_str_free(devid);
197 	}
198 
199 	return (0);
200 }
201 
202 /*
203  * Add the given configuration to the list of known devices.
204  */
205 static int
206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
207     nvlist_t *config)
208 {
209 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
210 	pool_entry_t *pe;
211 	vdev_entry_t *ve;
212 	config_entry_t *ce;
213 	name_entry_t *ne;
214 
215 	/*
216 	 * If this is a hot spare not currently in use, add it to the list of
217 	 * names to translate, but don't do anything else.
218 	 */
219 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
220 	    &state) == 0 && state == POOL_STATE_SPARE &&
221 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
222 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
223 			return (-1);
224 
225 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
226 			free(ne);
227 			return (-1);
228 		}
229 		ne->ne_guid = vdev_guid;
230 		ne->ne_next = pl->names;
231 		pl->names = ne;
232 		return (0);
233 	}
234 
235 	/*
236 	 * If we have a valid config but cannot read any of these fields, then
237 	 * it means we have a half-initialized label.  In vdev_label_init()
238 	 * we write a label with txg == 0 so that we can identify the device
239 	 * in case the user refers to the same disk later on.  If we fail to
240 	 * create the pool, we'll be left with a label in this state
241 	 * which should not be considered part of a valid pool.
242 	 */
243 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
244 	    &pool_guid) != 0 ||
245 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
246 	    &vdev_guid) != 0 ||
247 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
248 	    &top_guid) != 0 ||
249 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
250 	    &txg) != 0 || txg == 0) {
251 		nvlist_free(config);
252 		return (0);
253 	}
254 
255 	/*
256 	 * First, see if we know about this pool.  If not, then add it to the
257 	 * list of known pools.
258 	 */
259 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
260 		if (pe->pe_guid == pool_guid)
261 			break;
262 	}
263 
264 	if (pe == NULL) {
265 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
266 			nvlist_free(config);
267 			return (-1);
268 		}
269 		pe->pe_guid = pool_guid;
270 		pe->pe_next = pl->pools;
271 		pl->pools = pe;
272 	}
273 
274 	/*
275 	 * Second, see if we know about this toplevel vdev.  Add it if its
276 	 * missing.
277 	 */
278 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
279 		if (ve->ve_guid == top_guid)
280 			break;
281 	}
282 
283 	if (ve == NULL) {
284 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
285 			nvlist_free(config);
286 			return (-1);
287 		}
288 		ve->ve_guid = top_guid;
289 		ve->ve_next = pe->pe_vdevs;
290 		pe->pe_vdevs = ve;
291 	}
292 
293 	/*
294 	 * Third, see if we have a config with a matching transaction group.  If
295 	 * so, then we do nothing.  Otherwise, add it to the list of known
296 	 * configs.
297 	 */
298 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
299 		if (ce->ce_txg == txg)
300 			break;
301 	}
302 
303 	if (ce == NULL) {
304 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
305 			nvlist_free(config);
306 			return (-1);
307 		}
308 		ce->ce_txg = txg;
309 		ce->ce_config = config;
310 		ce->ce_next = ve->ve_configs;
311 		ve->ve_configs = ce;
312 	} else {
313 		nvlist_free(config);
314 	}
315 
316 	/*
317 	 * At this point we've successfully added our config to the list of
318 	 * known configs.  The last thing to do is add the vdev guid -> path
319 	 * mappings so that we can fix up the configuration as necessary before
320 	 * doing the import.
321 	 */
322 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
323 		return (-1);
324 
325 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
326 		free(ne);
327 		return (-1);
328 	}
329 
330 	ne->ne_guid = vdev_guid;
331 	ne->ne_next = pl->names;
332 	pl->names = ne;
333 
334 	return (0);
335 }
336 
337 /*
338  * Returns true if the named pool matches the given GUID.
339  */
340 static int
341 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
342     boolean_t *isactive)
343 {
344 	zpool_handle_t *zhp;
345 	uint64_t theguid;
346 
347 	if (zpool_open_silent(hdl, name, &zhp) != 0)
348 		return (-1);
349 
350 	if (zhp == NULL) {
351 		*isactive = B_FALSE;
352 		return (0);
353 	}
354 
355 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
356 	    &theguid) == 0);
357 
358 	zpool_close(zhp);
359 
360 	*isactive = (theguid == guid);
361 	return (0);
362 }
363 
364 /*
365  * Convert our list of pools into the definitive set of configurations.  We
366  * start by picking the best config for each toplevel vdev.  Once that's done,
367  * we assemble the toplevel vdevs into a full config for the pool.  We make a
368  * pass to fix up any incorrect paths, and then add it to the main list to
369  * return to the user.
370  */
371 static nvlist_t *
372 get_configs(libzfs_handle_t *hdl, pool_list_t *pl)
373 {
374 	pool_entry_t *pe;
375 	vdev_entry_t *ve;
376 	config_entry_t *ce;
377 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
378 	nvlist_t **spares;
379 	uint_t i, nspares;
380 	boolean_t config_seen;
381 	uint64_t best_txg;
382 	char *name, *hostname;
383 	zfs_cmd_t zc = { 0 };
384 	uint64_t version, guid;
385 	size_t len;
386 	int err;
387 	uint_t children = 0;
388 	nvlist_t **child = NULL;
389 	uint_t c;
390 	boolean_t isactive;
391 	uint64_t hostid;
392 
393 	if (nvlist_alloc(&ret, 0, 0) != 0)
394 		goto nomem;
395 
396 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
397 		uint64_t id;
398 
399 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
400 			goto nomem;
401 		config_seen = B_FALSE;
402 
403 		/*
404 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
405 		 * from the first one we find, and then go through the rest and
406 		 * add them as necessary to the 'vdevs' member of the config.
407 		 */
408 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
409 
410 			/*
411 			 * Determine the best configuration for this vdev by
412 			 * selecting the config with the latest transaction
413 			 * group.
414 			 */
415 			best_txg = 0;
416 			for (ce = ve->ve_configs; ce != NULL;
417 			    ce = ce->ce_next) {
418 
419 				if (ce->ce_txg > best_txg) {
420 					tmp = ce->ce_config;
421 					best_txg = ce->ce_txg;
422 				}
423 			}
424 
425 			if (!config_seen) {
426 				/*
427 				 * Copy the relevant pieces of data to the pool
428 				 * configuration:
429 				 *
430 				 *	version
431 				 * 	pool guid
432 				 * 	name
433 				 * 	pool state
434 				 *	hostid (if available)
435 				 *	hostname (if available)
436 				 */
437 				uint64_t state;
438 
439 				verify(nvlist_lookup_uint64(tmp,
440 				    ZPOOL_CONFIG_VERSION, &version) == 0);
441 				if (nvlist_add_uint64(config,
442 				    ZPOOL_CONFIG_VERSION, version) != 0)
443 					goto nomem;
444 				verify(nvlist_lookup_uint64(tmp,
445 				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
446 				if (nvlist_add_uint64(config,
447 				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
448 					goto nomem;
449 				verify(nvlist_lookup_string(tmp,
450 				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
451 				if (nvlist_add_string(config,
452 				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
453 					goto nomem;
454 				verify(nvlist_lookup_uint64(tmp,
455 				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
456 				if (nvlist_add_uint64(config,
457 				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
458 					goto nomem;
459 				hostid = 0;
460 				if (nvlist_lookup_uint64(tmp,
461 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
462 					if (nvlist_add_uint64(config,
463 					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
464 						goto nomem;
465 					verify(nvlist_lookup_string(tmp,
466 					    ZPOOL_CONFIG_HOSTNAME,
467 					    &hostname) == 0);
468 					if (nvlist_add_string(config,
469 					    ZPOOL_CONFIG_HOSTNAME,
470 					    hostname) != 0)
471 						goto nomem;
472 				}
473 
474 				config_seen = B_TRUE;
475 			}
476 
477 			/*
478 			 * Add this top-level vdev to the child array.
479 			 */
480 			verify(nvlist_lookup_nvlist(tmp,
481 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
482 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
483 			    &id) == 0);
484 			if (id >= children) {
485 				nvlist_t **newchild;
486 
487 				newchild = zfs_alloc(hdl, (id + 1) *
488 				    sizeof (nvlist_t *));
489 				if (newchild == NULL)
490 					goto nomem;
491 
492 				for (c = 0; c < children; c++)
493 					newchild[c] = child[c];
494 
495 				free(child);
496 				child = newchild;
497 				children = id + 1;
498 			}
499 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
500 				goto nomem;
501 
502 		}
503 
504 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
505 		    &guid) == 0);
506 
507 		/*
508 		 * Look for any missing top-level vdevs.  If this is the case,
509 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
510 		 * simply compress the child array, because the kernel performs
511 		 * certain checks to make sure the vdev IDs match their location
512 		 * in the configuration.
513 		 */
514 		for (c = 0; c < children; c++)
515 			if (child[c] == NULL) {
516 				nvlist_t *missing;
517 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
518 				    0) != 0)
519 					goto nomem;
520 				if (nvlist_add_string(missing,
521 				    ZPOOL_CONFIG_TYPE,
522 				    VDEV_TYPE_MISSING) != 0 ||
523 				    nvlist_add_uint64(missing,
524 				    ZPOOL_CONFIG_ID, c) != 0 ||
525 				    nvlist_add_uint64(missing,
526 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
527 					nvlist_free(missing);
528 					goto nomem;
529 				}
530 				child[c] = missing;
531 			}
532 
533 		/*
534 		 * Put all of this pool's top-level vdevs into a root vdev.
535 		 */
536 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
537 			goto nomem;
538 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
539 		    VDEV_TYPE_ROOT) != 0 ||
540 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
541 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
542 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
543 		    child, children) != 0) {
544 			nvlist_free(nvroot);
545 			goto nomem;
546 		}
547 
548 		for (c = 0; c < children; c++)
549 			nvlist_free(child[c]);
550 		free(child);
551 		children = 0;
552 		child = NULL;
553 
554 		/*
555 		 * Go through and fix up any paths and/or devids based on our
556 		 * known list of vdev GUID -> path mappings.
557 		 */
558 		if (fix_paths(nvroot, pl->names) != 0) {
559 			nvlist_free(nvroot);
560 			goto nomem;
561 		}
562 
563 		/*
564 		 * Add the root vdev to this pool's configuration.
565 		 */
566 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
567 		    nvroot) != 0) {
568 			nvlist_free(nvroot);
569 			goto nomem;
570 		}
571 		nvlist_free(nvroot);
572 
573 		/*
574 		 * Determine if this pool is currently active, in which case we
575 		 * can't actually import it.
576 		 */
577 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
578 		    &name) == 0);
579 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
580 		    &guid) == 0);
581 
582 		if (pool_active(hdl, name, guid, &isactive) != 0)
583 			goto error;
584 
585 		if (isactive) {
586 			nvlist_free(config);
587 			config = NULL;
588 			continue;
589 		}
590 
591 		/*
592 		 * Try to do the import in order to get vdev state.
593 		 */
594 		if (zcmd_write_src_nvlist(hdl, &zc, config, &len) != 0)
595 			goto error;
596 
597 		nvlist_free(config);
598 		config = NULL;
599 
600 		if (zcmd_alloc_dst_nvlist(hdl, &zc, len * 2) != 0) {
601 			zcmd_free_nvlists(&zc);
602 			goto error;
603 		}
604 
605 		while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
606 		    &zc)) != 0 && errno == ENOMEM) {
607 			if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
608 				zcmd_free_nvlists(&zc);
609 				goto error;
610 			}
611 		}
612 
613 		if (err) {
614 			(void) zpool_standard_error(hdl, errno,
615 			    dgettext(TEXT_DOMAIN, "cannot discover pools"));
616 			zcmd_free_nvlists(&zc);
617 			goto error;
618 		}
619 
620 		if (zcmd_read_dst_nvlist(hdl, &zc, &config) != 0) {
621 			zcmd_free_nvlists(&zc);
622 			goto error;
623 		}
624 
625 		zcmd_free_nvlists(&zc);
626 
627 		/*
628 		 * Go through and update the paths for spares, now that we have
629 		 * them.
630 		 */
631 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
632 		    &nvroot) == 0);
633 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
634 		    &spares, &nspares) == 0) {
635 			for (i = 0; i < nspares; i++) {
636 				if (fix_paths(spares[i], pl->names) != 0)
637 					goto nomem;
638 			}
639 		}
640 
641 		/*
642 		 * Restore the original information read from the actual label.
643 		 */
644 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
645 		    DATA_TYPE_UINT64);
646 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
647 		    DATA_TYPE_STRING);
648 		if (hostid != 0) {
649 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
650 			    hostid) == 0);
651 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
652 			    hostname) == 0);
653 		}
654 
655 		/*
656 		 * Add this pool to the list of configs.
657 		 */
658 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
659 		    &name) == 0);
660 		if (nvlist_add_nvlist(ret, name, config) != 0)
661 			goto nomem;
662 
663 		nvlist_free(config);
664 		config = NULL;
665 	}
666 
667 	return (ret);
668 
669 nomem:
670 	(void) no_memory(hdl);
671 error:
672 	nvlist_free(config);
673 	nvlist_free(ret);
674 	for (c = 0; c < children; c++)
675 		nvlist_free(child[c]);
676 	free(child);
677 
678 	return (NULL);
679 }
680 
681 /*
682  * Return the offset of the given label.
683  */
684 static uint64_t
685 label_offset(size_t size, int l)
686 {
687 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
688 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
689 }
690 
691 /*
692  * Given a file descriptor, read the label information and return an nvlist
693  * describing the configuration, if there is one.
694  */
695 int
696 zpool_read_label(int fd, nvlist_t **config)
697 {
698 	struct stat64 statbuf;
699 	int l;
700 	vdev_label_t *label;
701 	uint64_t state, txg;
702 
703 	*config = NULL;
704 
705 	if (fstat64(fd, &statbuf) == -1)
706 		return (0);
707 
708 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
709 		return (-1);
710 
711 	for (l = 0; l < VDEV_LABELS; l++) {
712 		if (pread(fd, label, sizeof (vdev_label_t),
713 		    label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t))
714 			continue;
715 
716 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
717 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
718 			continue;
719 
720 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
721 		    &state) != 0 || state > POOL_STATE_SPARE) {
722 			nvlist_free(*config);
723 			continue;
724 		}
725 
726 		if (state != POOL_STATE_SPARE &&
727 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
728 		    &txg) != 0 || txg == 0)) {
729 			nvlist_free(*config);
730 			continue;
731 		}
732 
733 		free(label);
734 		return (0);
735 	}
736 
737 	free(label);
738 	*config = NULL;
739 	return (0);
740 }
741 
742 /*
743  * Given a list of directories to search, find all pools stored on disk.  This
744  * includes partial pools which are not available to import.  If no args are
745  * given (argc is 0), then the default directory (/dev/dsk) is searched.
746  */
747 nvlist_t *
748 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
749 {
750 	int i;
751 	DIR *dirp = NULL;
752 	struct dirent64 *dp;
753 	char path[MAXPATHLEN];
754 	struct stat64 statbuf;
755 	nvlist_t *ret = NULL, *config;
756 	static char *default_dir = "/dev/dsk";
757 	int fd;
758 	pool_list_t pools = { 0 };
759 	pool_entry_t *pe, *penext;
760 	vdev_entry_t *ve, *venext;
761 	config_entry_t *ce, *cenext;
762 	name_entry_t *ne, *nenext;
763 
764 
765 	if (argc == 0) {
766 		argc = 1;
767 		argv = &default_dir;
768 	}
769 
770 	/*
771 	 * Go through and read the label configuration information from every
772 	 * possible device, organizing the information according to pool GUID
773 	 * and toplevel GUID.
774 	 */
775 	for (i = 0; i < argc; i++) {
776 		if (argv[i][0] != '/') {
777 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
778 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
779 			    argv[i]);
780 			goto error;
781 		}
782 
783 		if ((dirp = opendir(argv[i])) == NULL) {
784 			zfs_error_aux(hdl, strerror(errno));
785 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
786 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
787 			    argv[i]);
788 			goto error;
789 		}
790 
791 		/*
792 		 * This is not MT-safe, but we have no MT consumers of libzfs
793 		 */
794 		while ((dp = readdir64(dirp)) != NULL) {
795 
796 			(void) snprintf(path, sizeof (path), "%s/%s",
797 			    argv[i], dp->d_name);
798 
799 			if (stat64(path, &statbuf) != 0)
800 				continue;
801 
802 			/*
803 			 * Ignore directories (which includes "." and "..").
804 			 */
805 			if (S_ISDIR(statbuf.st_mode))
806 				continue;
807 
808 			/*
809 			 * Ignore special (non-character or non-block) files.
810 			 */
811 			if (!S_ISREG(statbuf.st_mode) &&
812 			    !S_ISBLK(statbuf.st_mode))
813 				continue;
814 
815 			if ((fd = open64(path, O_RDONLY)) < 0)
816 				continue;
817 
818 			if ((zpool_read_label(fd, &config)) != 0) {
819 				(void) close(fd);
820 				(void) no_memory(hdl);
821 				goto error;
822 			}
823 
824 			(void) close(fd);
825 
826 			if (config != NULL)
827 				if (add_config(hdl, &pools, path, config) != 0)
828 					goto error;
829 		}
830 
831 		(void) closedir(dirp);
832 		dirp = NULL;
833 	}
834 
835 	ret = get_configs(hdl, &pools);
836 
837 error:
838 	for (pe = pools.pools; pe != NULL; pe = penext) {
839 		penext = pe->pe_next;
840 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
841 			venext = ve->ve_next;
842 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
843 				cenext = ce->ce_next;
844 				if (ce->ce_config)
845 					nvlist_free(ce->ce_config);
846 				free(ce);
847 			}
848 			free(ve);
849 		}
850 		free(pe);
851 	}
852 
853 	for (ne = pools.names; ne != NULL; ne = nenext) {
854 		nenext = ne->ne_next;
855 		if (ne->ne_name)
856 			free(ne->ne_name);
857 		free(ne);
858 	}
859 
860 	if (dirp)
861 		(void) closedir(dirp);
862 
863 	return (ret);
864 }
865 
866 boolean_t
867 find_guid(nvlist_t *nv, uint64_t guid)
868 {
869 	uint64_t tmp;
870 	nvlist_t **child;
871 	uint_t c, children;
872 
873 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
874 	if (tmp == guid)
875 		return (B_TRUE);
876 
877 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
878 	    &child, &children) == 0) {
879 		for (c = 0; c < children; c++)
880 			if (find_guid(child[c], guid))
881 				return (B_TRUE);
882 	}
883 
884 	return (B_FALSE);
885 }
886 
887 typedef struct spare_cbdata {
888 	uint64_t	cb_guid;
889 	zpool_handle_t	*cb_zhp;
890 } spare_cbdata_t;
891 
892 static int
893 find_spare(zpool_handle_t *zhp, void *data)
894 {
895 	spare_cbdata_t *cbp = data;
896 	nvlist_t **spares;
897 	uint_t i, nspares;
898 	uint64_t guid;
899 	nvlist_t *nvroot;
900 
901 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
902 	    &nvroot) == 0);
903 
904 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
905 	    &spares, &nspares) == 0) {
906 		for (i = 0; i < nspares; i++) {
907 			verify(nvlist_lookup_uint64(spares[i],
908 			    ZPOOL_CONFIG_GUID, &guid) == 0);
909 			if (guid == cbp->cb_guid) {
910 				cbp->cb_zhp = zhp;
911 				return (1);
912 			}
913 		}
914 	}
915 
916 	zpool_close(zhp);
917 	return (0);
918 }
919 
920 /*
921  * Determines if the pool is in use.  If so, it returns true and the state of
922  * the pool as well as the name of the pool.  Both strings are allocated and
923  * must be freed by the caller.
924  */
925 int
926 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
927     boolean_t *inuse)
928 {
929 	nvlist_t *config;
930 	char *name;
931 	boolean_t ret;
932 	uint64_t guid, vdev_guid;
933 	zpool_handle_t *zhp;
934 	nvlist_t *pool_config;
935 	uint64_t stateval, isspare;
936 	spare_cbdata_t cb = { 0 };
937 	boolean_t isactive;
938 
939 	*inuse = B_FALSE;
940 
941 	if (zpool_read_label(fd, &config) != 0) {
942 		(void) no_memory(hdl);
943 		return (-1);
944 	}
945 
946 	if (config == NULL)
947 		return (0);
948 
949 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
950 	    &stateval) == 0);
951 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
952 	    &vdev_guid) == 0);
953 
954 	if (stateval != POOL_STATE_SPARE) {
955 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
956 		    &name) == 0);
957 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
958 		    &guid) == 0);
959 	}
960 
961 	switch (stateval) {
962 	case POOL_STATE_EXPORTED:
963 		ret = B_TRUE;
964 		break;
965 
966 	case POOL_STATE_ACTIVE:
967 		/*
968 		 * For an active pool, we have to determine if it's really part
969 		 * of a currently active pool (in which case the pool will exist
970 		 * and the guid will be the same), or whether it's part of an
971 		 * active pool that was disconnected without being explicitly
972 		 * exported.
973 		 */
974 		if (pool_active(hdl, name, guid, &isactive) != 0) {
975 			nvlist_free(config);
976 			return (-1);
977 		}
978 
979 		if (isactive) {
980 			/*
981 			 * Because the device may have been removed while
982 			 * offlined, we only report it as active if the vdev is
983 			 * still present in the config.  Otherwise, pretend like
984 			 * it's not in use.
985 			 */
986 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
987 			    (pool_config = zpool_get_config(zhp, NULL))
988 			    != NULL) {
989 				nvlist_t *nvroot;
990 
991 				verify(nvlist_lookup_nvlist(pool_config,
992 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
993 				ret = find_guid(nvroot, vdev_guid);
994 			} else {
995 				ret = B_FALSE;
996 			}
997 
998 			/*
999 			 * If this is an active spare within another pool, we
1000 			 * treat it like an unused hot spare.  This allows the
1001 			 * user to create a pool with a hot spare that currently
1002 			 * in use within another pool.  Since we return B_TRUE,
1003 			 * libdiskmgt will continue to prevent generic consumers
1004 			 * from using the device.
1005 			 */
1006 			if (ret && nvlist_lookup_uint64(config,
1007 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1008 				stateval = POOL_STATE_SPARE;
1009 
1010 			if (zhp != NULL)
1011 				zpool_close(zhp);
1012 		} else {
1013 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1014 			ret = B_TRUE;
1015 		}
1016 		break;
1017 
1018 	case POOL_STATE_SPARE:
1019 		/*
1020 		 * For a hot spare, it can be either definitively in use, or
1021 		 * potentially active.  To determine if it's in use, we iterate
1022 		 * over all pools in the system and search for one with a spare
1023 		 * with a matching guid.
1024 		 *
1025 		 * Due to the shared nature of spares, we don't actually report
1026 		 * the potentially active case as in use.  This means the user
1027 		 * can freely create pools on the hot spares of exported pools,
1028 		 * but to do otherwise makes the resulting code complicated, and
1029 		 * we end up having to deal with this case anyway.
1030 		 */
1031 		cb.cb_zhp = NULL;
1032 		cb.cb_guid = vdev_guid;
1033 		if (zpool_iter(hdl, find_spare, &cb) == 1) {
1034 			name = (char *)zpool_get_name(cb.cb_zhp);
1035 			ret = TRUE;
1036 		} else {
1037 			ret = FALSE;
1038 		}
1039 		break;
1040 
1041 	default:
1042 		ret = B_FALSE;
1043 	}
1044 
1045 
1046 	if (ret) {
1047 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1048 			nvlist_free(config);
1049 			return (-1);
1050 		}
1051 		*state = (pool_state_t)stateval;
1052 	}
1053 
1054 	if (cb.cb_zhp)
1055 		zpool_close(cb.cb_zhp);
1056 
1057 	nvlist_free(config);
1058 	*inuse = ret;
1059 	return (0);
1060 }
1061