xref: /titanic_50/usr/src/lib/libzfs/common/libzfs_import.c (revision 4c273cfa4ad8398f4157cd1d6fa54fc1cbc266ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2012 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Pool import support functions.
29  *
30  * To import a pool, we rely on reading the configuration information from the
31  * ZFS label of each device.  If we successfully read the label, then we
32  * organize the configuration information in the following hierarchy:
33  *
34  * 	pool guid -> toplevel vdev guid -> label txg
35  *
36  * Duplicate entries matching this same tuple will be discarded.  Once we have
37  * examined every device, we pick the best label txg config for each toplevel
38  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39  * update any paths that have changed.  Finally, we attempt to import the pool
40  * using our derived config, and record the results.
41  */
42 
43 #include <ctype.h>
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/stat.h>
52 #include <unistd.h>
53 #include <fcntl.h>
54 #include <sys/vtoc.h>
55 #include <sys/dktp/fdisk.h>
56 #include <sys/efi_partition.h>
57 #include <thread_pool.h>
58 
59 #include <sys/vdev_impl.h>
60 
61 #include "libzfs.h"
62 #include "libzfs_impl.h"
63 
64 /*
65  * Intermediate structures used to gather configuration information.
66  */
67 typedef struct config_entry {
68 	uint64_t		ce_txg;
69 	nvlist_t		*ce_config;
70 	struct config_entry	*ce_next;
71 } config_entry_t;
72 
73 typedef struct vdev_entry {
74 	uint64_t		ve_guid;
75 	config_entry_t		*ve_configs;
76 	struct vdev_entry	*ve_next;
77 } vdev_entry_t;
78 
79 typedef struct pool_entry {
80 	uint64_t		pe_guid;
81 	vdev_entry_t		*pe_vdevs;
82 	struct pool_entry	*pe_next;
83 } pool_entry_t;
84 
85 typedef struct name_entry {
86 	char			*ne_name;
87 	uint64_t		ne_guid;
88 	struct name_entry	*ne_next;
89 } name_entry_t;
90 
91 typedef struct pool_list {
92 	pool_entry_t		*pools;
93 	name_entry_t		*names;
94 } pool_list_t;
95 
96 static char *
97 get_devid(const char *path)
98 {
99 	int fd;
100 	ddi_devid_t devid;
101 	char *minor, *ret;
102 
103 	if ((fd = open(path, O_RDONLY)) < 0)
104 		return (NULL);
105 
106 	minor = NULL;
107 	ret = NULL;
108 	if (devid_get(fd, &devid) == 0) {
109 		if (devid_get_minor_name(fd, &minor) == 0)
110 			ret = devid_str_encode(devid, minor);
111 		if (minor != NULL)
112 			devid_str_free(minor);
113 		devid_free(devid);
114 	}
115 	(void) close(fd);
116 
117 	return (ret);
118 }
119 
120 
121 /*
122  * Go through and fix up any path and/or devid information for the given vdev
123  * configuration.
124  */
125 static int
126 fix_paths(nvlist_t *nv, name_entry_t *names)
127 {
128 	nvlist_t **child;
129 	uint_t c, children;
130 	uint64_t guid;
131 	name_entry_t *ne, *best;
132 	char *path, *devid;
133 	int matched;
134 
135 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
136 	    &child, &children) == 0) {
137 		for (c = 0; c < children; c++)
138 			if (fix_paths(child[c], names) != 0)
139 				return (-1);
140 		return (0);
141 	}
142 
143 	/*
144 	 * This is a leaf (file or disk) vdev.  In either case, go through
145 	 * the name list and see if we find a matching guid.  If so, replace
146 	 * the path and see if we can calculate a new devid.
147 	 *
148 	 * There may be multiple names associated with a particular guid, in
149 	 * which case we have overlapping slices or multiple paths to the same
150 	 * disk.  If this is the case, then we want to pick the path that is
151 	 * the most similar to the original, where "most similar" is the number
152 	 * of matching characters starting from the end of the path.  This will
153 	 * preserve slice numbers even if the disks have been reorganized, and
154 	 * will also catch preferred disk names if multiple paths exist.
155 	 */
156 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
157 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
158 		path = NULL;
159 
160 	matched = 0;
161 	best = NULL;
162 	for (ne = names; ne != NULL; ne = ne->ne_next) {
163 		if (ne->ne_guid == guid) {
164 			const char *src, *dst;
165 			int count;
166 
167 			if (path == NULL) {
168 				best = ne;
169 				break;
170 			}
171 
172 			src = ne->ne_name + strlen(ne->ne_name) - 1;
173 			dst = path + strlen(path) - 1;
174 			for (count = 0; src >= ne->ne_name && dst >= path;
175 			    src--, dst--, count++)
176 				if (*src != *dst)
177 					break;
178 
179 			/*
180 			 * At this point, 'count' is the number of characters
181 			 * matched from the end.
182 			 */
183 			if (count > matched || best == NULL) {
184 				best = ne;
185 				matched = count;
186 			}
187 		}
188 	}
189 
190 	if (best == NULL)
191 		return (0);
192 
193 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
194 		return (-1);
195 
196 	if ((devid = get_devid(best->ne_name)) == NULL) {
197 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
198 	} else {
199 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
200 			return (-1);
201 		devid_str_free(devid);
202 	}
203 
204 	return (0);
205 }
206 
207 /*
208  * Add the given configuration to the list of known devices.
209  */
210 static int
211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
212     nvlist_t *config)
213 {
214 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
215 	pool_entry_t *pe;
216 	vdev_entry_t *ve;
217 	config_entry_t *ce;
218 	name_entry_t *ne;
219 
220 	/*
221 	 * If this is a hot spare not currently in use or level 2 cache
222 	 * device, add it to the list of names to translate, but don't do
223 	 * anything else.
224 	 */
225 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
226 	    &state) == 0 &&
227 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
228 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
229 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
230 			return (-1);
231 
232 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
233 			free(ne);
234 			return (-1);
235 		}
236 		ne->ne_guid = vdev_guid;
237 		ne->ne_next = pl->names;
238 		pl->names = ne;
239 		return (0);
240 	}
241 
242 	/*
243 	 * If we have a valid config but cannot read any of these fields, then
244 	 * it means we have a half-initialized label.  In vdev_label_init()
245 	 * we write a label with txg == 0 so that we can identify the device
246 	 * in case the user refers to the same disk later on.  If we fail to
247 	 * create the pool, we'll be left with a label in this state
248 	 * which should not be considered part of a valid pool.
249 	 */
250 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
251 	    &pool_guid) != 0 ||
252 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
253 	    &vdev_guid) != 0 ||
254 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
255 	    &top_guid) != 0 ||
256 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
257 	    &txg) != 0 || txg == 0) {
258 		nvlist_free(config);
259 		return (0);
260 	}
261 
262 	/*
263 	 * First, see if we know about this pool.  If not, then add it to the
264 	 * list of known pools.
265 	 */
266 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
267 		if (pe->pe_guid == pool_guid)
268 			break;
269 	}
270 
271 	if (pe == NULL) {
272 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
273 			nvlist_free(config);
274 			return (-1);
275 		}
276 		pe->pe_guid = pool_guid;
277 		pe->pe_next = pl->pools;
278 		pl->pools = pe;
279 	}
280 
281 	/*
282 	 * Second, see if we know about this toplevel vdev.  Add it if its
283 	 * missing.
284 	 */
285 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
286 		if (ve->ve_guid == top_guid)
287 			break;
288 	}
289 
290 	if (ve == NULL) {
291 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
292 			nvlist_free(config);
293 			return (-1);
294 		}
295 		ve->ve_guid = top_guid;
296 		ve->ve_next = pe->pe_vdevs;
297 		pe->pe_vdevs = ve;
298 	}
299 
300 	/*
301 	 * Third, see if we have a config with a matching transaction group.  If
302 	 * so, then we do nothing.  Otherwise, add it to the list of known
303 	 * configs.
304 	 */
305 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
306 		if (ce->ce_txg == txg)
307 			break;
308 	}
309 
310 	if (ce == NULL) {
311 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
312 			nvlist_free(config);
313 			return (-1);
314 		}
315 		ce->ce_txg = txg;
316 		ce->ce_config = config;
317 		ce->ce_next = ve->ve_configs;
318 		ve->ve_configs = ce;
319 	} else {
320 		nvlist_free(config);
321 	}
322 
323 	/*
324 	 * At this point we've successfully added our config to the list of
325 	 * known configs.  The last thing to do is add the vdev guid -> path
326 	 * mappings so that we can fix up the configuration as necessary before
327 	 * doing the import.
328 	 */
329 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
330 		return (-1);
331 
332 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
333 		free(ne);
334 		return (-1);
335 	}
336 
337 	ne->ne_guid = vdev_guid;
338 	ne->ne_next = pl->names;
339 	pl->names = ne;
340 
341 	return (0);
342 }
343 
344 /*
345  * Returns true if the named pool matches the given GUID.
346  */
347 static int
348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
349     boolean_t *isactive)
350 {
351 	zpool_handle_t *zhp;
352 	uint64_t theguid;
353 
354 	if (zpool_open_silent(hdl, name, &zhp) != 0)
355 		return (-1);
356 
357 	if (zhp == NULL) {
358 		*isactive = B_FALSE;
359 		return (0);
360 	}
361 
362 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
363 	    &theguid) == 0);
364 
365 	zpool_close(zhp);
366 
367 	*isactive = (theguid == guid);
368 	return (0);
369 }
370 
371 static nvlist_t *
372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
373 {
374 	nvlist_t *nvl;
375 	zfs_cmd_t zc = { 0 };
376 	int err;
377 
378 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
379 		return (NULL);
380 
381 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
382 	    zc.zc_nvlist_conf_size * 2) != 0) {
383 		zcmd_free_nvlists(&zc);
384 		return (NULL);
385 	}
386 
387 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
388 	    &zc)) != 0 && errno == ENOMEM) {
389 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
390 			zcmd_free_nvlists(&zc);
391 			return (NULL);
392 		}
393 	}
394 
395 	if (err) {
396 		zcmd_free_nvlists(&zc);
397 		return (NULL);
398 	}
399 
400 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
401 		zcmd_free_nvlists(&zc);
402 		return (NULL);
403 	}
404 
405 	zcmd_free_nvlists(&zc);
406 	return (nvl);
407 }
408 
409 /*
410  * Determine if the vdev id is a hole in the namespace.
411  */
412 boolean_t
413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
414 {
415 	for (int c = 0; c < holes; c++) {
416 
417 		/* Top-level is a hole */
418 		if (hole_array[c] == id)
419 			return (B_TRUE);
420 	}
421 	return (B_FALSE);
422 }
423 
424 /*
425  * Convert our list of pools into the definitive set of configurations.  We
426  * start by picking the best config for each toplevel vdev.  Once that's done,
427  * we assemble the toplevel vdevs into a full config for the pool.  We make a
428  * pass to fix up any incorrect paths, and then add it to the main list to
429  * return to the user.
430  */
431 static nvlist_t *
432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
433 {
434 	pool_entry_t *pe;
435 	vdev_entry_t *ve;
436 	config_entry_t *ce;
437 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
438 	nvlist_t **spares, **l2cache;
439 	uint_t i, nspares, nl2cache;
440 	boolean_t config_seen;
441 	uint64_t best_txg;
442 	char *name, *hostname;
443 	uint64_t guid;
444 	uint_t children = 0;
445 	nvlist_t **child = NULL;
446 	uint_t holes;
447 	uint64_t *hole_array, max_id;
448 	uint_t c;
449 	boolean_t isactive;
450 	uint64_t hostid;
451 	nvlist_t *nvl;
452 	boolean_t found_one = B_FALSE;
453 	boolean_t valid_top_config = B_FALSE;
454 
455 	if (nvlist_alloc(&ret, 0, 0) != 0)
456 		goto nomem;
457 
458 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
459 		uint64_t id, max_txg = 0;
460 
461 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
462 			goto nomem;
463 		config_seen = B_FALSE;
464 
465 		/*
466 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
467 		 * from the first one we find, and then go through the rest and
468 		 * add them as necessary to the 'vdevs' member of the config.
469 		 */
470 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
471 
472 			/*
473 			 * Determine the best configuration for this vdev by
474 			 * selecting the config with the latest transaction
475 			 * group.
476 			 */
477 			best_txg = 0;
478 			for (ce = ve->ve_configs; ce != NULL;
479 			    ce = ce->ce_next) {
480 
481 				if (ce->ce_txg > best_txg) {
482 					tmp = ce->ce_config;
483 					best_txg = ce->ce_txg;
484 				}
485 			}
486 
487 			/*
488 			 * We rely on the fact that the max txg for the
489 			 * pool will contain the most up-to-date information
490 			 * about the valid top-levels in the vdev namespace.
491 			 */
492 			if (best_txg > max_txg) {
493 				(void) nvlist_remove(config,
494 				    ZPOOL_CONFIG_VDEV_CHILDREN,
495 				    DATA_TYPE_UINT64);
496 				(void) nvlist_remove(config,
497 				    ZPOOL_CONFIG_HOLE_ARRAY,
498 				    DATA_TYPE_UINT64_ARRAY);
499 
500 				max_txg = best_txg;
501 				hole_array = NULL;
502 				holes = 0;
503 				max_id = 0;
504 				valid_top_config = B_FALSE;
505 
506 				if (nvlist_lookup_uint64(tmp,
507 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
508 					verify(nvlist_add_uint64(config,
509 					    ZPOOL_CONFIG_VDEV_CHILDREN,
510 					    max_id) == 0);
511 					valid_top_config = B_TRUE;
512 				}
513 
514 				if (nvlist_lookup_uint64_array(tmp,
515 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
516 				    &holes) == 0) {
517 					verify(nvlist_add_uint64_array(config,
518 					    ZPOOL_CONFIG_HOLE_ARRAY,
519 					    hole_array, holes) == 0);
520 				}
521 			}
522 
523 			if (!config_seen) {
524 				/*
525 				 * Copy the relevant pieces of data to the pool
526 				 * configuration:
527 				 *
528 				 *	version
529 				 *	pool guid
530 				 *	name
531 				 *	pool txg (if available)
532 				 *	comment (if available)
533 				 *	pool state
534 				 *	hostid (if available)
535 				 *	hostname (if available)
536 				 */
537 				uint64_t state, version, pool_txg;
538 				char *comment = NULL;
539 
540 				version = fnvlist_lookup_uint64(tmp,
541 				    ZPOOL_CONFIG_VERSION);
542 				fnvlist_add_uint64(config,
543 				    ZPOOL_CONFIG_VERSION, version);
544 				guid = fnvlist_lookup_uint64(tmp,
545 				    ZPOOL_CONFIG_POOL_GUID);
546 				fnvlist_add_uint64(config,
547 				    ZPOOL_CONFIG_POOL_GUID, guid);
548 				name = fnvlist_lookup_string(tmp,
549 				    ZPOOL_CONFIG_POOL_NAME);
550 				fnvlist_add_string(config,
551 				    ZPOOL_CONFIG_POOL_NAME, name);
552 
553 				if (nvlist_lookup_uint64(tmp,
554 				    ZPOOL_CONFIG_POOL_TXG, &pool_txg) == 0)
555 					fnvlist_add_uint64(config,
556 					    ZPOOL_CONFIG_POOL_TXG, pool_txg);
557 
558 				if (nvlist_lookup_string(tmp,
559 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
560 					fnvlist_add_string(config,
561 					    ZPOOL_CONFIG_COMMENT, comment);
562 
563 				state = fnvlist_lookup_uint64(tmp,
564 				    ZPOOL_CONFIG_POOL_STATE);
565 				fnvlist_add_uint64(config,
566 				    ZPOOL_CONFIG_POOL_STATE, state);
567 
568 				hostid = 0;
569 				if (nvlist_lookup_uint64(tmp,
570 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
571 					fnvlist_add_uint64(config,
572 					    ZPOOL_CONFIG_HOSTID, hostid);
573 					hostname = fnvlist_lookup_string(tmp,
574 					    ZPOOL_CONFIG_HOSTNAME);
575 					fnvlist_add_string(config,
576 					    ZPOOL_CONFIG_HOSTNAME, hostname);
577 				}
578 
579 				config_seen = B_TRUE;
580 			}
581 
582 			/*
583 			 * Add this top-level vdev to the child array.
584 			 */
585 			verify(nvlist_lookup_nvlist(tmp,
586 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
587 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
588 			    &id) == 0);
589 
590 			if (id >= children) {
591 				nvlist_t **newchild;
592 
593 				newchild = zfs_alloc(hdl, (id + 1) *
594 				    sizeof (nvlist_t *));
595 				if (newchild == NULL)
596 					goto nomem;
597 
598 				for (c = 0; c < children; c++)
599 					newchild[c] = child[c];
600 
601 				free(child);
602 				child = newchild;
603 				children = id + 1;
604 			}
605 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
606 				goto nomem;
607 
608 		}
609 
610 		/*
611 		 * If we have information about all the top-levels then
612 		 * clean up the nvlist which we've constructed. This
613 		 * means removing any extraneous devices that are
614 		 * beyond the valid range or adding devices to the end
615 		 * of our array which appear to be missing.
616 		 */
617 		if (valid_top_config) {
618 			if (max_id < children) {
619 				for (c = max_id; c < children; c++)
620 					nvlist_free(child[c]);
621 				children = max_id;
622 			} else if (max_id > children) {
623 				nvlist_t **newchild;
624 
625 				newchild = zfs_alloc(hdl, (max_id) *
626 				    sizeof (nvlist_t *));
627 				if (newchild == NULL)
628 					goto nomem;
629 
630 				for (c = 0; c < children; c++)
631 					newchild[c] = child[c];
632 
633 				free(child);
634 				child = newchild;
635 				children = max_id;
636 			}
637 		}
638 
639 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
640 		    &guid) == 0);
641 
642 		/*
643 		 * The vdev namespace may contain holes as a result of
644 		 * device removal. We must add them back into the vdev
645 		 * tree before we process any missing devices.
646 		 */
647 		if (holes > 0) {
648 			ASSERT(valid_top_config);
649 
650 			for (c = 0; c < children; c++) {
651 				nvlist_t *holey;
652 
653 				if (child[c] != NULL ||
654 				    !vdev_is_hole(hole_array, holes, c))
655 					continue;
656 
657 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
658 				    0) != 0)
659 					goto nomem;
660 
661 				/*
662 				 * Holes in the namespace are treated as
663 				 * "hole" top-level vdevs and have a
664 				 * special flag set on them.
665 				 */
666 				if (nvlist_add_string(holey,
667 				    ZPOOL_CONFIG_TYPE,
668 				    VDEV_TYPE_HOLE) != 0 ||
669 				    nvlist_add_uint64(holey,
670 				    ZPOOL_CONFIG_ID, c) != 0 ||
671 				    nvlist_add_uint64(holey,
672 				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
673 					goto nomem;
674 				child[c] = holey;
675 			}
676 		}
677 
678 		/*
679 		 * Look for any missing top-level vdevs.  If this is the case,
680 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
681 		 * simply compress the child array, because the kernel performs
682 		 * certain checks to make sure the vdev IDs match their location
683 		 * in the configuration.
684 		 */
685 		for (c = 0; c < children; c++) {
686 			if (child[c] == NULL) {
687 				nvlist_t *missing;
688 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
689 				    0) != 0)
690 					goto nomem;
691 				if (nvlist_add_string(missing,
692 				    ZPOOL_CONFIG_TYPE,
693 				    VDEV_TYPE_MISSING) != 0 ||
694 				    nvlist_add_uint64(missing,
695 				    ZPOOL_CONFIG_ID, c) != 0 ||
696 				    nvlist_add_uint64(missing,
697 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
698 					nvlist_free(missing);
699 					goto nomem;
700 				}
701 				child[c] = missing;
702 			}
703 		}
704 
705 		/*
706 		 * Put all of this pool's top-level vdevs into a root vdev.
707 		 */
708 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
709 			goto nomem;
710 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
711 		    VDEV_TYPE_ROOT) != 0 ||
712 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
713 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
714 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
715 		    child, children) != 0) {
716 			nvlist_free(nvroot);
717 			goto nomem;
718 		}
719 
720 		for (c = 0; c < children; c++)
721 			nvlist_free(child[c]);
722 		free(child);
723 		children = 0;
724 		child = NULL;
725 
726 		/*
727 		 * Go through and fix up any paths and/or devids based on our
728 		 * known list of vdev GUID -> path mappings.
729 		 */
730 		if (fix_paths(nvroot, pl->names) != 0) {
731 			nvlist_free(nvroot);
732 			goto nomem;
733 		}
734 
735 		/*
736 		 * Add the root vdev to this pool's configuration.
737 		 */
738 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
739 		    nvroot) != 0) {
740 			nvlist_free(nvroot);
741 			goto nomem;
742 		}
743 		nvlist_free(nvroot);
744 
745 		/*
746 		 * zdb uses this path to report on active pools that were
747 		 * imported or created using -R.
748 		 */
749 		if (active_ok)
750 			goto add_pool;
751 
752 		/*
753 		 * Determine if this pool is currently active, in which case we
754 		 * can't actually import it.
755 		 */
756 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
757 		    &name) == 0);
758 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
759 		    &guid) == 0);
760 
761 		if (pool_active(hdl, name, guid, &isactive) != 0)
762 			goto error;
763 
764 		if (isactive) {
765 			nvlist_free(config);
766 			config = NULL;
767 			continue;
768 		}
769 
770 		if ((nvl = refresh_config(hdl, config)) == NULL) {
771 			nvlist_free(config);
772 			config = NULL;
773 			continue;
774 		}
775 
776 		nvlist_free(config);
777 		config = nvl;
778 
779 		/*
780 		 * Go through and update the paths for spares, now that we have
781 		 * them.
782 		 */
783 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
784 		    &nvroot) == 0);
785 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
786 		    &spares, &nspares) == 0) {
787 			for (i = 0; i < nspares; i++) {
788 				if (fix_paths(spares[i], pl->names) != 0)
789 					goto nomem;
790 			}
791 		}
792 
793 		/*
794 		 * Update the paths for l2cache devices.
795 		 */
796 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
797 		    &l2cache, &nl2cache) == 0) {
798 			for (i = 0; i < nl2cache; i++) {
799 				if (fix_paths(l2cache[i], pl->names) != 0)
800 					goto nomem;
801 			}
802 		}
803 
804 		/*
805 		 * Restore the original information read from the actual label.
806 		 */
807 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
808 		    DATA_TYPE_UINT64);
809 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
810 		    DATA_TYPE_STRING);
811 		if (hostid != 0) {
812 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
813 			    hostid) == 0);
814 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
815 			    hostname) == 0);
816 		}
817 
818 add_pool:
819 		/*
820 		 * Add this pool to the list of configs.
821 		 */
822 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
823 		    &name) == 0);
824 		if (nvlist_add_nvlist(ret, name, config) != 0)
825 			goto nomem;
826 
827 		found_one = B_TRUE;
828 		nvlist_free(config);
829 		config = NULL;
830 	}
831 
832 	if (!found_one) {
833 		nvlist_free(ret);
834 		ret = NULL;
835 	}
836 
837 	return (ret);
838 
839 nomem:
840 	(void) no_memory(hdl);
841 error:
842 	nvlist_free(config);
843 	nvlist_free(ret);
844 	for (c = 0; c < children; c++)
845 		nvlist_free(child[c]);
846 	free(child);
847 
848 	return (NULL);
849 }
850 
851 /*
852  * Return the offset of the given label.
853  */
854 static uint64_t
855 label_offset(uint64_t size, int l)
856 {
857 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
858 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
859 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
860 }
861 
862 /*
863  * Given a file descriptor, read the label information and return an nvlist
864  * describing the configuration, if there is one.
865  */
866 int
867 zpool_read_label(int fd, nvlist_t **config)
868 {
869 	struct stat64 statbuf;
870 	int l;
871 	vdev_label_t *label;
872 	uint64_t state, txg, size;
873 
874 	*config = NULL;
875 
876 	if (fstat64(fd, &statbuf) == -1)
877 		return (0);
878 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
879 
880 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
881 		return (-1);
882 
883 	for (l = 0; l < VDEV_LABELS; l++) {
884 		if (pread64(fd, label, sizeof (vdev_label_t),
885 		    label_offset(size, l)) != sizeof (vdev_label_t))
886 			continue;
887 
888 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
889 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
890 			continue;
891 
892 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
893 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
894 			nvlist_free(*config);
895 			continue;
896 		}
897 
898 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
900 		    &txg) != 0 || txg == 0)) {
901 			nvlist_free(*config);
902 			continue;
903 		}
904 
905 		free(label);
906 		return (0);
907 	}
908 
909 	free(label);
910 	*config = NULL;
911 	return (0);
912 }
913 
914 typedef struct rdsk_node {
915 	char *rn_name;
916 	int rn_dfd;
917 	libzfs_handle_t *rn_hdl;
918 	nvlist_t *rn_config;
919 	avl_tree_t *rn_avl;
920 	avl_node_t rn_node;
921 	boolean_t rn_nozpool;
922 } rdsk_node_t;
923 
924 static int
925 slice_cache_compare(const void *arg1, const void *arg2)
926 {
927 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
928 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
929 	char *nm1slice, *nm2slice;
930 	int rv;
931 
932 	/*
933 	 * slices zero and two are the most likely to provide results,
934 	 * so put those first
935 	 */
936 	nm1slice = strstr(nm1, "s0");
937 	nm2slice = strstr(nm2, "s0");
938 	if (nm1slice && !nm2slice) {
939 		return (-1);
940 	}
941 	if (!nm1slice && nm2slice) {
942 		return (1);
943 	}
944 	nm1slice = strstr(nm1, "s2");
945 	nm2slice = strstr(nm2, "s2");
946 	if (nm1slice && !nm2slice) {
947 		return (-1);
948 	}
949 	if (!nm1slice && nm2slice) {
950 		return (1);
951 	}
952 
953 	rv = strcmp(nm1, nm2);
954 	if (rv == 0)
955 		return (0);
956 	return (rv > 0 ? 1 : -1);
957 }
958 
959 static void
960 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
961     diskaddr_t size, uint_t blksz)
962 {
963 	rdsk_node_t tmpnode;
964 	rdsk_node_t *node;
965 	char sname[MAXNAMELEN];
966 
967 	tmpnode.rn_name = &sname[0];
968 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
969 	    diskname, partno);
970 	/*
971 	 * protect against division by zero for disk labels that
972 	 * contain a bogus sector size
973 	 */
974 	if (blksz == 0)
975 		blksz = DEV_BSIZE;
976 	/* too small to contain a zpool? */
977 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
978 	    (node = avl_find(r, &tmpnode, NULL)))
979 		node->rn_nozpool = B_TRUE;
980 }
981 
982 static void
983 nozpool_all_slices(avl_tree_t *r, const char *sname)
984 {
985 	char diskname[MAXNAMELEN];
986 	char *ptr;
987 	int i;
988 
989 	(void) strncpy(diskname, sname, MAXNAMELEN);
990 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
991 	    ((ptr = strrchr(diskname, 'p')) == NULL))
992 		return;
993 	ptr[0] = 's';
994 	ptr[1] = '\0';
995 	for (i = 0; i < NDKMAP; i++)
996 		check_one_slice(r, diskname, i, 0, 1);
997 	ptr[0] = 'p';
998 	for (i = 0; i <= FD_NUMPART; i++)
999 		check_one_slice(r, diskname, i, 0, 1);
1000 }
1001 
1002 static void
1003 check_slices(avl_tree_t *r, int fd, const char *sname)
1004 {
1005 	struct extvtoc vtoc;
1006 	struct dk_gpt *gpt;
1007 	char diskname[MAXNAMELEN];
1008 	char *ptr;
1009 	int i;
1010 
1011 	(void) strncpy(diskname, sname, MAXNAMELEN);
1012 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1013 		return;
1014 	ptr[1] = '\0';
1015 
1016 	if (read_extvtoc(fd, &vtoc) >= 0) {
1017 		for (i = 0; i < NDKMAP; i++)
1018 			check_one_slice(r, diskname, i,
1019 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1020 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1021 		/*
1022 		 * on x86 we'll still have leftover links that point
1023 		 * to slices s[9-15], so use NDKMAP instead
1024 		 */
1025 		for (i = 0; i < NDKMAP; i++)
1026 			check_one_slice(r, diskname, i,
1027 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1028 		/* nodes p[1-4] are never used with EFI labels */
1029 		ptr[0] = 'p';
1030 		for (i = 1; i <= FD_NUMPART; i++)
1031 			check_one_slice(r, diskname, i, 0, 1);
1032 		efi_free(gpt);
1033 	}
1034 }
1035 
1036 static void
1037 zpool_open_func(void *arg)
1038 {
1039 	rdsk_node_t *rn = arg;
1040 	struct stat64 statbuf;
1041 	nvlist_t *config;
1042 	int fd;
1043 
1044 	if (rn->rn_nozpool)
1045 		return;
1046 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1047 		/* symlink to a device that's no longer there */
1048 		if (errno == ENOENT)
1049 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1050 		return;
1051 	}
1052 	/*
1053 	 * Ignore failed stats.  We only want regular
1054 	 * files, character devs and block devs.
1055 	 */
1056 	if (fstat64(fd, &statbuf) != 0 ||
1057 	    (!S_ISREG(statbuf.st_mode) &&
1058 	    !S_ISCHR(statbuf.st_mode) &&
1059 	    !S_ISBLK(statbuf.st_mode))) {
1060 		(void) close(fd);
1061 		return;
1062 	}
1063 	/* this file is too small to hold a zpool */
1064 	if (S_ISREG(statbuf.st_mode) &&
1065 	    statbuf.st_size < SPA_MINDEVSIZE) {
1066 		(void) close(fd);
1067 		return;
1068 	} else if (!S_ISREG(statbuf.st_mode)) {
1069 		/*
1070 		 * Try to read the disk label first so we don't have to
1071 		 * open a bunch of minor nodes that can't have a zpool.
1072 		 */
1073 		check_slices(rn->rn_avl, fd, rn->rn_name);
1074 	}
1075 
1076 	if ((zpool_read_label(fd, &config)) != 0) {
1077 		(void) close(fd);
1078 		(void) no_memory(rn->rn_hdl);
1079 		return;
1080 	}
1081 	(void) close(fd);
1082 
1083 
1084 	rn->rn_config = config;
1085 	if (config != NULL) {
1086 		assert(rn->rn_nozpool == B_FALSE);
1087 	}
1088 }
1089 
1090 /*
1091  * Given a file descriptor, clear (zero) the label information.  This function
1092  * is currently only used in the appliance stack as part of the ZFS sysevent
1093  * module.
1094  */
1095 int
1096 zpool_clear_label(int fd)
1097 {
1098 	struct stat64 statbuf;
1099 	int l;
1100 	vdev_label_t *label;
1101 	uint64_t size;
1102 
1103 	if (fstat64(fd, &statbuf) == -1)
1104 		return (0);
1105 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1106 
1107 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1108 		return (-1);
1109 
1110 	for (l = 0; l < VDEV_LABELS; l++) {
1111 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1112 		    label_offset(size, l)) != sizeof (vdev_label_t))
1113 			return (-1);
1114 	}
1115 
1116 	free(label);
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Given a list of directories to search, find all pools stored on disk.  This
1122  * includes partial pools which are not available to import.  If no args are
1123  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1124  * poolname or guid (but not both) are provided by the caller when trying
1125  * to import a specific pool.
1126  */
1127 static nvlist_t *
1128 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1129 {
1130 	int i, dirs = iarg->paths;
1131 	DIR *dirp = NULL;
1132 	struct dirent64 *dp;
1133 	char path[MAXPATHLEN];
1134 	char *end, **dir = iarg->path;
1135 	size_t pathleft;
1136 	nvlist_t *ret = NULL;
1137 	static char *default_dir = "/dev/dsk";
1138 	pool_list_t pools = { 0 };
1139 	pool_entry_t *pe, *penext;
1140 	vdev_entry_t *ve, *venext;
1141 	config_entry_t *ce, *cenext;
1142 	name_entry_t *ne, *nenext;
1143 	avl_tree_t slice_cache;
1144 	rdsk_node_t *slice;
1145 	void *cookie;
1146 
1147 	if (dirs == 0) {
1148 		dirs = 1;
1149 		dir = &default_dir;
1150 	}
1151 
1152 	/*
1153 	 * Go through and read the label configuration information from every
1154 	 * possible device, organizing the information according to pool GUID
1155 	 * and toplevel GUID.
1156 	 */
1157 	for (i = 0; i < dirs; i++) {
1158 		tpool_t *t;
1159 		char *rdsk;
1160 		int dfd;
1161 
1162 		/* use realpath to normalize the path */
1163 		if (realpath(dir[i], path) == 0) {
1164 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1165 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1166 			goto error;
1167 		}
1168 		end = &path[strlen(path)];
1169 		*end++ = '/';
1170 		*end = 0;
1171 		pathleft = &path[sizeof (path)] - end;
1172 
1173 		/*
1174 		 * Using raw devices instead of block devices when we're
1175 		 * reading the labels skips a bunch of slow operations during
1176 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1177 		 */
1178 		if (strcmp(path, "/dev/dsk/") == 0)
1179 			rdsk = "/dev/rdsk/";
1180 		else
1181 			rdsk = path;
1182 
1183 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1184 		    (dirp = fdopendir(dfd)) == NULL) {
1185 			zfs_error_aux(hdl, strerror(errno));
1186 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1187 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1188 			    rdsk);
1189 			goto error;
1190 		}
1191 
1192 		avl_create(&slice_cache, slice_cache_compare,
1193 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1194 		/*
1195 		 * This is not MT-safe, but we have no MT consumers of libzfs
1196 		 */
1197 		while ((dp = readdir64(dirp)) != NULL) {
1198 			const char *name = dp->d_name;
1199 			if (name[0] == '.' &&
1200 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1201 				continue;
1202 
1203 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1204 			slice->rn_name = zfs_strdup(hdl, name);
1205 			slice->rn_avl = &slice_cache;
1206 			slice->rn_dfd = dfd;
1207 			slice->rn_hdl = hdl;
1208 			slice->rn_nozpool = B_FALSE;
1209 			avl_add(&slice_cache, slice);
1210 		}
1211 		/*
1212 		 * create a thread pool to do all of this in parallel;
1213 		 * rn_nozpool is not protected, so this is racy in that
1214 		 * multiple tasks could decide that the same slice can
1215 		 * not hold a zpool, which is benign.  Also choose
1216 		 * double the number of processors; we hold a lot of
1217 		 * locks in the kernel, so going beyond this doesn't
1218 		 * buy us much.
1219 		 */
1220 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1221 		    0, NULL);
1222 		for (slice = avl_first(&slice_cache); slice;
1223 		    (slice = avl_walk(&slice_cache, slice,
1224 		    AVL_AFTER)))
1225 			(void) tpool_dispatch(t, zpool_open_func, slice);
1226 		tpool_wait(t);
1227 		tpool_destroy(t);
1228 
1229 		cookie = NULL;
1230 		while ((slice = avl_destroy_nodes(&slice_cache,
1231 		    &cookie)) != NULL) {
1232 			if (slice->rn_config != NULL) {
1233 				nvlist_t *config = slice->rn_config;
1234 				boolean_t matched = B_TRUE;
1235 
1236 				if (iarg->poolname != NULL) {
1237 					char *pname;
1238 
1239 					matched = nvlist_lookup_string(config,
1240 					    ZPOOL_CONFIG_POOL_NAME,
1241 					    &pname) == 0 &&
1242 					    strcmp(iarg->poolname, pname) == 0;
1243 				} else if (iarg->guid != 0) {
1244 					uint64_t this_guid;
1245 
1246 					matched = nvlist_lookup_uint64(config,
1247 					    ZPOOL_CONFIG_POOL_GUID,
1248 					    &this_guid) == 0 &&
1249 					    iarg->guid == this_guid;
1250 				}
1251 				if (!matched) {
1252 					nvlist_free(config);
1253 					config = NULL;
1254 					continue;
1255 				}
1256 				/* use the non-raw path for the config */
1257 				(void) strlcpy(end, slice->rn_name, pathleft);
1258 				if (add_config(hdl, &pools, path, config) != 0)
1259 					goto error;
1260 			}
1261 			free(slice->rn_name);
1262 			free(slice);
1263 		}
1264 		avl_destroy(&slice_cache);
1265 
1266 		(void) closedir(dirp);
1267 		dirp = NULL;
1268 	}
1269 
1270 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1271 
1272 error:
1273 	for (pe = pools.pools; pe != NULL; pe = penext) {
1274 		penext = pe->pe_next;
1275 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1276 			venext = ve->ve_next;
1277 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1278 				cenext = ce->ce_next;
1279 				if (ce->ce_config)
1280 					nvlist_free(ce->ce_config);
1281 				free(ce);
1282 			}
1283 			free(ve);
1284 		}
1285 		free(pe);
1286 	}
1287 
1288 	for (ne = pools.names; ne != NULL; ne = nenext) {
1289 		nenext = ne->ne_next;
1290 		if (ne->ne_name)
1291 			free(ne->ne_name);
1292 		free(ne);
1293 	}
1294 
1295 	if (dirp)
1296 		(void) closedir(dirp);
1297 
1298 	return (ret);
1299 }
1300 
1301 nvlist_t *
1302 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1303 {
1304 	importargs_t iarg = { 0 };
1305 
1306 	iarg.paths = argc;
1307 	iarg.path = argv;
1308 
1309 	return (zpool_find_import_impl(hdl, &iarg));
1310 }
1311 
1312 /*
1313  * Given a cache file, return the contents as a list of importable pools.
1314  * poolname or guid (but not both) are provided by the caller when trying
1315  * to import a specific pool.
1316  */
1317 nvlist_t *
1318 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1319     char *poolname, uint64_t guid)
1320 {
1321 	char *buf;
1322 	int fd;
1323 	struct stat64 statbuf;
1324 	nvlist_t *raw, *src, *dst;
1325 	nvlist_t *pools;
1326 	nvpair_t *elem;
1327 	char *name;
1328 	uint64_t this_guid;
1329 	boolean_t active;
1330 
1331 	verify(poolname == NULL || guid == 0);
1332 
1333 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1334 		zfs_error_aux(hdl, "%s", strerror(errno));
1335 		(void) zfs_error(hdl, EZFS_BADCACHE,
1336 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1337 		return (NULL);
1338 	}
1339 
1340 	if (fstat64(fd, &statbuf) != 0) {
1341 		zfs_error_aux(hdl, "%s", strerror(errno));
1342 		(void) close(fd);
1343 		(void) zfs_error(hdl, EZFS_BADCACHE,
1344 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1345 		return (NULL);
1346 	}
1347 
1348 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1349 		(void) close(fd);
1350 		return (NULL);
1351 	}
1352 
1353 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1354 		(void) close(fd);
1355 		free(buf);
1356 		(void) zfs_error(hdl, EZFS_BADCACHE,
1357 		    dgettext(TEXT_DOMAIN,
1358 		    "failed to read cache file contents"));
1359 		return (NULL);
1360 	}
1361 
1362 	(void) close(fd);
1363 
1364 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1365 		free(buf);
1366 		(void) zfs_error(hdl, EZFS_BADCACHE,
1367 		    dgettext(TEXT_DOMAIN,
1368 		    "invalid or corrupt cache file contents"));
1369 		return (NULL);
1370 	}
1371 
1372 	free(buf);
1373 
1374 	/*
1375 	 * Go through and get the current state of the pools and refresh their
1376 	 * state.
1377 	 */
1378 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1379 		(void) no_memory(hdl);
1380 		nvlist_free(raw);
1381 		return (NULL);
1382 	}
1383 
1384 	elem = NULL;
1385 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1386 		verify(nvpair_value_nvlist(elem, &src) == 0);
1387 
1388 		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1389 		    &name) == 0);
1390 		if (poolname != NULL && strcmp(poolname, name) != 0)
1391 			continue;
1392 
1393 		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1394 		    &this_guid) == 0);
1395 		if (guid != 0) {
1396 			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1397 			    &this_guid) == 0);
1398 			if (guid != this_guid)
1399 				continue;
1400 		}
1401 
1402 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1403 			nvlist_free(raw);
1404 			nvlist_free(pools);
1405 			return (NULL);
1406 		}
1407 
1408 		if (active)
1409 			continue;
1410 
1411 		if ((dst = refresh_config(hdl, src)) == NULL) {
1412 			nvlist_free(raw);
1413 			nvlist_free(pools);
1414 			return (NULL);
1415 		}
1416 
1417 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1418 			(void) no_memory(hdl);
1419 			nvlist_free(dst);
1420 			nvlist_free(raw);
1421 			nvlist_free(pools);
1422 			return (NULL);
1423 		}
1424 		nvlist_free(dst);
1425 	}
1426 
1427 	nvlist_free(raw);
1428 	return (pools);
1429 }
1430 
1431 static int
1432 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1433 {
1434 	importargs_t *import = data;
1435 	int found = 0;
1436 
1437 	if (import->poolname != NULL) {
1438 		char *pool_name;
1439 
1440 		verify(nvlist_lookup_string(zhp->zpool_config,
1441 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1442 		if (strcmp(pool_name, import->poolname) == 0)
1443 			found = 1;
1444 	} else {
1445 		uint64_t pool_guid;
1446 
1447 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1448 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1449 		if (pool_guid == import->guid)
1450 			found = 1;
1451 	}
1452 
1453 	zpool_close(zhp);
1454 	return (found);
1455 }
1456 
1457 nvlist_t *
1458 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1459 {
1460 	verify(import->poolname == NULL || import->guid == 0);
1461 
1462 	if (import->unique)
1463 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1464 
1465 	if (import->cachefile != NULL)
1466 		return (zpool_find_import_cached(hdl, import->cachefile,
1467 		    import->poolname, import->guid));
1468 
1469 	return (zpool_find_import_impl(hdl, import));
1470 }
1471 
1472 boolean_t
1473 find_guid(nvlist_t *nv, uint64_t guid)
1474 {
1475 	uint64_t tmp;
1476 	nvlist_t **child;
1477 	uint_t c, children;
1478 
1479 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1480 	if (tmp == guid)
1481 		return (B_TRUE);
1482 
1483 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1484 	    &child, &children) == 0) {
1485 		for (c = 0; c < children; c++)
1486 			if (find_guid(child[c], guid))
1487 				return (B_TRUE);
1488 	}
1489 
1490 	return (B_FALSE);
1491 }
1492 
1493 typedef struct aux_cbdata {
1494 	const char	*cb_type;
1495 	uint64_t	cb_guid;
1496 	zpool_handle_t	*cb_zhp;
1497 } aux_cbdata_t;
1498 
1499 static int
1500 find_aux(zpool_handle_t *zhp, void *data)
1501 {
1502 	aux_cbdata_t *cbp = data;
1503 	nvlist_t **list;
1504 	uint_t i, count;
1505 	uint64_t guid;
1506 	nvlist_t *nvroot;
1507 
1508 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1509 	    &nvroot) == 0);
1510 
1511 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1512 	    &list, &count) == 0) {
1513 		for (i = 0; i < count; i++) {
1514 			verify(nvlist_lookup_uint64(list[i],
1515 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1516 			if (guid == cbp->cb_guid) {
1517 				cbp->cb_zhp = zhp;
1518 				return (1);
1519 			}
1520 		}
1521 	}
1522 
1523 	zpool_close(zhp);
1524 	return (0);
1525 }
1526 
1527 /*
1528  * Determines if the pool is in use.  If so, it returns true and the state of
1529  * the pool as well as the name of the pool.  Both strings are allocated and
1530  * must be freed by the caller.
1531  */
1532 int
1533 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1534     boolean_t *inuse)
1535 {
1536 	nvlist_t *config;
1537 	char *name;
1538 	boolean_t ret;
1539 	uint64_t guid, vdev_guid;
1540 	zpool_handle_t *zhp;
1541 	nvlist_t *pool_config;
1542 	uint64_t stateval, isspare;
1543 	aux_cbdata_t cb = { 0 };
1544 	boolean_t isactive;
1545 
1546 	*inuse = B_FALSE;
1547 
1548 	if (zpool_read_label(fd, &config) != 0) {
1549 		(void) no_memory(hdl);
1550 		return (-1);
1551 	}
1552 
1553 	if (config == NULL)
1554 		return (0);
1555 
1556 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1557 	    &stateval) == 0);
1558 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1559 	    &vdev_guid) == 0);
1560 
1561 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1562 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1563 		    &name) == 0);
1564 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1565 		    &guid) == 0);
1566 	}
1567 
1568 	switch (stateval) {
1569 	case POOL_STATE_EXPORTED:
1570 		/*
1571 		 * A pool with an exported state may in fact be imported
1572 		 * read-only, so check the in-core state to see if it's
1573 		 * active and imported read-only.  If it is, set
1574 		 * its state to active.
1575 		 */
1576 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1577 		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1578 		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1579 			stateval = POOL_STATE_ACTIVE;
1580 
1581 		ret = B_TRUE;
1582 		break;
1583 
1584 	case POOL_STATE_ACTIVE:
1585 		/*
1586 		 * For an active pool, we have to determine if it's really part
1587 		 * of a currently active pool (in which case the pool will exist
1588 		 * and the guid will be the same), or whether it's part of an
1589 		 * active pool that was disconnected without being explicitly
1590 		 * exported.
1591 		 */
1592 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1593 			nvlist_free(config);
1594 			return (-1);
1595 		}
1596 
1597 		if (isactive) {
1598 			/*
1599 			 * Because the device may have been removed while
1600 			 * offlined, we only report it as active if the vdev is
1601 			 * still present in the config.  Otherwise, pretend like
1602 			 * it's not in use.
1603 			 */
1604 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1605 			    (pool_config = zpool_get_config(zhp, NULL))
1606 			    != NULL) {
1607 				nvlist_t *nvroot;
1608 
1609 				verify(nvlist_lookup_nvlist(pool_config,
1610 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1611 				ret = find_guid(nvroot, vdev_guid);
1612 			} else {
1613 				ret = B_FALSE;
1614 			}
1615 
1616 			/*
1617 			 * If this is an active spare within another pool, we
1618 			 * treat it like an unused hot spare.  This allows the
1619 			 * user to create a pool with a hot spare that currently
1620 			 * in use within another pool.  Since we return B_TRUE,
1621 			 * libdiskmgt will continue to prevent generic consumers
1622 			 * from using the device.
1623 			 */
1624 			if (ret && nvlist_lookup_uint64(config,
1625 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1626 				stateval = POOL_STATE_SPARE;
1627 
1628 			if (zhp != NULL)
1629 				zpool_close(zhp);
1630 		} else {
1631 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1632 			ret = B_TRUE;
1633 		}
1634 		break;
1635 
1636 	case POOL_STATE_SPARE:
1637 		/*
1638 		 * For a hot spare, it can be either definitively in use, or
1639 		 * potentially active.  To determine if it's in use, we iterate
1640 		 * over all pools in the system and search for one with a spare
1641 		 * with a matching guid.
1642 		 *
1643 		 * Due to the shared nature of spares, we don't actually report
1644 		 * the potentially active case as in use.  This means the user
1645 		 * can freely create pools on the hot spares of exported pools,
1646 		 * but to do otherwise makes the resulting code complicated, and
1647 		 * we end up having to deal with this case anyway.
1648 		 */
1649 		cb.cb_zhp = NULL;
1650 		cb.cb_guid = vdev_guid;
1651 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1652 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1653 			name = (char *)zpool_get_name(cb.cb_zhp);
1654 			ret = TRUE;
1655 		} else {
1656 			ret = FALSE;
1657 		}
1658 		break;
1659 
1660 	case POOL_STATE_L2CACHE:
1661 
1662 		/*
1663 		 * Check if any pool is currently using this l2cache device.
1664 		 */
1665 		cb.cb_zhp = NULL;
1666 		cb.cb_guid = vdev_guid;
1667 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1668 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1669 			name = (char *)zpool_get_name(cb.cb_zhp);
1670 			ret = TRUE;
1671 		} else {
1672 			ret = FALSE;
1673 		}
1674 		break;
1675 
1676 	default:
1677 		ret = B_FALSE;
1678 	}
1679 
1680 
1681 	if (ret) {
1682 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1683 			if (cb.cb_zhp)
1684 				zpool_close(cb.cb_zhp);
1685 			nvlist_free(config);
1686 			return (-1);
1687 		}
1688 		*state = (pool_state_t)stateval;
1689 	}
1690 
1691 	if (cb.cb_zhp)
1692 		zpool_close(cb.cb_zhp);
1693 
1694 	nvlist_free(config);
1695 	*inuse = ret;
1696 	return (0);
1697 }
1698