xref: /titanic_50/usr/src/lib/libumem/i386/umem_genasm.c (revision ef1d07349e941417706ea6d639bac69cb863b2f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2014 Joyent, Inc.  All rights reserved.
23  */
24 
25 /*
26  * Don't Panic! If you find the blocks of assembly that follow confusing and
27  * you're questioning why they exist, please go read section 8 of the umem.c big
28  * theory statement. Next familiarize yourself with the malloc and free
29  * implementations in libumem's malloc.c.
30  *
31  * What follows is the i386 implementation of the thread caching automatic
32  * assembly generation. With i386 a function only has three registers it's
33  * allowed to change without restoring them: eax, ecx, and edx. All others have
34  * to be preserved. Since the set of registers we have available is so small, we
35  * have to make use of esi, ebx, and edi and save their original values to the
36  * stack.
37  *
38  * Malloc register usage:
39  * 	o. esi: Size of the malloc (passed into us and modified)
40  * 	o. edi: Size of the cache
41  * 	o. eax: Buffer to return
42  * 	o. ebx: Scratch space and temporary values
43  * 	o. ecx: Pointer to the tmem_t in the ulwp_t.
44  * 	o. edx: Pointer to the tmem_t array of roots
45  *
46  * Free register usage:
47  * 	o. esi: Size of the malloc (passed into us and modified)
48  * 	o. edi: Size of the cache
49  * 	o. eax: Buffer to free
50  * 	o. ebx: Scratch space and temporary values
51  * 	o. ecx: Pointer to the tmem_t in the ulwp_t.
52  * 	o. edx: Pointer to the tmem_t array of roots
53  *
54  * Once we determine what cache we are using, we increment %edx to the
55  * appropriate offset and set %edi with the size of the cache. This means that
56  * when we break out to the normal buffer allocation point %edx contains the
57  * head of the linked list and %edi is the amount that we have to adjust the
58  * total amount cached by the thread.
59  *
60  * Each block of assembly has psuedocode that describes its purpose.
61  */
62 
63 #include <inttypes.h>
64 #include <strings.h>
65 #include <umem_impl.h>
66 #include "umem_base.h"
67 
68 #include <atomic.h>
69 
70 const int umem_genasm_supported = 1;
71 static uintptr_t umem_genasm_mptr = (uintptr_t)&_malloc;
72 static size_t umem_genasm_msize = 512;
73 static uintptr_t umem_genasm_fptr = (uintptr_t)&_free;
74 static size_t umem_genasm_fsize = 512;
75 static uintptr_t umem_genasm_omptr = (uintptr_t)umem_malloc;
76 static uintptr_t umem_genasm_ofptr = (uintptr_t)umem_malloc_free;
77 /*
78  * The maximum number of caches we can support. We use a single byte addl so
79  * this is 255 (UINT8_MAX) / sizeof (uintptr_t). In this case 63
80  */
81 #define	UMEM_GENASM_MAX32	63
82 
83 #define	PTC_JMPADDR(dest, src)	(dest - (src + 4))
84 #define	PTC_ROOT_SIZE	sizeof (uintptr_t)
85 #define	MULTINOP	0x0000441f0f
86 
87 /*
88  * void *ptcmalloc(size_t orig_size);
89  *
90  * size_t size = orig_size + 8;
91  *
92  * if (size < orig_size)
93  * 	goto tomalloc;		! This is overflow
94  *
95  * if (size > cache_size)
96  * 	goto tomalloc;
97  *
98  * tmem_t *t = (uintptr_t)curthread() + umem_thr_offset;
99  * void **roots = t->tm_roots;
100  */
101 #define	PTC_MALINIT_JOUT	0x0e
102 #define	PTC_MALINIT_MCS	0x14
103 #define	PTC_MALINIT_JOV	0x1a
104 #define	PTC_MALINIT_SOFF	0x27
105 static const uint8_t malinit[] = {
106 	0x55,					/* pushl %ebp */
107 	0x89, 0xe5,				/* movl %esp, %ebp */
108 	0x57,					/* pushl %edi */
109 	0x56,					/* pushl %esi */
110 	0x53,					/* pushl %ebx */
111 	0x8b, 0x75, 0x08,			/* movl 0x8(%ebp), %esi */
112 	0x83, 0xc6, 0x08,			/* addl $0x8,%esi */
113 	0x0f, 0x82, 0x00, 0x00, 0x00, 0x00, 	/* jc +$JMP (errout) */
114 	0x81, 0xfe, 0x00, 0x00, 0x00, 0x00, 	/* cmpl sizeof ($C0), %esi */
115 	0x0f, 0x87, 0x00, 0x00, 0x00, 0x00,	/* ja +$JMP (errout) */
116 	0x65, 0x8b, 0x0d, 0x00, 0x00, 0x00, 0x00, 	/* movl %gs:0x0,%ecx */
117 	0x81, 0xc1, 0x00, 0x00,	0x00, 0x00, 	/* addl $OFF, %ecx */
118 	0x8d, 0x51, 0x04			/* leal 0x4(%ecx), %edx */
119 };
120 
121 /*
122  * void ptcfree(void *buf);
123  *
124  * if (buf == NULL)
125  * 	return;
126  *
127  * malloc_data_t *tag = buf;
128  * tag--;
129  * int size = tag->malloc_size;
130  * int tagtval = UMEM_MALLOC_DECODE(tag->malloc_tag, size);
131  *
132  * if (tagval != MALLOC_MAGIC)
133  * 	goto tofree;
134  *
135  * if (size > cache_max)
136  * 	goto tofree;
137  *
138  * tmem_t *t = (uintptr_t)curthread() + umem_thr_offset;
139  * void **roots = t->tm_roots;
140  */
141 #define	PTC_FRINI_JDONE	0x0d
142 #define	PTC_FRINI_JFREE	0x23
143 #define	PTC_FRINI_MCS	0x29
144 #define	PTC_FRINI_JOV	0x2f
145 #define	PTC_FRINI_SOFF	0x3c
146 static const uint8_t freeinit[] = {
147 	0x55,					/* pushl %ebp */
148 	0x89, 0xe5,				/* movl %esp, %ebp */
149 	0x57,					/* pushl %edi */
150 	0x56,					/* pushl %esi */
151 	0x53,					/* pushl %ebx */
152 	0x8b, 0x45, 0x08,			/* movl 0x8(%ebp), %eax */
153 	0x85, 0xc0,				/* testl %eax, %eax */
154 	0x0f, 0x84, 0x00, 0x00, 0x00, 0x00,	/* je $JDONE (done) */
155 	0x83, 0xe8, 0x08,			/* subl $0x8,%eax */
156 	0x8b, 0x30,				/* movl (%eax),%esi */
157 	0x8b, 0x50, 0x04,			/* movl 0x4(%eax),%edx */
158 	0x01, 0xf2,				/* addl %esi,%edx */
159 	0x81, 0xfa, 0x00, 0xc0, 0x10, 0x3a,	/* cmpl MAGIC32, %edx */
160 	0x0f, 0x85, 0x00, 0x00, 0x00, 0x00,	/* jne +JFREE (goto freebuf) */
161 
162 	0x81, 0xfe, 0x00, 0x00, 0x00, 0x00, 	/* cmpl sizeof ($C0), %esi */
163 	0x0f, 0x87, 0x00, 0x00, 0x00, 0x00,	/* ja +$JMP (errout) */
164 	0x65, 0x8b, 0x0d, 0x00, 0x0, 0x00, 0x00, /* movl %gs:0x0,%ecx */
165 	0x81, 0xc1, 0x00, 0x00,	0x00, 0x00,	/* addl $0xOFF, %ecx */
166 	0x8d, 0x51, 0x04			/* leal 0x4(%ecx),%edx */
167 };
168 
169 /*
170  * if (size <= $CACHE_SIZE) {
171  *	csize = $CACHE_SIZE;
172  * } else ...				! goto next cache
173  */
174 #define	PTC_INICACHE_CMP	0x02
175 #define	PTC_INICACHE_SIZE 0x09
176 #define	PTC_INICACHE_JMP	0x0e
177 static const uint8_t inicache[] = {
178 	0x81, 0xfe, 0xff, 0x00, 0x00, 0x00, 	/* cmpl sizeof ($C0), %esi */
179 	0x77, 0x0a,				/* ja +0xa */
180 	0xbf, 0xff, 0x00, 0x00, 0x00, 		/* movl sizeof ($C0), %edi */
181 	0xe9, 0x00, 0x00, 0x00, 0x00		/* jmp +$JMP (allocbuf) */
182 };
183 
184 /*
185  * if (size <= $CACHE_SIZE) {
186  *	csize = $CACHE_SIZE;
187  *	roots += $CACHE_NUM;
188  * } else ...				! goto next cache
189  */
190 #define	PTC_GENCACHE_CMP	0x02
191 #define	PTC_GENCACHE_NUM	0x0a
192 #define	PTC_GENCACHE_SIZE 0x0c
193 #define	PTC_GENCACHE_JMP	0x11
194 static const uint8_t gencache[] = {
195 	0x81, 0xfe, 0x00, 0x00, 0x00, 0x00, 	/* cmpl sizeof ($CACHE), %esi */
196 	0x77, 0x0d,				/* ja +0xd (next cache) */
197 	0x83, 0xc2, 0x00,			/* addl $4*$ii, %edx */
198 	0xbf, 0x00, 0x00, 0x00, 0x00, 		/* movl sizeof ($CACHE), %edi */
199 	0xe9, 0x00, 0x00, 0x00, 0x00 		/* jmp +$JMP (allocbuf) */
200 };
201 
202 /*
203  * else if (size <= $CACHE_SIZE) {
204  *	csize = $CACHE_SIZE;
205  *	roots += $CACHE_NUM;
206  * } else {
207  *	goto tofunc; 			! goto tomalloc if ptcmalloc.
208  * }					! goto tofree if ptcfree.
209  */
210 #define	PTC_FINCACHE_CMP 0x02
211 #define	PTC_FINCACHE_JMP	0x07
212 #define	PTC_FINCACHE_NUM 0x0a
213 #define	PTC_FINCACHE_SIZE 0x0c
214 static const uint8_t fincache[] = {
215 	0x81, 0xfe, 0xff, 0x00, 0x00, 0x00,	/* cmpl sizeof ($CLAST), %esi */
216 	0x77, 0x00,				/* ja +$JMP (to errout) */
217 	0x83, 0xc2, 0x00,			/* addl $4*($NCACHES-1), %edx */
218 	0xbf, 0x00, 0x00, 0x00, 0x00, 		/* movl sizeof ($CLAST), %edi */
219 };
220 
221 /*
222  * if (*root == NULL)
223  * 	goto tomalloc;
224  *
225  * malloc_data_t *ret = *root;
226  * *root = *(void **)ret;
227  * t->tm_size += csize;
228  * ret->malloc_size = size;
229  *
230  * ret->malloc_data = UMEM_MALLOC_ENCODE(MALLOC_SECOND_MAGIC, size);
231  * ret++;
232  *
233  * return ((void *)ret);
234  * tomalloc:
235  * 	return (malloc(orig_size));
236  */
237 #define	PTC_MALFINI_ALLABEL	0x00
238 #define	PTC_MALFINI_JMLABEL	0x20
239 #define	PTC_MALFINI_JMADDR	0x25
240 static const uint8_t malfini[] = {
241 	/* allocbuf: */
242 	0x8b, 0x02,			/* movl (%edx), %eax */
243 	0x85, 0xc0,			/* testl %eax, %eax */
244 	0x74, 0x1a,			/* je +0x1a (errout) */
245 	0x8b, 0x18,			/* movl (%eax), %esi */
246 	0x89, 0x1a,			/* movl %esi, (%edx) */
247 	0x29, 0x39,			/* subl %edi, (%ecx) */
248 	0x89, 0x30,			/* movl %esi, ($eax) */
249 	0xba, 0x00, 0xc0, 0x10, 0x3a,	/* movl $0x3a10c000,%edx */
250 	0x29, 0xf2,			/* subl %esi, %edx */
251 	0x89, 0x50, 0x04,		/* movl %edx, 0x4(%eax) */
252 	0x83, 0xc0, 0x08,		/* addl %0x8, %eax */
253 	0x5b,				/* popl %ebx */
254 	0x5e,				/* popl %esi */
255 	0x5f,				/* popl %edi */
256 	0xc9,				/* leave */
257 	0xc3,				/* ret */
258 	/* errout: */
259 	0x5b,				/* popl %ebx */
260 	0x5e,				/* popl %esi */
261 	0x5f,				/* popl %edi */
262 	0xc9,				/* leave */
263 	0xe9, 0x00, 0x00, 0x00, 0x00	/* jmp $malloc */
264 };
265 
266 /*
267  * if (t->tm_size + csize > umem_ptc_size)
268  * 	goto tofree;
269  *
270  * t->tm_size += csize
271  * *(void **)tag = *root;
272  * *root = tag;
273  * return;
274  * tofree:
275  * 	free(buf);
276  * 	return;
277  */
278 #define	PTC_FRFINI_RBUFLABEL	0x00
279 #define	PTC_FRFINI_CACHEMAX	0x06
280 #define	PTC_FRFINI_DONELABEL	0x14
281 #define	PTC_FRFINI_JFLABEL	0x19
282 #define	PTC_FRFINI_JFADDR	0x1e
283 static const uint8_t freefini[] = {
284 	/* freebuf: */
285 	0x8b, 0x19,				/* movl (%ecx),%ebx */
286 	0x01, 0xfb,				/* addl %edi,%ebx */
287 	0x81, 0xfb, 0x00, 0x00, 0x00, 0x00, 	/* cmpl maxsize, %ebx */
288 	0x73, 0x0d,				/* jae +0xd <tofree> */
289 	0x01, 0x39,				/* addl %edi,(%ecx) */
290 	0x8b, 0x3a,				/* movl (%edx),%edi */
291 	0x89, 0x38,				/* movl %edi,(%eax) */
292 	0x89, 0x02,				/* movl %eax,(%edx) */
293 	/* done: */
294 	0x5b,					/* popl %ebx */
295 	0x5e,					/* popl %esi */
296 	0x5f,					/* popl %edi */
297 	0xc9,					/* leave */
298 	0xc3,					/* ret */
299 	/* realfree: */
300 	0x5b,					/* popl %ebx */
301 	0x5e,					/* popl %esi */
302 	0x5f,					/* popl %edi */
303 	0xc9,					/* leave */
304 	0xe9, 0x00, 0x00, 0x00, 0x00		/* jmp free */
305 };
306 
307 /*
308  * Construct the initial part of malloc. off contains the offset from curthread
309  * to the root of the tmem structure. ep is the address of the label to error
310  * and jump to free. csize is the size of the largest umem_cache in ptcumem.
311  */
312 static int
313 genasm_malinit(uint8_t *bp, uint32_t off, uint32_t ep, uint32_t csize)
314 {
315 	uint32_t addr;
316 
317 	bcopy(malinit, bp, sizeof (malinit));
318 	addr = PTC_JMPADDR(ep, PTC_MALINIT_JOUT);
319 	bcopy(&addr, bp + PTC_MALINIT_JOUT, sizeof (addr));
320 	bcopy(&csize, bp + PTC_MALINIT_MCS, sizeof (csize));
321 	addr = PTC_JMPADDR(ep, PTC_MALINIT_JOV);
322 	bcopy(&addr, bp + PTC_MALINIT_JOV, sizeof (addr));
323 	bcopy(&off, bp + PTC_MALINIT_SOFF, sizeof (off));
324 
325 	return (sizeof (malinit));
326 }
327 
328 static int
329 genasm_frinit(uint8_t *bp, uint32_t off, uint32_t dp, uint32_t ep, uint32_t mc)
330 {
331 	uint32_t addr;
332 
333 	bcopy(freeinit, bp, sizeof (freeinit));
334 	addr = PTC_JMPADDR(dp, PTC_FRINI_JDONE);
335 	bcopy(&addr, bp + PTC_FRINI_JDONE, sizeof (addr));
336 	addr = PTC_JMPADDR(ep, PTC_FRINI_JFREE);
337 	bcopy(&addr, bp + PTC_FRINI_JFREE, sizeof (addr));
338 	bcopy(&mc, bp + PTC_FRINI_MCS, sizeof (mc));
339 	addr = PTC_JMPADDR(ep, PTC_FRINI_JOV);
340 	bcopy(&addr, bp + PTC_FRINI_JOV, sizeof (addr));
341 	bcopy(&off, bp + PTC_FRINI_SOFF, sizeof (off));
342 	return (sizeof (freeinit));
343 }
344 
345 /*
346  * Create the initial cache entry of the specified size. The value of ap tells
347  * us what the address of the label to try and allocate a buffer. This value is
348  * an offset from the current base to that value.
349  */
350 static int
351 genasm_firstcache(uint8_t *bp, uint32_t csize, uint32_t ap)
352 {
353 	uint32_t addr;
354 
355 	bcopy(inicache, bp, sizeof (inicache));
356 	bcopy(&csize, bp + PTC_INICACHE_CMP, sizeof (csize));
357 	bcopy(&csize, bp + PTC_INICACHE_SIZE, sizeof (csize));
358 	addr = PTC_JMPADDR(ap, PTC_INICACHE_JMP);
359 	ASSERT(addr != 0);
360 	bcopy(&addr, bp + PTC_INICACHE_JMP, sizeof (addr));
361 
362 	return (sizeof (inicache));
363 }
364 
365 static int
366 genasm_gencache(uint8_t *bp, int num, uint32_t csize, uint32_t ap)
367 {
368 	uint32_t addr;
369 	uint8_t	coff;
370 
371 	ASSERT(256 / PTC_ROOT_SIZE > num);
372 	ASSERT(num != 0);
373 	bcopy(gencache, bp, sizeof (gencache));
374 	bcopy(&csize, bp + PTC_GENCACHE_CMP, sizeof (csize));
375 	bcopy(&csize, bp + PTC_GENCACHE_SIZE, sizeof (csize));
376 	coff = num * PTC_ROOT_SIZE;
377 	bcopy(&coff, bp + PTC_GENCACHE_NUM, sizeof (coff));
378 	addr = PTC_JMPADDR(ap, PTC_GENCACHE_JMP);
379 	bcopy(&addr, bp + PTC_GENCACHE_JMP, sizeof (addr));
380 
381 	return (sizeof (gencache));
382 }
383 
384 static int
385 genasm_lastcache(uint8_t *bp, int num, uint32_t csize, uint32_t ep)
386 {
387 	uint8_t addr;
388 
389 	ASSERT(ep <= 0xff && ep > 7);
390 	ASSERT(256 / PTC_ROOT_SIZE > num);
391 	bcopy(fincache, bp, sizeof (fincache));
392 	bcopy(&csize, bp + PTC_FINCACHE_CMP, sizeof (csize));
393 	bcopy(&csize, bp + PTC_FINCACHE_SIZE, sizeof (csize));
394 	addr = num * PTC_ROOT_SIZE;
395 	bcopy(&addr, bp + PTC_FINCACHE_NUM, sizeof (addr));
396 	addr = ep - PTC_FINCACHE_JMP - 1;
397 	bcopy(&addr, bp + PTC_FINCACHE_JMP, sizeof (addr));
398 
399 	return (sizeof (fincache));
400 }
401 
402 static int
403 genasm_malfini(uint8_t *bp, uintptr_t mptr)
404 {
405 	uint32_t addr;
406 
407 	bcopy(malfini, bp, sizeof (malfini));
408 	addr = PTC_JMPADDR(mptr, ((uintptr_t)bp + PTC_MALFINI_JMADDR));
409 	bcopy(&addr, bp + PTC_MALFINI_JMADDR, sizeof (addr));
410 
411 	return (sizeof (malfini));
412 }
413 
414 static int
415 genasm_frfini(uint8_t *bp, uint32_t maxthr, uintptr_t fptr)
416 {
417 	uint32_t addr;
418 
419 	bcopy(freefini, bp, sizeof (freefini));
420 	bcopy(&maxthr, bp + PTC_FRFINI_CACHEMAX, sizeof (maxthr));
421 	addr = PTC_JMPADDR(fptr, ((uintptr_t)bp + PTC_FRFINI_JFADDR));
422 	bcopy(&addr, bp + PTC_FRFINI_JFADDR, sizeof (addr));
423 
424 	return (sizeof (freefini));
425 }
426 
427 /*
428  * The malloc inline assembly is constructed as follows:
429  *
430  * o Malloc prologue assembly
431  * o Generic first-cache check
432  * o n Generic cache checks (where n = _tmem_get_entries() - 2)
433  * o Generic last-cache check
434  * o Malloc epilogue assembly
435  *
436  * Generally there are at least three caches. When there is only one cache we
437  * only use the generic last-cache. In the case where there are two caches, we
438  * just leave out the middle ones.
439  */
440 static int
441 genasm_malloc(void *base, size_t len, int nents, int *umem_alloc_sizes)
442 {
443 	int ii, off;
444 	uint8_t *bp;
445 	size_t total;
446 	uint32_t allocoff, erroff;
447 
448 	total = sizeof (malinit) + sizeof (malfini) + sizeof (fincache);
449 
450 	if (nents >= 2)
451 		total += sizeof (inicache) + sizeof (gencache) * (nents - 2);
452 
453 	if (total > len)
454 		return (1);
455 
456 	erroff = total - sizeof (malfini) + PTC_MALFINI_JMLABEL;
457 	allocoff = total - sizeof (malfini) + PTC_MALFINI_ALLABEL;
458 
459 	bp = base;
460 
461 	off = genasm_malinit(bp, umem_tmem_off, erroff,
462 	    umem_alloc_sizes[nents-1]);
463 	bp += off;
464 	allocoff -= off;
465 	erroff -= off;
466 
467 	if (nents > 1) {
468 		off = genasm_firstcache(bp, umem_alloc_sizes[0], allocoff);
469 		bp += off;
470 		allocoff -= off;
471 		erroff -= off;
472 	}
473 
474 	for (ii = 1; ii < nents - 1; ii++) {
475 		off = genasm_gencache(bp, ii, umem_alloc_sizes[ii], allocoff);
476 		bp += off;
477 		allocoff -= off;
478 		erroff -= off;
479 	}
480 
481 	bp += genasm_lastcache(bp, nents - 1, umem_alloc_sizes[nents - 1],
482 	    erroff);
483 	bp += genasm_malfini(bp, umem_genasm_omptr);
484 	ASSERT(((uintptr_t)bp - total) == (uintptr_t)base);
485 
486 	return (0);
487 }
488 
489 static int
490 genasm_free(void *base, size_t len, int nents, int *umem_alloc_sizes)
491 {
492 	uint8_t *bp;
493 	int ii, off;
494 	size_t total;
495 	uint32_t rbufoff, retoff, erroff;
496 
497 	/* Assume that nents has already been audited for us */
498 	total = sizeof (freeinit) + sizeof (freefini) + sizeof (fincache);
499 	if (nents >= 2)
500 		total += sizeof (inicache) + sizeof (gencache) * (nents - 2);
501 
502 	if (total > len)
503 		return (1);
504 
505 	erroff = total - (sizeof (freefini) - PTC_FRFINI_JFLABEL);
506 	rbufoff = total - (sizeof (freefini) - PTC_FRFINI_RBUFLABEL);
507 	retoff = total - (sizeof (freefini) - PTC_FRFINI_DONELABEL);
508 
509 	bp = base;
510 
511 	off = genasm_frinit(bp, umem_tmem_off, retoff, erroff,
512 	    umem_alloc_sizes[nents - 1]);
513 	bp += off;
514 	erroff -= off;
515 	rbufoff -= off;
516 
517 	if (nents > 1) {
518 		off = genasm_firstcache(bp, umem_alloc_sizes[0], rbufoff);
519 		bp += off;
520 		erroff -= off;
521 		rbufoff -= off;
522 	}
523 
524 	for (ii = 1; ii < nents - 1; ii++) {
525 		off = genasm_gencache(bp, ii, umem_alloc_sizes[ii], rbufoff);
526 		bp += off;
527 		rbufoff -= off;
528 		erroff -= off;
529 	}
530 
531 	bp += genasm_lastcache(bp, nents - 1, umem_alloc_sizes[nents - 1],
532 	    erroff);
533 	bp += genasm_frfini(bp, umem_ptc_size, umem_genasm_ofptr);
534 	ASSERT(((uintptr_t)bp - total) == (uintptr_t)base);
535 
536 	return (0);
537 }
538 
539 int
540 umem_genasm(int *alloc_sizes, umem_cache_t **caches, int ncaches)
541 {
542 	int nents, i;
543 	uint8_t *mptr;
544 	uint8_t *fptr;
545 	uint64_t v, *vptr;
546 
547 	mptr = (void *)((uintptr_t)umem_genasm_mptr + 5);
548 	fptr = (void *)((uintptr_t)umem_genasm_fptr + 5);
549 	if (umem_genasm_mptr == 0 || umem_genasm_msize == 0 ||
550 	    umem_genasm_fptr == 0 || umem_genasm_fsize == 0)
551 		return (1);
552 
553 	/*
554 	 * The total number of caches that we can service is the minimum of:
555 	 *  o the amount supported by libc
556 	 *  o the total number of umem caches
557 	 *  o we use a single byte addl, so it's 255 / sizeof (uintptr_t). For
558 	 *    32-bit, this is 63.
559 	 */
560 	nents = _tmem_get_nentries();
561 
562 	if (UMEM_GENASM_MAX32 < nents)
563 		nents = UMEM_GENASM_MAX32;
564 
565 	if (ncaches < nents)
566 		nents = ncaches;
567 
568 	/* Based on our constraints, this is not an error */
569 	if (nents == 0 || umem_ptc_size == 0)
570 		return (0);
571 
572 	/* Take into account the jump */
573 	if (genasm_malloc(mptr, umem_genasm_msize, nents,
574 	    alloc_sizes) != 0)
575 		return (1);
576 
577 	if (genasm_free(fptr, umem_genasm_fsize, nents,
578 	    alloc_sizes) != 0)
579 		return (1);
580 
581 	/* nop out the jump with a multibyte jump */
582 	vptr = (void *)umem_genasm_mptr;
583 	v = MULTINOP;
584 	v |= *vptr & (0xffffffULL << 40);
585 	(void) atomic_swap_64(vptr, v);
586 	vptr = (void *)umem_genasm_fptr;
587 	v = MULTINOP;
588 	v |= *vptr & (0xffffffULL << 40);
589 	(void) atomic_swap_64(vptr, v);
590 
591 	for (i = 0; i < nents; i++)
592 		caches[i]->cache_flags |= UMF_PTC;
593 
594 	return (0);
595 }
596