xref: /titanic_50/usr/src/lib/libumem/common/vmem.c (revision ae115bc77f6fcde83175c75b4206dc2e50747966)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 /*
31  * For a more complete description of the main ideas, see:
32  *
33  *	Jeff Bonwick and Jonathan Adams,
34  *
35  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
36  *	Arbitrary Resources.
37  *
38  *	Proceedings of the 2001 Usenix Conference.
39  *	Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
40  *
41  * For the "Big Theory Statement", see usr/src/common/os/vmem.c
42  *
43  * 1. Overview of changes
44  * ------------------------------
45  * There have been a few changes to vmem in order to support umem.  The
46  * main areas are:
47  *
48  *	* VM_SLEEP unsupported
49  *
50  *	* Reaping changes
51  *
52  *	* initialization changes
53  *
54  *	* _vmem_extend_alloc
55  *
56  *
57  * 2. VM_SLEEP Removed
58  * -------------------
59  * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
60  * possibly infinite amounts of time, they are not supported in this
61  * version of vmem.  Sleep-like behavior can be achieved through
62  * UMEM_NOFAIL umem allocations.
63  *
64  *
65  * 3. Reaping changes
66  * ------------------
67  * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
68  * can do allocations and frees synchronously.  This is a problem if it
69  * occurs during a vmem_populate() allocation.
70  *
71  * Instead, we delay reaps while populates are active.
72  *
73  *
74  * 4. Initialization changes
75  * -------------------------
76  * In the kernel, vmem_init() allows you to create a single, top-level arena,
77  * which has vmem_internal_arena as a child.  For umem, we want to be able
78  * to extend arenas dynamically.  It is much easier to support this if we
79  * allow a two-level "heap" arena:
80  *
81  *	+----------+
82  *	|  "fake"  |
83  *	+----------+
84  *	      |
85  *	+----------+
86  *	|  "heap"  |
87  *	+----------+
88  *	  |    \ \
89  *	  |     +-+-- ... <other children>
90  *	  |
91  *	+---------------+
92  *	| vmem_internal |
93  *	+---------------+
94  *	    | | | |
95  *	   <children>
96  *
97  * The new vmem_init() allows you to specify a "parent" of the heap, along
98  * with allocation functions.
99  *
100  *
101  * 5. _vmem_extend_alloc
102  * ---------------------
103  * The other part of extending is _vmem_extend_alloc.  This function allows
104  * you to extend (expand current spans, if possible) an arena and allocate
105  * a chunk of the newly extened span atomically.  This is needed to support
106  * extending the heap while vmem_populate()ing it.
107  *
108  * In order to increase the usefulness of extending, non-imported spans are
109  * sorted in address order.
110  */
111 
112 #include "c_synonyms.h"
113 #include <sys/vmem_impl_user.h>
114 #include <alloca.h>
115 #include <sys/sysmacros.h>
116 #include <stdio.h>
117 #include <strings.h>
118 #include <atomic.h>
119 
120 #include "vmem_base.h"
121 #include "umem_base.h"
122 
123 #define	VMEM_INITIAL		6	/* early vmem arenas */
124 #define	VMEM_SEG_INITIAL	100	/* early segments */
125 
126 /*
127  * Adding a new span to an arena requires two segment structures: one to
128  * represent the span, and one to represent the free segment it contains.
129  */
130 #define	VMEM_SEGS_PER_SPAN_CREATE	2
131 
132 /*
133  * Allocating a piece of an existing segment requires 0-2 segment structures
134  * depending on how much of the segment we're allocating.
135  *
136  * To allocate the entire segment, no new segment structures are needed; we
137  * simply move the existing segment structure from the freelist to the
138  * allocation hash table.
139  *
140  * To allocate a piece from the left or right end of the segment, we must
141  * split the segment into two pieces (allocated part and remainder), so we
142  * need one new segment structure to represent the remainder.
143  *
144  * To allocate from the middle of a segment, we need two new segment strucures
145  * to represent the remainders on either side of the allocated part.
146  */
147 #define	VMEM_SEGS_PER_EXACT_ALLOC	0
148 #define	VMEM_SEGS_PER_LEFT_ALLOC	1
149 #define	VMEM_SEGS_PER_RIGHT_ALLOC	1
150 #define	VMEM_SEGS_PER_MIDDLE_ALLOC	2
151 
152 /*
153  * vmem_populate() preallocates segment structures for vmem to do its work.
154  * It must preallocate enough for the worst case, which is when we must import
155  * a new span and then allocate from the middle of it.
156  */
157 #define	VMEM_SEGS_PER_ALLOC_MAX		\
158 	(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
159 
160 /*
161  * The segment structures themselves are allocated from vmem_seg_arena, so
162  * we have a recursion problem when vmem_seg_arena needs to populate itself.
163  * We address this by working out the maximum number of segment structures
164  * this act will require, and multiplying by the maximum number of threads
165  * that we'll allow to do it simultaneously.
166  *
167  * The worst-case segment consumption to populate vmem_seg_arena is as
168  * follows (depicted as a stack trace to indicate why events are occurring):
169  *
170  * vmem_alloc(vmem_seg_arena)		-> 2 segs (span create + exact alloc)
171  *  vmem_alloc(vmem_internal_arena)	-> 2 segs (span create + exact alloc)
172  *   heap_alloc(heap_arena)
173  *    vmem_alloc(heap_arena)		-> 4 seg (span create + alloc)
174  *     parent_alloc(parent_arena)
175  *	_vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
176  *
177  * Note:  The reservation for heap_arena must be 4, since vmem_xalloc()
178  * is overly pessimistic on allocations where parent_arena has a stricter
179  * alignment than heap_arena.
180  *
181  * The worst-case consumption for any arena is 4 segment structures.
182  * For now, we only support VM_NOSLEEP allocations, so as long as we
183  * serialize all vmem_populates, a 4-seg reserve is sufficient.
184  */
185 #define	VMEM_POPULATE_SEGS_PER_ARENA	4
186 #define	VMEM_POPULATE_LOCKS		1
187 
188 #define	VMEM_POPULATE_RESERVE		\
189 	(VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
190 
191 /*
192  * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
193  * so that it can satisfy the worst-case allocation *and* participate in
194  * worst-case allocation from vmem_seg_arena.
195  */
196 #define	VMEM_MINFREE	(VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
197 
198 /* Don't assume new statics are zeroed - see vmem_startup() */
199 static vmem_t vmem0[VMEM_INITIAL];
200 static vmem_t *vmem_populator[VMEM_INITIAL];
201 static uint32_t vmem_id;
202 static uint32_t vmem_populators;
203 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
204 static vmem_seg_t *vmem_segfree;
205 static mutex_t vmem_list_lock;
206 static mutex_t vmem_segfree_lock;
207 static vmem_populate_lock_t vmem_nosleep_lock;
208 #define	IN_POPULATE()	(vmem_nosleep_lock.vmpl_thr == thr_self())
209 static vmem_t *vmem_list;
210 static vmem_t *vmem_internal_arena;
211 static vmem_t *vmem_seg_arena;
212 static vmem_t *vmem_hash_arena;
213 static vmem_t *vmem_vmem_arena;
214 
215 vmem_t *vmem_heap;
216 vmem_alloc_t *vmem_heap_alloc;
217 vmem_free_t *vmem_heap_free;
218 
219 uint32_t vmem_mtbf;		/* mean time between failures [default: off] */
220 size_t vmem_seg_size = sizeof (vmem_seg_t);
221 
222 /*
223  * we use the _ version, since we don't want to be cancelled.
224  * Actually, this is automatically taken care of by including "mtlib.h".
225  */
226 extern int _cond_wait(cond_t *cv, mutex_t *mutex);
227 
228 /*
229  * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
230  */
231 #define	VMEM_INSERT(vprev, vsp, type)					\
232 {									\
233 	vmem_seg_t *vnext = (vprev)->vs_##type##next;			\
234 	(vsp)->vs_##type##next = (vnext);				\
235 	(vsp)->vs_##type##prev = (vprev);				\
236 	(vprev)->vs_##type##next = (vsp);				\
237 	(vnext)->vs_##type##prev = (vsp);				\
238 }
239 
240 #define	VMEM_DELETE(vsp, type)						\
241 {									\
242 	vmem_seg_t *vprev = (vsp)->vs_##type##prev;			\
243 	vmem_seg_t *vnext = (vsp)->vs_##type##next;			\
244 	(vprev)->vs_##type##next = (vnext);				\
245 	(vnext)->vs_##type##prev = (vprev);				\
246 }
247 
248 /*
249  * Get a vmem_seg_t from the global segfree list.
250  */
251 static vmem_seg_t *
252 vmem_getseg_global(void)
253 {
254 	vmem_seg_t *vsp;
255 
256 	(void) mutex_lock(&vmem_segfree_lock);
257 	if ((vsp = vmem_segfree) != NULL)
258 		vmem_segfree = vsp->vs_knext;
259 	(void) mutex_unlock(&vmem_segfree_lock);
260 
261 	return (vsp);
262 }
263 
264 /*
265  * Put a vmem_seg_t on the global segfree list.
266  */
267 static void
268 vmem_putseg_global(vmem_seg_t *vsp)
269 {
270 	(void) mutex_lock(&vmem_segfree_lock);
271 	vsp->vs_knext = vmem_segfree;
272 	vmem_segfree = vsp;
273 	(void) mutex_unlock(&vmem_segfree_lock);
274 }
275 
276 /*
277  * Get a vmem_seg_t from vmp's segfree list.
278  */
279 static vmem_seg_t *
280 vmem_getseg(vmem_t *vmp)
281 {
282 	vmem_seg_t *vsp;
283 
284 	ASSERT(vmp->vm_nsegfree > 0);
285 
286 	vsp = vmp->vm_segfree;
287 	vmp->vm_segfree = vsp->vs_knext;
288 	vmp->vm_nsegfree--;
289 
290 	return (vsp);
291 }
292 
293 /*
294  * Put a vmem_seg_t on vmp's segfree list.
295  */
296 static void
297 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
298 {
299 	vsp->vs_knext = vmp->vm_segfree;
300 	vmp->vm_segfree = vsp;
301 	vmp->vm_nsegfree++;
302 }
303 
304 /*
305  * Add vsp to the appropriate freelist.
306  */
307 static void
308 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
309 {
310 	vmem_seg_t *vprev;
311 
312 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
313 
314 	vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
315 	vsp->vs_type = VMEM_FREE;
316 	vmp->vm_freemap |= VS_SIZE(vprev);
317 	VMEM_INSERT(vprev, vsp, k);
318 
319 	(void) cond_broadcast(&vmp->vm_cv);
320 }
321 
322 /*
323  * Take vsp from the freelist.
324  */
325 static void
326 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
327 {
328 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
329 	ASSERT(vsp->vs_type == VMEM_FREE);
330 
331 	if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
332 		/*
333 		 * The segments on both sides of 'vsp' are freelist heads,
334 		 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
335 		 */
336 		ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
337 		vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
338 	}
339 	VMEM_DELETE(vsp, k);
340 }
341 
342 /*
343  * Add vsp to the allocated-segment hash table and update kstats.
344  */
345 static void
346 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
347 {
348 	vmem_seg_t **bucket;
349 
350 	vsp->vs_type = VMEM_ALLOC;
351 	bucket = VMEM_HASH(vmp, vsp->vs_start);
352 	vsp->vs_knext = *bucket;
353 	*bucket = vsp;
354 
355 	if (vmem_seg_size == sizeof (vmem_seg_t)) {
356 		vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
357 		    VMEM_STACK_DEPTH, 0);
358 		vsp->vs_thread = thr_self();
359 		vsp->vs_timestamp = gethrtime();
360 	} else {
361 		vsp->vs_depth = 0;
362 	}
363 
364 	vmp->vm_kstat.vk_alloc++;
365 	vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
366 }
367 
368 /*
369  * Remove vsp from the allocated-segment hash table and update kstats.
370  */
371 static vmem_seg_t *
372 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
373 {
374 	vmem_seg_t *vsp, **prev_vspp;
375 
376 	prev_vspp = VMEM_HASH(vmp, addr);
377 	while ((vsp = *prev_vspp) != NULL) {
378 		if (vsp->vs_start == addr) {
379 			*prev_vspp = vsp->vs_knext;
380 			break;
381 		}
382 		vmp->vm_kstat.vk_lookup++;
383 		prev_vspp = &vsp->vs_knext;
384 	}
385 
386 	if (vsp == NULL) {
387 		umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
388 		    vmp, addr, size);
389 	}
390 	if (VS_SIZE(vsp) != size) {
391 		umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
392 		    "(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
393 	}
394 
395 	vmp->vm_kstat.vk_free++;
396 	vmp->vm_kstat.vk_mem_inuse -= size;
397 
398 	return (vsp);
399 }
400 
401 /*
402  * Create a segment spanning the range [start, end) and add it to the arena.
403  */
404 static vmem_seg_t *
405 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
406 {
407 	vmem_seg_t *newseg = vmem_getseg(vmp);
408 
409 	newseg->vs_start = start;
410 	newseg->vs_end = end;
411 	newseg->vs_type = 0;
412 	newseg->vs_import = 0;
413 
414 	VMEM_INSERT(vprev, newseg, a);
415 
416 	return (newseg);
417 }
418 
419 /*
420  * Remove segment vsp from the arena.
421  */
422 static void
423 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
424 {
425 	ASSERT(vsp->vs_type != VMEM_ROTOR);
426 	VMEM_DELETE(vsp, a);
427 
428 	vmem_putseg(vmp, vsp);
429 }
430 
431 /*
432  * Add the span [vaddr, vaddr + size) to vmp and update kstats.
433  */
434 static vmem_seg_t *
435 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
436 {
437 	vmem_seg_t *knext;
438 	vmem_seg_t *newseg, *span;
439 	uintptr_t start = (uintptr_t)vaddr;
440 	uintptr_t end = start + size;
441 
442 	knext = &vmp->vm_seg0;
443 	if (!import && vmp->vm_source_alloc == NULL) {
444 		vmem_seg_t *kend, *kprev;
445 		/*
446 		 * non-imported spans are sorted in address order.  This
447 		 * makes vmem_extend_unlocked() much more effective.
448 		 *
449 		 * We search in reverse order, since new spans are
450 		 * generally at higher addresses.
451 		 */
452 		kend = &vmp->vm_seg0;
453 		for (kprev = kend->vs_kprev; kprev != kend;
454 		    kprev = kprev->vs_kprev) {
455 			if (!kprev->vs_import && (kprev->vs_end - 1) < start)
456 				break;
457 		}
458 		knext = kprev->vs_knext;
459 	}
460 
461 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
462 
463 	if ((start | end) & (vmp->vm_quantum - 1)) {
464 		umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
465 		    vmp, vaddr, size);
466 	}
467 
468 	span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
469 	span->vs_type = VMEM_SPAN;
470 	VMEM_INSERT(knext->vs_kprev, span, k);
471 
472 	newseg = vmem_seg_create(vmp, span, start, end);
473 	vmem_freelist_insert(vmp, newseg);
474 
475 	newseg->vs_import = import;
476 	if (import)
477 		vmp->vm_kstat.vk_mem_import += size;
478 	vmp->vm_kstat.vk_mem_total += size;
479 
480 	return (newseg);
481 }
482 
483 /*
484  * Remove span vsp from vmp and update kstats.
485  */
486 static void
487 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
488 {
489 	vmem_seg_t *span = vsp->vs_aprev;
490 	size_t size = VS_SIZE(vsp);
491 
492 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
493 	ASSERT(span->vs_type == VMEM_SPAN);
494 
495 	if (vsp->vs_import)
496 		vmp->vm_kstat.vk_mem_import -= size;
497 	vmp->vm_kstat.vk_mem_total -= size;
498 
499 	VMEM_DELETE(span, k);
500 
501 	vmem_seg_destroy(vmp, vsp);
502 	vmem_seg_destroy(vmp, span);
503 }
504 
505 /*
506  * Allocate the subrange [addr, addr + size) from segment vsp.
507  * If there are leftovers on either side, place them on the freelist.
508  * Returns a pointer to the segment representing [addr, addr + size).
509  */
510 static vmem_seg_t *
511 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
512 {
513 	uintptr_t vs_start = vsp->vs_start;
514 	uintptr_t vs_end = vsp->vs_end;
515 	size_t vs_size = vs_end - vs_start;
516 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
517 	uintptr_t addr_end = addr + realsize;
518 
519 	ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
520 	ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
521 	ASSERT(vsp->vs_type == VMEM_FREE);
522 	ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
523 	ASSERT(addr - 1 <= addr_end - 1);
524 
525 	/*
526 	 * If we're allocating from the start of the segment, and the
527 	 * remainder will be on the same freelist, we can save quite
528 	 * a bit of work.
529 	 */
530 	if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
531 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
532 		vsp->vs_start = addr_end;
533 		vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
534 		vmem_hash_insert(vmp, vsp);
535 		return (vsp);
536 	}
537 
538 	vmem_freelist_delete(vmp, vsp);
539 
540 	if (vs_end != addr_end)
541 		vmem_freelist_insert(vmp,
542 		    vmem_seg_create(vmp, vsp, addr_end, vs_end));
543 
544 	if (vs_start != addr)
545 		vmem_freelist_insert(vmp,
546 		    vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
547 
548 	vsp->vs_start = addr;
549 	vsp->vs_end = addr + size;
550 
551 	vmem_hash_insert(vmp, vsp);
552 	return (vsp);
553 }
554 
555 /*
556  * We cannot reap if we are in the middle of a vmem_populate().
557  */
558 void
559 vmem_reap(void)
560 {
561 	if (!IN_POPULATE())
562 		umem_reap();
563 }
564 
565 /*
566  * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
567  */
568 static int
569 vmem_populate(vmem_t *vmp, int vmflag)
570 {
571 	char *p;
572 	vmem_seg_t *vsp;
573 	ssize_t nseg;
574 	size_t size;
575 	vmem_populate_lock_t *lp;
576 	int i;
577 
578 	while (vmp->vm_nsegfree < VMEM_MINFREE &&
579 	    (vsp = vmem_getseg_global()) != NULL)
580 		vmem_putseg(vmp, vsp);
581 
582 	if (vmp->vm_nsegfree >= VMEM_MINFREE)
583 		return (1);
584 
585 	/*
586 	 * If we're already populating, tap the reserve.
587 	 */
588 	if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
589 		ASSERT(vmp->vm_cflags & VMC_POPULATOR);
590 		return (1);
591 	}
592 
593 	(void) mutex_unlock(&vmp->vm_lock);
594 
595 	ASSERT(vmflag & VM_NOSLEEP);	/* we do not allow sleep allocations */
596 	lp = &vmem_nosleep_lock;
597 
598 	/*
599 	 * Cannot be just a mutex_lock(), since that has no effect if
600 	 * libthread is not linked.
601 	 */
602 	(void) mutex_lock(&lp->vmpl_mutex);
603 	ASSERT(lp->vmpl_thr == 0);
604 	lp->vmpl_thr = thr_self();
605 
606 	nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
607 	size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
608 	nseg = size / vmem_seg_size;
609 
610 	/*
611 	 * The following vmem_alloc() may need to populate vmem_seg_arena
612 	 * and all the things it imports from.  When doing so, it will tap
613 	 * each arena's reserve to prevent recursion (see the block comment
614 	 * above the definition of VMEM_POPULATE_RESERVE).
615 	 *
616 	 * During this allocation, vmem_reap() is a no-op.  If the allocation
617 	 * fails, we call vmem_reap() after dropping the population lock.
618 	 */
619 	p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
620 	if (p == NULL) {
621 		lp->vmpl_thr = 0;
622 		(void) mutex_unlock(&lp->vmpl_mutex);
623 		vmem_reap();
624 
625 		(void) mutex_lock(&vmp->vm_lock);
626 		vmp->vm_kstat.vk_populate_fail++;
627 		return (0);
628 	}
629 	/*
630 	 * Restock the arenas that may have been depleted during population.
631 	 */
632 	for (i = 0; i < vmem_populators; i++) {
633 		(void) mutex_lock(&vmem_populator[i]->vm_lock);
634 		while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
635 			vmem_putseg(vmem_populator[i],
636 			    (vmem_seg_t *)(p + --nseg * vmem_seg_size));
637 		(void) mutex_unlock(&vmem_populator[i]->vm_lock);
638 	}
639 
640 	lp->vmpl_thr = 0;
641 	(void) mutex_unlock(&lp->vmpl_mutex);
642 	(void) mutex_lock(&vmp->vm_lock);
643 
644 	/*
645 	 * Now take our own segments.
646 	 */
647 	ASSERT(nseg >= VMEM_MINFREE);
648 	while (vmp->vm_nsegfree < VMEM_MINFREE)
649 		vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
650 
651 	/*
652 	 * Give the remainder to charity.
653 	 */
654 	while (nseg > 0)
655 		vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
656 
657 	return (1);
658 }
659 
660 /*
661  * Advance a walker from its previous position to 'afterme'.
662  * Note: may drop and reacquire vmp->vm_lock.
663  */
664 static void
665 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
666 {
667 	vmem_seg_t *vprev = walker->vs_aprev;
668 	vmem_seg_t *vnext = walker->vs_anext;
669 	vmem_seg_t *vsp = NULL;
670 
671 	VMEM_DELETE(walker, a);
672 
673 	if (afterme != NULL)
674 		VMEM_INSERT(afterme, walker, a);
675 
676 	/*
677 	 * The walker segment's presence may have prevented its neighbors
678 	 * from coalescing.  If so, coalesce them now.
679 	 */
680 	if (vprev->vs_type == VMEM_FREE) {
681 		if (vnext->vs_type == VMEM_FREE) {
682 			ASSERT(vprev->vs_end == vnext->vs_start);
683 			vmem_freelist_delete(vmp, vnext);
684 			vmem_freelist_delete(vmp, vprev);
685 			vprev->vs_end = vnext->vs_end;
686 			vmem_freelist_insert(vmp, vprev);
687 			vmem_seg_destroy(vmp, vnext);
688 		}
689 		vsp = vprev;
690 	} else if (vnext->vs_type == VMEM_FREE) {
691 		vsp = vnext;
692 	}
693 
694 	/*
695 	 * vsp could represent a complete imported span,
696 	 * in which case we must return it to the source.
697 	 */
698 	if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
699 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
700 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
701 		void *vaddr = (void *)vsp->vs_start;
702 		size_t size = VS_SIZE(vsp);
703 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
704 		vmem_freelist_delete(vmp, vsp);
705 		vmem_span_destroy(vmp, vsp);
706 		(void) mutex_unlock(&vmp->vm_lock);
707 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
708 		(void) mutex_lock(&vmp->vm_lock);
709 	}
710 }
711 
712 /*
713  * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
714  * in an arena, so that we avoid reusing addresses for as long as possible.
715  * This helps to catch used-after-freed bugs.  It's also the perfect policy
716  * for allocating things like process IDs, where we want to cycle through
717  * all values in order.
718  */
719 static void *
720 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
721 {
722 	vmem_seg_t *vsp, *rotor;
723 	uintptr_t addr;
724 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
725 	size_t vs_size;
726 
727 	(void) mutex_lock(&vmp->vm_lock);
728 
729 	if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
730 		(void) mutex_unlock(&vmp->vm_lock);
731 		return (NULL);
732 	}
733 
734 	/*
735 	 * The common case is that the segment right after the rotor is free,
736 	 * and large enough that extracting 'size' bytes won't change which
737 	 * freelist it's on.  In this case we can avoid a *lot* of work.
738 	 * Instead of the normal vmem_seg_alloc(), we just advance the start
739 	 * address of the victim segment.  Instead of moving the rotor, we
740 	 * create the new segment structure *behind the rotor*, which has
741 	 * the same effect.  And finally, we know we don't have to coalesce
742 	 * the rotor's neighbors because the new segment lies between them.
743 	 */
744 	rotor = &vmp->vm_rotor;
745 	vsp = rotor->vs_anext;
746 	if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
747 	    P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
748 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
749 		addr = vsp->vs_start;
750 		vsp->vs_start = addr + realsize;
751 		vmem_hash_insert(vmp,
752 		    vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
753 		(void) mutex_unlock(&vmp->vm_lock);
754 		return ((void *)addr);
755 	}
756 
757 	/*
758 	 * Starting at the rotor, look for a segment large enough to
759 	 * satisfy the allocation.
760 	 */
761 	for (;;) {
762 		vmp->vm_kstat.vk_search++;
763 		if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
764 			break;
765 		vsp = vsp->vs_anext;
766 		if (vsp == rotor) {
767 			/*
768 			 * We've come full circle.  One possibility is that the
769 			 * there's actually enough space, but the rotor itself
770 			 * is preventing the allocation from succeeding because
771 			 * it's sitting between two free segments.  Therefore,
772 			 * we advance the rotor and see if that liberates a
773 			 * suitable segment.
774 			 */
775 			vmem_advance(vmp, rotor, rotor->vs_anext);
776 			vsp = rotor->vs_aprev;
777 			if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
778 				break;
779 			/*
780 			 * If there's a lower arena we can import from, or it's
781 			 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
782 			 * Otherwise, wait until another thread frees something.
783 			 */
784 			if (vmp->vm_source_alloc != NULL ||
785 			    (vmflag & VM_NOSLEEP)) {
786 				(void) mutex_unlock(&vmp->vm_lock);
787 				return (vmem_xalloc(vmp, size, vmp->vm_quantum,
788 				    0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
789 			}
790 			vmp->vm_kstat.vk_wait++;
791 			(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
792 			vsp = rotor->vs_anext;
793 		}
794 	}
795 
796 	/*
797 	 * We found a segment.  Extract enough space to satisfy the allocation.
798 	 */
799 	addr = vsp->vs_start;
800 	vsp = vmem_seg_alloc(vmp, vsp, addr, size);
801 	ASSERT(vsp->vs_type == VMEM_ALLOC &&
802 	    vsp->vs_start == addr && vsp->vs_end == addr + size);
803 
804 	/*
805 	 * Advance the rotor to right after the newly-allocated segment.
806 	 * That's where the next VM_NEXTFIT allocation will begin searching.
807 	 */
808 	vmem_advance(vmp, rotor, vsp);
809 	(void) mutex_unlock(&vmp->vm_lock);
810 	return ((void *)addr);
811 }
812 
813 /*
814  * Allocate size bytes at offset phase from an align boundary such that the
815  * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
816  * that does not straddle a nocross-aligned boundary.
817  */
818 void *
819 vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
820 	size_t nocross, void *minaddr, void *maxaddr, int vmflag)
821 {
822 	vmem_seg_t *vsp;
823 	vmem_seg_t *vbest = NULL;
824 	uintptr_t addr, taddr, start, end;
825 	void *vaddr;
826 	int hb, flist, resv;
827 	uint32_t mtbf;
828 
829 	if (phase > 0 && phase >= align)
830 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
831 		    "invalid phase",
832 		    (void *)vmp, size, align, phase, nocross,
833 		    minaddr, maxaddr, vmflag);
834 
835 	if (align == 0)
836 		align = vmp->vm_quantum;
837 
838 	if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
839 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
840 		    "parameters not vm_quantum aligned",
841 		    (void *)vmp, size, align, phase, nocross,
842 		    minaddr, maxaddr, vmflag);
843 	}
844 
845 	if (nocross != 0 &&
846 	    (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
847 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
848 		    "overconstrained allocation",
849 		    (void *)vmp, size, align, phase, nocross,
850 		    minaddr, maxaddr, vmflag);
851 	}
852 
853 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
854 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
855 		return (NULL);
856 
857 	(void) mutex_lock(&vmp->vm_lock);
858 	for (;;) {
859 		if (vmp->vm_nsegfree < VMEM_MINFREE &&
860 		    !vmem_populate(vmp, vmflag))
861 			break;
862 
863 		/*
864 		 * highbit() returns the highest bit + 1, which is exactly
865 		 * what we want: we want to search the first freelist whose
866 		 * members are *definitely* large enough to satisfy our
867 		 * allocation.  However, there are certain cases in which we
868 		 * want to look at the next-smallest freelist (which *might*
869 		 * be able to satisfy the allocation):
870 		 *
871 		 * (1)	The size is exactly a power of 2, in which case
872 		 *	the smaller freelist is always big enough;
873 		 *
874 		 * (2)	All other freelists are empty;
875 		 *
876 		 * (3)	We're in the highest possible freelist, which is
877 		 *	always empty (e.g. the 4GB freelist on 32-bit systems);
878 		 *
879 		 * (4)	We're doing a best-fit or first-fit allocation.
880 		 */
881 		if ((size & (size - 1)) == 0) {
882 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
883 		} else {
884 			hb = highbit(size);
885 			if ((vmp->vm_freemap >> hb) == 0 ||
886 			    hb == VMEM_FREELISTS ||
887 			    (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
888 				hb--;
889 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
890 		}
891 
892 		for (vbest = NULL, vsp = (flist == 0) ? NULL :
893 		    vmp->vm_freelist[flist - 1].vs_knext;
894 		    vsp != NULL; vsp = vsp->vs_knext) {
895 			vmp->vm_kstat.vk_search++;
896 			if (vsp->vs_start == 0) {
897 				/*
898 				 * We're moving up to a larger freelist,
899 				 * so if we've already found a candidate,
900 				 * the fit can't possibly get any better.
901 				 */
902 				if (vbest != NULL)
903 					break;
904 				/*
905 				 * Find the next non-empty freelist.
906 				 */
907 				flist = lowbit(P2ALIGN(vmp->vm_freemap,
908 				    VS_SIZE(vsp)));
909 				if (flist-- == 0)
910 					break;
911 				vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
912 				ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
913 				continue;
914 			}
915 			if (vsp->vs_end - 1 < (uintptr_t)minaddr)
916 				continue;
917 			if (vsp->vs_start > (uintptr_t)maxaddr - 1)
918 				continue;
919 			start = MAX(vsp->vs_start, (uintptr_t)minaddr);
920 			end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
921 			taddr = P2PHASEUP(start, align, phase);
922 			if (P2CROSS(taddr, taddr + size - 1, nocross))
923 				taddr +=
924 				    P2ROUNDUP(P2NPHASE(taddr, nocross), align);
925 			if ((taddr - start) + size > end - start ||
926 			    (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
927 				continue;
928 			vbest = vsp;
929 			addr = taddr;
930 			if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
931 				break;
932 		}
933 		if (vbest != NULL)
934 			break;
935 		if (size == 0)
936 			umem_panic("vmem_xalloc(): size == 0");
937 		if (vmp->vm_source_alloc != NULL && nocross == 0 &&
938 		    minaddr == NULL && maxaddr == NULL) {
939 			size_t asize = P2ROUNDUP(size + phase,
940 			    MAX(align, vmp->vm_source->vm_quantum));
941 			if (asize < size) {		/* overflow */
942 				(void) mutex_unlock(&vmp->vm_lock);
943 				if (vmflag & VM_NOSLEEP)
944 					return (NULL);
945 
946 				umem_panic("vmem_xalloc(): "
947 				    "overflow on VM_SLEEP allocation");
948 			}
949 			/*
950 			 * Determine how many segment structures we'll consume.
951 			 * The calculation must be presise because if we're
952 			 * here on behalf of vmem_populate(), we are taking
953 			 * segments from a very limited reserve.
954 			 */
955 			resv = (size == asize) ?
956 			    VMEM_SEGS_PER_SPAN_CREATE +
957 			    VMEM_SEGS_PER_EXACT_ALLOC :
958 			    VMEM_SEGS_PER_ALLOC_MAX;
959 			ASSERT(vmp->vm_nsegfree >= resv);
960 			vmp->vm_nsegfree -= resv;	/* reserve our segs */
961 			(void) mutex_unlock(&vmp->vm_lock);
962 			vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
963 			    vmflag & VM_UMFLAGS);
964 			(void) mutex_lock(&vmp->vm_lock);
965 			vmp->vm_nsegfree += resv;	/* claim reservation */
966 			if (vaddr != NULL) {
967 				vbest = vmem_span_create(vmp, vaddr, asize, 1);
968 				addr = P2PHASEUP(vbest->vs_start, align, phase);
969 				break;
970 			}
971 		}
972 		(void) mutex_unlock(&vmp->vm_lock);
973 		vmem_reap();
974 		(void) mutex_lock(&vmp->vm_lock);
975 		if (vmflag & VM_NOSLEEP)
976 			break;
977 		vmp->vm_kstat.vk_wait++;
978 		(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
979 	}
980 	if (vbest != NULL) {
981 		ASSERT(vbest->vs_type == VMEM_FREE);
982 		ASSERT(vbest->vs_knext != vbest);
983 		(void) vmem_seg_alloc(vmp, vbest, addr, size);
984 		(void) mutex_unlock(&vmp->vm_lock);
985 		ASSERT(P2PHASE(addr, align) == phase);
986 		ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
987 		ASSERT(addr >= (uintptr_t)minaddr);
988 		ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
989 		return ((void *)addr);
990 	}
991 	vmp->vm_kstat.vk_fail++;
992 	(void) mutex_unlock(&vmp->vm_lock);
993 	if (vmflag & VM_PANIC)
994 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
995 		    "cannot satisfy mandatory allocation",
996 		    (void *)vmp, size, align, phase, nocross,
997 		    minaddr, maxaddr, vmflag);
998 	return (NULL);
999 }
1000 
1001 /*
1002  * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1003  * allocation.  vmem_xalloc() and vmem_xfree() must always be paired because
1004  * both routines bypass the quantum caches.
1005  */
1006 void
1007 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1008 {
1009 	vmem_seg_t *vsp, *vnext, *vprev;
1010 
1011 	(void) mutex_lock(&vmp->vm_lock);
1012 
1013 	vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1014 	vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1015 
1016 	/*
1017 	 * Attempt to coalesce with the next segment.
1018 	 */
1019 	vnext = vsp->vs_anext;
1020 	if (vnext->vs_type == VMEM_FREE) {
1021 		ASSERT(vsp->vs_end == vnext->vs_start);
1022 		vmem_freelist_delete(vmp, vnext);
1023 		vsp->vs_end = vnext->vs_end;
1024 		vmem_seg_destroy(vmp, vnext);
1025 	}
1026 
1027 	/*
1028 	 * Attempt to coalesce with the previous segment.
1029 	 */
1030 	vprev = vsp->vs_aprev;
1031 	if (vprev->vs_type == VMEM_FREE) {
1032 		ASSERT(vprev->vs_end == vsp->vs_start);
1033 		vmem_freelist_delete(vmp, vprev);
1034 		vprev->vs_end = vsp->vs_end;
1035 		vmem_seg_destroy(vmp, vsp);
1036 		vsp = vprev;
1037 	}
1038 
1039 	/*
1040 	 * If the entire span is free, return it to the source.
1041 	 */
1042 	if (vsp->vs_import && vmp->vm_source_free != NULL &&
1043 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
1044 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
1045 		vaddr = (void *)vsp->vs_start;
1046 		size = VS_SIZE(vsp);
1047 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
1048 		vmem_span_destroy(vmp, vsp);
1049 		(void) mutex_unlock(&vmp->vm_lock);
1050 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
1051 	} else {
1052 		vmem_freelist_insert(vmp, vsp);
1053 		(void) mutex_unlock(&vmp->vm_lock);
1054 	}
1055 }
1056 
1057 /*
1058  * Allocate size bytes from arena vmp.  Returns the allocated address
1059  * on success, NULL on failure.  vmflag specifies VM_SLEEP or VM_NOSLEEP,
1060  * and may also specify best-fit, first-fit, or next-fit allocation policy
1061  * instead of the default instant-fit policy.  VM_SLEEP allocations are
1062  * guaranteed to succeed.
1063  */
1064 void *
1065 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1066 {
1067 	vmem_seg_t *vsp;
1068 	uintptr_t addr;
1069 	int hb;
1070 	int flist = 0;
1071 	uint32_t mtbf;
1072 
1073 	if (size - 1 < vmp->vm_qcache_max) {
1074 		ASSERT(vmflag & VM_NOSLEEP);
1075 		return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1076 		    vmp->vm_qshift], UMEM_DEFAULT));
1077 	}
1078 
1079 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1080 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1081 		return (NULL);
1082 
1083 	if (vmflag & VM_NEXTFIT)
1084 		return (vmem_nextfit_alloc(vmp, size, vmflag));
1085 
1086 	if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1087 		return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1088 		    NULL, NULL, vmflag));
1089 
1090 	/*
1091 	 * Unconstrained instant-fit allocation from the segment list.
1092 	 */
1093 	(void) mutex_lock(&vmp->vm_lock);
1094 
1095 	if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1096 		if ((size & (size - 1)) == 0)
1097 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1098 		else if ((hb = highbit(size)) < VMEM_FREELISTS)
1099 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1100 	}
1101 
1102 	if (flist-- == 0) {
1103 		(void) mutex_unlock(&vmp->vm_lock);
1104 		return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1105 		    0, 0, NULL, NULL, vmflag));
1106 	}
1107 
1108 	ASSERT(size <= (1UL << flist));
1109 	vsp = vmp->vm_freelist[flist].vs_knext;
1110 	addr = vsp->vs_start;
1111 	(void) vmem_seg_alloc(vmp, vsp, addr, size);
1112 	(void) mutex_unlock(&vmp->vm_lock);
1113 	return ((void *)addr);
1114 }
1115 
1116 /*
1117  * Free the segment [vaddr, vaddr + size).
1118  */
1119 void
1120 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1121 {
1122 	if (size - 1 < vmp->vm_qcache_max)
1123 		_umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1124 		    vaddr);
1125 	else
1126 		vmem_xfree(vmp, vaddr, size);
1127 }
1128 
1129 /*
1130  * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1131  */
1132 int
1133 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1134 {
1135 	uintptr_t start = (uintptr_t)vaddr;
1136 	uintptr_t end = start + size;
1137 	vmem_seg_t *vsp;
1138 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1139 
1140 	(void) mutex_lock(&vmp->vm_lock);
1141 	vmp->vm_kstat.vk_contains++;
1142 	for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1143 		vmp->vm_kstat.vk_contains_search++;
1144 		ASSERT(vsp->vs_type == VMEM_SPAN);
1145 		if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1146 			break;
1147 	}
1148 	(void) mutex_unlock(&vmp->vm_lock);
1149 	return (vsp != seg0);
1150 }
1151 
1152 /*
1153  * Add the span [vaddr, vaddr + size) to arena vmp.
1154  */
1155 void *
1156 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1157 {
1158 	if (vaddr == NULL || size == 0) {
1159 		umem_panic("vmem_add(%p, %p, %lu): bad arguments",
1160 		    vmp, vaddr, size);
1161 	}
1162 
1163 	ASSERT(!vmem_contains(vmp, vaddr, size));
1164 
1165 	(void) mutex_lock(&vmp->vm_lock);
1166 	if (vmem_populate(vmp, vmflag))
1167 		(void) vmem_span_create(vmp, vaddr, size, 0);
1168 	else
1169 		vaddr = NULL;
1170 	(void) cond_broadcast(&vmp->vm_cv);
1171 	(void) mutex_unlock(&vmp->vm_lock);
1172 	return (vaddr);
1173 }
1174 
1175 /*
1176  * Adds the address range [addr, endaddr) to arena vmp, by either:
1177  *   1. joining two existing spans, [x, addr), and [endaddr, y) (which
1178  *      are in that order) into a single [x, y) span,
1179  *   2. expanding an existing [x, addr) span to [x, endaddr),
1180  *   3. expanding an existing [endaddr, x) span to [addr, x), or
1181  *   4. creating a new [addr, endaddr) span.
1182  *
1183  * Called with vmp->vm_lock held, and a successful vmem_populate() completed.
1184  * Cannot fail.  Returns the new segment.
1185  *
1186  * NOTE:  this algorithm is linear-time in the number of spans, but is
1187  *      constant-time when you are extending the last (highest-addressed)
1188  *      span.
1189  */
1190 static vmem_seg_t *
1191 vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
1192 {
1193 	vmem_seg_t *span;
1194 	vmem_seg_t *vsp;
1195 
1196 	vmem_seg_t *end = &vmp->vm_seg0;
1197 
1198 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
1199 
1200 	/*
1201 	 * the second "if" clause below relies on the direction of this search
1202 	 */
1203 	for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
1204 		if (span->vs_end == addr || span->vs_start == endaddr)
1205 			break;
1206 	}
1207 
1208 	if (span == end)
1209 		return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
1210 	if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
1211 		vmem_seg_t *prevspan = span->vs_kprev;
1212 		vmem_seg_t *nextseg = span->vs_anext;
1213 		vmem_seg_t *prevseg = span->vs_aprev;
1214 
1215 		/*
1216 		 * prevspan becomes the span marker for the full range
1217 		 */
1218 		prevspan->vs_end = span->vs_end;
1219 
1220 		/*
1221 		 * Notionally, span becomes a free segment representing
1222 		 * [addr, endaddr).
1223 		 *
1224 		 * However, if either of its neighbors are free, we coalesce
1225 		 * by destroying span and changing the free segment.
1226 		 */
1227 		if (prevseg->vs_type == VMEM_FREE &&
1228 		    nextseg->vs_type == VMEM_FREE) {
1229 			/*
1230 			 * coalesce both ways
1231 			 */
1232 			ASSERT(prevseg->vs_end == addr &&
1233 			    nextseg->vs_start == endaddr);
1234 
1235 			vmem_freelist_delete(vmp, prevseg);
1236 			prevseg->vs_end = nextseg->vs_end;
1237 
1238 			vmem_freelist_delete(vmp, nextseg);
1239 			VMEM_DELETE(span, k);
1240 			vmem_seg_destroy(vmp, nextseg);
1241 			vmem_seg_destroy(vmp, span);
1242 
1243 			vsp = prevseg;
1244 		} else if (prevseg->vs_type == VMEM_FREE) {
1245 			/*
1246 			 * coalesce left
1247 			 */
1248 			ASSERT(prevseg->vs_end == addr);
1249 
1250 			VMEM_DELETE(span, k);
1251 			vmem_seg_destroy(vmp, span);
1252 
1253 			vmem_freelist_delete(vmp, prevseg);
1254 			prevseg->vs_end = endaddr;
1255 
1256 			vsp = prevseg;
1257 		} else if (nextseg->vs_type == VMEM_FREE) {
1258 			/*
1259 			 * coalesce right
1260 			 */
1261 			ASSERT(nextseg->vs_start == endaddr);
1262 
1263 			VMEM_DELETE(span, k);
1264 			vmem_seg_destroy(vmp, span);
1265 
1266 			vmem_freelist_delete(vmp, nextseg);
1267 			nextseg->vs_start = addr;
1268 
1269 			vsp = nextseg;
1270 		} else {
1271 			/*
1272 			 * cannnot coalesce
1273 			 */
1274 			VMEM_DELETE(span, k);
1275 			span->vs_start = addr;
1276 			span->vs_end = endaddr;
1277 
1278 			vsp = span;
1279 		}
1280 	} else if (span->vs_end == addr) {
1281 		vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
1282 		span->vs_end = endaddr;
1283 
1284 		ASSERT(oldseg->vs_type != VMEM_SPAN);
1285 		if (oldseg->vs_type == VMEM_FREE) {
1286 			ASSERT(oldseg->vs_end == addr);
1287 			vmem_freelist_delete(vmp, oldseg);
1288 			oldseg->vs_end = endaddr;
1289 			vsp = oldseg;
1290 		} else
1291 			vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
1292 	} else {
1293 		vmem_seg_t *oldseg = span->vs_anext;
1294 		ASSERT(span->vs_start == endaddr);
1295 		span->vs_start = addr;
1296 
1297 		ASSERT(oldseg->vs_type != VMEM_SPAN);
1298 		if (oldseg->vs_type == VMEM_FREE) {
1299 			ASSERT(oldseg->vs_start == endaddr);
1300 			vmem_freelist_delete(vmp, oldseg);
1301 			oldseg->vs_start = addr;
1302 			vsp = oldseg;
1303 		} else
1304 			vsp = vmem_seg_create(vmp, span, addr, endaddr);
1305 	}
1306 	vmem_freelist_insert(vmp, vsp);
1307 	vmp->vm_kstat.vk_mem_total += (endaddr - addr);
1308 	return (vsp);
1309 }
1310 
1311 /*
1312  * Does some error checking, calls vmem_extend_unlocked to add
1313  * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
1314  * newly merged segment.
1315  */
1316 void *
1317 _vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
1318     int vmflag)
1319 {
1320 	uintptr_t addr = (uintptr_t)vaddr;
1321 	uintptr_t endaddr = addr + size;
1322 	vmem_seg_t *vsp;
1323 
1324 	ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
1325 	ASSERT(alloc <= size && alloc != 0);
1326 	ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
1327 
1328 	ASSERT(!vmem_contains(vmp, vaddr, size));
1329 
1330 	(void) mutex_lock(&vmp->vm_lock);
1331 	if (!vmem_populate(vmp, vmflag)) {
1332 		(void) mutex_unlock(&vmp->vm_lock);
1333 		return (NULL);
1334 	}
1335 	/*
1336 	 * if there is a source, we can't mess with the spans
1337 	 */
1338 	if (vmp->vm_source_alloc != NULL)
1339 		vsp = vmem_span_create(vmp, vaddr, size, 0);
1340 	else
1341 		vsp = vmem_extend_unlocked(vmp, addr, endaddr);
1342 
1343 	ASSERT(VS_SIZE(vsp) >= alloc);
1344 
1345 	addr = vsp->vs_start;
1346 	(void) vmem_seg_alloc(vmp, vsp, addr, alloc);
1347 	vaddr = (void *)addr;
1348 
1349 	(void) cond_broadcast(&vmp->vm_cv);
1350 	(void) mutex_unlock(&vmp->vm_lock);
1351 
1352 	return (vaddr);
1353 }
1354 
1355 /*
1356  * Walk the vmp arena, applying func to each segment matching typemask.
1357  * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1358  * call to func(); otherwise, it is held for the duration of vmem_walk()
1359  * to ensure a consistent snapshot.  Note that VMEM_REENTRANT callbacks
1360  * are *not* necessarily consistent, so they may only be used when a hint
1361  * is adequate.
1362  */
1363 void
1364 vmem_walk(vmem_t *vmp, int typemask,
1365 	void (*func)(void *, void *, size_t), void *arg)
1366 {
1367 	vmem_seg_t *vsp;
1368 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1369 	vmem_seg_t walker;
1370 
1371 	if (typemask & VMEM_WALKER)
1372 		return;
1373 
1374 	bzero(&walker, sizeof (walker));
1375 	walker.vs_type = VMEM_WALKER;
1376 
1377 	(void) mutex_lock(&vmp->vm_lock);
1378 	VMEM_INSERT(seg0, &walker, a);
1379 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1380 		if (vsp->vs_type & typemask) {
1381 			void *start = (void *)vsp->vs_start;
1382 			size_t size = VS_SIZE(vsp);
1383 			if (typemask & VMEM_REENTRANT) {
1384 				vmem_advance(vmp, &walker, vsp);
1385 				(void) mutex_unlock(&vmp->vm_lock);
1386 				func(arg, start, size);
1387 				(void) mutex_lock(&vmp->vm_lock);
1388 				vsp = &walker;
1389 			} else {
1390 				func(arg, start, size);
1391 			}
1392 		}
1393 	}
1394 	vmem_advance(vmp, &walker, NULL);
1395 	(void) mutex_unlock(&vmp->vm_lock);
1396 }
1397 
1398 /*
1399  * Return the total amount of memory whose type matches typemask.  Thus:
1400  *
1401  *	typemask VMEM_ALLOC yields total memory allocated (in use).
1402  *	typemask VMEM_FREE yields total memory free (available).
1403  *	typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1404  */
1405 size_t
1406 vmem_size(vmem_t *vmp, int typemask)
1407 {
1408 	uint64_t size = 0;
1409 
1410 	if (typemask & VMEM_ALLOC)
1411 		size += vmp->vm_kstat.vk_mem_inuse;
1412 	if (typemask & VMEM_FREE)
1413 		size += vmp->vm_kstat.vk_mem_total -
1414 		    vmp->vm_kstat.vk_mem_inuse;
1415 	return ((size_t)size);
1416 }
1417 
1418 /*
1419  * Create an arena called name whose initial span is [base, base + size).
1420  * The arena's natural unit of currency is quantum, so vmem_alloc()
1421  * guarantees quantum-aligned results.  The arena may import new spans
1422  * by invoking afunc() on source, and may return those spans by invoking
1423  * ffunc() on source.  To make small allocations fast and scalable,
1424  * the arena offers high-performance caching for each integer multiple
1425  * of quantum up to qcache_max.
1426  */
1427 vmem_t *
1428 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1429 	vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1430 	size_t qcache_max, int vmflag)
1431 {
1432 	int i;
1433 	size_t nqcache;
1434 	vmem_t *vmp, *cur, **vmpp;
1435 	vmem_seg_t *vsp;
1436 	vmem_freelist_t *vfp;
1437 	uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1438 
1439 	if (vmem_vmem_arena != NULL) {
1440 		vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1441 		    vmflag & VM_UMFLAGS);
1442 	} else {
1443 		ASSERT(id <= VMEM_INITIAL);
1444 		vmp = &vmem0[id - 1];
1445 	}
1446 
1447 	if (vmp == NULL)
1448 		return (NULL);
1449 	bzero(vmp, sizeof (vmem_t));
1450 
1451 	(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1452 	(void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
1453 	(void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
1454 	vmp->vm_cflags = vmflag;
1455 	vmflag &= VM_UMFLAGS;
1456 
1457 	vmp->vm_quantum = quantum;
1458 	vmp->vm_qshift = highbit(quantum) - 1;
1459 	nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1460 
1461 	for (i = 0; i <= VMEM_FREELISTS; i++) {
1462 		vfp = &vmp->vm_freelist[i];
1463 		vfp->vs_end = 1UL << i;
1464 		vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1465 		vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1466 	}
1467 
1468 	vmp->vm_freelist[0].vs_kprev = NULL;
1469 	vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1470 	vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1471 	vmp->vm_hash_table = vmp->vm_hash0;
1472 	vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1473 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1474 
1475 	vsp = &vmp->vm_seg0;
1476 	vsp->vs_anext = vsp;
1477 	vsp->vs_aprev = vsp;
1478 	vsp->vs_knext = vsp;
1479 	vsp->vs_kprev = vsp;
1480 	vsp->vs_type = VMEM_SPAN;
1481 
1482 	vsp = &vmp->vm_rotor;
1483 	vsp->vs_type = VMEM_ROTOR;
1484 	VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1485 
1486 	vmp->vm_id = id;
1487 	if (source != NULL)
1488 		vmp->vm_kstat.vk_source_id = source->vm_id;
1489 	vmp->vm_source = source;
1490 	vmp->vm_source_alloc = afunc;
1491 	vmp->vm_source_free = ffunc;
1492 
1493 	if (nqcache != 0) {
1494 		vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1495 		for (i = 0; i < nqcache; i++) {
1496 			char buf[VMEM_NAMELEN + 21];
1497 			(void) snprintf(buf, sizeof (buf), "%s_%lu",
1498 			    vmp->vm_name, (long)((i + 1) * quantum));
1499 			vmp->vm_qcache[i] = umem_cache_create(buf,
1500 			    (i + 1) * quantum, quantum, NULL, NULL, NULL,
1501 			    NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
1502 			if (vmp->vm_qcache[i] == NULL) {
1503 				vmp->vm_qcache_max = i * quantum;
1504 				break;
1505 			}
1506 		}
1507 	}
1508 
1509 	(void) mutex_lock(&vmem_list_lock);
1510 	vmpp = &vmem_list;
1511 	while ((cur = *vmpp) != NULL)
1512 		vmpp = &cur->vm_next;
1513 	*vmpp = vmp;
1514 	(void) mutex_unlock(&vmem_list_lock);
1515 
1516 	if (vmp->vm_cflags & VMC_POPULATOR) {
1517 		uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
1518 		ASSERT(pop_id <= VMEM_INITIAL);
1519 		vmem_populator[pop_id - 1] = vmp;
1520 		(void) mutex_lock(&vmp->vm_lock);
1521 		(void) vmem_populate(vmp, vmflag | VM_PANIC);
1522 		(void) mutex_unlock(&vmp->vm_lock);
1523 	}
1524 
1525 	if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1526 		vmem_destroy(vmp);
1527 		return (NULL);
1528 	}
1529 
1530 	return (vmp);
1531 }
1532 
1533 /*
1534  * Destroy arena vmp.
1535  */
1536 void
1537 vmem_destroy(vmem_t *vmp)
1538 {
1539 	vmem_t *cur, **vmpp;
1540 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1541 	vmem_seg_t *vsp;
1542 	size_t leaked;
1543 	int i;
1544 
1545 	(void) mutex_lock(&vmem_list_lock);
1546 	vmpp = &vmem_list;
1547 	while ((cur = *vmpp) != vmp)
1548 		vmpp = &cur->vm_next;
1549 	*vmpp = vmp->vm_next;
1550 	(void) mutex_unlock(&vmem_list_lock);
1551 
1552 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1553 		if (vmp->vm_qcache[i])
1554 			umem_cache_destroy(vmp->vm_qcache[i]);
1555 
1556 	leaked = vmem_size(vmp, VMEM_ALLOC);
1557 	if (leaked != 0)
1558 		umem_printf("vmem_destroy('%s'): leaked %lu bytes",
1559 		    vmp->vm_name, leaked);
1560 
1561 	if (vmp->vm_hash_table != vmp->vm_hash0)
1562 		vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1563 		    (vmp->vm_hash_mask + 1) * sizeof (void *));
1564 
1565 	/*
1566 	 * Give back the segment structures for anything that's left in the
1567 	 * arena, e.g. the primary spans and their free segments.
1568 	 */
1569 	VMEM_DELETE(&vmp->vm_rotor, a);
1570 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
1571 		vmem_putseg_global(vsp);
1572 
1573 	while (vmp->vm_nsegfree > 0)
1574 		vmem_putseg_global(vmem_getseg(vmp));
1575 
1576 	(void) mutex_destroy(&vmp->vm_lock);
1577 	(void) cond_destroy(&vmp->vm_cv);
1578 	vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1579 }
1580 
1581 /*
1582  * Resize vmp's hash table to keep the average lookup depth near 1.0.
1583  */
1584 static void
1585 vmem_hash_rescale(vmem_t *vmp)
1586 {
1587 	vmem_seg_t **old_table, **new_table, *vsp;
1588 	size_t old_size, new_size, h, nseg;
1589 
1590 	nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
1591 
1592 	new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1593 	old_size = vmp->vm_hash_mask + 1;
1594 
1595 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1596 		return;
1597 
1598 	new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1599 	    VM_NOSLEEP);
1600 	if (new_table == NULL)
1601 		return;
1602 	bzero(new_table, new_size * sizeof (void *));
1603 
1604 	(void) mutex_lock(&vmp->vm_lock);
1605 
1606 	old_size = vmp->vm_hash_mask + 1;
1607 	old_table = vmp->vm_hash_table;
1608 
1609 	vmp->vm_hash_mask = new_size - 1;
1610 	vmp->vm_hash_table = new_table;
1611 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1612 
1613 	for (h = 0; h < old_size; h++) {
1614 		vsp = old_table[h];
1615 		while (vsp != NULL) {
1616 			uintptr_t addr = vsp->vs_start;
1617 			vmem_seg_t *next_vsp = vsp->vs_knext;
1618 			vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1619 			vsp->vs_knext = *hash_bucket;
1620 			*hash_bucket = vsp;
1621 			vsp = next_vsp;
1622 		}
1623 	}
1624 
1625 	(void) mutex_unlock(&vmp->vm_lock);
1626 
1627 	if (old_table != vmp->vm_hash0)
1628 		vmem_free(vmem_hash_arena, old_table,
1629 		    old_size * sizeof (void *));
1630 }
1631 
1632 /*
1633  * Perform periodic maintenance on all vmem arenas.
1634  */
1635 /*ARGSUSED*/
1636 void
1637 vmem_update(void *dummy)
1638 {
1639 	vmem_t *vmp;
1640 
1641 	(void) mutex_lock(&vmem_list_lock);
1642 	for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1643 		/*
1644 		 * If threads are waiting for resources, wake them up
1645 		 * periodically so they can issue another vmem_reap()
1646 		 * to reclaim resources cached by the slab allocator.
1647 		 */
1648 		(void) cond_broadcast(&vmp->vm_cv);
1649 
1650 		/*
1651 		 * Rescale the hash table to keep the hash chains short.
1652 		 */
1653 		vmem_hash_rescale(vmp);
1654 	}
1655 	(void) mutex_unlock(&vmem_list_lock);
1656 }
1657 
1658 /*
1659  * If vmem_init is called again, we need to be able to reset the world.
1660  * That includes resetting the statics back to their original values.
1661  */
1662 void
1663 vmem_startup(void)
1664 {
1665 #ifdef UMEM_STANDALONE
1666 	vmem_id = 0;
1667 	vmem_populators = 0;
1668 	vmem_segfree = NULL;
1669 	vmem_list = NULL;
1670 	vmem_internal_arena = NULL;
1671 	vmem_seg_arena = NULL;
1672 	vmem_hash_arena = NULL;
1673 	vmem_vmem_arena = NULL;
1674 	vmem_heap = NULL;
1675 	vmem_heap_alloc = NULL;
1676 	vmem_heap_free = NULL;
1677 
1678 	bzero(vmem0, sizeof (vmem0));
1679 	bzero(vmem_populator, sizeof (vmem_populator));
1680 	bzero(vmem_seg0, sizeof (vmem_seg0));
1681 #endif
1682 }
1683 
1684 /*
1685  * Prepare vmem for use.
1686  */
1687 vmem_t *
1688 vmem_init(const char *parent_name, size_t parent_quantum,
1689     vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
1690     const char *heap_name, void *heap_start, size_t heap_size,
1691     size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
1692 {
1693 	uint32_t id;
1694 	int nseg = VMEM_SEG_INITIAL;
1695 	vmem_t *parent, *heap;
1696 
1697 	ASSERT(vmem_internal_arena == NULL);
1698 
1699 	while (--nseg >= 0)
1700 		vmem_putseg_global(&vmem_seg0[nseg]);
1701 
1702 	if (parent_name != NULL) {
1703 		parent = vmem_create(parent_name,
1704 		    heap_start, heap_size, parent_quantum,
1705 		    NULL, NULL, NULL, 0,
1706 		    VM_SLEEP | VMC_POPULATOR);
1707 		heap_start = NULL;
1708 		heap_size = 0;
1709 	} else {
1710 		ASSERT(parent_alloc == NULL && parent_free == NULL);
1711 		parent = NULL;
1712 	}
1713 
1714 	heap = vmem_create(heap_name,
1715 	    heap_start, heap_size, heap_quantum,
1716 	    parent_alloc, parent_free, parent, 0,
1717 	    VM_SLEEP | VMC_POPULATOR);
1718 
1719 	vmem_heap = heap;
1720 	vmem_heap_alloc = heap_alloc;
1721 	vmem_heap_free = heap_free;
1722 
1723 	vmem_internal_arena = vmem_create("vmem_internal",
1724 	    NULL, 0, heap_quantum,
1725 	    heap_alloc, heap_free, heap, 0,
1726 	    VM_SLEEP | VMC_POPULATOR);
1727 
1728 	vmem_seg_arena = vmem_create("vmem_seg",
1729 	    NULL, 0, heap_quantum,
1730 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1731 	    VM_SLEEP | VMC_POPULATOR);
1732 
1733 	vmem_hash_arena = vmem_create("vmem_hash",
1734 	    NULL, 0, 8,
1735 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1736 	    VM_SLEEP);
1737 
1738 	vmem_vmem_arena = vmem_create("vmem_vmem",
1739 	    vmem0, sizeof (vmem0), 1,
1740 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1741 	    VM_SLEEP);
1742 
1743 	for (id = 0; id < vmem_id; id++)
1744 		(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1745 		    1, 0, 0, &vmem0[id], &vmem0[id + 1],
1746 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1747 
1748 	return (heap);
1749 }
1750 
1751 void
1752 vmem_no_debug(void)
1753 {
1754 	/*
1755 	 * This size must be a multiple of the minimum required alignment,
1756 	 * since vmem_populate allocates them compactly.
1757 	 */
1758 	vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
1759 	    sizeof (hrtime_t));
1760 }
1761 
1762 /*
1763  * Lockup and release, for fork1(2) handling.
1764  */
1765 void
1766 vmem_lockup(void)
1767 {
1768 	vmem_t *cur;
1769 
1770 	(void) mutex_lock(&vmem_list_lock);
1771 	(void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
1772 
1773 	/*
1774 	 * Lock up and broadcast all arenas.
1775 	 */
1776 	for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
1777 		(void) mutex_lock(&cur->vm_lock);
1778 		(void) cond_broadcast(&cur->vm_cv);
1779 	}
1780 
1781 	(void) mutex_lock(&vmem_segfree_lock);
1782 }
1783 
1784 void
1785 vmem_release(void)
1786 {
1787 	vmem_t *cur;
1788 
1789 	(void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
1790 
1791 	for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
1792 		(void) mutex_unlock(&cur->vm_lock);
1793 
1794 	(void) mutex_unlock(&vmem_segfree_lock);
1795 	(void) mutex_unlock(&vmem_list_lock);
1796 }
1797