xref: /titanic_50/usr/src/lib/libumem/common/vmem.c (revision 8e7248e505faa19396d4e853604e3fa7cd2cb3b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * For a more complete description of the main ideas, see:
29  *
30  *	Jeff Bonwick and Jonathan Adams,
31  *
32  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
33  *	Arbitrary Resources.
34  *
35  *	Proceedings of the 2001 Usenix Conference.
36  *	Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
37  *
38  * For the "Big Theory Statement", see usr/src/uts/common/os/vmem.c
39  *
40  * 1. Overview of changes
41  * ------------------------------
42  * There have been a few changes to vmem in order to support umem.  The
43  * main areas are:
44  *
45  *	* VM_SLEEP unsupported
46  *
47  *	* Reaping changes
48  *
49  *	* initialization changes
50  *
51  *	* _vmem_extend_alloc
52  *
53  *
54  * 2. VM_SLEEP Removed
55  * -------------------
56  * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
57  * possibly infinite amounts of time, they are not supported in this
58  * version of vmem.  Sleep-like behavior can be achieved through
59  * UMEM_NOFAIL umem allocations.
60  *
61  *
62  * 3. Reaping changes
63  * ------------------
64  * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
65  * can do allocations and frees synchronously.  This is a problem if it
66  * occurs during a vmem_populate() allocation.
67  *
68  * Instead, we delay reaps while populates are active.
69  *
70  *
71  * 4. Initialization changes
72  * -------------------------
73  * In the kernel, vmem_init() allows you to create a single, top-level arena,
74  * which has vmem_internal_arena as a child.  For umem, we want to be able
75  * to extend arenas dynamically.  It is much easier to support this if we
76  * allow a two-level "heap" arena:
77  *
78  *	+----------+
79  *	|  "fake"  |
80  *	+----------+
81  *	      |
82  *	+----------+
83  *	|  "heap"  |
84  *	+----------+
85  *	  |    \ \
86  *	  |     +-+-- ... <other children>
87  *	  |
88  *	+---------------+
89  *	| vmem_internal |
90  *	+---------------+
91  *	    | | | |
92  *	   <children>
93  *
94  * The new vmem_init() allows you to specify a "parent" of the heap, along
95  * with allocation functions.
96  *
97  *
98  * 5. _vmem_extend_alloc
99  * ---------------------
100  * The other part of extending is _vmem_extend_alloc.  This function allows
101  * you to extend (expand current spans, if possible) an arena and allocate
102  * a chunk of the newly extened span atomically.  This is needed to support
103  * extending the heap while vmem_populate()ing it.
104  *
105  * In order to increase the usefulness of extending, non-imported spans are
106  * sorted in address order.
107  */
108 
109 #include <sys/vmem_impl_user.h>
110 #include <alloca.h>
111 #include <sys/sysmacros.h>
112 #include <stdio.h>
113 #include <strings.h>
114 #include <atomic.h>
115 
116 #include "vmem_base.h"
117 #include "umem_base.h"
118 
119 #define	VMEM_INITIAL		6	/* early vmem arenas */
120 #define	VMEM_SEG_INITIAL	100	/* early segments */
121 
122 /*
123  * Adding a new span to an arena requires two segment structures: one to
124  * represent the span, and one to represent the free segment it contains.
125  */
126 #define	VMEM_SEGS_PER_SPAN_CREATE	2
127 
128 /*
129  * Allocating a piece of an existing segment requires 0-2 segment structures
130  * depending on how much of the segment we're allocating.
131  *
132  * To allocate the entire segment, no new segment structures are needed; we
133  * simply move the existing segment structure from the freelist to the
134  * allocation hash table.
135  *
136  * To allocate a piece from the left or right end of the segment, we must
137  * split the segment into two pieces (allocated part and remainder), so we
138  * need one new segment structure to represent the remainder.
139  *
140  * To allocate from the middle of a segment, we need two new segment strucures
141  * to represent the remainders on either side of the allocated part.
142  */
143 #define	VMEM_SEGS_PER_EXACT_ALLOC	0
144 #define	VMEM_SEGS_PER_LEFT_ALLOC	1
145 #define	VMEM_SEGS_PER_RIGHT_ALLOC	1
146 #define	VMEM_SEGS_PER_MIDDLE_ALLOC	2
147 
148 /*
149  * vmem_populate() preallocates segment structures for vmem to do its work.
150  * It must preallocate enough for the worst case, which is when we must import
151  * a new span and then allocate from the middle of it.
152  */
153 #define	VMEM_SEGS_PER_ALLOC_MAX		\
154 	(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
155 
156 /*
157  * The segment structures themselves are allocated from vmem_seg_arena, so
158  * we have a recursion problem when vmem_seg_arena needs to populate itself.
159  * We address this by working out the maximum number of segment structures
160  * this act will require, and multiplying by the maximum number of threads
161  * that we'll allow to do it simultaneously.
162  *
163  * The worst-case segment consumption to populate vmem_seg_arena is as
164  * follows (depicted as a stack trace to indicate why events are occurring):
165  *
166  * vmem_alloc(vmem_seg_arena)		-> 2 segs (span create + exact alloc)
167  *  vmem_alloc(vmem_internal_arena)	-> 2 segs (span create + exact alloc)
168  *   heap_alloc(heap_arena)
169  *    vmem_alloc(heap_arena)		-> 4 seg (span create + alloc)
170  *     parent_alloc(parent_arena)
171  *	_vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
172  *
173  * Note:  The reservation for heap_arena must be 4, since vmem_xalloc()
174  * is overly pessimistic on allocations where parent_arena has a stricter
175  * alignment than heap_arena.
176  *
177  * The worst-case consumption for any arena is 4 segment structures.
178  * For now, we only support VM_NOSLEEP allocations, so as long as we
179  * serialize all vmem_populates, a 4-seg reserve is sufficient.
180  */
181 #define	VMEM_POPULATE_SEGS_PER_ARENA	4
182 #define	VMEM_POPULATE_LOCKS		1
183 
184 #define	VMEM_POPULATE_RESERVE		\
185 	(VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
186 
187 /*
188  * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
189  * so that it can satisfy the worst-case allocation *and* participate in
190  * worst-case allocation from vmem_seg_arena.
191  */
192 #define	VMEM_MINFREE	(VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
193 
194 /* Don't assume new statics are zeroed - see vmem_startup() */
195 static vmem_t vmem0[VMEM_INITIAL];
196 static vmem_t *vmem_populator[VMEM_INITIAL];
197 static uint32_t vmem_id;
198 static uint32_t vmem_populators;
199 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
200 static vmem_seg_t *vmem_segfree;
201 static mutex_t vmem_list_lock;
202 static mutex_t vmem_segfree_lock;
203 static vmem_populate_lock_t vmem_nosleep_lock;
204 #define	IN_POPULATE()	(vmem_nosleep_lock.vmpl_thr == thr_self())
205 static vmem_t *vmem_list;
206 static vmem_t *vmem_internal_arena;
207 static vmem_t *vmem_seg_arena;
208 static vmem_t *vmem_hash_arena;
209 static vmem_t *vmem_vmem_arena;
210 
211 vmem_t *vmem_heap;
212 vmem_alloc_t *vmem_heap_alloc;
213 vmem_free_t *vmem_heap_free;
214 
215 uint32_t vmem_mtbf;		/* mean time between failures [default: off] */
216 size_t vmem_seg_size = sizeof (vmem_seg_t);
217 
218 /*
219  * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
220  */
221 #define	VMEM_INSERT(vprev, vsp, type)					\
222 {									\
223 	vmem_seg_t *vnext = (vprev)->vs_##type##next;			\
224 	(vsp)->vs_##type##next = (vnext);				\
225 	(vsp)->vs_##type##prev = (vprev);				\
226 	(vprev)->vs_##type##next = (vsp);				\
227 	(vnext)->vs_##type##prev = (vsp);				\
228 }
229 
230 #define	VMEM_DELETE(vsp, type)						\
231 {									\
232 	vmem_seg_t *vprev = (vsp)->vs_##type##prev;			\
233 	vmem_seg_t *vnext = (vsp)->vs_##type##next;			\
234 	(vprev)->vs_##type##next = (vnext);				\
235 	(vnext)->vs_##type##prev = (vprev);				\
236 }
237 
238 /*
239  * Get a vmem_seg_t from the global segfree list.
240  */
241 static vmem_seg_t *
242 vmem_getseg_global(void)
243 {
244 	vmem_seg_t *vsp;
245 
246 	(void) mutex_lock(&vmem_segfree_lock);
247 	if ((vsp = vmem_segfree) != NULL)
248 		vmem_segfree = vsp->vs_knext;
249 	(void) mutex_unlock(&vmem_segfree_lock);
250 
251 	return (vsp);
252 }
253 
254 /*
255  * Put a vmem_seg_t on the global segfree list.
256  */
257 static void
258 vmem_putseg_global(vmem_seg_t *vsp)
259 {
260 	(void) mutex_lock(&vmem_segfree_lock);
261 	vsp->vs_knext = vmem_segfree;
262 	vmem_segfree = vsp;
263 	(void) mutex_unlock(&vmem_segfree_lock);
264 }
265 
266 /*
267  * Get a vmem_seg_t from vmp's segfree list.
268  */
269 static vmem_seg_t *
270 vmem_getseg(vmem_t *vmp)
271 {
272 	vmem_seg_t *vsp;
273 
274 	ASSERT(vmp->vm_nsegfree > 0);
275 
276 	vsp = vmp->vm_segfree;
277 	vmp->vm_segfree = vsp->vs_knext;
278 	vmp->vm_nsegfree--;
279 
280 	return (vsp);
281 }
282 
283 /*
284  * Put a vmem_seg_t on vmp's segfree list.
285  */
286 static void
287 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
288 {
289 	vsp->vs_knext = vmp->vm_segfree;
290 	vmp->vm_segfree = vsp;
291 	vmp->vm_nsegfree++;
292 }
293 
294 /*
295  * Add vsp to the appropriate freelist.
296  */
297 static void
298 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
299 {
300 	vmem_seg_t *vprev;
301 
302 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
303 
304 	vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
305 	vsp->vs_type = VMEM_FREE;
306 	vmp->vm_freemap |= VS_SIZE(vprev);
307 	VMEM_INSERT(vprev, vsp, k);
308 
309 	(void) cond_broadcast(&vmp->vm_cv);
310 }
311 
312 /*
313  * Take vsp from the freelist.
314  */
315 static void
316 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
317 {
318 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
319 	ASSERT(vsp->vs_type == VMEM_FREE);
320 
321 	if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
322 		/*
323 		 * The segments on both sides of 'vsp' are freelist heads,
324 		 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
325 		 */
326 		ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
327 		vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
328 	}
329 	VMEM_DELETE(vsp, k);
330 }
331 
332 /*
333  * Add vsp to the allocated-segment hash table and update kstats.
334  */
335 static void
336 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
337 {
338 	vmem_seg_t **bucket;
339 
340 	vsp->vs_type = VMEM_ALLOC;
341 	bucket = VMEM_HASH(vmp, vsp->vs_start);
342 	vsp->vs_knext = *bucket;
343 	*bucket = vsp;
344 
345 	if (vmem_seg_size == sizeof (vmem_seg_t)) {
346 		vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
347 		    VMEM_STACK_DEPTH, 0);
348 		vsp->vs_thread = thr_self();
349 		vsp->vs_timestamp = gethrtime();
350 	} else {
351 		vsp->vs_depth = 0;
352 	}
353 
354 	vmp->vm_kstat.vk_alloc++;
355 	vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
356 }
357 
358 /*
359  * Remove vsp from the allocated-segment hash table and update kstats.
360  */
361 static vmem_seg_t *
362 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
363 {
364 	vmem_seg_t *vsp, **prev_vspp;
365 
366 	prev_vspp = VMEM_HASH(vmp, addr);
367 	while ((vsp = *prev_vspp) != NULL) {
368 		if (vsp->vs_start == addr) {
369 			*prev_vspp = vsp->vs_knext;
370 			break;
371 		}
372 		vmp->vm_kstat.vk_lookup++;
373 		prev_vspp = &vsp->vs_knext;
374 	}
375 
376 	if (vsp == NULL) {
377 		umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
378 		    vmp, addr, size);
379 	}
380 	if (VS_SIZE(vsp) != size) {
381 		umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
382 		    "(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
383 	}
384 
385 	vmp->vm_kstat.vk_free++;
386 	vmp->vm_kstat.vk_mem_inuse -= size;
387 
388 	return (vsp);
389 }
390 
391 /*
392  * Create a segment spanning the range [start, end) and add it to the arena.
393  */
394 static vmem_seg_t *
395 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
396 {
397 	vmem_seg_t *newseg = vmem_getseg(vmp);
398 
399 	newseg->vs_start = start;
400 	newseg->vs_end = end;
401 	newseg->vs_type = 0;
402 	newseg->vs_import = 0;
403 
404 	VMEM_INSERT(vprev, newseg, a);
405 
406 	return (newseg);
407 }
408 
409 /*
410  * Remove segment vsp from the arena.
411  */
412 static void
413 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
414 {
415 	ASSERT(vsp->vs_type != VMEM_ROTOR);
416 	VMEM_DELETE(vsp, a);
417 
418 	vmem_putseg(vmp, vsp);
419 }
420 
421 /*
422  * Add the span [vaddr, vaddr + size) to vmp and update kstats.
423  */
424 static vmem_seg_t *
425 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
426 {
427 	vmem_seg_t *knext;
428 	vmem_seg_t *newseg, *span;
429 	uintptr_t start = (uintptr_t)vaddr;
430 	uintptr_t end = start + size;
431 
432 	knext = &vmp->vm_seg0;
433 	if (!import && vmp->vm_source_alloc == NULL) {
434 		vmem_seg_t *kend, *kprev;
435 		/*
436 		 * non-imported spans are sorted in address order.  This
437 		 * makes vmem_extend_unlocked() much more effective.
438 		 *
439 		 * We search in reverse order, since new spans are
440 		 * generally at higher addresses.
441 		 */
442 		kend = &vmp->vm_seg0;
443 		for (kprev = kend->vs_kprev; kprev != kend;
444 		    kprev = kprev->vs_kprev) {
445 			if (!kprev->vs_import && (kprev->vs_end - 1) < start)
446 				break;
447 		}
448 		knext = kprev->vs_knext;
449 	}
450 
451 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
452 
453 	if ((start | end) & (vmp->vm_quantum - 1)) {
454 		umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
455 		    vmp, vaddr, size);
456 	}
457 
458 	span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
459 	span->vs_type = VMEM_SPAN;
460 	VMEM_INSERT(knext->vs_kprev, span, k);
461 
462 	newseg = vmem_seg_create(vmp, span, start, end);
463 	vmem_freelist_insert(vmp, newseg);
464 
465 	newseg->vs_import = import;
466 	if (import)
467 		vmp->vm_kstat.vk_mem_import += size;
468 	vmp->vm_kstat.vk_mem_total += size;
469 
470 	return (newseg);
471 }
472 
473 /*
474  * Remove span vsp from vmp and update kstats.
475  */
476 static void
477 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
478 {
479 	vmem_seg_t *span = vsp->vs_aprev;
480 	size_t size = VS_SIZE(vsp);
481 
482 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
483 	ASSERT(span->vs_type == VMEM_SPAN);
484 
485 	if (vsp->vs_import)
486 		vmp->vm_kstat.vk_mem_import -= size;
487 	vmp->vm_kstat.vk_mem_total -= size;
488 
489 	VMEM_DELETE(span, k);
490 
491 	vmem_seg_destroy(vmp, vsp);
492 	vmem_seg_destroy(vmp, span);
493 }
494 
495 /*
496  * Allocate the subrange [addr, addr + size) from segment vsp.
497  * If there are leftovers on either side, place them on the freelist.
498  * Returns a pointer to the segment representing [addr, addr + size).
499  */
500 static vmem_seg_t *
501 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
502 {
503 	uintptr_t vs_start = vsp->vs_start;
504 	uintptr_t vs_end = vsp->vs_end;
505 	size_t vs_size = vs_end - vs_start;
506 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
507 	uintptr_t addr_end = addr + realsize;
508 
509 	ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
510 	ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
511 	ASSERT(vsp->vs_type == VMEM_FREE);
512 	ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
513 	ASSERT(addr - 1 <= addr_end - 1);
514 
515 	/*
516 	 * If we're allocating from the start of the segment, and the
517 	 * remainder will be on the same freelist, we can save quite
518 	 * a bit of work.
519 	 */
520 	if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
521 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
522 		vsp->vs_start = addr_end;
523 		vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
524 		vmem_hash_insert(vmp, vsp);
525 		return (vsp);
526 	}
527 
528 	vmem_freelist_delete(vmp, vsp);
529 
530 	if (vs_end != addr_end)
531 		vmem_freelist_insert(vmp,
532 		    vmem_seg_create(vmp, vsp, addr_end, vs_end));
533 
534 	if (vs_start != addr)
535 		vmem_freelist_insert(vmp,
536 		    vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
537 
538 	vsp->vs_start = addr;
539 	vsp->vs_end = addr + size;
540 
541 	vmem_hash_insert(vmp, vsp);
542 	return (vsp);
543 }
544 
545 /*
546  * We cannot reap if we are in the middle of a vmem_populate().
547  */
548 void
549 vmem_reap(void)
550 {
551 	if (!IN_POPULATE())
552 		umem_reap();
553 }
554 
555 /*
556  * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
557  */
558 static int
559 vmem_populate(vmem_t *vmp, int vmflag)
560 {
561 	char *p;
562 	vmem_seg_t *vsp;
563 	ssize_t nseg;
564 	size_t size;
565 	vmem_populate_lock_t *lp;
566 	int i;
567 
568 	while (vmp->vm_nsegfree < VMEM_MINFREE &&
569 	    (vsp = vmem_getseg_global()) != NULL)
570 		vmem_putseg(vmp, vsp);
571 
572 	if (vmp->vm_nsegfree >= VMEM_MINFREE)
573 		return (1);
574 
575 	/*
576 	 * If we're already populating, tap the reserve.
577 	 */
578 	if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
579 		ASSERT(vmp->vm_cflags & VMC_POPULATOR);
580 		return (1);
581 	}
582 
583 	(void) mutex_unlock(&vmp->vm_lock);
584 
585 	ASSERT(vmflag & VM_NOSLEEP);	/* we do not allow sleep allocations */
586 	lp = &vmem_nosleep_lock;
587 
588 	/*
589 	 * Cannot be just a mutex_lock(), since that has no effect if
590 	 * libthread is not linked.
591 	 */
592 	(void) mutex_lock(&lp->vmpl_mutex);
593 	ASSERT(lp->vmpl_thr == 0);
594 	lp->vmpl_thr = thr_self();
595 
596 	nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
597 	size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
598 	nseg = size / vmem_seg_size;
599 
600 	/*
601 	 * The following vmem_alloc() may need to populate vmem_seg_arena
602 	 * and all the things it imports from.  When doing so, it will tap
603 	 * each arena's reserve to prevent recursion (see the block comment
604 	 * above the definition of VMEM_POPULATE_RESERVE).
605 	 *
606 	 * During this allocation, vmem_reap() is a no-op.  If the allocation
607 	 * fails, we call vmem_reap() after dropping the population lock.
608 	 */
609 	p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
610 	if (p == NULL) {
611 		lp->vmpl_thr = 0;
612 		(void) mutex_unlock(&lp->vmpl_mutex);
613 		vmem_reap();
614 
615 		(void) mutex_lock(&vmp->vm_lock);
616 		vmp->vm_kstat.vk_populate_fail++;
617 		return (0);
618 	}
619 	/*
620 	 * Restock the arenas that may have been depleted during population.
621 	 */
622 	for (i = 0; i < vmem_populators; i++) {
623 		(void) mutex_lock(&vmem_populator[i]->vm_lock);
624 		while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
625 			vmem_putseg(vmem_populator[i],
626 			    (vmem_seg_t *)(p + --nseg * vmem_seg_size));
627 		(void) mutex_unlock(&vmem_populator[i]->vm_lock);
628 	}
629 
630 	lp->vmpl_thr = 0;
631 	(void) mutex_unlock(&lp->vmpl_mutex);
632 	(void) mutex_lock(&vmp->vm_lock);
633 
634 	/*
635 	 * Now take our own segments.
636 	 */
637 	ASSERT(nseg >= VMEM_MINFREE);
638 	while (vmp->vm_nsegfree < VMEM_MINFREE)
639 		vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
640 
641 	/*
642 	 * Give the remainder to charity.
643 	 */
644 	while (nseg > 0)
645 		vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
646 
647 	return (1);
648 }
649 
650 /*
651  * Advance a walker from its previous position to 'afterme'.
652  * Note: may drop and reacquire vmp->vm_lock.
653  */
654 static void
655 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
656 {
657 	vmem_seg_t *vprev = walker->vs_aprev;
658 	vmem_seg_t *vnext = walker->vs_anext;
659 	vmem_seg_t *vsp = NULL;
660 
661 	VMEM_DELETE(walker, a);
662 
663 	if (afterme != NULL)
664 		VMEM_INSERT(afterme, walker, a);
665 
666 	/*
667 	 * The walker segment's presence may have prevented its neighbors
668 	 * from coalescing.  If so, coalesce them now.
669 	 */
670 	if (vprev->vs_type == VMEM_FREE) {
671 		if (vnext->vs_type == VMEM_FREE) {
672 			ASSERT(vprev->vs_end == vnext->vs_start);
673 			vmem_freelist_delete(vmp, vnext);
674 			vmem_freelist_delete(vmp, vprev);
675 			vprev->vs_end = vnext->vs_end;
676 			vmem_freelist_insert(vmp, vprev);
677 			vmem_seg_destroy(vmp, vnext);
678 		}
679 		vsp = vprev;
680 	} else if (vnext->vs_type == VMEM_FREE) {
681 		vsp = vnext;
682 	}
683 
684 	/*
685 	 * vsp could represent a complete imported span,
686 	 * in which case we must return it to the source.
687 	 */
688 	if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
689 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
690 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
691 		void *vaddr = (void *)vsp->vs_start;
692 		size_t size = VS_SIZE(vsp);
693 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
694 		vmem_freelist_delete(vmp, vsp);
695 		vmem_span_destroy(vmp, vsp);
696 		(void) mutex_unlock(&vmp->vm_lock);
697 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
698 		(void) mutex_lock(&vmp->vm_lock);
699 	}
700 }
701 
702 /*
703  * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
704  * in an arena, so that we avoid reusing addresses for as long as possible.
705  * This helps to catch used-after-freed bugs.  It's also the perfect policy
706  * for allocating things like process IDs, where we want to cycle through
707  * all values in order.
708  */
709 static void *
710 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
711 {
712 	vmem_seg_t *vsp, *rotor;
713 	uintptr_t addr;
714 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
715 	size_t vs_size;
716 
717 	(void) mutex_lock(&vmp->vm_lock);
718 
719 	if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
720 		(void) mutex_unlock(&vmp->vm_lock);
721 		return (NULL);
722 	}
723 
724 	/*
725 	 * The common case is that the segment right after the rotor is free,
726 	 * and large enough that extracting 'size' bytes won't change which
727 	 * freelist it's on.  In this case we can avoid a *lot* of work.
728 	 * Instead of the normal vmem_seg_alloc(), we just advance the start
729 	 * address of the victim segment.  Instead of moving the rotor, we
730 	 * create the new segment structure *behind the rotor*, which has
731 	 * the same effect.  And finally, we know we don't have to coalesce
732 	 * the rotor's neighbors because the new segment lies between them.
733 	 */
734 	rotor = &vmp->vm_rotor;
735 	vsp = rotor->vs_anext;
736 	if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
737 	    P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
738 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
739 		addr = vsp->vs_start;
740 		vsp->vs_start = addr + realsize;
741 		vmem_hash_insert(vmp,
742 		    vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
743 		(void) mutex_unlock(&vmp->vm_lock);
744 		return ((void *)addr);
745 	}
746 
747 	/*
748 	 * Starting at the rotor, look for a segment large enough to
749 	 * satisfy the allocation.
750 	 */
751 	for (;;) {
752 		vmp->vm_kstat.vk_search++;
753 		if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
754 			break;
755 		vsp = vsp->vs_anext;
756 		if (vsp == rotor) {
757 			int cancel_state;
758 
759 			/*
760 			 * We've come full circle.  One possibility is that the
761 			 * there's actually enough space, but the rotor itself
762 			 * is preventing the allocation from succeeding because
763 			 * it's sitting between two free segments.  Therefore,
764 			 * we advance the rotor and see if that liberates a
765 			 * suitable segment.
766 			 */
767 			vmem_advance(vmp, rotor, rotor->vs_anext);
768 			vsp = rotor->vs_aprev;
769 			if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
770 				break;
771 			/*
772 			 * If there's a lower arena we can import from, or it's
773 			 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
774 			 * Otherwise, wait until another thread frees something.
775 			 */
776 			if (vmp->vm_source_alloc != NULL ||
777 			    (vmflag & VM_NOSLEEP)) {
778 				(void) mutex_unlock(&vmp->vm_lock);
779 				return (vmem_xalloc(vmp, size, vmp->vm_quantum,
780 				    0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
781 			}
782 			vmp->vm_kstat.vk_wait++;
783 			(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
784 			    &cancel_state);
785 			(void) cond_wait(&vmp->vm_cv, &vmp->vm_lock);
786 			(void) pthread_setcancelstate(cancel_state, NULL);
787 			vsp = rotor->vs_anext;
788 		}
789 	}
790 
791 	/*
792 	 * We found a segment.  Extract enough space to satisfy the allocation.
793 	 */
794 	addr = vsp->vs_start;
795 	vsp = vmem_seg_alloc(vmp, vsp, addr, size);
796 	ASSERT(vsp->vs_type == VMEM_ALLOC &&
797 	    vsp->vs_start == addr && vsp->vs_end == addr + size);
798 
799 	/*
800 	 * Advance the rotor to right after the newly-allocated segment.
801 	 * That's where the next VM_NEXTFIT allocation will begin searching.
802 	 */
803 	vmem_advance(vmp, rotor, vsp);
804 	(void) mutex_unlock(&vmp->vm_lock);
805 	return ((void *)addr);
806 }
807 
808 /*
809  * Allocate size bytes at offset phase from an align boundary such that the
810  * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
811  * that does not straddle a nocross-aligned boundary.
812  */
813 void *
814 vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
815 	size_t nocross, void *minaddr, void *maxaddr, int vmflag)
816 {
817 	vmem_seg_t *vsp;
818 	vmem_seg_t *vbest = NULL;
819 	uintptr_t addr, taddr, start, end;
820 	void *vaddr;
821 	int hb, flist, resv;
822 	uint32_t mtbf;
823 
824 	if (phase > 0 && phase >= align)
825 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
826 		    "invalid phase",
827 		    (void *)vmp, size, align, phase, nocross,
828 		    minaddr, maxaddr, vmflag);
829 
830 	if (align == 0)
831 		align = vmp->vm_quantum;
832 
833 	if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
834 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
835 		    "parameters not vm_quantum aligned",
836 		    (void *)vmp, size, align, phase, nocross,
837 		    minaddr, maxaddr, vmflag);
838 	}
839 
840 	if (nocross != 0 &&
841 	    (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
842 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
843 		    "overconstrained allocation",
844 		    (void *)vmp, size, align, phase, nocross,
845 		    minaddr, maxaddr, vmflag);
846 	}
847 
848 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
849 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
850 		return (NULL);
851 
852 	(void) mutex_lock(&vmp->vm_lock);
853 	for (;;) {
854 		int cancel_state;
855 
856 		if (vmp->vm_nsegfree < VMEM_MINFREE &&
857 		    !vmem_populate(vmp, vmflag))
858 			break;
859 
860 		/*
861 		 * highbit() returns the highest bit + 1, which is exactly
862 		 * what we want: we want to search the first freelist whose
863 		 * members are *definitely* large enough to satisfy our
864 		 * allocation.  However, there are certain cases in which we
865 		 * want to look at the next-smallest freelist (which *might*
866 		 * be able to satisfy the allocation):
867 		 *
868 		 * (1)	The size is exactly a power of 2, in which case
869 		 *	the smaller freelist is always big enough;
870 		 *
871 		 * (2)	All other freelists are empty;
872 		 *
873 		 * (3)	We're in the highest possible freelist, which is
874 		 *	always empty (e.g. the 4GB freelist on 32-bit systems);
875 		 *
876 		 * (4)	We're doing a best-fit or first-fit allocation.
877 		 */
878 		if ((size & (size - 1)) == 0) {
879 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
880 		} else {
881 			hb = highbit(size);
882 			if ((vmp->vm_freemap >> hb) == 0 ||
883 			    hb == VMEM_FREELISTS ||
884 			    (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
885 				hb--;
886 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
887 		}
888 
889 		for (vbest = NULL, vsp = (flist == 0) ? NULL :
890 		    vmp->vm_freelist[flist - 1].vs_knext;
891 		    vsp != NULL; vsp = vsp->vs_knext) {
892 			vmp->vm_kstat.vk_search++;
893 			if (vsp->vs_start == 0) {
894 				/*
895 				 * We're moving up to a larger freelist,
896 				 * so if we've already found a candidate,
897 				 * the fit can't possibly get any better.
898 				 */
899 				if (vbest != NULL)
900 					break;
901 				/*
902 				 * Find the next non-empty freelist.
903 				 */
904 				flist = lowbit(P2ALIGN(vmp->vm_freemap,
905 				    VS_SIZE(vsp)));
906 				if (flist-- == 0)
907 					break;
908 				vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
909 				ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
910 				continue;
911 			}
912 			if (vsp->vs_end - 1 < (uintptr_t)minaddr)
913 				continue;
914 			if (vsp->vs_start > (uintptr_t)maxaddr - 1)
915 				continue;
916 			start = MAX(vsp->vs_start, (uintptr_t)minaddr);
917 			end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
918 			taddr = P2PHASEUP(start, align, phase);
919 			if (P2BOUNDARY(taddr, size, nocross))
920 				taddr +=
921 				    P2ROUNDUP(P2NPHASE(taddr, nocross), align);
922 			if ((taddr - start) + size > end - start ||
923 			    (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
924 				continue;
925 			vbest = vsp;
926 			addr = taddr;
927 			if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
928 				break;
929 		}
930 		if (vbest != NULL)
931 			break;
932 		if (size == 0)
933 			umem_panic("vmem_xalloc(): size == 0");
934 		if (vmp->vm_source_alloc != NULL && nocross == 0 &&
935 		    minaddr == NULL && maxaddr == NULL) {
936 			size_t asize = P2ROUNDUP(size + phase,
937 			    MAX(align, vmp->vm_source->vm_quantum));
938 			if (asize < size) {		/* overflow */
939 				(void) mutex_unlock(&vmp->vm_lock);
940 				if (vmflag & VM_NOSLEEP)
941 					return (NULL);
942 
943 				umem_panic("vmem_xalloc(): "
944 				    "overflow on VM_SLEEP allocation");
945 			}
946 			/*
947 			 * Determine how many segment structures we'll consume.
948 			 * The calculation must be presise because if we're
949 			 * here on behalf of vmem_populate(), we are taking
950 			 * segments from a very limited reserve.
951 			 */
952 			resv = (size == asize) ?
953 			    VMEM_SEGS_PER_SPAN_CREATE +
954 			    VMEM_SEGS_PER_EXACT_ALLOC :
955 			    VMEM_SEGS_PER_ALLOC_MAX;
956 			ASSERT(vmp->vm_nsegfree >= resv);
957 			vmp->vm_nsegfree -= resv;	/* reserve our segs */
958 			(void) mutex_unlock(&vmp->vm_lock);
959 			vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
960 			    vmflag & VM_UMFLAGS);
961 			(void) mutex_lock(&vmp->vm_lock);
962 			vmp->vm_nsegfree += resv;	/* claim reservation */
963 			if (vaddr != NULL) {
964 				vbest = vmem_span_create(vmp, vaddr, asize, 1);
965 				addr = P2PHASEUP(vbest->vs_start, align, phase);
966 				break;
967 			}
968 		}
969 		(void) mutex_unlock(&vmp->vm_lock);
970 		vmem_reap();
971 		(void) mutex_lock(&vmp->vm_lock);
972 		if (vmflag & VM_NOSLEEP)
973 			break;
974 		vmp->vm_kstat.vk_wait++;
975 		(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
976 		    &cancel_state);
977 		(void) cond_wait(&vmp->vm_cv, &vmp->vm_lock);
978 		(void) pthread_setcancelstate(cancel_state, NULL);
979 	}
980 	if (vbest != NULL) {
981 		ASSERT(vbest->vs_type == VMEM_FREE);
982 		ASSERT(vbest->vs_knext != vbest);
983 		(void) vmem_seg_alloc(vmp, vbest, addr, size);
984 		(void) mutex_unlock(&vmp->vm_lock);
985 		ASSERT(P2PHASE(addr, align) == phase);
986 		ASSERT(!P2BOUNDARY(addr, size, nocross));
987 		ASSERT(addr >= (uintptr_t)minaddr);
988 		ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
989 		return ((void *)addr);
990 	}
991 	vmp->vm_kstat.vk_fail++;
992 	(void) mutex_unlock(&vmp->vm_lock);
993 	if (vmflag & VM_PANIC)
994 		umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
995 		    "cannot satisfy mandatory allocation",
996 		    (void *)vmp, size, align, phase, nocross,
997 		    minaddr, maxaddr, vmflag);
998 	return (NULL);
999 }
1000 
1001 /*
1002  * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1003  * allocation.  vmem_xalloc() and vmem_xfree() must always be paired because
1004  * both routines bypass the quantum caches.
1005  */
1006 void
1007 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1008 {
1009 	vmem_seg_t *vsp, *vnext, *vprev;
1010 
1011 	(void) mutex_lock(&vmp->vm_lock);
1012 
1013 	vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1014 	vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1015 
1016 	/*
1017 	 * Attempt to coalesce with the next segment.
1018 	 */
1019 	vnext = vsp->vs_anext;
1020 	if (vnext->vs_type == VMEM_FREE) {
1021 		ASSERT(vsp->vs_end == vnext->vs_start);
1022 		vmem_freelist_delete(vmp, vnext);
1023 		vsp->vs_end = vnext->vs_end;
1024 		vmem_seg_destroy(vmp, vnext);
1025 	}
1026 
1027 	/*
1028 	 * Attempt to coalesce with the previous segment.
1029 	 */
1030 	vprev = vsp->vs_aprev;
1031 	if (vprev->vs_type == VMEM_FREE) {
1032 		ASSERT(vprev->vs_end == vsp->vs_start);
1033 		vmem_freelist_delete(vmp, vprev);
1034 		vprev->vs_end = vsp->vs_end;
1035 		vmem_seg_destroy(vmp, vsp);
1036 		vsp = vprev;
1037 	}
1038 
1039 	/*
1040 	 * If the entire span is free, return it to the source.
1041 	 */
1042 	if (vsp->vs_import && vmp->vm_source_free != NULL &&
1043 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
1044 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
1045 		vaddr = (void *)vsp->vs_start;
1046 		size = VS_SIZE(vsp);
1047 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
1048 		vmem_span_destroy(vmp, vsp);
1049 		(void) mutex_unlock(&vmp->vm_lock);
1050 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
1051 	} else {
1052 		vmem_freelist_insert(vmp, vsp);
1053 		(void) mutex_unlock(&vmp->vm_lock);
1054 	}
1055 }
1056 
1057 /*
1058  * Allocate size bytes from arena vmp.  Returns the allocated address
1059  * on success, NULL on failure.  vmflag specifies VM_SLEEP or VM_NOSLEEP,
1060  * and may also specify best-fit, first-fit, or next-fit allocation policy
1061  * instead of the default instant-fit policy.  VM_SLEEP allocations are
1062  * guaranteed to succeed.
1063  */
1064 void *
1065 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1066 {
1067 	vmem_seg_t *vsp;
1068 	uintptr_t addr;
1069 	int hb;
1070 	int flist = 0;
1071 	uint32_t mtbf;
1072 
1073 	if (size - 1 < vmp->vm_qcache_max) {
1074 		ASSERT(vmflag & VM_NOSLEEP);
1075 		return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1076 		    vmp->vm_qshift], UMEM_DEFAULT));
1077 	}
1078 
1079 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1080 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1081 		return (NULL);
1082 
1083 	if (vmflag & VM_NEXTFIT)
1084 		return (vmem_nextfit_alloc(vmp, size, vmflag));
1085 
1086 	if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1087 		return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1088 		    NULL, NULL, vmflag));
1089 
1090 	/*
1091 	 * Unconstrained instant-fit allocation from the segment list.
1092 	 */
1093 	(void) mutex_lock(&vmp->vm_lock);
1094 
1095 	if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1096 		if ((size & (size - 1)) == 0)
1097 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1098 		else if ((hb = highbit(size)) < VMEM_FREELISTS)
1099 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1100 	}
1101 
1102 	if (flist-- == 0) {
1103 		(void) mutex_unlock(&vmp->vm_lock);
1104 		return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1105 		    0, 0, NULL, NULL, vmflag));
1106 	}
1107 
1108 	ASSERT(size <= (1UL << flist));
1109 	vsp = vmp->vm_freelist[flist].vs_knext;
1110 	addr = vsp->vs_start;
1111 	(void) vmem_seg_alloc(vmp, vsp, addr, size);
1112 	(void) mutex_unlock(&vmp->vm_lock);
1113 	return ((void *)addr);
1114 }
1115 
1116 /*
1117  * Free the segment [vaddr, vaddr + size).
1118  */
1119 void
1120 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1121 {
1122 	if (size - 1 < vmp->vm_qcache_max)
1123 		_umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1124 		    vaddr);
1125 	else
1126 		vmem_xfree(vmp, vaddr, size);
1127 }
1128 
1129 /*
1130  * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1131  */
1132 int
1133 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1134 {
1135 	uintptr_t start = (uintptr_t)vaddr;
1136 	uintptr_t end = start + size;
1137 	vmem_seg_t *vsp;
1138 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1139 
1140 	(void) mutex_lock(&vmp->vm_lock);
1141 	vmp->vm_kstat.vk_contains++;
1142 	for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1143 		vmp->vm_kstat.vk_contains_search++;
1144 		ASSERT(vsp->vs_type == VMEM_SPAN);
1145 		if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1146 			break;
1147 	}
1148 	(void) mutex_unlock(&vmp->vm_lock);
1149 	return (vsp != seg0);
1150 }
1151 
1152 /*
1153  * Add the span [vaddr, vaddr + size) to arena vmp.
1154  */
1155 void *
1156 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1157 {
1158 	if (vaddr == NULL || size == 0) {
1159 		umem_panic("vmem_add(%p, %p, %lu): bad arguments",
1160 		    vmp, vaddr, size);
1161 	}
1162 
1163 	ASSERT(!vmem_contains(vmp, vaddr, size));
1164 
1165 	(void) mutex_lock(&vmp->vm_lock);
1166 	if (vmem_populate(vmp, vmflag))
1167 		(void) vmem_span_create(vmp, vaddr, size, 0);
1168 	else
1169 		vaddr = NULL;
1170 	(void) cond_broadcast(&vmp->vm_cv);
1171 	(void) mutex_unlock(&vmp->vm_lock);
1172 	return (vaddr);
1173 }
1174 
1175 /*
1176  * Adds the address range [addr, endaddr) to arena vmp, by either:
1177  *   1. joining two existing spans, [x, addr), and [endaddr, y) (which
1178  *      are in that order) into a single [x, y) span,
1179  *   2. expanding an existing [x, addr) span to [x, endaddr),
1180  *   3. expanding an existing [endaddr, x) span to [addr, x), or
1181  *   4. creating a new [addr, endaddr) span.
1182  *
1183  * Called with vmp->vm_lock held, and a successful vmem_populate() completed.
1184  * Cannot fail.  Returns the new segment.
1185  *
1186  * NOTE:  this algorithm is linear-time in the number of spans, but is
1187  *      constant-time when you are extending the last (highest-addressed)
1188  *      span.
1189  */
1190 static vmem_seg_t *
1191 vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
1192 {
1193 	vmem_seg_t *span;
1194 	vmem_seg_t *vsp;
1195 
1196 	vmem_seg_t *end = &vmp->vm_seg0;
1197 
1198 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
1199 
1200 	/*
1201 	 * the second "if" clause below relies on the direction of this search
1202 	 */
1203 	for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
1204 		if (span->vs_end == addr || span->vs_start == endaddr)
1205 			break;
1206 	}
1207 
1208 	if (span == end)
1209 		return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
1210 	if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
1211 		vmem_seg_t *prevspan = span->vs_kprev;
1212 		vmem_seg_t *nextseg = span->vs_anext;
1213 		vmem_seg_t *prevseg = span->vs_aprev;
1214 
1215 		/*
1216 		 * prevspan becomes the span marker for the full range
1217 		 */
1218 		prevspan->vs_end = span->vs_end;
1219 
1220 		/*
1221 		 * Notionally, span becomes a free segment representing
1222 		 * [addr, endaddr).
1223 		 *
1224 		 * However, if either of its neighbors are free, we coalesce
1225 		 * by destroying span and changing the free segment.
1226 		 */
1227 		if (prevseg->vs_type == VMEM_FREE &&
1228 		    nextseg->vs_type == VMEM_FREE) {
1229 			/*
1230 			 * coalesce both ways
1231 			 */
1232 			ASSERT(prevseg->vs_end == addr &&
1233 			    nextseg->vs_start == endaddr);
1234 
1235 			vmem_freelist_delete(vmp, prevseg);
1236 			prevseg->vs_end = nextseg->vs_end;
1237 
1238 			vmem_freelist_delete(vmp, nextseg);
1239 			VMEM_DELETE(span, k);
1240 			vmem_seg_destroy(vmp, nextseg);
1241 			vmem_seg_destroy(vmp, span);
1242 
1243 			vsp = prevseg;
1244 		} else if (prevseg->vs_type == VMEM_FREE) {
1245 			/*
1246 			 * coalesce left
1247 			 */
1248 			ASSERT(prevseg->vs_end == addr);
1249 
1250 			VMEM_DELETE(span, k);
1251 			vmem_seg_destroy(vmp, span);
1252 
1253 			vmem_freelist_delete(vmp, prevseg);
1254 			prevseg->vs_end = endaddr;
1255 
1256 			vsp = prevseg;
1257 		} else if (nextseg->vs_type == VMEM_FREE) {
1258 			/*
1259 			 * coalesce right
1260 			 */
1261 			ASSERT(nextseg->vs_start == endaddr);
1262 
1263 			VMEM_DELETE(span, k);
1264 			vmem_seg_destroy(vmp, span);
1265 
1266 			vmem_freelist_delete(vmp, nextseg);
1267 			nextseg->vs_start = addr;
1268 
1269 			vsp = nextseg;
1270 		} else {
1271 			/*
1272 			 * cannnot coalesce
1273 			 */
1274 			VMEM_DELETE(span, k);
1275 			span->vs_start = addr;
1276 			span->vs_end = endaddr;
1277 
1278 			vsp = span;
1279 		}
1280 	} else if (span->vs_end == addr) {
1281 		vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
1282 		span->vs_end = endaddr;
1283 
1284 		ASSERT(oldseg->vs_type != VMEM_SPAN);
1285 		if (oldseg->vs_type == VMEM_FREE) {
1286 			ASSERT(oldseg->vs_end == addr);
1287 			vmem_freelist_delete(vmp, oldseg);
1288 			oldseg->vs_end = endaddr;
1289 			vsp = oldseg;
1290 		} else
1291 			vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
1292 	} else {
1293 		vmem_seg_t *oldseg = span->vs_anext;
1294 		ASSERT(span->vs_start == endaddr);
1295 		span->vs_start = addr;
1296 
1297 		ASSERT(oldseg->vs_type != VMEM_SPAN);
1298 		if (oldseg->vs_type == VMEM_FREE) {
1299 			ASSERT(oldseg->vs_start == endaddr);
1300 			vmem_freelist_delete(vmp, oldseg);
1301 			oldseg->vs_start = addr;
1302 			vsp = oldseg;
1303 		} else
1304 			vsp = vmem_seg_create(vmp, span, addr, endaddr);
1305 	}
1306 	vmem_freelist_insert(vmp, vsp);
1307 	vmp->vm_kstat.vk_mem_total += (endaddr - addr);
1308 	return (vsp);
1309 }
1310 
1311 /*
1312  * Does some error checking, calls vmem_extend_unlocked to add
1313  * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
1314  * newly merged segment.
1315  */
1316 void *
1317 _vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
1318     int vmflag)
1319 {
1320 	uintptr_t addr = (uintptr_t)vaddr;
1321 	uintptr_t endaddr = addr + size;
1322 	vmem_seg_t *vsp;
1323 
1324 	ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
1325 	ASSERT(alloc <= size && alloc != 0);
1326 	ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
1327 
1328 	ASSERT(!vmem_contains(vmp, vaddr, size));
1329 
1330 	(void) mutex_lock(&vmp->vm_lock);
1331 	if (!vmem_populate(vmp, vmflag)) {
1332 		(void) mutex_unlock(&vmp->vm_lock);
1333 		return (NULL);
1334 	}
1335 	/*
1336 	 * if there is a source, we can't mess with the spans
1337 	 */
1338 	if (vmp->vm_source_alloc != NULL)
1339 		vsp = vmem_span_create(vmp, vaddr, size, 0);
1340 	else
1341 		vsp = vmem_extend_unlocked(vmp, addr, endaddr);
1342 
1343 	ASSERT(VS_SIZE(vsp) >= alloc);
1344 
1345 	addr = vsp->vs_start;
1346 	(void) vmem_seg_alloc(vmp, vsp, addr, alloc);
1347 	vaddr = (void *)addr;
1348 
1349 	(void) cond_broadcast(&vmp->vm_cv);
1350 	(void) mutex_unlock(&vmp->vm_lock);
1351 
1352 	return (vaddr);
1353 }
1354 
1355 /*
1356  * Walk the vmp arena, applying func to each segment matching typemask.
1357  * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1358  * call to func(); otherwise, it is held for the duration of vmem_walk()
1359  * to ensure a consistent snapshot.  Note that VMEM_REENTRANT callbacks
1360  * are *not* necessarily consistent, so they may only be used when a hint
1361  * is adequate.
1362  */
1363 void
1364 vmem_walk(vmem_t *vmp, int typemask,
1365 	void (*func)(void *, void *, size_t), void *arg)
1366 {
1367 	vmem_seg_t *vsp;
1368 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1369 	vmem_seg_t walker;
1370 
1371 	if (typemask & VMEM_WALKER)
1372 		return;
1373 
1374 	bzero(&walker, sizeof (walker));
1375 	walker.vs_type = VMEM_WALKER;
1376 
1377 	(void) mutex_lock(&vmp->vm_lock);
1378 	VMEM_INSERT(seg0, &walker, a);
1379 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1380 		if (vsp->vs_type & typemask) {
1381 			void *start = (void *)vsp->vs_start;
1382 			size_t size = VS_SIZE(vsp);
1383 			if (typemask & VMEM_REENTRANT) {
1384 				vmem_advance(vmp, &walker, vsp);
1385 				(void) mutex_unlock(&vmp->vm_lock);
1386 				func(arg, start, size);
1387 				(void) mutex_lock(&vmp->vm_lock);
1388 				vsp = &walker;
1389 			} else {
1390 				func(arg, start, size);
1391 			}
1392 		}
1393 	}
1394 	vmem_advance(vmp, &walker, NULL);
1395 	(void) mutex_unlock(&vmp->vm_lock);
1396 }
1397 
1398 /*
1399  * Return the total amount of memory whose type matches typemask.  Thus:
1400  *
1401  *	typemask VMEM_ALLOC yields total memory allocated (in use).
1402  *	typemask VMEM_FREE yields total memory free (available).
1403  *	typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1404  */
1405 size_t
1406 vmem_size(vmem_t *vmp, int typemask)
1407 {
1408 	uint64_t size = 0;
1409 
1410 	if (typemask & VMEM_ALLOC)
1411 		size += vmp->vm_kstat.vk_mem_inuse;
1412 	if (typemask & VMEM_FREE)
1413 		size += vmp->vm_kstat.vk_mem_total -
1414 		    vmp->vm_kstat.vk_mem_inuse;
1415 	return ((size_t)size);
1416 }
1417 
1418 /*
1419  * Create an arena called name whose initial span is [base, base + size).
1420  * The arena's natural unit of currency is quantum, so vmem_alloc()
1421  * guarantees quantum-aligned results.  The arena may import new spans
1422  * by invoking afunc() on source, and may return those spans by invoking
1423  * ffunc() on source.  To make small allocations fast and scalable,
1424  * the arena offers high-performance caching for each integer multiple
1425  * of quantum up to qcache_max.
1426  */
1427 vmem_t *
1428 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1429 	vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1430 	size_t qcache_max, int vmflag)
1431 {
1432 	int i;
1433 	size_t nqcache;
1434 	vmem_t *vmp, *cur, **vmpp;
1435 	vmem_seg_t *vsp;
1436 	vmem_freelist_t *vfp;
1437 	uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1438 
1439 	if (vmem_vmem_arena != NULL) {
1440 		vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1441 		    vmflag & VM_UMFLAGS);
1442 	} else {
1443 		ASSERT(id <= VMEM_INITIAL);
1444 		vmp = &vmem0[id - 1];
1445 	}
1446 
1447 	if (vmp == NULL)
1448 		return (NULL);
1449 	bzero(vmp, sizeof (vmem_t));
1450 
1451 	(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1452 	(void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
1453 	(void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
1454 	vmp->vm_cflags = vmflag;
1455 	vmflag &= VM_UMFLAGS;
1456 
1457 	vmp->vm_quantum = quantum;
1458 	vmp->vm_qshift = highbit(quantum) - 1;
1459 	nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1460 
1461 	for (i = 0; i <= VMEM_FREELISTS; i++) {
1462 		vfp = &vmp->vm_freelist[i];
1463 		vfp->vs_end = 1UL << i;
1464 		vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1465 		vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1466 	}
1467 
1468 	vmp->vm_freelist[0].vs_kprev = NULL;
1469 	vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1470 	vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1471 	vmp->vm_hash_table = vmp->vm_hash0;
1472 	vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1473 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1474 
1475 	vsp = &vmp->vm_seg0;
1476 	vsp->vs_anext = vsp;
1477 	vsp->vs_aprev = vsp;
1478 	vsp->vs_knext = vsp;
1479 	vsp->vs_kprev = vsp;
1480 	vsp->vs_type = VMEM_SPAN;
1481 
1482 	vsp = &vmp->vm_rotor;
1483 	vsp->vs_type = VMEM_ROTOR;
1484 	VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1485 
1486 	vmp->vm_id = id;
1487 	if (source != NULL)
1488 		vmp->vm_kstat.vk_source_id = source->vm_id;
1489 	vmp->vm_source = source;
1490 	vmp->vm_source_alloc = afunc;
1491 	vmp->vm_source_free = ffunc;
1492 
1493 	if (nqcache != 0) {
1494 		vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1495 		for (i = 0; i < nqcache; i++) {
1496 			char buf[VMEM_NAMELEN + 21];
1497 			(void) snprintf(buf, sizeof (buf), "%s_%lu",
1498 			    vmp->vm_name, (long)((i + 1) * quantum));
1499 			vmp->vm_qcache[i] = umem_cache_create(buf,
1500 			    (i + 1) * quantum, quantum, NULL, NULL, NULL,
1501 			    NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
1502 			if (vmp->vm_qcache[i] == NULL) {
1503 				vmp->vm_qcache_max = i * quantum;
1504 				break;
1505 			}
1506 		}
1507 	}
1508 
1509 	(void) mutex_lock(&vmem_list_lock);
1510 	vmpp = &vmem_list;
1511 	while ((cur = *vmpp) != NULL)
1512 		vmpp = &cur->vm_next;
1513 	*vmpp = vmp;
1514 	(void) mutex_unlock(&vmem_list_lock);
1515 
1516 	if (vmp->vm_cflags & VMC_POPULATOR) {
1517 		uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
1518 		ASSERT(pop_id <= VMEM_INITIAL);
1519 		vmem_populator[pop_id - 1] = vmp;
1520 		(void) mutex_lock(&vmp->vm_lock);
1521 		(void) vmem_populate(vmp, vmflag | VM_PANIC);
1522 		(void) mutex_unlock(&vmp->vm_lock);
1523 	}
1524 
1525 	if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1526 		vmem_destroy(vmp);
1527 		return (NULL);
1528 	}
1529 
1530 	return (vmp);
1531 }
1532 
1533 /*
1534  * Destroy arena vmp.
1535  */
1536 void
1537 vmem_destroy(vmem_t *vmp)
1538 {
1539 	vmem_t *cur, **vmpp;
1540 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1541 	vmem_seg_t *vsp;
1542 	size_t leaked;
1543 	int i;
1544 
1545 	(void) mutex_lock(&vmem_list_lock);
1546 	vmpp = &vmem_list;
1547 	while ((cur = *vmpp) != vmp)
1548 		vmpp = &cur->vm_next;
1549 	*vmpp = vmp->vm_next;
1550 	(void) mutex_unlock(&vmem_list_lock);
1551 
1552 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1553 		if (vmp->vm_qcache[i])
1554 			umem_cache_destroy(vmp->vm_qcache[i]);
1555 
1556 	leaked = vmem_size(vmp, VMEM_ALLOC);
1557 	if (leaked != 0)
1558 		umem_printf("vmem_destroy('%s'): leaked %lu bytes",
1559 		    vmp->vm_name, leaked);
1560 
1561 	if (vmp->vm_hash_table != vmp->vm_hash0)
1562 		vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1563 		    (vmp->vm_hash_mask + 1) * sizeof (void *));
1564 
1565 	/*
1566 	 * Give back the segment structures for anything that's left in the
1567 	 * arena, e.g. the primary spans and their free segments.
1568 	 */
1569 	VMEM_DELETE(&vmp->vm_rotor, a);
1570 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
1571 		vmem_putseg_global(vsp);
1572 
1573 	while (vmp->vm_nsegfree > 0)
1574 		vmem_putseg_global(vmem_getseg(vmp));
1575 
1576 	(void) mutex_destroy(&vmp->vm_lock);
1577 	(void) cond_destroy(&vmp->vm_cv);
1578 	vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1579 }
1580 
1581 /*
1582  * Resize vmp's hash table to keep the average lookup depth near 1.0.
1583  */
1584 static void
1585 vmem_hash_rescale(vmem_t *vmp)
1586 {
1587 	vmem_seg_t **old_table, **new_table, *vsp;
1588 	size_t old_size, new_size, h, nseg;
1589 
1590 	nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
1591 
1592 	new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1593 	old_size = vmp->vm_hash_mask + 1;
1594 
1595 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1596 		return;
1597 
1598 	new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1599 	    VM_NOSLEEP);
1600 	if (new_table == NULL)
1601 		return;
1602 	bzero(new_table, new_size * sizeof (void *));
1603 
1604 	(void) mutex_lock(&vmp->vm_lock);
1605 
1606 	old_size = vmp->vm_hash_mask + 1;
1607 	old_table = vmp->vm_hash_table;
1608 
1609 	vmp->vm_hash_mask = new_size - 1;
1610 	vmp->vm_hash_table = new_table;
1611 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1612 
1613 	for (h = 0; h < old_size; h++) {
1614 		vsp = old_table[h];
1615 		while (vsp != NULL) {
1616 			uintptr_t addr = vsp->vs_start;
1617 			vmem_seg_t *next_vsp = vsp->vs_knext;
1618 			vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1619 			vsp->vs_knext = *hash_bucket;
1620 			*hash_bucket = vsp;
1621 			vsp = next_vsp;
1622 		}
1623 	}
1624 
1625 	(void) mutex_unlock(&vmp->vm_lock);
1626 
1627 	if (old_table != vmp->vm_hash0)
1628 		vmem_free(vmem_hash_arena, old_table,
1629 		    old_size * sizeof (void *));
1630 }
1631 
1632 /*
1633  * Perform periodic maintenance on all vmem arenas.
1634  */
1635 /*ARGSUSED*/
1636 void
1637 vmem_update(void *dummy)
1638 {
1639 	vmem_t *vmp;
1640 
1641 	(void) mutex_lock(&vmem_list_lock);
1642 	for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1643 		/*
1644 		 * If threads are waiting for resources, wake them up
1645 		 * periodically so they can issue another vmem_reap()
1646 		 * to reclaim resources cached by the slab allocator.
1647 		 */
1648 		(void) cond_broadcast(&vmp->vm_cv);
1649 
1650 		/*
1651 		 * Rescale the hash table to keep the hash chains short.
1652 		 */
1653 		vmem_hash_rescale(vmp);
1654 	}
1655 	(void) mutex_unlock(&vmem_list_lock);
1656 }
1657 
1658 /*
1659  * If vmem_init is called again, we need to be able to reset the world.
1660  * That includes resetting the statics back to their original values.
1661  */
1662 void
1663 vmem_startup(void)
1664 {
1665 #ifdef UMEM_STANDALONE
1666 	vmem_id = 0;
1667 	vmem_populators = 0;
1668 	vmem_segfree = NULL;
1669 	vmem_list = NULL;
1670 	vmem_internal_arena = NULL;
1671 	vmem_seg_arena = NULL;
1672 	vmem_hash_arena = NULL;
1673 	vmem_vmem_arena = NULL;
1674 	vmem_heap = NULL;
1675 	vmem_heap_alloc = NULL;
1676 	vmem_heap_free = NULL;
1677 
1678 	bzero(vmem0, sizeof (vmem0));
1679 	bzero(vmem_populator, sizeof (vmem_populator));
1680 	bzero(vmem_seg0, sizeof (vmem_seg0));
1681 #endif
1682 }
1683 
1684 /*
1685  * Prepare vmem for use.
1686  */
1687 vmem_t *
1688 vmem_init(const char *parent_name, size_t parent_quantum,
1689     vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
1690     const char *heap_name, void *heap_start, size_t heap_size,
1691     size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
1692 {
1693 	uint32_t id;
1694 	int nseg = VMEM_SEG_INITIAL;
1695 	vmem_t *parent, *heap;
1696 
1697 	ASSERT(vmem_internal_arena == NULL);
1698 
1699 	while (--nseg >= 0)
1700 		vmem_putseg_global(&vmem_seg0[nseg]);
1701 
1702 	if (parent_name != NULL) {
1703 		parent = vmem_create(parent_name,
1704 		    heap_start, heap_size, parent_quantum,
1705 		    NULL, NULL, NULL, 0,
1706 		    VM_SLEEP | VMC_POPULATOR);
1707 		heap_start = NULL;
1708 		heap_size = 0;
1709 	} else {
1710 		ASSERT(parent_alloc == NULL && parent_free == NULL);
1711 		parent = NULL;
1712 	}
1713 
1714 	heap = vmem_create(heap_name,
1715 	    heap_start, heap_size, heap_quantum,
1716 	    parent_alloc, parent_free, parent, 0,
1717 	    VM_SLEEP | VMC_POPULATOR);
1718 
1719 	vmem_heap = heap;
1720 	vmem_heap_alloc = heap_alloc;
1721 	vmem_heap_free = heap_free;
1722 
1723 	vmem_internal_arena = vmem_create("vmem_internal",
1724 	    NULL, 0, heap_quantum,
1725 	    heap_alloc, heap_free, heap, 0,
1726 	    VM_SLEEP | VMC_POPULATOR);
1727 
1728 	vmem_seg_arena = vmem_create("vmem_seg",
1729 	    NULL, 0, heap_quantum,
1730 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1731 	    VM_SLEEP | VMC_POPULATOR);
1732 
1733 	vmem_hash_arena = vmem_create("vmem_hash",
1734 	    NULL, 0, 8,
1735 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1736 	    VM_SLEEP);
1737 
1738 	vmem_vmem_arena = vmem_create("vmem_vmem",
1739 	    vmem0, sizeof (vmem0), 1,
1740 	    vmem_alloc, vmem_free, vmem_internal_arena, 0,
1741 	    VM_SLEEP);
1742 
1743 	for (id = 0; id < vmem_id; id++)
1744 		(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1745 		    1, 0, 0, &vmem0[id], &vmem0[id + 1],
1746 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1747 
1748 	return (heap);
1749 }
1750 
1751 void
1752 vmem_no_debug(void)
1753 {
1754 	/*
1755 	 * This size must be a multiple of the minimum required alignment,
1756 	 * since vmem_populate allocates them compactly.
1757 	 */
1758 	vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
1759 	    sizeof (hrtime_t));
1760 }
1761 
1762 /*
1763  * Lockup and release, for fork1(2) handling.
1764  */
1765 void
1766 vmem_lockup(void)
1767 {
1768 	vmem_t *cur;
1769 
1770 	(void) mutex_lock(&vmem_list_lock);
1771 	(void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
1772 
1773 	/*
1774 	 * Lock up and broadcast all arenas.
1775 	 */
1776 	for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
1777 		(void) mutex_lock(&cur->vm_lock);
1778 		(void) cond_broadcast(&cur->vm_cv);
1779 	}
1780 
1781 	(void) mutex_lock(&vmem_segfree_lock);
1782 }
1783 
1784 void
1785 vmem_release(void)
1786 {
1787 	vmem_t *cur;
1788 
1789 	(void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
1790 
1791 	for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
1792 		(void) mutex_unlock(&cur->vm_lock);
1793 
1794 	(void) mutex_unlock(&vmem_segfree_lock);
1795 	(void) mutex_unlock(&vmem_list_lock);
1796 }
1797