xref: /titanic_50/usr/src/lib/libsum/common/sum-sha1.c (revision d6114e2d100d9ec3b45f9968d45ac2e3a0827af0)
1 /***********************************************************************
2 *                                                                      *
3 *               This software is part of the ast package               *
4 *          Copyright (c) 1996-2009 AT&T Intellectual Property          *
5 *                      and is licensed under the                       *
6 *                  Common Public License, Version 1.0                  *
7 *                    by AT&T Intellectual Property                     *
8 *                                                                      *
9 *                A copy of the License is available at                 *
10 *            http://www.opensource.org/licenses/cpl1.0.txt             *
11 *         (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9)         *
12 *                                                                      *
13 *              Information and Software Systems Research               *
14 *                            AT&T Research                             *
15 *                           Florham Park NJ                            *
16 *                                                                      *
17 *                 Glenn Fowler <gsf@research.att.com>                  *
18 *                                                                      *
19 ***********************************************************************/
20 #pragma prototyped
21 
22 /*
23  * SHA-1 in C
24  * By Steve Reid <steve@edmweb.com>
25  * 100% Public Domain
26  *
27  * Test Vectors (from FIPS PUB 180-1)
28  * "abc"
29  *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
30  * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
31  *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
32  * A million repetitions of "a"
33  *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
34  */
35 
36 #define sha1_description "FIPS 180-1 SHA-1 secure hash algorithm 1."
37 #define sha1_options	"[+(version)?sha1 (FIPS 180-1) 1996-09-26]\
38 			 [+(author)?Steve Reid <steve@edmweb.com>]"
39 #define sha1_match	"sha1|SHA1|sha-1|SHA-1"
40 #define sha1_scale	0
41 
42 #define sha1_padding	md5_pad
43 
44 typedef struct Sha1_s
45 {
46 	_SUM_PUBLIC_
47 	_SUM_PRIVATE_
48 	uint32_t	count[2];
49 	uint32_t	state[5];
50 	uint8_t		buffer[64];
51 	uint8_t		digest[20];
52 	uint8_t		digest_sum[20];
53 } Sha1_t;
54 
55 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
56 
57 /*
58  * blk0() and blk() perform the initial expand.
59  * I got the idea of expanding during the round function from SSLeay
60  */
61 #if _ast_intswap
62 # define blk0(i) \
63 	(block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) \
64 	 | (rol(block->l[i], 8) & 0x00FF00FF))
65 #else
66 # define blk0(i) block->l[i]
67 #endif
68 #define blk(i) \
69 	(block->l[i & 15] = rol(block->l[(i + 13) & 15] \
70 				^ block->l[(i + 8) & 15] \
71 				^ block->l[(i + 2) & 15] \
72 				^ block->l[i & 15], 1))
73 
74 /*
75  * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
76  */
77 #define R0(v,w,x,y,z,i) \
78 	z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
79 	w = rol(w, 30);
80 #define R1(v,w,x,y,z,i) \
81 	z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
82 	w = rol(w, 30);
83 #define R2(v,w,x,y,z,i) \
84 	z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
85 	w = rol(w, 30);
86 #define R3(v,w,x,y,z,i) \
87 	z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
88 	w = rol(w, 30);
89 #define R4(v,w,x,y,z,i) \
90 	z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
91 	w = rol(w, 30);
92 
93 typedef union {
94 	unsigned char c[64];
95 	unsigned int l[16];
96 } CHAR64LONG16;
97 
98 #ifdef __sparc_v9__
99 static void do_R01(uint32_t *a, uint32_t *b, uint32_t *c,
100 		   uint32_t *d, uint32_t *e, CHAR64LONG16 *);
101 static void do_R2(uint32_t *a, uint32_t *b, uint32_t *c,
102 		  uint32_t *d, uint32_t *e, CHAR64LONG16 *);
103 static void do_R3(uint32_t *a, uint32_t *b, uint32_t *c,
104 		  uint32_t *d, uint32_t *e, CHAR64LONG16 *);
105 static void do_R4(uint32_t *a, uint32_t *b, uint32_t *c,
106 		  uint32_t *d, uint32_t *e, CHAR64LONG16 *);
107 
108 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
109 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
110 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
111 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
112 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
113 
114 static void
115 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
116        uint32_t *e, CHAR64LONG16 *block)
117 {
118 	nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2);
119 	nR0(c,d,e,a,b, 3); nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5);
120 	nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); nR0(c,d,e,a,b, 8);
121 	nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
122 	nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14);
123 	nR0(a,b,c,d,e,15); nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17);
124 	nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
125 }
126 
127 static void
128 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
129       uint32_t *e, CHAR64LONG16 *block)
130 {
131 	nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22);
132 	nR2(c,d,e,a,b,23); nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25);
133 	nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); nR2(c,d,e,a,b,28);
134 	nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
135 	nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34);
136 	nR2(a,b,c,d,e,35); nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37);
137 	nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
138 }
139 
140 static void
141 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
142       uint32_t *e, CHAR64LONG16 *block)
143 {
144 	nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42);
145 	nR3(c,d,e,a,b,43); nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45);
146 	nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); nR3(c,d,e,a,b,48);
147 	nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
148 	nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54);
149 	nR3(a,b,c,d,e,55); nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57);
150 	nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
151 }
152 
153 static void
154 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
155       uint32_t *e, CHAR64LONG16 *block)
156 {
157 	nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62);
158 	nR4(c,d,e,a,b,63); nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65);
159 	nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); nR4(c,d,e,a,b,68);
160 	nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
161 	nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74);
162 	nR4(a,b,c,d,e,75); nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77);
163 	nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
164 }
165 #endif
166 
167 /*
168  * Hash a single 512-bit block. This is the core of the algorithm.
169  */
170 static void
171 sha1_transform(uint32_t state[5], const unsigned char buffer[64]) {
172 	uint32_t a, b, c, d, e;
173 	CHAR64LONG16 *block;
174 	CHAR64LONG16 workspace;
175 
176 	block = &workspace;
177 	(void)memcpy(block, buffer, 64);
178 
179 	/* Copy sha->state[] to working vars */
180 	a = state[0];
181 	b = state[1];
182 	c = state[2];
183 	d = state[3];
184 	e = state[4];
185 
186 #ifdef __sparc_v9__
187 	do_R01(&a, &b, &c, &d, &e, block);
188 	do_R2(&a, &b, &c, &d, &e, block);
189 	do_R3(&a, &b, &c, &d, &e, block);
190 	do_R4(&a, &b, &c, &d, &e, block);
191 #else
192 	/* 4 rounds of 20 operations each. Loop unrolled. */
193 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
194 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
195 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
196 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
197 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
198 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
199 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
200 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
201 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
202 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
203 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
204 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
205 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
206 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
207 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
208 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
209 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
210 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
211 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
212 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
213 #endif
214 
215 	/* Add the working vars back into context.state[] */
216 	state[0] += a;
217 	state[1] += b;
218 	state[2] += c;
219 	state[3] += d;
220 	state[4] += e;
221 
222 	/* Wipe variables */
223 	a = b = c = d = e = 0;
224 }
225 
226 static int
227 sha1_block(register Sum_t* p, const void* s, size_t len)
228 {
229 	Sha1_t*		sha = (Sha1_t*)p;
230 	uint8_t*	data = (uint8_t*)s;
231 	unsigned int	i, j;
232 
233 	if (len) {
234 		j = sha->count[0];
235 		if ((sha->count[0] += len << 3) < j)
236 			sha->count[1] += (len >> 29) + 1;
237 		j = (j >> 3) & 63;
238 		if ((j + len) > 63) {
239 			(void)memcpy(&sha->buffer[j], data, (i = 64 - j));
240 			sha1_transform(sha->state, sha->buffer);
241 			for ( ; i + 63 < len; i += 64)
242 				sha1_transform(sha->state, &data[i]);
243 			j = 0;
244 		} else {
245 			i = 0;
246 		}
247 
248 		(void)memcpy(&sha->buffer[j], &data[i], len - i);
249 	}
250 	return 0;
251 }
252 
253 static int
254 sha1_init(Sum_t* p)
255 {
256 	register Sha1_t*	sha = (Sha1_t*)p;
257 
258 	sha->count[0] = sha->count[1] = 0;
259 	sha->state[0] = 0x67452301;
260 	sha->state[1] = 0xEFCDAB89;
261 	sha->state[2] = 0x98BADCFE;
262 	sha->state[3] = 0x10325476;
263 	sha->state[4] = 0xC3D2E1F0;
264 
265 	return 0;
266 }
267 
268 static Sum_t*
269 sha1_open(const Method_t* method, const char* name)
270 {
271 	Sha1_t*	sha;
272 
273 	if (sha = newof(0, Sha1_t, 1, 0))
274 	{
275 		sha->method = (Method_t*)method;
276 		sha->name = name;
277 		sha1_init((Sum_t*)sha);
278 	}
279 	return (Sum_t*)sha;
280 }
281 
282 /*
283  * Add padding and return the message digest.
284  */
285 
286 static const unsigned char final_200 = 128;
287 static const unsigned char final_0 = 0;
288 
289 static int
290 sha1_done(Sum_t* p)
291 {
292 	Sha1_t*	sha = (Sha1_t*)p;
293 	unsigned int i;
294 	unsigned char finalcount[8];
295 
296 	for (i = 0; i < 8; i++) {
297 		/* Endian independent */
298 		finalcount[i] = (unsigned char)
299 			((sha->count[(i >= 4 ? 0 : 1)]
300 			  >> ((3 - (i & 3)) * 8)) & 255);
301 	}
302 
303 	sha1_block(p, &final_200, 1);
304 	while ((sha->count[0] & 504) != 448)
305 		sha1_block(p, &final_0, 1);
306 	/* The next Update should cause a sha1_transform() */
307 	sha1_block(p, finalcount, 8);
308 
309 	for (i = 0; i < elementsof(sha->digest); i++)
310 	{
311 		sha->digest[i] = (unsigned char)((sha->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
312 		sha->digest_sum[i] ^= sha->digest[i];
313 	}
314 	memset(sha->count, 0, sizeof(sha->count));
315 	memset(sha->state, 0, sizeof(sha->state));
316 	memset(sha->buffer, 0, sizeof(sha->buffer));
317 	return 0;
318 }
319 
320 static int
321 sha1_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale)
322 {
323 	register Sha1_t*	sha = (Sha1_t*)p;
324 	register unsigned char*	d;
325 	register int		n;
326 
327 	d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest;
328 	for (n = 0; n < elementsof(sha->digest); n++)
329 		sfprintf(sp, "%02x", d[n]);
330 	return 0;
331 }
332 
333 static int
334 sha1_data(Sum_t* p, Sumdata_t* data)
335 {
336 	register Sha1_t*	sha = (Sha1_t*)p;
337 
338 	data->size = elementsof(sha->digest);
339 	data->num = 0;
340 	data->buf = sha->digest;
341 	return 0;
342 }
343